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Abstract

Federated Learning (FL) is a privacy-preserving distributed learning framework
which could harness the potential of decentralized multimedia data. However,
a significant hurdle lies in the non-uniform distribution of data among clients,
leading to slow convergence and subpar accuracy in the global model. Although
several approaches have been proposed to address this challenge, two key limita-
tions remain. First, these methods frequently require access to information about
local data or even the raw data, which raises significant privacy concerns for
clients. Second, these methods struggle to perform well in a common non-IID sce-
nario: class missingness, and they often fail to fully resolve the issue of client drift.
In response, in this paper, we propose a privacy-friendly and universal method
FedPG to solve non-IID data in FL. The core idea behind FedPG is to leverage
homogeneous virtual data to alleviate both data heterogeneity and client drift.
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Specifically, FedPG introduces a novel image generation method based on pro-
totype loss, which does not require any additional privacy-sensitive information.
This approach generates synthetic datasets aligned with the global distribution
to effectively assist local training. Besides, we also design a local training method
that is suitable for scenarios involving class missingness, enabling both feature
adaptation and classifier de-biasing. The comprehensive experiments demon-
strate the efficacy of our FedPG framework. In the majority of cases, FedPG not
only achieves superior accuracy but also exhibits accelerated convergence rates
compared to alternative approaches.

Keywords: Federated Learning, data heterogeneity, prototype, domain adaptation

1 Introduction

Recently, widespread use of multi-media sensors has led to the generation and stor-
age of large amounts of decentralized multi-media data. Utilizing this data to drive
Artificial Intelligence (AI) technology holds promise for accelerating intelligent sys-
tem development and improving service quality [1, 2]. However, sharing raw data
raises serious privacy concerns and incurs substantial communication costs. Fortu-
nately, Federated Learning (FL)[3, 4] has been proposed to harness the potential
of such distributed multimedia data and facilitate the development of high-quality
AI models. Computer vision tasks, in particular, have been extensively studied and
applied in FL[5]. In this context, clients train visual models on-device, ensuring that
data remains on the local device. This preserves privacy and reduces associated data
transmission and storage costs. However, due to the independent generation of data
on distributed multi-media sensors, the data across client devices exhibit a non-
independent and identically distributed (non-IID) nature, commonly referred to as
data heterogeneity[6, 7]. Data heterogeneity is one of the significant challenges of FL.
It has been identified leading to oscillatory and slow convergence and contributing
to suboptimal model performance[7–9]. Moreover, the performance of FL tends to
degrade when facing class-missing data, an extreme yet common form of data hetero-
geneity [10]. For instance, a hospital specializing in heart diseases may entirely lack
samples related to respiratory conditions.

Data heterogeneity in FL leads to client-drift, where local models converge towards
their individual optima due to non-IID data, causing the global model to deviate from
the global optimum[11]. To address client-drift issue, a natural approach is to improve
the generalization ability of local models, thereby enhancing the overall performance of
the global model. And numerous related works have been developed based on this idea,
which can be categorized into two types: One aims to enhance the similarity among
local models[11–17]. Two prevalent methods for achieving this are feature alignment
and classifier de-biasing, which target the feature extractor and classifier components,
respectively. However, these methods prove ineffective when dealing with class-missing
local data, as they rely on the presence of all classes to guide local optimization towards
the global optimum. Moreover, as noted in prior works[6, 9], it’s challenging for a single
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Fig. 1: An illustration of GAN training on the server side in our FedPG. Given a
label, the GAN generates virtual images, which are passed through the global model to
obtain their feature representations. The GAN is optimized to align these features with
the corresponding global prototypes, ensuring the synthetic datasets are consistent
with the system’s data distribution.

learning paradigm to address client drift problem across varying data distributions.
Another focuses on alleviating the heterogeneity among local data. Compared to the
previous category, these methods directly address the root cause of client drift, i.e. non-
IID data. These methods involve the introduction of public data or information[7, 18–
20], and clustering clients based on their local data[21–24]. However, these approaches
are constrained by privacy concerns, as they often require sensitive information about
local data, such as class-wise sample counts or feature distributions. Some approaches
even need sharing raw data, which fundamentally contradicts the core principles of
FL. Moreover, public datasets may either be unavailable or unsuitable for the specific
target tasks.

To address the limitations of existing works, in this paper, we propose an effective,
universal and privacy-friendly method FedPG for computer vision tasks. In FedPG, the
server trains a generative model based on Prototype[25] and Generative learning[26].
Specifically, FedPG develops a generative model capable of generating virtual images
based on a given target label. As shown in Fig.1, The feature representations of virtual
images, extracted by the global model, are then clustered around the corresponding
global prototypes. This process ensures that the synthetic datasets are well-aligned
with the system’s dataset. Besides, clients share only their local prototypes in FedPG,
which poses no risk to privacy[27–29]. By sharing the virtual data among clients,
homogeneity is introduced into their local datasets[20]. We also propose a local training
method to correct the drift of clients’ models more thoroughly. It aligns the features
of real and virtual images from the same class to achieve domain adaptation[30], while
incorporating virtual data into classification to de-bias the classifier. This approach
does not assume locally complete class distributions, as the synthetic dataset aids in
generalizing local models even in class-missing scenarios.
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Our FedPG reaps multifold advantages: (1) By introducing homogeneous virtual
dataset, FedPG is able to improve the generalization capability of local models. It
could enhance the performance of global model in turn. (2) It harmonizes with the
objective of safeguarding privacy in FL. On one hand, it doesn’t depend on sharing
raw data or statistical information, consistent with the principle of FL. On the other
hand, updating local prototypes is privacy-friendly since the computation process is
irreversible[27]. (3) Compared to some prior work, our method is more universal.
FedPG uses virtual prototypes to overcome the miss of global prototypes of certain
classes. So there are no extra constraints for clients selection strategy. Besides, with the
use of virtual datasets, it can function effectively even in the presence of class-missing
data. Our comprehensive experiments have validated the efficacy of FedPG from mul-
tiple perspectives, demonstrating a performance improvement both on convergence
rate and test accuracy compared to the baseline. We evaluate the performance on three
image classification datasets, including CIFAR-10, CIFAR-100[31], and FEMNIST[32],
across three data partitioning methods. In most cases, FedPG achieves state-of-the-
art performance. For example, on CIFAR-10 dataset with four non-IID settings, our
method achieves a performance improvement of 3.59% to 5.03% over FedAvg, while
also achieving convergence twice as fast as FedAvg.

The main contributions of this paper are as follows.

• We propose a universal and privacy-friendly algorithm, FedPG, which leverages
prototype loss to train a generative model capable of producing public datasets to
introduce homogeneity to clients.

• We propose a local training strategy that addresses both feature adaptation and
classifier de-biasing, with the goal of mitigating client drift, including scenarios
involving class-missing local data.

• We conduct comprehensive experimental evaluations across three benchmark
datasets, considering three distinct scenarios of data heterogeneity, and demonstrate
the effectiveness of our FedPG method.

The rest of this paper is structured as follows. Section 2 introduces the data
heterogeneity issue in FL and discusses two mainstream approaches based on the
FedAvg framework. Section 3 presents the system definition and outlines our motiva-
tion. Section 4 provides the details of our proposed method, FedPG. The experimental
setup, results, and analysis are presented in Section 5. Finally, Section 6 concludes the
paper.

2 Related Work

In the section, we introduce one of the most traditional methods in FL, FedAvg. There
are various methods to tackle non-IID issue based on FedAvg framework, and we focus
on the algorithms enhancing local model generalization. We divide the related work
into two categories and compare our method with these baselines.
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Fig. 2: The framework of algorithm FedAvg.In FedAvg, each client trains a local
model on its own data and periodically shares model updates with central server. The
server then averages these updates to obtain a global model and sent it back to clients.
The process repeats iteratively until system convergence.

2.1 Federated Learning

FL is a rapidly evolving research domain of distributed learning. One of the most pop-
ular algorithms is FedAvg[33], whose progress is illustrated in Fig.2. At the beginning,
server initializes global model and then distributes it to a fraction of clients selected
randomly. When receive the global model, clients train it with local data and send
local models to server. As soon as a sufficient quantity of local models is received,
server aggregates them to update global model. In the next round, server continues
to distribute the updated global model to the selected clients. The above steps are
repeated until the model has converged. FL also presents several open challenges [6],
such as the issue of non-IID data. Since clients generate local data independently, the
data distributions across clients are heterogeneous, which leads to subpar performance
in FL, including slow convergence and suboptimal model quality.

Based on framework of FedAvg, there are two mainstream classes of methods to
address the issue[17]. One focuses on optimizing local training. These methods encom-
pass incorporating the global context into local updates to generalize local models.
Another aims to design aggregation strategies to smoothly transfer knowledge from
local models to the global one[17, 34]. Compared to the former, the latter can’t address
inherent heterogeneity among local models arising from local training. Moreover, the
advanced aggregation strategies can be used besides local training optimization in most
cases. So in the work, we focus on the methods enhancing local model generalization
and categorize the related work into two main types.
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2.2 Enhancing Similarity of models

Data heterogeneity presents itself as heterogeneity among local models’ parameters.
Many approaches aim to mitigate this client drift by constraining the update directions
to make local models more similar. Existing works achieve similarity among local
models from three perspectives:

(i) The Whole Model: Some works align local models to the global model by
considering model parameters, logits, or gradients [8, 11, 12, 35]. For example, in
FedNTD[35], clients constraint the predictions of the same sample generated by both
the local and global models. However, this approach may overlook the inner signif-
icance of model heterogeneity, potentially erasing the underlying knowledge of local
models[17].

(ii) Feature Extractor: Feature alignment, as proposed in contrastive learning[19,
36, 37], aims to reduce the distance between features from the same class. In FL, it is
used to learn generalized feature representations across local models. For example, in
MOON[37], clients input their local data to both global and local models, constraining
the distance between the output feature vectors. However, the significant bias of clas-
sifiers still hampering performance[16]. What’s more, most feature alignment methods
are ineffective when dealing with class-imbalanced data. For MOON, if a client has no
sample for a certain class, it becomes impossible to correct the features of that class’s
data.

(iii) Classifier: A classifier is a component of a classification model that maps
feature vectors to predictions. Ideally, the local model performs equally well across all
classes present in system dataset. But due to non-IID data, classifiers may produce
highly imbalanced predictions. Some works focus on classifier tuning[16, 17, 38]. The
work[16] experimentally highlights that ”the devil is in the classifier” and corrects the
classifier using virtual representations. However, obtaining representations for classifier
tuning is constrained by privacy concerns. Moreover, it is challenging to determine
how the extractor will map data from locally missing class to features, making it even
more difficult for the classifier to distinguish these features.

2.3 Alleviating Heterogeneity of data

Structuring more homogeneous local data is a fundamental approach to address data
heterogeneity. While these methods can improve the performance of federated learning,
they often introduce impractical constraints or privacy risks. There are two common
categories methods:

(i) Formulating a client selection strategy[21–24] involves sampling or clustering
clients based on the distributions of their local data. It could reduce the degree of
heterogeneity in the training data. However, well-conceived strategies may face chal-
lenges due to varying device availability in real-world applications. Additionally, they
require clients to share statistical information about local data, which is not suitable
for privacy-sensitive scenarios.

(ii) Another approach entails the incorporation of additional data[7, 18–20, 39, 40].
This method shares part of the local data or a public dataset among clients to create
more balanced local data. Nevertheless, sharing raw data fundamentally contradicts
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the core principles of FL, and additional public datasets may not be available for
many applications. In consideration of this, some algorithms utilize synthetic datasets.
For example, in VHL[19], the server generates a synthetic dataset using a Gaussian
distribution or a Style-GAN model[41] in the initial stage. However, with the training
of the system models, the fixed synthetic dataset may no longer be helpful for local
training[19].

In the conclusion, two limitations are identified in the related work: the introduc-
tion of privacy concerns and the lack of robustness to class-missingness. In response,
we propose a privacy-friendly and universal method, FedPG. It relies solely on local
prototypes, i.e., the averages of features, to construct virtual datasets. This approach
poses no risk to client privacy[27–29]. Then, it incorporates virtual dataset into local
training to facilitate feature alignment and mitigate classifier bias, even in the presence
of class-missing data. Hence, our approach leverages a virtual dataset to simultane-
ously alleviate data heterogeneity and enhance model similarity. VHL is the algorithm
most closely related to our work. However, our method differs in two key aspects.
First, it employs a GAN trained with a prototype loss, as opposed to being randomly
initialized, to generate synthetic datasets. Second, it periodically regenerates syn-
thetic datasets to align with the evolving training process. Our ablation experiments
demonstrate the efficacy of these two design choices.

3 Notations and Preliminaries

3.1 System

This work considers training a single generalized global model for image classification
tasks in FL with non-IID data. Assume there are K clients and one server in the
FL system. Each client(1,...,K) has a local dataset Dk = {(xi, yi)}|Dk|

i=1 , where xi and
yi indicate the ith image and its label on client k respectively. The total dataset D
of whole users in FL is defined as D = ∪k∈[K]Dk and assume D contains C classes
indexed by [C]. For client k, let Dc

k = {(xi, yi) ∈ Dk|y = c} be the set of local samples
with ground-truth label c. The image classification model learned in the system is
represented as M , and the local model of client k is Mk. As an essential component
of M , feature extractor fϕ : X → Z is a mapping function from input space X to
feature space Z, which maps the input image x into a feature vector z = fϕ(x). And
the remaining parts of M are called classifier, denote by gφ : Z → RC , responsible
for mapping the feature vector z into a probability distribution as the predictions for
input x. In the context, the parameter of the classification model is represented as
M = {ϕ, φ}.

In FL, there is round-by-round communication between clients and server. At
round r, the server selects a subset of clients k ∈ Sr to participate and distributes the
global model Mr−1 to them. Upon receiving Mr−1, each client locally updates it to
Mr

k with the objective defined as:

Lk = min
Mr

k={ϕr
k,φ

r
k}

E(xi,yi)∼Dk
[L(Mr

k ;M
r−1
k , xi, yi)], (1)
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where L indicates the loss function of local training. Take note that L depends on
the algorithm. For example, to limit the separation between M and Mk, FedProx[8]
employs the cross entropy loss with their l2 distance; FedNTD[35] introduces a knowl-
edge distillation loss term to preserve global knowledge during local training; And
FedGen[17] uses knowledge about the distribution of global features to guide local
optimizing.

In the end of round r, the server receives the optimized parameters from the
selected clients Sr and updates the global model by aggregating these parameters as
follows.

Mr+1 =
∑

k∈[K]

pkM
r
k , where pk =

|Dk|
|D|

(2)

In general FL system, the overall objective is to learn a converged and generalized
model by leveraging the local data and computational power of distributed devices.
Thus, a global model that can reduce the global loss L over the whole dataset is
required.

min
M

L(M,D) =

∑K
k=1

∑|Dk|
i=1 L(M,xi, yi)

|D|
(3)

3.2 Motivation

When faces to data heterogeneity, the performance of the global model is oscillatory
and subpar [7, 9, 11] in FL. Due to non-IID data, there is an inconsistency between
the local and global tasks. In the context, local models gravitate towards their individ-
ual optima (diverging due to non-IID data) during local training, causing the global
model to deviate from the global optimum[11]. Several attempts have been made to
address the issue by enhancing the local model’s ability to generalize, thereby improv-
ing the performance of the global model. In this section, we empirically demonstrate
the existence of great bias in both extractor and classifier that would arise from data
heterogeneity. Furthermore, we analyze the drawbacks of existing mitigation methods
and introduce the idea of our work.

We execute FedAvg on the CIFAR-10 dataset and partition the training data
among 10 clients using LDA with α = 0.1. At the end of the 300th round, we randomly
select two clients, referred to as Client 1 and Client 2, and evaluate their local models.
Next, we apply T-SNE [42] to reduce the dimensionality of these feature vectors fϕ(x)
to 2. The resulting visualizations are shown in Fig. 3. In the left subfigure, markers
are colored based on their ground-truth labels y, while in the middle subfigure, they
are colored based on the predictions gφ(fϕ(x)). The right subfigure illustrates the
distributions of local data for Client 1 and Client 2.

Based on Fig. 3, we can observe that:
(1) There are universal feature drift among clients’ local models. In the left sub-

figure, features generated by single model are clustered, whereas features generated
by different models remain distinct. This observation highlights that in FedAvg, dif-
ferent local models map identical or similar inputs to divergent feature spaces. This
feature drift not only weakens generalization capabilities of local models but also intro-
duces parameters heterogeneity among them, further compromising the performance
of global models.
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Fig. 3: The t-SNE visualization of features for two clients using FedAvg training on
CIFAR-10 dataset at the 300th communication round, where distinct colors signify
distinct data classes and distinct shapes signify distinct clients. The figure illustrates
the significant bias in both the extractor and the classifier.

(2) Local model classifiers exhibit significant bias, with predictions strongly cor-
related to the underlying data distribution. As shown in the middle subfigure, even
when the test data is balanced across classes, the classifier predominantly predicts fea-
ture vectors as belonging to the inner classes (i.e., classes that are prominent in the
local datasets). This highlights that local models focus primarily on their immediate
tasks, neglecting globally task-relevant data that is either rare or absent in their local
datasets during the local updating process.

Both of these issues, feature drift and classifiers bias, occur simultaneously in
setting of data heterogeneity. However, existing works[16, 17, 19, 36–38] typically only
consider one of the two issues, which may be ineffective because it’s always impeded
by the other issue. Furthermore, as discussed in 2, the related work reveals two key
limitations: the potential introduction of privacy risks and insufficient robustness in
handling class-missingness scenarios. As a result, we would like to tackle both issues
concurrently in order to better mitigate the non-IID issue in FL. To achieve this goal,
we introduce external homogeneous datasets to local to assist local training. Next, we
provide an introduction to our proposed method.

4 FedPG: Tackling non-IID in Heterogeneous
Federated Learning via Prototype Learning and
Generative Learning

In this section, we elaborate our proposed method FedPG. And we also analyze its
effectiveness in improving model generalization and mitigate data heterogeneity.
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4.1 Prototype Calculation

The mean vector of the instances belonging to the same class is referred to as the
prototype[25], which enjoys the benefits of exemplar-driven nature and simpler induc-
tive bias. In our framework, prototypes are utilized to reflect the global features of
system dataset. Clients are required to compute and upload their local prototypes
after local training. Subsequently, at the server side, the process commences with
aggregating these local prototypes to generate the global prototypes.

Specifically, for calculating local prototypes, clients randomly select m samples
from each label, where m represents a hyperparameter. Then clients input these sam-
ples into local models to obtain feature representations, For client k, the set of local
prototypes Pk is calculated by:

Pk = {Pk,c} = { 1

m

m∑
i=0

fϕ(xi)|xi ∈ Dc
k, c ∈ [C]} (4)

We define Pk,c as the prototype for class c on client k. It’s important to note that due
to data heterogeneity, the number of classes available on a client may be fewer than
the total classes number C in the system dataset, meaning the size of the set P is less
than or equal to C.

In each round, the server performs a simple aggregate to derive the set of global
prototypes P after collecting local prototype sets. The calculation formula is as follows.

P = {Pc} = { 1

nc

|S|∑
k=0

Pk,c|c ∈ [C]} (5)

Where Pc represents the global prototype of category c. S means the set of joined
clients in this round and its size is |S|. Besides, We define nc as the number of
prototypes belonging to category c among Pk, k ∈ S.

The set of global prototypes P is subsequently used to guide the training of the
generative model. However, since |Pk| ≤ C, |P| ≤ C. It implies that the set P may
not include prototypes for all classes in system, which is disastrous for its subsequent
utilization. To address this challenge, we utilize virtual prototypes generated randomly
and train them to align with the original global prototypes. This design enhances the
robustness of our method. The next section contains the details.

4.2 GAN Training

To enhance local training, our goal is to generate homogeneous datasets that can
generalize local models. The main challenge lies in optimizing a generative model
to produce meaningful virtual datasets. To achieve the goal, we employ trainable
prototypes and the global model during the training of the generative model to align
the features of virtual images with those of real images. The illustration of training
procedure is shown in Fig.1.

Server embarks on training GAN after obtaining global prototypes and global
model. In particular, before the training starts, server designs the architecture of the
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generative model to match the size training images. This ensures that the output of
the GAN, after a view operation, can be used as the input of system model in FL.
And the complexity of the GAN should be designed to match the complexity of the
training dataset. We use the notation Gw to denote the generative model used in our
system, which is parameterized by w. The function of model Gw is to output a virtual
image for each given label, i.e. Gw : y → X .

Besides, it randomly initializes a set of prototypes P ′, and ensures |P ′| = C. The
virtual prototype P ′

c is trainable and is constrained to approximate the real prototype
Pc during training. This approach helps compensate for the absence of prototypes
of certain classes. It avoids imposing strict constraints on complete classes, thereby
enhancing generalization in scenarios with heterogeneous data. The optimization
function for P ′ is as follows:

min
P′

d(P ′,P) =

C∑
c=1

d(P ′
c, Pc) (6)

where,

d(P ′
c, Pc) =

{
− log

exp(−∥P ′
c−Pc∥/τ)∑

i∈[C] exp(−∥P ′
c−Pi∥/τ) , if Pc ∈ P

0, otherwise
(7)

Where τ denotes distillation temperature and the function d(·) denotes the distance
between the two inputs. The virtual feature set P ′ is co-optimized alongside the
generative model Gw.

The server constructs input vectors for Gw by concatenating the one-hot encoded
label with random noise. The output vectors for Gw are then reviewed to generate
the virtual dataset D′. Next, D′ is fed into the frozen global model to obtain fea-
ture representations, which are expected to be consistent with the global prototypes.
Motivated by prototype learning[25], we define a distance-based cross entropy(DCE)
loss term for supervised learning, where the computation for an input (x, y) ∈ D′ is
performed as follows:

ℓdce = − log
exp (−d(fϕ(x), P

′
y)/τ)∑

c∈[C],c ̸=y exp (−d(fϕ(xi), P ′
c)/τ)

(8)

Where τ is a parameter of the distillation temperature. The objective of ℓdce is to min-
imize the distance between the feature vectors of x and the prototypes corresponding
to label y, effectively clustering features of the same class together.

We train Gw to generate virtual images whose features closely align with the
ground-truth prototypes by minimizing the loss function ℓdce. Over-fitting, however,
might result from solely minimizing ℓdce. Given this, inspired by work [43], we add
another loss term called prototype loss, as a regularization to enhance the generaliza-
tion performance of the generative model Gw. For an input (x, y) ∈ D′, the prototype
loss is defined as:

ℓp = ||fϕ(x)− P ′
y||22 (9)
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The prototype loss ℓp is integrated with the classification loss ℓdce to train the
generative model. Therefore, the optimization objective for Gw is to minimize:

min
Gw,P′

LG = min
Gw,P′

E(x,y)∼D′ [ℓdce(Gw,P ′, fϕ; (x, y))

+λsℓp(Gw,P ′, fϕ; (x, y))] + d(P ′,P)
(10)

where the hyperparameter λs controls the weight of prototype loss. The co-
optimization function is designed to identify optimal Gw and P ′ for generating virtual
datasets that align with the system-wide feature distributions.

The design of LG offers three key advantages: (1) The introduction of a trainable
virtual prototype set not only addresses the issue of missing classes, but also allows
virtual vectors to adjust to more optimal positions during co-optimization with the
generator; (2) The distance-based loss term ℓdce optimizes the generator to produce vir-
tual images, whose embeddings are mapped into the same metric space as the essential
semantics of multiple local data x′s. In other words, the distribution of the generated
virtual dataset approximates the consensus distribution of the training dataset from a
global perspective; (3) The regularization term ℓp helps draw features closer to their
corresponding prototypes. It effectively enables the generator to produce virtual data
with more compact intra-class features and greater inter-class separability;

Once the server has trained the generator, it is used to generate independent and
equally distributed virtual datasets D′. And at the start of the next round, this dataset
is distributed to the selected clients along with the global model. Next, we will explain
how clients leverage virtual datasets to support their local training.

4.3 Local Objective

Client initiates local training as soon as they receive the global model and virtual
dataset. In our system, alongside training models with local datasets, clients also
utilize virtual datasets for feature alignment and classifier calibration. It helps mitigate
the client-drift issue and results in more generalized local models. The local loss is
illustrated in Fig.4, where both the local dataset and the virtual dataset are used for
supervised training in the local model, with the distance between their features also
being constrained.

Specifically, to align features, we constrain the distance between the representations
of real images and those of virtual images with the same labels. As stated in Section
3.2, in non-IID data scenarios, different clients’ feature extractors may map images
of the same class to distinct feature vectors, which indicates that the performance of
local models is negatively impacted[44]. Therefore, we employ virtual datasets with
class-clustered features to align the feature domain among local models. What’s more,
it bridges the gap between clients’ local data by providing a unified representation of
the features from a global data perspective. For client k, the feature alignment loss
ℓfa for an input (x, y) ∈ Dk is defined by

ℓfa = − log
∑

(x′,y)∈D′

exp(fϕ(x) · fϕ(x′)/τ)∑
(x′,¬y)∈D′ exp(fϕ(x) · fϕ(x′)/τ)

(11)
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Fig. 4: The illustration of local loss in FedPG. The virtual dataset supports local
training by enabling feature alignment and classifier de-biasing simultaneously.

Where the · sign denotes the inner product. (x′, y) ∈ D′ represents the set of virtual
images with label y, while (x′,¬y) ∈ D′ denotes the complement set of (x′, y) ∈ D′.
And τ is temperature hyperparameter. Here, we employ supervised contrastive loss[45]
to minimize the distance between features with the same label while maximizing it for
those with different labels.

We also introduce the virtual dataset into local training to calibrate the great
bias in local classifiers. Relevant study[7] has demonstrated that even a small amount
of data sharing can significantly enhance the performance of heterogeneous FL. In
our framework, the homogeneous virtual datasets serve as public datasets without
introducing privacy concerns. When incorporate virtual datasets into local training,
the model is exposed to more isomorphic training data, leading to more balanced
predictions. The classifier tuning loss ℓct is defined by

ℓct = E(x′,y′)∼D′ [L(Mk;x
′, y′)] (12)

Where we denote the classification loss function as L, and we use cross entropy loss
in our experiments.

The objective of client k’s local training is to minimize

min
Mk

Lk = E(x,y)∼Dk
[L(Mk;x, y)] + E(x′,y′)∼D′ [L(Mk;x

′, y′)]

+λcE(x,y)∼Dk,(x′,y′)∼D′ℓfa(Mk, x|y, x′|y) (13)

Where the hyperparameter λc controls the weight of feature alignment loss.
In our algorithm, we introduce both feature alignment loss and classifier calibra-

tion loss into the local objective, offering three key benefits: (1) We align feature
domains by leveraging the virtual dataset to help learn more generalized local mod-
els. Furthermore, in cases where certain local classes are absent, the virtual data can
mitigate the shift in the corresponding feature domains; (2) The homogeneous virtual
dataset introduces consistency across data from different clients, helping to align the
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Algorithm 1: the FedPG framework

Input: global model M0 = {ϕ, φ}, global dataset D, virtual dataset D′, prototypes set P,
generator Gw.

1 Server executes:

2 initialize M0, Gw

3 for each round r = 0, 1, ..., R− 1 do
4 for each client k ∈ [K] do
5 send Mr and D′ to client k
6 Mr

k , Pk ← LocalTraining(Mr,D′, k)

7 end
// aggregation operations

8 Mr+1 ←
∑K

k=1
|Dk|
|D| M

r
k

9 P ← avg(P1, ...,PK), i.e. Eq.5
// virtual dataset updating

10 D′ ← GANTraining(Gw,P, ϕr+1)

11 end

Output: the final global model MR.

output of local classifiers with the distribution of global data. (3) From a model-wide
perspective, our strategy enhances the similarity among local models and mitigates
the client drift issue. It ultimately benefits the performance of aggregated model, i.e.
the global model. This creates a positive feedback loop between the generalized local
and global models.

4.4 Overall framework of FedPG

Algorithm 1 outlines the complete procedure of our FedPG algorithm. For simplicity,
we present our framework without incorporating a specific client selection technique in
Algorithm 1. Due to the use of virtual prototypes, there are no additional constraints
on the client selection strategy.

In each round, the server distributes the global model and virtual dataset to the
selected clients, who then return their local models and prototypes set. The server
performs separate aggregation operations on the models and prototypes. Finally, the
server trains the generator to update the virtual dataset for the subsequent round. For
the LocalTraining function, the objective is defined in Eq. 13. Each client updates
the global model using both local and virtual datasets through stochastic gradient
descent during local training. At the end of the process, clients compute and return
local prototypes along with the updated model. TheGANTraining function, detailed
in Section 4.2, is responsible for training the generator, thereby updating the virtual
dataset. This mechanism ensures that the virtual dataset remains aligned with the
global model throughout the training process.

Our framework first incorporates a class-clustered virtual dataset to simultane-
ously achieve feature alignment and classifier de-biasing, enhancing robustness in
class-missing data scenarios. Additionally, it naturally preserves client privacy, as
reconstructing raw images from the shared prototypes is inherently infeasible. How-
ever, the incorporation of virtual datasets comes with additional resource costs, which
we analyze through experiments in the following.
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5 Experimental Evaluation

5.1 Experiment Setup

Dataset and model. We conducted evaluations on three datasets: CIFAR-10,
CIFAR-100[31], and FEMNIST[32]. Furthermore, to assess algorithms’ performance
under different non-IID scenarios, we simulate diverse non-IID data distributions using
three partitioning techniques. These techniques are employed to allocate the dataset
among clients as their local datasets: (1) Latent Dirichlet Sampling(LDA)[46]. LDA is
a widely used method for partitioning data in FL. It employs the Dirichlet distribution
with parameter α to assign a portion of samples from each class to different clients.
We implement LDA with α = 0.05, 0.1. (2) 2-class Division. Following the approach in
[19, 33], each client is assigned data from two distinct classes. Specifically, we first split
each class into two equal parts and then randomly assign two parts to each client. This
represents a typical class-missing data scenario. (3) Subset Partition. Similar to prior
works[7, 19], we ensure that all clients access to samples from every class, but with
a dominant class. Each client has a primary class comprising 95% of its local data,
while the remaining classes are distributed evenly. Additionally, for CIFAR-100, we
apply LDA with α = 0.1. Since FEMNIST is inherently a federated dataset organized
by user, no further partitioning is needed.

For global model, We employ ResNet-18 and ResNet-50[47] as feature extractors for
CIFAR-10 and CIFAR-100, respectively, with a single-layer fully connected classifier.
For FEMNIST, we adopt a CNN network consisting of five 5x5 convolution layers as
the feature extractor, followed by two fully connected layers with ReLU activation
as the classifier. Besides, we use a simple five-layers fully connected network with
LeakyReLU activation as the default generator.

System Setting. We conduct our experiments using the FederatedScope
platform[48]. In each round, we randomly select clients to participate in training with
a proportion of s. For CIFAR-10, we configurate the total number of joined clients
is 10, and sample half of them, i.e. s = 0.5. For CIFAR-100, we utilize 100 clients
with a sampling ratio of s = 0.1. And we employ 200 clients with a sampling ratio of
0.05 for FEMNIST. For each classification task, the total number of communication
rounds and local update epochs are set as follows: CIFAR-10: 100 rounds, 5 epochs,
CIFAR-100: 200 rounds, 3 epochs, FEMNIST: 400 rounds, 1 epochs. The batch size
for all datasets is set to 64. For a fair comparison, we use identical StepLR sched-
uler and SGD optimizer parameters across all algorithms. The generator is trained
for 300 epochs at the server with a temperature of τ = 2, a prototype loss weight of
λs = 0.001, and a learning rate of 2× 10−5. We set the virtual dataset to contain 64
samples per class. For local training, the feature alignment weight is set to λc = 1.

Baselines. We evaluate our approach, FedPG, against FedAvg and several other
methods designed to address non-IID issues in FL, including the two categories out-
lined in Section 2: (1) Alleviating data heterogeneity: VHL[19]. (2) Enhancing model
consistency: FedProx[8] and FedNTD[35] (whole model), MOON[37] (feature extrac-
tor), FedGen[17] and CCVR[16] (classifier). We evaluate each method using three
different parameter settings or parameter combinations and report the best-performing
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configuration. Additionally, since CCVR[16] is applied post-training, we evaluate it
using the optimal global model obtained from other baseline methods.

5.2 Experiment Result

Main Results. We evaluate the performance of FedPG and baseline methods using
two metrics: final accuracy and the ratio of communication rounds required to reach
a target accuracy compared to FedAvg. The main results are summarized in Table 1.
The table shows that our FedPG outperforms all baselines in both model performance
and convergence speed, reaching state-of-the-art results in most scenarios. The Fig.5
presents the average accuracy at each communication round on CIFAR-10 under differ-
ent partition strategies. It is evident that our method achieves the fastest convergence
and requires the least amount of communication rounds to achieve the same classifi-
cation accuracy. Specifically, compared to FedAvg, improves accuracy by an average
of 3.76% while reducing the number of communication rounds by half. Although
our approach introduces additional computational and downlink communication over-
head, it compensates for these costs with significantly accelerated convergence. We
will elaborate on this in the following section.

Impacts of non-IID. Table 1 shows that FedPG is less affected by non-IID
data compared to other methods, maintaining superior performance across varying
degrees of data heterogeneity. Additionally, the results indicate that the other two
types of non-IID partitioning, 2-class and subset, significantly degrade the generaliza-
tion performance of FL. Even in these more challenging settings, FedPG consistently
outperforms other methods, demonstrating its robustness in handling various forms
of data heterogeneity.

Visualization. To evaluate the effectiveness of our approach in enhancing model
generalizability, we employ t-SNE [42] to visualize the feature distributions of global
models trained on CIFAR-10 (α = 0.1) using FedAvg and FedPG. As shown in Fig. 6
(a), FedAvg causes features from different categories to overlap, making classification
more challenging and reducing the generalizability of the global model. In contrast, Fig.
6 (c) illustrates that FedPG effectively clusters features by category, demonstrating

Table 1: Comparison of Accuracy and Convergence Speed Across CIFAR-10, CIFAR-
100, and FEMNIST for Different FL Methods.

Dataset Partition FedAvg VHL FedProx FedNTD MOON FedGen CCVR FedPG

FEMNIST none 85.99 83.79(Nan) 85.82(0.9) 84.99(0.6) 86.23(1.1) 84.11(0.5) 85.92 86.16(1.3)

CIFAR-10

α = 0.05 51.07 54.82(0.9) 52.49(1.1) 53.43(0.7) 50.71(0.6) 52.35(1.2) 54.20 56.10(1.4)

α = 0.1 56.08 57.32(1.1) 55.67(2.4) 57.68(3.9) 56.42(3.2) 57.16(1.6) 57.31 59.67(1.5)

2-class 37.44 39.60(1.0) 37.03(1.4) 42.19(2.6) 41.37(1.5) 38.05(1.4) 42.53 42.37(2.3)

subset 44.10 41.74(Nan) 44.72(0.8) 41.88(Nan) 43.69(0.6) 44.22(0.9) 43.25 47.76(0.6)

CIFAR-100 α = 0.1 31.63 30.05(0.8) 31.78(1.3) 34.38(2.3) 31.9(1.6) 30.57(0.8) 35.43 36.81(3.8)
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Fig. 5: The average accuracy in different number of communication rounds on CIFAR-
10 dataset with three categories of partition methods.

its capability to learn generalized representations and mitigate domain drift. We also
provide a heatmap to illustrate the class-wise accuracy of all local models trained
with FedAvg, as shown in 6 (b). The results indicate a severe imbalance in class-wise
accuracy across local models. At the same time, by incorporating the virtual dataset
into local training, our method calibrates the bias in the classifiers and achieves more
balanced predictions.

5.3 Ablation Study

Strategy. To further validate the effectiveness of our method, we evaluate various
ablation strategies, which can be categorized into two main areas: GAN training(GT)
and local training(LT). The strategies are as follows: (1) GT-d: Using virtual proto-
types to train the GAN without constraining the distance between virtual prototypes
and real ones, i.e. removing term d(P ′,P) from the Eq.10; (2) GT-p: Training GAN
without regularization term, i.e. removing prototype loss term ℓp from the Eq.10; (3)
LT-fa: Removing the feature alignment loss term ellfa from the local training loss in
Eq.13, meaning clients perform supervised learning using the union of the local dataset
and virtual dataset; (4) LT-cc: Removing the classifier tuning loss term ellct from the
local training loss in Eq.13, where the virtual dataset is only used to provide feature
representations for alignment.
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(a) t-SNE of FedAvg (b) Class-wise Accuracy (c) t-SNE of FedPG

Fig. 6: Subfigures (a) and (c) present the t-SNE visualizations of feature distributions
for global models trained with FedAvg and FedPG, respectively. Subfigure (c) further
illustrates the class-wise accuracy of the global model trained with FedAvg.

Baseline Strategy
virtual images per class

64 128 256 512 1024

CIFAR-10

GT - d 54.82 56.13 54.43 55.57 54.30

GT - p 53.16 55.60 56.17 55.82 55.24

(51.07)
LT - fa 54.84 55.72 54.26 54.08 53.42

LT - ct 54.07 54.25 53.94 53.72 54.15

FedPG 55.39 56.55 57.04 56.20 55.43

Table 2: Ablation Study on CIFAR-10: Performance of strategies Under Different
Virtual Dataset Sizes

Table 2 presents the performance of these strategies across different virtual dataset
sizes. It is clear that all these strategies result in improvements over FedAvg, likely
due to the incorporation of the public dataset. We can also observe that, compared
to the strategies in GT, the strategies in LT have a greater impact on performance.
Notably, our method consistently outperforms its variants across various sizes of the
virtual dataset, demonstrating the effectiveness and robustness of our approach in
enhancing FL performance under non-IID conditions.

5.4 Other Results

Parameter Configuration. To determine the optimal hyperparameter λc, we eval-
uate the global model’s performance under different feature alignment weights. In the
experiments, we fix the number of virtual images per class at 256 and set the training
batch size for the virtual dataset to 64. Figure 7 illustrates the impact of λc on FedPG.
Our method consistently outperforms FedAvg across a range of λc values, demonstrat-
ing its effectiveness in improving FL performance under non-IID conditions. Notably,
the global model achieves the highest accuracy when λc = 10, while setting it too small
or too large reduces effectiveness. This could be attributed to overly loose or overly
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rigid feature alignment. In summary, while FedPG is relatively robust to variations in
weight λc, it is crucial to choose a balanced value to maximize performance.

Resource Cost. FedPG introduces GAN training and synthetic datasets, which
incur additional resource costs. We measure the computational overhead of GAN train-
ing (GT) and local training (LT) in terms of energy consumption (Wh). Additionally,
we record the duration of each communication round. We evaluate two different GAN
architectures: fully connected layers and convolutional networks. As shown in Table
3, FedPG incurs an additional 800 Wh of computational cost on the server and 100
Wh on the clients. The overall resource consumption remains within an acceptable
range. Besides, when GAN training and local training run sequentially, it adds a delay
of 10-20 seconds to the communication round duration. However, this delay can be
eliminated by running them in parallel.
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Fig. 7: The top-1 test accuracy for
FedPG with different λc.

Method GT LT Dur.(s)

FedAvg - 269.63 2.11
FedPG+fc 822.88 367.58 15.11
FedPG+cnn 868.95 367.58 28.54

Table 3: Energy consumption and
communication round duration.

Fig. 8: Reconstruction of the original
image from a feature or a prototype.

Privacy Analysis. In our framework, clients share their local prototypes to assist
with GAN training on the server. A prototype is the average vector of feature rep-
resentations for a given class[49]. To evaluate the privacy-friendliness of our method,
we attempt to reconstruct the raw image from the prototype using a SqueezeNet
model[50]. As shown in Fig. 8, the reconstructor can nearly reconstruct the raw image
from a single feature vector. However, when averaged over three vectors, the recon-
structor generates only a blurry image from this prototype. This demonstrates that
sharing prototypes does not pose a privacy risk for clients.
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6 Conclusion

In this paper, we address several key limitations of existing approaches in FL with
non-IID data: their ineffectiveness in handling class missingness, the potential threats
to privacy, and the partial solutions they offer to the client drift issue. To overcome
these challenges, we propose a universal and privacy-preserving method, FedPG, which
includes a novel image generation approach and a local training strategy. Our method
achieves feature alignment and classifier de-biasing, enhancing the generalization capa-
bility of local models, which ultimately benefits the global models. Our comprehensive
experimental results demonstrate that FedPG significantly boosts performance under
a variety of non-IID settings. We hope that further research will delve into data and
model compression to alleviate the additional overheads, thereby facilitating the wider
adoption of our method.
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