
1

Blockchain-assisted Searchable Integrity Auditing
for Large-Scale Similarity Data with Arbitration

Ying Miao, Keke Gai, Senior Member, IEEE, Yu-an Tan, Liehuang Zhu, Senior Member, IEEE,
and Weizhi Meng, Senior Member, IEEE

Abstract—Data integrity auditing technology serves as an
essential tool to ensure the data’s integrity with the popularity
of remote storage. However, existing data integrity auditing
models are unsuitable for a large number of files with inter-
relationships and heavily depend on a centralized Third-Party
Auditor (TPA). To address these issues, in this paper we propose
a blockchain-assisted searchable integrity auditing scheme for
large-scale similarity data. To broaden the scope of the auditing
model and enhance its ability to handle interconnected files, we
utilize the keyword to design a search index and a trapdoor
to achieve authenticator searchability for the interconnected
files. The integrity of the searching result from the cloud side
can be guaranteed at the same time. To reduce reliance on
centralized TPA and enhance the credibility and transparency of
auditing, we integrate blockchain technology along with smart
contracts to replace TPA and achieve multitask auditing. We
adopt a certificateless cryptosystem to generate the authenticator,
while considering the cost reduction. Moreover, an arbitrator
is proposed to achieve fairness judge. Theoretical and security
analysis demonstrate that the proposed scheme is efficient and
secure, making it a promising solution for data auditing in a
wide range of applications.

Index Terms—Blockchain, Integrity auditing, Searchability,
Similarity data, Arbitration.

I. INTRODUCTION

THE emergence of cloud computing has dramatically
transformed the paradigm of data-driven applications to

centralized-based services via offering a series of technical
merits, such as hidden complexity, flexibility, scalability, and
cost-effectiveness [1]. Enterprises have a chance to launch a
complete IT (information technology) solution without con-
cerning about technical obstacles, from hardware to software.
However, one of the long-standing issues in cloud computing
implementations is that Data Owners (DOs) lack controls
on their outsourcing data, which raises security and privacy
concerns. Among multiple technical dimensions in addressing
control lacks, data integrity and availability are considered two
fundamental security requirements, such that Provable Data
Possession (PDP) has emerged in this context [2]–[4].

PDP allows DO to verify the integrity of remote data
without the need to download it from the Cloud Server (CS).
For convenience, DO does not need to be online all the time;

Y. Miao, K. Gai, Y. Tan and L. Zhu are with School of Cyberspace Science
and Technology, Beijing Institute of Technology, Beijing, 100081, China (e-
mail: {yingmiao, gaikeke, tan2008, liehuangz}@bit.edu.cn).

W. Meng is with the School of Computing and Communications, Lancaster
University, United Kingdom. Email: weizhi.meng@ieee.org.

This work is partially supported by the National Natural Science Foundation
of China (Grant No. U24B20146, No. 62232002, No. 62372044).

Corresponding author: Keke Gai (gaikeke@bit.edu.cn)

instead, a Third Party Auditor (TPA) is delegated to facilitate
validation on behalf of DO. A typical three-party (DO, CS,
TPA) PDP scheme consists of a few key components [3]. In
general, authenticators are generated by different cryptosys-
tems, e.g. Public Key Infrastructure-based (PKI) cryptosystem
[5]–[7], identity-based cryptosystem [8]–[11], certificateless-
based cryptosystem [11]–[14]. PKI can lead to increased cer-
tificate management costs, while identity-based cryptosystems
can raise secret key management expenses. Certificateless-
based cryptosystems offer a solution to these challenges. In
challenge phase, two major methods of challenge information
generation from TPA are generating challenge seeds [15] and
sets [5], [11], [16]. In proof generation and verification phases,
privacy protection is a concern of existing schemes [8], [17],
[18]. However, there are some limitations to the existing
schemes according to our investigations.

The main limitation is that current PDP technology cannot
achieve searchability, especially when dealing with large-scale
similarity data. An estimation from the Internet Data Center
indicates that the personal data will reach 5200 GB in 2020
1. Large-scale similarity data sets can involve millions of
high-dimensional vectors or data with similarity relationships,
making it computationally intensive and impractical for ex-
isting PDP approaches to efficiently verify their possession.
Traditional PDP schemes are designed for exact data integrity
checking, meaning they verify that specific, unaltered data
blocks exist on the server. These schemes don’t naturally sup-
port operations that involve approximate matching or semantic
similarity, which are core requirements when working with
similarity data. For individual, the DO may only be concerned
with the integrity of certain specific files, such as audio data or
video data. For research institutions, researchers focus on data
in a particular field, such as heartbeat data or blood routine
data. Therefore, there is a strong and urgent need to implement
searchable auditing. Although some schemes, which utilize
keywords to achieve searchability, have been proposed [17],
[19]. These schemes rely on PKI, which imposes a substantial
burden in terms of certificate management costs and exists
some other challenges.

Another limitation is the reliance of the third party as the
system assumes the trustworthiness of TPA, making it the
key of audit success or failure [3]. Any unexpected activities
by TPA can result in undesirable consequence. Even though
some studies have made attempts to enhance the credibility

1https://www.computerworld.com/article/2493701/by-2020–there-will-be-
5-200-gb-of-data-for-every-person-on-earth.html

2

and transparency of the auditing process, such as through
the exploration of blockchain-based solutions, the reliance on
TPA persists [20]–[23]. In order to audit data, TPA must
remain online and continuously await responses from CS.
This requirement not only amplifies the complexity and costs
associated with auditing but also causes a risk of audit inef-
fectiveness when TPA fails in responding to auditing requests
promptly. Hence, there is an urgent need to develop a solution
that can ensure the reliability of auditing results independent
of TPA.

To enhance the applicability of the auditing model, the
important thing is to clarify the relationships among these files
first. Naturally, an index can be established to achieve search-
ability. In this approach, a DO provides a search trapdoor to
CS, allowing CS to find the corresponding files based on the
trapdoor and then conduct the auditing. However, there are a
few challenges when designing a searchable PDP.

• Honest Execution of Searchable Auditing Issue. It is
a challenge to guarantee that CS performs searchable
auditing honestly while ensuring that all files meeting the
requirements participate in the auditing. Instead of trans-
mitting all data requiring auditions to CS, a searchable
function can be executed at the CS side through a search
trapdoor. However, a search trapdoor used for auditing
only contains indeterminate information about the data
(e.g., file numbers), such that the CS probably use partial
files rather than the entire file for auditing.

• Auditing Credibility without TPA Issue. Ensuring the
credibility of the auditing results without TPA is a chal-
lenge. To minimize reliance on TPA, the verification task
is performed by the CS. As the entity being challenged, it
is a challenge to ensure that the CS conducts the auditing
task honestly and provides the trustworthy results.

• Fairness of Dispute Resolution Issue. A challenge exists
in guaranteeing the reliability of the judge results when
disputes happen between DO and CS. Despite blockchain
increasing the transparency of auditing results, disputes
may exist when data loss happen but CS does not generate
correct report on the blockchain. Another situation is that
the data might be stored correctly but a DO charges for
economic losses for data corruption.

In this paper, instead of relying on TPA, we propose
a searchable data integrity auditing scheme by leveraging
the category of files. Our goal is to expand the scope of
applications for auditing models. We employ certificateless
cryptography as a tool to construct the authenticator. The main
contribution of this paper can be outlined as follows:

1) To enhance the application wide of auditing model, we
propose a searchable data integrity auditing scheme for
large-scale similarity data. To achieve searchability, we
utilize the keyword to design a search index and a
trapdoor to achieve authenticator searchability and match-
ing. When dealing with a large number of interrelated
files auditing, DO just provides a search trapdoor, CS
conducts searches, matches and offers the relevant proof
information for auditing. The integrity of the search result
can be guaranteed at the same time.

2) To enable searchable auditing and ensure the security
of the auditing process, we design the index matrix and
index structure. The index structure serves a dual purpose
by safeguarding file privacy and facilitating auditing, thus
ensuring the security of the overall auditing process. To
reduce the certificate and key management costs, we
utilize certificateless cryptography in the authenticator
generation phase.

3) To enhance the credibility and transparency of the audit-
ing, we leverage blockchain and smart contracts instead
of TAP to participate in the auditing process. Specifically,
challenge information is generated in a decentralized
manner, making the auditing process public, tamper-
proof, and traceable. Additionally, multiple auditing tasks
are initiated through smart contracts in one time. When
the auditing task is published by DO, the task is executed
and verified as mandated by CS. This approach ensures
that the auditing process is traceable, and any improper
behavior can be easily detected. An arbitration process is
proposed to deal with conflicts between DO and CS.

4) We provide the detailed security analysis that demon-
strates the proposed scheme’s compliance with auditing
soundness. Additionally, We also conduct the experimen-
tal simulation. The experimental results show that the
proposed scheme is efficient in authenticator generation
phase and the index generation phase.

The paper is structured as follows: We explore previous
research in PDP and PoR in Section II. We provide essential
foundational knowledge and problem formulation to establish
a clear understanding of the proposed scheme in Section III
and Section IV. Section V elaborates on the details of the
proposed scheme. We conduct a security analysis in Section
VI and performance analysis in Section VII. We conduct a
disscussion and draw a conclusion in Section VIII and IX.

II. RELATED WORK

To guarantee the integrity of the outsourced data and
without downloading the whole data, Ateniese et al. [2] and
Juels et al. [26] introduced the concepts of PDP and Proof
of Retrievability (PoR). Subsequently, various data integrity
verification techniques, including those related to data privacy
[7], data updating [27], data access control [9] and distributed
data auditing [11], have been developed. To address various re-
quirements and functionalities, numerous data integrity audit-
ing schemes have been proposed using different cryptography
techniques. TABLE I listed partial recent related work.

To achieve data sharing among group and protect the group
user’s privacy, Hu et al. [16] adopted group signatures to
establish an auditing scheme with anonymity function. In
the scheme, the group manager possessed knowledge of and
control over user identities. In order to minimize certificate
management expenses, Li et al. [28] employed identity-based
signatures to develop an auditing scheme tailored for a multi-
copy and multi-cloud environment. To reduce the tree’s storage
costs, Guo et al. [5] utilized a single authenticated tree shared
among multiple replicas and achieved batch verification for
multiple challenges. To protect different types of data and

3

TABLE I: Comparison of Provable Data Possession Schemes

Schemes Years Auth-type Participants Merits Limitations
[24] 2015 Certificate-less DO, CS, TPA,

BC
Reduce the burden of certificate manage-
ment and key management, and without the
strong assumption that TPA is honest and
reliable.

Cannot resist challenge information guessing
attack; The TPA should always keep online.

[8] 2019 Identity DO, CS, TPA,
BC

Reduce the burden of certificate manage-
ment and without the strong assumption that
TPA is honest and reliable.

Bear the burden of key management and
cannot resist challenge information guessing
attack; The TPA should always keep online.

[5] 2020 PKI DO, CS, TPA Achieve single authenticated tree across
multiple replicas and batch verification.

Cannot resist repeat challenge attack; The
TPA should always keep online.

[17] 2021 PKI DO, CS, TPA Achieve searchable data integrity checking. Cannot resist the same keyword summation
attack; The TPA should always keep online.

[6] 2021 PKI DO, CS Locate the CS and resist denial of service
attack.

The DO should always keep online; The
TPA should always keep online.

[12] 2022 Certificate-less IoT device,
CS, fog node,
BC

Achieve reliable checking and auditing fair-
ness.

The challenge information is controlled by
CS.

[10] 2022 Identity DO, CS, TPA The DO need not to store original data
blocks on the cloud, save the storage over-
head.

Rely on the strong assumption that TPA is
honest and reliable; The TPA should always
keep online.

[13] 2023 Chaotic system DO, TPA, BC The auditing task cannot depend on chal-
lenging the CS, reduce the computation time
by a new audit tree and achieve fair pay-
ments.

Cannot support batch verification; The TPA
should always keep online.

[25] 2023 PKI DO, BC, key
server

Achieve transparent auditing and authentica-
tor deduplication, resist exfiltration.

The challenge information is controlled by
CS indirectly, cannot resist challenge infor-
mation guessing attack.

facilitate data sharing, Liu et al. [7] utilized the property of
sanitizable signature to construct an auditing scheme. Yang
et al. [10] designed an identity-based signature and utilized
algebraic operations for auditing in resource-limited cloud
storage environments, reducing the storage, communication
and computation costs. To achieve data dynamics and protect
identity privacy, Zhang et al. [14] utilized certificate-less
signature in combination with blind technology to achieve
conditional identity privacy preservation. Malicious user be-
havior can be inferred. To achieve anonymity of user identities,
DO in [18] generated block authenticators using ring signature
technology. However, this approach increased the verification
costs, as TPA needed to have access to all identities in the ring.
In efforts to enhance the efficiency of batch auditing, Shen
et al. [29] leveraged the properties of algebraic signatures to
accelerate the efficiency of signature aggregation.

However, many schemes rely on a centralized TPA with
a strong assumption that TPA is honest. Since TPA may not
always be honest and could collude with CS, generating biased
challenge information. To safeguard against data analysis in
centralized cloud data and pinpoint data faults, Su et al.
[6] introduced a decentralized self-auditing scheme designed
for a multi-cloud environment that did not depend on a
TPA. Additionally, some integrity auditing work based on
blockchain has been proposed. Zhang et al. [24] introduced
a decentralized data integrity checking scheme that leveraged
a sequence of public block hashes of block headers as seeds
to construct challenge information, eliminating the need for
a TPA for this task. Xue et al. [8] leveraged identity-based
cryptosystem combined with blockchain technology to design
a decentralized auditing scheme. In the scheme, they made
use of a set of nonce values from the blockchain to form the

challenge seeds. However, the scheme [8], [24] cannot resist
challenge information guessing attack due to the transparency
and publicity of blockchain, where CS can potentially obtain
the challenge information in advance. Zhao et al. [22] utilized
lifted EC-ElGamal cryptosystem and blockchain to achieve
public batch auditing. The auditing information was stored on
the blockchain, ensuring the integrity and unforgeability of
tag information. However, CS was required to always provide
the whole ciphertext for the auditor, leading to increased
communication costs. Yuan et al. [30] utilized smart contract
to achieve fair arbitration and penalize untrustworthy entities.
Fan et al. [31] proposed a data integrity framework for edge
computing based on blockchain, designed to meet the demands
of dynamic networks. Li et al. [20] utilized blockchain to
construct a transparent deduplication and integrity auditing
scheme, which eliminated the need for a TPA and reduced
communication costs for the DO. Zhou et al. [12] employed
blockchain to record the auditing results and resisted dishonest
fog nodes. They also designed a dynamic structure to reduce
the computation costs of tags from IoT devices. Focus on the
security issue in existing smart contract-based public audit-
ing, Li et al. [25] introduced a whistleblower, which timely
notified DO of any corruption, to monitor the information on
the blockchain. However, the challenge information in [12],
[25] was controlled by CS, which could not guarantee the
randomness of the challenge information. Wang et al. [13] de-
signed reward and punishment rules based on smart contracts.
Additionally, they utilized chaotic systems to achieve non-
interactive integrity auditing. To reduce the costs of certificate
and key management, Miao et al. [23] utilized certificate-
less signature combined blockchain to achieve multiple copy
and multiple cloud auditing, which utilized smart contracts to

4

facilitate data files, data blocks and CS faults localization. In
schemes relying on TPA, it is imperative for TPA to maintain
continuous online availability. Most recently, Gao et al. [17]
considered the relationships among files and achieved keyword
searchable auditing. To hide the audit frequency, Xue et al.
[19] utilized bloom filters to achieve fuzzy matching and
audited files based on keywords. However, the index structure
in [17], [19] cannot resist the same keyword files summation
attack.

Blockchain technology integrates various components such
as chain-based data structures, peer-to-peer (P2P) networking,
consensus mechanisms, cryptographic techniques, and smart
contracts to establish a decentralized and distributed ledger
system [32]. Many key challenges inherent in centralized
systems—such as trust deficits, lack of transparency, and
vulnerability to tampering can be resolved through blockchain
technology [33], [34]. With the advancement of blockchain
technology, smart contracts play a pivotal role in constructing
decentralized applications and ensuring transparent functional
modules [35]. The development of smart contracts has cat-
alyzed extensive research, notably in security [36], scalability
[37], and decentralized governance [38].

III. PRELIMINARIES

Let G and GT be additive cyclic groups with the prime
order q. Let a and b be random elements in Z∗q . Let g be a
generator of group G.

A. Bilinear Map

The bilinear map e : G × G → GT meets the following
three properties:

• Bilinearity: ∀u, v ∈ G, a, b ∈ Z∗q , e(ua, vb) = e(u, v)ab

holds.
• Computability: ∀u, v ∈ G, a, b ∈ Z∗q , it is efficient to

compute e(ua, vb).
• Non-degeneracy: ∃u, v ∈ G, such that e(u, v) 6= 1T .

B. Hard Problems

Definition 1. (Discrete Logarithm (DL) Assumption). Given
(g, ga) ∈ G, it is computationally intractable to retrieve
the value a. For any Probabilistic Polynomial Time (PPT)
adversary A, the advantage of A to solve the DL problem
is negligible. That is,

AdvDLA = Pr[A(g, ga, gb)→ a ∈ Z∗q] 6 ε.

Definition 2. (Computational Diffie-Hellman (CDH) Assump-
tion). Given (g, ga, gb) ∈ G, it is computationally intractable
to retrieve the value gab, where a and b are unknown values.
For any PPT adversary A, the advantage of A to solve the
CDH problem is negligible. That is,

AdvCDHA = Pr[A(g, ga, gb)→ gab ∈ G] 6 ε.

Fig. 1: System Model.

IV. PROBLEM FORMULATION

A. System Model

The system model (shown in Fig. 1) consist of three entities:
Cloud Server (CS), Data Owner (DO) and Blockchain (BC).

1) Cloud Server (CS): CS has unlimited storage resources
and computing power, and provides the storage and data
integrity auditing for DO.

2) Data Owner (DO): DO has some files to be outsourced.
DO splits each file into blocks, extracts some keywords
for each file, generates a secure index for these files and
uploads these information into the cloud.

3) Blockchain (BC): BC provides a public and immutable
platform for the data integrity auditing process. The
smart contract records the basic information of the data,
generates decentralized and unpredictable challenge in-
formation as challenge and records the proof information
as evidence for checking.

Combined with Fig. 1, the system is outlined by the fol-
lowings. Suppose there are v files to be stored. DO splits
each file into n blocks, encrypts these blocks and generates
the authenticator for these blocks. Then DO extracts some
keywords for each file and builds a secure index for these
files. Finally, DO uploads the encrypted data block set, the
index set and the authenticator set into the cloud for storage.
Next, DO and CS agree on data integrity checks. Subsequently,
DO delegates the task and establishes a smart contract on the
blockchain. CS proceeds to conduct the data integrity audit
based on the challenge details in smart contract and subse-
quently uploads the proof information onto the blockchain,
serving as substantiating evidence.

B. Threat Model

CS might attempt to access the content of the data since it
has outsourced using the keyword and the search trapdoor. It
could also try to create a fraudulent authenticator for the out-
sourced data to deceive the verification process. Additionally,
CS may attempt to replace the proof information with that of
different challenge data to pass the verification.

5

C. Design Goals

The proposed scheme meets the following design goals:
• Searchable-auditing soundness: DO can perform the

integrity checking of all similar data, CS can perform
the auditing information and verification correctly.

• Transparent-auditing: the challenge information and
the auditing process information can be traced from
blockchain.

• Multitask: multiple audit task content are generated a
time in a decentralized way by DO with the help of
smart contract. CS performs the auditing task one by one
according to the plan.

• Arbitration: When dispute happen between DO and CS,
an arbitrator deals with the dispute and finds the dishonest
party.

D. Definition

Definition 3. A blockchain-assisted multi-task and searchable
data integrity auditing scheme consists of nine algorithms:

1) (params,msk, P0) ← SysIni(κ): When provided with
a security parameter κ, the algorithm generates the system
outputs params and the master secret/public key pair
(msk, P0) as its output.

2) ({Ak = gak}sk=1, V)← FileIni({Fv}): When supplied
with the file set {Fi}vi=1 as input, the algorithm outputs
the public values {Ak = gak}sk=1 and the initial index
vector V as its output.

3) (skID, x, P1) ← KeyGen(ID,msk): When provided
with the user’s identity ID and master secret key msk,
the algorithm yields the private key (skID, x) and the
public key P1 associated with that user.

4) I ← IndexGen(x,W, V): When provided with the se-
cret key, the keyword set, and the index vector (x,W, V)
as input, the algorithm produces a index vector I .

5) Φ ← AuthGen({Fi}vi=1, x, skID): When provided with
the file set {Ak = gak}sk=1 and the private key (skID, x)
as input, the algorithm generates the authenticator set Φ.

6) (Tw′ , nw′) ← TrapdoorGen(w′): Upon receiving the
keyword w′, the algorithm produces the search trapdoor
and the value (Tw′ , nw′).

7) Chal← ChalGen(Tw′): Given the search trapdoor w′ as
input, the algorithm produces the updated search trapdoor
T ′w and the value nw′ .

8) (Proof, Sw′) ← ProofGen(Chal, I,Φ): When pro-
vided with the challenge, the secure index, and the
authenticator set (Chal, I,Φ), the algorithm generates the
auditing proof Proof and the challenge index informa-
tion set Sw′ .

9) (true/false) ← SelfV erify(Chal, Proof): When
presented with the challenge information and the auditing
proof (Chal, Proof), the algorithm produces an auditing
result, either true or false.

E. Security Model

There exist three adversaries A1,A2,A3. We design several
games among the challenger C and adversaries {A1,A2,A3}.

A1 can replace DO’s public key but doesn’t have access to
the master secret key. A2 can acquire the master secret key
but cannot replace DO’s public key. A3 attempts to create a
fraudulent integrity proof to deceive the verification process.
Game1: This game involves C and A ∈ {A1,A2}.

SysIni, FileIni: The challenger C invokes the SysIni and
FileIni algorithm and retrieves public parameters params,
the master key, public values and the initial index vector.
∀A ∈ {A1,A2}, C sends the params, public values and the
initial index vector to A. If A = A2, C also posts the master
secret key to A.
Query Phase: ∀A ∈ {A1,A2} makes the following queries.

• HashQueries: A makes hash queries for C. C answers
the value to A.

• SecretKey Query: A queries the secret key of adap-
tively selected identity IDo. C responds the correspond-
ing value to A.

• PublicKey Query: A makes query for the the public
key of adaptively selected identity IDo. C responds the
corresponding value to A.

• PublicKey Replacement: A1 has the power to replace
the public key of identity ID with any value.

• Authenticator Query: A makes query for the authen-
ticator of the data block (IDi, j) for Fi. C executes
the AuthGen algorithm to generate the corresponding
authenticator to A.

Forgery Phase: ∀A ∈ {A1,A2} outputs a forgery authenti-
cator σ′ij for (ID′i, j

′). If the following situation holds:

• The forged authenticator is valid.
• The identity ID′’s private key was not queried before,

and its public key was not replaced.
• The authenticator of block (ID′i, j

′) was not be queried
before.

Definition 4. If there is no Polynomial Probability Time
(PPT) adversary A ∈ {A1,A2} who wins the Game 1 with
negligible probability, the authenticator is unforgeable.

Game 2: This game involves C and A3.
SysIni, FileIni: The challenger C invokes the SysIni and
FileIni algorithm and retrieves public parameters params, the
master key, public values and the initial index vector. C sends
the params, public values and the initial index vector to A3.
Query Phase: A3 makes the following queries.

• HashQueries: A3 makes hash queries for C. C answers
the corresponding value to A3.

• PublicKey Query: A3 queries the the public key of
adaptively selected identity IDo. C responds the corre-
sponding value to A3.

• Authenticator Query: A3 makes query for the authen-
ticator of the data block (IDi, j) for Fi. C executes
the AuthGen algorithm to generate the corresponding
authenticator to A3.

• TrapdoorGenQuery: A3 queries the trapdoor of key-
word w′. C responds the corresponding value to A3.

• ChalGenQuery: A3 queries the challenge information.
C responds the corresponding value to A3.

6

• ProofGenQuery: A3 queries the proof information. C
responds the corresponding value to A3.

Forgery Phase: A3 outputs a forgery proof information. If
the following situation holds:
• The forgery proof information can pass the verification.
• The challenge information which was utilized to generate

the proof information was not be queried.
• The forgery proof information was not be queried before.

Definition 5. If there is no Polynomial Probability Time
(PPT) adversary A3 who wins the Game 2 with negligible
probability, CS performs the auditing correctly.

Game 3: This game involves C and A4. A4 represents semi-
honest CS and does not know secret key and pseudo-random
function key and pseudo-random permutation key from DO.
The indistinguishability of the trapdoor is to prevent attackers
from getting keyword information out of the given trapdoor.
The SysIni and FileIni phase are the same as defined in
Game 2.
Phase 1: TrapdoorGenQuery: A4 queries the trapdoor of
keyword w′. C responds the corresponding value to A4.
Challenge: A4 chooses two keywords {w∗0 , w∗1} and sends
it to C. C randomly flips a coin, designating heads (heads-
up) as 1 and tails (tails-down) as 0. Using the outcome of
the coin toss, C executes the trapdoor generation algorithm
to produce the trapdoor Twβ = {πo(wβ), fl(πo(wβ))}. C
executes the index generation algorithm to produce the in-
dex Iβ = {πo(wβ), evπo(wβ),Ωπo(wβ)}k=1,2,··· ,m. Finally, C
sends them to A4.
Phase 2: TrapdoorGenQuery: A4 queries the trapdoor of
keyword w′(w′ /∈ {w∗0 , w∗w}). C responds the corresponding
value to A4.
Guess: A4 outputs β′ ∈ {0, 1}. If β′ = β, A4 wins the
Game 3.

Definition 6. The advantage of A4 to successfully distinguish
the trapdoor is AdvCA4

= |Pr[β′ = β] − 1
2 |. For any PPT

adversary A4, if the advantage AdvCA4
is negligible, the

scheme satisfies trapdoor and index indistinguishabilitly.

V. THE CONSTRUCTION

A. Index Design

Suppose there are v files to be stored. Each file are splited
into n blocks. DO begins extracting a set of m keywords and
forms the keyword set, denoted as W = {w1, w2, · · · , wm}.
For each keyword wk ∈ W , DO generates a binary vector of
length v bits, referred to as the index vector vwk . Initially, all
elements of this index vector are set to 0. For each file Fi, a
DO assigns a value of 1 to the i-th bit in the index vector when
it includes the keyword wk, denoted by vwk [i] = 1. These
individual index vectors vwk collectively constitute the index
vector set V = {vw1

, vw2
, · · · , vwm}. For example, as shown

in Fig. 2, suppose there are 10 files to be stored and 7 different
keywords. Each file contains distinct keywords. The keyword
k1 is contained in files F1, F3, F7 and F10, the vector of
keyword w1 is vw1

= {1, 0, 1, 0, 0, 0, 1, 0, 0, 1}. The keyword
w2 is contained in files F2, F6 and F9, the vector of keyword

Algorithm 1 Index Generation
Require: The secret key x, the keyword set W , the index vector set
V

Ensure: The secure index I
1: for Each Fi ∈ F (1 6 i 6 v) do
2: Split Fi into n blocks mi1,mi2, · · · ,min

3: for Each wk ∈W (1 6 k 6 m) do
4: Obtain vwk from V
5: Compute πo(wk)
6: Compute evπo(wk) = vwk ⊕ fl(πo(wk))
7: Initiate an empty set Swk = ∅
8: for Each i ∈ [1, v] do
9: if vwk [i] == 1 then

10: Insert i to set Swk
11: end if
12: end for
13: for Each i ∈ Swk do
14: for Each 1 6 j 6 n do
15: Calculate
16: Ωwk,ij = [H3(IDi||j)−1 ×H4(πo(wk)‖j)]x
17: end for
18: end for
19: end for
20: Set Ωπo(wk) = {Ωwk,i1,Ωwk,i2, · · · ,Ωwk,in}i,vwk [i]=1

21: end for
22: return I = {πo(wk), evπo(wk),Ωπo(wk)}k∈[1,m]

vw2
= {0, 1, 0, 0, 0, 1, 0, 0, 1, 0}. These index vectors form the

index vector set V = {vw1
, vw2

, · · · , vw7
}.

To guarantee the privacy of the file content and resist to
guess the file content according to the keyword, a privacy
method was designed. DO selects a pseudo random permu-
tation key to blind the keyword by πo(wk) for k ∈ [1,m],
the πo(wk) is the address of each row in the index. Next, DO
encrypts the index vector by evπo(wk) = vwk⊕fl(πo(wk)). To
guarantee the accuracy in the auditing process, it is essential
for the keyword to align with the index. The index plays a
crucial role in the auditing procedure, and its design particulars
are outlined in Alg. 1.

B. The Construction

1) (params,msk,P0)← SysIni(κ)
With a security parameter κ, the Key Generation Center
(KGC) generates the system’s public parameters denoted
as params=(q,g,G,GT , e(·,·),H1,H2,H3,H4,πk1(·),fk2(·)).
In this configuration, q represents a large prime and the
order of multiplicative cyclic groups G and GT . The
function e(·, ·): G × G→ GT symbolizes a bilinear pairing.
Furthermore, H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z∗q ,
H3, H4 : {0, 1}∗ → G stand for four hash functions.
fkey1(·) : {0, 1} → [1, v], ψkey2 : {0, 1} → [1, n] denotes
pseudo-random permutation (PRP) with a random key key1
and key2. πkey3(·) : {0, 1} → Z∗q represents a pseudo-random
function (PRF) with a random key key3. The KGC completes
the process by randomly selecting α ∈ Z∗q as the master secret
key msk, and generating the master public key P0 = gα.
2) ({Ak = gak}sk=1, V)← FileIni({Fv})
• Suppose there are v files to be stored. Firstly, DO splits

each file into n blocks and s sectors. Each block is cut
into s sectors. Then, DO randomly picks s values ak ∈ Z∗q

7

Fig. 2: An example of index extraction.

and keeps them secretly. DO generates s public values
{Ak = gak}sk=1 and publishes them.

• DO begins by extracting a set of m keywords, forming
a keyword set denoted as W = {w1, w2, · · · , wm}.
For each keyword wk ∈ W , DO generates a binary
vector of length v bits to serve as the index vector vwk .
Initially, all elements within this index vector are set to 0.
Subsequently, for each file Fi, if it includes the keyword
wk, DO updates the i-th bit of the index vector to 1:
vwk [i] = 1. Collectively, these index vectors vwk form
the index vector set V = {vw1

, vw2
, · · · , vwm}.

3) (skID, x,P1)←KeyGen(ID,msk)
The partial private key and secret key are generated as follows:
• DO initiates this process by sending its identity ID to

the KGC. Then the KGC generates the partial private
key for the user’s ID as follows: skID = H1(ID)α.
This partial private key is subsequently sent to the user.
When receiving the partial private key, DO performs a
verification check. The verification involves confirming
whether the equation e(skID, g) = e(H1(ID), P0) holds.
If this validation step fails, DO rejects the key, and it is
not accepted.

• DO proceeds by randomly selecting a value x from the
set Z∗q . This value x is used as the secret key. The
corresponding public key P1 is generated as P1 = gx.
Therefore, the private key of the user consists of two
components: (skID, x), and the public key of the user is
represented as P1.

4) I ← IndexGen(x,W,V)

• DO generates a vector cw = [nw1 , nw2 , · · · , nwm], where
nwi , i ∈ [1,m] denotes the number of files containing the
keyword.

• For each keyword wk in the keyword set W , DO calcu-
lates πo(wk) as the address corresponding to each row
in the index. Here, o ∈ Z∗q represents the pseudo-random
permutation key, which is selected by DO.

• For every keyword wk within the keyword set W , DO en-
crypts the index vector as evπo(wk) = vwk ⊕ fl(πo(wk)),
where l ∈ Z∗q is a pseudo-random function key selected
by DO.

Algorithm 2 Smart Contract-I
Require: Functionname, invoked parameters
Ensure: Setting up functions

1: Structure: Task
2: /∗ Define a structure of the auditing task ∗/
3: taskID; fileName;numChallenges; startT ime;
endT ime; chalStatus; proofStatus; recordList

4: /∗ the participant ∗/
5: addressCS
6: Trapdoor information
7: function: newTask(user, name, n,CS)
8: /∗ Invoked by a user who has the auditing requirement ∗/
9: task = tasks[taskID]

10: task.fileName = name
11: task.n = n
12: task.addressDO = msg.sender
13: task.addressCS = CS
14: task.num = 0
15: task.count = 0
16: task.trapdoorStatus = true
17: task.chalStatus = true
18: task.proofStatus = true
19: function: TrapdoorGen(πo(w

′), fo(πo)(w
′), n′w)

20: require(tasks[taskID].addressDO == msg.sender)
21: require(tasks[taskID].trapdoorStatus == true)
22: tasks[taskID].πo(w

′) = πo(w
′)

23: tasks[taskID].fo(πo)(w
′) = fo(πo)(w

′)
24: tasks[taskID].n′w = n′w
25: tasks[taskID].trapdoorStatus = false

• For each keyword wk in the keyword set W , DO initial-
izes an empty set Swk = ∅. Then, for each i ∈ [1, v],
if vwk [i] = 1, DO includes this file index I in the set
Swk . Assume that the number of elements that satisfy
vwk [i] = 1 is denoted as ξ.

• For each keyword wk ∈ W , DO calculates Ωπo(wk) =
{Ωwk,i1,Ωwk,i2, · · · ,Ωwk,in}i,vwk [i]=1, where Ωwk,ij =

[H3(IDi||j)−1 × H4(πo(wk)‖j)]x, j ∈ [1, n]. DO sets
I = {πo(wk), evπo(wk),Ωπo(wk)}k=1,2,··· ,m.

5) Φ← AuthGen({Fi}vi=1, x, skID)

• Suppose the file set F = {F1, F2, · · · , Fv} and each
file Fi ∈ F has a unique identity IDi. DO splits
each file Fi, i ∈ [1, v] into n blocks, i.e., Fi =

8

Algorithm 3 Smart Contract-II
Require: Function : ChalGen(taskID, tstart, tend,4t, c)

1: require(tasks[taskID].addressDO == msg.sender)
2: require((tend − tstart)/(12×4t) = 1)
3: require(tend > block.timestamp)
4: require(tasks[taskID].chalStatus == true)
5: tasks[taskID].startT ime = tstart
6: tasks[taskID].endT ime = tend
7: tasks[taskID].numChallenges = c
8: compute T = b tend−tstart

12×4t c
9: tasks[taskID].num = T

10: for i ∈ [1, T] do
11: recordList← [tstart+(i−1)×12×4t, tstart+i×12×4t]
12: end for
13: /∗ the retrieved blocks are Bi = {B(t)} ∗/
14: tasks[taskID].chalStatus = false

15: function: addProof(taskID, T (t), {µ(t)
k }, S

′
w, result)

16: require(tasks[taskID].addressCS == msg.sender)
17: require(tasks[taskID].proofStatus == true)
18: tasks[taskID].numChallenges = c
19: tasks[taskID].auditresult = result
20: task.count+ +
21: if (task.count > task.num) then
22: tasks[taskID].proofStatus = false
23: end if

{mi1,mi2, · · · ,min}.
• DO blinded each block as a blind version, denoted as
bij , using the formula bij = mij + H2(skID‖IDi‖i‖j),
where i ∈ [1, v] and j ∈ [1, n]. It’s important to note that
for each block bij , DO has the capability to recover the
original plaintext mij using the equation mij = bij −
H2(skID‖IDi‖i‖j).

• Each block bij is subdivided into s sectors, represented
as {bijk}k∈[1,s].

• For each blind data block bij , DO generates the authen-
ticator σij = skID × [H3(IDi‖j)× g

∑s
k=1 akbijk]x.

• DO sets Φ = {σij}, (1 6 i 6 n, 1 6 j 6 s).

Finally, DO uploads the data F = {F1, F2, · · · , Fv},
the authenticator Φ = {σij}, (1 6 i 6 n, 1 6
j 6 s) to the cloud and the index structure I =
{πo(wk), evπo(wk),Ωπo(wk)}k=1,2,··· ,m to the smart contract.
6) (Tw′ , nw′)← TrapdoorGen(w′)
DO generates the search trapdoor as Tw′ =
{πo(w′), fl(πo(w′))} based on keyword w′. DO retrieves nw′
from cw, and sends the trapdoor Tw′ and nw′ to the smart
contract.

Smart contracts are designed to eliminate centralized inter-
mediaries and facilitate transparent auditing processes, lever-
aging four modular functions to ensure trustless execution and
verifiability. Assume that the entity DO and CS have registed
an address in blockchain. The DO and CS have a consensus
agreement on auditing the data. After that, the DO initiates
a smart contract, as shown in Alg. 2, into BC. In the smart
contract, the DO defines the auditing task, including the file
name, the number of challenge blocks, the address of DO and
CS in the blockchain.
7) Chal ← ChalGen(Tw′) DO initiates an auditing
process through a smart contract, establishing an agree-
ment denoted as Ag with five key elements: Ag =

{tstart, tend,4t, c}. In this context: tstart represents the start-
ing timestamp, which is determined by DO and signifies the
future point in time when the auditing process commences.
tend is the endpoint of the auditing process, indicating when
the audit concludes. 4t corresponds to the average time
required to generate a single block within recent time periods.
T stands for the number of times the auditing service will
be checked or queried. It is calculated as T = d tend−tstart12×4t e,
ensuring that it is equal to or greater than 1. Let B(t) represent
the function that calculates the block number containing the
timestamp t. For each auditing task, CS will wait about 12×4t
time before generating the proof information. The challenge
information will be retrieved from a succession of blocks.
That is, for each auditing task i, i ∈ [1, T], Bi = {B(t)},
t ∈ [tstart + (i− 1)× 12×4t, tstart + i× 12×4t]. c is the
number of challenge blocks.
8) (Proof,Sw′)← ProofGen(Chal, I,Φ)
CS parses the challenge information from BC. For any auditing
task t, t ∈ [1, T]:
• CS generates kt1 = H2(1‖Bt), kt2 = H2(2‖Bt).

Then, CS generates the challenge information {C =
{(jt, vijt)}}jt∈[1,c],i∈[1,v]}, where jt = ψkt1(β) for β ∈
[1, c] and vijt = πxit (β) for xit = πkt2(i), i ∈ [1, v] and
β ∈ [1, c]. Suppose Qt = {jt = ψkt1(β)}β∈[1,c].

• Based on the address πo(wk) = πo(w
′), CS locates

the associated encrypted row evπo(wk) and Ωπ(wk) in
the index. Subsequently, CS decrypts the corresponding
encrypted index vector, represented as vwk = evπo(wk)⊕
fl(πo(wk)).

• The cloud initializes an empty set Sw′ = ∅. For each
i ∈ [1, n], if vw′ [i] = 1, CS includes i in the set Sw′ .

• CS calculates T (t) =
∏
i∈Sw′

∏
jt∈Qt(σijt)

vijt , µ(t)
k =∑

i∈Sw′
∑
jt∈Qt(vijt × bijtk).

CS sets the auditing proof Proof (t) =

{T (t), {µ(t)
k }16k6s}.

9) (true/false)← SelfV erify(Chal,Proof)
For each auditing task, after obtaining the proof, CS checks
the integrity by Eq. (1). CS sends the proof information
Proof = {T (t), {µ(t)

k }16k6s}, the set Sw′ and the audit result
true/false to the smart contract, as shown in Alg. 3.

e(T (t) ×
∏
i∈Sw′

∏
jt∈Q

(Ωw′,ijt)
vijt , g)

= e(
∏
jt∈Q

(H4(πo(wk)‖jt)
∑
i∈S

w′
vijt)×

s∏
k=1

A
µ
(t)
k

k , R)

× e((H1(ID))
∑
i∈S

w′

∑
jt∈Q

vijt , P0).

(1)

C. Arbitration

• Compensation. When DO obtains the auditing result
false from blockchain, DO can charge for economic
losses due to data corruption.

• Dispute Arbitration. When the following disputes hap-
pen: 1) The data loss happen but CS does not generate
correct report on the blockchain; 2) The data is stored
correctly but DO charges for economic losses due to data

9

corruption. An arbitrator can deal with the disputing as
follows:
For each auditing task t, t ∈ [1, T], the arbitrator retrieves
the challenge information from blockchain, then the ar-
bitrator generates k̃t1 = H2(1‖Bi) and k̃t2 = H2(2‖Bi).
The arbitrator generates the challenge information {C̃ =
{(j̃t, ṽjt)}}j̃t∈[1,c],i∈[1,v]}, where j̃t = ψ

k̃t1
(β) for β ∈

[1, c], and ṽijt = πx̃it (β) for x̃it = π
k̃t2

(i), i ∈ [1, v] and

β ∈ [1, c]. Suppose Qt = {j̃t = ψkt1(β)}β∈[1,c].
The arbitrator checks the validity of the verification
according to the equation

e(T (t) ×
∏
i∈Sw′

∏
j̃t∈Qt

(Ωw′,ij̃t)
ṽijt , g)

= e((
∏
j̃t∈Qt

(H4(πo(wk)‖j̃t)
∑
i∈S

w′
ṽijt))×

s∏
k=1

A
µ
(t)
k

k , R)

× e((H1(ID))
∑
i∈S

w′

∑
j̃t∈Qt

ṽijt , P0).
(2)

If the Eq. (2) holds, it means that CS is honest and the
files are stored correctly. Otherwise, it means that the data
was lost. CS should pay for DO’s losses.

VI. SECURITY ANALYSIS

We provide the security analysis of the proposed scheme,
including the unforgeability of the authenticators and the
unforgeability of the proof information.

Theorem 1. (Unforgeability of authenticator). There does not
exist a PPT adversary who forges a valid authenticator with
non-negligible probability under the CDH assumption.

Proof. The security proof is provided in Appendix.

Theorem 2. (Searchable-auditing soundness). There does not
exist a PPT adversary who forges an valid proof information
with non-negligible probability under the DL and CDH as-
sumption.

Proof. Game 0: This game is the same as defined in security
model.
Game 1: This game is similar to the game in Game 0, with

a little difference that the the proof T ∗ does not appear in
the record list, the simulator S aborts. Given the valid proof
Proof (t) = {T (t), {µ(t)

k }16k6s}, it satisfies Eq. 1,

e(T (t), g) = e((
∏
jt∈Q

(H4(πo(wk)‖jt)
∑
i∈S

w′
xit)vjt)×

s∏
k=1

A
µ
(t)
k

k , R)× e((H1(ID))
∑
i∈S

w′
xit

∑
j∈Q vjt , P0).

If a forged proof Proof (t)∗ = {T (t)∗, {µ(t)∗
k }16k6s} passes

the verification, it also satisfies

e(T (t)∗, g) = e((
∏
jt∈Q

(H4(πo(wk)‖jt)
∑
i∈S

w′
xit)vjt)×

s∏
k=1

A
µ
(t)∗
k

k , R)× e((H1(ID))
∑
i∈S

w′
xit

∑
j∈Q vjt , P0).

(3)

Since the Game 1 aborts, it satisfies
∏s
k=1A

µk
k 6=∏s

k=1A
µ∗k
k , thus there exists µk 6= µ∗k for ∈ [1, s]. Let

4µk = µ∗ − µ. If Game 1 aborts, S can solve the CDH
problem.

Given (g, ga, gb), S aims to output gab. For j ∈ [1, k],
S chooses αj , βj ∈ Z∗q and sets Ak = gαjgbβj . For
H1(ID) query, S sets H1(ID) = gα. For H3(IDi‖j), S sets
H3(IDi‖j) = grij∏s

k=1(g
αk×gbβk)bijk

. For H4(πo(wk)‖j), S sets
H4(πo(wk)‖j) = grkj . Thus, the simulator can obtain:

σij = skID × [H3(IDi‖j)× g
∑s
k=1 akbijk]x

= gαγ × (
grij∏s

k=1(gαk × gbβk)bijk
×

s∏
k=1

(gαk×g
bβk

)bijk)a

= gαγ × (grij)a.

The index can be obtained

Ωπo(wk) = [H3(IDi||j)−1 ×H4(πo(wk)‖j)]x

= ((
grij∏s

k=1(gαk×g
bβk)bijk

)−1 × grkj)a.

We obtain the following via dividing the Eq. (3) by
Eq. (1), e(T

∗

T , g) = e(
∏s
k=1A

4µk
k , ga). Thus, T∗

T =

(g
∑s
k=1 αk × gb×

∑s
k=1 βk)a×4µk . The value gab = (T

∗

T ×
g−

∑s
k=1 αk×a×4µk)

1∑s
k=1

βk×4µk . Since 4µk 6= 0, the proba-
bility Pr(

∑s
k=1 βk × 4µk 6= 0) = 1 − 1

qs , which is a non-
negligible probability and disobey the CDH assumption.
Game 2: This game is as same as Game 1, with a little

difference that the forged proof µ∗ does not appear in the
record list, S aborts. Since the valid auditing proof Proof (t) =

{T (t), {µ(t)
k }16k6s} and the forged proof Proof (t)∗ =

{T (t), {µ(t)∗
k }16k6s} all pass the verification, it can be ob-

tained that

e(T (t), g) = e((
∏
jt∈Q

(H4(πo(wk)‖jt)
∑
i∈S

w′
xit)vjt)×

s∏
k=1

A
µ
(t)
k

k , R)× e((H1(ID))
∑
i∈S

w′
xit

∑
j∈Q vjt , P0).

and

e(T (t), g) = e((
∏
jt∈Q

(H4(πo(wk)‖jt)
∑
i∈S

w′
xit)vjt)×

s∏
k=1

A
µ
(t)∗
k

k , R)× e((H1(ID))
∑
i∈S

w′
xit

∑
j∈Q vjt , P0).

If S aborts, the DL problem is solved by the simulator.
Given (g, gb), S aims to retrieve b. For k ∈ [1, s], S chooses

αk, βk ∈ Z∗q and sets Ak = gαkgbβk . Since S aborts, µk 6= µ∗k.
Let 4µk = µ∗k − µk. From Game 1, we can obtain T ∗ = T .
Thus,

∏s
k=1A

µk
k =

∏s
k=1A

µ∗k
k . That is,

(g
∑s
k=1 αk × gb

∑s
k=1 βk)µk = (g

∑s
k=1 αk × gb

∑s
k=1 βk)µ

∗
k

⇒ (g
∑s
k=1 αk × gb

∑s
k=1 βk)4µ = 1

⇒ g−
∑s
k=1 αk4µk = g

∑s
k=1 βk4µk

⇒ a =
−
∑s
k=1 αk∑s
k=1 βk

.

10

As long as
∑s
k=1 βk 6= 0, the DL problem is solved. Since∑s

k=1 βk 6= 0, the probability Pr(
∑s
k=1 βk 6= 0) = 1 −

1
qs , which is a non-negligible probability and disobey the DL
assumption.

Theorem 3. (Trapdoor and index indistinguishability) If PRP
and PRF are secure, the proposed scheme can achieve trap-
door and index indistinguishability.

Proof. Phase 1: IndexQuery: A4 queries the index of
keyword w′. C randomly sets πo(w

′) and fl(πo(w
′)).

Then C retrievs evπo(w′) = vw′ ⊕ fl(πo(w
′)).

According to w′, C generates Ωπo(w′) =
{Ωπo(w′),i1,Ωπo(w′),i2, · · · ,Ωπo(w′),in}i,vw′ [i]=1, where
Ωπo(w′),ij = [H3(IDi‖j)−1 × H4(πo(w

′‖j))]x, j ∈ [1, n].
DO sets I ′ = {πo(w′), evπo(w′),Ωπo(w′)}k=1,2,··· ,m.
Trapdoor Query: C queries the trapdoor of keyword w′. If

this query has been queried before, C returns the corresponding
Tw′ . Otherwise, C generates πo(w′) and fl(πo(w

′)). Finally,
C returns Tw′ = {πo(w′), fl(πo(w′))} to A4.

Challenge: A4 chooses two keywords {w∗0 , w∗1} and sends
it to C. C randomly flips a coin, designating heads (heads-
up) as 1 and tails (tails-down) as 0. Using the outcome of
the coin toss, C executs the trapdoor generation algorithm
to produce the trapdoor Twβ = {πo(wβ), fl(πo(wβ))}. C
executes the index generation algorithm to produce the in-
dex Iβ = {πo(wβ), evπo(wβ),Ωπo(wβ)}k=1,2,··· ,m. Finally, C
sends the index Iβ and the trapdoor Twβ to A4.

Phase 2: IndexQuery: A4 queries the index of key-
word w′(w′ /∈ {w∗0 , w∗w}). If this query has been
queried before, C returns the corresponding I ′. C ran-
domly sets πo(w

′) and fl(πo(w
′)). Then C retrievs

evπo(w′) = vw′ ⊕ fl(πo(w′)). According to w′, C generates
Ωπo(w′) = {Ωπo(w′),i1,Ωπo(w′),i2, · · · ,Ωπo(w′),in}i,vw′ [i]=1,
where Ωπo(w′),ij = [H3(IDi‖j)−1 × H4(πo(w

′‖j))]x, j ∈
[1, n]. DO sets I ′ = {πo(w′), evπo(w′),Ωπo(w′)}k=1,2,··· ,m.
Trapdoor Query: C queries the trapdoor of keyword

w′(w′ /∈ {w∗0 , w∗w}). If this query has been queried before, C
returns the corresponding Tw′ . Otherwise, C generates πo(w′)
and fl(πo(w′)). Finally, C returns Tw′ = {πo(w′), fl(πo(w′))}
to A4.

Due to the security of PRP and PRF, (I0, I1) and (Tw0 , Tw1)
are indistinguishable from each other.

Theorem 4. (Transparent-auditing). The auditing process is
transparent.

Proof. During the auditing process, all pertinent information is
uploaded onto the blockchain via smart contracts. Specifically,
for index information, DO uploads the index structure I =
{πo(wk), evπo(wk),Ωπo(wk)}k=1,2,··· ,m to the smart contract.
Regarding trapdoor information, DO transmits the trapdoor T ′w
and n′w to the smart contract. The challenge information is
generated leveraging data stored on the blockchain and smart
contracts. As for proof information, CS forwards the proof
data Proof = {T (t), {µ(t)

k }16k6s}, the set Sw′ and the audit
result true/false to the smart contract. With the inherent
transparency of blockchain technology, all content stored on
the blockchain remains traceable and immutable. By tracing

TABLE II: Comparison of Functionality
Scheme [28] [39] [17] [40] Ours

Type II III I II III
P1 X X X X X
P2 × × × X X
P3 × × X × X
P4 × × × X X

I: Public Key Infrastructure; II: Identity-based Cryptography;
III: Certificateless-based Cryptography.
P1: Public auditing; P2: Without relying on trust TPA;
P3: Keyword searchable auditing; P4: Traceability.

the entirety of the information stored on the blockchain,
the verification process remains observable. Consequently, the
auditing process is rendered transparent.

Theorem 5. (Multitask). DO does not have to keep online all
time. The proposed scheme achieves multiple challenge tasks
in one time.

Proof. In the proposed scheme, multiple audit task challenge
contents are generated a time in a decentralized manner by
DO with the assistance of smart contracts. Given a future start
timestamp tstart and an end timestamp tend, the challenge in-
formation is determined by T = d tend−tstart12×4t e. Each challenge
is associated with a series of data blocks, denoted by Bi =
{B(t)}, t ∈ [tstart+(i−1)×12×4t, tstart+i×12×4t], for
i ∈ [1, T]. This approach reduces the frequency of challenges
presented to TPA, thus relieving DO from the obligation of
maintaining an online presence continuously. When initiating
an auditing challenge, CS must await the generation of an
auditing challenge message. In summary, CS conducts the
auditing tasks sequentially based on the challenge information
generated from the blockchain and smart contracts. Thus
,the proposed scheme facilitates the execution of multiple
challenge tasks simultaneously.

Theorem 6. (Arbitration). A fair arbitration is achieved when
dispute happens between DO and CS.

Proof. There are two scenarios that may precipitate conflict
between DO and CS. The first arises when data loss occurs
but CS fails to generate accurate reports on the blockchain. The
second arises when data is accurately stored, yet DO incurs
economic losses due to data corruption. To ensure equitable
resolution of such disputes, an arbitrator is introduced. All
information stored on the blockchain is easily traceable and
accessible. The results of each audit can be re-verified by
the arbitrator. In the event that CS is found to have provided
erroneous reports, it is incumbent upon them to compensate
DO for financial losses.

VII. PERFORMANCE EVALUATION

A. Theoretical Analysis

1) Functionality Comparison: We firstly list a functionality
comparison with some related work in recent years in TABLE
II. We compare the functionality with scheme [17], [28], [39],
[40] including authenticator type, public auditing, reliance on a
trusted TPA, keyword searchable auditing and traceability. We

11

TABLE III: Computation Overhead

Phase AuthGen IndexGen ProofGen Verify
[28] (2 + s)×ExpG +

s ×MulZ∗q + 2 ×
MulG

c×ExpG+ c×MulZ∗q 3×Pair+(1+c+2)×ExpG+
(c+ s− 2)×MulG

[39] (2 + s)×ExpG +
s ×MulZ∗q + 2 ×
MulG

c×ExpG+ c×MulZ∗q 3×Pair+(1+c+2)×ExpG+
(c+ s− 2)×MulG

[17] HG + MulG +
ExpG

m× s× [(|Sw|+ 2)×
HG + (|Sw| + 1) ×
MulG + ExpG]

2cExpG + (|Sw| ×
c + c)MulG + |Sw| ×
cMulZ∗q

2 × Pair + 2 × c ×HG + (c +
1)×MulG + (c+ 1)× ExpG

[40] (2+n)×ExpG +
MulZ∗q +MulG

c×ExpG+ c×MulZ∗q 2× Pair + (c+ 1)ĖxpG + c×
MulG

Our scheme 2 × ExpG + s ×
MulZ∗q + 2 ×
MulG

m×s×|Sw|×2×HG+
(|Sw|)×MulG+PowG

(|Sw| + c) × ExpG +
(|Sw| + c) × MulG +
|Sw| × c×MulZ∗q

3 × Pair + |Sw| × c × HG +
(|Sw| × c + s − 2) ×MulZ∗q +

(|Sw| × c + s + 1) × ExpG +
MulZ∗q

TABLE IV: Communication Overhead

Phase AuthGen IndexGen ChalGen ProofGen
[28] |F |+ (s+ n+ 2)|G| |n|+ 2|Z∗q | (3 + s)|G|+ s|Z∗q |
[39] |F |+ (n+ 1)|G| (c+ 1)|n|+ c|Z∗q | 2|G|+ (s+ 1)|Z∗q |
[17] |F |+ n|G| 2m|n| 3|Z∗q |+ 2|n| |G|+ |Z∗q |
[40] |F |+ (n+ 1)|G|+ 3|n| |n|+ 2|Z∗q | |G|+ |Z∗q |

Our scheme |F |+ n|G| 2m|n| 5|n| |G|+ s|Z∗q |

also list the cryptosystem in these schemes. From the TABLE,
scheme [28] and [40] are all base on identity cryptography,
scheme [39] and our scheme rely on certificateless cryptogra-
phy, while scheme [17] is based on a public key infrastructure.
In terms of functionality, all schemes support public auditing.
Both scheme [40] and our scheme do not rely on a trusted TPA
and support traceability. Both scheme [17] and our scheme
support keyword searchable auditing. To sum up, our scheme
has advantages in without relying on a trusted TPA, keyword
searchable auditing and traceability.

2) Computation Costs: In the analysis of computational
costs, our focus is on particular operations, which include
bilinear pairing operations, exponentiation operations on G,
and multiplication operations on Z∗q and G. The comparison is
presented in terms of four main aspects: AuthGen, IndexGen,
ProofGen and Verify in TABLE III.

For AuthGen algorithm, schemes [28] and scheme [39]
have similar computation costs as (2+s)×ExpG+s×MulZ∗q+
2 ×MulG and (2 + s) × ExpG + s ×MulZ∗q + 2 ×MulG
respectively. Scheme [40] has smaller computation costs as
HG + MulG + ExpG due to its PKI system. Compared to
schemes [28] and [39], our scheme has the smallest com-
putation costs as 2 × ExpG + s × MulZ∗q + 2 × MulG
because our scheme does not need to generate a sequence
of public parameters like {Ak}sk=1. For IndexGen algorithm,
only scheme [17] and our scheme support searchable auditing.
The computation costs for scheme [17] and our scheme are

m × s × [(|Sw| + 2) × HG + (|Sw| + 1) ×MulG + ExpG]
and m × s × |Sw| × 2 × HG + (|Sw|) ×MulG + PowG re-
spectively. Compared to scheme [17], our scheme has smaller
computation costs because our scheme does not require a block
position hash operation for each block but still achieves index
matching. For ProofGen algorithm, scheme [28], [39] and [40]
all have the same computation costs as c×ExpG+c×MulZ∗q .
Compared to scheme [17], our scheme has higher computation
costs, as it incurs c×ExpG + c×MulZ∗q due to its resistance
to same keyword summation attacks. For Verify algorithm,
scheme [28] and [39] have the same computation costs, which
are 3 × Pair + (1 + c + 2) × ExpG + (c + s − 2) ×MulG.
Scheme [39] and [40] have similar computation costs as
2×Pair+2×c×HG +(c+1)×MulG +(c+1)×ExpG and
2×Pair+(c+1)ĖxpG +c×MulG respectively, due to their
use of the same cryptography system. The computation costs
of our scheme are related to the number of files containing the
same keyword and are 3× Pair + |Sw| × c×HG + (|Sw| ×
c+ s− 2)×MulZ∗q + (|Sw| × c+ s+ 1)×ExpG +MulZ∗q .

3) Communication Costs: For communication costs, we
mainly consider the communication cost in terms of |G|,
|Z∗q | and |n|. We compare the communication costs for the
AuthGen, IndexGen, ChalGen, and ProofGen algorithms in
TABLE IV.

For the AuthGen algorithm, except for scheme [28], which
needs to transmit s group elements s|G|, the communication
costs of the other schemes have a small difference. For

12

the IndexGen algorithm, the communication content mainly
includes the index table. Scheme [17] and our scheme have
the same communication costs, which are 2m|n|. For the
ChalGen algorithm, both scheme [28] and [40] transmit the
challenge numbers |n| and two challenge seeds 2|Z∗q | to
the CS, while scheme [17] should transmit extra trapdoor
information |n| + |Z∗q |. Compared to other schemes, scheme
[40] has the highest communication overhead, amounting to
(c+1)|n|+c|Z∗q |, since it needs to transmit the whole challenge
set. Our scheme adopts a decentralized way of challenge
information generation, requiring only 5|n| communication
costs. For the ProofGen algorithm, the communication costs
are related to the number of sectors in scheme [28], [39] and
our scheme, which are (3 + s)|G|+ s|Z∗q |, (3 + s)|G|+ s|Z∗q |
and |G|+ s|Z∗q |, respectively.

B. Performance Evaluation

This section describes the simulation experiments. All ex-
periments were conducted on a system running Windows
10 with an Intel i7 2.5 GHz CPU and 8 GB of memory.
We implemented the scheme using the Java programming
language and the Pairing Based Cryptography (PBC) library.
In our evaluation, we utilized type pairings constructed on the
curve defined by the equation y2 = x3 + x over the finite
field Fq , where q = 3mod 4. To assess the performance of
our proposed scheme, we conducted a comparative analysis
of its computational costs in comparison to related work as
presented in [8], [17], [28], [39].

—Evaluation time cost for authenticator generation.
Fig. 3 illustrated the relationship of the time computation

costs of authenticator generation and the block number of
the original file. The block number was varied from 1000 to
10000 with a step size of 500, we observed that the time
costs of the authenticator generation increased as the block
number of original file grew. Our scheme outperformed other
schemes such as [28], [39] in terms of efficiency. In Fig.
4, we examined the relationship of the time computation
costs of authenticator generation and file size. The file size
was set to 5 MB and 10 MB respectively. We observed
that the computation costs decreased as the number of block
segments increased. Additionally, our scheme exhibited greater
efficiency compared to the scheme in [28], [39]. For example,
when the number of blocks was configured to 4500, the time
required for authenticator generation in schemes [28], [39] and
our proposed approach was 143.533, 146.338, and 138.798
seconds, respectively. Compared to scheme [39], the time cost
was reduced by approximately 5%. This reduction in time
cost was achieved because certain public values could be
pre-computed in advance. Additionally, it was important to
note that the computation costs of authenticator generation
increased with the file size, as expected.

—Evaluation time cost for index generation.
Fig. 5 illustrated the relationship of index generation time

and the number of keywords and separated data block num-
bers in a single block. The number of separated data block
numbers was set from 100 to 1000 with step size 100. In
case of resisting the same keyword files summation attack,

Fig. 3: The authenticator generation time with the number of
files and the separated data block numbers in one file.

Fig. 4: The authenticator generation time with the block
segment number and different file size.

the number of files containing the same keyword in experiment
was set to 1. According to the results, we observed that the
index generation time increased as the number of separated
data block numbers grew. Our scheme demonstrated greater
efficiency compared to [17], [19]. For example, when the
separated data block numbers were configured to 500, the time
required for index generation in schemes [17], [19] and our
proposed approach was 23.134, 22.969, and 13.683 seconds,
respectively. Compared to scheme [17], [19], the time cost
was reduced by approximately 40% in our proposed approach.
This is because we have reduced the hash-to-group mapping
operations in the indexing process. The design ensured that the
security remained uncompromised but improved the efficiency.

—Evaluation time cost for proof generation and verifi-
cation.

During the experiment, two different configurations were
tested: one with 300 challenge data blocks and the other with
460. In the case of 300 challenge data blocks, the ratio of
corrupted data blocks was set to 1%, with a corresponding
probability of detecting corrupted blocks at 95%. For the
configuration with 460 challenge data blocks, the ratio of
corrupted data blocks remained at 1%, but the probability of

13

Fig. 5: The index generation time with the number of keyword
and the separated data block numbers in one file.

detecting corrupted blocks increased to 99%. Since searchable
auditing based on certificateless cryptography lacks compara-
ble references in proof generation and verification, we solely
conducted an estimation of the time cost evaluation based on
our proposed approach.

Fig. 6 showed the computation costs when the challenge
numbers was set to 300. In Fig. 6 (a), a comparison of
time costs was presented for different numbers of sectors
and different numbers of files containing the same keyword.
The sector numbers in a block were varied from 1×103 to
1×104 with step size 1×103, and the number of files which
contained the same keyword ranged from 20 to 100 with a
step size of 20. It can be observed that the time costs were
less affected by the number of sectors. When ξ = 60 and
s = 3000, it required 160.662 seconds, while it took 165.365
seconds when ξ = 60 and s = 7000. That was significant for
improving the efficiency on DO side. Additionally, the time
costs grew linearly with the number of files which contained
the same keyword. This increase was due to the rising number
of aggregate files.

Fig. 6 (b) showed the computation costs when the challenge
number was set to 300. In Fig. 6 (b), we conducted a compari-
son of time costs for various scenarios. This included different
quantities of files containing the same keyword and varying
numbers of sectors. We explored the impact of changing the
number of files with the same keyword, ranging from 10 to 100
with increments of 10, and the number of sectors, which varied
from 2×103 to 1×104 in increments of 2000. It demonstrated
a linear increase in time costs as the number of files with
the same keyword grew, while the time costs increased at a
relatively slower rate with the expanding number of sectors.
When ξ = 50 and s = 4000, it required 169.694 seconds,
while it took 301.564 seconds when ξ = 100 and s = 4000.

Fig. 6 (c) illustrated the computation costs when the chal-
lenge numbers were set to 300. In Fig. 6 (c), a comparison
of time costs was provided for different numbers of sectors
and different numbers of files containing the same keyword.
The number of sectors in a block was varied from 1×103 to

1×104 with a step size of 1×103, while the number of files
containing the same keyword ranged from 20 to 100 with a
step size of 20. It was showed that the time costs exhibited a
linear relationship with the number of sectors in a block. That
was because the CS needed to verify more information as the
number of sectors increased. When s = 2000 and ξ = 20, it
required 20.108 seconds, while it took 70.345 seconds when
s = 8000 and ξ = 20.

Fig. 6 (d) showed the computation costs when the challenge
numbers were set to 300. In Fig. 6 (d), the depicted results
illustrate the time costs associated with various scenarios
involving different numbers of files containing the same key-
word and varying numbers of sectors. The number of files
with the same keyword was tested across a range from 10 to
100 with increments of 10, and the number of sectors was
assessed from 2×103 to 1×104 with increments of 2×103.
It was noticeable that the time costs exhibited a non-linear
relationship with the number of files which contained the same
keyword. When ξ = 60 and s = 3000, it costed 28.383
seconds while it costed 28.827 seconds when ξ = 80 and
s = 3000. This non-linear behavior was due to the verification
time costs mainly involving some addition operations in a
group concerning the number of files. The overhead was
relatively lightweight.

In Fig.s 7 (a)-(d), we presented the computation costs
associated with a challenge number set to 460. Fig. 7 (a)
illustrated the time costs for various combinations of the
number of sectors and the number of files containing the same
keyword. The number of sectors in a block was adjusted from
1×103 to 1×104 with increments of 1×103, and the number
of files with the same keyword ranged from 20 to 100 with
increments of 20. The observations showed that the time costs
were less affected by the number of sectors. When ξ = 60 and
s = 3000, it costed 254.641 seconds while it costed 259.987
seconds when ξ = 60 and s = 7000. Additionally, the time
costs exhibited a linear relationship with the number of files
containing the same file. When ξ = 20 and s = 5000, it costed
82.67 seconds, while it costed 264.833 seconds when ξ = 60
and s = 5000.

In Fig. 7 (b), the results illustrated the time cost comparison
for various numbers of files containing the same keyword
and different numbers of sectors. The number of files which
contained the same keyword ranged from 10 to 100 with
increments of 10, and the number of sectors was adjusted
from 2×103 to 1×104 with increments of 2×103. The results
indicated that time costs increased linearly with the number of
files which contained the same keyword and exhibited gentle
growth with changes in the number of sectors. When ξ = 30
and s = 2000, it costed 84.028 seconds while it costed
110.396 seconds when ξ = 30 and s = 6000. Next, Fig. 7
(c) depicted the time cost comparison for various sectors and
files containing the same keyword. The number of sectors in a
block ranged from 1×103 to 1×104 with increments of 1×103,
and the number of files which contained the same keyword
varied from 20 to 100 with increments of 20. When s = 5000
and ξ = 60, it costed 48.584 seconds while it costed 69.604
seconds when s = 8000 and ξ = 60. The results demonstrated
that time costs displayed a linear relationship with the number

14

(a) (b) (c) (d)

Fig. 6: The time cost when c=300 (a): with different numbers of sectors in a block in proof generation; (b): with different
numbers of files containing the keyword in proof generation; (c): with different sectors in a block in proof verification; (d):
with different numbers of files containing the keyword in proof verification.

(a) (b) (c) (d)

Fig. 7: The time cost when c=460 (a): with different numbers of sectors in a block in proof generation; (b): with different
numbers of files containing the keyword in proof generation; (c): with different sectors in a block in proof verification; (d):
with different numbers of files containing the keyword in proof verification.

Fig. 8: Gas cost.

of sectors in a block. Fig. 7 (d) illustrated the time cost
comparison for different numbers of files containing the same
keyword and different numbers of sectors. The number of files
which contained the same keyword ranged from 10 to 100
with increments of 10, and the number of sectors varied from
2×103 to 1×104 with increments of 2×103. The observations
revealed that time costs exhibited a nonlinear relationship with
the number of files which contained the same keyword. When
ξ = 60 and s = 3000, it costed 30.33 seconds, while it costed
30.976 seconds when ξ = 80 and s = 3000.

—Evaluation gas cost for smart contract.
Fig. 8 showed the gas cost of the smart contract. We pub-

lished the smart contract on a test chain from Ethereum. The
test data were collected on December 20, 2023. In general, the
more data sent to the blockchain, the more gas consumption
were required. From the Figure, we observed that it costed
1237740 gwei to post the smart contract. When comparing the
gas consumption of the four functions, the function newTask
required the least gas. Next, the gas consumption in functions
TrapdoorGen and ChalGen were similar. The function
addProof had the highest gas consumption. That was because
this function needed to record more information, including the
proof information and an index vector.

VIII. DISCUSSION AND FUTURE WORK

Inriching the functions. The current scheme supports
integrity auditing based solely on a single data owner. To
enhance its functionality, we aim to explore how to extend the
scheme to data sharing scenario. While numerous solutions
exist in data sharing scenarios, existing approaches remain
inadequate for large-scale similarity data sharing enviornment,
necessitating the redefinition of security models and the ex-
ploration of privacy preservation challenges.

Improving computation efficiency. The verification cost is
costly with large volumes of files since we adopt pairing-based
cryptosystem. Reducing computation overheads is a significant

15

challenge in designing efficient auditing schemes and our next
rearch goal.

IX. CONCLUSION

In this paper, we proposed a blockchain-assisted searchable
integrity auditing for large-scale similarity data scheme. The
proposed scheme achieved searchable auditing for uncertain
numbers of similar data, improving the application wide of
the auditing model. The proposed scheme did not rely on a
centralized TPA but utilized blockchain combining with smart
contract to enhance the credibility and transparency of the
auditing process. The auditing process was facilitated through
collaboration between CS and smart contracts, thus eliminat-
ing the requirement for TPA to remain continuously online
awaiting responses from CS. Furthermore, the certificateless
authenticator combined with the index matrix and structure
were designed to achieve searchable auditing and reduce the
overhead of key and certificate management. An arbitration
resolution was introduced to deal with disputes between DO
and CS. Theoretical and security analysis showed that the
proposed scheme was efficient and secure.

REFERENCES

[1] K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud computing:
A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 2009–2030, 2020.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security. Alexandria Virginia, USA: Association for Computing
Machinery, New York, United States, 2007, pp. 598–609.

[3] A. Li, Y. Chen, Z. Yan, X. Zhou, and S. Shimizu, “A survey on integrity
auditing for data storage in the cloud: from single copy to multiple
replicas,” IEEE Transactions on Big Data, vol. 8, no. 5, pp. 1428–1442,
2020.

[4] H. Han, , S. Fei, Z. Yan, and X. Zhou, “A survey on blockchain-
based integrity auditing for cloud data,” Digital Communications and
Networks, vol. 8, no. 5, pp. 591–603, 2022.

[5] W. Guo, S. Qin, F. Gao, H. Zhang, W. Li, Z. Jin, and Q. Wen, “Dynamic
proof of data possession and replication with tree sharing and batch
verification in the cloud,” IEEE Transactions on Services Computing,
vol. 15, no. 4, pp. 1813–1824, 2020.

[6] Y. Su, Y. Li, B. Yang, and Y. Ding, “Decentralized self-auditing scheme
with errors localization for multi-cloud storage,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 4, pp. 2838–2850, 2021.

[7] Z. Liu, L. Ren, R. Li, Q. Liu, and Y. Zhao, “Id-based sanitizable signa-
ture data integrity auditing scheme with privacy-preserving,” Computers
& Security, vol. 121, p. 102858, 2022.

[8] J. Xue, C. Xu, J. Zhao, and J. Ma, “Identity-based public auditing
for cloud storage systems against malicious auditors via blockchain,”
Science China Information Sciences, vol. 62, no. 3, pp. 1–16, 2019.

[9] Y. Yang, Y. Chen, F. Chen, and J. Chen, “Identity-based cloud storage
auditing for data sharing with access control of sensitive information,”
IEEE Internet of Things Journal, vol. 9, no. 13, pp. 10 434–10 445, 2021.

[10] Y. Yang, Y. Chen, and F. Chen, “An efficient identity-based provable data
possession protocol with compressed cloud storage,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 1359–1371, 2022.

[11] D. Liu, Z. Li, and D. Jia, “Secure distributed data integrity auditing with
high efficiency in 5g-enabled software-defined edge computing,” Cyber
Security and Applications, vol. 1, p. 100004, 2023.

[12] L. Zhou, A. Fu, G. Yang, Y. Gao, S. Yu, and R. Deng, “Fair cloud
auditing based on blockchain for resource-constrained iot devices,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 5, pp.
4325–4342, 2022.

[13] C. Wang, X. Liu, H. Li, X. Di, L. Cong, S. Zhang, and H. Qi, “Smart
contract-based integrity audit method for iot,” Information Sciences, vol.
647, p. 119413, 2023.

[14] X. Zhang, X. Wang, D. Gu, J. Xue, and W. Tang, “Conditional anony-
mous certificateless public auditing scheme supporting data dynamics
for cloud storage systems,” IEEE Transactions on Network and Service
Management, vol. 19, no. 4, pp. 5333–5347, 2022.

[15] X. Li, S. Shang, S. Liu, K. Gu, M. Jan, X. Zhang, and F. Khan, “An
identity-based data integrity auditing scheme for cloud-based maritime
transportation systems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 2, pp. 2556–2567, 2022.

[16] A. Hu, R. Jiang, and B. Bhargava, “Identity-preserving public integrity
checking with dynamic groups for cloud storage,” IEEE Transactions
on Services Computing, vol. 14, no. 4, pp. 1097–1110, 2018.

[17] X. Gao, J. Yu, Y. Chang, H. Wang, and J. Fan, “Checking only
when it is necessary: Enabling integrity auditing based on the keyword
with sensitive information privacy for encrypted cloud data,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 6, pp.
3774–3789, 2021.

[18] M. Tian, Y. Zhang, Y. Zhu, L. Wang, and Y. Xiang, “Divrs: Data integrity
verification based on ring signature in cloud storage,” Computers &
Security, vol. 124, p. 103002, 2023.

[19] J. Xue, S. Luo, Q. Deng, L. Shi, X. Zhang, and H. Wang, “Ka: Keyword-
based auditing with frequency hiding and retrieval reliability for smart
government,” Journal of Systems Architecture, vol. 138, p. 102856, 2023.

[20] S. Li, C. Xu, Y. Zhang, Y. Du, and K. Chen, “Blockchain-based
transparent integrity auditing and encrypted deduplication for cloud
storage,” IEEE Transactions on Services Computing, vol. 16, no. 1, pp.
134–146, 2022.

[21] Y. Lin, J. Li, S. Kimura, Y. Yang, Y. Ji, and Y. Cao, “Consortium
blockchain-based public integrity verification in cloud storage for iot,”
IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3978–3987, 2021.

[22] Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-
based privacy-preserving remote data integrity checking scheme for iot
information systems,” Information Processing & Management, vol. 57,
no. 6, p. 102355, 2020.

[23] Y. Miao, Q. Huang, M. Xiao, and W. Susilo, “Blockchain assisted multi-
copy provable data possession with faults localization in multi-cloud
storage,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 3663–3676, 2022.

[24] Y. Zhang, C. Xu, S. Yu, H. Li, and X. Zhang, “Sclpv: Secure certifi-
cateless public verification for cloud-based cyber-physical-social systems
against malicious auditors,” IEEE Transactions on Computational Social
Systems, vol. 2, no. 4, pp. 159–170, 2015.

[25] S. Li, C. Xu, Y. Zhang, Y. Du, A. Yang, X. Wen, and K. Chen,
“Backdoor-resistant public data integrity verification scheme based on
smart contracts,” IEEE Internet of Things Journal, vol. 10, no. 16, pp.
14 269–14 284, 2023.

[26] A. Juels and S. B. J. Kaliski, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security. New York, NY, United States: Association
for Computing Machinery, New York, United States, 2007, pp. 584–597.

[27] C. Yang, Y. Liu, F. Zhao, and S. Zhang, “Provable data deletion from
efficient data integrity auditing and insertion in cloud storage,” Computer
Standards & Interfaces, vol. 82, p. 103629, 2022.

[28] J. Li, H. Yan, and Y. Zhang, “Efficient identity-based provable multi-
copy data possession in multi-cloud storage,” IEEE Transactions on
Cloud Computing, vol. 10, no. 1, pp. 356–365, 2019.

[29] Z. Li, Y. Li, B. Yang, and Y. Ding, “Algebraic signature-based public
data integrity batch verification for cloud-iot,” IEEE Transactions on
Cloud Computing, vol. 11, no. 3, pp. 3184–3196, 2023.

[30] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo, “Blockchain-
based public auditing and secure deduplication with fair arbitration,”
Information Sciences, vol. 541, pp. 409–425, 2020.

[31] Y. Fan, H. Wu, and H. Paik, “Dr-bft: A consensus algorithm for
blockchain-based multi-layer data integrity framework in dynamic edge
computing system,” Future Generation Computer Systems, vol. 124, pp.
33–48, 2021.

[32] W. Liang, Y. Liu, C. Yang, S. Xie, K. Li, and W. Susilo, “On
identity, transaction, and smart contract privacy on permissioned and
permissionless blockchain: A comprehensive survey,” ACM Computing
Surveys, vol. 56, no. 12, pp. 1–35, 2024.

[33] H. Guo, Y. Chen, X. Chen, Y. Huang, and Z. Zheng, “Smart contract
code repair recommendation based on reinforcement learning and multi-
metric optimization,” ACM Transactions on Software Engineering and
Methodology, vol. 33, no. 4, pp. 1–31, 2024.

[34] S. Ismail, M. Nouman, H. Reza, F. Vasefi, and H. Zadeh, “A blockchain-
based fish supply chain framework for maintaining fish quality and
authenticity,” IEEE Transactions on Services Computing, vol. 17, no. 5,
pp. 1877–1886, 2024.

16

[35] G. Falazi, U. Breitenbücher, F. Leymann, and S. Schulte, “Cross-chain
smart contract invocations: a systematic multi-vocal literature review,”
ACM Computing Surveys, vol. 56, no. 6, pp. 1–38, 2024.

[36] C. Sendner, L. Petzi, J. Stang, and A. Dmitrienko, “Large-scale study
of vulnerability scanners for ethereum smart contracts,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 2024, pp. 2273–2290.

[37] D. Chen, Z. Liao, R. Chen, H. Wang, C. Yu, K. Zhang, N. Zhang,
and X. Shen, “Privacy-preserving anomaly detection of encrypted smart
contract for blockchain-based data trading,” IEEE Transactions on
Dependable and Secure Computing, vol. 21, no. 5, pp. 4510–4525, 2024.

[38] Z. Lin, J. Chen, J. Wu, W. Zhang, Y. Wang, and Z. Zheng, “Crpwarner:
Warning the risk of contract-related rug pull in defi smart contracts,”
IEEE Transactions on Software Engineering, vol. 50, no. 6, pp. 1534–
1547, 2024.

[39] L. Zhou, A. Fu, G. Yang, H. Wang, and Y. Zhang, “Efficient certificate-
less multi-copy integrity auditing scheme supporting data dynamics,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 2,
pp. 1118–1132, 2020.

[40] Y. Tian, H. Tan, J. Shen, V. Pandi, B. Gupta, and V. Arya, “Efficient
identity-based multi-copy data sharing auditing scheme with decentral-
ized trust management,” Information Sciences, vol. 644, p. 119255,
2023.

Ying Miao received her M.S. degree from South
China Agricultural University. She is now a PhD
Student at School of Computer Science & Tech-
nology, Beijing Institute of Technology. She has
published more than ten papers about blockchain,
data security and machine learning. Her research
interests include information security, blockchain
and cloud computing.

Keke Gai received the Ph.D. degree in computer
science from Pace University, New York, NY, USA.
He is currently a Professor at the School of Cy-
berspace Science and Technology, Beijing Institute
of Technology, Beijing, China. His research interests
include cyber security, blockchain, AI security, and
privacy computation. He has published more than
200 peer-reviewed papers in recent years and has
been granted more than 10 Best Paper Awards.
He is serving as an Editor-in-Chief of the journal
Blockchains and an Editorial Board member of a few

journals, including TDSC, JPDC, FGCS, etc. He is currently serving a few
academic organizations, e.g., a Co-Chair of IEEE Technology and Engineering
Management Society (TEMS)’s Technical Committee on Blockchain and
Distributed Ledger Technologies. He is a Senior Member of IEEE.

Yu-an Tan received the B.Eng. degree in Computer
Software in 1991, Ph.D. in Computer Science in
2003. He has got teaching and research experience
of more than 30 years, and has been a Professor in
Beijing Institute of Technology since 2010. He is a
senior member of the China Computer Federation.
He contributes for peer reviewed 100+ journal pa-
pers and conference papers. He has received over
20 research funds from National Natural Science
Foundation of China, National Key Research and
Development Program of China, etc. His research

areas include Artificial Intelligence Security, Cybersecurity and Storage Sub-
system.

Liehuang Zhu received his Ph.D. degree in com-
puter science from Beijing Institute of Technology,
Beijing, China, in 2004, the M.E. (Master of Engi-
neering) degree and B.E. (Bachelor of Engineering)
degree from Wuhan University, Wuhan, China, in
2001 and 1998, respectively. He is currently a pro-
fessor at School of Computer Science & Technology,
Beijing Institute of Technology, Beijing, China. He
has published more than 4100 peer-reviewed journal
or conference papers, including 10+ IEEE/ACM
Transactions papers (IEEE TIFS, IEEE TII, IEEE

TVT, IEEE TSG, Information Sciences, IEEE Network, Computer & Security,
etc.). He has been granted a number of IEEE Best Paper Awards, including
IWQoS 17’, TrustCom 18’. His research interests include security protocol
analysis and design, wireless sensor networks, and cloud computing. He is a
Senior Member of IEEE.

Weizhi Meng is a Full Professor in the School of
Computing and Communications, Lancaster Univer-
sity, United Kingdom. He obtained his Ph.D. de-
gree in Computer Science from the City University
of Hong Kong. He was a recipient of the Hong
Kong Institution of Engineers (HKIE) Outstanding
Paper Award for Young Engineers/Researchers in
both 2014 and 2017. He also received the IEEE
ComSoc Best Young Researcher Award for Europe,
Middle East, & Africa Region (EMEA) in 2020 and
the IEEE ComSoc Communications & Information

Security (CISTC) Early Career Award in 2023. His primary research interests
are blockchain technology, cyber security and artificial intelligence in security
including intrusion detection, blockchain applications, smartphone security,
biometric authentication, and IoT security. He is senior member of IEEE.

	I Introduction
	II Related Work
	III Preliminaries
	III-A Bilinear Map
	III-B Hard Problems

	IV Problem Formulation
	IV-A System Model
	IV-B Threat Model
	IV-C Design Goals
	IV-D Definition
	IV-E Security Model

	V The Construction
	V-A Index Design
	V-B The Construction
	V-C Arbitration

	VI Security Analysis
	VII Performance Evaluation
	VII-A Theoretical Analysis
	VII-A1 Functionality Comparison
	VII-A2 Computation Costs
	VII-A3 Communication Costs

	VII-B Performance Evaluation

	VIII Discussion and Future Work
	IX Conclusion
	References
	Biographies
	Ying Miao
	Keke Gai
	Yu-an Tan
	Liehuang Zhu
	Weizhi Meng

