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Abstract—With the rapid growth of Internet of Things (IoT)
and edge computing platforms, the Internet of Medical Things
(IoMT) has become popular and important in healthcare in-
dustry, i.e., there is an increase of brainwave headsets and
headbands. However, the security and privacy of shared data
can be easily compromised if an attacker can access the IoMT
devices and check all the data. There is a need to authenticate
users before they can use the healthcare devices. For this reason,
Electroencephalography (EEG) based authentication is a neces-
sary security solution. In recent years, EEG-based authentication
has witnessed significant advancements, but traditional models
face challenges in capturing the complex spatial and temporal
dependencies present in EEG signals. This work aims to address
these limitations and explore the effect of Transformer model
in the domain of EEG-based authentication. In particular, we
devise a modified Vision Transformer model (ViT) to handle the
specific characteristics of EEG data, such as spatial and temporal
dependencies. In the evaluation, we compare our approach with
the similar methods in the literature and examine the effect of
fine-tune based on two datasets. The results demonstrate that
our approach can effectively capture long-range dependencies
and outperform conventional models.

Index Terms—Data security, User authentication, Internet of
Medical Things, Transformer model, Electroencephalography.

I. INTRODUCTION

THE rapid growth of Internet of Things (IoT) enables
the whole network to be fully distributed, where many

Internet-enabled devices and components can be connected
with each other [12]. Also, with the wide adoption of edge
computing platforms, the IoT-Edge Continuum has become
popular and important. Due to these new trends, healthcare
data can be spread more distributed, since users would use
various mobile / IoT devices to communicate with their doctors
and medical organizations. Hence, Internet of medical Things
(IoMT) [26] has become a new trend that requires timely and
reliable delivery of the healthcare data in a distributed manner.
Different from a traditional IoT device, Edge computing can
provide IoMT with more resources such as memory, compu-
tational power, and network bandwidth [18], [35].

In recent years, Metaverse, as a future of digital connection,
has provided a way of connecting physical and virtual space
inspired via immersive technologies [21], e.g., virtual reality
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(VR), augmented reality and mixed reality. It is apparent
that Metaverse devices will become common in the near
future of IoMT, including brainwave headsets and headbands.
That means more healthcare data would be transferred among
Metaverse devices. However, if a cyber-attacker can access
the healthcare devices, the security and privacy of patients’
data can be easily compromised. Hence there is a need to
protect the patients’ data (e.g., diagnosis record) against unau-
thorized access on these devices. For instance, Zhu et al. [34]
introduced SoundLock, a user authentication scheme using
auditory-pupillary response as biometrics for VR devices.
The corresponding pupillary response can be captured by the
integrated eye tracker.

Currently, authentication systems are designed to verify the
identity of users and grant them access to reasonable resources,
such as online accounts, databases, or digital services, which
play a critical role in ensuring the security and integrity of
our personal and sensitive information. Traditionally, authen-
tication methods have relied on something the user knows,
such as passwords or PINs, as well as something they possess,
such as physical tokens or smart cards. While in the era of
Metavers, Electroencephalography (EEG) based authentication
is a necessary and more available security solution, where
users have to be authenticated based on their EEG signals [3].
EEG-based authentication has a substantial advantage due to
the uniqueness of brainwave patterns. Each individual’s neural
connectivity and function are unique, resulting in highly indi-
vidualized EEG signatures [33]. Unlike readily compromised
passwords or physical tokens, brainwave patterns are inherent-
ly difficult to replicate or forge. Utilizing this distinction can
add a layer of security and reduce the risk of unauthorized
access to users’ personal data such as multimedia data [17].

As presented in Figure 1, the human brain, which contains
approximately 86 billion neurons, communicates primarily
through electrical signals. Electroencephalography (EEG) is a
non-invasive technique for measuring the electrical activity of
the brain through the placement of electrodes on the scalp [32].
It detects and records the collective firing of neurons, which
results in distinct brainwave patterns. These patterns are dis-
tinctive to each individual, making them possible biometric
identifiers for authentication purposes [30].

Motivations. EEG-based authentication is a rapidly growing
field that explores the use of EEG signals for building a secure
and reliable user verification process, which is becoming more
important in the era of IoMT. Due to the increasing technology
advances and need for robust authentication methods, EEG-
based authentication holds a great potential in providing a u-
nique and efficient approach to address security concerns [24],
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Fig. 1. 64-channel-sharbrough

[27], e.g., protecting the security and privacy of healthcare data
stored on the devices. However, despite the advancements in
this field, there are still significant challenges in the current
literature.

One of the key challenges in existing EEG-based authenti-
cation is the development of accurate and reliable models that
can effectively interpret and extract meaningful information
from EEG signals [9]. Deep Learning approaches, such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), have been explored, but they often struggle
to capture the complex spatial and temporal dependencies
present in EEG signals [22]. This kind of limitation calls for
the exploration of alternative models that can better handle the
unique characteristics of EEG data.

We notice that the Transformer model, originally introduced
for natural language processing tasks, has demonstrated a
remarkable success in capturing long-range dependencies and
modeling complex relationships within sequential data. Moti-
vated by its performance, in this work, we aim to investigate
the applicability of the Transformer model in the domain of
EEG-based authentication and compare it with the existing
state-of-the-art, especially CNN-based methods.

Contributions. By harnessing the power of self-attention
and leveraging the ability to capture both local and global
dependencies, Transformer model has the potential to over-
come the limitations of existing EEG-based authentication ap-
proaches. For better performance, we design a modified Vision
Transformer model (ViT) to handle the specific characteristics
of EEG data, including spatial and temporal dependencies. Our
contributions can be summarized as below.

• We investigate the applicability of Transformer model in
the domain of EEG-based authentication, and develop an
optimized Vision Transformer (ViT) model to make it
more suitable for processing EEG data, e.g., handling
spatial and temporal dependencies better.

• Then, we detail the preprocessing steps to enhance the
quality of the input EEG data (such as noise removal, fea-
ture extraction, data normalization, and artifact removal.),
and introduce the Optimized Vision Transformer (ViT)
Model (e.g., self-attention mechanism).

• Furthermore, we conduct comprehensive experiments to

examine the effect of fine-tune methods, evaluate the
performance of our optimized ViT compared with the
similar methods, and provide insights on the results.

Roadmap. The rest of this article is structured as follows:
Section II presents related work on EEG-based authentication.
Section III introduces the Transformer Model and our devised
Vision Transformer (ViT) model for EEG-based authentica-
tion. Section IV describes the used datasets and preprocessing
steps. Section V analyzes the evaluation results with discus-
sion. Finally, we conclude this work in Section VI.

II. RELATED WORK

EEG-based authentication refers to the verification of indi-
viduals using electroencephalogram (EEG) signals [33]. Due
to its potential to provide secure and user-friendly authentica-
tion systems, this method has become an important security
solution for Metaverse devices, which is the key to protect
multimedia data stored on the devices.

Traditional machine learning approaches have been used
for MI(Motor Imagery)-EEG signal classification, involving
preprocessing, feature extraction, and classification. However,
traditional methods face challenges such as noise interference,
low signal-to-noise ratios (SNRs), subject dependency, and
the need for manual feature extraction. These limitations have
motivated the adoption of deep learning (DL) algorithms for
MI-EEG classification. DL can automatically learn complex
features from raw data, eliminating the need for extensive
preprocessing and manual feature extraction. These DL models
have shown remarkable performance in various fields and have
been applied to EEG-based classification.

Table I shows the taxonomy of the deep learning models
applied to EEG classification.

TABLE I
TAXONOMY OF DEEP LEARNING MODELS FOR EEG CLASSIFICATION

Category Examples of Models

Discriminative Models - Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)

Representative Models
- Deep Autoencoders(DAE)

- Deep Belief Networks (DBNs)
- Restricted Boltzmann Machines (RBMs)

Generative Models - Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)

Hybrid Models - CNN + LSTM
- GNN + CNN

Discriminative Models, such as CNNs, were a popular DL
model using EEG data. They excel in extracting local and
spatial patterns from EEG data. CNN architectures consist
of convolutional layers for feature extraction, pooling layers
for dimensionality reduction, and fully connected (FC) layers
for classification. Lawhern et al. [13] proposed a light CNN
architecture with few parameters to classify different EEG
tasks using raw signals and achieved remarkable performance.
Olivas-Padilla et al. [16] then presented a CNN model for
multiple MI classification with features extracted from MI data
using the FBCSP approach. Xu et al. [23] provided a temporal-
frequency image representation using a Wavelet Transform
Time-Frequency coupled with a CNN model to classify MI
signals, reaching an accuracy of 85.59% in a dataset with four
MI classes.
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Representative DL models refer to the DL architectures that
specialize in feature extraction in an unsupervised manner,
which can be used for various tasks, such as clustering and
classification. Representative DL models include deep AEs (D-
AEs), deep RBMs (D-RBMs), and DBN. Hassanpour et al.
[10] proposed a stacked sparse AE model, defined as DBN-
AE, for MI-EEG classification using FFT frequency features.
Their study used a sliding window augmentation approach
to increase the number of training data and achieved 71%
accuracy using the public BCI-C IV-2a dataset.

Generative DL models, such as Generative Adversarial Net-
works (GANs) and Variational Autoencoders (VAEs), can be
used for data augmentation to improve training performance.
The GANs and VAEs proved effective in generating synthetic
data that enhanced the classification accuracy of CNN models.
Fahimi et al. [8] introduced a GAN-based generative model
with light architecture for MI data argumentation, showing that
increasing the number of training samples could improve the
performance of the CNN model by 3.57% using the BCI-C
III-4a dataset. The study also demonstrated the superiority of
GAN models over VAEs.

Hybrid DL models, which combine different DL models
into a single network, were employed in several studies. These
models demonstrated promising results in MI classification.
Examples include CNN combined with LSTM or GRU net-
works, CNN with Stacked Autoencoders (SAEs) or GANs, and
DBNs combined with SVM classifiers. A hybrid CNN/RNN
model, called recurrent convolutional neural network (RCNN),
was proposed by the study in [19]. The model consisted of a
single convolutional layer and four recurrent layers followed
by a fully connected layer. The MI signal was converted to
spectral images before being fed to the RCNN model. The
performance of this model was studied using their local dataset
consisting of two MI classes and three channels, reporting an
accuracy of 77.72%.

Capturing Long-Range Dependencies: Transformer models
excel at capturing long-range dependencies through the self-
attention mechanism, allowing them to model complex pat-
terns and understand contextual relationships more effectively.
Du et al. [6] introduced an EEG Temporal-Spatial Transformer
(ETST) model for accurate personal identification in cross-
state scenarios by extracting information from EEG signals
in the temporal and spatial domains. Hu et al. [11] pre-
sented AuthConformer and convolutional transformer model
that can generate smartphone users’ behavioral patterns for
authentication, combining the capabilities of Transformers
and convolutional layers to extract deep features from raw
biometric data. Zeynali et al. [25] designed Transformer-based
deep learning and ensemble models for EEG Classification
that could outperform common deep learning models in EEG
signal classification.

Research gap. To summarize, traditional learning methods
encounter challenges such as noise interference, low signal-
to-noise ratios, subject dependency, and the need for manual
feature extraction. These limitations raise the demand of deep
learning algorithms for EEG classification. In the literature,
Transformer models have been explored for EEG classification
and person identification, while to our knowledge, it has not

been widely studied in EEG-based authentication. In this work,
we aim to explore its performance for EEG-based authen-
tication and develop an optimized ViT model. Our results
show that Transformer models can enhance the authentication
performance against unauthorized access to the device, e.g.,
protecting data security and privacy.

III. OUR PROPOSED APPROACH

In this section, we introduce the background on Trans-
former model and its key architecture including Self-Attention,
Positional Embedding, Decoder module. Then we detail our
optimized Vision Transformer (ViT) Model for better handling
the EEG data.

A. Background on Transformer Model

The Transformer model was a sequence-to-sequence model
when it was first introduced, and the key feature is the use of
self-attention [14]. To process a sequence, the most common
thing that comes to mind is to use the Recurrent Neural
Network (RNN). Its input is a sequence of vectors, the output
is another sequence of vectors, and it can only compute
sequentially from left to right or from right to left.

The model’s ability to parallelize is constrained by this pro-
cess, which makes the calculation at each time step dependent
on the computation results of the earlier time steps. Also, the
gradient disappearance problem will always exist with RNNs
due to their inherent flaws, as shown in the following RNN
Equation (1):

h(t) = f(Wxh · x(t) +Whh · h(t− 1) + b) (1)

• h(t) represents the hidden state or output at time step
t.

• f() is the activation function that introduces non-
linearity to the hidden state.

• x(t) represents the input at time step t.
• Wxh is the weight matrix that connects the input to the

hidden state.
• Whh is the weight matrix that connects the hidden state

to itself (recurrent connection).
• b is the bias vector.

The recursive nature of the equation comes from the term
Whh · h(t − 1), which multiplies the previously hidden state
h(t-1) by the recurrent weight matrix Whh.

During the training process, the RNN learns to adjust the
values of the weight matrices and the bias vector based on
the provided input sequences and desired outputs. However,
the issue of gradient disappearance or exploding gradients can
arise when the weight matrix Whh has a maximum eigenvalue
greater than 1 or less than -1, respectively. In the case where
the maximum eigenvalue of Whh is less than 1, the gradi-
ents can become exponentially small, leading to difficulties
in capturing long-term dependencies in the sequence data.
Information loss occurs during sequential computation.
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Fig. 2. The Transformer architecture

B. The Transformer Architecture

Figure 2 shows the Transformer architecture. The left part
represents the encoder: the inputs consist of embeddings along
with positional encodings. These inputs then pass through
a uniform structure that can be repeated multiple times (N
times), resulting in multiple layers (N layers). Each layer
can be further divided into an attention layer and a fully
connected layer, with additional processing steps such as skip
connections and normalization layers.

The right part is similar to the decoder: the first input is the
prefix information, followed by the embeddings generated in
the previous step along with positional encodings. These inputs
then go through a module that can be repeated multiple times.
This module can be divided into three parts. The first part is
an attention layer, the second part is cross-attention where the
model attends to both the input sequence and an additional
context sequence, and the third part is a fully connected layer.
Skip connections and normalization layers are also utilized.

Finally, the output of the model is passed through a linear
layer (fully connected layer) and then a softmax function
generates the final predictions.

a) Self-Attention: First, we introduce three weight ma-
trices: the query vector (Q), key vector (K), and value vector
(V). We perform matrix transformations as follows:

q1 = x1 ·WQ

k1 = x1 ·WK

v1 = x1 ·WV

q2 = x2 ·WQ

k2 = x2 ·WK

v2 = x2 ·WV

Through this process, different x1 and x2 can share the same
weight matrices WQ, WK , and WV , allowing the exchange
of information between them.

Next, we calculate z1 and z2 as follows:

z1 = θ11 · v1 + θ12 · v2

z2 = θ21 · v1 + θ22 · v2

To obtain the combination weights θ11 and θ12, we use the
softmax function on the attention scores:

[θ11, θ12] = softmax
(
q1k

T
1√
dk
,
q1k

T
2√
dk

)
Similarly, for z2, we calculate the combination weights θ21

and θ22:

[θ21, θ22] = softmax
(
q2k

T
1√
dk
,
q2k

T
2√
dk

)
In summary, the attention mechanism is defined as:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (2)

In the given equations, dk represents the dimensionality of
the query or key vectors (Q or K). Both of these vectors
have the same dimensionality since they are used for dot
product calculations. However, the value vectors (V) may have
a different dimensionality than the query and key vectors.

The division by
√
dk in the equations serves a purpose. It

helps prevent the values of QKT from becoming too large,
especially when the dimensionality is high. This normalization
is applied to avoid issues such as gradient vanishing during
the backpropagation process.

Choosing
√
dk instead of dk is an empirical choice. The

purpose is to increase the value of QKT to a reasonable extent
without excessively inflating it. If we were to use dk directly,
it could potentially hinder the increase in the values of QKT .

b) Multi-headed Attention: If we aim to use differ-
ent WQ,WK ,WV , we can have different Q,K,V. The
multi-headed Attention mechanism employs multiple sets of
WQ,WK ,WV , which allows for more diverse information.
Each set of matrices provides a different perspective on the
attention process and enhances the model’s ability to attend to
different aspects of the input sequence.

As shown in the below equation, the Multi-Head Attention
can be obtained by concatenating the outputs of the individual
attention heads:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO

whereheadi = Attention(Q,K,V).

c) Positional Embedding (PE): When inputting data
into the Transformer model, in addition to word vectors x,
positional encoding is also added. The entire input embedding
is obtained by adding the word embedding and positional
embedding together. This allows the network to understand the
position of each word in the input sentence. When performing
self-attention, the network not only needs to know which word
to focus on but also the relative distances between words.
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Why is it important to know the relative positions of words?
The Transformer model does not rely on recurrent neural
networks (RNNs) or convolutional layers, so in order to utilize
the sequential order of the input sequence, the model must
be provided with positional information. Therefore, positional
encoding is added at the bottom of the Encoder and Decoder
modules. These positional encodings have the same dimen-
sions as the input vectors, allowing them to be directly added
together and inject positional information into the model.

The positional encoding equation used in the Transformer
model is typically defined as follows:

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dmodel

)
where:
• pos represents the position of the word in the sequence.
• i corresponds to the dimension of the positional encoding

vector.
• dmodel represents the dimensionality of the model.
Here, the positional encoding values are calculated based

on the sine and cosine functions, with varying frequencies
determined by the position and the dimension. The encoding
vectors are added element-wise to the word embedding vec-
tors, providing the model with information about the relative
positions of the words in the sequence.

It is worth noting that the above equations represent one
common form of positional encoding, but there can be vari-
ations and alternative formulations based on specific require-
ments and research studies.

d) Decoder module: The Decoder module is structured
similarly to the Encoder module. For the original Transformer
model [20], the Decoder consists of N=6 stacked layers. Each
layer is divided into three sub-layers. However, there are three
main differences between the Encoder and the Decoder:

• Decoder SubLayer-1: This sub-layer utilizes a “Masked”
Multi-Headed Attention mechanism to prevent the model
from seeing future positions during the training. This
masking helps prevent information leakage and ensures
accurate predictions.

• SubLayer-2: This sub-layer is an Encoder-Decoder Multi-
Head Attention mechanism. It allows the Decoder to
attend to the input sequence provided by the Encoder,
capturing the necessary context for generating accurate
outputs.

• SubLayer-3: The output of SubLayer-3 is passed through
Linear and Softmax layers to predict the probabilities of
the corresponding words.

C. Our Optimized Vision Transformer (ViT) Model

The original Vision Transformer (ViT) model [7] is initially
designed for image classification tasks. The key idea behind
ViT is to represent an image as a sequence of fixed-size non-
overlapping patches, and each patch is considered as a token
similar to words in natural language processing. These patches

are then linearly embedded into a high-dimensional vector
space, forming the input to the Transformer network.

The Transformer’s self-attention mechanism allows the
model to attend to all the patches in the sequence simulta-
neously, capturing long-range dependencies and building a
holistic representation of the image. The model then goes
through several layers of self-attention and feed-forward neu-
ral networks, learning to recognize patterns and features at
different levels of abstraction.

To further enhance the model’s performance, Dosovitskiy
et al. [7] introduced a pretraining stage, where the ViT has
to be pretrained on a large dataset with a large number of
image patches and a language modeling objective. After this
pretraining phase, the model is fine-tuned on downstream
computer vision tasks, such as image classification, object
detection, and segmentation.

In the literature, the Vision Transformer has demonstrated
impressive results, outperforming traditional CNN architec-
tures on various computer vision benchmarks. One of its
advantages is its ability to handle images of varying resolutions
during training and inference, making it more adaptable to
different input sizes. Here are some reasons why we might
consider using ViT for handling EEG data:

• Attention Mechanism: ViT utilizes the self-attention
mechanism, which allows the model to capture dependen-
cies between different parts of the input data. This can be
beneficial for EEG data, as it helps capture relationships
between different EEG channels and time points.

• Learn Global Patterns: EEG data often contains global
patterns and relationships that are essential for classifica-
tion. ViT’s self-attention mechanism enables the model
to learn these global patterns effectively, as it considers
all input positions simultaneously.

• Hierarchical Representation: ViT uses a hierarchical
representation of the input data by splitting it into fixed-
size patches. This approach can be advantageous for EEG
data, as it helps capture both local and global patterns. By
representing the EEG signals as patches, the model can
learn spatial relationships between different brain regions.

• Flexible Architecture: ViT is a flexible architecture that
can handle variable-sized input data. This is beneficial for
EEG data, as EEG signals can have different lengths and
numbers of channels. The model can also help process
variable-length EEG signals by dividing them into fixed-
size windows or segments.

• Transfer Learning: ViT has achieved state-of-the-art
performance on various image classification tasks. By
leveraging pre-trained ViT models trained on large-scale
image datasets, it can benefit from transfer learning. Fine-
tuning a pre-trained ViT model on the EEG data can help
improve classification performance, especially when the
labeled EEG data is limited.

ViT takes an image as input and divides it into fixed-size
non-overlapping patches. These patches are then flattened and
linearly embedded into token representations, which are fed
into the transformer encoder. However, the input data for the
EEG signal processing method consists of EEG signals, which
are typically time-series data recorded from multiple electrode
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Fig. 3. The modified ViT model architecture

locations on the scalp. Thus, there is a need to optimize the
ViT for better performance under EEG-based authentication.

A novel method for efficiently processing EEG signals
should consider the importance of different feature channels
and avoiding interference between them. Inspired by the
scaled dot-product attention [20], a feature channel weighting
technique was proposed. This method learns the dependence
of each element on others to calculate the importance score
for weighting data values. Initially, the input data is linearly
transformed into vectors, including queries (Q) and keys (K)
with dimension dk, and values (V) with dimension dv, along
the spatial feature dimension.

Optimized ViT. In this work, we thus optimize the ViT
by using the dot product to evaluate the correlation between
one feature channel and all others, as shown in Figure 3–
Channel Attention part. The scaled dot-product attention is
applied to the dot-product result, dividing it by a scaling
factor of [

√
dk] to enhance the Softmax function’s perception

ability. The output weight score is assigned to V, generating
the final representation using dot product. This process can be
mathematically expressed as:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V

Where Attention(Q,K,V) represents the weighted represen-
tation, and Q, K, and V are matrices packed by vectors for
simultaneous calculation.

As brain-driven behaviors are complete processes, we aim
to effectively utilize the relationship between any two parts
of a trial. To reduce computational complexity, we initially
compress the data to one dimension. Since feature channels
are already weighted in the previous step, we divide the
data into multiple slices for attention training. For temporal
transforming, we employ multi-head attention (MHA) to allow
the model to learn dependencies from different angles. The
input is split into h smaller parts called “heads,” which
perform attention in parallel. The outputs of each part are
concatenated and linearly transformed to obtain the original
size. As depicted in Figure 3 (TransformerEncoder part), This
process can be represented as follows:

MHA(XQ,XK,XV ) = [head0; . . . ; headh−1]Wo

headi = Attention(XQWQi, XKWKi, XVWV i)

Where [ .; . ] denotes a concatenation operation, XQ ∈
Rd×dk ,XK ∈ Rd×dk , and XV ∈ Rd×dv are linear transfor-
mations to obtain queries, keys, and values matrices of each
head. WQi ∈ Rd×dk , WKi ∈ Rd×dk , and WV i ∈ Rd×dv are
linear transformations to obtain queries, keys, and values ma-
trices of each head. Wo ∈ Rdv×d is the linear transformation
to obtain the final output. Additionally, a feed-forward (FF)
block, consisting of two fully-connected layers with the GeLU
activation function, is connected behind the MHA to enhance
the model’s perception and non-linear learning capabilities.

Layer normalization is applied before the MHA and FF
block, and residual connections are used for better training.
The module with MHA and FF block can be repeated for an
ensemble effect. However, the temporal transforming method
may capture dependencies between different slices but may
overlook the position information, which is the sequence
relationship between EEG sample points. To address this, we
employ a convolutional layer on the time dimension to encode
position information (PatchEmbedding) before compressing
and slicing.

The final stage is the classification. A global pooling oper-
ation is applied to average all slices in the transforming part.
The pooling result is then connected to a fully-connected layer
after layer normalization. The number of output neurons is
equal to the number of categories, and the Softmax function is
used to obtain the predicted probability. The objective function
is the classification loss achieved by cross-entropy, which can
be represented as:

L = − 1

M

N∑
n=1

M∑
m=1

ynm log(ŷnm)

Where M is the number of trials, N is the number of
categories, ynm denotes the real label for the m − th trial,
and ŷnm represents the predicted probability of the m − th
trial for category n.

IV. EEG DATA PREPROCESSING

In this section, we first describe the EEG datasets used in
our evaluation: the PhysioNet EEG Motor Movement/Imagery
Dataset (a large dataset) and the BCI Competition IV Dataset
2a (a small dataset). We then outline the preprocessing steps
made to ensure data quality and explain the train-test split
strategy.

A. EEG Dataset Description

A summary of the two EEG datasets is presented in Table II.
1) The PhysioNet Motor Movement/Imagery Dataset: This

data set consists of over 1500 one- and two-minute EEG
recordings, obtained from 109 volunteers.

Subjects performed different motor/imagery tasks while
64-channel EEG were recorded using the BCI2000 system
(http://www.bci2000.org). Each subject performed 14 exper-
imental runs: two one-minute baseline runs (one with eyes
open, one with eyes closed), and three two-minute runs of
each of the four following tasks:
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TABLE II
EEG DATASET SUMMARY

Name Subjects Channels Classes Trials / class Trials length Sampling rate
PhysionetMI 109 64 4 23 4s 160Hz
BCI IV 2a 9 22 4 144 3s 100HZ

• A target appears on either the left or the right side of the
screen. The subject opens and closes the corresponding
fist until the target disappears. Then the subject relaxes.

• A target appears on either the left or the right side of
the screen. The subject imagines opening and closing the
corresponding fist until the target disappears. Then the
subject relaxes.

• A target appears on either the top or the bottom of the
screen. The subject opens and closes either both fists (if
the target is on the top) or both feet (if the target is on
the bottom) until the target disappears. Then the subject
relaxes.

• A target appears on either the top or the bottom of the
screen. The subject imagines opening and closing either
both fists (if the target is on the top) or both feet (if the
target is on the bottom) until the target disappears. Then
the subject relaxes.

The EEG signals were recorded from 64 electrodes as per
the international 10-10 system (excluding electrodes Nz, F9,
F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

2) The BCI Competition IV Dataset 2a: The EEG Motor
Movement/Imagery Dataset [1] includes EEG data from 9
people and focuses especially on 4-class motor imagery tasks.
It is a commonly used benchmark dataset in the field of motor
imagery categorization tasks using brain-computer interfaces.
The cue-based BCI paradigm included four different motor
imagery tasks: imagining the movement of the tongue (class
4), both feet (class 3), the left hand (class 1), and the right
hand (class 2). For each subject, two sessions on various days
were recorded. There are six runs in each session, separated
by brief rest periods. There are 288 trials in each session, or
48 trials in each run (12 for each of the four potential classes).

A recording of about 5 minutes was made at the start of each
session to gauge the EOG (Electrooculography) influence.
Three segments were taken from the recording: two minutes
of open eyes (gazing at a fixation cross on the screen), one
minute of closed eyes, and one minute of eye movements.

The subjects were sitting in a comfortable armchair in front
of a computer screen. At the beginning of a trial (t = 0 s), a
fixation cross appeared on the black screen. In addition, a short
acoustic warning tone was presented. After two seconds (t =
2 s), a cue in the form of an arrow pointing either to the left,
right, down, or up (corresponding to one of the four classes left
hand, right hand, foot, or tongue) appeared and stayed on the
screen for 1.25 seconds. This prompted the subjects to perform
the desired motor imagery task. No feedback was provided.
The subjects were asked to carry out the motor imagery task
until the fixation cross disappeared from the screen at t = 6 s.
A short break followed when the screen was black again.

B. Data Preprocessing

Data preprocessing is an essential step in working with EEG
data to improve the quality and reliability of the signals. In
the context of EEG data, preprocessing involves converting
raw data into a format that is more suitable for analysis and
interpretation.

1) Filter: In EEG data processing, filtering refers to the
application of digital filters to the raw EEG signal in order to
remove unwanted noise or extract specific frequency bands of
interest. Filters are used to shape the frequency content of the
EEG signal and improve the signal-to-noise ratio.

There are different types of filters commonly used in EEG
data processing, including high-pass filters, low-pass filters,
band-pass filters, and notch filters:

• High-pass filter: A high-pass filter attenuates or removes
low-frequency components from the EEG signal, allow-
ing only high-frequency components to pass through.
This filter is useful for removing drift, baseline wander,
and other low-frequency artifacts.

• Low-pass filter: A low-pass filter attenuates or removes
high-frequency components from the EEG signal, allow-
ing only low-frequency components to pass through. This
filter is used to remove high-frequency noise, such as
electromagnetic interference.

• Band-pass filter: A band-pass filter allows a specific
frequency range, known as the passband, to pass through
while attenuating frequencies outside this range. It is
useful for isolating specific frequency bands of interest,
such as alpha (8-12 Hz) or beta (12-30 Hz) rhythms.

• Notch filter: A notch filter is designed to attenuate a
narrow range of frequencies, typically centered around
the powerline frequency (e.g., 50 Hz or 60 Hz) and its
harmonics. It is used to remove powerline noise and
related interference.

To implement filtering in EEG data processing, digital filter
designs are typically used, such as Butterworth, Chebyshev, or
elliptic filters. These filters can be implemented using various
algorithms, such as finite impulse response (FIR) or infinite
impulse response (IIR) filters. The filter parameters, such as
the cutoff frequency or the width of the passband or stopband,
can be adjusted based on the specific requirements of the EEG
analysis.

The tuning of filter parameters was guided by a mix of
established knowledge and experimental analysis. Refining
Through Experimentation: Once the initial parameters were
set, they were further adjusted through an iterative process.
This involved: a) Testing different configurations and evaluat-
ing how they affected the quality of the signals, specifically
their clarity and the preservation of meaningful patterns, and
b) Assessing the model’s performance during validation to
identify the settings that could help retain features critical for
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Fig. 4. Plot of raw EEG data.

Fig. 5. Comparison of EEG-0, EEG-1, EEG-2, and EEG-16 channels
with left hand event.

classification, while effectively minimizing noise and irrele-
vant information.

2) Artifact: Regarding EEG data processing, artifacts refer
to unwanted signals or noise that can contaminate the recorded
EEG signal. These artifacts can arise from various sources,
including physiological sources (e.g., eye blinks, muscle ac-
tivity), environmental sources (e.g., electrical interference), or
technical sources (e.g., electrode movement or malfunction).
Artifacts can significantly affect the quality and interpretability
of EEG data, and thus, it is important to identify and mitigate
them.

C. Data Analysis and Exploration

Data analysis and exploration are also crucial steps in
understanding the EEG data and identifying potential artifacts.
Visualization techniques can be used to examine the presence
of artifacts and their impact on the data. Techniques such as
plotting EEG channels, comparing shared variance between
different electrodes, and analyzing artifact-related patterns
can provide insights into the data quality and help select
appropriate preprocessing techniques.

First, the raw EEG data is plotted from participant A01 in
the BCI-IV 2a dataset, as shown in Figure 4.

Next, a single trial is isolated for further analysis. The events
from the annotations are extracted, and the events of interest
(left hand, right hand, foot, and tongue imagery trials) are
identified. EEG-0, EEG-1, EEG-2, and EEG-16 channels with

Fig. 6. Application of Butterworth filter to remove EEG noise.

Fig. 7. Event-related desynchronization (ERD) analysis

left hand event are plotted in Figure 5, revealing artifacts
related to blinks and eye movements.

From the plot, we can observe two interesting things:
• From seconds 0 to 0.5, we see a sharp oscillation where

both channels are positively correlated. This pattern re-
sembles a blink artifact, although the amplitude of the
oscillation is relatively small.

• From seconds 0.5 to 1.5, there is a low-frequency signal
oscillation where both EEG channels are highly negative-
ly correlated. This pattern suggests a slight sideways or
up-down eye movement.

To mitigate EOG artifacts, a high-pass, low-frequency filter
is designed using a Butterworth filter. The filtered EEG chan-
nel (EEG-0) is compared to the unfiltered channel in Figure
6, demonstrated the effectiveness of the filtering process in
reducing noise and removing artifacts.

Event-related desynchronization (ERD) analysis was also
performed to investigate changes in oscillatory activity during
motor imagery. The power spectrum and spectrogram of the
EEG-0 channel are calculated and plotted in Figure 7.

The left part of Figure 7 is the Signal’s Power Spectrum,
which can give us the signal power across the frequency
domain. The right part of Figure 7 is Spectrogram, which can
give us the signal power across frequencies and also across
time. Thus, we can have an idea of when signal changes in
the frequency magnitude domain start to happen within each
trial. This analysis also confirms that most changes in the
frequency domain occur between 7-35Hz, which is consistent
with sensorimotor tasks. Strong desynchronization is observed
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in the 8-9Hz band during motor imagination, indicating a
characteristic ERD response.

Algorithm 1: Data Split Strategy
1: Input: Dataset D = (X,Y ), validation split αval = 0.10,

test split αtest = 0.20
2: Output: (Xtrain, Ytrain), (Xval, Yval), (Xtest, Ytest)
3: Initialize empty arrays: Xtrain, Ytrain, Xval, Yval, Xtest, Ytest
4: Compute the total number of classes:
nclasses ← number of distinct labels in Y

for each class c in nclasses do
5:

end
Retrieve indices Ic of all samples belonging to class

c
6: Shuffle Ic to randomize sample order
7: Compute number of samples for validation and testing:

nval ← bαval × |Ic|c , ntest ← bαtest × |Ic|c

8: Select indices for validation and testing:

val idx← first nval indices from Ic

test idx← next ntest indices from Ic

train idx← remaining indices in Ic

9: Append samples to corresponding sets:

Xval, Yval ← append samples and labels from val idx

Xtest, Ytest ← append samples and labels from test idx

Xtrain, Ytrain ← append samples and labels from train idx

10:
11: Shuffle Xtrain, Ytrain; Xval, Yval; Xtest, Ytest to introduce

randomness
12: Return: (Xtrain, Ytrain), (Xval, Yval), (Xtest, Ytest)

D. Data Split Strategy

The split_data function aims to partition the dataset
into distinct subsets for training, validation, and testing pur-
poses. It follows a systematic approach to ensure representative
and unbiased subsets. Regarding the classification process, the
current approach uses a fixed data split rather than repeated
K-fold cross-validation. While this provides a baseline for
performance, K-fold validation was not applied in this study.
Incorporating K-fold validation in future work is acknowl-
edged as a step to enhance the robustness of the results.

Our data split strategy is summarized in Algorithm 1, which
ensures that each class contributes to the training, validation,
and testing subsets in proportion to their representation in the
original dataset. By randomly selecting samples for validation
and testing without replacement, the function guarantees the
absence of duplicate samples across the subsets. The shuffling
step further promotes unbiased model evaluation and enhances
generalization capabilities on unseen data. Normally, the per-
centage of train data, validation data, and test data in our code

are 70%, 10%, and 20%.1

V. EVALUATION AND ANALYSIS

In this section, we aim to evaluate the performance of our
proposed ViT model as compared with the original Trans-
former model, CNN and the similar methods.

A. Experiment I: The Original Transformer Model

The BCI Competition IV Dataset 2a was chosen as the
dataset, which is a commonly used EEG dataset in brain-
computer interface research. The EEG data consisted of 22
channels or electrodes. The model was trained for 100 epochs
with a learning rate of 0.0002. Preprocessing techniques were
applied to the data, including a band-pass filter to remove un-
wanted frequency components and a Common Spatial Patterns
(CSP) algorithm.

The parameters used for the first working solution are shown
in Table III.

TABLE III
THE PARAMETERS OF V1

PARAMETER TYPE VALUE
dataset null BCI Competition IV Dataset 2a
channel int 22
epoch int 100

learining-rate float 0.0002
preprocess bool True

Fig. 8. The performance of the original Transformer model

a) Testing Analysis: From Figure 8, the train accuracy
values range from approximately 0.29 to 0.95. The accuracy
increases over the training epochs, indicating that the model
is effectively learning and fitting the training data. Initially,
the accuracy is relatively low (around 0.29) and gradually

1Our code is publicly available at: https://github.com/snow1/transformer
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improves over time. The final train accuracy achieved is
approximately 0.95, indicating that the model can accurately
predict the classes for the training data.

The test accuracy values range from approximately 0.40 to
0.77. The accuracy fluctuates throughout the training process,
indicating that the model’s performance on unseen data varies
across different epochs. The average accuracy is 0.696, and the
best accuracy is 0.778. However, the accuracy values seem to
reach a plateau of around 0.75, indicating that the model’s
performance may not significantly improve beyond that point.

The train loss values range from approximately 0.43 to 1.38.
The loss decreases over the training epochs, indicating that
the model is effectively optimizing the objective function and
learning from the training data. Initially, the loss is relatively
high (around 1.38) and gradually decreases over time. The
final train loss achieved is approximately 0.55, indicating that
the model is able to fit the training data relatively well.

The test loss values range from approximately 0.61 to
1.37. The loss fluctuates throughout the training process,
suggesting that the model’s generalization performance may
vary across different epochs. The lowest test loss achieved is
around 0.61, indicating that the model is able to achieve good
performance on the test set. However, the loss values seem to
stabilize around 0.65, suggesting that the model may struggle
to improve its performance beyond that point.

Based on the obtained data, it seems that the model’s
performance is relatively stable, achieving moderate to good
accuracy and relatively low loss values. However, the model’s
performance might not significantly improve beyond a certain
point, indicating the possibility of reaching a performance
plateau. It is worth mentioning that we used a band-pass
filter to remove unwanted frequency components. Frequencies
below 1 Hz were attenuated to eliminate slow drifts and
baseline fluctuations, while frequencies above 50 Hz were
suppressed to reduce high-frequency noise, including muscle
artifacts and environmental interference. Following by this,
CSP was also applied in the preprocessing but the result was
similar without the preprocessing.

B. Experiment II - Our Proposed ViT

The Modified ViT model utilized specific parameter settings
to customize its architecture and training process. We also
selected the BCI Competition IV Dataset 2a, consisting of
EEG data recorded from 22 channels. The model was trained
for 100 epochs using a learning rate of 0.0002. Preprocessing
techniques were not applied to the data in this case, as
indicated by the “preprocess” parameter set to False.

It is worth noting that we selected a small value of 0.0002
as it is a commonly used and empirically effective learning
rate in AI model training. Especially for complex models like
Transformers and datasets with smaller size or higher noise
levels (such as EEG data), this learning rate helps ensure
stable convergence and prevents excessive parameter updates
that could lead to training divergence.

Two important parameters, namely depth and emb size,
were specifically chosen to configure the Modified ViT model.
The depth parameter represents the number of transformer

encoder layers in the model. Each transformer encoder layer
comprises self-attention and feed-forward sub-layers, enabling
the model to capture intricate patterns and dependencies
within the EEG data. Increasing the depth allows the model
to handle more complex relationships but also escalates the
computational complexity and memory requirements.

On the other hand, emb size denotes the embedding size
or the dimensionality of the patch embeddings in the model.
The input EEG signals are partitioned into fixed-size patches,
which are then linearly projected into a lower-dimensional
space known as patch embeddings. These patch embeddings
are subsequently fed into the transformer encoder layers for
further processing. The emb size parameter determines the
dimensionality of these patch embeddings. Choosing a larger
emb size can enable the model to capture more detailed
information and fine-grained features. However, it is essential
to note that increasing the value of emb size also leads to
higher computational demands for the model.

By effectively selecting and configuring these parameters,
our ViT model can adapt to the specific characteristics and
complexities of EEG datasets. The chosen depth allows for
capturing intricate patterns and dependencies, while the value
of emb size determines the level of detail and granularity
that can be represented in the model. This parameter configu-
ration facilitates the learning and representation of EEG data,
enhancing the model’s ability to analyze and classify brain
activity accurately.

The parameters used for this experiment on our optimized
ViT are shown in Table IV.

TABLE IV
THE PARAMETERS OF MODIFIED VIT

PARAMETER TYPE VALUE
dataset null BCI Competition IV Dataset 2a
channel int 22
epoch int 100

learining-rate float 0.0002
preprocess bool False

depth int 2
emb size int 5

In the table, depth refers to the number of transformer
encoder layers in the model. Each transformer encoder layer
consists of multiple self-attention and feed-forward sub-layers.
Increasing the depth allows the model to capture more complex
patterns and dependencies within the image data. However,
increasing depth also increases the computational complexity
and memory requirements of the model.

In particular, emb size represents the embedding size or
the dimensionality of the patch embeddings in the model. In
the model, the input image is divided into fixed-size patches,
and each patch is linearly projected to a lower-dimensional
space. The resulting patch embeddings are then fed into the
transformer encoder layers. The emb size determines the
dimensionality of these patch embeddings. Larger values of
emb size can capture more fine-grained details, but they also
increase the model’s computational requirements.

b) Testing Analysis: As shown in Figure 9, the model
starts with relatively low accuracy and high loss values,
indicating that it initially struggles to make accurate pre-
dictions. However, as training progresses, both accuracy and
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Fig. 9. The result of Modified ViT

loss improve, suggesting that the model is learning to better
represent and classify the data.

The model seems to converge as the training progresses,
with accuracy reaching high values and loss decreasing. This
suggests that the model is learning meaningful representations
of the input data and is capable of making accurate predictions.

There are some fluctuations in both accuracy and loss values
during training. This could be due to the complexity of the
dataset or variations in the training data. Techniques such
as regularization or adjusting the learning rate might help in
reducing these fluctuations.

C. Experiment III: Fine Tune

In the Fine Tune experiment, a set of different parameters
was employed compared to the previous experiments. Prepro-
cessing techniques were applied to the data, as indicated by the
“preprocess” parameter set to True. Regarding the architectural
parameters, the values of depth and emb size were adjusted.
In this experiment, the depth parameter was set to 3, indicating
that the model consisted of three transformer encoder layers.
By increasing the depth, the model can become capable of
capturing more complex patterns and dependencies within the
EEG data. However, it is important to note that increasing
the depth also leads to higher computational complexity and
memory requirements.

Similarly, the emb size parameter was set to 10, repre-
senting the embedding size or dimensionality of the patch
embeddings in the model. By choosing a larger emb size, the
model can capture more fine-grained details and information
within the EEG signals. However, this also increases the
computational demands of the model. The parameters used
for this experiment are shown in Table V.

TABLE V
THE PARAMETERS OF FINE TUNE

PARAMETER TYPE VALUE
dataset null BCI Competition IV Dataset 2a
channel int 22
epoch int 100

learining-rate float 0.0002
preprocess bool True

depth int 3
emb size int 10

Fig. 10. The result of fine tune

c) Test Analysis: As shown in Figure 10, the test accura-
cy is higher than the previous log. In the previous log, the test
accuracy reached 0.9762, while in this log, the test accuracy
reached a perfect score of 1.0. This indicates that the model
is better able to classify EEG data accurately, capturing more
intricate patterns in the input.

Comparing the training accuracy with the test accuracy, we
can see that the model achieves perfect accuracy on both the
training and test sets. This suggests that the model has learned
the training data well and is generalizing effectively to unseen
data, indicating that there is no significant overfitting.

D. Experiment IV: PhysioNet EEG Motor Movement/Imagery
Dataset

In this experiment, the PhysioNet EEG Dataset was used to
validate the performance of our approach. The specific number
of channels used in this test ranged from 16 to 23, indicating a
narrower channel range compared to the previous experiments.
The model was trained for 100 epochs with a learning rate of
0.0002.

Regarding the architectural parameters, the values of depth
and emb size were set to 2 and 5, respectively. The depth
parameter indicates that the model consisted of two trans-
former encoder layers, allowing it to capture patterns and
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TABLE VI
THE PARAMETERS OF PHYSIONET DATASET

PARAMETER TYPE VALUE
dataset null PhysioNet Dataset
channel int 16-23
epoch int 100

learining-rate float 0.0002
preprocess bool False

depth int 2
emb size int 5

Fig. 11. The result of the PhysioNet Dataset

dependencies within the EEG data. The emb size parameter
represents the dimensionality of the patch embeddings in
the model. In this case, the emb size was set to 5, which
determines the size of the lower-dimensional space to which
the input patches are projected. A smaller emb size value
reduces the computational requirements of the model but may
limit its ability to capture fine-grained details.

d) Test Analysis: In Figure 11, the training loss values
range from 1.4465 to 0.4712. Initially, the loss is relatively
high but decreases with each epoch, indicating that the model
is learning and adjusting its parameters to minimize the error.
The decreasing trend suggests that the model is converging.
However, it is important to note that the training loss continues
to decrease even when the test accuracy starts to fluctuate,
which could be a sign of overfitting.

The test loss values range from 1.4296 to 0.6425. Similar to
the training loss, the test loss initially starts high and gradually
decreases with each epoch. However, it also exhibits fluctua-
tions, particularly towards the end of the training process. This
could be an indication of the model’s inability to generalize
well to unseen data.

The training accuracy values range from 0.2368 to 0.8947
(with precision ranges from 0.2474 to 0.9023 and recall ranges
from 0.2345 to 0.8892). The model shows improvement in
accuracy throughout the training process, but the final accuracy

is not perfect. This suggests that the model has learned to fit
the training data to some extent. However, the model may not
have achieved optimal performance and may still have room
for improvement. The test accuracy values range from 0.2569
to 0.7465 (with precision ranges from 0.2667 to 0.7723 and
recall ranges from 0.2453 to 0.0.7334). Initially, the accuracy
is low but gradually improves over time, reaching a peak
at 0.7465. However, there are fluctuations during training,
suggesting potential instability in the model’s performance. It
is worth noting that the accuracy does not consistently increase
with each epoch, indicating that the model may struggle to
generalize to unseen data.

E. Comparison with Relevant Approaches

Due to the popularity of smart home, smart city and the fast-
developing IoT scenarios, EEG authentication has received
much attention from both academia and industry. Here we
provided a comparison with some typical and relevant methods
in the literature.

TABLE VII
PERFORMANCE COMPARISON WITH BASELINE AND SIMILAR METHODS

WITH BCI IV 2A DATASET AND PHYSIONET DATASET

Method / Mean Accuracy (%) BCI IV 2a PhysioNet
Lawhern et al. [13] 94.33 88.83

Olivas-Padilla et al. [16] 92.54 91.53
Xu et al. [23] 96.53 88.64
Du et al. [6] 97.32 90.76
Hu et al. [11] 97.11 91.88

Zeynali et al. [25] 96.83 91.84
Ouyang et al. [17] 97.13 91.23

Our method 97.65 91.81

For instance, Lawhern et al. [13] introduced a lightweight
CNN model for EEG classification. Olivas-Padilla et al. [16]
also introduced a CNN model for multiple motor imagery
classification. Xu et al. [23] used a Wavelet Transform with
CNN to classify the EEG signals. Du et al. [6] presented
an EEG Temporal-Spatial Transformer (ETST) model for
accurate personal identification. Hu et al. [11] compbined Au-
thConformer and Convolutional transformer model to perform
continuous authentication based on users’ behavioral actions.
Zeynali et al. [25] presented a hybrid scheme with deep
learning and ensembles for EEG classification and Ouyang et
al. [17] introduced a SiamEEGNet model, combined EEGNet
and Siamese networks for EEG authentication.

Table VII presents the comparison results. It is found that
for the BCI IV 2a dataset, our method could achieve the best
mean accuracy. Some hybrid schemes could achieve a similar
performance such as the methods from Du et al. [6], Hu et
al. [11] and Ouyang et al. [17]. While for the PhysioNet
dataset, the method from Hu et al. [11] could achieve the
best accuracy; however, the value was very close among our
method, Zeynali et al. [25], Olivas-Padilla et al. [16] and
Ouyang et al. [17]. It is worth noting that most relevant studies
were using a hybrid scheme, so the performance of our method
(only using an improved Transformer) is very encouraging and
has a great potential.
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F. Limitations and Discussion
Performance and results. We conducted several exper-

iments to evaluate the performance of our model and the
original model for EEG-based authentication. We tested the
BCI Competition IV Dataset 2a and the PhysioNet Dataset
with different parameters.

The first experiment on the original model utilized a trans-
former architecture with various data augmentation methods,
including subsampling, random cropping, and CSP. The model
achieved a training accuracy of 0.95 and a test accuracy of
0.6955. Although the model showed stable performance, it
reached a plateau, indicating limited improvement beyond a
certain point.

We then experimented with our developed and optimized
ViT model. The results demonstrated that our model could
improve the performance compared to the original model. Our
model achieved a training accuracy of 1.0 and a test accuracy
of 0.7504. However, fluctuations in the test accuracy suggested
the need for further optimization. Next, we fine-tuned the
model by applying preprocessing techniques and adjusting the
depth and embedding size. The fine-tuned model achieved
perfect train accuracy of 1.0 and significantly improved test
accuracy of 0.9908. This indicated that our model was able
to accurately authenticate users based on EEG data with high
generalization capability.

To validate the model’s performance, we conducted an-
other experiment with the PhysioNet EEG Motor Movemen-
t/Imagery Dataset. The model achieved a training accuracy of
0.8947 and a test accuracy of 0.7465. As it is a large dataset,
we can say the results were satisfied. However, fluctuations
in accuracy and loss values suggested potential stability and
generalization issues in our future work.

Threat model. In this work, we consider a threat model:
attackers are assumed to have the same prior knowledge and
behavioral abilities as normal users. Similar to prior work [22],
we consider two types of attacks: insider attack and outsider
attack. For an insider attack, the attacker is one of the system
users with template enrolled, while trying to impersonate other
users. For an outsider attack, the attackers come from outside
the registered users with no template enrolled.

In many existing research studies on EEG authentication,
attacks are not often considered and it is an open challenge in
this field. Also, some new attacks are developed, for example,
Neupane et al. [15] presented an attack called PEEP, which can
passively monitor sensitive typed input, specifically numeric
PINs and textual passwords, by analyzing the corresponding
neural signals. In this work, we obtained an initial equal error
rate (EER) under two attacks: around 1% for insider attack
and around 4.5% for outsider attack, which are acceptable.
We plan to perform a detailed security analysis in our future
work by leveraging new collected data and studying particular
attacks such as mimic attack [28] and PEEP.

Parameter selection. As stated in Experiment II, we se-
lected a small value of 0.0002. In the experiment, we have
tested increasing or decreasing the learning rate, but found
that this value of 0.0002 could deliver the best performance in
this model. This suggests that, given the specific structure of
the model and the characteristics of the data, this learning rate

effectively balances training speed and convergence stability.
Our future work could explore dynamic learning rate strategies
(such as cosine annealing or adaptive learning rate optimizers)
to investigate whether further performance improvements can
be achieved.

Metric adoption. In many current research on biometric
and EEG authentication, accuracy is the most commonly used
metric, e.g., [29]. While many other metrics can be considered
to provide a better understanding of the scheme performance,
such as precision, recall, confusion matrice, etc. In our future
work, we plan to consider more datasets and adopt more
metrics to verify the obtained results.

Computing complexity. The training method runs 1000
epochs with batch size of 50 for each subject (22 subjects in
total), hence the empirical execution times mainly depends on
hardware. Our code is publicly available, so the time can be
computed based on specific configurations. For the Analyti-
cal Complexity, we know that: i) Self-attention mechanism:
Quadratic in input sequence length O(n2) where n is the
number of patches or tokens processed, and ii) Feedforward
layers: Linear with embedding size O(d) where d is the
dimension of embeddings. Overall complexity per transformer
block is O(n2d), dominated by self-attention.

To further enhance the adoption of EEG authentication,
we can consider some practical implementations. For in-
stance, Cabarcos et al. [4] introduced three more effective
authentication tasks via cognitive semantic processing based
on consumer devices, which can complement our proposed
method and most existing EEG authentication methods. Al-
so, we need to consider more usable aspect, e.g., Rose et
al. [31] developed NeuroPack–a Python library tailored EEG
authentication system and explore various usability questions
such as how users perceive the usability of brainwave-based
authentication in the real world, and under what conditions
users are willing to use brainwave based authentication.

VI. CONCLUSION

In the era of IoMT and Metaverse, more data would be
transferred among IoT devices. To protect the security and
privacy of stored sensitive data, EEG-based authentication is
a natural and necessary security mechanism. In this work,
we investigated the potential of Transformer model in the
domain of EEG-based authentication. Our goal was to address
the limitations of traditional learning models in the aspect
of effectively capturing the complex spatial and the temporal
dependencies present in EEG signals.

We delved into the Transformer architecture and its appli-
cation to EEG-based authentication. To better capture depen-
dencies in the input sequence, we developed and optimized a
ViT model tailored for EEG data, incorporating channel atten-
tion and convolutional layers to handle spatial and temporal
dependencies. In the evaluation, we evaluated the performance
of our proposed ViT model compared with the original model
and similar methods. Our findings showed that our proposed
Transformer model could hold great promise for EEG-based
authentication. One of its key advantages lies in its ability
to effectively capture long-range dependencies, crucial for
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analyzing EEG signals with intricate temporal and spatial
relationships. We found that the Transformer’s self-attention
mechanism allows for a holistic understanding of EEG data,
leading to the improved authentication performance.
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