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Melanoma is a malignant tumor that originates from skin cell lesions. Accurate and efficient 
segmentation of skin lesions is essential for quantitative analysis but remains a challenge owing to 
blurred lesion boundaries, gradual color changes, and irregular shapes. To address this, we propose 
ScaleFusionNet, a hybrid model that integrates a Cross-Attention Transformer Module (CATM) and 
adaptive fusion block (AFB) to enhance feature extraction and fusion by capturing both local and 
global features. We introduce CATM, which utilizes Swin transformer blocks and Cross Attention Fusion 
(CAF) to adaptively refine feature fusion and reduce semantic gaps in the encoder-decoder to improve 
segmentation accuracy. Additionally, the AFB uses Swin Transformer-based attention and deformable 
convolution-based adaptive feature extraction to help the model gather local and global contextual 
information through parallel pathways. This enhancement refines the lesion boundaries and preserves 
fine-grained details. ScaleFusionNet achieves Dice scores of 92.94%, 91.80%, and 95.37% on the ISIC-
2016, ISIC-2018, and HAM10000 datasets, respectively, demonstrating its effectiveness in skin lesion 
analysis. Simultaneously, independent validation experiments were conducted on the PH2 dataset 
using the pretrained model weights. The results show that ScaleFusionNet demonstrates significant 
performance improvements compared with other state-of-the-art methods. Our code implementation 
is publicly available at https://github.com/sqbqamar/ScaleFusionNet.
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The incidence of melanoma has risen significantly in recent decades due to increasing environmental pollution 
and ultraviolet radiation1. This trend has attracted significant attention from the global medical community. 
Early detection is essential for improving treatment outcomes and patient survival rates. Traditional diagnostic 
methods, such as clinical observation and tissue biopsy, are limited by subjectivity and invasiveness, making 
them unsuitable for large-scale screening. Medical image segmentation offers a noninvasive and high-precision 
alternative that provides clinicians with more detailed and accurate information. This technology has the 
potential to significantly enhance the early detection and treatment of skin cancer.

With the rapid advancement of deep learning, convolutional neural networks (CNNs) have achieved 
notable success in medical image segmentation tasks such as skin lesion segmentation. Among these, the U-Net 
model2 stands out as a pioneering framework. U-Net has demonstrated remarkable performance in medical 
image segmentation and established a U-shaped architectural paradigm. However, CNN-based methods often 
struggle to capture global contextual information effectively due to the inherent limitations of convolutional 
operations. This limitation is particularly evident in medical image segmentation tasks with significant inter-
sample variability, such as skin lesion segmentation. To address this challenge, researchers have explored various 
strategies, including the use of large kernel convolutions, dilated convolutions, and other techniques aimed at 
expanding receptive fields3–7. For example, Hu et al.8 improved receptive fields by using self-attention, while 
Tang et al.9 proposed a model that used large convolutional kernels and fusion to achieve promising results in 
tasks such as breast nodule ultrasound image segmentation. Inspired by the ConvNeXt model10, Han et al.11 
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developed a method for medical image segmentation using large kernel convolutions and they successfully 
implemented it for tasks such as retinal vessel segmentation. Despite these advancements, simply increasing 
the size of the convolutional kernels may not fully resolve the challenge of modelling global features because the 
fundamental constraints of the receptive field remain.

Recently, Transformers12 have achieved notable success in both the natural language processing and 
computer vision domains by using global contextual information in feature extraction. Cai et al.13 unveiled 
the BiADATU-Net that combined Transformer and feature adaptation modules, which resulted in promising 
outcomes in several publicly accessible skin lesion segmentation datasets. Zhang et al.14 developed DAE-Former, 
a pure Transformer U-shaped medical image segmentation model, harnessing efficient Transformers steered by 
dual attention, similar to Swin-Unet15, and exhibited commendable performance in diverse image segmentation 
datasets, including ISIC-201816. However, because Vision Transformers can only output single-scale feature 
representations, they lack the ability to capture multi-scale information in two-dimensional images17,18. 
Consequently, transformer-based medical image segmentation models may struggle to seamlessly integrate 
multi-scale information, leading to insufficient attention to lesion regions and incomplete decoding of feature 
details. Additionally, there is a significant issue with medical image segmentation models based on the U-Net 
design architecture. Although skip connections in U-Net transmit multi-scale information between different 
stages to the decoder, a semantic gap issue may arise when there is a considerable semantic difference between 
encoder and decoder. To address this, some studies have attempted to mitigate this issue by improving skip 
connections. For instance, UNet++19 and MISSFormer20 aim to achieve the fusion of multi-scale information 
between different stages through dense skip connections and contextual bridges. Nevertheless, this study argues 
that the differently sized feature maps transmitted through skip connections represent macroscopic multi-scale 
information that is easily observable, and such methods have limited effectiveness in enhancing the model’s 
ability to integrate multi-scale information. In particular, in the skin lesion segmentation task, the lesion edges 
are often irregular, with colors gradually fading from the center, and the progressive compression of feature 
maps leads to the loss of fine details, retaining only a macro-level focus. This can affect the model performance 
to some extent.
To address the challenges of skin lesion segmentation, this study proposes ScaleFusionNet, a model that integrates 
an AFB and CATM for enhanced feature extraction and fusion. ScaleFusionNet employs a hierarchical Swin 
Transformer-based encoder, where patch embedding and Swin Transformer blocks21 extract the multi-scale 
features. The decoder utilizes AFBs, which combine Swin Transformer and deformable convolution features 
to refine feature integration and improve lesion boundary preservation. To bridge the semantic gap between 
the encoder and decoder features, the CATM uses cross-attention, which allows high-level decoder features to 
guide low-level skip connections. The experimental results demonstrate that ScaleFusionNet achieves highly 
competitive performance in skin lesion segmentation. The key contributions of this study are as follows:

•	 We have proposed ScaleFusionNet for skin lesion segmentation, based on a hybrid architecture combining 
CNNs and Transformers, which outperforms other state-of-the-art methods.

•	 We have introduced AFB, which integrates both Swin Transformer-based and deformable convolution-based 
feature extraction, enabling the model to capture both local and global contextual information.

•	 We developed the CATM to effectively reduce the semantic gap and enhance the interaction between the 
encoder and the decoder.

Related work
CNNs for medical image segmentation
Recently, CNNs have achieved success in different domains due to their powerful feature extraction capabilities. 
This success is particularly evident in medical image segmentation. In 2015, Ronneberger et al. introduced U-Net, 
a CNN-based model designed specifically for medical image segmentation, which has become foundational 
in this field. Zhou et al.22 proposed UNet++, which introduces nested dense skip connections to address the 
semantic gap between the encoder and decoder. Li et al.23 developed an H-DenseUNet, a U-shaped model 
that enhances intra-slice and inter-slice representations through hybrid dense connections, demonstrating 
effective performance in liver tumor segmentation tasks. Saqib et al.24 proposed multi-scaled architecture using 
separable convolution for brain tumor segmentation. Oktay et al.25 developed Attention U-Net, a model that 
focuses on important areas by using attention gates, which helps reduce the differences between the encoder 
and decoder. Furthermore, UNet3+26 advanced the skip connection by adding full-scale skip connections and 
deep supervision, achieving better results in segmentation tasks. Xie et al.27 designed a feature-steered network 
to learn the more distinctive features, which is built on a scale-adaptive module and cross path fusion (CPF) 
module. Wang et al.28 used attention-based UNet to enhance the completeness of representation with the fusion 
of edge and body features. Katar et al.29 introduced a mixed model that combines ConvNeXt blocks with self-
attention methods to improve skin lesion segmentation. Despite the success of U-Net and its variants, CNN-
based models are limited by their inability to capture long-range dependencies. This limitation arises from the 
inherent nature of convolution operations, which struggle to model global contextual information. Additionally, 
dense skip connections based on simple summation offer limited solutions for addressing the semantic gap, 
particularly in tasks where fine-grained detail and global context are crucial, such as skin lesion segmentation.

Transformers for medical image segmentation
Transformers, which are adept at capturing long-range dependencies, offer an effective alternative to CNNs. The 
Vision Transformer30, the first application of Transformer to computer vision, partitions input images into a 
sequence of patches for embedding and encoding using Transformer blocks. This innovative approach inspired 
Transformer-based U-shaped models for medical image segmentation tasks. TransUnet31 integrates transformer 
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blocks with U-Net, leveraging their global feature modelling capabilities. In parallel, Swin-Unet15 drew on the 
Swin Transformer to propose a fully Transformer-based method that applies Swin Transformer blocks to both 
the encoder and decoder. For 3D medical image segmentation, nnFormer32 combines local and global attention 
for multi-organ segmentation, demonstrating impressive performance. However, transformer models like 
TransUnet have problems because they have a lot of parameters and are complicated to compute, and the Swin 
transformer’s shifting window method can create rough edges in some situations. Furthermore, transformers 
inherently operate on single-scale outputs, limiting their ability to fully utilize multi-scale information, which 
hampers performance, especially in segmentation tasks requiring precise boundary delineation.

Deformable convolution network
The Deformable Convolutional Network (DCN)33 is an extension of traditional convolutional networks designed 
to improve the adaptability of convolutional kernels to object deformations. DCNs introduce learned offsets to 
control the sampling positions of kernels on input feature maps. This dynamic adjustment allows the model to 
better capture the features of targets with varying shapes and positions. Compared to traditional convolution, 
deformable convolutions offer more flexibility in capturing features of objects with diverse shapes and scales, 
which is crucial in medical image segmentation. DCNs have proven effective in addressing the complexities of 
various segmentation tasks, where object deformations are a significant concern34. Xin et al.35 used deformable 
convolution to build a feature extraction module, which enhances the modeling ability of the model for 
deformation. However, their method shows limited generalization on complex structures. On the other hand, 
deformable convolutions are critical in skin lesion segmentation due to challenges such as jagged, fuzzy, or 
occluded melanoma boundaries. Fixed-grid convolutions struggle to adapt, while deformable convolutions 
learn dynamic sampling offsets to align kernel coverage with skin lesion geometry.

Recently, Ma et al.36 presented U-Mamba for general-purpose biomedical image segmentation, which 
integrates the advantages of local pattern recognition from CNNs and global context understanding from 
Mamba. Compared to CNNs, U-Mamba’s SSM-based latent states are less interpretable than layer-wise CNN 
feature visualizations, and unlike Transformers, it lacks explicit attention maps for global context analysis, 
complicating debugging and trust in clinical settings. Li et al.37 presented a dual-path network that uses two 
parallel CNNs for feature extraction from different modalities. It integrates CNNs and Transformers with a 
feature-level fusion strategy that uses the local attention aggregation block to focus on region-of-interest features 
and suppress invalid regions. However, it does not address the semantic gap between features. To achieve better 
accuracy in medical image segmentation, especially for skin lesions, ScaleFusionNet combines multi-scales of 
feature extraction with a hybrid of Transformer and CNN designs to improve how well it segments images. 
Traditional CNN-based models like U-Net struggle with fine-grained details and global context, prompting the 
need for improved architectures. ScaleFusionNet addresses these issues by using AFBs that incorporate swin 
transformers and deformable convolutions to collect features at various scales, which helps to refine the edges 
of lesions while preserving small details. Additionally, the CATM enhances encoder-decoder feature fusion, 
reducing semantic gaps through guided attention mechanisms. By combining Swin transformer blocks21 for 
global context and adaptive multi-scale fusion for local detail refinement, ScaleFusionNet achieves superior 
segmentation accuracy, demonstrating strong generalization in the skin lesion segmentation task.

Methods
Figure 1 illustrates the architecture of ScaleFusionNet, which follows the U-Net design and consists of three 
primary components: an encoder, CATM, and AFB. The encoder employs a hybrid approach that integrates 
convolutional layers and Swin transformer blocks to effectively capture local and global features. By combining 
convolutional locality with self-attention mechanisms, the encoder enhances feature representation, ensuring 
robust extraction of hierarchical information. The CATM is introduced at skip connections to refine 
encoder-decoder feature fusion. It utilizes Swin transformer blocks and a CAF to mitigate the semantic gap 
and dynamically align hierarchical features. By using cross-attention mechanisms, the CATM enhances the 
integration of skip connection features with decoder information, ensuring improved contextual understanding. 
The AdaptiveFusionBlock further enhances multi-scale feature extraction and fusion by integrating deformable 
convolutions with Swin transformer-based attention. This fusion process refines the lesion boundaries and 
preserves fine-grained details, which are essential for accurate segmentation. Given an input image I ∈ RH×W ×C , 
where H , W , and C  denote the height, width, and number of channels, respectively, the encoder progressively 
extracts the multi-scale features. The CATM is positioned at skip connection points, receiving features XSkip 
from the encoder and XDecoder from a lower-level decoder. The extracted features are dynamically refined using 
cross-attention mechanisms, allowing for precise alignment and feature enhancement. The AFB processes these 
refined features by fusing multi-scale information through deformable convolutions and Swin transformer-
based attentions. The final segmentation result is obtained after feature fusion and upsampling operations in the 
decoder, ensuring a high-resolution and well-defined segmentation mask.

CATM
In U-Net, skip connections serve to provide information supplementation. During encoding, continuous 
compression of feature maps leads to a significant loss of spatial detail. Using low-level semantic features from 
the encoder to supplement the decoder feature restoration is an effective strategy. However, a fundamental issue 
remains: the semantic gap between the encoder and decoder features. Only concatenating features at different 
semantic levels can result in performance degradation owing to this misalignment.

To address this, we introduced the CATM to refine the encoder-decoder feature fusion. Unlike conventional 
skip connections, the CATM employs Swin transformer blocks and cross-attention fusion to adaptively align 
hierarchical features. By using self-attention and cross-attention mechanisms, the CATM ensures the effective 
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transfer of relevant spatial and contextual information across the network. As shown in Fig. 2, given the encoder 
features XSkip and decoder features XDecoder, the CATM dynamically refines the feature alignment using a 
learnable attention mechanism. This process is formulated as follows.

	 Q, K, V = Swin Transformer Block(XDecoder)

	
V’ = Softmax

(
QKT

√
dk

)
· V

	 X ′
Skip = CAF(V’, XSkip)

here, the Swin transformer block extracts query (Q), key (K), and value (V) representations from the decoder 
features. Q represents the decoder’s high-level semantic features XDecoder. It “queries” the encoder’s spatial 
details and guides the attention toward relevant regions in XSkip. K and V are projections of XDecoder through 
Swin Transformer blocks. K computes similarity scores with Q to weight the importance of encoder features. 
V aggregates contextual information from XSkip based on attention weights. V’ computes a weighted sum of 
values V based on the attention scores between Q and K, where dk  is the dimension of K. after that, CAF 
integrates these with the encoder features XSkip, to reduce the semantic gap between encoder and decoder. After 
passing through the CAF, the features X ′

Skip undergo a full-stage parameter-shared spatial attention mechanism 
to achieve unified feature attention. SharedSA computes a spatial attention map A ∈ RH×W  shared across all 
stages on the given input feature map X ′

Skip ∈ RH×W ×C  from CAF:

Fig. 1.  Architecture of ScaleFusionNet with a U-Net design, consisting of an encoder, CATM, and AFB. The 
encoder, utilizing convolutional layers and Swin transformer blocks, extracts multi-scale features at resolutions 
64 × 64 × 96, 32 × 32 × 192, 16 × 16 × 384, and 8 × 8 × 768. The CATM refines feature fusion at skip 
connections using cross-attention, while the AFB enhances multi-scale fusion with deformable convolutions 
and Swin transformer-based attention to preserve fine-grained details for accurate segmentation.
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	 A = σ
(
Conv1×1

(
[X ′

Skip ⊕ AvgPool(X ′
Skip) ⊕ MaxPool(X ′

Skip)]
))

where σ denotes the sigmoid activation function, while Conv1×1 represents a pointwise convolution. The 
operations AvgPool and MaxPool refer to global average and max pooling operations, respectively. Additionally, 
⊕ indicates channel-wise concatenation, where the features are concatenated along the channel dimension. The 
refined output XCATM is then obtained by:

	 XCATM = X ′
Skip ⊗ A

here, ⊗ denotes element-wise multiplication that emphasizes spatially salient regions uniformly across all decoder 
levels. The refined features XCATM preserve both fine-grained details and high-level contextual information.

Algorithm 1.  CATM for ScaleFusionNet

AFB
The decoder plays a critical role in feature decompression and mask generation for medical image segmentation. 
A key challenge is the accurate restoration of boundary details and enhancement of attention toward target 
regions. Conventional decoder designs, whether convolution- or transformer-based, often struggle to effectively 
capture fine-scale information, leading to imprecise lesion localization and segmentation. To address these 
limitations, we introduced the AFB, which integrates adaptive multi-scale feature fusion to refine segmentation. 
This block is built with Swin transformer-based attention and deformable convolution-based adaptive feature 
extraction as it learns dynamic sampling offsets to align kernel coverage with skin lesion geometry, allowing the 
model to capture both local and global contextual information through parallel pathways. Figure S1 shows the 
GradCAM heatmap of deformable convolutional.

As shown in Fig.  3, given the input feature (X) from the decoder, the AFB processes it through three 
parallel branches to extract complementary representations: Swin transformer, deformable convolution, and 
identity branches. In the Swin transformer branch, the model employs a resolution-aware adaptation strategy 
to balance efficiency and richness of features. The Tiny variant of Swin transformer is used to capture long-
range dependencies, but its processing is dynamically adjusted based on the encoder level and spatial resolution. 
The Swin transformer branch employs a resolution-aware adaptation strategy to accommodate varying spatial 
resolutions during the decoding process. Specifically, for higher-resolution inputs (Level 0: 64 × 64), only 

Fig. 2.  Schematic diagram of CATM. The decoder features XDecoder generate query, key, and value 
representations, which are fused with the encoder features XSkip via CAF. The refined features are then 
processed with SharedSA to produce the final aligned features XCATM, preserving both fine details and high-
level semantics.
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the first two Swin Transformer stages are utilized to preserve fine-grained, detailed features. At intermediate 
resolutions (Level 1: 32 × 32), the model processes the features through the first three Swin stages, providing a 
balance between the feature richness and computational cost. For deeper levels with lower resolutions (Level 2: 
16 × 16), all four Swin Transformer stages are employed; however, the embedding dimensions are reduced to 
mitigate potential memory bottlenecks. At the deepest level (Level 3: 8 × 8), the Swin Transformer is omitted 
altogether, and a simple convolutional operation is applied instead because the spatial resolution at this stage is 
too limited to benefit from self-attention mechanisms. This adaptive approach ensures computational efficiency 
while preserving the benefits of hierarchical feature learning.

	
X ′

swin =
{

SwinTransformer(X), if encoder_level < 3
Conv(X), otherwise

The deformable convolution branch performs spatially adaptive feature extraction with offset prediction as 
follows:

	 Offset = Conv2D(3×3)(X)

	 X ′Deform = DeformConv(X, Offset)

The identity branch preserves the original features X to maintain low-level information for the model stability. 
The outputs from all three branches are fused through channel-wise concatenation, followed by feature reduction:

	 XCombined = Concat(X, X ′
Swin, X ′

Deform)

	 XOut = Conv2D(1×1)(XCombined)

This three-way fusion mechanism enhances the refinement of the lesion boundary while preserving fine-grained 
details through complementary feature representations. The deformable convolution adapts to irregular lesion 
shapes through learnable spatial offsets, the Swin transformer provides a global contextual understanding, and 
identity mapping maintains essential low-level features. By integrating AFB into ScaleFusionNet, we achieved 
improved segmentation performance by effectively combining multiple feature extraction strategies in parallel, 
leading to better lesion delineation and generalization across datasets.

Fig. 3.  Schematic diagram of AFB for multi-scale feature fusion in the decoder. The input feature X is 
processed through three parallel branches: the Swin transformer branch X ′

Swin, deformable convolution 
branch X ′

Deform, and identity branch. The outputs are concatenated XCombined and passed through a 1x1 
convolution to produce the final output XOut, refining lesion boundaries and improving segmentation 
accuracy.
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Algorithm 2.  AFB for ScaleFusionNet 

Experiments
Datasets
ISIC-2016: This dataset is derived from the skin lesion analysis for the melanoma detection challenge in 2016, 
comprising 1250 images meticulously annotated by professional experts with high-quality standard labels38. 
Among these, 900 images are designated as training data, and 350 images are allocated for validation.

ISIC-2018: The ISIC-2018 dataset, also collected by ISIC in 2018, consists of 2594 images and corresponding 
labels. The resolutions of the images ranged from 720 × 540 to 6708 × 4439 pixels16. Among these, 2594 images 
are randomly divided into training, validation, and test sets at a ratio of 8:1:1.

HAM10000: HAM1000039 is the largest public skin lesion dataset with 10,015 dermoscopic images (600 
× 450 pixels) covering seven pigmented lesion types including actinic keratosis, basal cell carcinoma, and 
melanoma. More than 50% of cases are histopathologically confirmed, with remaining cases validated by expert.

PH 2: The dermoscopic images used in this study were acquired from Hospital Pedro Hispano in Matosinhos, 
Portugal, using the Tuebinger Mole Analyzer system set at 20x magnification. These images are formatted as 8-bit 
RGB color files with dimensions of 768×560 pixels. The dataset consists of 200 dermoscopic images featuring 
various melanocytic lesions40.

Evaluation metrics
The main evaluation metrics used the Dice coefficient (DSC), Intersection over Union (IOU), Sensitivity 
(SE), Specificity (SP), and Accuracy (ACC). The Dice coefficient measures the overlap between the predicted 
segmentation mask and the ground truth mask. It is defined as:

	
DSC = 2|A ∩ B|

|A| + |B|

where A is the predicted mask and B is the ground truth mask. A higher Dice score indicates better segmentation 
performance. Intersection over Union evaluates segmentation accuracy by computing the ratio of the intersection 
to the union between the predicted and actual masks:

	
IOU = |A ∩ B|

|A ∪ B|

SE measures the proportion of actual positive samples correctly identified by the model.

	
SE = |A ∩ B|

|B|

SP measures the proportion of actual negative samples that the model correctly identifies.

	
SP = |A ∩ B|

|B|

where A and B are compelments of A and B. Universal set U is the total number of pixels in the image. ACC 
measures the proportion of correct predictions made by a model out of total predictions.

	
ACC = |A ∩ B| + |A ∩ B|

|U |

Implementation details
All experiments in this paper were conducted using the PyTorch 1.12.0 framework. The experiments were 
performed on a computer equipped with an Ubuntu 18.04 operating system, Intel Core i9-13900K CPU, Nvidia 
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RTX 4060 GPU, and 1TB solid-state drive. For all experiments involving ScaleFusionNet, the AdamW optimizer 
was utilized with a learning rate and weight decay set to 1e−4. We used a combination of BCE and IOU losses to 
form our loss function, along with random rotation and random flipping for data augmentation. For comparison, 
we referenced the experimental results disclosed in relevant papers for similar methods. For outstanding models 
that did not perform skin lesion segmentation tasks, we retrained them using publicly available official execution 
codes. To ensure fairness, we kept parameters that did not affect the model learning capacity, such as epochs 
and batch size, consistent with ScaleFusionNet, setting epochs to 200 and batch size to 8. The input size for the 
network was 256 × 256. The experiments focused on the ISIC-2016 and ISIC-2018 datasets,and external testing 
was conducted on the PH 2 dataset based on the trained weights.

This experimental setup ensured a robust and fair evaluation of ScaleFusionNet’s performance by utilizing 
state-of-the-art hardware and software configurations to achieve accurate and reproducible results. The use of a 
combined loss function and data augmentation techniques further enhances the model’s ability to generalize and 
perform well on diverse skin lesion segmentation tasks.

Experimental results
Results on ISIC-2016
We selected 13 prominent models for comparison with the proposed ScaleFusionNet. In all 13 models, we also 
included SAM2-UNet41 and U-Mamba36 for skin lesion segmentation. The SAM2-UNet is an emerging vision 
foundation model that continuously achieves good performance on various tasks. UMamba is a general-purpose 
network inspired by State Space Sequence Models (SSMs), a new family of deep sequence models known for their 
strong capability in handling long sequences. Table 1 shows that ScaleFusionNet achieved a DSC score of 92.94% 
and an IOU score of 87.35% on the ISIC-2016 dataset, which are the average results of five-fold experiments, 
demonstrating outstanding performance. Compared with the Swin-Unet model, ScaleFusionNet improved by 
2.82% in the DSC metric and 4.14% in the IOU metric. Compared with MISSFormer, ScaleFusionNet exhibited 
enhancements of 2.48% and 3.43% in the DSC and IOU metrics, respectively. Against the D-LKA model, 
ScaleFusionNet still showed improvements of 0.11% and 0.20% in the DSC and IOU metrics, respectively. 
This indicates that ScaleFusionNet is more accurate than D-LKA in detecting the refined boundary of skin 
lesions. Although the performance gains may not be significant, from the perspective of parameter count 
and computational complexity, ScaleFusionNet reduces the number of parameters by 37.7% and decreases 
the computational load by 22.5% compared with D-LKA. In terms of memory usage, ScaleFusionNet reduces 
memory consumption by 25% compared to D-LKA. This indicates that ScaleFusionNet consumes fewer 
hardware resources than D-LKA while maintaining the model size and computational complexity. SAM2Unet 
and U-Mamba are also behind ScaleFusionNet in terms of DSC and IOU. Compared to other methods such as 
U-Net, although ScaleFusionNet employs a more complex architecture to address issues in U-shaped medical 
image segmentation models, we find this approach justified given the 5.13% performance improvement and 
reduced computational load. In clinical applications, a faster and lighter model can support a broader range 
of compatible use cases, which is crucial for hospitals and organizations with limited computational resources.

To enhance the assessment of model performance, we selected 10 high-performing models for qualitative 
scrutiny of the experimental outcomes, elucidating the differences among them. The red areas in the illustrations 
represent ground-truth labels meticulously annotated by experts, reflecting the diagnostic preferences of clinical 
doctors in real-world scenarios. A larger red area indicates lower model accuracy and poorer discrimination of 
the affected regions. In contrast, the green areas represent the predicted labels obtained during the model-testing 
phase. A larger green area suggests that the model has mistakenly segmented healthy skin, which could mislead 
doctors into treating non-affected areas, especially with destructive procedures, such as lasers or cryotherapy. 
The yellow areas indicate the overlap between the predicted and ground truth labels; a larger yellow area indicates 
a more accurate identification of the lesion region by the model. In summary, from the perspective of clinical 

Methods Params(M) FLOPs(G) GPU Mem(GB) DSC IOU

U-Net2 34.53 124 4.1 87.81 ± 0.41 80.25 ± 0.50

Att-Unet25 34.88 126.1 4.3 87.43 ± 0.47 79.70 ± 0.62

nnU-Net42 – – – 90.45 ± 0.35 84.52 ± 0.53

SwinUNet15 27.17 6.16 3.8 90.12 ± 0.39 83.21 ± 0.57

MISSFormer20 42.46 9.89 5.2 90.46 ± 0.33 83.92 ± 0.45

DAEFormer14 48.07 27.89 5.9 91.19 ± 0.31 85.40 ± 0.43

HiFormer43 25.51 8.05 3.9 91.48 ± 0.28 85.15 ± 0.40

TransFuse44 26.25 8.82 4.0 92.03 ± 0.26 86.19 ± 0.38

D-LKA45 101.64 19.92 7.1 92.83 ± 0.23 87.15 ± 0.34

SU-Net46 20.9 4.58 3.2 92.33 ± 0.24 86.58 ± 0.36

U-Mamba36 16.40 3.51 2.9 91.77 ± 0.27 86.16 ± 0.42

SAM2-UNet41 21.09 5.65 3.5 91.52 ± 0.29 85.88 ± 0.44

MSCA-Net47 27.09 12.88 4.1 91.35 ± 0.32 85.59 ± 0.48

ScaleFusionNet (Ours) 62.91 15.45 5.3 92.94 ± 0.21 87.35 ± 0.30

Table 1.  Performance comparison on ISIC-2016 dataset. Singificance values are in bold.
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diagnosis and treatment, smaller green and red areas and a larger yellow area indicate better model performance, 
enabling more effective segmentation of skin lesions to assist in diagnosis and treatment decisions. The results 
of the qualitative analysis of the 10 models in the ISIC-2016 dataset are shown in Fig. 4a. From the first two 
rows, it is evident that ScaleFusionNet exhibits a broader yellow region than the D-LKA model, indicating that 
ScaleFusionNet is better at identifying affected areas. Furthermore, ScaleFusionNet’s predictions show fewer 
green and red regions, which reduces the likelihood of misdiagnosis and missed diagnoses in the clinical setting. 
This difference was even more pronounced in the latter two rows. Although TransFuse had the largest yellow 
region, it also had the largest green area, indicating a misdiagnosis of healthy regions. Although it covers areas 
of injury, this misdiagnosis can have serious implications for clinical diagnosis. In comparison with D-LKA, 
ScaleFusionNet has a similarly sized yellow region but with a smaller misdiagnosis area, aligning better with 
clinical diagnostic needs.

These results highlight the superior ability of ScaleFusionNet to accurately segment skin lesions while 
minimizing errors, making it a highly effective tool for clinical applications. Its combination of high accuracy 
and strong generalization ability positions it as a leading solution for skin lesion segmentation tasks. The model’s 

Methods DSC IOU SE SP ACC

U-Net2 85.45 ± 0.45 77.33 ± 0.58 88.00 ± 0.62 96.97 ± 0.35 94.04 ± 0.42
Att-Unet25 85.66 ± 0.48 77.64 ± 0.61 86.74 ± 0.67 98.63 ± 0.28 93.76 ± 0.44
nnU-Net42 89.03 ± 0.38 82.02 ± 0.49 91.02 ± 0.54 97.55 ± 0.32 96.40 ± 0.37
Swin-Unet15 89.31 ± 0.40 82.14 ± 0.51 90.99 ± 0.56 97.20 ± 0.33 95.99 ± 0.39
MISSFormer20 89.44 ± 0.37 82.41 ± 0.47 90.79 ± 0.53 96.92 ± 0.34 96.04 ± 0.38
DAEFormer14 89.89 ± 0.35 83.21 ± 0.44 90.52 ± 0.50 97.33 ± 0.31 96.13 ± 0.36
HiFormer43 90.55 ± 0.33 83.81 ± 0.42 92.02 ± 0.48 96.43 ± 0.32 96.55 ± 0.34
TransFuse44 91.08 ± 0.31 84.65 ± 0.39 91.39 ± 0.46 97.80 ± 0.29 96.66 ± 0.32
D-LKA45 91.64 ± 0.28 85.64 ± 0.36 91.94 ± 0.43 98.20 ± 0.26 96.89 ± 0.30
SU-Net46 90.90 ± 0.32 84.49 ± 0.40 90.76 ± 0.47 97.64 ± 0.30 96.66 ± 0.33
TranSiam20 90.44 ± 0.37 83.45 ± 0.49 90.83 ± 0.55 96.92 ± 0.34 95.04 ± 0.39
U-Mamba36 89.74 ± 0.36 83.16 ± 0.45 90.83 ± 0.52 97.33 ± 0.31 97.75 ± 0.35
SAM2-UNet41 89.52 ± 0.38 83.07 ± 0.46 90.75 ± 0.54 98.13 ± 0.28 97.54 ± 0.37
MSCA-Net47 89.31 ± 0.39 83.28 ± 0.45 90.37 ± 0.55 97.53 ± 0.31 97.24 ± 0.38
ScaleFusionNet (Ours) 91.80 ± 0.26 85.57 ± 0.34 90.88 ± 0.41 97.67 ± 0.25 98.24 ± 0.28

Table 2.  Performance comparison on ISIC-2018 dataset. Values are presented as mean ± standard deviation. 
Singificance values are in bold.

 

Fig. 4.  Qualitative comparison of 10 skin lesion segmentation models on ISIC-2016 and ISIC-2018 datasets. 
Yellow denotes correct prediction, red indicates missed regions (ground truth only), and green highlights false 
positives(predicted healthy skin as lesion). ScaleFusionNet shows superior overlap with minimal errors. The 
red square regions illustrate edge refinement capability among the models.
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ability to preserve fine-grained details and refine the limits of the injury further underscores its potential to 
improve melanoma diagnosis and treatment in real-world clinical settings.

Results on ISIC-2018
In the experiments conducted on the ISIC-2018 dataset, 14 mainstream medical image segmentation models were 
selected for comparison with ScaleFusionNet, and more relevant parameters were disclosed. The quantitative 
analysis results of the ISIC-2018 comparison experiments are listed in Table 2. ScaleFusionNet continued to 
exhibit competitive results compared to the other 14 medical image segmentation methods, achieving the best 
results in terms of the DSC metric on ISIC-2018, with most other metrics ranking in the top two. Compared 
with TransFuse, ScaleFusionNet showed a 0.72% improvement in the DSC metric while maintaining a consistent 
IOU level of 0.92%. Compared with D-LKA, ScaleFusionNet exhibited a 0.06% improvement in the DSC metric, 
although it slightly lagged behind D-LKA in the IOU metric. Other metrics, namely, Sensitivity, Specificity, 
and Accuracy, are also presented in Table 2, where we can see the performance of ScaleFusionNet compared to 
other models. Finally, ScaleFusionNet yielded competitive results with other methods, demonstrating strong 
performance in skin lesion segmentation. Figure S3 have shown the ROC curve of model performance. The curve 
demonstrates outstanding discriminative capability, with an AUC of 0.9985, indicating near-perfect separation 
between lesion and non-lesion pixels across varying thresholds. This aligns with the high sensitivity 90.88% and 
specificity 97.67% reported in Table 2, confirming that the model consistently achieves high true positive rates 
while maintaining a very low false positive rate. The curve’s proximity to the top-left corner further reflects the 
robustness and reliability of ScaleFusionNet in medical image segmentation tasks. The Hausdorff Distance (HD) 
and Average Symmetric Surface Distance (ASSD) were also calculated to further assess the model’s performance. 
The proposed ScaleFusionNet achieved a mean HD of 8.1783 and a mean ASSD of 0.1093 on the ISIC-2018 test 
set. The low ASSD value indicates that the predicted lesion boundaries are, on average, highly consistent with the 
ground truth, while the moderate HD reflects minimal occurrences of outlier boundary deviations. These results 
are consistent with the high DSC, IOU, sensitivity, and specificity reported in Table 2.

The qualitative analysis results of ISIC-2018 are shown in Fig.  4b. Visual inspection of the results in the 
last two rows reveals that, compared with D-LKA, ScaleFusionNet has a larger yellow region and a smaller red 
region, indicating a higher prediction accuracy, even though it performs slightly worse on the IOU metric. 
In comparison to TransFuse, while the yellow regions were nearly identical in size, ScaleFusionNet exhibited 
a smaller range of green areas, demonstrating its superior ability to identify skin lesion regions and reduce 
the likelihood of misdiagnosis. Similarly, the results in the last two rows further highlight the overall superior 
performance of the ScaleFusionNet. Based on the experiments using the ISIC-2018 dataset, the D-LKA model 
and ScaleFusionNet achieved the first and second best performances in terms of the DSC and IOU metrics, 
respectively. In terms of overall performance, ScaleFusionNet demonstrated better accuracy and boundary 
fitting. The qualitative analysis of the results, as illustrated in Fig. 4b, shows that ScaleFusionNet has a smaller 
green region than D-LKA, indicating a reduced likelihood of misdiagnosis. This further underscores the ability of 
ScaleFusionNet to accurately segment skin lesions while minimizing errors. These results highlight the superior 
performance of ScaleFusionNet on the ISIC-2018 dataset, achieving high accuracy in lesion segmentation 
while maintaining efficiency in terms of parameter count and computational complexity. Its ability to reduce 
misdiagnosis and improve lesion boundary delineation makes it a highly effective tool for skin lesion analysis, 
particularly in clinical applications in which precision and efficiency are critical.

Results on HAM10000
To evaluate our model’s performance on large-scale datasets, we selected 14 high-performing models for 
comparison using the HAM10000 dataset. These 14 models had not reported their performance on HAM10000 
in their original papers, so we retrained them using their publicly available implementations. To ensure fair 

Methods DSC IOU SE SP ACC

U-Net 92.95 88.04 93.87 96.97 96.04

Att-Unet 91.59 87.64 93.74 97.63 95.76

nnU-Net 92.03 88.12 94.02 97.95 96.65

Swin-Unet 93.31 88.14 93.99 97.20 95.97

MISSFormer 93.44 89.41 94.79 96.92 96.14

DAEFormer 93.89 89.21 95.52 97.33 96.83

HiFormer 94.55 89.81 95.02 97.43 96.91

TransFuse 94.38 90.65 94.39 98.24 97.16

D-LKA 95.11 91.14 95.44 98.20 97.17

SU-Net 94.70 90.49 94.76 97.94 96.66

TranSiam 92.44 87.45 93.83 96.92 95.04

U-Mamba 92.74 88.16 92.83 97.33 95.75

SAM2-UNet 91.52 88.07 93.75 98.13 95.54

ScaleFusionNet (Ours) 95.37 91.74 95.71 98.01 97.26

Table 3.  Performance domparison on HAM10000 dataset. Singificance values are in bold.
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comparison, we only adjusted the epoch and batch size parameters while keeping all other configurations 
identical to the official implementations. To further validate the generalization ability of each model, we 
conducted external testing using the PH2 dataset. We treated PH2 as an external test set and evaluated each 
model using weights trained on the HAM10000 dataset. The results are presented in Table 3.

As shown in Table 3, when the dataset size reaches a certain scale, the performance gap between different 
models significantly narrows. This highlights the importance of data volume in model performance. Compared 
to U-Net, ScaleFusionNet achieved a 2.4% improvement in the DSC metric on the HAM10000 dataset. 
Additionally, ScaleFusionNet outperformed the second-best model, D-LKA, in most metrics.

Figure 5 presents the performance of various segmentation models on the ISIC-2016, ISIC-2018, and 
HAM10000 datasets using both DSC and IOU metrics. ScaleFusionNet consistently outperforms the other 
models across all datasets. On the ISIC-2016 dataset, it achieves the highest DSC score, as highlighted by the blue 
line, while also leading in IOU performance (yellow dashed line). For ISIC-2018, ScaleFusionNet, represented 
by the green line (DSC) and red dashed line (IOU), again ranks among the top performers, closely followed 
by D-LKA and TransFuse. On the HAM10000 dataset, represented by magenta (DSC) and purple (IOU), 

Methods

PH2 (test)

DSC SE SP ACC IOU

Swin-UNet 90.92 ± 0.45 96.97 ± 0.32 91.42 ± 0.58 93.39 ± 0.41 84.09 ± 0.67

MISSFormer 91.9 ± 0.38 97.1 ± 0.29 92.82 ± 0.45 94.24 ± 0.33 85.49 ± 0.54

DAEFormer 90.28 ± 0.52 97.41 ± 0.26 90.02 ± 0.61 92.99 ± 0.48 83.37 ± 0.73

HiFormer 92.03 ± 0.41 96.6 ± 0.35 93.46 ± 0.39 94.45 ± 0.37 85.88 ± 0.58

D-LKA 92.17 ± 0.36 97.3 ± 0.28 93.53 ± 0.42 94.52 ± 0.34 86.14 ± 0.51

SUnet 92.32 ± 0.33 98.14 ± 0.21 92.19 ± 0.47 94.86 ± 0.31 86.23 ± 0.49

U-Mamba 92.1 ± 0.39 97.7 ± 0.25 93.34 ± 0.43 94.51 ± 0.35 85.66 ± 0.55

SAM2-UNet 91.83 ± 0.44 98.02 ± 0.22 92.46 ± 0.46 94.52 ± 0.32 85.48 ± 0.62

MSCA-Net 91.76 ± 0.47 96.97 ± 0.34 93.79 ± 0.38 94.27 ± 0.29 85.28 ± 0.66

ScaleFusionNet(Ours) 92.37 ± 0.31 98.23 ± 0.19 92.44 ± 0.45 94.73 ± 0.28 87.10 ± 0.44

Table 4.  Performance comparison on PH2 dataset.  Values are presented as mean ± standard deviation. 
Singificance values are in bold.

 

Fig. 5.  Performance comparison of segmentation models on the ISIC-2016, ISIC-2018, and HAM10000 
datasets. The DSC (solid lines with markers) and IOU (dashed lines with markers) scores are shown for various 
models. ScaleFusionNet outperforms the other models across all datasets, achieving the highest accuracy in 
both DSC and IOU.
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ScaleFusionNet maintains its superior performance, achieving the best results among all compared methods. 
Overall, the figure demonstrates that ScaleFusionNet achieves consistently high DSC and IOU values across 
multiple datasets, confirming its robustness and generalization ability in skin lesion segmentation.

External validation with ISIC-2018
Independent validation experiments were conducted on the PH2 dataset using the model weights pretrained on 
ISIC-2018. The results show that ScaleFusionNet demonstrates significant performance improvements compared 
to the SU-UNet model, with a DSC increase of 0.05% and an IOU increase of 0.87%, indicating an improvement 
over the experiments on the ISIC-2018 dataset. From Table 4, it can be observed that ScalefusionNet continues 
to exhibit competitive results compared to the other 9 medical image segmentation methods, achieving the 
best results in terms of the DSC metric on the PH2 dataset, with most other metrics ranking in the top two. 
Based on the external validation experiments using the ISIC2018 dataset, the SUnet model and ScaleFusionNet 
achieved the first and second best performances in terms of the DSC and IOU metrics, respectively. The 
qualitative analysis of the external validation experiments is shown in Fig. 6. Visual inspection of the results 
from the external validation experiments using the ISIC-2018 trained weights on the PH2 dataset reveals that the 
yellow region of the SUnet model was larger, indicating a better ability to accurately predict lesions. In contrast, 
compared with ScaleFusionNet, the green region in the bottom-left corner is also larger for SUnet, suggesting 
that ScaleFusionNet performs better in terms of accuracy and fitting to boundaries. Overall, both SUnet and 
ScaleFusionNet outperformed the other selected comparison models in terms of visualized results based on 
ISIC-2018 trained weights on the PH2 dataset. This conclusion demonstrates the excellent performance of the 
ScaleFusionNet skin lesion segmentation method proposed in this paper.

Ablation study
To validate the effectiveness of the proposed ScaleFusionNet, a structural ablation study was conducted on the 
ISIC-2016 dataset, with the DSC used as the primary evaluation metric. The data from the structural ablation 
studies are listed in Table 5. Method 0 represents the segmentation results obtained using only the hybrid 
architecture and Method 1 represents the experimental results with the hybrid architecture and AFB. Method 2 
represents the experimental results obtained using the hybrid architecture and the CATM with SharedSA, and 

Methods Swin transformer block CATM AFB SharedSA DSC↑

0 ✓ 91.76

1 ✓ ✓ 92.01

2 ✓ ✓ ✓ 92.24

3 ✓ ✓ ✓ 92.48

ScaleFusionNet ✓ ✓ ✓ ✓ 92.94

Table 5.  Structural ablation results of ScaleFusionNet on ISIC-2016. The Swin Transformer Block, CATM, 
AFB, and SharedSA were tested individually and in combination.

 

Fig. 6.  Visual comparison of 10 models on the PH2 dataset using ISIC-2018 pretrained weights. Red shows 
ground truth, green shows incorrect predictions, and yellow shows accurate segmentation. ScaleFusionNet and 
SU-Net perform best, with ScaleFusionNet showing better boundary accuracy and fewer false positives.

 

Scientific Reports |        (2025) 15:34393 12| https://doi.org/10.1038/s41598-025-17300-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Method 3 represents the experimental results obtained using the hybrid architecture, AFB, and CATM without 
SharedSA.

From Table 5, it can be observed that using only the hybrid architecture results in a DSC of 91.76% on ISIC-
2016, which is still superior to most models compared in Table 1. Method 1 consists of AFB to enhance multi 
scale fusion in the hybrid architecture, achieves a DSC of 92.01% on ISIC-2016. Method 2, which incorporates 
the CATM to enhance the skip connection features on top of the hybrid architecture, achieves a DSC of 92.24% 
on ISIC-2016. This performance surpasses that of the D-LKA method at 91.64%. Method 3, which introduces 
the AFB on top of the hybrid architecture and CATM without SharedSA, achieves a DSC performance of 92.48%. 
Finally, ScaleFusionNet, which combines the hybrid architecture, CATM, and AFB, achieves a DSC of 92.94% 
on ISIC-2016. The excellent performance of ScaleFusionNet is propelled by integrating these three proposed 
improvement methods. Furthermore, we visualize the features of Stage 0 and the corresponding modules within 
the same layer to intuitively observe the role of each structure. As shown in Fig. 7, it’s clear that the focus on 
the target area becomes much stronger after it goes through the CATM, following the output of the hybrid 
architecture. Additionally, each feature map of the four multi-scale branches highlights different attention areas. 
This observation underscores the emphasis on micro-scale multi-resolution in this study. The micro-scale 
multi-resolution enables the features passed through the AFB to focus highly on the target area and exhibit 
excellent fitting to the target boundaries. Figure S2 presents the GradCAM analysis of the last layer for skin 
lesion segmentation.

These ablation experiments show how important the CATM and AFB are for ScaleFusionNet’s performance, 
and they also highlight the need to improve the encoder’s design. The results highlight the model’s ability to 
achieve high accuracy in skin lesion segmentation while maintaining an efficient and balanced architecture.

To validate the design of our CAF mechanism, we systematically evaluated different configurations of Q, 
K, and V on the ISIC-2016 dataset,  as presented in Table 6. The baseline configuration (Q/K/V = Decoder) 
achieved optimal performance (92.94% DSC, 87.35% IoU), demonstrating that using decoder features to guide 
all attention components best aligns encoder-decoder semantics. Alternative configurations revealed critical 

Configuration DSC (%) IOU (%)

Q = Decoder, K/V = Skip 91.82 85.71

Q/K/V=Decoder 92.94 87.35

Q = Skip, K/V = Decoder 91.95 86.33

Q/K = Decoder, V = Skip 92.12 86.59

Table 6.  Ablation study on the ISIC-2016 dataset to evaluate the impact of different Q/K/V configurations.

 

Fig. 7.  Feature map visualization of different layers in ScaleFusionNet. Each module, including Patch 
Embedding, Swin Transformer Block, CATM, Deformable Convolution, UpConv, and AFB captures distinct 
features of the lesion.
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insights: using encoder skip connections for K/V (Q = Decoder, K/V = Skip) caused semantic misalignment 
(91.82% DSC), while reversing the roles (Q = Skip, K/V = Decoder) preserved semantics but lost spatial details 
(91.95% DSC). A hybrid approach (Q/K = Decoder, V = Skip) showed partial improvement (92.12% DSC) but 
underperformed the baseline, confirming that decoder-derived features dominate both attention weighting (K) 
and value aggregation (V) to mitigate the semantic gap. These results justify our CAF design, where decoder 
features comprehensively guide the attention process while selectively incorporating spatial details from encoder 
skip connections.

Conclusion and future work
This study presents a medical image segmentation model called ScaleFusionNet, which incorporates the CATM 
and AFB to learn and extract complex features from medical images. Experiments conducted on publicly 
available datasets demonstrate that ScaleFusionNet achieved competitive results in skin lesion segmentation. 
These innovative approaches positively impact diagnostic accuracy, guide treatment decisions, and promote 
further research in the field. However, its computational complexity is higher compared to some methods. 
This problem mainly comes from using multi-scale feature extraction and cross-attention mechanisms, where 
the input from different areas differs. One way to solve this is by better feature allocation, like self-selective 
routing. Also, deformable convolutions might worsen the issue, so simpler methods should be explored in future 
work. From a clinical perspective, a reliable medical image segmentation method must not only provide high-
quality segmentation results but also deliver corresponding uncertainty metrics. ScaleFusionNet is an important 
advancement in skin lesion segmentation, as it uses adaptive multi-scale fusion and cross-attention mechanism 
to achieve accurate and strong results. However, future work should address computational efficiency and 
incorporate uncertainty quantification to further enhance its clinical applicability and reliability.

Data availibility
No datasets were generated or analysed during the current study.

Code availability
The implementation code can be found by clicking on this link.
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