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Abstract

Text-to-image person retrieval is a task to retrieve the right matched images
based on a given textual description of the interested person. The main chal-
lenge lies in the inherent modal difference between texts and images. Most
existing works narrow the modality gap by aligning the feature representa-
tions of text and image in a latent embedding space. However, these methods
usually leverage the hard label and mine insufficient or incorrect hard neg-
atives to achieve cross-modal alignment, generating incorrect hard negative
pairs so as to suboptimal performance. To tackle the above problems, we pro-
pose a dual alignment framework, Partial negative and Soft-label Alignment
(PASA), which includes the partial negative alignment (PA) strategy and
the Soft-label Alignment (SA) strategy. Specifically, PA pushes far away the
hard negatives in the triplet loss by considering a certain amount of negatives
within each mini-batch as hard negatives, preventing the distraction to the
positive text-image pairs. Based on PA, SA further achieves the alignment
between the similarity distribution on these hard negatives by the manner of
soft-label, as well as the alignment between inter-modal and intra-modal. Ex-
tensive experiments on three public datasets, CUHK-PEDES, ICFG-PEDES
and RSTPReid, demonstrate that our proposed PASA method can consis-
tently improve the performance of text-to-image person retrieval, and achieve
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new state-of-the-art results on the above three datasets.

Keywords: Hard Negative Mining, Soft-Label Alignment, Text-to-Image
Retrieval, Person Retrieval

1. Introduction

Text-to-Image Person Retrieval (TIPR) aims to retrieve the image of
the interested person from a large-scale image gallery, given a query for a
textual description [1, 2, 3|. It provides a complementary solution when
the target person’s image is not available, showing great potential in many
practical applications, e.g., lost persons, tracking suspects for public security
4, 5, 6, 7].

TIPR is still challenging since there are significant intra-identity varia-
tions and an inherent heterogeneity gap between the vision modality and the
language modality. Most existing methods are devoted to learning discrim-
inative feature representations and then aligning cross-modal features in a
joint embedding space [8]. Generally, a textual encoder and a visual encoder
are used to encode the texts and images. The greatest challenge is how to
align the cross-modal data pairs. To achieve cross-modal alignment, it can
be divided into global-level and local-level alignment. Global-level methods
utilize vision/language backbones to extract feature representations, then
design better cross-modal alignment strategies to achieve matching between
texts and images in a joint embedding space [8, 9, 10, 11]. To further cap-
ture fine-grained information, local-level methods try to align textual entities
with local body regions (2, 12, 13, 14]. Recently, benefiting from the power
of pre-trained models, some works [15, 16, 17| utilize BERT [18], ViT [19],
and CLIP [20] et al. to align global visual and textual features, or to mine
more fine-grained local correspondence.

Among them, some existing methods adopt a contrastive learning scheme,
namely treating samples corresponding to the same identity from different
modalities as positives, while samples corresponding to different identities
are considered as negatives. One way is to minimize similarity (similarity
distribution) between positives and maximize similarity (similarity distri-
bution) between negatives, which is known as InfoNCE loss [21] and SDM
loss [22]. Another way is to push away the sample with its hardest nega-
tive by the Triplet Ranking Loss (TRL) (23], or with all negatives by the
Triplet Alignment Loss (TAL) [17]. Although these strategies benefit the
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Figure 1: The comparisons between TRL, TAL and the proposed PA. The blue squares
indicate the positives, while the green and orange cycles are negatives. (a) The TRL
pushes away the hardest negative; (b) The TAL pushes away all the negatives; (¢) The
proposed PA selects a proportion of negatives as hard negatives, i.e., negatives in the
oreen regions, while the negatives in light gray regions are considered as easy negatives.
(Best viewed in color.)

performance of TIPR, they have a great limitation: incorrect hard negative
mining during the cross-modal alignment. As shown in Fig. 1, the TRL loss
solely pushes away the hardest negative sample, while the TAL loss considers
all negatives as hard negatives. However, only one hardest negative might
lead to the underfitting learning problem, in which the relationships between
data cannot be sufficiently learned. Meanwhile, all negatives would make the
model pay much attention to easy data, since there exists a certain amount of
negatives that are easy to distinguish. The above negative mining strategy.
which optimizes with too many or too few negatives, will cause suboptimal
performance.

To tackle this incorrect hard negative mining problem, we propose the
dual alignment framework: Partial negative and Soft-label Alignment (PASA),
for text-to-image person retrieval. Concretely, the PASA comprises two key
modules: Partial-negative Alignment (PA) and Soft-label Alignment (SA).
Specifically, Triplet PA mines and selects only a small proportion of hard
negatives to push away within each mini-batch. Therefore, the model can
sufficiently learn the relationships with these hard text-image pairs, avoiding
excessive focusing on these easily distinguishable negative text-image pairs.
Based on PA, the SA strategy further aligns the similarity distribution among



the selected hard negative text-image pairs. Motivated by the dual branch
of RDE [17], PASA aligns the similarity distributions both between intra-
modal and inter-modal by the SA strategy, making the consistent similarity
distribution between the intra-modal and inter-modal. As a result, PASA
can 1dentify the true matched text-image pairs and better distinguish hard
negative pairs simultaneously. We conduct extensive experiments on widely
used public Text-to-Image person retrieval datasets, all the results demon-
strate that the proposed PASA consistently improves the performance for
TIPR task, and also achieves the new state-of-the-art performance. The
main contributions can be summarized in the following:

(1) We propose a robust yet effective method, termed PASA, to tackle the
incorrect hard negative mining problem for text-to-image person retrieval.

(2) We introduce two strategies: PA and SA. Through PA, a small propor-
tion of hard negatives are selected to construct a triplet loss. Based on PA,
SA achieves the consistent alignment distribution both for the intra-modal
and inter-modal data pairs.

(3) We conduct extensive experiments on three widely used public text-to-
image person retrieval benchmarks. All of the experimental results demon-
strate the superiority of the proposed PASA, which can consistently improve
the performance of TIPR and achieve new state-of-the-art results.

2. Related Works

2.1. Text-to-Image Person Retrieval

Text-to-image person retrieval is a relatively novel and challenging cross-
modal retrieval task. Li et al. [1] first introduced this TIPR task by con-
structing the benchmark dataset CUHK-PEDES. Subsequently, more chal-
lenging benchmark datasets are introduced, ICFG-PEDES [24| and RST-
PReid [25]. Existing methods can be divided into pre-training separately
and pre-training with a CLIP model. The former methods treat TIPR as a
complete cross-modal matching task. It first utilizes the different networks
as backbones to extract text and image features, respectively (8, 11, 15, 26,
27, 28, 29, 30]. Then, cross-modal matching losses are designed to align
these feature representations in the joint feature embedding space. Li et al.
126] utilize a CNN-LSTM network as the feature extractor and Cross-Modal
Cross-Entropy (CMCE) loss is then used to align cross-modal features. The
Cross-Modal Knowledge Adaptation (CMKA) [30] further leverages BERT
131] and ResNet [32] to extract different modality features. Additionally, the
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Visual-Textual Attribute Alignment Model (ViTAA) [29] introduces auxil-

iary attribute segmentation to align the teatures of the human body parts
and the textual attributes. Wu et al. [8] propose to use color reasoning
information to learn the alignments between text phrases and image re-
gions. Recently, with the success of vision-language pre-training models, the
latter approaches achieve cross-modal alignment only by the CLIP model
117, 22, 33, 34]. Han et al. [33] first introduce the CLIP to the task of TIPR,
and propose the momentum contrastive learning loss to transter the informa-
tion from generic text-image pairs to the person text-image pairs. The IRRA
framework [22] leverages the CLIP to map the input text-image pairs into a
joint embedding space and achieve global-level alignment based on local rela-
tion learning. RDE [17] is further proposed to utilize a triplet alignment loss
to achieve global alignment with pre-trained CLIP. Although these CLIP-
based models have all benefited the person retrieval performance, there ex-
ist incorrect hard negatives during the cross-modal global feature alignment
which hinders the retrieval performance. In this paper, we propose to mine
a certain proportion of hard negatives that are very different from TRL [23]
with only the hardest negative, as well as the TAL [17] which regards all
negatives as hard negatives.

2.2. Hard Negative Mining

The hard negative mining is to find these negatives that are similar to
the positive while are difficult to distinguish from the positive. kalantidis
et al. [35] proposed to mix the anchor and its negative to synthesize a new
instance as the hard negative. AdaS [36] states that the negatives should
be neither too hard nor too easy to distinguish from the anchor, so the
adaptive sampling strategy is introduced. Xia et al. proposed the ProGCL
137] framework to measure the hardness of negatives. HCHSM [38] mines
the hard instances through a mutual information agreement gap between
negative pairs and positive pairs. In the cross-modal retrieval scenarios, TRL
23] and TAL [17] treat the dissimilar instance and all the other instances
(except for positives) within a mini-batch as hard negatives. This paper
proposes the partial negative mining strategy that is mostly similar to TRL
and TAL. The difference is that the proposed method can be considered as
the upper bound of TRL and the lower bound of TAL, which is more effective
in mining hard negatives.



2.3. Alignment with Soft-label

The hard label is known as matching the paired text-image inputs in the
cross-modal text-to-image retrieval scenario, which is often denoted as the
pattern of one-hot label. However, it has been proven that hard labels de-
pend excessively on the incorrect prediction results of the current model. The
soft-label which is represented as the probability distribution of logits from
the model, is proposed to achieve mutual guidance in the dual-branch mod-
els, such as the teacher-student model in the knowledge distillation-based
methods. Li et al. [39] introduce the additional knowledge from an extra
language model to achieve the cross-modal soft-label alignment. The CUSA
140] model utilizes the soft label as a supervision signal to achieve both the
inter-modal and intra-modal alignment. However, existing soft-label-based
alignment methods are all designed in the teacher-student scheme, our pro-
posed PASA framework achieves the alignment with soft-label in an end-to-
end CLIP model. In addition, soft-label in existing methods is generated
from all instances within a mini-batch, while PASA proposes to only utilize
the hard negatives to generate the soft-label which is more effective.

3. Methods

In this section, we elaborate on each component of the proposed PASA
framework, which is illustrated in Fig. 2. Specifically, we first introduce
the problem formulations of TIPR task in Section 3.1, as well as the feature
representations in Section 3.2. Then, we present the detailed description and
discussion of the PA strategy and the SA strategy in Section 3.3 and Section
3.4, respectively. Finally, we show the overall optimization of our proposed

PASA in Section 3.5.

3.1. Problem Formulation

(Given the text query, the aim of TIPR is to retrieve the matched im-
ages that belong to the same identity from the gallery set. Formally, the
training set of a TIPR dataset can be denoted as {(7,V),Y}, where T" =
{t;};L, and V = {v;};L, represent text sentences and images, {(¢;,v;), v}
denotes a paired text and image that belong to the same identity v;, and
y; € {1,---,Np}. Thus, N is the number of text-image pairs and Np is
the number of identities in the training set. As illustrated in Fig. 2. the
proposed PASA utilizes the pre-trained CLIP as the text encoder and the
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Figure 2: The framework of our proposed PASA. The input texts/images are first fed into
the text/image encoder of CLIP to extract the modal-related Weighted Global Feature
(WGF) and Attentive Global Feature (AGF). Then the similarity can be obtained between
inter-modal and intra-modal, as well as the Partial-negative Alignment (PA) loss and the
Soft-label Alignment (SA) loss. (Best viewed in color)

image encoder to map each ¢; and v; into the joint embedding space. Follow-
ing the previous works IRRA [22] and RDE [17], 12-layer transformer blocks
are leveraged as modality-specific encoders to extract token representations.
The token representations are further fused into the weighted global feature
(WGF), and the attentive global feature (AGF) for text and image, respec-
tively. To mitigate the impact of incorrect hard negatives, we then present
two strategies: Partial-negative Alignment (PA) and Soft-label Alignment
(SA).

3.2. Feature Representation.

For the text input ¢; € 1, it is firstly tokenized by the lower-cased byte
pair encoding (BPE) [41] which has 49512 vocab words. The text is equipped
with [SOS| token before the text and [EOS] token after the text to remind
both the starting and the ending of this text sequence. Then the tokenized

sequence t; = {t5,t},--- 8, ¢} € R(VH2)%d ig fod into the text encoder
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of CLIP to extract token feature representations Fy; = {f5, fL, -, fot, fe},
where V; is the used token number. Similarly, given the image 11:1put Vi €
V and v; € REXWXC it is first split into NP = H x W/P? fixed-sized
non-overlapping patches, where H, W, (' and P represent the height, the
width, the color channels and the size of each split patch, respectively. Af-
ter performing the positional embedding, the image can be tokenized as

v; = {v¥ vl - v}, v and N, is the extra added [C'LS] token and

1 ? ‘E. 7
the number of patches The token feature representation for the image by

the vision encoder of CLIP can be denoted as F,; = {f, fL ..., f ¥}
Additionally, the weights for each modality from the self—a,ttentian map of
the last Transformer blocks in CLIP reflect correlations between the [EO.S]
token and other tokens for text, as well as the [C' LS| token and other tokens
for image. Therefore, f¢ is the weighted combination of {f5, fA,---, fot},
and f¢* is also the weighted combination of {fL,---, f;*}. Following previ-
ous WOI‘kS 117, 34], the dual branch is utilized to extract global features for
each modality, namely the weighted global feature (WGF'), and the atten-
tive global feature (AGF). Firstly, we directly treat the [FOS] token as the
weighted global feature F¥ = f¢ for the text, as well as F¥ = £ for the

image. Then the attentive global feature can be obtained by
F* = MaxPool(MLP(FY) + FC(Fy)) , (1)

F® = MaxPool(MLP(F*) + FC(F,)) . (2)

where MaxPool(-), MLP(-) and FC(-) denote the max-pooling layer, multi-
layer perceptron layer, and fully connected layer as [17]. F¥ and F¥ are the
selected top k tokens that have the higher correlation weights in the self-
attention map of the last Transformer blocks in CLIP as [17]. The similarity
between the weighted global features S (t;,v;) = S (F}¥, F}¥), as well as the

attentive global features S (t;,v;) = S (£}, F)%), can be computed to achieve
the cross-modal matching and alignment. In this paper, the cosine metric is

used as similarity:.

3.3. Partial-negative Alignment

In the cross-modal learning scenario, the Iriplet loss mines the hard neg-
atives and is widely used. However, the early Triplet Ranking Loss (TRL)
only employs the hardest negative, while the Triplet Alignment Loss (TAL)
relaxes to optimize all negatives. Although the TAL loss has achieved promis-
ing performance in the TIPR task, we think optimization of all the negatives
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1S not necessary since there is a certain number of negatives that are easy
to distinguish. These easy negatives are also optimized to push away in the
TAL which overemphasizes the easy negatives and may lead to overfitting.

3.3.1. Partial-negative Alignment Loss

In this paper, we regarded instances as hard negatives on the condition
that similarities with the anchor are larger than or around similarities be-
tween the anchor’s positive. To achieve this, we propose the PA strategy
based on the TRL and TAL. Given a mini-batch text-image input pairs
(TB VBY = {{t;}B., {v;}2.,} where B denotes the size of each mini-batch
and (;,v;) is a paired input from the same identity, the proposed Triplet PA
loss can be represented as

1 B

Lra= & ;([m — SP(t;) + Tlog(Spa(t:) /7)) + 3)

+ [m — SP(vi) + Tlog((Spa (vi)/T)]+)

where m denotes the positive margin coeflicient, 7 is the widely used tem-
perature parameter to control the peaks of the probability distribution. The
function [-|, returns the value when it is greater than zero, otherwise return-
ing zero. exp (-) represents the exponential function. Specifically, SP(t;) =
Zf: ;9 (t;, v;) is the weighted average similarity between the text ¢; and its
positive images from the same identity, since there may appear multiple text-
image pairs from the same identity in a mini-batch due to random sampling.

Hence, the average weight can be expressed as «;; = > — fmgg’;z*’:/;)) ) t; and
L—1 1sUE )T

v; have the same identity, and S (¢;,v;) € {SY (t;,v;),5%(t;,v;)}. What'’s
more, we select the hard negatives for ¢; as follows

S;;l(tz‘) = Z lgAE:I,‘p(S(tij ﬁj)/T)ﬂ

j=1

Nhn, = Sorted(qi1S(ti, v1), ¢i2S(ti, v2), ..., @S (ti, vB)) , (5)

where Ny, represents the sorted similarity from high to low for the text {;
with all images in a mini-batch, and ¢;; = 1 when ¢; and v; are obtained
from the different identity, otherwise ¢;; = 0. Therefore, the selected hard
negatives can be obtained by ratio topR € (0,1) in Eq. (4) within mini-
batch. Similarly, we can select the hard negatives SS;‘(%) for v; following the
above solution.

B

lg‘q = (0, otherwise ,



Theoretically, we can prove that the proposed PA loss is the tight upper
bound of the TRL, and it is also the lower bound of TAL, i.e.,

Lemma 1. PA is a tight upper bound of T'RL than T'AL, namely, PA
is the upper bound with T'RL, as well as the lower bound with T AL, i.e.,
Lrrr < Lpa < Lrar.

As topR — 0, PA approaches TRL and focuses more on the hardest
negative with a lower bound, while topR — 1, PA approaches TAL and it
relaxes the optimization to all negatives with an upper bound.

To prove Lemma 1, we first take the text-to-image direction as an ex-
ample. To facilitate a more straightforward description, the Triplet Ranking

Loss (TRL) (23] Lrgrr and the Triplet Alignment Loss [17] Lrar can be
expressed as

Lras = 55 (1 — S7(t) + Tlog (SE(t) /7))

+ [m— 57(0s) + log((SE(vs) /)]s

f i ZC_T_RL — 1 ZTRL N?RL
Sp(t Zz exp(S(ti, 07)/7). | fpas _ § (7)
1] B

otherwise ,

Lrar = ;Z([m —S7 (bi) + TZOQ(Sm.E( i)/ 7))+

= S7(v) + Tlog(SIm(wi)/T]a) |

ZTAL —1

st) = L B St/ it
3] T

Aecordmg to Eq. (3), Eq. (6) and Eq. (8), we conclude that the only
difference among TRL, TAL and PA losses is the number of the selected hard
negatives. Since the number of hard negative images for text ¢; is Np,, TRL
selects the hardest negative image, TAL selects all the hard negative images,
the proposed PA loss selects partial hard negative images, namely

l’__T_AL = NTAL ;
1 hn (9)

otherwise .

NTRL _ 1
N;AL = Nhn y (10)
N}ilA — tO"pR(Nhn)

]
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their relationship is N/ %L < topR(NFA) < NIAL. Therefore, we have

; . | hn hn
Sprt (ti) < Spa (t:) < S (t:).
Similarly, we can prove Sy (v;) < Shw'(v;) < Spi(v;) in the image-to-text

direction. Thus, we can get Ltr;, < Lpa < L1ar, and the proot for Lemma
1 is completed.

3.3.2. Gradient Analysis of PA Loss

To provide the underlying theoretical analysis, we compute the gradients
for TRL, TAL, and PA. For the sake of representation and analysis, only one
direction as in RDE [17] is considered since text-to-image and image-to-text
are symmetrical. Suppose there is only one paired text and image for each
identity within a mini-batch, and taking the text-to-image direction as an
example, the gradients generated by TRL, TAL, and PA can be simplified as

OLrrr  _ OLTRrL OLrRr
o, ViT Vg, T Tl =t (11)
B
OLrar OLrtaL OL7ar
— — Uy [ 3 — TH§ 9 = Pti , 12
@tz U _|_ jz_; /Bﬂj aﬂi ai}j /6) ( )
- £ Bl OLp4

= —; s — _tl ; _— tt : 1

('?ti V; + jz; YU @“U?; 8’*1»’}' B ( 3)

where v;, v;, and v; represent the positive image, negative image, and the
hardest negative image corresponding to the text t;, respectively, and [ =

ITALE::ﬂp v [T EPAemp Fugfr exp(tiv;/T _
-2 IETALE(:EP(;T‘U)/T)’ 7= S 1.! fmp(;?UB/T) - Zf?éi E(mp(tzrvk)/*r)' Since the hard-
est negative is most similar to the positive, % in Eq. (11) would easily
approach 0, resulting in bad local minima early during the training. While
T AL adjusts the gradients by taking all negatives into consideration, SLST;AL
in Eq. (12) would keep away from 0. However, it may lead the model to pay
much attention to easy data, since there exists a certain amount of negatives
that are easy to distinguish, resulting in a suboptimal performance. There-
fore, PA proposed to consider part of relatively harder negatives by utilizing
LEA which can be obtained by TopR, leading to obtaining the optimal point
around the selected relatively harder negatives. Thus, PA not only avoids

the optimization being dominated by the hardest negative like TRL, but also

11



provides a more stable training process by considering relatively harder neg-
atives than TAL which takes all negatives into consideration, leading to the
performance gain.

3.4. Soft-label Aligning

We have been inspired by the work [40] that these unpaired texts and
images that belong to different identities (can also be called negatives) may
have a potential semantic association.

SA based on partial negative mining. Existing methods mostly em-
phasize the alignment of paired text and image that belong to the same
identity (also called positive), and neglect the alignment between negatives
which may lead to the semantically associated text and image being wrongly
pushed away. To tackle this problem, we propose the Soft-label Alignment
(SA) strategy, which is designed to emphasize hard negative pairs (with rel-
atively higher similarity) and neglect these easier pairs. Specifically, SA is
performed among these hard negatives based on the PA strategy since the
easy negatives with lower similarity can be easily distinguished. The simi-
larity between text ¢; and image v; can be calculated aftter the within-batch
normalization (BN) [42] and denoted as S™ (¢;,v;) / S (v;, t;) between WGF
and S*(t;,v;) / S*(v;,t;) between AGF, respectively. Then the similarity

iy Yj
probability of ¢; and v; based WGE' can be expressed as

PtQ*t_:_ _ l’lj'e:rp(sw (tin Uj)/T)
M Y livexp(S (t, vi) /7)
where [;; 1s used to indicate hard negatives and can also be obtained from

Eq. (4), which also indicates that SA depends on PA. In a mini-batch, the
similarity probability distribution between text ¢; and all other images within

(14)

a mini-batch is denoted as P'?Y = (P%Y, ...  Pv,).
Similarly, we can get Py = (P, -+ , P, i) as the similarity probabil-

ity distribution between image v; and all other texts within a mini-batch, as

well as Pfirj” — ( cfflu S ?Pati%) and P;J_th — ( E_Z;tl:' S ?P;_thB) for AGF. By
utilizing the indicator [;;, the similarity probability distributions only con-
tain these cross-modal hard negatives. Without a doubt, the hard negatives
of text ¢; and the hard negatives of 1mage v; should be consistent when ¢,
and v; are the paired text-image input. That is, the similarity probability

distribution P*** and ij should be similar enough, we call this sott-label

alignment-based hard negative mining. We leverage the KL divergence to

12



measure the similarity ot two probability distributions. The soft-label align-
ment loss based on hard negatives is defined as

SA— BZLL(K[J PtQ’U P’UQt)_l_KL(PUQfHPt ))

1131

(15)
1

BQ

ZZ KL PtQﬂHPth)+KL(Pﬂ2t“Pt?tp ) .

=1 =1

SA based on Cross-modality. Both the weighted global feature and
the attentive global feature point to the same text or image, so the similar-
ity probability distribution between weighted global features and attentive
global features should also be consistent and similar enough. In addition, the
inter-modal relationship is more important than the intra-modal relationship
since the text-to-image person retrieval is a cross-modal task. The similarity
distribution between Fj and F; should be consistent with Fj and F;. "The
probability of ¢; and ¢; 1s computed by

N G
T ep (St i) /)

Then the probability distribution of weighted global features for ¢; with other

texts within a mini-batch is termed as P! = (P! ... PY.).  Simi-

larly, the probabihty distribution of weighted global features for v; is PY% =
(PY2y, -+, P¥*",), as well as the probability distribution of attentive global

w_ily

tZt _ t2t t2t v2v __ v2v v2v
features are P, = (P, s gk ) amd, PR = (P reh ], Tespec-

a-ilsr’ ail?’
tively. Due the redundancy of tokens, we regard P! and P;’_%“ as target

distribution in the K-L divergence, i.e.,

(16)

B B
cm 1 T v2v v2v
54 =53 ) > _(KL(PZ||PZ) + KL(PR||PY3)
i=1 j=1
BB (17)
BQ > ) > J(KL(PtZtHPtZE) u KL(PUQUIlPUQt))
i=1 j=1
Finally .the soft-label alignment loss is defined as
Lgy = LY + L, (18)

13



Algorithm 1 Training procedure of PASA
Require: Labeled N text-image pairs {(7,V),Y },
pre-trained cross-modal model ¢ (-; W)
the hyperparameters topR, 7, m, k.
Ensure: Well-trained cross-modal model a?)( W)
1: Initialize the backbones of the pre-trained corss-modal CLIP:
2: for each epoch do
3:  features.
for each mini-batch do
Extract features: WGF and AGF for each input text-image pairs;
Compute similarities between all texts/images within mini-batch;
Compute similarity probability distributions within mini-batch;

4
5!
6
i
8: Optimize the Triplet PA loss by Eq. (3).
0:
10
"
|2

7

Optimize the SA loss by Eq. (18).
Update and optimize ¢ (-; W) according to Eq. (19).
end for

end for

3.5. Querall Loss

The PASA framework is trained in an end-to-end manner and the opti-
mization procedure can be summarized in the Algorithm (1). The overall
optimization objective can be expressed as :

L=Lps+ Lsa+ Lip (19)

where Lpy and Lgs denote the hard mining loss defined in Eq. (3) and the
soft-label alignment loss in Eq. (18). Specifically, L;p is the commonly used
ID loss [10] which leverages the cross-entropy loss that classifies each text or
image into distinct groups based on their identities. In this paper, it is also
utilized as the basic loss along with PA loss and SA loss.

4. Experiments

4.1. Experimental Details

We conducted extensive experiments on three public text-to-image per-
son retrieval datasets: CUHK-PEDES [1], ICFG-PEDES [24] and RSTPReid
125]. A brief summary of the above datasets, together with the used evalua-
tion protocols and the experimental details, is shown in the following sections.
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4.1.1. Datasets and Metrics
CUHK-PEDES is the first dataset proposed for the TIPR task. It

ageregates 13002 person identities, 40206 person images and each image has
two textual descriptions, 7.e. 80412 texts. As in the official data split, the
training set includes the 11003 identities text-image pairs with 68108 textual
descriptions corresponding to 34054 images. Both the validation set and the
test set consist of 1000 identities, 6158 textual descriptions with 3078 1mages
for validation, and the rest 6156 texts with 3078 images for testing.

ICFG-PEDES has 4102 identities with 54522 text-image pairs, each
textual description corresponding to one image. Following most TIPR meth-
ods (22, 43, 17|, it is only divided into the training set and the test set. There
are 34674 text-image pairs for 3102 identities in the former set, as well as the
remaining 19848 text-image pairs for 1000 identities in the latter set.

RSTPReid is the most challenging TIPR dataset which comprises 20505
images for 4101 identities from 15 cameras. Specifically, there are 5 images
taken from different cameras for each identity, each image has 2 textual
descriptions. Following the official set, the 3701 identities text-image pairs
construct the training set, as well as 200 identities for the validation set, and
the rest 200 identities for the test set.

Metrics. To evaluate the performance of our proposed PASA, we mainly
adopt the widely-used Recall-K metric which is shortened to RK with K=1,
5, 10. Since the Rank-K metric measures whether the top k images include
the first matched image corresponding to the query text. It is sensitive to
the first matched image’s position, and is more suitable for the condition
that there is only one true-matched image corresponding to the query text
in the gallery set. Therefore, the mean Average Precision (mAP) and mean
Inverse Negative Penalty (mINP) are also employed as auxiliary metrics to
give a comprehensive evaluation.

4.1.2. Implementation Details

The proposed PASA model is trained and tested on a single NVIDIA
RTX4090 24G GPU. To be fair, the pre-trained CLIP, the CLIP text Trans-
former and the CLIP-ViTB/16, is adopted as the text/image encoder as
IRRA [22] and RDE [17]. During training, we adopt different data augmen-
tation strategies to increase the diversity of text and image training data.
For the input texts, the random masking/placement /removing of each word
token 1s used as data augmentation, while the data augmentation for each
input 1image consists of the random horizontal flipping, random crop with

15



Table 1: Performance comparison of the proposed PASA with these SOTA methods on
the dataset CUHK-PEDES. The ”"Ref.” column shows the source of the methods.
T /I Enc.” column is the text/image encoder of each referenced method. RN50 is short
for the ResNet50 neural network. * For a fair comparison, we only state the results of the

global matching of CADA [44].

The

Methods Ref. T/I Enc. R1 R5 R10 MAP mINP
GNA-RNN[]] CVPRI7 VGG16 19.05 - 5364 - -
CMPM/CI9] ECCV18 LSTM/RN50  49.37 - 79.21 - -
Dual-Path[45] ACMMM20  RN50/RN50 4440 66.26 76.07 - -

VITAA[29]  ECCV20 LSTM/Resnet50 54.92 7518 8290 51.60 -
DSSL[25] TMM21 BERT /RN5C 59.98 80.41 87.56 - -
SSAN|24] Arxiv2l LSTM /RNS5C 61.37 80.15 86.73 - -

Lapscore|8| ICCV21 BERT /RN5C 63.4 - 87.8 - -

AXM-Net[46] AAAI22 BERT /RN5C 64.44 80.52 86.77 58.73 -

PBSL|[47] ACMMM23 BERT/RN50  65.32 83.81 89.26 - -

BEAT[48] ACMMM23 BERT/RN101  65.61 83.45 89.54 - -
LCR2S[49] ACMMM23 TextCNN/RN50 67.36 84.19 89.62 59.24 -

CFine|[34 TIP23 BERT/ViT  69.57 85.93 9L15 - :

IRRA[22]  CVPR23 CLIP 73.38  89.93 9371 66.13 50.24

DCEL[50]  ACMMM23 CLIP 75.02 90.89 94.52 - -
Rasa|43] [JCAI23 ALBEF 76.51 90.29 94.25 69.38 -
APTM|51] ACMMM23 BERT/Swim-B 76.53 90.04 94.15 66.91 -
VGSG|52] TIP24 CLIP/RN50 71.38 86.75 91.86 67.91 -
CADA*[44] TMM24 BERT /ViT 73.48 89.57 94.10 65.82 -
TPBS|53] AAAT24 CLIP 73.54 88.19 9235 65.38 -

RDE[17] CVPR24 CLIP 75.94 90.14 94.12 67.56 51.44

PASA Ours CLIP 76.58 90.81 94.67 67.93 51.56

padding and random erasing. Specifically, the maximum length of each in-

put textual token sequence is 77, and the size of each input image is 384 x 128.
We adopt the AdamW optimizer for a total of 60 epochs with a batch size of
128. The initial learning rate is set to le —5 together with the cosine learning

rate decay. In add

datasets CUHK-P.

ition, the ratio of the hard negatives topR = 0.1 for the

LDES, and topR = 0.2 for ICFG-PEDES and RSTPReid

datasets. Finally, the temperature 7 is set to 0.02, the margin m = 0.05
in Eq. (3) for loss Lpy, the attentive token selection ratio k& = 0.5 for the
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Table 2: Performance comparison of the proposed PASA with these SOTA methods on

the dataset ICFG-PEDES.

Methods Ref R1 R5 R10 MAP mINP

CMPM+CMPCI9] ECCV18 43.51 65.44 74.26 - -
Dual-Path[45] ACMTMM20 38.99 59.44 68.41 - -
ViTAA|29] ECCV20 50.98 68.79 75.78 - -
SSAN|[24 Arxiv2l 54.23  72.63 79.53 - -
CFine[34 TIP23 60.83 76.55 82.42 - -

IRRA[22 CVPR23 63.46 80.25 85.82 38.06 7.93
Rasa[43 [JCAI23 6528 80.04 85.12 41.29 -
APTM]|51] ACMMM23 68.51 82.99 87.56 41.22 -
TPBS-CLIP|[53] AAAT24 65.05 80.34 85.47 39.83 -

RDE[17] CVPR24 67.68 8247 87.36 40.06  T7.87

PASA Ours 67.89 82.52 &87.43 41.11 8.26

attentive global feature.

4.2. Comparison with State-of-the-Art Methods

In this section, we display the comparison results between the proposed
PASA method with the existing SOTA approaches on three public datasets.

Comparison results on CUHK-PEDES. We first evaluate the perfor-
mance on the most widely used dataset, 7.e., CUHK-PEDES, and the com-
parison results are shown in Table 1. From Table 1, we can obviously conclude
that PASA outperforms the displayed state-of-the-art methods, achieving the
new SOTA performance on all the proposed metrics except for R10, where
our PASA is still the second best. Specifically, similar to the proposed PASA
method, the IRRA [22] and the RDE [17] methods are all global-based cross-

-

modal alignment methods, and RDE is also the method for negative mining.
PASA can surpass IRRA [22] by 3.2% on R1 and 1.8% on mAP accuracy,
respectively. Meanwhile, PASA consistently outperforms the recent SOTA
method RDE by 0.64% on R1, 0.27% on mAP, demonstrating the advantages
and effectiveness of our proposed method.

Comparison results on ICFG-PEDES and RSTPReid. We re-
port the experimental results on the challenging dataset ICFG-PEDES in
Table 2, as well as the RSTPReid dataset in Table 3. On the ICFG-PEDES
dataset, the proposed PASA can achieve the performance with R1=67.89%,
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Table 3: Performance comparison of the proposed PASA with these SOTA methods on
the dataset RSTPReid.

Methods Ref R1 R5 R10 MAP mINP
DSSL|25] TMM21 39.05 62.60 73.95 - -
SSAN|24] Arxiv2l  43.50 67.80 77.15 - -
LCR?S[49] ACMMM23 5495 76.65 &84.70 40.92 -
CFine[34 TIP23 50.55 72.50 81.60 - -
IRRA|[22 CVPR23 60.20 81.30 &8.20 47.17 25.28
Rasa|43] [JCAI23 66.90 &86.50 91.35 52.31 -
TPBS-CLIP 53] AAAI24 61.95 &83.595 88.75 48.26 -
RDE/17] CVPR24 65.35 83.95 &9.90 50.88 28.08
PASA Ours 66.1 &85.3 91.55 51.31 29.17

Table 4: Ablation studies of the proposed PASA on the dataset CUHK-PEDES.

L;p L%4 L‘Fsﬂ Lpy R1 R5 R10 mAP mINP
backbone VvV 05.33 &84.05 90.33 5H9.15 43.1
v v 75.83 90.46 9453 67.66 5H1.33
v v v 76.15 90.19 94.13 67.36 5H1.11
v v v 76.32 90.33 94.22 67.46 51.23
v v 0.19 0.80 1.38 0.43 .21
v v 7.02 14.81 20.24  6.63 2.87
v v v 73.47 87.98 92.64 65.12 48.76
PASA v v v v 76.58 90.81 94.67 67.93 51.56

R5=82.52%., R10=87.43%., mAP=41.11% and mINP=8.26%, it achieves
a new SOTA performance. Our method surpass RDE with rise of 0.21% on
R1 accuracy and 0.39% on mINP, respectively. Specifically, PASA obtains
the performance gain on mAP by a large margin of 1.05%. As shown in
Table (3), PASA further achieves considerable performance gains by 0.75%,
0.43% and 1.09% on R1 accuracy, mAp and mINP, respectively.

In summary, our PASA consistently achieves SOTA performance on all
three datasets, which indicates the effectiveness of the proposed PASA method.
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4.3. Ablation Studies

To investigate the effectiveness, we conduct ablation studies on the CUHK-
PEDES dataset to compare the contributions of the Partial-hard-negative-
Alignment strategy and the Soft-label Alignment strategy in PASA method.
As shown in Table 4, we take the L;p loss as the backbone framework. Sub-
sequently, different losses are added to the backbone to test the contribution
of the PA and SA strategy. It is worth noting that the SA strategy includes

cn and L. All the experimental results could give the following observa-
tions: (1) Only the LE% or the L% loss seems not to work, while any one of
the L% or the L loss combined with the PA loss can make an improvement
on the performance. This also indicates that SA loss depends on PA loss.
(2) By combining PA and SA, PASA can achieve the best performance on all
metrics, demonstrating the effectiveness and complementarity ot both com-

ponents, which also further certifies the superiority ot the proposed Triplet
PA loss.

4.4. Hyperparameter sensitivity analysis

To examine the sensitivity of our proposed PASA to these hyperparam-

eters, we conducted experiments on the CUHK-PEDES dataset. For the
ratio of hard negatives topR, we set it to vary within a certain range (0,
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Figure 3: The impact on the performance of hyperparameter topR (ratio of hard negatives)
on the dataset CUHK-PEDES. (Best viewed in color)
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Figure 4: The impact on the performance of hyperparameter m (margin) on the dataset
CUHK-PEDES. (Best viewed in color)
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Figure 5: The impact on the performance of hyperparameter 7 (temperature) on the
dataset CUHK-PEDES. (Best viewed in color)

1) together with an interval 0.1. As shown in Fig. 3, the accuracy of Rank-1
and mAP initially decreases and then increases, the best performance can
be obtained when topR is set to 0.1. That is, the hard negatives only exist
between instances within a relatively smaller ratio of the batch size, the re-
maining instances can be regarded as negatives that are easy to distinguish.
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Figure 6: The impact on the performance of hyperparameter k (attention token selection
ratio) on the dataset CUHK-PEDES. (Best viewed in color)

The margin in loss Lpy is a hyperparameter to decide the difference in
similarity between positives and negatives. From Fig. 4, we can see that the
best performance can be obtained with m = 0.05. The increase or decrease in
the value of m leads to suboptimal performance on Rank-1 and mAP. Specif-
ically, the results of Rank-1 and mAP on temperature 7 are shown in Fig.
5. We can obviously find that a too small value gives the failed training,
i.e. 7 = 0.01, while the increasing value of 7 decreases both the Rank-1 and
mAp accuracy. During the extensive experiments, the best performance can
be achieved when 7 = 0.02. To sum up, we choose topR = 0.1, m = 0.05 and
7 = 0.02 in all experiments on the CUHK-PEDES dataset. The impact of
the attention token selection ratio k on the performance is presented in Fig.
6. Through the result changes on Rankl and mAP, it can be obviously seen
that the Rankl and MAP accuracy first rise and then drop as the value of k
increases, and the best performance can be obtained with k=0.5. It means
that a small ratio of local tokens may lose important information, while a
large ratio of local tokens leads to overfitting and decreases the performance
to a certain extent.

4.5. Generalization Analysis

To test the generalization ability of the proposed PASA, we conducted
experiments under noise. In view of fairness, we leverage the noisy training
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Table 5:

Performance comparison under different noise rates.

CUHK represents the

dataset CUHK-PEDES, ICFG and RSTP are short for the datasets ICFG-PEDES and

RSTPReid, respectively.

Noise 0% 20% 50%
Methods PASA RDE IRRA | PASA RDE IRRA | PASA RDE IRRA
R1 706.98 75.94 73.38 75.06 74.46 69.44 2.24 71.33 6241
Rb 90.81 90.14 89.93 | 89.85 8942 &87.09 | 87.78 &7.41 82.23
CUHK RI10 94.67 94.12 93.71 94.02 93.63 92.04 | 92.35 91.81 &88.40
mAP | 67.93 67.56 66.13 | 66.7 66.13 62.16 | 64.47 63.50 55.52
mINP | 51.56 51.44 50.24 | 50.24 49.66 45.70 | 48.39 47.36 38.48
R1 67.89 67.68 6346 | 66.68 66.04 60.76 | 64.26 63.76 52.53
R5 82.52 8247 80.25 | 82.35 81.70 78.26 79.98 79.03 71.99
ICFG  R10 87.43 87.36 &85.82 | 87.16 &6.70 84.01 85.17 84.91 79.41
mAP | 41.11 40.06 38.06 | 39.77 39.08 35.87 | 38.63 37.38 29.05
mINP | 8.26 .87 7.93 7.98 7.00  6.80 7.74 6.80 4.43
R1 66.1 05.30 60.2C 65.1 04.45 bH&8.75 | 63.45 62.85 56.65
R5 85.3 83.96 81.30 84.45 &3.50 81.90 | 84.35 83.20 78.40
RSTP RI10 91.55 &89.90 &8&.20 90.55 90.00 &88.25 | 90.35 &9.15 86.99
mAP | 51.31 50.88 47.17 0.5 49.78 46.38 | 48.76 47.67 4241
mINP | 29.17 28.08 25.28 28.19 27.43 24.78 | 26.23 23.97 21.05

data as generated in RDE [17]. That is, the 20% and 50% synthetic noises are

used to simulate these insuf
scenario.

nciently aligned text-image pairs in a real-world

The experimental results under different noise rates are shown

in Table 5. From Table 5, we can see that the proposed PASA has strong
generalization ability, since its performance can outperform the recent similar

methods RDE[17] and IRRA [22] on all metrics under dif

‘erent noise settings,

demonstrating the strong anti-interterence ability and generalization ability

of the proposed PASA.

4.6. Visualization of Retrieval Results

To visually compare the

retrieval performance, we exhibit the top-10 re-

trieval examples of our proposed PASA method and the recent methods RDE

117] and IRRA [22|. As shown in Fig. 7, we show two texts as the query,
and its top-10 retrieved images from our PASA are more accurate. Specif-
ically, the matched images with the query texts from PASA rank in front

of the top-10 ranking results. For example, for query 1, the top-3 results

22



PASA

RDE

IRRA

o e 0 S N S N N N N D S A S N S A N N A A S S S S S A S N A N S S S A N D S S A S e i o
" 3 Z ;. '_,__ |
PASA
RDE
IRRA

Figure 7: The examples of top-10 retrieval results from two query texts on the CUHK-
PEDES dataset from our PASA, RDE [17] and IRRA [22]. For each query text, the first
row is the top-10 retrieved images for our PASA, while the second row and the third row are
the results from RDE and IRRA. The positive matched images and negative mismatched
images are marked by green and red rectangles, respectively. (Best viewed in color)



of the proposed PASA are all the matched positive images, while there are
no matched positive images for RDE, and the only matched positive image
ranks second for IRRA. From the mismatch negative images, we can also
conclude that PASA has more matched parts with the query text than RDE

and IRRA. indicating the reliability and robustness of our proposed method.

5. Conclusion

In this paper, we have proposed a dual alignment method for text-to-
image person retrieval, 7.e. the PASA method, which includes Partial neg-
ative Alignment and Soft-label Alignment. Our method first utilizes the
CLIP model to extract the weighted global feature (WGF') and the attentive
global feature (AGF) for each input text-image pair. Then the dual align-
ment mechanism is performed on WGFEF and AGF to calculate the similari-
ties between inter-modal and intra-modal. By using Partial Alignment, we
then achieve the alignment for these hard negatives within each mini-batch.
With Soft-label Alignment, the alignment of similarity distribution for inter-
modal and intra-modal can be achieved, especially for the inter-modal hard
negatives. Finally, we conducted extensive experiments on widely-used text-
to-image person retrieval datasets, i.e., CUHK-PEDES, ICFG-PEDES and
RSTPReid. All experimental results demonstrated that our proposed PASA
method consistently improves performance in all metrics and achieves the
new state-of-the-art results.
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