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We have explored the nonlinear dynamics of six common, driven, diatomic molecules using a
shifted Tietz-Wei (sTW) model of their molecular potential functions. We focused on the variations
in their resonances, bifurcations and multistability with changes in the spectroscopic and driving
force parameters, namely, the dissociation energy (V0), the potential function optimization param-
eters (bh and ch), driving frequency (ω), and amplitude (F0). We used the method of multiple
time-scales to obtain frequency response curves for the primary and secondary superharmonic res-
onances. The primary resonances were larger for I2 and Cl2 than for CO or O2. Variations in F0,
bh, and ch had profound impacts on the primary resonance features, with higher F0 and lower V0

enhancing the response amplitude. Evidence for hysteresis in the frequency-response – a signature
of multistability – is demonstrated. Superharmonic resonances are marked by increased amplitudes
and significant hysteresis, especially for I2 and Cl2, driven by large F0 at low V0. Bifurcation di-
agrams, maximal Lyapunov exponents, and Poincaré maps were used to unravel the transitions
between periodic and chaotic states. Period-doubling bifurcations, sudden chaos, and an abundance
of crisis events, viz boundary, interior, and attractor-merging crises, were identified as the routes to
a range of different chaotic states. Symmetry-breaking, attractor-bubbling, and multistability were
all found and are reported. Coexisting attractors and their basins of attraction showed striped,
fractal, and Wada-like basin structures. The results highlight the complex dynamics stemming from
the interaction between spectroscopic properties and external excitations of the sTW oscillator in
diatomic molecules. They carry significant implications for experimental applications.

I. INTRODUCTION

Driven nonlinear systems are known to exhibit a wide
range of complex and intriguing phenomena [1] such as
bifurcations [2–7], chaos [2–4], antimonotonicity [8, 9],
bursting and mixed-mode oscillations [10–13], nonlinear
resonance [14–17], synchronization [4, 18–21], and mul-
tistability [22–27]. Chaotic dynamics and the multista-
bility of attractors have been closely studied in a wide
range of nonlinear systems and our knowledge of their
occurrence, together with applications, have been greatly
enriched [26, 27]. Yet the emergence of chaotic behaviors
in dynamical systems is often preceded by diverse bifur-
cation transition mechanisms, such as period-doubling
and crises, among other events [3], which remain less
explored. Multistability and its variants, namely, ex-
treme multistability [28–30], and megastability [31–33]
are characterized by the coexistence of two or more at-
tractors, either periodic or chaotic or a combination of
them, for fixed parameter values [26–33]. For extreme
multistability, it is generally known that an infinite num-
ber of attractors can coexist. Thus, the system can ex-
hibit an uncountable number of stable states with each
corresponding to a different attractor [28–30]. In con-
trast, megastability involves a countable number of co-
existing attractors - meaning that the system can switch
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between a large, but countable number of states [31–33].
A special variant of multistability was very recently an-
nounced [34]. It was referred to as Matryoshka multi-
stability. In this case, an infinite number of exactly self-
similar attractors which are embedded inside each other
coexist in a system [34]. These multistable scenarios give
rise to highly complex and unpredictable behaviors.

Starting from the early exploration of multistability
by Hennri Poincaré in the 19th century, from the view-
point of homoclinic behavior in dynamical systems, to
very recent comprehensive reports of its occurrences in
diverse systems [26, 27, 35], the multistability of attrac-
tors has become fundamental to a wide range of investi-
gations of both physical and biological systems [27]. This
is on account of e.g. their roles in the attainment of sta-
ble synchronous states of interacting oscillators [36], in
the understanding of memory and cognitive processes in
neurons [37, 38], in the design of memory electronic cir-
cuits capable of switching between multiple stable be-
haviors [39, 40], in cryptography and secure communica-
tions [29, 41–43], in the design of micro- and nanosys-
tems [44], and in improving the efficiency of energy har-
vesting [45, 46] as well as in thermochemical reactors [47].
There are many other examples.

Motivated in part by these useful applications of
multistability, in part by the inherent interest of this
widespread phenomenon, and in part by the excellent
pedagogical review by Pisarchik and Hramov [27], ex-
tensive efforts have been made to explore the manifes-
tations and features of multistability. These have in-
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cluded, for example, a range of driven nonlinear oscil-
lators [30, 48–51], chemical system [52, 53], plasma mod-
els [54–56], non-smooth nonlinear systems [57, 58], quan-
tum systems [59], mammalian cells [60], mechanical sys-
tems [45, 46] and optomechanical devices [61–65]. De-
spite these numerous studies, multistability in the shifted
sTW oscillator proposed by Falaye et al. [66] has not yet,
to our knowledge, been investigated.

The sTW oscillator is a Morse-type molecular poten-
tial used for describing atomic interactions in diatomic
molecules. It was introduced to model molecular dy-
namics at moderate and high rotational and vibrational
quantum numbers, and represents a successful attempt
by Falaye et al. [66] to find an appropriate potential func-
tion for studying the vibrational, dynamical and ther-
modynamic properties of diatomic molecules. Diatomic
molecules are integral to numerous natural and industrial
processes and applications, including atmospheric chem-
istry [67], combustion [68], laser spectroscopy [69–71],
astrophysics [72, 73], material science [74], and nuclear
reactors [75], underscoring their scientific importance.
The sTW potential function offer several advantages over
the traditional Morse potential. These include greater
flexibility in fitting experimental data due to additional
adjustable parameters, improved accuracy in describing
molecular interactions at high vibrational and rotational
quantum states, and better representation of the dis-
sociation energy and anharmonic effects [76, 77]. The
sTW potential function has been investigated in great
detail and employed to obtain the bound and scattering
states, rotation–vibration spectra, and molar entropy of
diatomic molecules [78–85]. None of these reports ex-
plored the dynamics of the sTW oscillator within the
framework of dissipative-driven nonlinear dynamical sys-
tems for interatomic potentials [86–89]. As a first step
towards addressing this gap, we recently investigated the
classical motion of a dual-frequency driven oscillator in
an sTW potential function [77]. While exploring the vi-
brational dynamics, we found discontinuous resonance
jumps, of the kind often associated with dynamical hys-
teresis – a signature of the existence of different coexist-
ing states for a single set of parameter values, such that
the dynamics is irreversible when a parameter is varied
forwards and back again. Motivated by these observa-
tions, we explore in this present paper, the nonlinear dy-
namics of the driven sTW oscillator, paying particular
attention to its resonances, hysteresis, bifurcations and
multistability, and the roles played by the sTW poten-
tial function parameters, namely, V0, ch, and bhl on their
occurrence. Because the sTW model provides such an
excellent description of diatomic molecules, it is to be
expected that phenomena that we observe and report in
the model will also be manifested in the actual physical
molecules. They can therefore be sought experimentally
by experts working in the area.

The rest of the paper is organized as follows: Section II
introduces the model equation of motion for the shifted
sTW oscillator. Section III provides a theoretical investi-

gation of its primary and secondary resonance responses
under external forcing. Section IV presents the observed
bifurcation structures, highlighting the system’s complex
dynamical behaviors, and including the appearance of
multistability. Finally, Section V summarizes the key
findings and offers concluding remarks.

II. THE MODEL

We investigate the classical dissipative and driven sTW
oscillator described by the equation of motion [77]:

ẍ+ δẋ+
dV (x)

dx
= f cosωt (1)

where x is the inter-nuclear distance, δ is the damping
coefficient, and f is the amplitude of the external forc-
ing at angular frequency ω. V (x) is the sTW potential
defined by [66, 79]:

V (x) = V0

(
Ae−bh(x−re) −Be−2bh(x−re)

(1− che−bh(x−re))2

)
, (2)

where A = 2(ch − 1), B = (c2h − 1), bh = γ(1 − ch), V0

is the potential well depth or dissociation constant, re is
the molecular bond length at the equilibrium radius, ch
is the optimization parameter obtained ab initio or Ryd-
berg–Klein–Rees (RKR) intramolecular potential, and γ

is the Morse constant [66, 85], defined as γ = ωe

√
2π2 c2µ

V0
,

with µ and c being the reduced mass and the speed of
light, respectively. In the limit of the optimization pa-
rameter approaching zero, i.e. ch → 0, the sTW poten-
tial reduces to the popular Morse potential [66, 85, 90].
Except where otherwise stated, we fix the parameters at
δ = 0.8, f = 4.0, ω = 3.0, V0 = 1, ch = 0.25, and
bh = 1.0, re = 0. Table I summarizes the key molecular
parameters of the sTW potential functions for the six di-
atomic molecules herein examined, including the reduced
mass (µ), equilibrium bond length (re), dissociation en-
ergy (V0), and potential parameters (bh and ch).
In order to analyze Eq. (1), it is convenient to express

V (x) in terms of a new variable, z, such that,

z = e−bh(x−re). (3)

In terms of z, Eq. (1) can be written as;

V (x) = V0

(
Az −Bz2

(1− chz)2

)
, (4)

with dV (x)
dx in terms of z, given as,

dV

dx
= −V0bhz

(
(A(1 + chz)− 2Bz)

(1− chz)3

)
. (5)
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TABLE I. Spectroscopic parameter values for 6 diatomic
molecules modeled by the shifted Tietz-Wei molecular poten-
tial [77, 91–94].

Molecule µ (u) re (Å) V0 (eV) bh (Å−1) ch
CO 6.8607 1.1283 10.845 2.2048 0.1499
O2 7.9975 1.208 5.1567 2.5910 0.0273
I2 63.4522 2.662 1.5818 2.1234 0.1390
H2 0.5039 0.7416 4.7446 1.6189 0.1701
Cl2 17.6083 1.987 2.5139 2.2035 0.0970
HF 9.5014 0.917 6.120 1.9421 0.1278

III. RESONANCE ANALYSIS OF THE
SHIFTED TIETZ-WEI OSCILLATOR

We now present a theoretical analysis of the primary
and secondary resonance responses of the sTW oscillator
(1) under forced external excitation. Let y = x − re,
ẏ = ẋ, ÿ = ẍ. Then the oscillator becomes

ÿ + dẏ − V0bhe
−bhy

[
A(1 + che

−bhy)− 2Be−bhy

(1− che−bhy)3

]
= f cosωt. (6)

To facilitate the analysis, we Taylor-expand the potential
function, obtaining

− V0bhe
−bhy

[
A(1 + che

−bhy)− 2Be−bhy

(1− che−bhy)3

]
= β0 + β1y + β2y

2 + β3y
3 + . . . , (7)

where

β0 = −V0bh

[
A(1 + ch)− 2B

(1− ch)3

]
,

β1 = V0b
2
h

[
A− 2B(2 + ch) +Ach(4 + ch)

(1− ch)4

]
= ω2

0 ,

β2 = − V0b
3
h

2(1− ch)5
[A(1 + ch)(1 + ch(10 + ch))

−2B(4 + ch(7 + ch))] , (8)

β3 =
V0b

4
h

6(1− ch)6
[A− 2B(8 + ch(33 + ch(18 + ch)))

+Ach(26 + ch(66 + ch(26 + ch)))] . (9)

This reduces the oscillator equation to:

ÿ + dẏ + β0 + ω2
0y + β2y

2 + β3y
3 = f cosωt. (10)

A. Primary Resonance

In the case of the primary resonant state, the ampli-
tude of the external excitation f is small and proportional
to a perturbation parameter ϵ, such that f = ϵF0. We
also set d = ϵd, β2 = ϵβ2, and β3 = ϵβ3. The relationship
between the external excitation frequency ω and the nat-
ural frequency ω0 is expressed as ω = ω0 + ϵσ, where σ
is the detuning parameter. Consequently, the perturbed
form of the oscillator can now be written as:

ÿ + ϵdẏ + β0 + ω2
0y + ϵβ2y

2 + ϵβ3y
3 = ϵF0 cosωt. (11)

Using the method of multiple scales, we assume a solution
of the form

y = y0(T0, T1) + ϵy1(T0, T1) + . . . , (12)

The first and second order time derivatives of the solution
are given as:

d

dt
= D0+ ϵD1+ . . . ,

d2

dt2
= D2

0 +2ϵD0D1+ . . . , (13)

where Dn = ∂
∂Tn

and Tn = ϵnt with 0 ≤ ϵ ≤ 1.

Substituting Eq. (12) and Eq. (13), into Eq. (11), and
equating coefficients of ϵ0 and ϵ1 separately to zero, we
have

ϵ0 : D2
0y0+ω2

0y0 + β0 = 0, (14)

ϵ1 : D2
0y1+ω2

0y1 = −2D0D1y0 − dD0y0 − β2y
2
0

−β3y
3
0 + F0 cos(ω0T0 + σT1). (15)

The general solution of Eq. (14) can be expressed as:

y0 = A(T1)e
jω0T0 + Ā(T1)e

−jω0T0 − β0

ω2
0

, (16)

where Ā is the complex conjugate of A. Inserting Eq. (16)
into Eq. (15), we obtain:

D2
0y1+ω2

0y1 =

[
−2jω0A

′ − jdω0A+
2Aβ0β2

ω2
0

− 3A2Āβ3 −
3Aβ2

0β3

ω4
0

]
ejω0T0︸ ︷︷ ︸

Secular Term

+
F0

2
ejσT1ejω0T0︸ ︷︷ ︸

Secular Term

+NST+CC+Constant terms.

(17)
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where CC represents the complex conjugate of the pre-
ceding terms, NST representing the non-secular terms:

NST =

[
−β2A

2 +
3A2β0β3

ω2
0

]
e2jω0T0

− β3A
3e3jω0T0 , (18)

and the Constant terms are given by

Constant terms = −2AĀβ2 +
6AĀβ0β3

ω2
0

− β2
0β2

ω4
0

+
β3
0β3

ω6
0

. (19)

To obtain the expression for the primary resonance, we
need to equate the secular terms in Eq. (17) to zero;

− 2jω0A
′ − jdω0A+

2Aβ0β2

ω2
0

− 3A2Āβ3

− 3Aβ2
0β3

ω4
0

+
F0

2
ejσT1 = 0. (20)

We choose

A(T1) =
1

2
a(T1)e

jb(T1), (21)

where a(T1) and b(T1) represent the amplitude and phase
respectively. Substituting Eq. (21) into Eq. (20) and sep-
arating the real and imaginary parts, then,

a′ = −d

2
a+

F0

2ω0
sin δ, (22)

aδ′ = aσ − 3β3

8ω0
a3 +

β0β2

ω3
0

a− 3β2
0β3

2ω5
0

+
F0

2ω0
cos δ, (23)

where δ = σT1 − b, and b′ = σ − δ′. Eliminating δ from
(22) and (23), we have the frequency-response equation
given by

d2

4
a20+a20

(
σ − 3β3

8ω0
a20 +

β0β2

ω3
0

− 3β2
0β3

2ω5
0

)2

=
F 2
0

4ω2
0

, (24)

where a0 is the stationary state value of a. We solved
Eq. (24) using the Newton-Raphson algorithm. Figure 1
presents the primary resonance response of the sTW os-
cillator for the six diatomic molecules whose properties
are listed in Table I. Notably, I2 and Cl2 show the largest
primary resonance amplitudes, while CO and O2 exhibit
the lowest. One might therefore be tempted to attribute
resonance amplitude to molecular mass, as I2 and Cl2
are among the heaviest molecules. However, H2, despite
being the lightest molecule, shows a larger resonance am-
plitude than the heavier CO and O2, suggesting that
factors beyond mass are influential. A key factor ap-
pears to be the dissociation energy (V0), with molecules
that have lower V0, such as I2, Cl2, and H2, generally
resonating more strongly. This trend is consistent with

a lower dissociation energy correlating with a less rigid
bond, making these molecules more responsive to exter-
nal excitation. Conversely, the low resonance amplitude
of CO, for instance, could be attributed to its high V0,
which indicates a stiffer bond that is more resistant to
excitation. Additionally, I2 and Cl2 are halogens, with
comparatively long bond lengths and high polarizability,
further enhancing their response. Figs. 2 and 3 extend
this analysis by showing the effects of the external force
amplitude F0 and other spectroscopic parameters V0, bh,
and ch. In all the frequency-response plots, clear evi-
dence for dynamical hysteresis can be seen, accompanied
by jump phenomenon.
Figures 2 and 3 show how the external force ampli-

tude (F0) and the spectroscopic parameters (V0, bh, and
ch) influence the primary resonance of the H2 diatomic
molecule. In Fig. 2, variations in F0 and V0 lead to re-
markable nonlinear behaviors, such as dynamical hys-
teresis and bistability, with multiple stable states and
rapid transitions. For example, with F0 = 4.0, a hys-
teresis loop develops for detuning parameter (σ) values
between 2.0 and 7.0, displaying jump phenomena within
this range. Increasing F0 not only raises the amplitude of
the primary resonance but also broadens the resonance
frequency bandwidth, allowing the system to maintain
high amplitude responses over a wider range of σ. Con-
versely, increasing dissociation energy (V0) tends to re-
duce the amplitude of the primary resonance, indicating
a stiffer bond that is less responsive to external forces.

Figure 3 shows the effects of the potential function
optimization parameters ch and bh on the primary res-
onance amplitude a0 of the H2 diatomic molecule. In
Fig. 3(a), varying the optimization parameter ch signifi-
cantly affects the resonance amplitude. Lower values of
ch (from 0.2 to −0.2) provide higher peak amplitudes,
enhancing the molecules’s response. Higher ch values ex-
pand the frequency bandwidth across which hysteresis
occurs, with ch = 0.2 displaying a wide hysteresis span-
ning from σ = 2 to σ = 8, while lower values reduce
or eliminate hysteresis. In Fig. 3(b), decreasing bh from
2.5 to 1.5 increases the peak amplitude while decreasing
the hysteresis frequency range. For bh = 2.5, hystere-
sis spanns between σ = 2.5 and σ = 10, while smaller
bh values reduced the nonlinear effect. Thus, both ch
and bh have a considerable impact on the amplitude and
hysteresis regime of the primary resonance.

B. Superharmonic Resonances

For superharmonic resonances, the amplitude of the
external forcing is large and of the order F = ϵ0F0. Using
the method of multiple scales and equating coefficients of
ϵ0 and ϵ1 separately to zero, we have

ϵ0 : D2
0y0+ω2

0y0 + β0 = F0 cosωt, (25)

ϵ1 : D2
0y1+ω2

0y1 = −2D0D1y0 − dD0y0

−β2y
2
0 − β3y

3
0 . (26)
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FIG. 1. Primary resonance of the sTW oscillator for δ0 =
1.0, F0 = 2.0 using the parameters for six different diatomic
molecule

FIG. 2. Effect of (a) external force amplitude, F0 and (b) V0

on the primary resonance for δ0 = 1.0 using the parameters
for the H2 diatomic molecule.

The general solution of Eq. (25) is of the form:

y0 = A(T1)e
jω0T0 + Ā(T1)e

−jω0T0 +BejωT0

+Be−jωT0 − β0

ω2
0

, (27)

FIG. 3. Effect of (a) ch and (b) bh on the primary reso-
nance for δ0 = 1.0 using the parameters for the H2 diatomic
molecule.

where Ā is the complex conjugate of A and B = F0

2(ω2
0−ω2)

.

Inserting Eq. (27) into Eq. (26), we obtain, after some
algebraic manipulations:

D2
0y1 + ω2

0y1 =

[
−2jω0A

′ − jdω0A+
2Aβ0β2

ω2
0

−β3

(
6AB2 + 3A2Ā+

3Aβ2
0

ω4
0

)]
ejω0T0

+

[
−jdωB +

2Bβ0β2

ω2
0

− β3

(
3B3 + 6AĀB

+
3Bβ2

0

ω4
0

)]
ejωT0 +

[
3B2β0β3

ω2
0

−B2β2

]
e2jωT0

−B3β3e
3jωT0 − 2ABβ2e

j(ω+ω0)T0 − 2ĀBβ2e
j(ω−ω0)T0

−3AB2β3e
j(2ω+ω0)T0 − 3A2Bej(ω+2ω0)T0

−3ĀB2β3e
j(2ω−ω0)T0 − 3Ā2Bβ3e

j(ω−2ω0)T0

+
6ABβ0β3

ω2
0

ej(ω+ω0)T0 +
6ĀBβ0β3

ω2
0

ej(ω−ω0)T0

+NST + CC+ Constant terms, (28)
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where CC represents the complex conjugate of the pre-
ceding terms, NST representing the non-secular terms

NST =

[
−β2A

2 +
3A2β0β3

ω2
0

]
e2jω0T0

−A3β3e
3jω0T0 , (29)

and the Constant terms are given by

Constant terms = −β2

(
2B2 + 2AĀ+

β2
0

ω4
0

)
+ β3

(
β3
0

ω6
0

+
6B2β0

ω2
0

+
6AĀβ0

ω2
0

)
. (30)

We can see from Eq. (28) that the system can exhibit
some superharmonic states.

For the 1:2 superharmonic state, we substitute 2ω =
ω0 + ϵσ into Eq. (28) and set the secular terms to zero,
so that

− 2jω0A
′ − jdω0A+

2Aβ0β2

ω2
0

− β3

(
6AB2 + 3A2Ā+

3Aβ2
0

ω4
0

)
+

[
3B2β0β3

ω2
0

−B2β2

]
ejσT1 = 0. (31)

By substituting the polar form of A given by

A(T1) =
1

2
a(T1)e

jb(T1), (32)

and separating the real and imaginary parts, we have

a′ = −d

2
a+

∆1

ω0
sin δ, (33)

aδ′ = aσ +
β0β2

ω3
0

a−β3

(
3B2

ω0
a+

3

8ω0
a3 +

3β2
0

2ω5
0

a

)
+
∆1

ω0
cos δ, , (34)

where ∆1 = 3B2β0β3

ω2
0

−B2β2 and δ = σT1 − b. Eliminat-

ing δ from Eq. (33) and Eq. (34), we get the following
frequency response equation

d2

4
a20 + a20

(
σ +

β0β2

ω3
0

− β3

(
3B2

ω0
+

3

8ω0
a20 +

3β2
0

2ω5
0

))2

=

(
3B2β0β3

ω3
0

− B2β2

ω0

)2

, (35)

where a0 is the stationary state value of a.
For the 1 : 3 superharmonic state, we substitute 3ω =

ω0 + ϵσ into Eq. (28) and set the secular terms to zero,
so that

− 2jω0A
′ − jdω0A+

2Aβ0β2

ω2
0

− β3

(
6AB2 + 3A2Ā+

3Aβ2
0

ω4
0

)
−B3β3e

jσT1 = 0. (36)

In this case, the frequency response equation is given by

d2

4
a20 + a20

(
σ +

β0β2

ω3
0

− β3

(
3B2

ω0
+

3

8ω0
a20 +

3β2
0

2ω5
0

))2

=
B6β2

3

ω2
0

. (37)

Using the Newton-Raphson algorithm for Eq. (35) and
Eq. (37), the amplitude equation was iterated, plotting
a0 as a function of the detuning parameter σ for differ-
ent values of the spectroscopic parameters. Figs. 4 and
7 display the second- and third-order superharmonic res-
onance responses of the sTW oscillator for six diatomic
molecules. Compared to the primary resonance in Fig. 1,
the superharmonic resonances exhibit higher amplitudes
and more pronounced hysteresis effects across all the
molecules. I2 and Cl2 exhibit particularly high resonance
amplitudes and broader hysteresis frequency bandwidths,
suggesting increased sensitivity to nonlinear effects under
superharmonic excitation. In contrast, CO and O2 dis-
played lower amplitudes with no evidence of hysteresis
under these conditions. The increased response and ex-
panded hysteresis in superharmonic resonance are largely
attributable to the high F0 and the specific molecular
parameters (V0, bh, and ch). Molecules with lower V0

and favorable parameter values tend to exhibit more ex-
tensive hysteresis, underscoring the role of bond flexibil-
ity and polarizability in shaping resonance behavior. In
summary, superharmonic resonance shows amplification
of both the amplitude and nonlinear response, indicat-
ing the complex interaction between molecular properties
and external excitation forces.
In Figures 5 and 8, the second- and third-order su-

perharmonic resonance responses of the sTW oscillator
for the H2 diatomic molecule are presented, showing the
effects of varying the external force amplitude F0 and dis-
sociation energy V0. Notably, for the second-order res-
onance shown in Fig. 5(a), setting F0 = 8.0 promotes
an enhanced hysteresis loop, indicating high sensitivity
to nonlinear effects and a broader range of the detuning
parameter σ (from approximately σ = 6 to σ = 16.5)
where jump phenomena occur. Similarly, in Fig. 5(b),
V0 = 2.0 leads to an extended hysteresis range, indicating
increased bond flexibility and susceptibility to nonlinear
dynamics. For the third-order resonance shown in Fig. 8,
the effects are even more pronounced. For instance, at
F0 = 15.0 shown in Fig. 8(a), the hysteresis loop spans
a wider σ range (from approximately σ = 10 to σ = 26),
indicating a heightened response of the oscillator under
stronger external forcing. Likewise, V0 = 2.0 in Fig. 8(b)
results in substantial hysteresis, with jump phenomena
observed over a wider range of σ values than observed
for higher V0. These cases underscore that higher F0 and
lower V0 values amplify the nonlinear behavior of the os-
cillator, making the system more responsive to superhar-
monic excitations and extending the range of detuning
over which nonlinear effects such as hysteresis and jump
phenomena are evident.
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FIG. 4. Second order superharmonic resonance of sTW os-
cillator for δ0 = 1.0, F0 = 5.0 using the parameters for six
different diatomic molecules

In Figures 6 and 9, the effect of varying parameters ch
and bh on the amplitude a0 of the response was explored
for the second and third order superharmonic resonances
for the H2 diatomic molecule, with δ0 = 1.0. Evidently,
these potential optimization parameters have a rather fil-
tering impact on the response amplitude, with no appear-
ance of hysteresis or discontinuous jumps. Figs. 6(a) and
9(a) show the influence of ch on the second and third or-
der superharmonic resonances, respectively. Varying ch
from −0.2 to 0.2 enhances the peak amplitude a0, with
no noticeable jumps or discontinuities in the frequency-
response curve. The absence of hysteresis or jump phe-
nomena suggests that the response is smooth and stable,
with no abrupt shifts as σ changes.

Similarly, in Figs. 6(b) and 9(b), which show the effect
of bh on the second and third order superharmonic reso-
nances, we found a slight increase in the peak amplitude
as bh decreases from 2.5 to 1.5. This change, like the ef-
fect of ch, is not pronounced, indicating that fluctuations
in bh have a little influence on the resonance amplitude.
Furthermore, the resonance curves stay smooth and con-
tinuous throughout the parameter range, with no occur-
rence of hysteresis with variations in bh. In summary,
both ch and bh have only marginal effects on the ampli-
tudes of the second and third order superharmonic reso-
nances, producing only modest changes in peak heights.
The absence of hysteresis for this case is indicative of a
stable, continuous response, implying that the system’s
behaviour is adaptable to changes in these parameters,
resulting in smooth amplitude dynamics.

IV. BIFURCATION ANALYSIS

To comprehend the complex resonance features more
deeply, we now carry out a numerical bifurcation anal-
ysis of the system’s structures. The sTW oscillator can

FIG. 5. Effect of (a) external force amplitude, F0 and (b)
V0 on the second order superharmonic resonance for δ0 = 1.0
using the parameters for the H2 diatomic molecule.

be written as a non-autonomous first order differential
equations of the form

ẋ = u,

u̇ = −δu− dV

dx
+ f cosωt. (38)

Without the external forcing i.e. f = 0, we find that
the only fixed point of the model Eq. (38) is X = (x, u)
= (re, 0) and the Jacobian matrix J evaluated at this
fixed point is given by

J =

(
0 1
Q −δ

)
(39)

where

Q = − V0b
2
h

(1− ch)2
,

The eigenvalues of the Jacobian matrix (Eq. (39)) are
obtained from the corresponding characteristic equation
as

1

2

(
−δ +

√
d2 + 4Q

)
.

The fixed point (re, 0) is a stable sink or spiral for δ2 >
4|Q| and δ2 < 4|Q| respectively when δ > 0. For δ <
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FIG. 6. Effect of (a) ch and (b) bh on the second order su-
perharmonic resonance for δ0 = 1.0 using the parameters for
the H2 diatomic molecule.

0, it becomes an unstable sink or spiral for δ2 > 4|Q|
and δ2 < 4|Q| respectively. In addition, the fixed point
(re, 0) is hyperbolic. Hence, the model is topologically
and structurally stable [95–97]. Since it is the only fixed
point of the model, local stability through linearization
and calculation of eigenvalues should suffice.

Now, in the case when f ̸= 0, the model (Eq. (38))
can be rewritten as a first-order autonomous ordinary
differential equation of the following form:

ẋ = u,

u̇ = −δu− dV

dx
+ f cosωθ,

θ̇ = 1. (40)

where (x, u, θ) ∈ R2 × S1, (x, u) ∈ R2 is the two-
dimensional Euclidean space, θ ∈ S1 represent points
on the unit circle of length T = 2π/ω and T is the
period of the external forcing [86, 98, 99]. For similar
forced systems, we know that the fixed point (re, 0) will
generate hyperbolic circular orbits in the phase space
R2 × S1. Furthermore, based on the invariant mani-
fold theorem [100, 101], such circular orbits persist for
all f ̸= 0, losing merely their circularity while retaining
the same fundamental qualitative properties [95, 98].

In vector notation, Eq. (40) is of the form Ẋ =
ϕ(X,µ), where ϕ(X,µ) is an autonomous vector field,

FIG. 7. Third order superharmonic resonance of sTW os-
cillator for δ0 = 1.0, F0 = 8.0 using the parameters for six
different diatomic molecules

X = (x, u, θ) represents the phase space R2 × S1 and
µ = (δ, f, ω, V0, ch, bh) is the vector element for the pa-
rameter space. The dependences of the model on the
sTW potential parameters V0,ch and bh are implied from
the potential gradient term dV/dx.
In our numerical analysis, we consider the global

Poincaré map P : Σ → Σ [86, 98],

xp = (x, u) → P (xp) = ϕT |Σ(x, u, c),

where c is a constant determining the location of the
Poincaré cross-section on which the coordinates (x, u) of
the attractor are expressed, and the Poincaré plane Σ is
given by

Σ = {(x, u, θ) ∈ R2 × S1 |θ = c = 0}.

For the numerical simulations, the sTW oscillator equa-
tion (1), rewritten as Eq. (38), is solved numerically
by implementing a fourth-order Runge-Kutta algorithm
with the initial conditions x(0) = re+0.5, u(0) = ẋ(0) =
0, except otherwise indicated [102, 103].
Bifurcation analysis is a mathematical and computa-

tional technique used to understand how the behaviour
of dynamical systems changes as parameters are changed.
When a control parameter µ = (δ, f, ω, V0, ch, bh) of the
model is varied, we want to know what key qualitative
changes occur in the model solution. To generate the bi-
furcation diagrams, one model parameter is changed in
very small equidistant steps while the other parameters
remain constant. The bifurcation diagrams are obtained
after the first 800 cycles of the driving period T have
been discarded as transients, to ensure that the system
has reached a steady state solution. The corresponding
x, u points on the bifurcation diagram are plotted by us-
ing the previous step’s final value as the initial condition
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FIG. 8. Effect of (a) external force amplitude, F0 and (b)
V0 on the third order superharmonic resonance for δ0 = 1.0
using the parameters for the H2 diatomic molecule.

for the next step. The results are presented and discussed
in the following figures.

Figure 10 shows the bifurcation diagram in panel (a)
and maximal Lyapunov exponent in (b) for the sTW os-
cillator with the parameter f ranging from 1.0 to 3.5.
The bifurcation diagram initially exhibits stable, peri-
odic behaviour for the lower f values, then switches to
chaotic dynamics interspersed with periodic windows as
f grows. A period-1 attractor exists from f = 0 to about
1.108. This attractor undergoes a period-doubling bi-
furcation, resulting in a period-2 attractor for f values
between 1.108 and 1.657. Subsequent period-doubling
bifurcations create chaotic attractors around f = 1.754
(Fig. 11(a).

At f ≈ 2.116, a boundary crisis triggers a tangent bi-
furcation, generating a period-3 attractor (Fig. 11(b)).
The phase portrait just before the crisis at the critical
value f = 2.116 is shown in Fig. 12(a), while the period-
3 attractor immediately following the crisis at f = 2.12 is
depicted in Fig. 12(b). This period-3 attractor undergoes
further period-doubling until chaotic behavior re-emerges
at around f = 2.23. An interior crisis at f = 2.267 subse-
quently induces intermittency, where the orbit alternates
between two narrow chaotic bands (Fig. 11(b)).

Further bifurcations lead to additional periodic win-
dows, each initiated by boundary crises, followed by
period-doubling events that culminate in narrow chaotic

FIG. 9. Effect of (a) ch and (b) bh on the third order super-
harmonic resonance for δ0 = 1.0 using the parameters for the
H2 diatomic molecule.

FIG. 10. (a) Bifurcation diagram of the sTW oscillator, il-
lustrating the evolution of the system’s behavior with respect
to f . (b) Corresponding maximal Lyapunov exponent as a
function of f , highlighting regions of chaos (positive values)
and stability (negative values). Other parameters are fixed at
bh = 1.0, ch = 0.25, re = 0, V0 = 1.0, ω = 2.0, δ = 0.8.
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FIG. 11. Enlarged windows of the sTW oscillator bifurcation
diagram shown in Fig. 10.

bands and terminated in an attractor-merging crisis as f
increases. Notably, each new periodic attractor in these
windows has a higher period than its predecessor. For
instance, a period-4 attractor is formed at a boundary
crisis event at f = 2.533 and terminates at an attractor-
merging crisis at f = 2.60, where four narrow band
chaotic attractors merge into a larger chaotic attractor.
The phase portrait just before the boundary crisis at
f = 2.52 is shown in Fig. 12(c), while the period-4 at-
tractor at f = 2.55 is displayed in Fig. 12(d). Figs. 12(e)
and 12(f) represent the phase portraits just before and
after the attractor-merging crisis at f = 2.60. For clarity,
the nature and structure of the attractor-merging crisis
at f = 2.60 were further elucidated using the Poincaré
section shown in Fig. 13, which clearly shows the merg-
ing of four narrow-band attractors into a larger one. A
period-5 attractor appears for f values lying between ap-
proximately 2.833 and 2.851, and a period-6 attractor
emerges for f values between 3.085 and 3.094.
Figure 12 shows phase portraits that visually demon-

strate the system’s dynamics as f rises. These images
show how the orbit widens with increasing f , indicat-
ing the system’s transition from limited, periodic be-
haviour to broader trajectories. For example, at the value

FIG. 12. Phase portraits of the sTW oscillator for selected
values of f from Fig. 10, illustrating the system’s dynamic
behavior at: (a) f = 2.11 (chaotic), (b) f = 2.12 (period-3),
(c) f = 2.52 (chaotic), (d) f = 2.55 (period-4), (e) f = 2.597
(chaotic), (f) f = 2.601 (chaotic). The blue dots represent
the corresponding points in the Poincaré section

f = 2.12, the period-3 attractor in Fig. 12(b) depicts a
more compact orbit, whereas the period-4 attractor ob-
served at f = 2.55 (Fig. 12(b)) indicates a substantial ex-
pansion. This sequence continues with the higher-period
attractors and chaotic bands, illustrating the increased
complexity and amplitude of oscillations as f increases.
The Lyapunov exponent plot in Fig. 10 confirms these
bifurcation sequences. Regions with negative exponents
correspond to stable behavior, while positive exponents
indicate chaos, marked by the exponential divergence of
nearby trajectories. This plot underscores the complex
interplay between order and chaos as f varies, offering
valuable insights into the stability and dynamical behav-
ior of the sTW oscillator under external forcing.

Figure 14(a) displays the bifurcation diagram with the
corresponding maximal Lyapunov exponent in (b) for the
system with parameters V0 = 4.0 and ω = 0.5, as the pa-
rameter f varies from 2.5 to 4.0. At lower f values, the
system exhibits a period-1 attractor until about f ≈ 2.71,
when a sudden transition to chaos takes place, implies a
Pomeau-Manneville intermittency route to chaos. Be-
tween f = 2.756 and f = 3.174, the system exhibits
multistability, with multiple coexisting attractors. For
f = 2.756 to f ≈ 2.78, a period-1 orbit and a chaotic
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FIG. 13. Poincaré section of the sTW oscillator corresponding
to the attractor-merging crisis shown in Figs. 12(e) and (f):
(a) f = 2.597 (narrow 4-band chaotic attractor just before
crisis), (b) f = 2.601 (chaotic attractor just after crisis).

attractor coexist. A similar coexistence of period-1 and
chaotic attractors is also observable for f values lying
between 2.81 and 3.082. Again, coexisting chaotic at-
tractors are present between f ≈ 2.80 and f ≈ 2.81. Fi-
nally, from f = 3.082 to f = 3.174, a period-2 orbit and
a chaotic attractor coexist. The basins of attraction for
these coexisting states are shown in Fig. 15, where panel
(a) illustrates the basins for coexisting chaotic attractors
at f = 2.805, and panel (b) shows the basins for coex-
isting period-2 (blue) and chaotic attractors at f = 3.15.
These basins highlight the system’s multistability, where
different initial conditions (x0 and u0) result in conver-
gence to distinct attractors. The fractal and striped pat-
terns in Figs. 15(a) and (b) respectively, suggests that the
initial condition space alternates between regions of at-
traction for the periodic and chaotic states, demonstrat-
ing the system’s extreme sensitivity to initial conditions.
The phase portraits corresponding to these coexisting at-
tractors are presented in Fig. 16. Figs. 16(a) and (b)
show the phase portraits for the coexisting chaotic at-
tractors at f = 2.805, while Figs. 16(c) and (d) depict
the period-2 and chaotic attractors at f = 3.15 for two

FIG. 14. (a) Bifurcation diagram of the sTW oscillator, illus-
trating the evolution of the system’s behavior with respect to
f . (b) Corresponding maximal Lyapunov exponent as a func-
tion of f : solid blue line for blue attractor branch and green-
dashed line for green attractor branch, highlighting regions of
chaos (positive values) and stability (negative values). The
inset in (a) shows a zoom of the driving frequency regimes for
which coexisting chaotic attractors exist in the neighborhood
of f = 2.8. Other parameters are fixed at bh = 1.0, ch = 0.25,
re = 0, V0 = 4.0, ω = 0.5, δ = 0.8.

closely chosen initial conditions.

As f increases, an interior crisis occurs in the neigh-
borhood of f = 3.406, characterized by a sudden expan-
sion in the chaotic domain. This event follows a period-
doubling sequence from f ≈ 3.246 to f ≈ 3.294. The
phase portrait just before the interior crisis at f = 3.4
is shown in Fig. 16(e), while Fig. 16(f) presents the
post-crisis portrait at f = 3.42. Notably, the orbit in
Fig. 16(f) intermittently visits the pre-crisis regime de-
picted in Fig. 16(e), indicating the presence of crisis-
induced intermittency. Fig. 17 presents the Poincaré sec-
tions corresponding to the phase portraits in Fig. 16, pro-
viding further illustrations of the coexisting chaotic at-
tractors at f = 2.805, the coexisting period-2 and chaotic
attractors at f = 3.15, and the interior crisis at f = 3.4.

Furthermore, there are periodic windows throughout
the bifurcation structure, initiated by boundary crises
and terminating in period-doubling transitions to chaos.
A period-3 window occurs for f values between approxi-
mately 3.52 and 3.526, a period-4 window from 3.558 to
3.568, and a period-2 attractor from 3.694 to 3.704. The
maximal Lyapunov exponent plot in Fig. 14(b) corrob-
orates these observations, validating the observed tran-
sitions between periodic and chaotic dynamics as seen
in the bifurcation diagram (Fig. 14(a)). Negative expo-
nents confirm stable, periodic behavior, while positive
exponents signal chaotic dynamics with exponential di-
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FIG. 15. Basins of attraction of the coexisting attractors in
Fig. 14: (a) f = 2.805 (coexisting chaotic attractors); (b)
f = 3.15 (coexisting period-2 (blue) and chaotic attractor
(green)).

vergence of trajectories.

The bifurcation diagram in Fig. 18(a) and correspond-
ing maximal Lyapunov exponent in (b) illustrate the evo-
lution of the state variable u = ẋ of the sTW oscillator as
the driving frequency ω varies. For clarity, an expanded
portion of the bifurcation diagram from Fig. 18(a) is dis-
played in Fig. 19, while Fig. 20 shows the phase portraits
corresponding to different ω values.

Figure 19(a) shows that the sTW oscillator initially
exhibits a period-1 attractor as the external forcing fre-
quency ω rises from zero. A saddle-node bifurcation
occurs at ω = 0.2282. The system then undergoes a
sequence of symmetry-breaking period-doubling bifurca-
tions between ω ≈ 0.3116 and ω ≈ 0.489. Attractor bub-
bling is evident for ω values between 0.489 and 0.5126.
This interval includes the transformation of a period-4
attractor at ω = 0.485 (Fig. 20(a)) into an asymmetrical
period-8 attractor at ω = 0.50 (Fig. 20(b)). This attrac-
tor bubbling, sandwiched by symmetry-breaking, is fol-
lowed by another saddle-node bifurcation at ω = 0.5192.

Chaotic behavior emerges for ω values from 0.525 un-
til a boundary crisis at ω ≈ 0.622 leads to a period-3
attractor. The chaotic attractor just before this bound-

FIG. 16. Phase portraits of the sTW oscillator for se-
lected values of f from Fig. 14, illustrating the system’s
dynamic behavior at: (a) f = 2.805, (x0, u0) = (1.0, 0.5)
(chaotic) (b) f = 2.805, (x0, u0) = (1.0, 0.53) (chaotic) (c)
f = 3.15, (x0, u0) = (2.0, 1.7) (period-2) (d) f = 3.15,
(x0, u0) = (2.0, 1.5) (chaotic) (e) f = 3.4 (chaotic), (f)
f = 3.42 (chaotic).

ary crisis at ω = 0.62 is shown in Fig. 20(c), while the
post-crisis period-3 attractor at ω = 0.63 is depicted in
Fig. 20(d). From Fig. 19(b), three narrow chaotic bands
can be seen between ω = 0.78 and ω = 1.038, termi-
nating with a boundary crisis. This crisis occurs due to
a collision between the chaotic attractor and the emerg-
ing period-3 orbit on its basin boundary. Fig. 19(e) de-
picts the chaotic attractor at ω = 1.02 before this cri-
sis, while Fig. 19(f) depicts the period-3 attractor at
ω = 1.038 after it. Additionally, symmetry-breaking is
present between a period-doubling and a reverse period-
doubling, with sudden chaotic transitions observed near
ω ≈ 1.776. Following the chaotic transition at ω ≈ 1.776,
the chaotic band persists until ω ≈ 2.50. After this, a se-
ries of reverse period-doubling events leads the system
progressively from chaos to periodic order, culminating
with a period-1 attractor beyond ω = 3.74. The exten-
sive chaotic region between ω = 1.776 and ω = 2.50,
detailed in Figs. 19 (c) and (d), contains various peri-
odic windows produced by the splitting of chaotic at-
tractors and reverse period-doubling bifurcations. No-
table attractors in these windows include a period-5 at-
tractor from ω ≈ 2.142 to ω ≈ 2.151, a period-6 attrac-
tor from ω ≈ 2.386 to ω ≈ 2.395, a period-7 attractor
from ω ≈ 2.06 to ω ≈ 2.062, and a period-8 attractor
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FIG. 17. Poincaré section of the sTW oscillator correspond-
ing to the f values from Fig. 16, illustrating the system’s
dynamic behavior at: (a) f = 2.805, (x0, u0) = (1.0, 0.5)
(chaotic) (b) f = 2.805, (x0, u0) = (1.0, 0.53) (chaotic) (c)
f = 3.15, (x0, u0) = (2.0, 1.7) (period-2) (d) f = 3.15,
(x0, u0) = (2.0, 1.5) (chaotic) (e) f = 3.4 (chaotic), (f)
f = 3.42 (chaotic).
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FIG. 18. (a) Bifurcation diagram of the sTW oscillator, il-
lustrating the evolution of the system’s behavior with respect
to ω. (b) Corresponding maximal Lyapunov exponent as a
function of ω, highlighting regions of chaos (positive values)
and stability (negative values). Other parameters are fixed at
bh = 1.0, ch = 0.25, re = 0, V0 = 1.0, δ = 0.8, f = 2.0.

FIG. 19. Enlarged windows of the sTW oscillator bifurcation
diagram shown in Figure 18.

FIG. 20. Phase portraits of the sTW oscillator for selected
values of ω from Fig. 18, illustrating the system’s dynamic be-
havior at: (a) ω = 0.485 (period-4), (b) ω = 0.50 (period-8),
(c) ω = 0.62 (chaotic), (d) ω = 0.63 (period-3), (e) ω = 1.02
(chaotic), (f) ω = 1.05 (period-3). The blue dots represent
the corresponding points in the Poincaré section

from ω ≈ 1.943 to ω ≈ 1.947. The transitions shown
in the bifurcation diagram are supported by the Lya-
punov exponent plot in Fig. 18(b), with stable periodic
zones clearly marked by negative Lyapunov exponents,
whereas chaotic behaviour is confirmed by positive ones.
The phase portraits in Fig. 20(a)–(f) demonstrate that,
in contrast to the observed pattern for increasing f , the
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FIG. 21. (a) Bifurcation diagram of the sTW oscillator, il-
lustrating the evolution of the system’s behavior with respect
to V0. (b) Corresponding maximal Lyapunov exponent as a
function of V0, highlighting regions of chaos (positive values)
and stability (negative values). Other parameters are fixed at
bh = 1.0, ch = 0.25, re = 0, ω = 2.0, δ = 0.8, f = 4.0.

orbits typically contract as ω grows.
Now, we proceed to examine the evolution of the

system dynamics when the sTW potential parameters
change. Fig. 21 presents the bifurcation diagram of the
state variable u (panel a) and the corresponding maximal
Lyapunov exponent plot in (b) as the dissociation param-
eter V0 varies from 0 to 8. For detailed views, expanded
sections of the bifurcation diagram from Fig. 21(a) are
shown in Fig. 22. In addition, the phase portraits de-
picting the dynamic behavior of the sTW oscillator at
different V0 values are provided in Fig. 23. Fig. 22(a)
shows that the sTW oscillator exhibits period-1 behavior
for lower values of V0 up to roughly V0 = 0.3. It then
undergoes a sequence of period-doubling bifurcations be-
fore entering a chaotic zone at V0 = 0.42. Notably, a
sudden expansion in the size of the chaotic attractor also
appears, indicating an interior crisis event at V0 = 0.484.
Fig. 23(a) displays the phase portrait just prior to this
crisis at V0 = 0.483, and Fig. 23(b) shows the phase por-
trait following the crisis event at V0 = 0.4863, demon-
strating the expansion of the chaotic attractor’s domain.
A prominent periodic window within the chaotic region
of Fig. 21 is expanded in Fig. 22(b). This window shows
a period-1 attractor emerging from a boundary crisis at
V0 ≈ 4.371. The chaotic attractor at V0 = 4.37 just be-
fore the boundary crisis is illustrated in Fig. 23(c), and
the period-1 attractor that forms at V0 = 4.372 is shown
in Fig. 23(d). The period-1 attractor eventually under-
goes a period-doubling bifurcation, leading to a narrow-
band chaotic attractor (Fig. 23(e)). At V0 = 4.711, an
interior crisis causes a notable expansion in the chaotic

FIG. 22. Enlarged windows of the sTW oscillator bifurcation
diagram in Fig. 21.

attractor (Fig. 23(f)), which dominates the dynamics
until V0 ≈ 5.674, where another interior crisis results in
a sudden contraction. Figs. 23(g) and 23(h) shows the
phase portraits of the chaotic attractor shortly before
and after the crisis at V0 = 5.674. Figure 22(c) shows
that the chaotic attractor experiences a boundary crisis
at V0 ≈ 5.75 due to its collision with a period-2 orbit
on its basin boundary. This collision leads to the emer-
gence of a period-2 attractor, followed by period-bubbling
characterized by alternating period-doubling and reverse
period-doubling transitions stemming from symmetry-
breaking. As V0 increases from 5.75 in the course of the
period bubbling event, the attractor evolves progressively
from period-2 to period-4, then to period-8, and subse-
quently to period-16 (Fig. 23(i)). As V0 reaches 6.487, the
system reverses from period-16 back to period-2 instead
of proceeding into chaos, and at V0 = 7.05, it attains
stability at a period-1 attractor till V0 = 7.5, when two
coexisting period-1 attractors emerge and persists up to
V0 = 8.0.

The maximal Lyapunov exponent (λ) as a function of
V0, shown in Fig. 21(b), supports the bifurcation analy-
sis. The chaotic nature in this range is confirmed by the
positive values of λ up to around V0 = 4.5. Sharp drops
to negative λ values between V0 = 4.5 and V0 = 4.75
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FIG. 23. Phase portraits of the sTW oscillator for selected values of V0 from Fig. 21, illustrating the system’s dynamic
behaviour at: (a) V0 = 0.483 (chaotic), (b) V0 = 0.4863 (chaotic), (c) V0 = 4.37 (chaotic), (d) V0 = 4.372 (period-1), (e)
V0 = 4.71 (chaotic), (f) V0 = 4.714 (chaotic), (g) V0 = 5.67 (chaotic), (h) V0 = 5.68 (chaotic), (i) V0 = 5.8 (period-2). The blue
dots represent the corresponding points in the Poincaré section

match the bifurcation diagram’s periodic window. The
Lyapunov exponent stays positive as V0 rises until around
V0 = 5.75, after which it turns negative, indicating sta-
bility.

The dynamics of the sTW oscillator as a function of the
potential parameter bh and the corresponding maximal
Lyapunov exponent are depicted in Fig. 24. The Lya-
punov exponent plot corroborates the bifurcation struc-
ture with chaotic regions clearly characterized by posi-
tive values and periodic windows by negative values. In
Fig. 24(a), it is evident that the oscillator maintains a
period-1 oscillation for bh values up to approximately
0.82, beyond which period-doubling bifurcations initiate
a transition to chaos. This chaotic domain occupies a
large regime of the bh parameter space: bh = 1.20 to
bh = 2.74. Shown in Fig. 25 are zooms of some bh
regimes capturing clearer pictures of some transitions be-
tween chaotic and periodic states. Zoomed-in views in
Figs. 25(a) and 25(b) reveal intricate shifts from chaos
to periodicity. Within these periodic windows, the pe-

riodic orbits are triggered by boundary crises involving
chaotic attractors and terminated via sequences of multi-
ple period-doubling bifurcations, forming narrow chaotic
bands that merge during attractor merging crises to pro-
duce larger chaotic attractors. In Fig. 25(a), we can iden-
tify a boundary crisis at bh = 1.418 with the emergence
of a period-7 attractor. Phase portraits illustrating the
chaotic attractor at bh = 1.417 and the period-7 attractor
at bh = 1.419 post-crisis event are shown in Figs. 26(a)
and 26(b), respectively. This attractor transitions into
narrow chaotic bands (Fig. 26(c)) and undergoes an at-
tractor merging crisis at bh ≈ 1.427, with the appearance
of the expanded chaotic attractor depicted in Fig. 26(d).
A similar boundary crisis at bh = 1.43 yields another
period-7 attractor, which subsequently undergoes period-
doubling bifurcations, leading to narrow chaotic bands
that merge at bh = 1.449. The Poincaré sections depicted
in Figs. 27(a) and 27(b) clearly illustrate the attractor-
merging crisis event involving the narrow 7-band chaotic
attractors.
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FIG. 24. (a) Bifurcation diagram of the sTW oscillator, il-
lustrating the evolution of the system’s behavior with respect
to bh. (b) Corresponding maximal Lyapunov exponent, high-
lighting regions of chaos (positive values) and stability (neg-
ative values) as a function of bh. Other parameters are fixed
at ch = 0.25, re = 0, V0 = 1.0, ω = 3.0, δ = 0.8, f = 2.0.

FIG. 25. Enlarged windows of the sTW oscillator bifurcation
diagram in Fig. 24.

Figure 25(b) highlights a boundary crisis event at bh =
1.605 from which a period-2 attractor is born and its sub-
sequent period-doubling route to narrow chaotic bands.
As bh takes on higher values, these bands merge into a
larger chaotic orbits in an attractor-merging crisis event
at bh ≈ 1.703. The phase portrait at bh = 1.60 just before
the boundary crisis is shown in Fig. 26(e), while Fig. 26(f)
presents the period-2 attractor at bh = 1.61 post-crisis.
The phase portrait and corresponding Poincaré section
illustrating the two narrow chaotic bands at bh = 1.70
are depicted in Figs. 26(g) and 27(c), respectively. Simi-
larly, Figs. 26(h) and 27(d) show the phase portrait and
Poincaré section of the merged attractor at bh = 1.71.
Other regions with period-7 attractors are noted between
1.725 < bh < 1.746 and 1.757 < bh < 1.769. For
higher values of bh, the dynamics is dominated by pe-
riodic orbits. Figure 25(c) indicates a period-1 attractor
emerging from a boundary crisis at bh = 2.743. Beyond
bh = 2.9, the oscillator predominantly exhibits period-1
or period-2 orbits, with the appearance of multistability
for 3.18 < bh < 3.36. Here, a period-2 attractor coexists
with a quasi-periodic orbit. The corresponding basins of
attraction for the two states are shown in Fig. 28. The
basin of attraction in Fig. 28 appears to have a frac-
tal boundary, where the different attractor regions (blue
and green) are interwoven in a highly irregular and in-
tricate pattern. This fractal structure indicates a sensi-
tive dependence on initial conditions, where even minute
changes in the starting values can cause the system to
end up on a different attractor.

The bifurcation diagram, shown in Fig. 29, illustrates
how the sTW oscillator dynamically changes as the op-
timisation parameter ch changes while maintaining the
other parameters at bh = 1.0, V0 = 4.0, ω = 0.75, δ = 0.8,
and f = 2.5. As ch spans the interval −0.2 ≤ ch ≤ 0.2,
Fig. 29(a) shows that negative ch values favour the occur-
rence of chaotic solutions coexisting with periodic states,
while positive ch values stabilize the system to periodic
states. According to the table of spectroscopic param-
eters (Table I), all the molecules investigated, namely,
CO, O2, I2, H2, Cl2 and HF, will potentially exhibit pe-
riodic oscillations with their ch values lying in the range
0 < ch < 0.2. However, the dynamics can be complicated
and, indeed, extremely unpredictable with the coexis-
tence of three different attractors over the positive ch pa-
rameter values, suggesting that, depending on the chosen
initial conditions, the system may settle onto one of three
possible final states. This complexity due to initial state
sensitivity carries significant implications for experimen-
tal applications. The dynamics is even more complex for
negative ch parameter values, with chaotic and periodic
states coexisting in the neighborhood of ch = −0.12 and
ch = −0.02. We mapped out which initial conditions
(x0, u0) converge to specific attractors, by examining the
basins of attraction at ch = −0.04. Figure 30 depicts
the basins of attraction for ch = −0.04. It provides de-
tails on how different initial conditions (x0, u0) direct the
system to particular attractors. The color-coding in the
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FIG. 26. Phase portraits of the sTW oscillator for selected values of bh from Fig. 24, illustrating the system’s dynamic behaviour
at: (a) bh = 1.417 (chaotic), (b) bh = 1.419 (period-7), (c) bh = 1.427 (chaotic), (d) bh = 1.428 (chaotic), (e) bh = 1.60 (chaotic),
(f) bh = 1.61 (period-2), (g) bh = 1.70 (chaotic), (h) bh = 1.71 (chaotic), (i) bh = 2.8 (period-1). The blue dots represent the
corresponding points in the Poincaré section.

figure distinguishes the attractors: white regions repre-
sent a coexisting period-2 attractor, blue areas denote
a period-2 attractor, and green indicates chaotic attrac-
tors. The basin is characterized by a fractal-like, intricate
structure with intertwined regions that suggest a com-
plex boundary between basins. Such a structure, known
as a Wada basin [104–106] and first observed by Nusse et
al. [104], is characterised by boundaries that connect two
other basins. The basin features are indicative of the
system’s extremely sensitive dependence on initial con-
ditions, where minor changes in the starting point can
yield significantly different outcomes.

Finally, Figure 31 provides phase portraits for ch =
−0.04, showing the coexistence of various attractors
for slightly different initial conditions. In Fig. 31(a),
a period-2 attractor is shown for initial conditions

(x0, u0) = (4.85, 4.5), where the trajectory forms a sta-
ble, repeating loop. Fig. 31(b) depicts another period-2
attractor for slightly different initial conditions (x0, u0) =
(4.85, 4.7), with a similar but distinct configuration from
Fig. 31(a). Both portraits correspond to basins asso-
ciated with periodic solutions, as depicted in Fig. 30.
Figure 31(c) depicts a chaotic attractor for initial condi-
tions (x0, u0) = (4.85, 4.3). Unlike the periodic cases, this
chaotic attractor follows a non-repeating, complex path
characteristic of chaotic dynamics. This behavior aligns
with the chaotic basin shown with green color in Fig. 30.
Fig. 31(d) displays a Poincaré section of the chaotic at-
tractor shown in Fig. 31(c), revealing its intricate, fractal-
like nature and emphasizing the system’s complex behav-
ior. This figure reinforces the notion of sensitivity to ini-
tial conditions, where slight changes can shift the system
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FIG. 27. Poincaré section of the sTW oscillator illustrating
the attractor-merging crises shown in Figs. 26(c), (d), (g) and
(h): (a) bh = 1.427 (narrow 7-band chaotic attractor just be-
fore crisis), (b) bh = 1.428 (chaotic attractor just after crisis),
(c) bh = 1.70 (narrow 2-band chaotic attractor just before
crisis), (d) bh = 1.71 (chaotic attractor just after crisis).

FIG. 28. Basins of attraction of the coexisting attractors in
Fig. 25(c) for bh = 3.25 (coexisting period-2 (blue) and quasi-
periodic attractor (green)).

from periodic to chaotic attractors, typical of the Wada
basin’s shared boundary feature. Fig. 29(b) depicts the
maximal Lyapunov exponent λ as a function of ch, which
provides quantitative insight into the attractors’ stabil-
ity. The black curve represents λ for the chaotic (blue)
attractor, while the green curve corresponds to the red
attractor. Positive λ values indicate chaotic behavior,
whereas negative values denote stability. For ch < 0.1,
the black curve predominantly shows positive λ, confirm-

FIG. 29. (a) Bifurcation diagram of the sTW oscillator, illus-
trating the evolution of the system’s behavior with respect to
ch. (b) Corresponding maximal Lyapunov exponent: Green
dash-dot line (green bifurcation branch), red solid-line (red
bifurcation branch), and purple dash-line (purple bifurcation
branch)), highlighting regions of chaos (positive values) and
stability (negative values). Other parameters are fixed at
bh = 1.0, re = 0, V0 = 4.0, ω = 0.75, δ = 0.8, f = 2.5.

FIG. 30. Basins of attraction of the coexisting attractors in
Fig. 29 for ch = −0.04 (coexisting period-2 (white), period-2
(blue) and chaotic attractors (green))

ing chaotic behavior, but it transitions to negative val-
ues near ch = 0.1, marking a shift toward stability. This
trend in λ aligns with the observed transitions in the
behavior of the red attractor.
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FIG. 31. Phase portraits of the sTW oscillator for ch =
−0.04 for three very close initial conditions (x0, u0) : (a)
(x0, u0) = (4.85, 4.5) (period-2 attractor for the orange branch
in Fig. 29(a)), (b) (x0, u0) = (4.85, 4.7) (period-2 attractor for
the blue branch in Fig. 29(a)); and (c) (x0, u0) = (4.85, 4.3)
(chaotic attractor for the green branch in Fig. 29(a)). (d) is
the Poincaré section of the phase portrait in (c). The blue
dots represent the corresponding points in the Poincaré sec-
tion.

V. CONCLUDING REMARKS

In this paper, we have analysed the resonance and bi-
furcation characteristics of the driven shifted Tietz-Wei
(sTW) oscillator for six diatomic molecules, focusing on
the interplay between the external driving force and spec-
troscopic parameters, namely, the amplitude (f), fre-
quency (ω), dissociation energy (V0), and potential opti-
mization parameters (bh and ch).

We have explored the primary and superharmonic res-
onances using the response equation obtained analyti-
cally by means of multiple time scales method. We found
that less rigidly bonded molecules are more responsive to
external excitations, with I2 and Cl2 molecules exhibit-
ing the highest-amplitude responses in primary resonance
due to their lower dissociation energies. Despite being the
lightest of the molecules studied, H2 exhibited a signifi-
cant high amplitude response, whereas CO and O2, with
their higher V0 values, showed lower responses. Varia-
tions in F0, bh, and ch substantially impacted the pri-
mary resonance behavior. Higher F0 and lower V0 values
increased the response amplitude and expanded the hys-
teresis frequency range. Variations in bh and ch, in gen-
eral, altered the peak values and the hysteresis frequency
range of primary resonance, with less visible impact on
superharmonic resonances. Furthermore, the superhar-
monic resonance showed increased amplitudes and con-

siderable hysteresis, especially for I2 and Cl2, with lower
V0 and greater F0 magnifying the nonlinear response.

Bifurcation diagrams and the corresponding maximal
Lyapunov exponents were explored by varying the rel-
evant parameters. The attractor landscape underwent
period-doubling routes to chaos and sudden chaotic tran-
sitions, interspersed with periodic windows and crisis
events including boundary crises, interior crises, and
attractor-merging crises. At different parameter levels,
saddle-node bifurcations, symmetry-breaking, attractor
bubbling, and multistability were found. Multistability
was explored through the basins of attraction and phase
portraits corresponding to closely-situated initial condi-
tions. Striped basins indicating the coexistence of pe-
riodic and chaotic states, fractal basins with intricately
interwoven attractor regions, and Wada basins with three
coexisting attractors, were found. The results underscore
the rich and complex dynamics attributable to the sensi-
tive dependence on initial conditions – and highlighting
the challenges in predicting the long-term behavior of di-
atomic molecules. This work contributes to the broader
field of nonlinear dynamics and, in particular, to molec-
ular physics by demonstrating the complexity that arises
from interactions between the spectroscopic properties
of multi-parameter diatomic molecular systems and the
external driving force.

The results carry significant implications for exper-
imental applications. For example, the Cl2 molecule,
which demonstrated the highest-amplitude responses in
primary resonance in this study, exhibits pronounced
anisotropy in its potential energy landscape, as reported
by Selmi et al. [107] – implying that the energy land-
scape changes with the molecular geometry and poten-
tially giving rise to multiple stable or metastable elec-
tronic states [107]. This kind of behavior is associated
with multistability [26, 107]. The presence of multiple
excited states and their interactions, especially through
nonadiabatic transitions, opens up diverse photodissoci-
ation pathways – a hallmark of systems with multistable
electronic configurations [107]. Indeed, there is com-
pelling experimental evidence that Cl2 has multiple ex-
cited electronic states. A particularly illuminating work
by Zhang et al. [108], on the multi-electron ionization
and dissociation of Cl2 in a near-infrared femtosecond
laser field, revealed that the singly-charged molecular ion
Cl+2 dissociates from two distinct excited states: X2Πu

and X2
∑

g+, linked to ionization from the HOMO-1
and HOMO-2 orbitals, respectively. By exploring higher
charge states (Cln+2 , n = 2 − 8), Zhang et al. [108] fur-
ther confirmed the existence of the multiple excited states
that play critical roles in the photodissociation dynamics
of Cl2.

Similarly, the O2 molecule exhibits a rich electronic
structure, with strong experimental evidence for com-
plex multiple excited states, namely, a singlet delta state
(X1∆g) [109, 110], a singlet sigma state (X1

∑
g) [110,

111], a triplet ground state (X3
∑−

g) [110, 111],
and other metastable states such as O2(a

1∆g) and
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O2(b
1
∑

g+) [111], all of which play crucial roles in atmo-
spheric chemistry and photophysics, as well as in plasma
processes. Finally, it is worth mentioning that both io-
dine (I2) and carbon monoxide (CO), investigated above,
exhibit multiple excited electronic states whose existence
is well-supported by both theoretical and experimental
studies [112–115].
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scale models of brain activity, PLoS Comp. Bio. 11,
e1004644 (2015).

[38] D. Jaeger and R. Jung, Encyclopedia of Computational
Neuroscience (Springer, New York, 2022).

[39] J. Kengne, Z. Njitacke Tabekoueng, and H. Fotsin, Co-
existence of multiple attractors and crisis route to chaos
in autonomous third order Duffing–Holmes type chaotic
oscillators, Commun. Nonlin. Sci. Numer. 36, 29 (2016).

[40] N. Wang, G. Zhang, and H. Bao, Bursting oscilla-
tions and coexisting attractors in a simple memristor-
capacitor-based chaotic circuit, Nonlinear Dyn. 97, 1477
(2019).

[41] A. K. Farhan, R. S. Ali, H. Natiq, and N. M. Al-Saidi, A
new S-box generation algorithm based on multistability
behavior of a plasma perturbation model, IEEE Access
7, 124914 (2019).

[42] T. Bonny, S. Vaidyanathan, A. Sambas, K. Benkouider,
W. Al Nassan, and O. Naqaweh, Multistability and bi-
furcation analysis of a novel 3D jerk system: Electronic
circuit design, FPGA implementation, and image cryp-
tography scheme, IEEE Access 11, 78584 (2023).

[43] K. Benkouider, A. Sambas, T. Bonny, W. Al Nassan,
I. A. Moghrabi, I. M. Sulaiman, B. A. Hassan, and
M. Mamat, A comprehensive study of the novel 4D hy-
perchaotic system with self-exited multistability and ap-
plication in the voice encryption, Sci. Rep. 14, 12993
(2024).

[44] N. Kacem and S. Hentz, Bifurcation topology tuning
of a mixed behavior in nonlinear micromechanical res-
onators, Appl. Phys. Lett. 95 (2009).

[45] P. V. Savi and M. A. Savi, Nonlinear dynamics of
an adaptive energy harvester with magnetic interac-
tions and magnetostrictive transduction, Smart Struct.
& Syst. 33, 281 (2024).

[46] L. G. Costa, L. L. Monteiro, and M. A. Savi, Multista-
bility investigation for improved performance in a com-
pact nonlinear energy harvester, J. Braz. Soc. Mech. Sci.
& Eng. 46, 212 (2024).
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