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Exceptional points (EPs) are spectral defects displayed by non-Hermitian systems in which mul-

tiple degenerate eigenvalues share a single eigenvector.

This distinctive feature makes systems

exhibiting EPs more sensitive to external perturbations than their Hermitian counterparts, where
degeneracies are nondefective diabolic points. In contrast to these widely studied cases, more com-
plex non-Hermitian degeneracies in which the eigenvectors are only partially degenerate are poorly
understood. Here, we characterize these fragmented exceptional points (FEPs) systematically from
a physical perspective, and demonstrate how they can be induced into the bulk and edge spectrum
of two-dimensional and three-dimensional lattice models, exemplified by non-Hermitian versions of
a Lieb lattice and a higher-order topological Dirac semimetal. The design of the systems is facili-
tated by an efficient algebraic approach within which we provide precise conditions for FEPs that
can be evaluated directly from a given model Hamiltonian. The free design of FEPs significantly
opens up a new frontier for non-Hermitian physics and expands the scope for designing systems

with unconventional response characteristics.

I. INTRODUCTION

In the past decade, topological phases in Hermitian
systems, including topological insulators and supercon-
ductors [1-6] as well as Dirac and Weyl semimetals [7—

| have drawn substantial interest due to a wide range
of possible applications. One of the key features of these
topological materials is the existence of gapless edge and
surface states that are protected by the underlying sym-
metries of the bulk Hamiltonian. Due to this protection,
these states are immune to symmetry-preserving disorder
present in the system. The investigation of such topo-
logical phases significantly expanded with the identifica-
tion of higher-order topological insulators with quantized
quadruple moments [11-14], including 3D higher-order
Dirac semimetals (HODSM) [15, 16] and 3D higher-order
Weyl semimetals [17-19]. Unlike conventional topologi-
cal insulators that display edge or surface states at their
boundaries, these materials feature topological corner or
hinge states when they are confined in two directions.

With the recent resurgence and expansion of non-
Hermitian physics [20-25], the study of topological mate-
rials has rapidly extended to their non-Hermitian equiva-
lents, see for example Refs. [26—34]. In the non-Hermitian
setting, the band structure and energies of topologically
protected states generally become complex, and the as-
sociated eigenstates are no longer constrained to be mu-
tually orthogonal. One of the main resulting features
is the emergence of distinct branch points in the com-
plex energy eigenspectrum, known as exceptional points
(EPs), where both the eigenenergies and eigenvectors co-
alesce [35-39]. This behavior is distinct from that at
diabolic points (DPs), the conventional degeneracies in
Hermitian systems, where only the eigenenergies merge.
As topological transitions of the band structure and the
emergence of topologically protected states are linked to
the closing of band gaps, and the bands and protected
states are themselves now located in the complex energy
plane, EPs significantly expand the scope of topological

phases, and this is further enriched by an expanded set
of possible symmetries [29].

Exceptional points are a universal phenomenon in any
non-Hermitian system. In the parameter space of the
system, the locations of the EPs form manifolds, known
as exceptional surfaces [10—13], whose structure depends
on the complexity of the EP, as well as constraints im-
posed by symmetries. These features result in directly
observable phenomena, such as a nonlinear power-law re-
sponse to parametric perturbations [ — ] and a super-
Lorentzian response to quantum noise and external driv-
ing [48-50]. In both response settings, the qualitative
and quantitative signatures [51-54] depend on the order
n of the EP, where an nth-order EP (short, an EPn)
is obtained by merging n eigenvalues, with the complete
collapse of the eigenstates into a single one [55-58]. EPns
have already been realized in various experiments demon-
strating a significant increase in the system’s sensitivity

Non-Hermitian degeneracies with only partially de-
generate eigenstates have received much less attention
even though they are as ubiquitous as higher-order EPs.
Mathematically, these most general degeneracies can be
classified by partial multiplicities that describe the frag-
mentation of the generalized eigenspace into the sub-
spaces associated with the surviving eigenstates [63].
Just as higher-order EPs, these fragmented exceptional
points (FEPs) naturally appear in specific positions on
the exceptional surface [64-(7]. However, their appear-
ance poses a significant challenge for the description and
classification of non-Hermitian systems, as the standard
perturbative approach, Arnold-Jordan normal form the-
ory [68], breaks down for these scenarios. This state of af-
fairs also hampers the systematic description and design
of systems and the identification of the physical manifes-
tations of FEPs. Therefore, obtaining a systematic han-
dle on FEPs is a critical step to complete the description
and understanding of non-Hermitian systems both con-
ceptually as well as physically, and realize the full scope
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of their phenomenology.

Motivated to overcome this roadblock, we establish in
this work a systematic and efficient framework to de-
sign, classify, and characterize systems exhibiting FEPs.
Furthermore, we apply this framework to address the in-
terplay of non-Hermiticity and symmetry in specific two-
dimensional and three-dimensional lattice models, and
formulate exact analytical conditions for the formation
of FEPs in bulk and boundary spectra. The framework
directly links to the qualitatively different response of
FEPs to perturbations and driving, and freely applies to
any model based on an effective non-Hermitian Hamil-
tonian matrix. This delivers systematic algebraic con-
ditions in terms of the so-called modes of the adjugate
matrix, which can be directly evaluated for any given
Hamiltonian matrix and yield explicit conditions in terms
of microscopic model data. Given the physical starting
point, the very same quantities directly determine the
physical response of the system to external and para-
metric perturbations. For the models, we first consider
the two-dimensional Lieb lattice and apply the frame-
work to construct and classify non-Hermitian versions
that host diverse FEPs with different degeneracy struc-
tures in the bulk dispersion. As a second model, we turn
to a three-dimensional HODSM that supports topolog-
ically protected hinge states, and design variants that
display FEPs in the bulk and boundary spectra. The
FEP formation for hinge states reveals a highly intricate
interplay of nonreciprocal non-Hermitian couplings and
symmetry constraints, illuminating the richness of mech-
anisms determining FEPs. The general framework and
specific applications presented here provide a template to
construct and classify models with unconventional spec-
tral and response features across a wide range of plat-
forms, significantly expanding the scope to understand
and design non-Hermitian physical systems and devices.

The outline of the paper is as follows. After briefly
recapitulating the role of DPs and EPs in the spec-
tral analysis of Hermitian and non-Hermitian systems
in Sec. II, we provide in Sec. III our efficient and sys-
tematic framework for a mathematical and physical de-
scription of FEPs. In Sec. IV we apply this formalism to
investigate the two-dimensional Lieb lattice, and use it to
construct and classify non-Hermitian versions displaying
FEPs of all admissible types in the bulk dispersion rela-
tion. In Sec. V we extend these consideration to a three-
dimensional HODSM and demonstrate the existence of
diverse FEPs in the bulk eigenspectra of appropriately
designed non-Hermitian variants. In Sec. VI we discuss
the hinge states in these HODSM variants, resulting in
the emergence of fragmented exceptional lines with dif-
ferent degeneracy structures. We give our conclusions in
Sec. VII. A key technical step in the derivation of the
employed formalism is provided in Appendix A.

II. EXCEPTIONAL AND DIABOLIC POINTS

To prepare our discussion of FEPs, we briefly review
the notion of an EP of order (EPn), which is the most
commonly studied spectral degeneracy scenario of non-
Hermitian physics, and contrast it to the notion of an
n-bolic point, such as a diabolic point, which constitutes
the spectral degeneracies of Hermitian physics.

We place our results in the context of systems with
an effective non-Hermitian Hamiltonian, represented by
an N X N dimensional square matrix matrix H. The
eigenvalues are determined from the condition

p(E) = det (E1 — H) = 0, (1)

hence, are given by the roots of a polynomial p(E) of
order N. The algebraic multiplicity a; of an eigenvalue
FE; is the order of the root, and these multiplicities add
up to ) . o; = N.

Given an eigenvalue E;, the geometric multiplicity
~; determines the number of linearly independent right
eigenvectors u; j, j = 1,2,...,;, fulfilling

(Ei]l — H)ui,j = O7 (2)

as well as the number of linearly independent left eigen-
vectors vy j, j = 1,2,...,7;, fulfilling

Vl',j(Ei]l — H) =0. (3)

The geometric multiplicity is therefore determined by the
rank of these homogeneous systems of equations,

vi =N —rk (E;1 — H), (4)
and is constrained according to
1 <79 <a. (5)

For a nondefective system, the multiplicities a; = 7;
coincide for all eigenvalues. Hence, the number of lin-
early independent right (or left) eigenvectors ) . v; = N,
so that each set of eigenvectors forms a basis. The system
can then be diagonalized by a suitable similarity trans-
formation

A=VHU, (6)

where A is a diagonal matrix containing the eigenvalues
E; of H according to their multiplicity, U contains the
corresponding right eigenvectors u; ; as its columns, and
V' contains the corresponding left eigenvectors v; ; as its
rows. Given that for a similarity transformation V =
U~1, the eigenvectors constructed in this way fulfill the
biorthogonality condition

Vi jWir o = Oiir Ojjr - (7)

Degenerate eigenvalues with «; = v; = 2 are known
as diabolic points (DPs), and higher order degeneracies
where «; = 7; = n with some n > 2 can be referred



to as n-bolic points. Analogously, maximally defective
eigenvalues with v; = 1 but o; = n with some n > 1 are
known as an n‘"-order exceptional points (EPns). At
these EPs, n algebraically degenerate eigenvalues share a
single, unique, eigenvector. The existence of EPs there-
fore renders a system nondiagonalizable, leading to the
distinct physical signatures in the response to driving and
perturbations surveyed in the introduction.

IIT. FRAGMENTED EXCEPTIONAL POINTS

In between the n-bolic point and the EPn, a degener-
ate eigenvalue F; can have several linearly independent
eigenvectors, corresponding to FEPs with a geometric
multiplicity «; > 7; > 1. We first detail the mathemati-
cal and physical signatures of these most general spectral
scenarios, and then provide an efficient algebraic frame-
work by which we can determine these signatures directly
from model data.

A. Partial multiplicities

For degenerate eigenvalues with a; > 7; > 1 one can
define partial multiplicities ;1 > l;0 > l;3--- > l; 4, > 1
that designate how many algebraically degenerate eigen-
values are associated with a given eigenvector. These par-
tial multiplicities therefore partition the algebraic multi-

plicity according to
Lin+lha+liz+-+ 1, =, (8)

where each partition of «; describes a different spectral
scenario. Furthermore, by including the cases of a single
partial multiplicity [;1 = «; (EPn with n = «;) and
the case of all ;1 = ;2 = --- = l;,, = 1 (n-bolic point
with n = ~;), the specification of the partial multiplicities
covers all possible degeneracy scenarios.

The frequency with which a given partial multiplicity
I repeats in the sequence I; ; defines the partial multi-
plicity function £;({). While the partial multiplicities ; ;
partition «; according to Eq. (8), and hence are of an al-
gebraic nature, the values of 3;(l) partition the geometric
multiplicity according to

N
> Bl =i 9)
=1

These values can hence be interpreted as geometric par-
tial multiplicities, which count how many independent
eigenvectors can be associated with the partial multiplic-
ity {. Furthermore, Eq. (8) itself can be cast into the
form

N
D 1Bi(l) = . (10)
=1

Thereby, the partial multiplicity function S;(I) com-
pletely characterizes the algebraic and geometric struc-
ture of a given degeneracy in a convenient way.

For an EPn, only B;(n) = 1 is finite, while for an n-
bolic point, only 5;(1) = n is finite. For the illustrative
example of an FEP with algebraic partial multiplicities
(4,4,3,2,2,1), the finite geometric partial multiplicities are
corresponds further to an algebraic multiplicity «; = 16
and a geometric multiplicity v; = 6.

B. Geometric interpretation

In concrete geometric terms, the value §;(1) of the par-
tial multiplicity function designates the dimensionality
of the eigenspace associated with a partial multiplicity .
In the assignment of these spaces themselves, there ex-
ists a gauge freedom. Uniquely defined is only the space
spanned by the eigenvectors of maximal partial multi-

plicity [54, 69]
li 1= él (11)

)

The eigenvectors with maximal partial multiplicity are
called the leading eigenvectors, and we will denote their
geometric multiplicity 3;(¢;) more concisely by f;, so that
Ki = li,l = li)g =...= li”@i'

For sectors with a smaller partial multiplicity, the
eigenspace is defined modulo addition of eigenvectors
from sectors with a larger partial multiplicity. This free-
dom can be exploited to orthogonalize the subspaces of
different partial multiplicity. The underlying hierarchical
structure of these subspaces is also directly reflected in
the physical signatures of FEPs, to which we turn next.

C. Physical signatures

The intricate features of FEPs are directly reflected
in their physical signatures. Examining these signatures
will provide the key to their identification and classifi-
cation in a systematic framework. In particular, the re-
sponse to external driving and parametric changes are
both dominated by the sector of maximal partial multi-
plicity £; [54, 69, 70]:

Physical response to driving. At an FEP, the Green’s
function

G(E)=(E1—-H)™", (12)

which describes the response of the system to external
driving, diverges according to
_ + \77i|2
P(E)=tr[G"(E)G(E)] x

|E — E;|24° (13)

where 7; is a characteristic physical response strength.
Spectral response to parameter changes. Upon a per-
turbation of strength e, the degenerate eigenvalues split



up into a multiplet, and become displaced by a maximal
amount

elb; ~ (Efz’)l/zia (14)

where &; is a characteristic spectral response strength.
Both response strengths are natural extensions of the
behaviour at conventional EPns [18, 50-51]. The ex-
plicit expressions of these response strengths can be ob-
tained in two approaches. With exact prior knowledge
of all eigenvalues and their partial multiplicity structure,
the system can be brought into a Jordan normal form,
H = TJT~!, where T is a similarity transformation. Ex-
pressed in this way, the system can then be analyzed in
Arnold-Jordan perturbation theory [68]. However, this
perturbation theory breaks down for FEPs, while more
generally the Jordan normal form construction is ill con-
ditioned and changes singularly under infinitesimal pa-
rameter changes. This route can therefore only be carried
out in systems for which the spectral properties are ex-
actly known. The second approach [54], which we adopt
here, starts with a systematic expansion of the Green’s
function around an arbitrary references energy €2,

o (B —Q)FBy
G(E) = &40 )
) S o(E — Q)

The quantities By in the numerator are N x N matri-
ces known as the modes of the adjugate matriz. These
modes follow directly from the Hamiltonian matrix by
the Faddeev-LeVierre recursion relation

tr (ABk)
N -k

where A = H — Q1. The modes also determine the coef-
ficients

(15)

By_1 =1, By1 = ABy — 1,  (16)

_ tr (ABy)

Nk an)

C =
in the denominator, which are the expansion coefficients
of the shifted characteristic polynomial

N
p(E) = det (Bl — H) = det (A1 — A) = > Nex = g(N),
k=0
(18)
where A = E — ().
In terms of this directly calculable data, the response
strengths are then given by [54]

tI‘(BLiiliBai_gi)

2
2 — 19
UB |Ca.; 2 ( )
and
2
2 ||Bai*5i 2
2 - [maimill2 20
fz |Cai |2 ’ ( )
where || - ||2 denotes the spectral norm, and the modes

are calculated with Q = FE;, hence A = H — E;1. This

algebraic approach based on the modes By therefore en-
ables us to calculate the response strengths reliably from
the Hamiltonian, without having to carry out the Jordan
decomposition. As we will show next, the data enter-
ing the response strengths directly links to the partial
multiplicity structure of FEPs (as a consequence of this
connection, the two response strengths 7; and & happen
to coincide for 8; = 1).

D. Framework for efficient analysis and design

As we describe now, the algebraic approach to deter-
mine the response strengths can be extended into an effi-
cient mathematical framework that identifies and charac-
terizes FEPs systematically and completely, and delivers
explicit conditions for their formation that can be eval-
uated in specific models. To formulate this framework,
we again set A = H — F;1, and then consider the modes
By as determined by the Faddeev-LeVierre recursion re-
lation (16).

The main vehicle of this characterization are two con-
ditions. The eigenvalues and their algebraic multiplicity
are obtained from the condition

Cp=tr(AB;) =0, k=0,1,2,...,0; — 1, (21)
originally derived in Ref. [54] and reviewed in Appendix
A. The second condition resolves the partial multiplicities
according to

Bi(l) = ok (B, —1—2) — 2 X rnk (By,—i1—1) + rnk (B4, 1),
(22)
with [ > 1. We derive this additional condition, which is
central to the present work, in the same Appendix A.
Together, these conditions deliver the partial multi-
plicity function of an eigenvalue directly in terms of the
shifted Hamiltonian A. From this information, we can re-
construct the other multiplicities as already described in
subsection IIT A. Furthermore, the maximal partial mul-
tiplicity can be determined directly by the condition
B, =0, k=0,1,2,...,0; —¢; — 1, (23)
so that the first finite mode is given by Bq,_¢;, i.e., ex-
actly by the mode that enters the algebraic expressions
(19) and (20) for the response strengths 7; and &;, re-
spectively. The geometric multiplicity S; of the leading
eigenvectors is then given by the rank of this matrix,

Bi =rnk (Baifﬁl )7 (24)

which results in the above-mentioned identity of the spec-
tral strengths (19) and (20) if g; = 1.

All the algebraic conditions stated in this subsection
are basis invariant, and hence can be evaluated directly
from model Hamiltonians, where one can make use of
the efficient recursion relation (16). It follows that the
conditions not only serve to systematically characterize a
given degenerate eigenvalue, but also can be employed to



design systems that exhibit a certain desired degeneracy
scenario. With this, we are now ready to turn to specific
lattice models and determine the conditions under which
they exhibit FEPs in the bulk and boundary spectrum.

IV. NON-HERMITIAN LIEB LATTICES

Our main focus for the remainder of this work is to
demonstrate the existence of FEPs in two- and three-
dimensional lattice models and to systematically incor-
porate these degeneracy scenarios into the body of widely
studied cases of generic EPs with geometric multiplicity
vi = 1.

We start with the Lieb lattice, a tight-binding model
based on a unit cell of three sites, corresponding to three
sublattices that we denote as A, B, and C (see Fig. 1).
This provides the minimal setting of a system with three
bands, which, hence, can display bulk degeneracies of
algebraic multiplicity ae = 3. These third-order degener-
acy scenarios serve as our motivation for considering this
model, as n = 3 is the first nontrivial order that can har-
bor an FEP, with partial multiplicities (I;1,%;2) = (2,1).
In contrast, for second-order degeneracies, there are only
two scenarios: a DP within the Hermitian framework and
a generic EP2 within the non-Hermitian framework.

The original Hermitian version of the Lieb lattice dis-
plays a flat band as well as two symmetric dispersive
bands that meet in an n-bolic point of order n = 3 (a tri-
bolic point) [71-73], while non-Hermitian variants have
been designed to display EPn’s of the same order in their
bulk band structure [55, 58]. We first review these com-
mon degeneracy scenarios in the standard approach and
then design a minimal model exhibiting an FEP. Subse-
quently, we apply our formalism from the previous sec-
tion to systematically classify these degeneracy scenarios
and identify the general conditions for Lieb lattices that
support FEPs in their bulk band structure. Finally, we
utilize these conditions to design a system that displays
exceptional rings and lines hosting FEPs at special loca-
tions.

A. Hermitian model and tribolic points

In its original Hermitian formulation, the nearest
neighbors in the Lieb lattice are coupled by a uniform,
real, coupling constant ¢ [see Fig. 1(a)]. Setting t = a =
1, where a is the lattice constant, the infinite periodic
system is described by the Bloch Hamiltonian

0 1+ etky 0 ‘
1+e 0 14ei= | (25)
0 1+ 0

H(k) =

where k = (k;, ky). The Bloch Hamiltonian reflects the
lattice topology of the system, in which the A and C
sites are only coupled to B sites, and vice versa. This
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FIG. 1. (a) Standard Hermitian version of the Lieb lattice,
based on a three-site unit cell with uniform couplings t. (b)
Non-Hermitian version of the model, with nonreciprocal cou-
plings p, ¢, r, s inside the unit cell, while the couplings between
the cells remain fixed to t. This modification allows us to re-
alize fragmented exceptional points in the bulk dispersion of
the model.

constraint on the couplings induces a chiral symmetry
XH(kK)X = —H(k), (26)

where

0
-1
0

X = (27)

OO =
_ o O

The chiral symmetry maps any eigenstate u;(k) with
eigenvalue F; (k) to an eigenstate Xu; (k) with eigenvalue
—FE;(k). Therefore, the band structure is comprised of
two symmetric dispersive bands E (k) = —E_(k), given
by

Ei(k) = :I:\/Q (cosky + cosk, + 2). (28)

By the same argument, the remaining third eigenvalue is
forced to vanish throughout the Brillouin zone,

Ey(k) = 0 for all k, (29)

hence, forms a dispersionless flat band. A key character-
istic of this flat band is its localization on the AC sub-
lattice, while the dispersive bands exhibit equal weights
on the B and AC parts of the system.

At k, = k, = 7, the radicand in Eq. (28) vanishes,
and the three bands merge at energy £y = EL = 0,
i.e., form a degeneracy with algebraic multiplicity o = 3.
Furthermore, since the underlying system is Hermitian, it
maintains three linearly independent eigenvectors, which
then span the complete Hilbert space. Therefore, the
geometric multiplicity is v = 3, and the degeneracy is a
tribolic point. This scenario is illustrated in Fig. 2(a) in
terms of a contour plot of the absolute value |EL (k)| of
the dispersive bands.
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FIG. 2. Contour plots of the dispersion relation |E (k)| for (a)
the conventional Hermitian Lieb lattice with Bloch Hamilto-
nian (25), depicting a tribolic point at the momenta values
(kz,ky) = (m,m) around which the dispersion relation is lin-
ear, and (b) the non-Hermitian variant with Bloch Hamilto-
nian (30), proposed in Ref. [58], displaying four conventional
EP3s with geometric multiplicity v = 1 arranged symmetri-
cally around the point where the tribolic point existed for the
Hermitian case. The parameter € determining the strength of
the non-Hermitian perturbation is set to be equal to 1. We
design model systems that exhibit the more complex FEP de-
generacy scenarios in their energy dispersion.

B. Exceptional points of order three

As pointed out in Refs. [55] and [58], introducing a
suitable non-Hermitian perturbation into the Hamilto-
nian while preserving the chiral symmetry, the tribolic
point can be split into four 3"%-order exceptional points
(EP3s), each characterized by an algebraic multiplicity
of @ = 3 and a geometric multiplicity of v = 1. The
simplest variant is given by [58]

0 1+ ey 4 e 0
e~y e 0 14e e —je |,
0 14 etfe — e 0

HEk) = | 1+

(30)
which preserves the chiral symmetry (26) as well as reci-
procity R, defined by the condition H(k) = HT(—k).
The flat band is maintained, while the dispersive bands
become

Ei(k) = j:\/2 [(1 —idg)cosky + (1 + ie) cosky, — €2 + 2].

(31)
As shown in Fig. 2(b), the four EP3s are symmetrically
located in the Brillouin zone at momentum values k, =

<§ —1) and p,v =
+1. At each of these EP3s, there is only a single pair of
right and left eigenvectors, whose nonnormalized form is

given by

pko, ky = vko, where kg = arccos

i+ etv¥e
u,, = 0 . ,
1 — e WPe

(32)

_ T
Vipy =Wy )

where . = arccos 5. As a result, the geometric multi-

plicity is v = 1, which is a signature of an EP. Indeed,
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FIG. 3. (a) Energy band diagram E(ks, k, = m) as a function
of k. for the conventional Hermitian Lieb lattice with Bloch
Hamiltonian (25), displaying the tribolic point at k, =
(b,c) Complex energy band diagrams (real part in blue, imag-
inary part in red) for the non-Hermitian Lieb lattice with
Bloch Hamiltonian (33) and € = 1. In (b) k, = m, revealing
the FEP of geometric multiplicity v = 2 and partial multi-
plicities (I1,12) = (2,1) at k. = 7. In (c), ky = —2arccot 3 is
fixed to display the generic EP3 in this model, see Eq. (36).
Panel (d) reveals the distinct dispersion around the FEP and
EP3 in this model in terms of the energy contours |E (k).
In the low energy limit, the generic EP3 displays an isotropic
dispersion relation, while the dispersion relation around the
FEP is highly anisotropic.

each eigenvector pair is self-orthogonal, vu = 0, which is
a symptom of the defectiveness of the eigensystem [35].

C. Fragmented exceptional points

To prepare our general classification in the next sec-
tion, we now identify a minimal example of a non-
Hermitian Lieb lattice that displays an FEP. As the sys-
tem only contains three states, the FEP will have partial
multiplicities (I1,l2) = (2,1), corresponding to an alge-
braic multiplicity of &« = 3 and a geometric multiplicity
of v = 2. Therefore, the maximal partial multiplicity is
¢ = 2. In the design of the system, we are then guided
by the general observation that this degeneracy structure
lies in between those of a tribolic point and an EP3. This
leads us to the following choice of a minimal example,

0o 1+ eky + je 0
1+e 0 T+e ™= | . (33)
0 1+ ethe — e 0

H(k) =



We observe that this model preserves the chiral symme-
try, but breaks reciprocity, HT (k) # H(—k). The flat
band Ey = 0 remains intact, while the dispersive bands
are given by

Ei(k) = :l:\/4 + 2cosky + 2cos ky + ic(e~hy — e~k

(34)
Solving this relation for Ei(k) = 0 gives us two band
degeneracy points in the Brillouin zone, which are located
at

ky=ky=m (35)
and

ky = —k, = 2arccot g (36)

Therefore, unlike for the model (30), the tribolic point
now breaks into two degeneracy points, rather than four.
Of these, the point at k, = k, = 7 possesses two pairs
of linearly independent right and left eigenvectors, which
we may choose as

vi=(1,0,1), vy=(0,1,0). (37)

This point is the desired FEP. On the other hand, the
point at k, = —k, = 2arccot § forms a generic EP3 with
v = 1. Consequently, two third-order degeneracy points
with different geometric multiplicities coexist in the bulk
dispersion of the Hamiltonian (33).

Figure 3 illustrates the signatures of the different de-
generacy scenarios in cross-sections of bulk band dia-
grams. Panel (a) shows the tribolic point of the Her-
mitian system, while panels (b) and (c) show the FEP
and EP3 in the model (33), respectively. A characteris-
tic feature of the FEP is the cusp-like shapes displayed by
either the real or the imaginary parts as one approaches
the degeneracy from either side. As shown in contour
plots of the dispersive bands in panel (d), the dispersion
around the FEP is highly anisotropic.

Based on such design-by-inspection, we can come up
with further examples of Lieb lattices that display FEPs.
However, instead of listing further such cases here, we
next apply our formalism to classify the possible degener-
acy scenarios systematically and completely. Afterwards,
we revisit the examples given so far, and describe how
they can be generalized.

D. Complete classification

We now utilize our framework based on the modes By,
to embed the examples given so far into a full classifi-
cation of the possible degeneracy scenarios in the bulk
dispersion relation of the Lieb lattice, and determine the
general conditions for FEPs.

To carry out this classification in sufficient generality,
we consider a Bloch Hamiltonian of the form

P o
H(k) = 0R|, (38)
50

o o

where P, @), R, and S are functions of k. This maintains
the chiral symmetry of the system, so that all degen-
eracies occur at energy EE = 0. We therefore apply the
modal analysis with a vanishing energy shift 2 = 0, so
that the matrix A = H (k).

1. Modes and their rank

Applying the Faddeev-LeVierre recursion relation (16)
we obtain

By = 1,
0P O
B = H(k) =1 Q 0 R |,
058 0
) RS 0 PR
BO—H(k)Q—trH(k) 1 = 0 0 o
2 QS 0 —PQ

(39)

To apply our formalism, we need to determine the rank
of these matrices. This analysis is facilitated by the fact
that we can write

R

By = 0
-Q

(—S,0,P). (40)

The ranks can then be read off directly from the simple
form of these matrices, where we distinguish three cases:

e CASE 1: If (|P| + |S))(|Q| + |R|) > 0 (hence,
neither P and S both vanish at the same time, nor
@ and R both vanish at the same time), then

rnk By =1,

rnkB; =2, rnkBy =3. (41)

e CASE 2: If (|P| +|5])(|Q| + |R|) = 0 but |P|+
|Q| + |R| + |S] > 0 (where the latter means that at
least one of the quantities is finite) then

rnk By = 0,

rnkB; =1, rnkBy =3. (42)

e CASE 3: If P=Q=R=S =0, then

mkBy =0, rmmkB; =0, rmkBy=3. (43)



2. Algebraic multiplicity

Next, we determine the algebraic multiplicity of the
eigenvalue from condition (21). For this, we evaluate

Co =1tr (H(k)Bo) = 0, (44)
Cl =1tr (H(k)Bl) = 2(PQ + RS), (45)
CQ =tr (H(k)BQ) =0. (46)

According to condition (21), the algebraic degeneracy is
a=1if PQ+ RS # 0, in which case the eigenvalue is the
nondegenerate eigenvalue of the flat band. Furthermore,
the algebraic degeneracy is a = 3 if

PQ+ RS =0. (47)

We recover that degeneracies of order 2 are ruled out, as
enforced by the symmetries of the system—but did not
need to explicitly envoke these symmetries.

8. Partial multiplicity

With this we come to the last step of our general anal-
ysis, the determination of the partial multiplicities of the
degeneracy. For this, we apply the main general result
of this work, Eq. (22), to the matrices given in Eq. (39),
whose ranks are specified in Eqgs. (41), (42), and (43).
For completeness, we first discuss the nondegenerate sce-
nario, and then turn to the classification and characteri-
zation of the different degenerate scenarios.

For the nondegenerate scenario, PQ # —RS, P and S
cannot both vanish at the same time, and R and ) cannot
both vanish at the same time. This corresponds to CASE
1, where the ranks are given by Eq. (41). Since in this
scenario a = 1, the multiplicity function (22) reduces to
the single value

B(1) =k By =1, (48)

while formally 5(2) = 5(3) = 0. These values corre-
spond to v = 1 and a single partial multiplicity {; = 1,
and thereby reproduce the only allowed values for the
multiplicity function of a nondegenerate eigenvalue.

In the degenerate scenarios, where PQ + RS = 0 and
a = 3, the multiplicity function (22) follows from the
expressions

B(1) = rnk By — 2 x rnk By + rnk By,
B(2) = =2 x rnk By + rnk By,
B(3) = rnk By. (49)

In its evaluation, we distinguish the following cases.

e CASE 1: (|P|+ |S))(|Q] + |R|) > 0. The rank
of the modes is the same as in the nondegenerate
case, i.e., given by Eq. (41). Inserting these values
into Eq. (49) we then find

1) =p(2)=0, BB3)=1 (50)

These values correspond to an EP3, with a single
partial multiplicity /;; = 3 and geometric multi-
plicity v = 1.

e CASE 2: (|P|+[S)(IQ|+|R]) = 0 but |[P|+]|Q|+
|R| + |S| > 0. Inserting the ranks from Eq. (42)
into Eq. (49) we find

3(3) = 0. (51)

This corresponds to an FEP with partial multiplic-
ities (I1,l2) = (2,1) and a geometric multiplicity
v =2.

e CASE 3: P=(Q = R= S5 = 0. This is the tribolic
point. The ranks are given by Eq. (43), from which
we obtain

p(1) =3, B(2)=p(3)=0. (52)

Consequently, the partial multiplicities are given by
(I1,12,13) = (1,1,1). Furthermore, the sum rule (9)
recovers the geometric multiplicity v = 3.

4. FEzact general conditions for FEPs

Therefore, FEPs are realized exactly when either (i)
the quantities P and S both vanish and at least one of
the quantities @ and R is finite, or (ii) the quantities @
and R both vanish and at least one of the quantities P
and S is finite. We note that the degeneracy condition
PQ+ RS =0, Eq. (47), is automatically fulfilled in both

cases.

E. Examples revisited

To connect these general findings to the earlier exam-
ples, we consider a Lieb lattice with nonreciprocal cou-
plings inside the unit cell, as shown in Fig. 1(b). This
modifies the intracell couplings between the A and B sites
to take values p (from B to A) and ¢ (from A to B), and
the intracell couplings between the B and C sites to take
values r (from C to B) and s (from B to C). The inter-
cell couplings maintain their reciprocal value ¢, which we
again set to t = 1. The Bloch Hamiltonian then takes
the form of Eq. (38) with

P=p+et,

Q=q+e ™,

R=r+e e,

S =54 ethe, (53)

(1) For the original Hermitian version of the Lieb lat-
tice, with Bloch Hamiltonian (25),p=¢=r =s=1. At
the tribolic point k;, =k, =7, P=0Q =R =5 =0, in
agreement with CASE 3. We also note that these values
fulfill the degeneracy condition Eq. (47) trivially.
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FIG. 4. Contour plots of the dispersion relation |E (k)| for the reciprocal non-Hermitian Lieb lattice model determined by the
Bloch Hamiltonian (56) for different values of the parameters U and ®. In panel (a), we set ¥ = 37 /4 and ® = 7/2, which realizes
two FEPs at (kz,ky) = (—3n/4, —7w/2) and (k., ky) = (37/4,7/2) along with two generic EP3s at (k., ky) = (—37/4,7/2) and
(kz,ky) = (3w/4, —7/2). In panel (b), we set & = ¥ = 7 /4, leading to a degenerate ring determined by the momentum relation
in (57). On this ring, two FEPs are located at (ks, ky) = (7/4,7/4) and (ks, ky) = (—m/4, —7/4), while the remainder is formed
from generic EP3s. Setting the parameters ® = W = 7/2 in panel (c), the exceptional ring morphs into four exceptional lines,
speicified in Eq. (58). Similar to before, the lines host two FEPs located at (kq, ky) = (7/2,7/2) and (ko, ky) = (—7/2, —7/2),

while the remainder of the lines is formed from generic EP3s.

(2) For the non-Hermitian system (30), p=¢g=1+¢
and r = s =1—¢. The EP3s are realized at

(54)

where again . = arccos 5. These expressions fulfill
Eq. (47) nontrivially, and as they are all finite adhere
to CASE 1.

(iii) For our minimal example (33),p = 1+e, g =r =1,
and s = 1—¢. At the EP3, with k, = —k, = 2arccot § as
specified in Eq. (36), the quantities P,Q, R, S are again
all finite and fulfill Eq. (47) nontrivially, still in agreement
with CASE 1. At k, =k, =7, Q = R =0 while Pand S
are finite. Accordingly, this realizes CASE 2, and hence
fulfills the conditions for an FEP.

It could now be anticipated that FEPs may arise for
various situations in between the trivial and nontrival
ways to fulfill the degeneracy condition PQ + RS = 0,
Eq. (47), of which there are four natural candidates:

(i) P=R=0,
(ii) P=5=0,
(ii) Q=R=0,
(iv) Q=S=0, (55)

with the other two quantities in each case assumed to
be finite (the same assumption rules out the candidates
P=@Q =0and R= 5 =0, as the degeneracy condition
then cannot be fulfilled). However, our general analysis
shows that only candidates (ii) and (iii) result in FEPs
according to the conditions of CASE 2, while candidates

(i) and (iv) produce additional examples of EP3s obeying
the conditions of CASE 1.

F. Reciprocal example with exceptional lines

With these insights in mind, we conclude this section
by designing a system that combines different scenarios,
including for the case of exceptional lines. For this we
consider the following model,

0 eiky _ ei<I> 0
H(k) — e—zky _ 67,<I> 0 e—zkw _ ez\I/
0 eikx _ ei\I/ 0

» (56)

with real angles ® and ¥. Note that in contrast to the two
specific non-Hermitian models (30) and (33) described
above, this model is reciprocal, H(k) = HT(-k). To
identify the different degeneracy scenarios realized by this
model, we refer to the exact general conditions for FEPs
listed at the end of Sec. IV D.

When the angle fulfill ® # ¥ and ¢,V # 0 (mod ),
the model displays an FEP with P = S = 0 at (kg, ky) =
(¥, ®), an FEP with Q = R =0 at (k;, k) = (-7, —9),
an EP3 with Q = S = 0 at (k;,ky) = (¥,—P), and
an EP3 with P = R = 0 at (k;,ky) = (—¥,®). This
scenario is illustrated in terms of an absolute-energy band
diagram in Fig. 4(a).

For the case ® = ¥ # 71/2 (mod ) illustrated in Fig.
4(b), on the other hand, we find that the bulk eigenspec-
trum hosts an exceptional ring of algebraically three-fold
degenerate eigenvalues located in the Brillouin zone. In
accordance with the degeneracy condition PQ + RS = 0,
Eq. (47), this ring follows the momenta points fulfilling
the relation

(57)

cos kg + cosky = 2cos P.



As in the previous case, the system displays FEPs at the
special positions (kg, k) = (@, ®), where with P = S =
0, and (kg, ky) = (—®, —®), where with Q@ = R =0. All
the other degenerate eigenvalues on the ring satisfying
the above momentum relation are generic EP3s.

Finally, for the case ® = ¥ = 7/2 (mod ), Eq. (57)
reduces to

ky = tk,. (58)

The exceptional rings are hence morph into straight lines
on which all the eigenvalues are algebraically three-fold
degenerate, where the special locations at (k;, ky) =
(r/2,7/2), and (ky, ky) = (—7/2, —7/2) again constitute
FEPs, while all other locations on this line are generic
EP3s. This scenario is illustrated in Fig. 4(c).

This example illustrates how our framework, based on
the modes of the adjugate matrix, systematically identi-
fies the precise and explicit conditions that result in the
emergence of FEPs in the minimal case of a system with
three bands. In the two following sections, we will go
beyond this minimal three-band setting, and consider a
three-dimensional lattice model with four bands. We will
demonstrate the presence of FEPs with higher geometric
multiplicity in the bulk and for the topologically pro-
tected boundary modes, where the latter manifest them-
selves as exceptional lines in momentum space.

V. NON-HERMITIAN HIGHER-ORDER DIRAC
SEMIMETALS

In this section, we consider the emergence of FEPs
in topological four-band models based on a three-
dimensional higher-order Dirac semimetal (HODSM)
[15]. Its underlying Hermitian lattice realization, de-
picted in Fig. 5, is obtained by stacking two-dimensional
quadrupole insulators (QIs) [11] along the z direction. As
this model can host bulk degeneracies up to order n =4
(tetrabolic points), it provides us with more freedom to
construct non-Hermitian versions displaying FEPs with
various partial multiplicity structures, which is the sub-
ject of the present section. In the following section, we
will further exploit that the topologically nontrivial phase
of this system, under open boundary conditions, gives
rise to hinge states in its eigenspectrum.

We first briefly discuss the model and its symmetries,
and then use the modal expansion of the adjugate matrix
to characterize the bulk degeneracies in the Hermitian
case. Next, we present four non-Hermitian extensions of
this model (see Fig. 6) that host all possible degeneracy
scenarios in this system, including various FEPs as well
as conventional EPs and DPs (see Fig. 7). For each of
these cases, we use the ranks of the modes to determine
the partial multiplicity function for the encountered de-
generacy scenarios.

FIG. 5. Lattice realization of the Hermitian higher-order
Dirac semimetal, obtained from stacking two-dimensional
quadrupole insulators along the z direction. Each unit cell
contains 4 sites, labeled A, B, C, and D. In each plane, the
intracell and intercell couplings indicated by solid lines are
t and s, respectively. The couplings between the B and C
sublattices, indicated by the dashed lines, have the opposite
sign, so that each plaquette carries a m flux. Neighboring unit
cells in adjacent planes are connected by diagonal couplings
of magnitude s/4, with the sign again reverted for couplings
between B and C sites.

A. Hermitian parent model
1. Construction and symmetries

As the foundation for creating the HODSM, we first
review the lattice model of a two-dimensional QI, given
by the front sheet in Fig. 5. The QI consists of a square
lattice with corrugated nearest-neighbor couplings, re-
sulting in a unit cell of four sites. The intracell couplings
into the x and y directions are of magnitude ¢, while the
corresponding intercell couplings are of magnitude s. In
addition to this, any square plaquette (inside the unit
cell, or between the unit cells) contains a 7 flux, due to
which one of the couplings around the plaquette is taken
to be negative. We implement this by inverting the sign
of the intracell and intercell couplings connecting B and
C sites, hence, along every second vertical line, as in-
dicated by the dashed lines in the Figure. The Bloch
Hamiltonian for this model is then given by

Hor(k) = (t + scosk, )Ty + ssink,I's
+(t + scosky)'y + ssink,I'y, (59)

where the 4 x 4 matrices

= —-0s®k; and Ty=0, @ Ko (60)



are obtained from tensor products of Pauli matrices o;
and k;, 1 = 1,2,3 along with o9 = k9 = 12. The QI
model described by the Hamiltonian (59) has spinless
time-reversal symmetry 7 = K, where K denotes com-
plex conjugation, reciprocity R, mirror symmetries M,
and M, along x and y direction respectively, and Cy ro-
tational symmetry Cy Hor(ks, ky) Cyt = Hor(ky, —k.)
with the transformation matrix

Cy— ( _?@ 2 ) . (61)

Due to the presence of 7 fluxes in all plaquettes, Cf =
—1. On top of the symmetries mentioned above, the
Bloch Hamiltonian also possesses chiral symmetry, which
again results from the division of the system into two
mutually coupled sublattices. However, unlike for the
Lieb lattice, the chiral operator,

X = ( ]B? _?12 ) (62)

is traceless, since the unit cell contains equal numbers of
sites from these sublattices. Therefore, the system does
not exhibit a flat band. Instead, the system possesses
a symmetric band structure of two two-fold degenerate
bands

Ei(k) = i\/Q(tZ + s2) + 2ts(cosk, + cosky).  (63)

The three-dimensional HODSM follows when one
stacks the QIs and interconnects them with intracell
criss-cross couplings [see again Fig. 5, as well as Fig. 6(a)],
set here for convenience to s/4. In the Bloch Hamilto-
nian (59) this renormalizes the intracell coupling param-
eter t — t+ 5 cosk,. The HODSM Bloch Hamiltonian is
therefore given by

4
H(k) = _d;T;, (64)
j=1

with dy/3 = ssink,/,, and dyy = (t + Scosk. +
scos ky, /z). This model preserves all the symmetries of
the QI model mentioned earlier. We next discuss the
bulk energy bands and characterize the degeneracy sce-
narios occurring in the Brillouin zone.

2. Modal analysis of bulk degeneracies

To prepare the application of our formalism to non-
Hermitian extensions of this model, we now apply the
modal expansion to the Hermitian case. For this, we
note that the Bloch Hamiltonian (64) can be written in
the block off-diagonal form

H(k) = < PT?k) P f)k) > : (65)
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where the blocks are 2 x 2 matrices

P(k) = po(k)og + p1(k)o1 + p2(k)oz + p3(k)os  (66)

with

(68)

still describing two doubly-degenerate bands. The form
of this expression implies that four-fold degenerate band-
touching points appear when all quantities p;(k) vanish
simultaneously, i.e., when

po(k) = p1(k) = pa(k) = p3(k) = 0. (69)

Within the first Brillouin zone, the location of these al-
gebraically four-fold degenerate points therefore occur at
the momentum values

2
(ko' Ky, ) = (0,0, + arccos (-2 _ St>) (70)

as well as

2
(kg,ky, k.) = (m,m, £ arccos (2 - t)), (71)

S

where the two cases effectively can be mapped onto each
other by inverting the sign of ¢/s. In Fig. 7(a) we il-
lustrate these degeneracies by plotting the dispersion re-
lation (68) as a function of k, for k, = k, = 0 and
s = —t =1, so that the bands touch at k, = £7/2.

To analyze these four-fold bulk degeneracies at £ = 0,
we will therefore fix k, = k, = 0, and in the modal for-
malism we set the energy shift parameter 2 = 0, so that
the matrix A = H(k). This analysis is further facilitated
by the identities

tr H?(k) = 4E%(k), (72)

where we denote the common value of the squared dis-
persion E2 (k) = E2 (k) = E?(k) (these relations are
tied to the alternative interpretation of the system as a
square-root topological insulator [74], which we revisit in
the discussion of hinge states). The modes calculated us-
ing the Faddeev-LeVierre recursion relation (16) are then



FIG. 6.

Schematics of two unit cells in the Hermitian higher-order Dirac semimetal described in Sec. V A, along with its

four non-Hermitian versions discussed in Secs. VC, VD, VE, and V F, respectively. Panel (a) depicts the different couplings
entering the Hermitian HODSM model Hamiltonian (64). The other panels focus on the additional non-Hermitian couplings of

strength e, which are all intracell and specified in Eq. (8

given by
Bs =1, (73)
By = H(k),
2 2
By = H2(K) — tr’H2 (k)]1 _ 7tr7-l4 (k)]l,
2
o= o8, - THBLy gy I,

Given the condition (69) and the form (65) of the Bloch
Hamiltonian, A = H(k) vanishes at the bulk degeneracy
point.

We first use Eq. (21) to verify consistency with the
algebraic multiplicity of the degenerate eigenvalue. As
A = 0, all coefficients C; = tr (AB;), i = 0,1,2,3, ap-
pearing in the condition vanish. This implies that the
algebraic multiplicity takes the value a; = 4, which re-
covers the actual algebraic multiplicity of this degener-
acy.

Next, we resolve the partial multiplicities by using
Eq. (22). For the present model with dimension N = 4,
this gives the relations

B(1) = rnk By — 2 x rnk By + rnk Bs,
B(2) = rnk By — 2 x rnk By + rnk Bs,
B(3) = —2 x rnk By + rnk By,

)=

B(4) = rnk By. (74)

Applied to the present degeneracy, where the Hamil-
tonian itself vanishes, the only mode with nonvanishing
rank is Bs. Therefore, we have

B(1) =4, B(2)=p03)=p(4) =0 (75)

3). The arrows denote the direction of these nonreciprocal couplings.

As required, this describes a tetrabolic point, in which
each eigenvalue has partial multiplicity 1.

Indeed, according to condition (23), since the first fi-
nite mode carries the index «a; — ¢; = 3, the maximal
partial multiplicity is £; = 1, as required for all degenera-
cies of Hermitian systems. The geometric multiplicity of
the corresponding leading eigenvectors then also follows
from Eq. (24) as 8; = rnk(Bs) = 4. Finally, we also
recover the total geometric multiplicity from Eq. (9) as

N
= " Bi(1) =4. (76)
=1

This concludes the analysis of the tetrabolic points in
the bulk energy eigenspectrum of the Hermitian HODSM
model. In the following subsections, we construct various
non-Hermitian versions of this model and demonstrate
the existence of FEPs in their bulk energy dispersion re-
lations.

B. Overview of non-Hermitian model variants

Compared with the example of the Lieb lattice de-
scribed in Sec. 1V, where we could only construct FEPs
with partial multiplicities (I;1,;2) = (2,1), the maximal
algebraic multiplicity a; = 4 displayed by degeneracies
in the HODSM model gives us more freedom to con-
struct FEPs with distinct partial multiplicities beyond
the generic EP. Therefore, we will now describe non-
Hermitian variants of this system leading to FEPs with
the three possible sets of partial multiplicities (I;1,0;2) =
(3,1), (2,2) and (l;1,li2,0;3) = (2,1,1). Furthermore,



we will encounter generic EP4s with (I;1) = (4), as well
as two-fold degenerate diabolic points with (l;1,0;2) =
(1,1). This covers all possible degeneracy scenarios that
are compatible with the chiral symmetry of this model.

We base these variations on the non-Hermitian exten-
sion

H(k) = ( R?k) ng) > : (77)

of the Bloch Hamiltonian (65), where the matrices

Q(k) = qo(k)oo + q1(k)o1 + g2(k)oz + gs(k)os, (78)
R(k) = T’o(k)do —+ 17 (k)01 + 7’2(1{)(72 + T’g(k)O’g (79)

are now no longer constrained by the condition R'(k) =
Q(k), hence, in general are independent of each other.

The non-Hermitian extension (77) retains the block
structure and resulting chiral symmetry of the Bloch
Hamiltonian, leading to a generally complex dispersion
relation of the form

1 1/2
E, = iﬁ (tr[RQ] + \/tr2 [RQ] — 4det Rdet Q)

1/2
3

3
== quz' + Zgi(giqz'Tj +7i5)? .
i=0 i<j

(80)

where the two signs can be chosen independently,
go1,2,3 = (1,—1,—1,-1), and we dropped the momen-
tum dependence for conciseness. We will utilize this
block structure to obtain degeneracies at £ = 0. We
read off that such degeneracies occur at momentum val-
ues for which

detQ(k) =0 or detR(k)=0. (81)

Furthermore, these degeneracies have algebraic multiplic-
ity 2 if tr[Q(k)R(k)] # 0, and algebraic multiplicity 4 if
tr[Q(k) R(k)] = 0.

Specifically, we will consider minimal extensions that
can be obtained by modifying the existing couplings in
the parent model. An overview of the considered cou-
pling modifications is given in Fig. 6, where the non-
Hermiticity parameter is again denoted by . This leads
to four models of the specific form

" 0 Pk .
H (k) = (Pf(k) g )>+h( ), (82)
where
0 0 0O 0 0 €0
h(l)* 0 0 €0 h(Q)* 0 0 00
10 —-00])" 10 —-00])"
0 0 00 0 0 00
00 -0 00 ¢ 0
(3) _ 00 0 ¢ (4) _ 00 — 0
W= 00 0 O W= 00 0 O (83)
00 0 O 00 0 O
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Where convenient, we refer to these four models as NH
model 1, 2, 3, and 4. As in the Hermitian case, we de-
signed these modifications so that the degeneracies occur
at k, = ky = 0. This allows us to focus on the role of
the momentum component k., and the non-Hermiticity
parameter €. We now discuss the different scenarios ob-
tained in this way in detail, where we will set s = -t =1
to simplify expressions.

C. Non-Hermitian model 1:
Generic exceptional points and diabolic points

We start with a scenario that yields generic exceptional
points of order 4 (EP4s), along with diabolic points of
algebraic and geometric degeneracy 2. We achieve this
by setting the expansion coefficients in Eqgs. (78) and (79)
to

a5" (k) = po(k)

¢V (k) = pi(k) +2/2,

g5" (k) = pa(k) — ie/2,

a5 (k) = ps(k), (84)

as well as

r§Y (k) = pis (),

iV (k) = pi (k) — /2,

r$D (k) = pi (k) —ie/2,

ri) (k) = pi (k) (85)

where p;(k) are the expansion coefficients of the Her-
mitian parent model specified in Eq. (67), and the
corresponding coupling modifications are depicted in
Fig. 6(b). Translated into Eq. (82), these choices realize
NH model 1. Diagonalizing the resulting Hamiltonian
HW (k) gives the dispersion relation

1 1/2
E = iﬁ (C082 k, —e? +e/e? — cos? kz> ,  (86)
where we have set k, = ky = 0 and s = —t = 1 as dis-
cussed previously. Upon setting the above equation to
zero, we obtain degenerate eigenvalues in the first Bril-
louin zone at

T
2 )
We use our modal analysis to resolve the partial multi-
plicities of the above degenerate scenarios, and start by
setting k, = j:% arccos (262 - 1), which corresponds to
four locations in the first Brillouin zone. At these values,
the Bloch Hamiltonian takes the explicit form

0 0 &/2¢/2
0 0 e/2¢/2
/2 3/2 0 0
€/2 /2 0 0

1
k. =+ k, = :|:§ arccos (2¢” — 1) . (87)

MW= (88)



Applying the Faddeev-LeVierre recursion relation (16)
with Q =0, A = H gives us the modes

63:]1a
BQZHa
1 -1 0 0
e2l1-10 0
Bi=5100 -1 -1
0 0 1 1
s 0 0 0O
€ 0 0 0O
Bo=51 -1 100 (89)
1 =100
along with their ranks
mkByg=1, rmmkB; =2, mkBy; =3, rnkB3=4.
(90)

These then deliver the partial multiplicity functions of
the considered degeneracy scenario from relation (74) as

B(4) =1, B1)=p5(2)=p@3)=0. (91)
Therefore, our formalism demonstrates that we have in-

deed encountered a generic EP4.
At k, = +m/2, the Bloch Hamiltonian reduces to

0 0 00
=0 o0 |=n. (92)
0 000
Repeating the modal analysis for this case, we obtain
Bs =1,
By =H,
2000
5=\ 5000 |
0 00 &2
By = 0. (93)

From this, we compute their ranks

rmk By =0, rnkB; =rnkBy =2, and rnkBs = 4.
(94)

Noticing that Co = tr (HBs) is now finite, while C; =
tr (HB1) = 0 still vanishes, condition (21) delivers an
algebraic degeneracy «; = 2. To determine whether this
is an EP or DP, we again obtain the partial multiplicity
function from the relations (22), which now take the form

B(1) = =2 x rnk By + rnk By = 2,
B(2) =k By = 0. (95)

Therefore, remarkably, the degeneracy scenario at k, =
+7/2 is a DP, with two independent eigenvectors of par-
tial multiplicity 1.

We plot the dispersion relation (86) in Fig. 7(b) for e =
1/4/2, illustrating the coexistence of the pair of diabolic
points and the four EP4s in the bulk energy bands of this
model.
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D. Non-Hermitian model 2: FEPs with
geometric multiplicity v; = 2 and (l;,1,0;2) = (3,1)

For degeneracy scenarios with algebraic multiplicity
a; = 4 and geometric multiplicity v, = 2, we have
two possible FEPs with partial multiplicities (I;1,0;2) =
(3,1) and (I;1,0;2) = (2,2). We realize these in two
separate models, covered in the present and the fol-
lowing subsection, where we here deal with the case
(s Lis) = (3,1).

Starting again from the general form (77) of the non-
Hermitian Hamiltonian, we set the expansion coefficients
to

g5 (k) =po(k) +¢/2

¢* (k) = p1(k),

a5” (k) = pa(k),

¢5? (k) = ps(k) +¢/2, (96)

while keeping the coefficients r§2) (k) of the lower block
the same as in the previous model, see relations (85). In
terms of Eq. (82), these choices realize NH model 2. The
dispersion relation is then given as

By = i%\/cos(kz)[e T+ cos(h)l, 97)

where each band is two-fold degenerate. Four-fold degen-
eracies now occur at momentum values

k,=+n/2 and k, = +arccos(—e). (98)

We begin our modal analysis with the degeneracy at k, =
+7/2, where the Hamiltonian takes the simple form

00 <0
oo o00])_, o
H= 0 —¢ 00 =h (99)
0000
The modes follow as
By =1,
By = H, (100)
0 —200
0 0 00
Bi=10 0 00"
0 0 00O
By =0, (101)
and substituting their ranks
mkBy =0, mkB; =1, rmkBy=2, rmkB3=4
(102)
into Eq. (74) the partial multiplicity function is given by
BB)=1, B(1)=1, pB(2)=p4)=0. (103)
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FIG. 7. Bulk energy bands E(k) as a function of k, for k, = k, = 0 for (a) the Hermitian HODSM specified by the Bloch
Hamiltonian (64), as well as (b-e) the non-Hermitian variants with additional non-Hermitian couplings of strength e specified in
Eq. (83) (real parts shown in blue, imaginary parts shown in red). In all panels, the couplings from the Hermitian parent model
are set to s = —t = 1. The energy bands in panel (a) follow from Eq. (68) and depict two four-fold degenerate tetrabolic points
at k, = £m/2. Panel (b) shows the dispersion relation (86) of NH model 1 with ¢ = 1/4/2, displaying two DPs at k, = +7/2
as well as four generic EP4s at k., = +n/4 and k. = £37/4. Panel (c) shows the dispersion relation (97) of NH model 2 with
e = 1/+/2, displaying four FEPs with partial multiplicities (I;,1,1;,2) = (3,1) at k. = #7/2 and k, = £37/4. Panel (d) shows
the dispersion relation (106) of NH model 3 with € = 1/2, resulting in two FEPs with (l;,1,0;,2) = (2,2) located at k, = £7/2,
as well as four generic EP2s at k. = +7/4, and k. = £37/4. Lastly, panel (e) shows the dispersion relation (114) of NH model
4 for £ = 1/+/8, displaying two FEPs with (I;1,0;2,1:,3) = (2,1,1) at k., = +7/2 and two generic EP2s at k, = +37/4.

Therefore, the degeneracy scenario in this case is an FEP
with partial multiplicity (I;1,%;2) = (3,1).

The same scenario also occurs at k, = =+ arccos(—e¢),
which follows by repeating the analysis for the corre-
sponding Hamiltonian

00 2 ¢

el 00 —2 —2
H==31110 o (104)

11 0 0

We depict these FEPs in the bulk dispersion relation of
Fig. 7(c), where we again set ¢ = 1/1/2.

E. Non-Hermitian model 3: FEPs with
geometric multiplicity v; = 2 and (l;,1,1:,2) = (2,2)

We now turn to the second case of FEPs with ge-
ometric multiplicity ~; = 2, where the partial multi-
plicities are (l;1,0;2) = (2,2). To obtain this scenario,
we retain all expansion coefficients qi(g)(k) = p;(k) and
rgg)(k) = pi(k) at their Hermitian values (67), with the
sole exception of

57 (k) = ps(k) —e. (105)

In terms of Eq. (82), this modification realizes NH model
3. The dispersion relation of this case is given by

1
Ey = iﬁ\/cos k.\/cosk, £ V2e,

which, upon setting to zero, gives degeneracies in the first
Brillouin zone at

(106)

k., =+n/2 and k, = arccos (:E\/ie) . (107)
At k, = +x/2, the Hamiltonian takes the form
00 -0
H = 8 8 8 o | =1 (108)
00 0 O

We apply the recursion relation in (89) to obtain the
modes
B3 = ]17

By=H, Bi=By=0, (109)

along with their ranks,
rnk Bp = rmkB; =0,

mkBs =2, kB3 =4, (110)



Using the relation (74), the corresponding partial multi-
plicity function is

A(2) =2, B(1) =pB(B3) =pB(4) =0.

Therefore, as desired we encounter an FEP with partial
multiplicities (I;1,1;2) = (2,2). Since, in this case, there
are two repeated leading eigenvectors (5(2) = 2), when
determining the response at this FEP one has to distin-
guish between the physical response strength (19) and
the spectral response strength (20).

The analogous analysis of the degeneracies at k, =
arccos (:I:ﬂs), where

(111)

0 0 1—+2 1
e o0 o0 -1 —-1-v2
- = 112
H V2l 1 -1 0 0 ’ (112)
11 0 0

reveals that these are generic EPs with algebraic multi-
plicity 2 (this algebraic multiplicity can also be read off
directly from Eq. (106)). We note that these EP2s only
exist in the range —1/v2 < ¢ < 1/1/2.

More generally, for any fixed value of the intracell cou-
pling parameter t, one can create or annihilate these
EP2s by tuning the strength of the non-Hermiticity pa-
rameter € without influencing the FEPs in the bulk en-
ergy bands. We show a band diagrams with four generic
EP2 and two FEPs in Fig. 7(d), where we set ¢ = 1/2.

F. Non-Hermitian model 4:
FEPs with geometric multiplicity v; = 3

We complete our discussion of all possible degener-
acy scenarios in the bulk spectrum of the non-Hermitian
HODSM model by constructing a system displaying
FEPs with geometric multiplicity of v; = 3, having par-
tial multiplicities (1;1,%2,0:3) = (2,1,1).

Following similar considerations as before, we set the
expansion coefficients to

q (k) = po(k) +¢/2,
¢V (k) = pr(k) —¢/2,
a5V (k) = pa (k) + ie/2,
g5V (k) = pa(k) +2/2, (113)

while keeping r£4) (k) = pr(k) fixed to the values of the
Hermitian model, given in Eq. (67). In terms of Eq. (82),
we obtain NH model 4. The dispersion relation for this
case is given as

1
Eyy=4+—+/cos?2k, + (1£1)ecosk,, 114
s =+ i (1£1) (114)
which displays degeneracies at the locations
k., =+n/2, and k, = arccos(—2¢). (115)
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At k, = +7/2, the Hamiltonian reduces to

00 ¢ 0
H = 8 8 o 8 =n"), (116)
00 0 0
leading to the modes
By =1, By=H, B =DBy=0, (117)
with ranks

rnk By =rmkB; =0, rkBy; =1, rnkBs;=4. (118)

Using again the relations (74), the partial multiplicity
function follows as

B =1, B()=2 AB3)=AM)=0.

Therefore, at k., = £7/2, the degeneracy scenario is an
FEP with partial multiplicities (I;1,%;2,0;3) = (2,1,1).

In addition, following a similar calculation as discussed
in the previous subsection, we determine that the degen-
eracy scenarios at k, = arccos(—2¢) are generic EP2s,
which now occur for —1/2 < ¢ < 1/2. We display
band diagrams combining these degeneracy scenarios in
Fig. 7(e), where we set ¢ = 1/1/8.

(119)

VI. FRAGMENTED EXCEPTIONAL LINES
FORMED BY HINGE STATES

As a final demonstration of the richness of FEPs and
their formation mechanisms, we now describe their ap-
pearance in the boundary spectrum of the HODSM mod-
els of the previous section. In the topologically nontriv-
ial phase of the Hermitian parent model, open boundary
condition along the x and y directions are known to in-
troduce hinge states localized at the four edges parallel
to the z axis [15]. These states appear for the parame-
ter range —3/2 < t/s < —1/2; otherwise, the system is
gapped in the bulk, making it a trivial insulator. The
hinge states are protected by the mirror reflection sym-
metries of the system, and are characterized by a higher-
order topological invariant, the quadrupole moment g,
[12]. This marks them as manifestations of the corner
modes of the underlying QI model [11], so that they cor-
respond to corner states of a reduced system at a fixed k,
momentum component, and in this picture form a line in
momentum space which connects the two tetrabolic Dirac
points.

Extending this analysis to the non-Hermitian exten-
sions of the previous subsection, we will see that the
hinge states morph into fragmented exceptional lines, pa-
rameterized once more by the k, momentum component.
As we will establish over the course of this section, the
specific degeneracy structure of these states can be de-
termined in exactly solvable configurations, while more
generally it is determined by a nonperturbative interplay
of finite size effects and state deformation due to nonre-
ciprocal non-Hermitian couplings.
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FIG. 8. Energy eigenspectra of the Hermitian HODSM model and its four non-Hermitian versions for the same parameters as in
Fig. 7, but obtained for open boundary conditions in the x and y direction (real part only; N, = Ny = 20). In all cases, nearly
flat four-fold degenerate hinge-state branches emerge from bulk degeneracies and extend into the momentum range around
k. = 0. In panel (a), the model is Hermitian, so that these states are near a tetrabolic point. In NH model 1, panel (b), the
hinge states appear in the region between two generic EP4s closest to k., = 0 and themselves are near an EP4. In the other
three models, the hinge states emerge from bulk FEPs. In NH models 2 and 3, panel (¢) and (d), they display the signatures
of an FEP with partial multiplicities (1;,1,0;,2) = (2,2), while in NH model 4, panel (e), they display the signatures of an FEP
with partial multiplicities (151,62, li,3) = (2,1, 1).

A. Model and numerical band dispersions from 1 to N, and N,, respectively. We note that both
directions are equivalent, with the Z5 gauge freedom al-

lowing to place the negative-valued coupling into any of

We implement open boundary conditions along the x
and y axes, but leave the system extended into the z di-
rection (alternatively, we can consider periodic boundary
conditions in this direction). In the x — y plane, we enu-
merate the 4-site unit cells by integers z and y ranging

J

This leads to the effective tight-binding Hamiltonian

the two directions, and hence set N, = N,. The sys-
tem is then most conveniently defined and analyzed in a
mixed representation given by the discrete real-space co-
ordinates x and y and the continuous momentum-space
variable k..

N.,N, N.—1,N, N, Ny—1
H(k,) = Z C;Tz,y Ho(k,) cpy + Z CLy Sz Cotily + Z c};y Sy Cpyt+1 +He. |, (120)
z,y=1,1 z,y=1,1 z,y=1,1

where ¢, 4 is a vector of annihilation operators on the A, B, C, and D sites of the corresponding unit cell, the intercell

couplings are given by

0010 0 0 01
0000 0 0 00
==l o000 | **~°lo-100]" (121)
0100 0 000
and Hy(k,) is the model-specific reduced intracell Hamiltonian. We write this reduced Hamiltonian as
00 11
s 0 0 —-11
Hy(k,) = (t—|— 5 cos kz> 1 -1 0 0 + h, (122)
11 00

where the Hermitian case is described by h = 0, while in the four non-Hermitian extensions of the previous section
we have the additions h = h("), n = 1,2, 3, 4, precisely coinciding with the expressions given in Eq. (83).



18

x2 (b)

(c)
W@ﬁﬁs

'l 'l 'l <1
0 00 00 @

(e)
?6‘40—{6‘4@—{6‘4.A (JA)-BY)x2

O
6 00 0G0, ‘9 020 00 @

FIG. 9. Hinge-state formation in the atomistic limit s = —2tcosk, of the HODSM models, illustrated for finite systems
spanning 3 x 3 unit cells. The atomistic limit yields exactly degenerate states at zero energy, with algebraic multiplicity 4
(a,c,d,e) or algebraic multiplicity 2 (b). (a) In the Hermitian model, the four corner become decoupled from the remaining sites,
resulting in independent zero-energy states that form a tetrabolic point [(partial multiplicities (1,1,1,1)]. (b) In NH model 1,
the A and D corners remain decoupled and provide two independent zero-energy states that form a diabolic point with partial
multiplicities (1,1). The B and C corners join into a non-Hermitian SSH chain (boxed in), providing two hybridized low-energy
edge states for |¢| < s. (c) In NH model 2, the D corner remains decoupled, while the A corner only has incoming couplings.
This results in the formation of an exact degeneracy with partial multiplicities (3,1). (d) In NH model 3, the A and B corners
only have incoming couplings, and support exact zero modes with partial multiplicities (2,2). (d) In NH model 4, the D corner
is decoupled, and the A and B corners only have incoming couplings, leading to exact zero modes with partial multiplicities
(2,1,1).

Before embarking on the detailed analysis of these for which we address different scenarios.
models, we illustrate the emergence of low-energy hinge
states in numerical energy band diagrams. Figure 8 de-
picts numerical eigenvalue spectra of finite systems with
N, = Ny = 20 as a function of k., where the cou-

pling parameters s = —t = 1 and strength ¢ of the non-

B. Atomistic limit

Hermitian modifications are the same as in the bulk anal-
ysis (cf. Fig. 7). In the Hermitian system the hinge states
appear as almost-degenerate states near zero energy in
the k., range between the two Dirac points. In the non-
Hermitian models, analogous states emanate from the
corresponding bulk degeneracy points, so that at k, = 0
there are always four almost-degenerate states that ap-
proach exact degeneracy in the limit IV, N, — oco. The
residual splitting of these states is due to finite size
effects, whose crucial role for the achieved degeneracy
structures we discuss further below. We now set out to
determine the degeneracy patterns achieved in this way,

Inspecting the internal Hamiltonian (122) we see that
it reduces to Ho(0) = h if scosk, = —2t, which is re-
alized, for instance, for k, = 0 and s = —2¢t. In the
Hermitian case (h = 0), this defines the atomistic limit
of the associated QI. As shown in Fig. 9(a), the four
corners at (z,y) = (1,1), (Ng,1), (1, Ny), and (N, Ny)
decouple from the rest of the system and support four
fully localized corner states with exact energy E = 0.
Therefore, these states form a tetrabolic point with par-
tial multiplicities (1,1,1,1). For the discussion of the
modification of this degeneracy in the non-Hermitian ex-
tensions we refer to the corners according to the label A,
B, C, or D of the terminating site. We focus on the de-



scription of the right eigenstates, noting that analogous
arguments can be put forward for the left eigenstates.
The corresponding formation mechanisms are illustrated
in Fig. 9(b-e).

In NH model 1 the additional couplings of strength € do
not connect to the A and D corners, resulting in two exact
zero-energy states that then form a diabolic point with
partial multiplicities (1,1). The B and C corners become
part of a subsystem that remains uncoupled from the re-
maining sites, and takes the form of a non-Hermitian Su-
Schrieffer-Heeger (NHSSH) chain, originally introduced
in the study of the non-Hermitian skin effect (NHSE)
[75]. We focus on the range |e| < |s|, where this chain is in
the topologically nontrivial configuration. The NHSSH
chain then supports two hybridized edge states with a
small but finite energy that approaches zero as the system
size is increased. In the limit of a large system, the four
low-energy states in the system then approach a tetra-
bolic point with partial multiplicities (1,1, 1,1). We note
that at this specific parameter point, the NHSE does not
apply, as the nonreciprocal couplings are still of exactly
the same strength. In the presence of the NHSE, the
two NHSSH states would be distorted to be localized at
the same end, leading to a (2,1,1) degeneracy structure.
We will encounter this mechanisms in the discussion of
generic parameter choices below, where it is then further
modified by the symmetry-constrained hybridization of
all states.

In the remaining three non-Hermitian models, the non-
Hermitian modifications preserve the exact fourfold alge-
braic degeneracy of the corner states. These states then
realize the same partial multiplicity patterns as we ob-
served for the bulk Dirac points in these three models.
In model 2, the (3,1) partial multiplicity structure is re-
alized by corner states localized in the A and D corners.
Here, the A corner is distinguished by the fact that it only
has an incoming coupling, but no outgoing couplings. A
state localized on this site then serves as an exact right
eigenstate with zero energy. We can verify that this state
has partial multiplicity three by direct modal analysis,
yielding the same ranks as stipulated for the bulk Dirac
point of this model in Eq. (102), and this is also sup-
ported by numerical computations. In model 3, corners
A and B have only incoming couplings and thereby sup-
port exact zero-energy states. These two corners reside
in two mutually decoupled subsystems, each of which is
associated with a partial multiplicity of 2. In model 4,
the D corner is decoupled and provides one independent
zero-energy state. The A and B corners again have only
incoming couplings, but these now originate from a com-
mon bulk. From the modal analysis, we obtain the over-
all partial multiplicity structure (2,1, 1), where numerical
construction of the eigenstates reveals that the two-fold
multiplicity arises from the antisymmetric combination
|A) — |B) of the corner states.
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C. Double-semi-infinite geometry

To facilitate the discussion of hinge states for generic
parameters away from the atomistic limit, we next con-
sider their formation in double-semi-infinite systems.
This refers to the geometry where the system has a single
corner, such as at (z,y) = (1,1), from which it extends
infinitely into the positive z and y directions (as well as
infinitely into the z direction). In these systems, there
is only a single hinge state, and hence no degeneracy.
However, this state is an exact zero-energy mode and
can be constructed analytically. This reveals the impor-
tance of nonreciprocal couplings and the connection to
the NHSE, which we will exploit later when we discuss
the hybridization of several such states in finite systems.

In the bulk description, we analyzed the HODSM sys-
tems for real momentum values (kz, ky, k,). Hinge and
corner states have the physical character of confined
states that decay exponentially into the bulk of sys-
tem. The states then correspond to complex values of k,
and k,, where the imaginary parts determine the decay
rates into the system. For the Hermitian parent model,
the corresponding analytical continuation of the Bloch
Hamiltonian (65) takes the form

(123)

which for complex momenta is generally non-Hermitian.
Zero-energy modes can then be found for
det P(k) =0 or detP(k*)=0. (124)
For the non-Hermitian modifications based on
Eq. (77), the corresponding zero-mode quantization con-
dition takes the form
detQ(k) =0 or

det R(k) = 0, (125)

hence, is formally the same as in Eq. (81). However,

in the specification of the expansion coefficients ngn) of
the four different models we have to replace p}(k) by
[pi (k™))"

The stated quantization conditions can be made man-
ifest by considering the states confined to the (z,y) =
(1,1) corner of the system. Inspecting the boundaries
of the system with the help of Fig. 5, the boundary
conditions imply vanishing of the amplitudes on the A
and D sites in the beyond-the-boundary unit cells with
x = 0, and vanishing of the amplitudes on the A and C
sites in the beyond-the-boundary unit cells with y = 0.
These patterns are then maintained throughout the lat-
tice. Therefore we seek zero-mode solutions confined to
the B sublattice. Applying a Bloch vector to the Hamil-
tonian (123) of the Hermitian system, we read off that
this requires

Pyi (k™) = Py (k™) = 0. (126)



NH model A corner B corner C corner D corner
kx ky ko Ky ke ky ks ky
10 190 —iQo —1Qs —1Q0 19—c Q0 —1qo
igo ig0 —igo —i¢s —i¢e G0 igo —iqo
igo 9o —iqo —igo —ig—c igo iGe —iqo

1o g0 —iqo —iqo —iG: 9 iqo —iqo

= W N =

TABLE I. Complex wavenumbers describing the decay of
hinge states in double-semi-infinite geometries anchored at
the A, B, C, or D corner of the for non-Hermitian HODSM
models. The quantity ¢. is defined in Eq. (130). Whenever
it appears, the localization of the state towards the corner
into the specified spatial direction is enhanced, while the ap-
pearance of g_. signifies a reduced localization. These results
apply to the right eigenstates.

At a given real k, this condition is fulfilled for
. t 1 .
ky =k, =—iln ( — 5 cos kz) = —iqo- (127)
s

This describes states that decay into the bulk if |t/s +
(1/2) cosk,| < 1, which covers the region between the
two Dirac points specified in Eq. (70). Analogously, we
obtain states confined to the three other sublattices when
we consider double-semi-infinite systems anchored at the
other corners.

In the non-Hermitian models, the rotational symmetry
is generally broken, so that each corner has to be studied
separately. Applying the same principles as in the Her-
mitian case to the (x,y) = (1,1) corner in NH model 1,
we obtain a state localized on the B sublattice for which
the decay lengths are determined by

ky = —ige. (129)
where we define
t 1
g¢e =In (_s — 5 ¢os k. — z) . (130)

We note that the decay length in the x direction re-
mains unchanged, but the decay length in the y direc-
tion is modified. For our standard choices of parameters
s = —t = 1 and positive ¢, the hinge state on the B sub-
lattice becomes more confined to its supporting corner.
Conversely, we find that the confinement of the hinge
state on the C sublattice reduces in y direction according
to a complex wavenumber k, = ig_., while the confine-
ment of the hinge states associated with the A and D
sublattices remains unchanged.

These findings, along with their corresponding forms
for the other three non-Hermitian models, are summa-
rized in Table I. According to this, in NH model 2, the
localization of the B hinge state is enhanced in the y
direction, while the localization of the C hinge state is
enhanced in the z direction. In NH model 3, the local-
ization of the C hinge state is reduced in the x direction,
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while the localization of the D hinge state is enhanced in
the = direction. In NH model 4, the localization of the C
hinge state is enhanced in the z and y directions.

In a finite system the states hybridize nontrivially.
This generically results in finite energy splittings, so that
the states no longer constitute exact zero modes; how-
ever, these splittings decrease rapidly as the system size
increases. In the non-Hermitian models, a much more
drastic effect occurs due to the NHSE, which arises from
interplay of hybridization and nonreciprocal couplings.
According to this effect, the enhanced localization of a
state in a given direction results in an enhanced weight
that grows exponentially with system size, while the
weight of the state localized into the ‘opposite direction’
becomes exponentially suppressed. Here, the C corner is
opposite the B corner in y direction, and opposite the A
corner in x direction, while the D corner is opposite the
A corner in y direction, and opposite the B corner in z
direction. Before we can establish this in detail, we have
to account for the symmetries of the different models.

D. Interplay with symmetries

The detailed hybridization rules for the energy split-
tings and spatial localization patterns are constrained
by symmetries of the various models, which we describe
next. These are the Kramers degeneracy of the Hermi-
tian model, a generalized reflection symmetry that also
applies to NH model 4, as well as a generalized trans-
position symmetry and sublattice sum rule and that are
particularly relevant to NH model 2. All these symme-
tries and constraints hold at finite system sizes with open
boundary conditions, where the hybridization generically
results in finite energy splittings.

1. Kramers degeneracy

Even after hybridization, all states in the Hermitian
system, including the hinge states, display an exact even-
fold degeneracy. This degeneracy is enforced by the in-
terplay of time-reversal symmetry and the C4 rotational
symmetry specified in Eq. (61). Given an eigenstate u,
we obtain a second eigenstate u’ = C7u* which has the
same energy but is orthogonal u. To see this, we first note
that as KC? commutes with the Hamiltonian, where K
again denotes complex conjugation, u’ is also an eigen-
state. To show that the two states are orthogonal to
each other, we utilize C} = —1 to evaluate their scalar
product as

(u[u') = (u|Ciu*) = (C{u|Ciu*) = —(u"*[u*) = —(uu’)

(131)
Therefore, this scalar product vanishes. We recognize
this feature as a specific variant of Kramer’s degeneracy,

induced here by a generalized antiunitary time-reversal
symmetry 7 = KC3 that fulfills (7)? = —1.



Therefore, generically, the corner states in the Her-
mitian system hybridize to form two exactly degenerate
diabolic points with opposite energies £F.. These ener-
gies approach E, — 0 as the system size is increased. In
this limit, the states can then be viewed as a symmetry-
constrained unfolding of a tetrabolic point.

2. Generalized reflection symmetry

We observe that the presence of the 7w fluxes in the
models gives rise to a generalized reflection symmetry
R, = Z¢cR, about the antidiagonal. Here, R, denotes
conventional reflection of the lattice about the antidiag-
onal, which maps, for instance, the A corner onto the B
corner. In the Hermitian model, the reflection also maps
some positive couplings onto negative couplings. This is
exactly compensated by the gauge transformation Zg,
defined to multiply all amplitudes on the C sublattice by
—1. Inspecting all non-Hermitian models, we see that
this symmetry is also satisfied for NH model 4.

The significance of this symmetry is as follows. In the
presence of an ordinary reflection symmetry, we would
expect to obtain three symmetric hinge states and one
antisymmetric hinge state (in the atomistic limit, the
symmetric states would be |A) +|B), |C), and | D), while
the antisymmetric states would be |A) — | B)). However,
under the generalized reflection symmetric the |C) state
becomes antisymmetric. The hybridization of the states
in NH model 4 has to respect this modification, so that
under this symmetry we expect to obtain two symmetric
and two antisymmetric hinge states.

8. Generalized transposition symmetry in NH model 2

In NH model 2, a variant of Kramers degeneracy can be
constructed when we replace the antilinear time-reversal
symmetry 7 by the matrix transposition, which we will
denote as T’ [76]. The distinction of these two oper-
ations, which coincide for Hermitian systems, is at the
heart of the general classification of non-Hermitian uni-
versality classes [29]. We then find that the operator
RG’T’ commutes with the Hamiltonian, where Ra is the
generalized reflection operation of the system about the
antidiagonal described above. We can again use this sym-
metry to construct for each eigenstate u a partner state
v = (R,u)T, where we must treat u as a right eigenstate
and v as a left eigenstate. As we will see next, in NH
model 2 these two states are furthermore orthogonal to
each other. In contrast to the Kramers degeneracy in
Hermitian systems, this then signifies exceptional points
throughout the entire energy spectrum.
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4. Sublattice sum rules

In the discussion of the bulk dispersion relation (72),
we mentioned that the HODSM can be useful inter-
preted as a square-root topological insulator [74]. We
now apply this approach to the finite systems to identify
a nontrivial sum rule. To formulate this rule, we in-
terpret the Hamiltonian in terms of blocks Hxy, where
X,Y € (A, B,C,D) labels the sublattice. Due to the
chiral symmetry, the blocks Hxy with X,Y € (A, B)
or X,Y € (C,D) vanish. However, an additional fea-
ture emerges in the Hermitian model, where the squared
Hamiltonian H? takes a further simplified structure, in
which only the four diagonal blocks (H?)4, (H?)pg,
(H*)cc, and (H?)pp are finite. This results because of
additional sublattice sum rules such as

(H*)pa = HpoHea + HppHpa = 0. (132)

The significance of these sum rules is that they allow
us to construct exact eigenstates that vanish on a given
sublattice. In particular, the specific sum rule (132) pro-
vides right eigenstates that vanishes on the B sublattice,
as well as left eigenstates that vanishes on the A sub-
lattice; and these states are always orthogonal to each
other, even if they belong to the same energy. The right
eigenstates u; = (al,bl,cf,d])T are found from the
reduced eigenvalue problem

(H?)anay = E}ay (133)
for the components a; on the A sublattice, which then
determine the components on the other sublattices as
b; =0,

1

Cc, = EHCAal, (134)
1

d=—H . 1
7, Hpaai (135)

Analogously, the left eigenstates v,,, = (al,,, b/ ¢/  d])

ms ¥m>

are obtained from the reduced eigenvalue problem

by, (H*) g = Ep,by, (136)
for the components b/, on the B sublattice, while the
components on the other sublattices are then given by
a), =0,

1
¢n = 5 PmHse, (137)
1

The consistency and orthogonality of these two states can
be directly confirmed from the sum rule (132).

An intriguing situation arises when the two reduced
eigenvalue problems (133) and (136) produce the same
eigenvalues. This is the case in the Hermitian model. As
in this case, the right and left eigenstates are in strict



correspondence with each other, this reasoning amounts
to the explicit construction of two independent states for
any energy eigenvalue, without resorting to the Kramer’s
degeneracy derived in Eq. (131). Furthermore, in this
model, analogous solutions can be constructed that van-
ish on any of the other three sublattices.

In the non-Hermitian models, the underlying sum rules
are violated except for NH models 2 and 4. In NH model
2, the specific sum rule (132) applies, while in NH model 4
we observe the sum rule (H?)cp = 0 (the analogous sum
rules on the other sublattices do not apply in these mod-
els). Furthermore, in NH model 2, the generalized trans-
position symmetry enforces the same spectrum for the
reduced eigenvalue problems (133) and (136). However,
now the orthogonality of the constructed right and left
eigenstates no longer signifies a diabolic point. Instead,
generically, this feature has to be interpreted as the self-
orthogonality of states at an exceptional point. Conse-
quentially, in NH model 2, all states, including the hinge
states, have evenfold algebraic degeneracy, and generi-
cally are exceptional points.

E. Degeneracy patterns for generic parameters

With these preparations in place, we now proceed to
describe the FEP degeneracy patterns of the hinge states
across the different models for generic parameters away
from the atomistic limit, highlighting not only the pat-
terns themselves but also the underlying mechanisms
that give rise to their intricate structure.

To establish these general patterns, we first revisit
Fig. 8 depicting the numerical eigenvalue spectra of fi-
nite systems with s = -t = 1 and N, = N, = 20 as a
function of k.. Numerically, we can utilize the overlaps
of the states on the hinge branches to infer which degen-
eracy scenario is then approached. This places the hinge
states in NH model 1 near an EP4, in non-Hermitian
models 2 and 3 near an FEP with partial multiplicities
(li1,l,2) = (2,2), and in model 4 near a FEP with partial
multiplicities (I;1,%;,2,%i3) = (2,1,1). In models 1 and
2, these multiplicities differ from those in the bulk and
atomistic scenarios. Furthermore, as depicted in Figs. 10,
11, 12, and 13, in all non-Hermitian models, the spatial
intensity distributions of the states differ noticeably from
those in the atomistic limit (cf. Fig. 9).

The modified degeneracy patterns and spatial distri-
butions arise from a highly nontrivial interplay of the
non-Hermiticity skin effect and non-Hermitian symme-
tries in these finite systems described above. The hinge
states then hybridize according to the following mecha-
nisms (we again focus on the right eigenstates).

In model 1 (Fig. 10), the NHSE enhances the corner-
state component on the B sublattice. Since all symme-
tries are broken in this model, all states inherit this en-
hancement. This enhancement increases exponentially
with system size, so that all states obtain a very large
overlap, as characteristic for the vicinity of an EP4.
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FIG. 10. Density plots of the intensity in each unit cells of the
(a)-(d) right hinge eigenstates and (e-f) left hinge eigenstates
in NH model 1, evaluated at k. = 0 in the band structure of
Fig. 8(b), where s = —t = 1 and € = 1/+/2. The system spans
20 unit cells in the = and y directions, and the intensities are
summed over the four sites in each unit cell. All four right
eigenstates are localized in the lower left corner, while four left
eigenstates are localized in the upper left corner, placing the
system into the vicinity of an EP4. As explained in the text,
we can attribute this pattern to the nonperturbative influence
of the non-Hermitian skin effect on these states.
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FIG. 11. Intensity plots as in Fig. 10 but for NH model 2,
corresponding to k. = 0 in Fig. 8(c). In this case, the right
eigenstates tend to localize on the C sublattice, while the
intensity in the B sublattice vanishes due to the sublattice
sum rule explained in Sec. VIE, which furthermore enforces
the hinge states to pair up into two EP2s. This brings the
states into the vicinity of an FEP with partial multiplicities
(lix,li2) = (2,2).

In model 2 (Fig. 11), the NHSE enhances corner state
components both on the C and B sublattices. How-
ever, due to the described B lattice sum rule, the hy-
bridized solutions do not involve the B sublattice. There-
fore, the hybridized states only show an enhancement
on the C sublattice. Furthermore, as described above,
in this model, Kramers degeneracy becomes replaced by
a sum-rule symmetry that protects exceptional points.
Therefore, the low-energy hinge states appear as two ex-
act EP2s that approach each other as the system size
increases. This is then consistent with the vicinity of
an FEP with partial multiplicities (2,2). Indeed, the
(3,1) multiplicity pattern observed in the atomistic case
is only compatible with the chiral symmetry observed by
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FIG. 12. Intensity plots as in Fig. 10 but for NH model 3,
corresponding to k. = 0 in Fig. 8(d), where ¢ = 1/2. Due
to the NHSE, two of the right eigenstates are localized in the
upper right corner, while the other two are localized in the
lower right corner, placing the system into the vicinity of an

FEP with (1;,1,0:,2) = (2,2).
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FIG. 13. Intensity plots as in Fig. 10 but for NH model 4,
corresponding to k. = 0 in Fig. 8(e), where ¢ = 1/v/8. For
two of the right eigenstates, the NHSE enhances the intensity
component in the upper left corner, resulting in two almost
identical states shown in panels (¢) and (d). These states
transform antisymmetrically under the generalized reflection
symmetry of this model, leaving two independent symmetric
right states shown in panels (a,b). This places the system
near an FEP with (li,h li72, lz,d) = (27 1, 1)

all models when energies exactly vanish.

In model 3 (Fig. 12), the NHSE reduces the spatial lo-
calization of the C component and enhances the spatial
localization of the D component. These enhancements
are both in the z direction and systematically shift the
weights onto the A and D sublattices. This leads to the
formation of two states in each corner whose overlap in-
creases with system size, signifying again the vicinity of
an FEP with partial multiplicities (2, 2).

In model 4 (Fig. 13), the NHSE enhances the C com-
ponent both in z and y direction. Furthermore, the sys-
tem obeys the stated generalized reflection symmetry R,
about the antidiagonal. In the Hermitian case, the corner
states can be combined into two symmetric and two anti-
symmetric states with respect to this generalized symme-
try. Due to the NHSE on the C component, which trans-
forms antisymmetrically, the two antisymmetric states
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acquire a large overlap when the system size is large.
This then results in the observed vicinity of an FEP with
partial multiplicities (2,1, 1).

These intricate mechanisms and features further un-
derline the structural and phenomenological richness of
the fragmented exceptional points described in this work.

VII. SUMMARY AND CONCLUSIONS

In summary, we have introduced a systematic and effi-
cient framework to identify, classify, and construct non-
Hermitian systems exhibiting fragmented exceptional
points, complex degeneracy scenarios extending the no-
tion of ordinary exceptional points to situations in which
the eigenvectors are only partially degenerate. Our
framework directly starts from insights into the phys-
ical signatures of these degeneracies, and delivers con-
crete conditions for their formation that can be efficiently
evaluated in specific models. We demonstrated this by
constructing a wide range of FEPs in two lattice mod-
els, based on the Lieb lattice and a higher-order Dirac
semimetal.

Fragmented exceptional points occur naturally in the
parameter space of all non-Hermitian models, and com-
plete the conceptual description of this broad class of sys-
tems. They venture into uncharted territory in the study
of non-Hermitian systems, where one benefits from their
large degree of variety and complex spectral interplay,
enhanced by the rapid proliferation of partial multiplic-
ity configurations with increasing algebraic multiplicity.
Nevertheless, we could demonstrate that this complex-
ity is naturally captured by a single unifying object, the
modes of the adjugate matrix, which can be efficiently
evaluated in specific models, and moreover directly deter-
mine the signatures of these degeneracies in the physical
and spectral response to external driving, quantum noise,
and parameter variations. These firm links are embed-
ded in Egs. (13) and (14), which specify the qualitative
nature of the spectral and physical response in the form
of powerlaw response functions and super-Lorentzian res-
onance lineshapes, Egs. (19) and (20), which extract the
spectral and physical response strengths that quantify
these physical signatures of the system, and the central
Eq. (22), which resolves the partial multiplicities of the
degeneracy in terms of the same algebraic quantities.

In the application to the specific models, we encoun-
tered an intricate interplay of non-Hermitian effects and
symmetry constraints, which was further accentuated for
FEPs arising from topologically protected hinge states.
The models that we studied are of direct physical sig-
nificance. Lieb lattice models have been realized on a
wide range of platforms, such as two-dimensional opti-
cal waveguide arrays fabricated using the femtosecond
laser writing techniques [77, 78], cold atomic gases [73],
microwave resonator arrays [79], and polariton exciton
systems [80]. With our complete classification of the
bulk degeneracies in these systems, they can now be de-



signed to demonstrate the minimal version of an FEP,
where three algebraically degenerate modes support two
linearly independent eigenstates. The implementation
of this scenario is further facilitated by our demonstra-
tion of how this can be achieved in reciprocal settings,
leading to a model in which the FEPs can be studied
in detail on an exceptional surface. We anticipate that
more complex FEPs can be designed in Lieb lattices with
larger unit cells, such as described in Ref. [31]. Within
the present study, we realized such more complex sce-
narios based on a three-dimensional model of a higher-
order Dirac semimetal, which supports degeneracies up
to fourth order. Experimental platforms realizing the
non-Hermitian variants that we proposed are again read-
ily available, for instance, in the form of acoustic topo-
logical insulators [$2] and topolectric circuits [83]. In
particular, these platforms also allow to realize nonrecip-
rocal non-Hermitian systems with open boundary con-
ditions supporting topological hinge and corner states,
allowing to study the intricate formation mechanisms of
hinge FEPs in the proposed models in a concrete physical
setting.

Prospective applications of FEPs include sensors op-
erating on exceptional surfaces, modifying the detection
principles of exceptional-point sensors so that the vicin-
ity of an FEP results in a drastic change of the spectral
and physical response. The occurrence of FEPs at cer-
tain points on an exceptional surface also opens up a wide
range of new possibilities for fundamental studies, includ-
ing those concerning the structure of the Riemann sur-
faces around these special points. Such efforts would aim
to extend the well-established classifications for generic
EPs [56, 67, 81] to the unexplored domain of FEPs.
Our formalism opens a realistic avenue for such stud-
ies as it efficiently circumvents the technical problems
of the Arnold-Jordan normal form, which breaks down
precisely for these scenarios. More generally, the key re-
sults presented in this work are platform-independent,
and the framework freely applies to any model based on
a finite-dimensional effective Hamiltonian matrix, cover-
ing an overwhelming range of non-Hermitian models and
systems. Given these features, the presented formalism
and design principles complete the description of non-
Hermitian degeneracies conceptually and physically and
open a broad new frontier of non-Hermitian physics.

The data that support the findings of this work are
openly available [85].
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Appendix A: Detailed derivation of the algebraic
characterization of FEPs

In this Appendix, we present the detailed derivation
of the algebraic characterization of FEPs of Sec. IIID.
We recall that this is based on introducing the shifted
Hamiltonian A = H — E;1, from which the modes By
are obtained via the Faddeev-LeVierre recursion relation
(16). The following combines insights from Ref. [54] with
a final step in which we resolve the complete geometric
partial multiplicities §;,! from the rank of the modes.

As in Ref. [54], we start with the simple observation
that the leading coefficients

=0, k=0,1,2,...,a;—1 (A1)
of the shifted characteristic polynomial (18) vanish ac-
cording to the algebraic multiplicity a;. With the rela-
tion (17), this is cast into the form of Eq. (21) in the
main text.

In terms of this shifted eigenvalue problem, the geo-
metric multiplicity ; is given by the number of indepen-

dent solutions of the eigenvalue equation

We can again determine this number purely algebraically,
by utilizing the determinantal minors M[(ﬁ?[ J](A) =
det(Apy,1s) of A. These are formed from the determi-
nants of (N —k) x (N —k)-dimensional submatrices A[z),[7]
that are obtained from A by deleting & rows with ordered
indices I = [1 <4y < iz < ...,i < N] and k columns
with ordered indices J = [1 < ji < j2 < ...,jk < NJ.
By definition of the geometric multiplicity, the matrix A
has N —~; linearly dependent rows and columns, so that
all minors

)
M

(A)=0, k=0,1,2,...,v—1 (A3)
vanish. This then serves as an algebraic condition for
the geometric degeneracy of the eigenvalue E;, which al-
ready reads quite analogously to the condition (21) for
the algebraic degeneracy.

These considerations can be linked to the modes By by
exploiting the partial traces of the determinantal minors,

which can be defined as

k . . k
'/\/;,(,j) = Z O-(Za b, q, T"')O(j? b, q, T"')M[(ivquﬂ»m]7[j7p7q77-___] .
[p.gq;r...]

(A4)

These partial traces are obtained by contracting all but
one pair of row and column indices, where o(I) = +1 is
the parity of the permutation that orders the sequence
I. With these definitions, we then have the identity [54]

Bi(A) = SNFFD (—4)]"s, (A5)
where ¥;; = (—1)’¢;; is the diagonal matrix with alter-
nating signs on the diagonal.



To identify the exact nature of the information con-
tained in the modes By, one can evaluate the partial
traces N®) in the Jordan normal form J of the matrix
A. Because of condition (A1), the modes By with k < «;
then take a simple form, in which only the block with
the degenerate eigenvalue can have finite entries. Fur-
thermore, within this index range, the recursion relation
(16) simplifies to Bp_1 = BiJ. Because of the simple
form of the Jordan normal form matrix .JJ, we can then
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directly read off the rank of the matrix B,

nk(Ba,—m) = @; — i: min(l,m — 1)8;(1)
=1

a;

=S (- m+ 1B,

l=m

(A6)

where we used Eq. (10) to reexpress «; in terms of 5;(1).
This completes the proof of our main technical result in
this work. The partial multiplicity function $;(1) is then
resolved by combining the ranks of modes according to
Eq. (22). This delivers the geometric multiplicity v; via
Eq. (9) and the algebraic multiplicity «; via Eq. (10).
Evaluating Eq. (22) for k = «a; — ¢;, where the maximal
partial multiplicity follows from Eq. (23), we furthermore
obtain the geometric multiplicity §; of the leading eigen-
vectors in accordance with Eq. (24).
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