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Non-Hermitian systems display remarkable response effects that directly reflect a variety of distinct spectral
scenarios, such as exceptional points where the eigensystem becomes defective. However, present frameworks
treat the different scenarios as separate cases, following the singular mathematical change between different
spectral decompositions from one scenario to another. This not only complicates the coherent description near
the spectral singularities where the response qualitatively changes, but also impedes the application to practical
systems, as the determination of these decompositions is manifestly ill conditioned. Here we develop a general
response theory of non-Hermitian systems that uniformly applies across all spectral scenarios. We unravel
this response by formulating a uniform expansion of the spectral quantization condition, as well as a uniform
expansion of the Green’s function, where both expansions exclusively involve directly calculable data from
the Hamiltonian. These data smoothly vary with external parameters and energy as spectral singularities are
approached and attained, and nevertheless capture the qualitative differences of the response in these scenarios.
We furthermore present two direct applications of this framework. First, in the context of the quantization
condition, we determine the precise conditions for spectral degeneracies of geometric multiplicity greater than
unity, as well as the perturbative behavior around these cases. Second, in the context of the Green’s function,
we formulate a hierarchy of spectral response strengths that varies continuously across all parameter space,
and thereby also reliably determines the response strength of exceptional points. Finally, we join both themes
and demonstrate, both generally and in concrete examples, that the previously inaccessible scenarios of higher
geometric multiplicity result in unique variants of the super-Lorentzian response. Our approach widens the scope
of non-Hermitian response theory to capture all spectral scenarios on an equal and uniform footing, identifies
the exact mechanisms that lead to the qualitative changes of physical signatures, and renders non-Hermitian

response theory fully applicable to numerical descriptions of practical systems.
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I. INTRODUCTION

Effectively non-Hermitian Hamiltonians appear naturally
in the study of a wide range of open quantum and classical
systems [1-3], including mean-field descriptions of photonic
systems with gain and loss [4-7], scattering systems [8—10],
and postselected measurement protocols [11-13]. In the past
decade, these systems have gained further attention in the
context of non-Hermitian topology [14—18], in which qualita-
tively different universality classes can be obtained by the use
of symmetry. Non-Hermitian terms in the Hamiltonian greatly
enhance the variety of distinct symmetry classes as they make
the energy spectrum complex, where the imaginary parts of
the energies determine the intensity growth and decay rates of
the eigenstates under consideration. Special attention is then
drawn to phase transitions in which the spectrum reconfigures
due to complex-eigenvalue degeneracies. These degenera-
cies do not simply replace the band-closing transitions in
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Hermitian topology. This is because the eigenvectors of non-
Hermitian Hamiltonians are not constrained to be orthogonal
to each other, so that the generic eigenvalue degeneracies
become exceptional points (EPs) where the associated eigen-
vectors coalesce as well [2,19-22]. Mathematically, these EPs
correspond to the problem of degenerate eigenvalues with
algebraic multiplicity (the number of eigenvalues that merge,
which determines the order of the EP) that differs from the
geometric multiplicity (the number of linearly independent
eigenvectors, which reduces to a single one for generic EPs).
This generic behavior can be modified if more parameters
of the system are controlled. For example, symmetries can
change the codimension of an EP [6] or transform it into
a degeneracy with a higher geometric multiplicity [23]. In
contrast, Hermitian systems only allow for diabolic points
(DPs), where both notions of multiplicity coincide. The EPs
themselves exhibit a rich topology [16,24-26], which changes
the nature of phase transitions and further enriches the topo-
logical landscape of non-Hermitian systems [27-39].

A central issue in recent research is the manner in which
these mathematical characteristics manifest within the sys-
tem’s physical behavior. These investigations started with
the observation that already in the nondegenerate case, the
mode nonorthogonality enhances the sensitivity to static and
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dynamic perturbations [40-43], leading to an increased re-
sponse when compared to standard Breit-Wigner resonance
theory [44]. The enhancement factor, known as the Petermann
factor, diverges at EPs [21,45]. This behavior reflects that
mathematically each set of eigenvectors no longer forms a
basis [2], which leaves the Hamiltonian nondiagonalizable
and hence not amenable to conventional response theory.
Resorting instead to the Jordan decomposition (the gener-
alized spectral decomposition based on the Jordan normal
form [46]), it can be established that the response of the
system then changes qualitatively [47-53]. As a function of
energy, this results in super-Lorentzian line shapes, which
become imprinted, e.g., onto the spectrum of quantum-limited
noise, while the parametric dependence leads to sensors with
power-law transfer functions [54-56]. Overall, one, therefore,
encounters different spectral scenarios that are tied to different
mathematical descriptions and give rise to distinct physical
behaviors that have been intensely studied to the present date
(see, e.g., Refs. [57-61]).

What is missing is a unifying approach that allows one to
study a given system uniformly across all spectral scenarios.
This arises from the reliance on the Jordan decomposition,
which has several drawbacks. (i) The Jordan decomposition
changes singularly when one steers the system from one
spectral scenario to another. Thereby, each scenario is treated
as a separate situation, and key characteristics of the sys-
tem become expressed in terms of the quantities related to
the different mathematical descriptions. (ii) The present de-
scriptions are incomplete, as the Jordan decomposition also
singularly depends on the geometric multiplicity of the degen-
eracies, which can exceed one when additional parameters are
controlled or suitable symmetries are imposed. These more
complicated scenarios quickly proliferate in number and so
do the possible transitions between these scenarios. (iii) The
Jordan decomposition is fundamentally ill conditioned and
hence is impractical for numerical applications.

In this work, we overcome these conceptual and practical
drawbacks by establishing general and exact expansions of the
spectral response to parameter changes and the physical re-
sponse to external driving that apply uniformly to all spectral
scenarios. As we develop and explain in detail, both uniform
expansions can be phrased in terms of a single unifying math-
ematical object, known as the modes of the adjugate matrix,
which collect data from the determinantal minors of the matrix
appearing in the quantization condition. The resulting uniform
expansions exclusively utilize well-conditioned quantities that
can be directly calculated from the effective Hamiltonian of
the system, and moreover vary smoothly with energy and
external parameters. To demonstrate the generality of the ap-
proach, we employ it to derive the response of systems at
and near degeneracies of higher geometric multiplicity, and
provide precise algebraic criteria for how to identify, realize,
and utilize these uncommon and understudied cases.

We develop this framework along the following lines.
Section II provides background detailing the distinct non-
Hermitian spectral scenarios and response theory within the
conventional approach of generalized spectral decompositions
based on the Jordan normal form. Within this framework,
we distinguish between the perturbative spectral response and
the physical response, and extend the description to include

spectral scenarios with higher geometric multiplicity. Sec-
tion III develops the uniform description of all spectral
scenarios, first based on the energy quantization condition,
and then for the Green’s function. This will lead us naturally
to consider the central role of the aforementioned modes of
the adjugate matrix and result in a framework that uniformly
applies across all spectral scenarios, including those of higher
geometric multiplicity. Section IV describes detailed insights
that this framework delivers into the different degeneracy
scenarios, which we quantify via a hierarchy of response-
strength functions that vary smoothly with energy and external
parameters. Furthermore, we establish how these functions
capture the signatures of the degeneracy scenarios as these
are approached. These quantitative and qualitative features are
illustrated in simple examples in Sec. V. We concisely sum-
marize the complete framework and key findings in Sec. VI
and give our conclusions and outlook in Sec. VII. The Ap-
pendix contains further technical steps of our derivation and
provides additional mathematical background.

II. SETTING THE SCENE

In this section, we provide the theoretical background and
motivation for this work. In particular, we review the spectral
scenarios of non-Hermitian physics, including EPs and their
generalizations to higher geometric multiplicity, as well as
the conventional generalized spectral decomposition based on
the Jordan normal form. Furthermore, we describe how this
decomposition enters the conventional approach to the spec-
tral and physical response, and extend this to degeneracies
of higher geometric multiplicity. This discussion allows us to
identify the benefits of developing an alternative formalism
that applies uniformly to all spectral scenarios, as we will take
up in the remainder of this work.

A. Quantization condition

A key objective of finding the eigenvalues and eigenvectors
of a system is to simplify its description by choosing a suitably
adapted basis. For concreteness, we specify this in the context
of effective non-Hermitian Hamiltonians represented by an
N x N dimensional square matrix H. The system is said to be
nondefective if it is completely diagonalizable by a suitable
similarity transformation

A=U"'HU, (1)

where A is a diagonal matrix containing the eigenvalues E;
of H, and U contains the corresponding eigenvectors u; as its
columns. These are both determined by the standard eigen-
value equation

Hll,' = Eill,'. (2)

Nondefectiveness holds exactly when the matrix has N
linearly independent eigenvectors, and the diagonalization
is then achieved by transforming the Hamiltonian into its
eigenbasis. Any finite-dimensional matrix with simple (i.e.,
nondegenerate) eigenvalues is diagonalizable and so is any
Hermitian matrix, even if some eigenvalues may be degen-
erate. More generally, this statement also holds for normal
matrices, which are those that commute with their Hermitian
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conjugate, [A, AT] = 0—this includes, e.g., unitary matrices.
For such normal matrices, the matrix U in the similarity
transformation (1) is itself a unitary matrix.

To determine whether a general matrix with some degener-
ate eigenvalues is still diagonalizable, we have to distinguish
between the algebraic and the geometric multiplicity of these
eigenvalues.

Algebraically, the eigenvalues E; can be found from the
secular equation

p(E)=det(E1—H) =0, 3)

and hence the roots of the characteristic polynomial p(E),
which is a polynomial of order N. In keeping with the physical
context of this work, we will refer to this as the (energy)
quantization condition. The simple roots determine the nonde-
generate eigenvalues (or eigenenergies), while multiple roots
determine degenerate eigenvalues of corresponding algebraic
multiplicity ¢;. Letting the index run over the distinct eigen-
values only, we then have

p(E)=[]E - E), )

L

where ) ", a; = N.

Given an eigenvalue E;, the corresponding eigenvectors
are determined by the eigenvalue equation (2), which can be
written as a homogeneous system of linear equations,

(Ejl — H)u = 0. (5)

The number of linearly independent solutions w;;, j =
1,2, ..., v, of this equation determines the geometric mul-
tiplicity y; of the given eigenvalue. This multiplicity is
determined by the rank of this eigenvector condition,

y; =N —mk (E;1 — H), (6)
and is constrained according to

1 g Yi < o;. (7)

B. Degeneracy structures

Eigenvalues for which the two multiplicities coincide, o; =
¥, are known as semisimple eigenvalues, while degenerate
eigenvalues with «; > y; are themselves known as defective.
In the parameter space, the locations where one finds semisim-
ple degenerate eigenvalues with «; = y; = 2 are known as
diabolic points, and higher-order degeneracies where o; =
y; = n with some n > 2 can be referred to as n-bolic points.
Analogously, the locations of maximally defective eigenval-
ues with y;, =1 but o; =n with some n > 1 are known
as an nth-order exceptional point (EP-n). At these EPs, n
algebraically degenerate eigenvalues share a single, unique
eigenvector. In the immediate vicinity of the EP in parame-
ter space, the degeneracy is generically lifted into n simple
eigenvalues that are approximately equally spaced around
a circle centered at their common position at the EP, and
hence approximately form a regular polygon. Furthermore,
the eigenvectors of these n simple eigenvalues are all closely
aligned and converge to the unique eigenvector of the EP as it
is approached.

For a nondefective matrix, the two multiplicities «; = y;
coincide for all of the eigenvalues; hence, all eigenvalues
are semisimple, and the total number of linearly indepen-
dent eigenvectors ) ;¥; = N, so that they completely span
the Hilbert space. This covers all normal matrices and, in
particular, Hermitian matrices such as standard Hamiltonians
encountered in quantum mechanics. On the other hand, ma-
trices in which y; = 1 for all the eigenvalues (including the
degenerate ones) are known as nonderogatory. All eigenvalues
are then either simple or associated with an EP. These are the
spectral singularities that are widely studied in non-Hermitian
physics.

However, this does not exhaust the possible spectral sce-
narios. In between these degeneracy structures there exist
scenarios in which defective eigenvalues E; can have several
linearly independent eigenvectors, corresponding to a geomet-
ric multiplicity «; > y; > 1. For such eigenvalues, one can
define partial multiplicities ;1 > li» > l;3--- > I;,, > 1 that
obey

v +lio+hiz+--+1i, =a. (8)

Each partition of ¢; into y; different integers therefore de-
scribes a different spectral scenario. By including the cases
of a single /; | = «; and the case where all [; | = ;o =--- =
l; y, = 1, the specification of the partial degeneracies covers all
possible degeneracy structures. For instance, if «; = 4, there
are five of these scenarios, given by the tetrabolic point with
y; = 4, the EP4 with y; = 1, the two sets (/1, /) = (3, 1) and
(2,2) with y; = 2, and the case (I}, [, 3) = (2, 1, 1) with y; =
3. One of our goals in this work is to seamlessly incorporate
these degeneracy scenarios into the body of the widely studied
cases with geometric multiplicity y; = 1.

As we will see throughout this work, particular importance
falls to the maximal partial degeneracy

li,l = 65. (9)

This maximal partial degeneracy may occur repeatedly, £; =
li1r =12 =---=1;p, where B; can be interpreted as a degen-
eracy of geometric nature that counts the eigenvectors with
maximal partial degeneracy. We will call these eigenvectors
with maximal partial degeneracy the leading eigenvectors.

We illustrate these different multiplicity notions for a rep-
resentative example in Fig. 1. Furthermore, we note that for an
EP-n, ¢; = a; = nand B; = y; = 1, while for an n-bolic point,
E,‘I 1 andﬂ,-:y,-:a,-:n.

C. Generalized spectral decomposition

While defective eigenvalues entail that a matrix can no
longer be diagonalized, there always exists a similarity trans-
formation

J=T"'HT, (10)
that brings the matrix into a Jordan normal form [2,48,62,63].

For a nonderogatory matrix, where each distinct eigen-
value has exactly one eigenvector, J is made out of
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FIG. 1. Portray of a representative degeneracy scenario illus-
trating the different multiplicities that feature in this work. In (a),
the degeneracy of an eigenvalue with algebraic multiplicity o = 11
and geometric multiplicity y = 3 is lifted by a small generic per-
turbation. The location of the perturbed eigenvalues at the vertices
of approximately regular polygons reveals the partial multiplicities
(1, L, I3) = (4, 4, 3). The perturbation acts the strongest on the mul-
tiplets of largest partial multiplicity £ = 4, which here is repeated
B =2 times. (b) A similar identification arises from the perturbed
eigenvectors, which form bundles according to the partial multiplic-
ities. We call the degenerate eigenvectors with /; = £ the leading
eigenvectors. We develop, in this work, a unified description of the
physical signatures that applies uniformly to these general degener-
acy scenarios and remains well behaved when the degeneracies are
lifted.

o; X o;-dimensional blocks

E 1 0 ... 0 0 O

O E 1 ... 0 0 O
Ji=JEL )= | ¢ O - an

0 o o0 ... 0 E 1

O o0 O ... 0 0 E

For a derogatory matrix, these blocks are subdivided into

smaller blocks according to the partial multiplicities /; ;,

JE L) 0 ... 0 0
0  J(El) ... 0 0
Ji= : P : : ,
0 0 ...J(Eily,1) O
0 0o ... 0 J(Ei i)
(12)

where each subblock is of the form given in Eq. (11).

The similarity transformation (10) describes the change
into a basis of generalized eigenvectors, which form a Jordan
chain of length /; ;. This chain is determined by the conditions

Hty! = Et)?,
HUGD = E40D 440,

(¥)) @.J) @.J)
Htl,-l,,jfl = Eitlil.jlfl + tlil_l_lfz’ (13)

which are anchored by the eigenvector t(()i’j ) = u; ; associ-
ated with the given block. The transformation matrix 7 is
then obtained by placing the generalized eigenvectors into its
columns.

The Jordan decomposition has significant benefits and sig-
nificant issues, which will be central to motivate this work. Let
us start with a feature that is less of an issue. This resides in
the fact that the Jordan chains are not uniquely defined, which
is resolved because they can be used to obtain a uniquely
defined generalized spectral decomposition. There are, in fact,
two different types of choices that one has to make in the
construction of the Jordan normal form. First, in any step of
the chain, one can replace tl([’j ) > tl([’j )+ cl(i’j )tl(i’j ) with arbi-
trary constants c?i’j ), and these replacements then filter further
down the chain. Therefore, the transformation matrix 7 is not
uniquely defined as well. Second, in physical contexts, the
Jordan normal form depends on the choice of the physical
units in which A is formulated. This is because there exists the
choice of placing 1, rather than another constant, into the off-
diagonal elements of J. For instance, the transformations for
two matrices A and B = cA that only differ by a multiplicative
constant ¢ # 1 are distinct. The only exceptions are nonde-
fective matrices, where J = A simply becomes the diagonal
matrix of eigenvalues, and 7 = U the matrix containing the
eigenvectors, so that Eq. (1) coincides with Eq. (10).

Despite these two choices, the Jordan normal form implies
a unique decomposition of the matrix H [2]

H =) (EP,+N), (14)

where P, are oblique projectors that arise from the diagonal
elements of J, and N; are nilpotent operators that arise from
the off-diagonal elements. These projectors and nilpotent ma-
trices are uniquely defined and directly reflect the degeneracy
structure of the system.

However, while ultimately unique, this decomposition has
two additional issues (see, e.g., the opening paragraph of
Ref. [64]). The first issue is conceptual, as it follows that
each spectral scenario leads to a fundamentally different
generalized spectral decomposition. This implies that the
mathematical description of a system changes singularly in
parameter space whenever the algebraic or geometric degen-
eracy structure of the system changes, for instance, at or just
slightly away from an EP. The second issue is practical, even
though it is closely related. Numerically, the determination
of the Jordan normal form is severely ill conditioned, which
prevents its reliable use whenever analytical results are inac-
cessible. In particular, in the degenerate and near-degenerate
scenarios, the spectral decomposition cannot reliably be car-
ried out numerically, apart from some special cases where the
eigenvalues are either known analytically or their degenera-
cies are enforced by symmetries. The root of this issue is the
exponential propagation of errors through the chain (13).

As we review next, these features directly carry over to
the standard approaches to the spectral and physical response
in non-Hermitian systems, and indeed are reflected in the
observable properties of these systems.

D. Perturbative spectral response

The singular and ill-conditioned nature of the generalized
spectral decomposition is intimately linked to the enhanced
sensitivity of the eigenvalues to parametric perturbations of
the Hamiltonian. This is one of the reasons why we are
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interested in these systems, as it is important both in the con-
text of sensor applications and for the characterization of the
numerical stability of the eigenvalue problem. For instance,
as already mentioned, in the immediate vicinity of an EP-n in
parameter space, the algebraic degeneracy «; = n is generi-
cally completely lifted, resulting in n simple eigenvalues that
are approximately equally spaced around a regular polygon
centered at their common position at the EP. Furthermore,
the eigenvectors of these n simple eigenvalues are all closely
aligned and converge to the unique eigenvector of the EP as
it is approached. The focus then shifts to the size of the poly-
gon, which reflects the ill-conditioned nature of the spectral
decomposition.

To quantify this sensitivity and stability, we follow
Refs. [2,65] and write the Hamiltonian as H = Hy + ¢H/,
where Hj realizes the EP-n for an unperturbed eigenvalue
Ei(o), and eH' is a perturbation whose strength is controlled
by the parameter €. A generic perturbation then lifts the de-
generacy, leading to distinct eigenvalues E; ;, j = 1,..., ;.

Of particular interest is the gerturbation that maximizes
energy shift |AE; ;| = |E; ; — Ei( )|. We will denote this max-
imal energy splitting as |AE|nax and formalize its definition
by considering all perturbations with ||H’||, = 1, where the
spectral norm

|Mv|
vl

of a matrix denotes the maximal length ratio it can produce
when acting on a vector v [66].

Utilizing the generalized decomposition, this perturbation
is found to be placed in the lower-left corner element of the
Jordan block associated with the EP [64,67]. The maximally
achievable energy shift is then found to be of the form

|AE [ ~ €6 (16)

max

IM1l; = max (15)

Here, &;, known as the spectral response strength, is given by
[65]

& =[N

» (17)

and hence is associated with the nilpotent part of the general-
ized spectral decomposition.

Physically, the power-law dependence (16) of the energy
shift on the perturbation strength means that EPs facilitate
sensing with a nonlinear response function. At the same
time, this dependence also prevents the reliable numerical
realization of these EPs, and thereby also prevents the reli-
able construction of the generalized spectral decomposition.
Instead, our formalism will identify continuously varying ver-
sions of the spectral response strength that can be directly
calculated from the elements of Hamiltonian H, on which they
depend algebraically. These response functions then smoothly
converge to the spectral response strength of the EP as it is
approached. Furthermore, our formalism also applies, in the
same form, to spectral scenarios of higher geometric multi-
plicity (such as the representative case illustrated in Fig. 1).

E. Physical response

The spectral scenarios described above also attract at-
tention as they result in distinct signatures in the physical

response of the system. To develop this in detail, it is useful
to adopt the Dirac notation and distinguish between the right
eigenvectors |R;), which correspond to the eigenvectors u;
discussed so far, and the left eigenvectors (L;|. The eigenvalue
problem (2) then takes the form

HIR;) = Ei|R;), (Li|H = Ei(Li|. (18)

We furthermore denote a general time-dependent state of the
system in Dirac notation as |y (¢)). The time evolution in-
duced by driving the system with an external source |s(t)) is
thus determined by

dly)
dt
In the frequency or energy domain, where we decom-
pose |s(z)) into components exp(—iEt?)|s(E)), the response
[y (E)) = (E1 — H)7'|s(E)) is then mediated by the Green’s
function

=H|y @) +[s()). 19)

i

G(E)=(E1-H)™". (20)

To focus on the system-specific spectral information in the
response, we can consider the spectrally resolved response
power

P(E) = w{[GE)'G(E)}. 2y

This quantifies the total intensity that builds up in the system
in response to all possible ways to drive it at unit strength,

(V(E)Y(E))
(s(E)Is(E))

where the overline at the very top indicates the average over
all directions of |s(E)). This response power is directly ob-
servable, e.g., in the amplified spontaneous emission of a
uniformly pumped medium [41,42], and generally is expected
to become large close to resonance, i.e., for energies E close
to an eigenvalue E;.

This resonant response is indeed directly borne out in
standard non-Hermitian response theory, which utilizes the
spectral decomposition (14) of H. The Green’s function then
takes the form of a generalized partial fraction expansion
[48,50,51,53],

1 l 1
G(E)=Z<PiE_Ei +ZNillm)~ (23)
=2

L

P(E) = (22)

Close to simple eigenvalues, for which the nilpotent terms
with N; are absent, the response power (21) takes a Lorentzian
profile

K;
P(E) ~ E_ER @4
where
(Ri|R:i)(Li|L;)
K=—""-—-"— 25
I(Li|R:)|? >

is known as the Petermann factor.

At conventional EPs, on the other hand, for which y; = 1,
all of the indicated nilpotent terms up to [ = ¢; are present.
Close to resonance, the leading-order response power then
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takes the form of a super-Lorentzian

n?

P(E) ~

(26)

where

m =[N N, @)
In the usual setting of degeneracies with geometric multiplic-
ity y; = 1, n; = &; equates to the spectral response strength
defined in Eq. (17). However, we will also cover cases with
y; > 1, where this identity does not always hold, and therefore
distinguish between both quantities by calling 1, the physical
response strength.

Practically, the determination of the response strength is
again complicated by the singular and ill-conditioned nature
of the generalized spectral decomposition. This is true even
when the response is evaluated directly from its definition,
as casting it into the partial-fraction form (23) requires very
precise knowledge of the resonance energies E;. As one takes
the resonant limit, one attempts to evaluate the ratio of two
numbers that should converge to 0, which fails if one is not
situated at the degeneracy. This problem is exacerbated by the
strong sensitivity of the eigenvalue splitting on small perturba-
tions, embodied in Eq. (16). In our approach, these obstacles
will be circumvented by a product expansion of the resonance
spectrum, which turns this calculation into a ratio of quantities
that approach a finite value.

F. Response at degeneracies of higher geometric multiplicity

These complications are further accentuated when we
consider the resonant response near degeneracies of higher
geometric multiplicity. However, we can already anticipate
that a characteristic response should also emerge in this case.
For the perturbative spectral response, the perturbation that
maximizes the energy splitting resides in the lower-left corner
of a Jordan block with the largest partial multiplicity ¢;. If
there are several such blocks, we need to select the one with
the largest individual response strength §; ;, j =1,2,..., B;.
This translates into the overall response strength [68]

=N, = max 18 51- (28)

For the physical response, the sum over the nilpotent terms
in Eq. (23) now terminates at [ = ¢;, i.e., again in accordance
with the maximal partial degeneracy. By inspecting the Jordan
normal form for these scenarios, we see that this leading-order
term is of the general form

Bi
NfT =g IR L, (29)
j=1

where §&; ; are again the individual response strengths of
the blocks of maximal partial degeneracy, while |R; ;) and
(L; ;| are the right and left eigenvectors associated with these
blocks. These are the leading eigenvectors introduced at the
end of Sec. II B, whose number is now given by

i = mk (N/71). (30)

The resonant response then comes out as

n?
P(E)~ ———, 31
(B)~ =g 3D
where the physical response strength is now given by
INT Al
n; = u[ (V)N (32)

For B; > 1, this contains cross terms from the different eigen-
vectors, which enter as additional information so that »; and
&; are generally distinct. However, the formalism that we de-
velop in this work will prove to be general enough to directly
determine and quantify this information.

In summary, different spectral scenarios indeed result
in a qualitatively different physical response. However, the
reliance on a singularly changing spectral decomposition
poses a problem for the quantitative evaluation and practical
application of this conventional approach. In contrast, the
quantitatively observable physical properties of these systems
should change continuously both in parameter space and as
a function of energy. This indicates that a more direct ap-
proach to the response should reveal all the relevant physical
signatures—and, indeed, tell us to what extent the features
discussed so far can be observed, if at all.

III. DEVELOPING THE FORMALISM

As emphasized in the preceding background section, the
conventional approach to non-Hermitian degeneracy struc-
tures and resonant response adopts a mathematical framework
that changes singularly from one spectral scenario to another.
This impedes its application to practical problems and is in
stark contrast with the behavior of physically observable prop-
erties, which change continuously with system parameters and
energy.

To address these issues, we will formulate, in this section,
a unified description of the spectral scenarios, which we base
on smoothly varying algebraic quantities that can be directly
calculated from the Hamiltonian. We aim at a description that
covers both the quantization condition, which determines the
eigenenergies as the roots of the characteristic polynomial,
and the physical response, which is determined by the Green’s
function.

To achieve this goal, we will make use of a particular pow-
erful mathematical construction, the modal expansion of the
adjugate matrix, which we will first introduce in the context
of the quantization condition. At the end of this section, we
will see that the same unifying approach can be applied to the
latter setting too.

A. Statement of the main result

To develop the framework, we will have to go through a
number of technical steps. Before we start out, it is useful to
determine the main destination, which we briefly do here by
presenting one of the key results in its most explicit form.

Furthermore, the complete resulting picture is concisely
summarized in Sec. VI, which can be consulted for additional
guidance.
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This key result is given by the expansion

1)+ N
(=) Z(E B Q)’*IJ\/;’],‘)(QH _H)

i i(E)= ——F——
Git) = Gt E1 - 1) P

(33)

of the Green’s function. This expression takes the form of
a product expansion of the resonant pole structure, encoded
in the characteristic polynomial p(E) = det (E1 — H) in the
denominator, and a power-series expansion of the numerator
in the detuning E — 2 from an arbitrary reference energy €2,
which we may, for instance, set to coincide with one of the
resonance energies. The expressions /\/'J(”(Q]l H), defined
below in Eq. (45), are partial traces of determinantal minors,
and hence are obtained from subdeterminants of the matrix
Q1 — H (see the Appendix for additional background). The
important point is that these are continuous algebraic func-
tions of the elements of the Hamiltonian, and hence are well
behaved and conditioned. Furthermore, we will describe how
these quantities can be very efficiently obtained.

We will develop these features as part of a general frame-
work in the remainder of this section. In the following Sec. IV,
we will describe how this framework provides detailed in-
sights into the spectral and physical response characteristics
across all spectral scenarios.

B. Quantization condition

Our approach is based on the following key insights:

(1) An observation about the algebraic multiplicity. Our
first step is to bring the quantization condition of degenerate
eigenvalues into a natural and simple form. Let us expand
the characteristic polynomial p(E) around a freely chosen
reference energy €2,

p(E) = det (E1 — H) = det (A1 — A)

N
= Zkkck =q()),
k=0
(34)

where A = F — Qand A = H — Q1. The coefficients ¢ of the
shifted-energy polynomial ¢(1) can be viewed as functions
of the elements of A, which itself depends on 2 and the
elements of H. Varying these quantities, the first coefficient
in the expansion, ¢y, vanishes exactly when

detA = 0. (35)

This coincides with the quantization condition. Therefore, for
Q = E; set equal to one of the eigenvalues, the shifted-energy
polynomial g(A) has a root at . = 0. Indeed, according to the
definition of the algebraic multiplicity, the order of the root is
«;, which dictates that the coefficients

=0, £k=0,1,2,...,0;—1, (36)

all vanish. This then serves as a condition for the algebraic
degeneracy of the eigenvalue E;. Furthermore, for a quanti-
tative analysis, the focus then shifts to the first nonvanishing
coefficient cq,.

Therefore, part of our task will be to find a convenient and
reliable way to express the coefficients ¢ of the shifted-energy

polynomial g(A) in terms of €2 and H. Many such prescrip-
tions exist, but we are led to a particular one in the next steps.

(2) An observation about the geometric multiplicity. To
obtain the geometric multiplicity within our energy-shifted
problem, we need to determine the number of independent
solutions of the eigenvalue equation

Au; = 0. (37

We now observe that this can be formalized by utilizing the
determinantal minors M[(Ilc]f[ 5(A) = det(Ay ) of A. These
are formed from the determinants of (N —k) x (N — k)-
dimensional submatrices Ay s that are obtained from A
by deleting k rows with ordered indices I = [1 < i} < i; <
--iy < N] and k columns with ordered indices J =[1 <
J1 < j2» < -+ jr < NJ] (the Appendix revisits these objects in
more detail).
By definition of the geometric multiplicity, the matrix A
has y; linearly dependent rows and columns, so that, in fact,
all minors

M(k)[J](A) — 0’

& k=0,1,2,....y;—1,  (3%)

vanish. This then serves as a condition for the geometric
multiplicity of the eigenvalue E;, which reads quite analo-
gously to the condition (36) for the algebraic multiplicity.
For instance, both sets include the quantization condition,
which can be interpreted as the vanishing of the zeroth minor,
M), = det(A) = 0.

This suggests to tie the shifted-energy polynomial g(A),
which contains information about the algebraic multiplicity,
to the determinantal minors M[(,k]?[ 7(A). This leads us to the
next step.

(3) Tving both observations together. We just noted that the
eigenvalue condition itself implies ¢y = det(—A) = 0, which
can also be formally interpreted as the vanishing of the zeroth
minor, M, © j(A). On the other hand, the determinant of a
matrix can also be obtained from the identity

Aadj(A) = det (A)1, 39)
where the adjugate matrix

adj(A) = MV (40)

is directly related to the first determinantal minor of A. Here,
¥;; = (—1)'8;; is a diagonal matrix with alternating signs on
the diagonal. The expressions (—1)*/M (],) are known as the
cofactors, which after exchange of the row and column in-
dices (hence, transposition) form the elements of the adjugate
matrix.

To see how this ties the two aspects of our problem to-
gether, note that for a matrix with det (A) = 0, the identity
(39) gives

Aadj(A) = 0. 41)

This means that the columns of adj (A) deliver solutions of
the eigenvalue equation (37). This solves the eigenvalue equa-
tion for eigenvalues with geometric multiplicity y; = 1, i.e.,
simple eigenvalues and generic EPs, for which the first deter-
minantal minor does not vanish. Our next task is to expand
this link into a complete picture.
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(4) Utilizing the modal expansion. This completion is the
crucial, and most technical, step in the development of the
formalism. It is achieved by expanding the adjugate matrix
in analogy to the shifted characteristic polynomial (34). This
leads us to the modal expansion [46]

N—1
adj (E1 — H) = adj A1 — A) = Y " A*Bi(A), (42)
k=0

where the modes B; obey the Faddeev-LeVierre recursion
relation

tr (ABy)
L (43)

On the one hand, this recursion relation can be employed
to efficiently determine the coefficients

tr (ABy)
N —k
of the characteristic polynomial g(1). On the other hand, by an
explicit calculation that is described in the Appendix, we can
show that the modes can also be directly expressed in terms of

the partial traces of the determinantal minors, which we define
as

(k) _ : : (k)
M,j = Z o(i,p,q,r..)o(j,p,q, r"')M[i,p,q,r...];[j,p,q,r...]'
[p.q.r..]

By-1 =1, By =AB; —

o= 44)

(45)

These partial traces are obtained by contracting all but one
pair of row and column indices, where o (I) = %1 is the parity
of the permutation that orders the sequence /. With these
definitions, we then have the identity

Bi(A) = TNV ()" x, (46)

where we recall that ¥;; = §; j(—l)i is the diagonal matrix
with alternating entries £=1. This identity includes Eq. (40) as
the special case k = 0, in which definition (42) gives By(A) =
adj(—A), while definition (45) gives NV (—A) = M1 (-A),
and extends this to higher orders of k.

Summarizing the developments to this point, the modes
Bj unify the information from the quantization condition
[expressible as the coefficient of the shifted characteristic
polynomial; see Egs. (36) and (44)] with information about
the eigenvectors [expressible in terms of the determinantal
minors; see Eqs. (38), (45), and (46)]. Furthermore, they can
be directly and efficiently calculated from the Hamiltonian via
the recursion relation (43).

(5) Extracting the maximal partial multiplicity. In the next
two steps, we identify the exact nature of the information con-
tained in the modes B;. For this, we import knowledge from
the conventional spectral decomposition into our framework
and evaluate the partial traces A"® in the Jordan normal form
J. Exploiting the general block structure specified in Eq. (12),
this gives the conditions

N® =0

Hence, the partial traces extract the maximal partial multiplic-
ity ¢; of the eigenvalue. We note that this condition is stricter
than the condition (38) on the determinantal minors itself.

ifhk <oy — 4. 47

Mathematically, this difference arises as the indices p, ¢, 7. ..
in Eq. (45) are confined to the diagonal.

In terms of the modes, we therefore have the condition

B,=0, k=0,1,2,...,0;,—¢; — 1, (48)

so that the first finite mode is given by B, = B, _,. As we will
see, this first finite mode plays a central role in our formalism.

(6) Recovering the leading nilpotent term. Evaluating the
recursion relation (43) for k = «; — £;, we obtain from this
condition the important relation

AB, =0, (49)

so that the column and row spaces of 3, give us right and left
eigenvectors, in analogy to what we observed for adj(A) when
y; = 1 [see step (2)]. The eigenvectors obtained in this way are
exactly those associated with the maximal multiplicity, i.e.,
the leading eigenvectors introduced in the background section.
Indeed, by evaluating the mode B, via its link to the partial
traces in the generalized spectral decomposition, we obtain
the important identification

B, (P, =1
Cap 1\],-[[71,

i

(50)

where the first case applies to semisimple eigenvalues and the
second case applies to defective eigenvalues.

This identification has two significant implications. First,
it emphasizes the different nature of the two approaches.
The right-hand side of Eq. (50) changes singularly from one
spectral scenario to another, while the left-hand side can be
interpreted as a continuous function of the Hamiltonian if we
keep the indices in B, and ¢, fixed. Second, it shows how the
data in the generalized decomposition now become directly
and reliably accessible from the elements of the Hamiltonian.

(7) Obtaining the spectral response strengths. With the
identification (50), the spectral response strength (28) now
takes the concrete form

B,
£ = 1B.1l2 1)

|cOli|

This expresses this quantity in terms of continuously varying
functions that converge to finite values as the degeneracy
scenario is approached, and furthermore can be efficiently and
reliably obtained from the recursion relation (43).

This concludes our developments based on the quantization
condition, which determines the spectral response. In the next
subsection, we will see that a consistent picture emerges when
one applies the same concepts to the Green’s function, which
determines the physical response.

C. Green’s function

With the preparations from the previous subsection, we can
now establish the arguably most central result of this work,
namely, a systematic and reliable expansion of the Green’s
function that uniformly applies across all spectral scenar-
ios, and whose most explicit form we already previewed in
Eq. (20).
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For this, we first invert the identity (39) to write this func-
tion as

adj(E1 —H) _ adj(E1—H)
det(E1—H) p(E)

This simply corresponds to the application of Cramer’s rule
for the matrix inversion of E1 — H. The result already pro-
duces the desired product expansion of the resonance poles
in the denominator, which coincides with the characteristic
polynomial p(E) = [[.(E — E))*.

To bring the numerator into an analogously useful form, we
next utilize the modal expansion (42), upon which we obtain

G(E) = (52)

N UE - QB
p(E) '

This expression should be interpreted as a product expansion
of the resonant pole structure, still encoded in the character-
istic polynomial p(E), and a power-series expansion of the
response strength in the detuning E — 2 from an arbitrary
reference energy €2, which we may, for instance, set to coin-
cide with one of the resonance energies. The earlier mentioned
version (33) of this expansion further emphasizes the regular
and algebraic behavior of this expansion, where all terms
are then expressed as determinants. The partial traces in the
numerator are again continuous functions of this reference
energy and the elements of the Hamiltonian, whose explicit
form now follows from Eq. (45).

Applying the expansion (34) of the shifted characteristic
polynomial g(A) in the denominator, we can also write this as

G(E) =

(53)

"o (E — Q) By
S (E — Q)key

Here, all quantities ultimately arise from the characteristic
polynomial and are expressed in a way that will facilitate the
analysis of the resonant response near an eigenenergy of the
system.

Finally, we compare these expansions with the general-
ized spectral decomposition (23). Evaluating both expansions
at resonance with an eigenvalue E; = Q2 with maximal par-
tial degeneracy ¢; (which we carry out in more detail in
Sec. IV D), we then recover the important identification (50)
that we encountered in the quantization condition. With this,
the physical response strength (27) takes the form

2 tr(BIB,)

P =

G(E) =

(54)

55
|Ca]? 43
This verifies that we succeeded to consistently replace the
singularly defined data from the spectral decomposition by
smoothly varying data that can be directly evaluated from the
Hamiltonian.

IV. DETAILED INSIGHTS

So far, we focused our discussion on the explanation of
how the developed formalism allows one to determine key
quantities of the conventional response approach, such as the
spectral and physical response strength. These quantities were
originally introduced to characterize the standard EP degener-
acy scenarios with geometric multiplicity y; = 1, where both

response strengths, in fact, coincide. In this section, we de-
scribe how the formalism delivers more detailed quantitative
and qualitative insights into the different spectral scenarios,
including those of higher geometric multiplicity, y; > 1.

A. The first finite mode

To start this more detailed analysis, let us examine the in-
formation contained in the first finite mode B,. As mentioned
in the discussion of Eq. (49), the column space of B, coincides
with space spanned by the right leading eigenvectors of H,
while the row space plays the same role for the left leading
eigenvectors of H. In numerical investigations, this informa-
tion is reliably extracted by a singular-value decomposition
of B,.

However, we can make this even more precise. Equa-
tion (29) allows us to bring this mode into the specific form

Bi
B.=Y Bij. Bij=cafijIRij){Lijl.  (56)
j=1

The determination of this decomposition is a stable, well-
behaved problem, so that the quantities it contains can be
reliably extracted even if they are calculated slightly away
from the spectral degeneracy.

Indeed, this construction can be approached from two
different directions. First, the determination of the leading
eigenvectors from the Hamiltonian is well conditioned, as a
small generic degeneracy-lifting perturbation simply produces
£; closely aligned eigenvectors (see also, the next subsection).
Indeed, for ¢; > 1, this feature makes these vectors easily
identifiable, while for £; = 1, we deal with the harmless case
of semisimple eigenvalues. The stability problem of the con-
ventional generalized spectral decomposition does not arise
from these eigenvectors, but from the construction of the gen-
eralized eigenvectors in the Jordan chain, given by Eq. (13),
in which errors propagate exponentially.

Second, similar features also directly apply to the first finite
mode B,, which may present itself to us after we efficiently
obtained it by using the recursion relation (43). For semisim-
ple eigenvalues E;, o; = ¢; = 1 and the quantities

b,',j = Coz,-éi,j (57)

are the finite eigenvalues of B, = BBy. Furthermore, the right
and left eigenvectors associated with these finite eigenvalues
then coincide with the eigenvectors |R; ;) and (L; ;| of the
Hamiltonian. For ¢; > 1, B, is a nilpotent matrix, but impor-
tantly is of finite rank, where

Bi = mk (B,) (58)

recovers the number of leading eigenvectors. The right leading
eigenvectors then span the column space of B,, while the left
eigenvectors span the row space. These spaces can be obtained
by column or row reduction, which is based on Gaussian
elimination.

In practical situations, the decomposition (56) can there-
fore be obtained reliably even when B, is evaluated slightly
away from the degeneracy, where one would discard all
numerically small elements of the column-reduced or row-
reduced matrix. This also gives direct access to the partial
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response strengths & ; in the coefficients b; ;, given by
Eq. (57). Furthermore, Eq. (58) completes the practical deter-
mination of the relevant eigenvalue multiplicities that occur in
our formalism.

B. Perturbative spectral response

As we describe next, the previous considerations result in
an efficient, compact, and more general reformulation pertur-
bative spectral response problem of Sec. II D.

We again consider a Hamiltonian H = Hy + ¢H’, where
H, realizes a spectral degeneracy scenario of interest, and e H’
is a perturbation whose strength is controlled by the parameter
e. We denote the unperturbed eigenvalue that realizes the
scenario in question as 2 = Ei(o), with algebraic multiplicity
o;, geometric multiplicity y;, and maximal partial multiplicity
£;, where the latter occurs f; times. The perturbed eigenvalues
then follow from the solutions E = Ei(o) + (AE); j = E; j of
the quantization condition

p(E) = det(E1 — H) = 0. (59)

The additional indices j, k account for the fact that the degen-
eracy of Ei(o) is lifted by a generic perturbation, where we will
observe a systematic splitting into groups labeled by j, and
members of the group labeled by k.

For the analysis within our formalism, we identify the
reference energy Q = Ei(o) with the unperturbed energy, so
that A = E — Ei(o) will give the energy shifts. Analogously,
we set Ag = Hy — Ei(o) 1 and denote the remaining perturba-
tive part as A’ = A — Ay = ¢H’ — Al. The first finite mode
of the unperturbed degenerate system is determined by Ag
and denoted as B Of conceptual importance is again the
fact that this mode is also reliably obtained when working
slightly away from the degeneracy, such as from the perturbed
matrix A, and that its determination via the recursion relation
(43) is efficient. For a degeneracy with 8; = 1, such as a
conventional EP, we can then extract the relevant element of
the perturbation directly as

h=u(BYH'). (60)

This element enters the leading orders of the shifted charac-
teristic polynomial as

qh) ~ eha® ™l ¢, 2%, (61)

which captures the perturbation of the eigenvalues of maxi-
mal partial multiplicity. These perturbed eigenvalues are thus
given by

Ew ~E® + (—shfcy)"" expQ@mik/t)),  (62)

forming a single group with members k = 1,2, ..., ¢;. The
energy shifts of these members involves the roots of unity,
and recover the approximate arrangement of the eigenvalues
on the vertices of a regular polygon in the complex plane. The
size r and rotational position ¢ of the polygon are encoded in
the magnitude and phase of the complex number

1/¢;

re' = (—eh/cy,) (63)

For a degeneracy with §; > 1, we can repeat these consid-
erations based on the decomposition (56). This determines the

0.007( () 002
=N 0
-0.007. 1-0.02
-0.007 0 0.007 -0.02
0.03 o) 0.02

-0.03 e 0.02
-0.03 0 0.03  -0.02 0 0.02
Re(E) Re(E)

FIG. 2. Perturbative description of the spectral response to exter-
nal perturbations in the developed framework. The different panels
show the lifting of representative degeneracy scenarios by applying a
small generic perturbation. The open circles are the exact perturbed
energies, while the regular polygons are the predicted positions
(65) of the eigenvalues with maximal partial multiplicity, where the
relevant perturbation matrix element 4 is obtained from Eq. (64).
These eigenvalues experience the largest splitting, and hence deter-
mine the spectral response strength (16) in the concrete form (51).
(a),(b) Perturbation of a degenerate scenario with algebraic multi-
plicity « = 8 and a geometric multiplicity of y = 2, but different
partial multiplicities (/;, ) = (4,4) and (4, L) = (5,3), respec-
tively. (c),(d) Perturbation of degeneracies with algebraic multiplicity
o = 12 and geometric multiplicity of y = 3 having partial multiplic-
ities (I1, b, I3) = (6, 3, 3) and (4, b, Iz) = (5, 4, 3), respectively.

relevant element of the perturbation in each sector as
— ©) gy
hj = tr(Bw.H ), (64)

which determines the position of the perturbed eigenvalues
from the given sector in the same way. The perturbed eigen-
values

Eij ~ EQ + (—¢hj/ca) " exp@rik/e:),  (65)

with k = 1,2, ..., ¢;, therefore form B; groups, labeled by
j=1,2,..., B;. Each group again approximates the shape of
a regular polygon, which is scaled and rotated in the complex
plane according to the complex number

1/¢;

rie? = (—¢ehj/cq;) (66)

These features are illustrated in Fig. 2, where we apply this
compact perturbative approach to four different representative
degeneracy scenarios. In all cases, Eq. (65) accurately predicts
the perturbed positions of the eigenvalues associated with
the largest partial degeneracy based on the relevant matrix
element (64). Furthermore, these eigenvalues are the ones
with the largest splitting, and hence, indeed, determine the
spectral response strength (16), which then takes the concrete
form (51).
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C. Discriminating the spectral strengths

This compact form of the perturbation theory directly
applies to the spectral response strength. Subject to the
constraint ||H’||, = 1, the relevant matrix element (64) is
maximized for a rank-one perturbation of the form H' =
[L; j){R; j|, where we note the interchanged role of the right
and left eigenvectors when compared to typical expressions.
This maximal value is then given by h; = ¢,,&; ;. It follows
that each &; ; bounds the energy splitting in its sector accord-
ing to

|AE %, ~ el& 1, (67)

in analogy to Eq. (16). This observation also provides a
constructive demonstration of the relation §; = max; |§; ;|, an-
ticipated in Eq. (28).

An additional conclusion follows from the mathematical
relation that for matrices M of rank 1, the spectral norm can
be evaluated as ||M||, = \/tr(M™M). According to Eq. (58),
this applies to the first finite mode B, if §; = 1. With this, we
verify that the two response strengths &;, given by Eq. (51),
and 7;, given by Eq. (55), coincide when the geometric multi-
plicity of the leading eigenvectors is 8; = 1. Notably, this then
holds even when the total geometric multiplicity y; > 1.

We next move on to a more detailed discussion of the
physical response.

D. Leading-order resonant response

From here on, we discuss in more detail how our expan-
sion (54) of the Green’s function recovers and extends the
description of the physical response in different spectral sce-
narios. In this subsection, we establish the general form of the
leading-order resonant response, which serves as the starting
point for the application to the different spectral scenarios.
These preparations will also provide additional justifications
for some of our earlier observations in the development of the
formalism.

In this expansion, the resonant response arises from the
singular behavior of the denominator, which involves the char-
acteristic polynomial p(E), and the leading-order term in the
numerator, which involves the modes By, and is also express-
ible in terms of the partial traces N'®. In a given degeneracy
scenario, these expansions are constrained by the conditions
(36) and (48).

The resonant contributions from the denominator are ex-
tracted by writing the characteristic polynomial in leading
order as

P(E) ~ (E — Ej)*cq,, (68)
where we can also set

1 dp
Car = GV dE®

=[] -Ep. (69)

B i

In the product, the index j runs over distinct eigenvalues only.

This singular behavior is further modified by the terms in
the numerator. Setting 2 = E; to the resonance in question,
we recover that the leading order arises from the term B, =
By, —¢;- Accounting for this term, the leading resonant behavior

of the Green’s function is then given by

1 Ba.—e,
GE)~ ——F—> (70)
(E - El) ! CO(,‘
which we may also express, element by element, as
(—1y+ NETED - H)
G j(E) ~ = (71)
' (E —Epi Co;

i

By comparing this expression to the standard expansion
(23), we then verify the important result that exactly at de-
generacy, we can translate between both formalisms by using
the identification (50), as already cited in the development of
the formalism above.

The leading-order resonant response power (21) is given
by

tr BIB* 1
T E = EPY

P(E) ~ (72)

[ea|

which generalizes Eq. (26) and further justifies the identifica-
tion (55).

By construction, these expressions apply across all spectral
scenarios. In the following subsections, we concretize this
quantitatively and determine explicit response criteria that
identify when these scenarios are attained.

E. Petermann factor

We start with the resonant behavior arising from a simple
eigenvalue, for which «; = y; = £; = §; = 1. Within the con-
ventional approach, this situation has to be treated separately
from the defective cases, as the leading resonant response
arises from the projector P;, while the nilpotent part N; van-
ishes. Accordingly, the strength of the resonant response is
then dictated by the Petermann factor (25), which is a di-
mensionless number K; > 1 that directly captures the mode
nonorthogonality, instead of a spectral response strength with
dimensions related to energy.

Within our approach, we can still evaluate the leading-
order resonant response (70) from the first finite mode (56),
where the only difference from the defective case is that the
right and left eigenvectors now have a finite overlap, (L;|R;) #
0. From this, we straightforwardly recover the Lorentzian
line shape (24) along with the adjugate formulation of the
Petermann factor [69],

trB) By
K= e 7

where By = adj(E;1 — H).

This is an exact result, which allows us to obtain the Peter-
mann factor directly from the elements of the Hamiltonian.

Importantly, this result also precisely captures how
the Petermann factor behaves as a spectral degeneracy
is approached. Steering the system to the degeneracy,
¢1 — 0, while the limiting behavior of 13y depends on «; — ¢;.
Throughout the following subsections, we will utilize this
behavior to establish response quantities that discriminate be-
tween the different degeneracy scenarios.
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F. Approaching an exceptional point

Let us consider the case that the approached degeneracy
is a generic EP-n, where o; = n eigenvalues E; converge to a
common value Ei(o), while all eigenvectors coalesce according
to the geometric multiplicity y; = 1. The perturbative analysis
within the standard approach of response theory establishes
that the diverging behavior of the Petermann factor is gov-
erned by the spectral strength &; = n; of the exceptional point
itself [65,69],
2
Kot (74
i (Ei — E{ )) 7
Within our approach, we recover this behavior by evalu-
ating Eq. (73) with our results from Sec. IVB. As the EP
has o; = ¢;, the first finite mode remains given by B, = B.
Approaching the EP, the numerator of Eq. (73) therefore con-
verges continuously to a finite value. The divergence of the
Petermann factor arises from

—1
e ~ai(E — E®) ¢y, (75)

which we read off Eq. (61). Therefore, our starting point (73)
delivers
1 trB)B
K ~ O\ @i—12 : 20' (76)
e (B = E7)™ |7 e
The second factor indeed converges to the spectral strength of
the EP itself, which, in our formalism, is given by

B! B
S r—°|2° an

.

This not only recovers Eq. (74), but also expresses the
response strength as a ratio of continuous functions that con-
verge to finite values as the EP is approached.

G. Hierarchy of response-strength functions

The link (74) demonstrates that the response strength of the
EP has a well-defined meaning also away from an EP, while
the Petermann factor of a simple eigenvalue serves to indi-
cate when a spectral degeneracy is approached. Furthermore,
this establishes that in our formalism, the Petermann factor
can also be naturally interpreted as a dimensionless response
strength.

This motivates us to introduce the hierarchy of response-
strength functions,

|U§n'm)|2 _ tr(Bmljm)’ (78)

leal

wheren =1,2,3,...and m =0, 1,2, ... (recall that cg = 0
is the quantization condition). Whenever these quantities are
finite, they should be interpreted as continuous functions of
the parameters of the Hamiltonian that characterize the reso-
nant response of the system in a uniform and continuous way.
Furthermore, whenever they diverge, they should give insights
into the approached degeneracy.

The response-strength functions therefore condense the in-
formation in our formalism into a compact form that provides
both quantitative and qualitative insights. We illustrate this
next by considering different spectral scenarios.

H. Exceptional points revisited

The most direct application of the response-strength func-
tions (78) is again to a generic EP-n, with n = «;. The first
term in the hierarchy determines the Petermann factor K; =
|17§l’0)|2 of a simple eigenvalue E; in its exact calculable form
(73). As one approaches the EP, the quantities n?"/’o) with
n' < nall diverge, while [7"”|> — n? = &2 continuously ap-
proaches the common spectral and physical response strength
of the EP.

Moreover, these response-strength functions can also be
used to study the system, e.g., on a submanifold of parameter
space in which some eigenvalues are held at an EP of min-
imal order ¢; (known as an exceptional surface) [36,53,70—
72]. They then allow one to identify the positions at which
the order of the EP changes, e.g., increases to «/ > «; when
additional eigenvalues become degenerate. This is detected by
the diverging behavior of nf“’ 0 while the spectral strength of
the modified EPs at these locations can be reliably obtained
by evaluating the strength nga; 0, Studying the response-
strength functions r;;"‘o) for a given eigenvalue across a region
in parameter space therefore uncovers in which EPs this
eigenvalue participates, and simultaneously determines the
response strength of these EPs.

As we describe next, these response-strength functions also
allow us to detect spectral scenarios in which the geometric
multiplicity exceeds one.

1. Higher geometric multiplicity

One of the key points of our formalism is that it di-
rectly applies to scenarios of higher geometric multiplicity.
The resonant behavior (72) is then determined by the largest
partial multiplicity £;. We recall that in our formalism, this
behavior is dictated by the conditions (48). Approaching the
degeneracy, the strength of the emergent super-Lorentzian
response (72) is then governed by nf"""“”fg"). Furthermore,
this particular response-strength function is singled out by the

fact that the functions 7" with m < &; — ¢; approach zero,
while the functions 7"~ with n < «; diverge. The latter
divergence is analogous to the divergence of the Petermann
factor as an EP is approached.

J. n-bolic points

The maximal geometric degeneracy is obtained at n-bolic
points, where «; = y; = n. At these, we necessarily have ¢; =
1, so that the resonant term (71) reduces to a superposition
of simple Lorentzians with a physical response strength deter-
mined by a generalized Petermann factor

(B By)

o = 79)
n

This Petermann factor accounts for the fact that for the
diabolic points of non-Hermitian systems, the spaces spanned
by the right and left eigenvectors may still be distinct. If
the two spaces coincide, K = n, while generally K > n. This
information is again fully captured by the structure of the
matrix B, = B,_;.
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V. EXAMPLES

In this section, we illustrate our approach in analytically
accessible examples. The first example involves a three-level
system featuring a DP and an EP. We calculate the Green’s
function and response-strength functions for this example us-
ing our exact uniform series expansion, and demonstrate how
this captures the distinct physical response as the degeneracies
are approached in the parameter space. The second example
examines a four-level system on a generalized exceptional sur-
face and identifies the signatures of eigenvalue degeneracies
of higher geometric multiplicity. While analytically tractable,
these examples may well represent suitable truncations of
concrete practical systems, for which our results then apply
in the spirit of quasidegenerate perturbation theory.

A. Detecting diabolic and exceptional points

As our first example, we evaluate the uniform expansion of
the Green’s function for a three-level system with eigenvalues
that can be merged to form either a DP or an EP by a suitable
choice of system parameters. For concreteness, we consider a
specific Hamiltonian of the form

H = (80)

oo 8
[=IESEENY
[=>RRSUEN

This Hamiltonian has six parameters, but it is simple enough
to verify and compare all results analytically. The parameters
induce mode nonorthogonality into the problem, where, in
particular, parameters a, b, ¢, d induce nonorthogonal overlap
of the subspaces of the different energy eigenvalues. These
overlaps are not captured in the Jordan decomposition, which,
moreover, would be numerically unstable in practical settings,
as emphasized earlier in this work.

1. Degeneracy scenarios

The characteristic polynomial is
P(E) = Elac — (E — »)’], 1)

which, upon setting to zero, gives the eigenenergies of the
system,

Ey=0, Ei=w++Jac. (82)

We now make two illustrative choices for the system pa-
rameters. First, we set a = b =c¢ =d = w, for which the
eigenenergies are Ey _ ; = (0, 0, 2w), and the corresponding
right eigenvectors are

~1/2 1 1
R) = | —12), Ry=|-1], RO=[1] &3
1 0 0

We see that there are two eigenvectors corresponding to the
eigenvalue Ey_ = 0, which determines the geometric mul-
tiplicity yp = 2 making it a diabolic point. While these two
eigenvectors can be chosen orthogonal to each other, there
remains a finite overlap to |R. ), which is a consequence of the
non-Hermiticity present in the system. As the eigenvalues are
semisimple, we can also find a complete set of corresponding

left eigenvectors

(Lol = (0,0,1), (L_|=1(1, 1,0, (Ly]=21(t, 1,1,

(84)

which are biorthogonal to the right eigenvectors.

Second, we tune a single parameter ¢ and set it to zero,
which transforms the eigenvalues to Ep 1 = (0, w, w), but
now the degenerate eigenvalue is an EP with a single set of
self-orthogonal right and left eigenvectors

1
IRe) =10, (Lil=1(0,1,d/w), (85)
0

while the simple eigenvalue has right and left eigenvectors

b—ad/w
|Ro) = d ;
—w

(Lol = (0,0, 1). (86)

From Eq. (6), we confirm that the geometric multiplicity of the
degenerate eigenvalue is y1 = 1, so that we indeed encounter
an EP of order 2.

Due to the higher codimension of DPs, finding them in
the parameter space is more difficult than the EPs. As we
will see, our formalism will automatically account for this
feature and naturally determines the exact general conditions
for these degeneracy scenarios beyond the two illustrative
choices described above.

2. Green’s function

Our next step will be to calculate the Green’s function
G(E) = (E1 — H)™! using our exact series expansion (33),
which, in turn, determines the physical response of the system.
We aim to demonstrate that the DPs and the EPs behave
distinctly in terms of the physical response, where the latter
displays an altered super-Lorentzian resonant response. For
guidance, Fig. 3 illustrates these features for the two degener-
acy scenarios of the previous subsection numerically in terms
of the associated response power. The strength of our ap-
proach is that the Green’s function can be determined directly
and systematically from the data in the Hamiltonian, and
furthermore delivers the concrete and most general conditions
and physical signatures of the different degeneracy scenarios,
as we now develop in detail.

From the previous subsection, we know that the energy of
the exceptional point is Egp = w, while that of the diabolic
point is Epp = 0. We, therefore, expand the Green’s function
around these above energies, starting by setting the reference
energy €2 = w for the case of an EP. The uniform expansion
(33) takes the following compact form:

G= Lz[/\ﬂ“(wﬂ —H)+ (E —o)N®wl — H)
p(E)

+(E —w)1]"%, (87)
where the matrix X now takes the concrete form
1 0 O
=10 -1 0]. (88)
0o 0 1
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FIG. 3. Analysis of the spectral degeneracies and their corre-
sponding physical response for the example of the Hamiltonian (80),
featuring a diabolic point (DP) and an exceptional point (EP). (a) The
real part of the energy eigenvalues as a function of the parameter ¢ for
fixed a =b=d = w =1, revealing the EP at {c =0, E = 1} (red
star) and the DP at {¢c = 1, E = 0} (green star). (b) Logarithmic 3D
plot of the spectrally resolved response power (21) as a function of
the parameter c and the energy E, where a small uniform background
loss is added to the system so that the decay rate of the longest-living
state is fixed to min;(—Im E;/2) = 0.1, ensuring that the leading
resonant behavior is uniformly broadened for all parameters. The EP
and the DP show a contrasting behavior, where the former shows a
very high enhancement in the response power as it is approached
in the parameter space. (c),(d) Response power as function of E
for fixed ¢ = 0 and ¢ = 1. We note that the EP in (d) enhances the
physical response approximately 20 times beyond the signal of the
DP in (c).

By construction, the partial traces on the right-hand side of
Eq. (87) are 3 x 3-dimensional matrices that are algebraically
calculable from the Hamiltonian by applying their definition
(45). The leading term,

0 aw ad
SNl —EI)'sS=[cw 0  be |, (89)
0 0 —ac

coincides with the adjugate matrix adj(wl — H). For the sec-
ond term, we first determine the second minors for the ordered
sequences of indices (1,2), (1,3), and (2,3),

) 0 0
MPwl—-H)y=|-d 0 —c]. (90)
—b —a 0

Contracting its indices, we arrive at

w a b
SNl —H)]'sS=|¢c o d 91)
0 0 0

We next repeat the above procedure for the degenerate sce-
nario of a DP after setting the reference energy 2 = 0 in the
uniform expansion of the Green’s function. The leading term

adj(01 — H) takes the following form:

ad —wb 0 0
bc—wd 0 O0]. 92)
w*—ac 0 0

SINDO1 -H)'E =

Likewise, we get the second term by taking a partial trace of
the second minors,

) a b
SNPO01—E))s=| ¢ -0 d |. (93
0 0 2w

Accounting for Egs. (89) and (91) in Eq. (87), we recover
the complete Green’s function for this system,

E(E —w) aE ad + b(E — w)

G(E)= —— cE E(E—-w) bc+dE-w)],
P(E) 0 0 (E — ) — ac

(94)

whose correctness can be verified by directly applying
Cramer’s rule, as in the initial step (52) of the general deriva-
tion. We can also verify that the exact same form of the
Green’s function is obtained by inserting the expressions (92)
and (93) into the analogous expansion

G= LE[N‘”(—H) +ENP(—H)+E*1]"E, (95)
P(E)
corresponding to the uniform expansion (33) with Q2 = 0.
However, the two expansions differ term by term, which
we now investigate to determine the concrete conditions and
distinct physical response signatures of the two degeneracy
scenarios.

3. Response signatures

Let us begin with the degeneracy at E = w. After setting
the parameter ¢ = 0, the square-root term vanishes in Eq. (82),
giving rise to a double pole in the denominator of the Green’s
function (94) at energy E = w, according to the algebraic
multiplicity &« = 2. Within this setting, the first nonvanishing
term in the expansion of the denominator around E = w,
given by Eq. (89), reduces to

0 aw ad
Bo=SNPwl—ED)'s=[0 0 0. (6
0 0 0

As this is generically finite, the condition (48) delivers £ =
o =2, which implies that the largest partial multiplicity
equals the algebraic multiplicity. Hence, generically, the re-
sulting degeneracy is an EP. Note that another equivalent
possibility is to set the parameter a = 0 rather than ¢, which
changes the form of the matrix in (96), but generically leaves
it still finite.

On the other hand, setting both a = ¢ = 0, the mode (96)
vanishes identically, so that the leading-order term is obtained
from (91), which reduces to

B = SINP(wl —H)|'E = 97)

o o8
o8 o
[ ISWENS
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The condition (48) then delivers £ = 1, which is the signature
of a DP, but still realized at E = w. This mode only vanishes
if we set all parameters to zero, H = 0, which corresponds to
a trivial fully degenerate system.

We now repeat these considerations for the eigenvalue at
E = 0, for which we already identified one choice of parame-
ters for which this becomes a DP. Algebraically, we encounter
a twofold degeneracy at this energy when

w = J/ac, 98)

which again results in a double pole in the numerator of
the Green’s function (94). Demanding that By, the adjugate
matrix in expression (92), must vanish gives us the additional
condition

Jad = Jcb (99)

for the occurrence of a DP. We see that our initial choice a =
b = ¢ = d = w conforms to this condition.

In both cases, the DP involves additional conditions, which
demonstrates that constructing DPs is more difficult than
constructing EPs of the same order. Indeed, we recover the
generic codimensions for these scenarios, according to which
two real parameters need to be controlled to realize an EP2,
and four real parameters need to be controlled to realize a
DP2.

4. Response-strength functions

Finally, we demonstrate how these insights can be re-
covered directly from the uniformly defined hierarchy of
response-strength functions (78). These functions are defined
for evaluating the modes at specific eigenvalues, and hence
from the shifted matrices A = H — E;1. First we note that
for a 3 x 3-dimensional matrix, these modes are given by
By = adj(A) and B; = A — (tr A)1, while the coefficients of

the characteristic polynomial are expressed as ¢; = tr adj(A)
and ¢, = —tr A.
We start with the response-strength function
tr[adj(A)adj(A"
O = [adj(A)adj( )]’ (100)

|trladj(A)]]?

which gives the Petermann factor when evaluated for a simple
eigenvalue. For the eigenvalues (82) of the example Hamilto-
nian (80), this gives the explicit expressions

b2 _ 2
Ky = 1 4 le=fa ek, (101)

— Ual+leDI(al+|eD|w/acl® +| Jad+/cb]? I
K 4lac||wty/ac|? (102)

We can verify from these expressions that these Petermann
factors diverge when the eigenvalues become degenerate, pre-
cisely replicating the conditions described above.

To characterize the response at an EP, we can then use the
response-strength function

tr[adj(A)adj(A")]
|trA|?

For the eigenvalue Ey = 0 of the example Hamiltonian (80),

this takes the form

_ |w? — ac)? + |ad — bw|* + |bc — dw|?

- 4ol

In®0) = (103)

2
In$? . (104)

while for the eigenvalues £+ = w £ \/ac, it becomes

(lal+leDI(al+|cDlwE/ac+|VadE/cb® 1

0P =
lw3/ac|?

(105)

For w — ./ac, the functions |17(()2’0)|2 and |n(72’0)|2 both
smoothly converge to the response strength

> (lal + |eD)Ivad — ~/bel?
]’] =
4lac|

(106)

of the resulting EP at E = 0, while for ¢ — 0, the functions
(2,012
[ni""|* converge to the response strength

d)?
2 —al?l1 |_
n°=|al < + PE

of the resulting EP at £ = w. We can check that this ex-
pression agrees with the response strength obtained from the
uniform expansion of the Green’s function (94).

We see that the response strength (106) vanishes if we
additionally fulfill the condition (99), so that instead of an EP,
we encounter a DP. Analogously, the response strength (107)
vanishes when we additionally set a = 0. To characterize the
response at these DPs, we can use the response-strength func-
tion

(107)

tr[AAT]

@ni2_ .
17hn AR

(108)
For the eigenvalue Ey = 0 of the example Hamiltonian (80),
this takes the form

2le2 + lal® +1bI* + [c|* + |d|?
4|o|?

ng P . (109)

while for the eigenvalues £+ = w £ /ac, we obtain

2IaCI + lw + ac|* + lal* + |b]* + |c| +|01|2
o £ 3 /acl?

2,1),2
V) =

(110)

Sending w — v/ac, v/ad — \/cb — 0, the expressions [n""|?

and |r](2 ])|2 then both converge to the generalized Petermann
factor [see Eq. (79)]

(o3, JaPO+ ) +1dP(+ )

2 4|w|?

(111)

of the DP at E = 0. Furthermore, sending a, c — 0, the ex-
pressions |nf’1) |2 both converge to the generalized Petermann
factor

b1 +1d|?

K=2
TR

(112)
of the DPat E = w.

This concludes the discussion of our first example, in
which we demonstrated the analytical versatility of our for-
malism and showed how this allows us to determine the
physical response strengths and the Petermann factor directly
from the data of the Hamiltonian.
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B. Fourth-order degeneracy with variable geometric
multiplicity

For our second example, we consider a system having a
degeneracy with an algebraic multiplicity of o = 4, whose
geometric multiplicity can be varied by tuning the system
parameters. This setting complements the usual scenario of
moving along an exceptional surface in parameter space,
where one stabilizes the system at an ordinary EP (with fixed
geometric multiplicity y = 1) and changes the order of the
EP (algebraic multiplicity) to control the response strength
without deviating from the energy of the EP [36,53,70-72].
Instead, we will change the response strength by tuning the
geometric multiplicity, where we determine the corresponding
conditions directly from our uniform expansion of the Green’s
function.

1. Degeneracy scenarios

We formulate the Hamiltonian of this system in its upper
triangular form

(113)

coc o
oo 8
S8 X
S~ o

where the degenerate eigenvalue is set to w. This form can
always be obtained by a Schur decomposition [46], which
involves a unitary basis change that does not affect the math-
ematical nature of the problem and, in practical settings, is
numerically well conditioned [73]. For generic choices of
the parameters, this Hamiltonian is maximally defective and
therefore has only a single pair of right and left eigenvectors,
which are of the simple form

Ry =|,] I=(0.0.01).

1
0
0 (114)

0

This then corresponds to an ordinary EP, where the algebraic
multiplicity of the eigenvalue Egp = w is o = 4, while the
geometric multiplicity is ¥ = 1. On the other hand, setting
all off-diagonal parameters a to f to zero, the system exhibits
a DP, where the algebraic multiplicity remains fixed at ¢ = 4.
We aim to identify and distinguish between these and other
degeneracy scenarios systematically by considering the phys-
ical response of the system.

2. Green’s function

Similar to the previous example, we will therefore next
determine the Green’s function. However, instead of bas-
ing this on the direct calculation of the partial traces of
the determinantal minors J\/;Fk), we will use the Faddeev-
LeVierre recursion relation (43) for the modes By, discussed
in Sec. III B.

We start by explicitly writing Eq. (42) for N = 4,

adj (E1 — H) = adj (A1 — A)

= 12By(A) + A'B1(A) + A2 By (A) + A3Bs(A),
(115)

where A = E — w and

0 a b c
A=H—wl = 8 8 g ]e, (116)
0 0 0 0
We first note that
g(r) = det(Al — A) = A* (117)
implies that
Coy =C4 =1 (118)

is the only finite coefficient of the shifted characteristic poly-
nomial. Furthermore, the strictly upper-triangular form of A
drastically simplifies the application of the recursion relation
(43), as we will demonstrate in the following steps.

The recursion relation is initialized by B3(A) = 1. With
this, we obtain the next generation from the recursion,

tr(ABB3) .
] =

B, = AB; — A, (119)

where we utilized

tr(ABs) = tr(A) = 0. (120)

This mode is exactly equivalent to the matrix
SIN®(=A)]TE, which can be verified, in analogy to
the previous example, by taking the partial trace of the third
minors.

The first mode can be obtained by repeating the above
procedure,

0 0 ad ae+bf
B wr@AB)  , [0 0 0 df
B =AB, — ) =A"=10 0 o 0
0 0 0 0
(121)

Similar to the previous step, tr(A3;) = tr(A%) = 0, which via
Eq. (44) confirms that all the other coefficients of the char-
acteristic polynomial are zero except c4. We can again check
that this is indeed identical to the matrix formed by the partial
trace of the second minors [N ?(—A)]” X. Analogously, the
zeroth mode simply takes the form

0 0 0 adf

o B 0 0 0
Biy=A'=adi- =y o o o (122)

00 0 0

Accounting for all the terms from Eqgs. (119), (121), and (122)
along with B3 = 1 in the modal expansion (115), we obtain
the full Green’s function of the system,

adj(E1 — H)
GE)= =" 1)
p(E)
1 a ad+bE adf+(ae+bf)E+cE2
E E E3 E*
o L d df+eE
= E El b} . (123)
0 O = o
1
0 0 0 .
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which, for this tractable example, can again be verified by
direct application of Cramer’s rule. However, within our for-
malism, we can now again use the individual terms of the
expansion to identify different response scenarios.

3. Response signatures and strength functions

As mentioned before, the algebraic multiplicity of the
generic EP is ¢ = 4, while the geometric multiplicity is y =
1, and this also determines the maximal partial multiplicity to
be ¢ = 4. Therefore, the condition (48) tells us that generi-
cally, the first finite mode is

B, = Bu—¢ = B, (124)
while the physical response strength (55) is given by
0’ = n“O) = w(ByBo) = ladf’. (125)

As indicated, this coincides with the stated response-strength
function, which we will also denote in the other scenarios for
notational clarity. Along with this, the leading-order resonant
response (72) is

|adf |?

P(E) ~ E—uf

(126)
Our next step is to tune the geometric multiplicity of the
degeneracy by varying the system parameters. As discussed in
Sec. IV D, the leading-order resonant response depends, for a
fixed algebraic multiplicity, on the maximal partial multiplic-
ity of any general degeneracy structure. Therefore, a change
in the leading-order response detects a change in the maximal
partial multiplicity, which, starting from a generic EP, also
implies a changed geometric multiplicity of the degenerate
eigenvalue. From Eq. (125), we read off that this requires

adf =0, (127)

and hence to set one of the parameters a, d, or f on the first
off-diagonal in the Hamiltonian (113) to zero. This leads to
two principal cases, d =0 (CASE 1), and a=0or f =0
(CASE 2, with both subcases related by symmetry), which
we illuminate next.

xCASE 1:d =0 %

We begin with the case d = 0, such that the first nonzero
mode is switched to

ae + bf
0
0
0

B, =B = (128)

SO OO
(=l Ne)
[N eleNe)

We observe that « — ¢ = 1 implies that the maximal partial
multiplicity is /; = £ = 3, which according to Eq. (8) has to be
complemented by I, = 1. Therefore, the degeneracy structure
is now transformed to partial multiplicities (I1, L) = (3, 1),
and the geometric multiplicity is y = 2. For this scenario, the
leading-order response power goes as

772

P(E)"’m,

(129)

where the corresponding spectral response strength is now
given by

n* = "Y1 = w(B]By) = lae + bf*. (130)

The above calculation illustrates that even though the alge-
braic multiplicity of the degeneracy is fixed, changing its
geometric multiplicity can vary the system’s resonant physical
response.

Following the same line of thought, we can again change
the first nonvanishing term in the modal expansion by choos-
ing the system parameters to additionally fulfill the condition

ae = —bf. (131)

Generically, this choice of parameters does not affect the rank
of the matrix, wl — H = —A, appearing in Eq. (6); there-
fore, the geometric multiplicity y = 2 remains unchanged.
However, the first finite term is now 3, = B, = A and the
maximal partial multiplicity is now £ = 2. Thus, for this situ-
ation, we have realized a degeneracy with « = 4, y = 2, and
(I1, 1) = (2, 2). Since both partial multiplicities are the same,
we have two leading eigenvectors for this scenario, and thus
B = 2, for which we have to distinguish between the physical
and the spectral response strengths. First, following a similar
calculation, we determine the physical response strength

n* = P = wBB) = lal* + |b]* + |c|* + lel* + | fI%,
(132)

valid subject to the condition (131), which now determines the
leading-order response power in the form

n2

E —ol*

Second, we calculate the spectral response strength (51) by
determining the spectral norm of the matrix B,. This is equiv-
alent to the largest singular value of B,, from which we obtain

£ = 1n® + Vit —4(lal® + B (le + £ P,

where n? follows from Eq. (132) and the parameters are
again constrained by condition (131). Therefore, for this case,
the physical and spectral response strengths indeed differ,
where generally £2 < n?. Figure 4 compares the two response
strengths for the choicea = —b = ¢ = 1 and e = f as a func-
tion of 1/f, giving

n”?=3+2f", & =Lim*+Vnt—16/f21

The two response strengths approach each other for small f,
where

P(E) ~ (133)

(134)

(135)

E2~ 34 2|f), (136)

and for large f, where
g ~2fP+1.

As our final step, we consider the case with a geometric
multiplicity of y = 3, where only one set of partial multi-
plicities (/1, l», [3) = (2, 1, 1) is possible. Since the maximal
partial degeneracy ¢ = 2, the first finite mode remains B, =
B,. Moreover, the form of the leading-order resonant response
remains as given in Eq. (133). However, now the rank of
the matrix rnk(wl — H) = rnk(—A) = 1, which enforces us

(137)
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FIG. 4. Comparison of the physical response strength (132) and
the spectral response strength (134) of the four-level system (113)
as a function of 1/f, where we set d =0, a=—-b=c=1, and
e = f. This choice of parameters realizes a degeneracy with geo-
metric multiplicity y = 2 and partial multiplicities (/,, 1) = (2, 2),
where the two response strengths differ because there are multiple
leading eigenvectors (B = 2). For f — 0 or f — o0, the system
is steered near degeneracy scenarios with y = 3, where the two
response strengths continuously approach each other. This provides
a uniform and well-conditioned description of all these scenarios,
and places them on an equal footing with the commonly studied
exceptional points.

to set the parameters a = b =0 or e = f = 0. We focus on
the second case. The response strengths (132) and (133) then
take the simplified form

N’ =& = la’ + b + Icl?, (138)

and hence coincide, in agreement with the observation that
there now again is only a single leading eigenvector (8 = 1).

*CASE2:a=0o0r f =0 %

Reverting again to condition (127), we first note that the
two subcases a = 0 and f = 0 follow a very similar structure,
so that we focus on the specific choice f = 0. Generically,
we then again obtain a degeneracy with geometric multiplicity
y = 2 and partial degeneracies (I, ) = (3, 1), for which the
leading mode becomes

0 0 ad ae
0O 0 O 0

B, =B, = 00 0 0 (139)
0O 0 O 0

The dominant resonant response is again of the form (129),
where the response strength is now

n* = lal*(1d|* + le|*). (140)

This response strength vanishes if we impose the additional
condition @ = 0, upon which the leading mode switches to

0 0 b c
0 0 d e

B, =B, = 00 0 0 (141)
0 0 0 O

We once more obtain a degeneracy with partial multiplicities
(I1, 1) = (2, 2), for which the resonant response becomes of
the form (133), with

n* = |bI* + |c* +1d|* + |el?, (142)

while the spectral response is characterized by the indepen-
dent strength

g2 = 1n* + v/n* — 4lcd — be|?].

The rank of A changes further when cd — be = 0, upon which
we obtain a degeneracy with geometric multiplicity y = 3,
partial multiplicities (I1, l», I3) = (2, 1, 1), and revert back to
the coinciding response strengths 1> = £2.

(143)

C. General lessons from the examples

Before summarizing our formalism in the following sec-
tion, we briefly draw lessons from the practical applications
in this example section. We see that the system parameters
appearing in the Hamiltonian (80) or (113) can be smoothly
varied to achieve all the distinct spectral scenarios, where our
formalism identifies these systematically based on physically
relevant quantities, without any instability or discontinuity. In
particular, the information occurs in its most condensed form
in the respective response-strength functions, where all of
them are smoothly varying functions of the parameters. These
quantities can be directly calculated from the Hamiltonian
itself, either by taking partial traces (45) of the respective
minors under consideration or by using the Faddeev-LeVierre
recursion relation (43), where the quantities are linked by
Eq. (46). From this, we can directly determine the leading
observable spectral and physical response of the system, and
obtain additional insights, such as the precise conditions, codi-
mensions, and signatures of degeneracy scenarios with higher
geometric multiplicity.

VI. SUMMARY OF FINDINGS

Before we come to our general conclusions (see Sec. VII),
let us concisely summarize our approach and collect all central
equations and findings.

The goal is to describe the spectral features and physical
response of systems with an effective non-Hermitian Hamil-
tonian H from a unifying perspective that uniformly applies
to all spectral scenarios. This description involves features of
the eigenvalues E; and right and left eigenvectors |R;), (L;| of
H, which are encoded in the characteristic polynomial p(E) =
det(E1 — H) and the Green’s function G(E) = (E1 — H)~\.

As a preparatory step, we define the shifted energy variable
A =FE — Q and matrix A = H — 12, with an arbitrary refer-
ence energy 2. All desired information is then encoded in the
modes By, which can be obtained efficiently and reliably from
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the recursion relation

tr (ABy)

N —k
Alternatively, these modes can be interpreted in terms of
partial traces N'®(—A) of the minors of —A introduced in
Eq. (45), so that By (A) = ZINP(—A]TZ.

All of the following statements hold because the modes

determine the expansion

Byoi=1, B =AB,— 1. (144)

N—1
adj(u1 — A) = Y " A'By(A) (145)
1=0
of the adjugate matrix, as well as the coefficients
tr (AB;)
= - N1 (146)
of the shifted characteristic polynomial
N-1
q() = det1 —A) = ey (147)
1=0

Reading 5;(A) as a function of H and €2, the desired
information then unfolds in the following steps:

(1) The quantization condition is given by ¢y = det(—A) =
0, and hence tr(ABy) = 0, where the solutions determine the
eigenvalues as 2 = E;.

(2) The algebraic multiplicity «; follows from counting
how many leading coefficients ¢; vanish, which gives the
condition

tr(AB;)) =0, [=0,1,...,0;—1. (148)

(3) The geometric multiplicity y; follows by determining
how many rows or columns of A are dependent of each other,
which amounts to the condition

MO =0, 1=1,.. 3, (149)

for the determinantal minors M.

(4) The maximal partial degeneracy ¢; follows from the
connection of the partial traces N of the minors to the modal
expansion, which amounts to the condition

Br=0, 1=0,1,...,06—4¢ —1. (150)

(5) The first nonvanishing mode, B, = By,—¢,, determines
the right and left eigenvectors of these sectors with maximal
partial degeneracy. These are the leading eigenvectors, whose
number we denoted as ;. They can be obtained from the
spectral decomposition

Bi
B.=> Bij. Bij=cafijlIRi )Ll (151)
j=1

which is well behaved as it only involves ordinary eigenvec-
tors (of H, or of B, itself), not their generalized versions that
enter the Jordan-chain construction of the generalized spectral
decomposition. The quantities

b,"j = Ca,-“;:i,j (152)

determine the partial spectral strengths §&; ;.
(6) The decomposition (151) leads to a compact refor-
mulation of quasidegenerate perturbation theory, where the

leading-order energy splittings are obtained from perturbation
matrix elements

hj = tw(BYH'). (153)
(7) The spectral response strength follows from
61 = 151, (154)
|ca,|
and may also be written as
(155)

& = mjax 11

(8) As a direct application of the identity (E1 —
H)adj(E1 — H) = det(E1 — H), the Green’s function is ex-
panded as

SVNE — Q) B
SV o(E = Qe

The resonant response in a given spectral scenario is then
inherited from the features described in the previous steps,
where the geometric multiplicity dictates the behavior of the
numerator and the algebraic multiplicity dictates the behav-
ior of the denominator. All quantities in this nonperturbative
expansion vary smoothly as different spectral scenarios are
approached and contain detailed information about these
scenarios. Practically, this information is again efficiently
obtained by determining the modes B; from the recursion
relation (43).

(9) The physical response strength follows from
,  w(BIB)

|2

G(E) = (156)

(157)

i
e
This includes the Petermann factor for simple eigenval-
ues (o; = y; = Bi =¢; = 1) and extends this notion to n-
bolic points (semisimple eigenvalues with o; = y; = f; = n,
¢ =1).
(10) These quantities can be further by expanded into a
hierarchy of response-strength functions
tr(B) B
e p = (158)
lcnl
that systematically quantify, detect, and discriminate between
the different degeneracy scenarios.

VII. CONCLUSIONS

In conclusion, we have presented a general formalism that
describes the spectral and physical response of non-Hermitian
systems uniformly across all spectral degeneracy scenarios.
The formalism links the observable response features of these
systems to the modal expansion of the adjugate matrix, whose
terms can be directly, efficiently, and reliably calculated
from the underlying Hamiltonian of the system itself. This
systematic uniform expansion circumvents the practical and
conceptual problems with the conventional generalized spec-
tral decomposition based on the Jordan normal form, which is
ill conditioned and changes singularly across different spectral
scenarios.

Using the modal expansion, we formulated a uniform ex-
pansion of the Green’s function of the system that captures
the physical response of the system to external driving, and
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furthermore obtained detailed insights into the perturbative
spectral response to external parameter changes, determining
the splitting of the degeneracy upon application of generic
perturbations. Within the presented formalism, these observ-
able features can be quantified in terms of response-strength
functions, that smoothly vary in parameter space and sys-
tematically detect the signatures of the different degeneracy
scenarios.

We have demonstrated that this applies to all spectral sce-
narios, and in particular also to those of higher geometric mul-
tiplicity. While dealing with these cases, we revealed the im-
portance of the maximal partial multiplicity of the degeneracy,
which determines the number of leading eigenvectors, and in
turn the leading-order spectral and resonant physical response.
Furthermore, we clarified that the physical and spectral re-
sponse strengths differ exactly when the maximal partial mul-
tiplicity is repeated more than once. We illustrated all these
concepts in two examples, where in the first case we have cal-
culated the Green’s function of the system by taking a partial
trace of the determinantal minors, and in the latter one we
obtained it by using the Faddeev-LeVierre recursion relation.

In practical applications, the concrete determination of
the response strengths of non-Hermitian degeneracies used
to be a significant and challenging obstacle. The practical
utility in our formalism arises from the well-behaved nature
of the response-strength functions, which vary continuously
throughout the whole parameter space, irrespective of whether
one operates far away, near, or exactly at a given degeneracy.
This means that the response strengths can also be obtained
numerically, e.g., by simply operating sufficiently close to
a degeneracy of interest, which therefore offers a concrete
solution to a frequently encountered obstacle. Furthermore,
the expressions are also well behaved against analytical ap-
proximations.

We therefore anticipate that the formalism will find a wide
range of applications, such as for the design of novel sensors
based on degeneracies with higher geometric multiplicity.
Suitable platforms are optical microresonator systems whose
strong spectral response allows one to detect nanoparticles
placed in their vicinity [56], nonreciprocal classical metama-
terials that unidirectionally amplify external forces according
to their physical response strength [43,74], and quantum opti-
cal systems that detect quantum noise unidirectionally [75,76]
or convert it into a super-Lorentzian signal [47,49,50]. In
all these settings, our formalism enables the evaluation and
optimization of the spectral and physical response directly in
terms of the model Hamiltonian. More generally, we hope that
the considerations in this work prove useful to pave the path to
non-Hermitian physics beyond the conventionally considered
exceptional points.
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APPENDIX: DETAILED PROPERTIES OF
DETERMINANTAL MINORS AND THEIR
PARTIAL TRACES

In this Appendix, we give a more comprehensive account
of the determinantal minors and their partial traces, and estab-
lish their connection to the modal expansion of the adjugate
matrix.

1. Determinantal minors

In linear algebra, the minors of a matrix A are the de-
terminants of submatrices that are obtained by constraining
the row and column indices to certain subsets. Two notation
conventions exist, where one either specifies the rows and
columns that are kept or those that are deleted. We use the
latter convention, as this results in more direct and compact
expressions of our final results. Specifically, for a square
matrix A of dimensions N x N, the minors M[(,k])’[ J](A) =
det(Ay, 1) of order k are then given by the determinants of
the (N — k) x (N — k)-dimensional submatrices A (s that
one obtains from A by deleting k rows with ordered indices
I=[1<i<i<---i <N] and k columns with ordered
indicesJ =[1 < j; < jo < ---jir < NI

Therefore, M z(i) denotes the elements of the first minor. The
expressions (—1)i+fM,<; ; are known as the cofactors, which,
after exchange of the row and column indices (hence, trans-
position), form the elements of the adjugate matrix

adj(A) = TMP W' =. (A1)
Here, %;; = (—1)§;; is the diagonal matrix with alternating
signs on the diagonal also used throughout the main text.
These expressions naturally appear in two linear algebra pro-
cedures that are directly relevant for this work, namely, in the
cofactor expansion of determinants and in Cramer’s rule for
matrix inversion. Both of these procedures rely on the identity
Aadj(A) = det(A).

Likewise, M; j.x; and M ji.;m, denote the second and
third minors of A, respectively. In linear algebra, such higher-
order minors appear when the cofactor expansion of a
determinant is carried out to higher order, while in physics,
they feature, e.g., in Slater determinants that describe sepa-
rable wave functions of fermionic systems. The minors can
therefore be interpreted as operators acting on the antisym-
metrized tensor product space of the underlying Hilbert space.
Alternatively, the minors can be interpreted as completely
antisymmetric tensors M®) acting on the full tensor product
space. For this identification, which will be useful, we set

M) = o (Do (DM, (A2)

where I and J denote arbitrary (not necessarily ordered)
sequences of indices of identical length &, [I] and [J] the
corresponding ordered sequences, and o (/) = £1 the parity
(or signature) of the permutation that orders the sequence 1.
This parity is set to 0 if any indices in the sequence repeat.

2. Partial traces

Except for the first minor M, the dimensions of the
minors M®) are not equal to the dimensions of the matrix
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A out of which it is formed. To formulate our results, we will
have to convert these tensors into matrices that operate in the
same space as A. For this, we directly exploit the analogy
with Slater determinants, for which the partial trace offers
a conversion from the many-body space into the underlying
single-particle space. This amounts to contracting the indices
of these tensors,

k 1 k
'/V;'(,j) = m Z Mg,p),q,r...;j,p,q,r...

Pq.r...

!

= Z o(i,p,q,1..)0(j, Py @ 1 IMii p.q.r. 3: 1 pgor. s
[p.g.r...]
(A3)

where the sum in the first expression is over all sequences of
length k — 1, while it is constrained to ordered sequences not
involving i and j in the second expression. For instance, for
a matrix A of dimension N = 4, the partial trace of the third
minor contains elements such as

N =02, 1,3)04, 1, 3)Mp,1 344131

= —Mi23134=—As2 (A4)
and
/\/'2(32) =Mi23123+Mi24124+M>34034
=An + A+ Ay, (AS)

while, more generally, NV~ = (trA)I — AT . We also
note that A"V = M, and formally set N® =1 to the
identity matrix.

3. Mathematical features and connection
to the modal expansion

An important property of the minors is that they vanish if
N — k, i.e., the dimension of the submatrices involved in their
construction, exceeds the rank of the matrix A. This can be
written as M® = 0if k < N — rnk(A). In the main text, we
exploit this to obtain an algebraic statement (38) for the ge-
ometric multiplicity, and develop this further into the stricter
rank condition (47) involving the maximal partial degeneracy
£;. The latter can be instructively verified by considering the
partial traces for Jordan blocks J; of size N = «;.

As the minors are determinants, we can apply the conven-
tional cofactor expansion to these objects, and hence relate
them to minors of higher order (in which an additional index
is deleted). As we show by detailed construction in the next
Sec. A 4, for the partial traces, this yields the recursion relation

1
N® = T WEDTATE) - NEHDsATS . (A6)

This recursion relation coincides with the Faddeev-LeVierre
recursion relation (43) for the modes B, if we identify, as in
Eq. (46),

Bi(A) = SIN* D ()T x. (A7)

The specific version (33) of our main result then follows
when we insert this identification into Eq. (53). This result
therefore rests on the recursion relation (A6), which we derive
next.

4. Index-based proof of Eq. (A6)

We derive the recursion relation given by Eq. (A6) by
systematically applying the cofactor expansion

Mx; Xy — Z M[ax. 1,[bx210 (axl )U (bX2 )Bha
ngz

(A8)

to the determinantal minors, where x; and x, are two se-
quences of equal length, the fixed row index a has to fulfill
a ¢ x;,and B= %CTZ (not to be confused with B above).
We also note that for any ¢ ¢ [ax;], we have the sum rule

D Mg 10 (@x1)0 (bx2)Bse = 0,
bixz

(A9)

as this effectively places the elements By, of row ¢ into row a,
so that the same row then occurs twice and any determinant
with repeated rows or columns vanishes.

In the following, x are ordered sequences of length £ — 1
and y are ordered sequences of length k. We start with the rep-
resentative off-diagonal element V| 1(k2) The cofactor expansion

along row a = 2 gives

* _
Nis = Z Miia, 20

X712

=2 D Mpipeao (2100 (520)Bs.
x#1,2 beZ[2x]

(A10)

Next we pair 2x into a sequence y of length k and make sure
that we sum over only those sequences that contain 2 [note
that o (21x) = —o (12x)],

NG ==>3"1D"= D |Muypmo(1y)o(by)Bia.

b#2 \y#lb  yF12b
(A1)

The unrestricted sums give us
> Mgy o (1o (by) = N, (A12)

y#Lb

while the restricted sum can be completed into the sum rule
above,

Z Z M1y). 110 (1y)o (by)Bpa

b#£2 y#1,2.b

= Z Z M1y, 0 (1y)o (by)B

y#1.2 bg(2y]

= Z |:<ZM[ly],[by]G(ly)G(by)Bh2>

y#1.2 bty

= My 2o (1y)o (2Y)Bzzj|

=—> N4VBy. (A13)
y#1,2
Therefore, we indeed obtain
M 1(,kz) = ZM(,ka)Bva (Ald)

b
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as dictated for this off-diagonal element by the recursion rela-
tion (A6).

For the representative diagonal element /\/l(ﬁ), we first com-
bine the cofactor expansion to all rows a # 1 (where there are
N — k choices for any given x), and then proceed analogously
to obtain

*) _
NE =Y Muana
xF1

1
T N—k Y D Muwnea0uonBu
a,b#1 x#1,a,b

1
- N —k Z Z May),16y10ayObyBha
a,b#1 yFa,b

1
o N —k Z Z M[a)']w[b)’]aayabbea
a,b#1 y#l,a,b

1 k+1
-/\[u(bJr )Bba

TNk
a,b#1

1
— m Z Z M[ay],[by]oayabbea~ (A]S)

y#1 a,bgly

In the last term, we reverse the cofactor expansion over b to
obtain

1
=v_z DY M imi0winBra
71 abtly
1
=N _% DD (Myy — Mgy 1y100,01,B1a)
Y#1 a#ly

1
= S N —k— DMy, — > NEUB, | (A16)
y#1 a#1
As indicated, the a-independent term appears N — k — 1 times

(as a cannot be 1 or any of the kK numbers in y). Furthermore,
we can rewrite it using

ZMY*Y = Z Z Mi1y1,1ay101yTayBa

y#1 a yFl,a

=> NGB, (A17)
a

Putting everything together, this gives

1
x| 2o N B+ DN B
ab#1 atl

+(1—-N- k)Z/\/f(f“)Bal}

* _
Niy =

1
e NGB YN B a1y
ab a

as dictated for this diagonal element by the recursion relation
(A6).

Everywhere above, the representative indices 1 and 2 can
be freely replaced by other indices, which completes the
proof.

5. Closed-form expression of the partial trace

Finally, we make use of one more known mathematical
result for the modes ;. The solution of the Faddeev-LeVierre
recursion relation (43) can be written as [46]

N—k
Be=) cuA™, (A19)
=1

where c; are again the coefficients of the characteristic poly-
nomial. These coefficients can, in turn, be directly expressed
in terms of the matrix elements of A, e.g., by applying the
Newton relations, which relates the coefficients to the traces
tr A" [78]. Together, this delivers an explicit expression of the
modes By in terms of A, without reference to their recursive
construction.

This explicit expression then also transfers to the partial
traces,

N—k
NO@) =) e (-2ATE).

1=0

(A20)

Therefore, these partial traces can be determined in three
different ways—from their definition (A3), from the recursion
relation (A6), and from the explicit expression (A20). In each
of these formulations, we see again that the partial traces
become direct algebraic expressions of the Hamiltonian H,
and hence are well-behaved continuous functions of its matrix
elements.
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