Uniform response theory of non-Hermitian systems:
Non-Hermitian physics beyond the exceptional point

Subhajyoti Bid and Henning Schomerus
Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
(Dated: January 9, 2025)

Non-Hermitian systems display remarkable response effects that directly reflect a variety of dis-
tinct spectral scenarios, such as exceptional points where the eigensystem becomes defective. How-
ever, present frameworks treat the different scenarios as separate cases, following the singular math-
ematical change between different spectral decompositions from one scenario to another. This not
only complicates the coherent description near the spectral singularities where the response qualita-
tively changes, but also impedes the application to practical systems, as the determination of these
decompositions is manifestly ill-conditioned. Here we develop a general response theory of non-
Hermitian systems that uniformly applies across all spectral scenarios. We unravel this response
by formulating a uniform expansion of the spectral quantization condition, as well as a uniform ex-
pansion of the Green’s function, where both expansions exclusively involve directly calculable data
from the Hamiltonian. This data smoothly varies with external parameters and energy as spectral
singularities are approached and attained, and nevertheless captures the qualitative differences of
the response in these scenarios. We furthermore present two direct applications of this framework.
Firstly, in the context of the quantization condition, we determine the precise conditions for spec-
tral degeneracies of geometric multiplicity greater than unity, as well as the perturbative behavior
around these cases. Secondly, in the context of the Green’s function, we formulate a hierarchy of
spectral response strengths that varies continuously across all parameter space, and thereby also
reliably determines the response strength of exceptional points. Finally, we join both themes, and
demonstrate both generally and in concrete examples that the previously inaccessible scenarios of
higher geometric multiplicity result in unique variants of super-Lorentzian response. Our approach
widens the scope of non-Hermitian response theory to capture all spectral scenarios on an equal and
uniform footing, identifies the exact mechanisms that lead to the qualitative changes of physical
signatures, and renders non-Hermitian response theory fully applicable to numerical descriptions of

practical systems.

I. INTRODUCTION

Effectively non-Hermitian Hamiltonians appear natu-
rally in the study of a wide range of open quantum and
classical systems [1H3], including mean-field descriptions
of photonic systems with gain and loss [4H7], scattering
systems [8HI0], and post-selected measurement protocols
[ITHIZ]. In the past decade, these systems have gained
further attention in the context of non-Hermitian topol-
ogy [14HI8], in which qualitatively different universality
classes can be obtained by the use of symmetry. Non-
Hermitian terms in the Hamiltonian greatly enhance the
variety of distinct symmetry classes as they make the
energy spectrum complex, where the imaginary parts
of the energies determine the intensity growth and de-
cay rates of the eigenstates in consideration. Special at-
tention is then drawn to phase transitions in which the
spectrum reconfigures due to complex-eigenvalue degen-
eracies. These degeneracies do not simply replace the
band-closing transitions in Hermitian topology. This is
because the eigenvectors of non-Hermitian Hamiltonians
are not constrained to be orthogonal to each other, so
that the generic eigenvalue degeneracies become excep-
tional points (EPs) where the associated eigenvectors co-
alesce as well [2, 19H22]. Mathematically, these EPs cor-
respond to the problem of degenerate eigenvalues with
algebraic multiplicity (the number of eigenvalues that
merge, which determines the order of the EP) that differs

from the geometric multiplicity (the number of linearly
independent eigenvectors, which reduces to a single one
for generic EPs). In contrast, Hermitian systems only
allow for diabolic points (DPs), where both notions of
multiplicity coincide. The EPs themselves exhibit a rich
topology [16, 23H25], which changes the nature of phase
transitions and further enriches the topological landscape
of non-Hermitian systems [26H39].

A central issue in recent research is the manner in
which these mathematical characteristics manifest within
the system’s physical behavior. These investigations
started with the observation that already in the non-
degenerate case, the mode-nonorthogonality enhances
the sensitivity to static and dynamic perturbations [40-
13, leading to an increased response when compared to
standard Breit-Wigner resonance theory [44]. The en-
hancement factor, known as the Petermann factor, di-
verges at EPs [21] [45]. This behavior reflects that math-
ematically the eigensystem no longer forms a complete
set [2], which leaves the Hamiltonian non-diagonalizable
and hence not amenable to conventional response the-
ory. Resorting instead to the Jordan decomposition (the
generalized spectral decomposition based on the Jordan
normal form [46]), it can be established that the re-
sponse of the system then changes qualitatively [47H53].
As a function of energy, this results in super-Lorentzian
lineshapes, which become imprinted, e.g., onto the spec-
trum of quantum-limited noise, while the parametric de-



pendence leads to sensors with power-law transfer func-
tions [54H56]. Overall, one, therefore, encounters differ-
ent spectral scenarios that are tied to different mathe-
matical descriptions, and give rise to distinct physical
behaviors that are intensely studied to the present date
(see e.g. Refs. [57H6I]).

What is missing is a unifying approach that allows to
study a given system uniformly across all spectral scenar-
ios. This arises from the reliance on the Jordan decompo-
sition, which has several drawbacks. (i) The Jordan de-
composition changes singularly when one steers the sys-
tem from one spectral scenario to another. Thereby, each
scenario is treated as a separate situation, and key char-
acteristics of the system become expressed in terms of
the quantities related to the different mathematical de-
scriptions. (ii) The present descriptions are incomplete,
as the Jordan decomposition also singularly depends on
the geometric multiplicity of the degeneracies, which can
exceed one when additional parameters are controlled or
suitable symmetries are imposed. These more compli-
cated scenarios quickly proliferate in number, and so do
the possible transitions between these scenarios. (iii) The
Jordan decomposition is fundamentally ill conditioned,
and hence is impractical for numerical applications.

In this work, we overcome these conceptual and prac-
tical drawbacks by establishing general and exact expan-
sions of the spectral response to parameter changes and
the physical response to external driving that apply uni-
formly to all spectral scenarios. As we develop and ex-
plain in detail, both uniform expansions can be phrased
in terms of a single unifying mathematical object, known
as the modes of the adjugate matrix, which collect data
from the determinantal minors of the matrix appearing in
the quantization condition. The resulting uniform expan-
sions exclusively utilize well-conditioned quantities that
can be directly calculated from the effective Hamiltonian
of the system, and moreover vary smoothly with energy
and external parameters. To demonstrate the general-
ity of the approach, we employ it to derive the response
of systems at and near degeneracies of higher geometric
multiplicity, and provide precise algebraic criteria how to
identify, realize, and utilize these uncommon and under-
studied cases.

We develop this framework along the following lines.
Section[]provides background detailing the distinct non-
Hermitian spectral scenarios and response theory within
the conventional approach of generalized spectral decom-
positions based on the Jordan normal form. Within this
framework we distinguish between the perturbative spec-
tral response and the physical response, and extend the
description to include spectral scenarios with higher ge-
ometric multiplicity. Section [II] develops the uniform
description of all spectral scenarios, first based on the
energy quantization condition, and then for the Green’s
function. This will lead us naturally to consider the
central role of the aforementioned modes of the adju-
gate matrix, and result in a framework that uniformly
applies across all spectral scenarios, including those of

higher geometric multiplicity. Section [[V] describes de-
tailed insights this framework delivers into the different
degeneracy scenarios, which we quantify via a hierarchy
of response-strength functions that vary smoothly with
energy and external parameters. Furthermore, we estab-
lish how these functions capture the signatures of the de-
generacy scenarios as these are approached. These quan-
titative and qualitative features are illustrated in simple
examples in Sec. [V] We concisely summarize the com-
plete framework and key findings in Sec. [VI, and give
our conclusions and outlook in Sec. The Appendix
contains further technical steps of our derivation, and
provides additional mathematical background.

II. SETTING THE SCENE

In this section, we provide the theoretical background
and motivation for this work. In particular, we review
the spectral scenarios of non-Hermitian physics, includ-
ing EPs and their generalizations to higher geometric
multiplicity, as well as the conventional generalized spec-
tral decomposition based on the Jordan normal form.
Furthermore, we describe how this decomposition enters
the conventional approach to the spectral and physical
response, and extend this to degeneracies of higher geo-
metric multiplicity. This discussion allows us to identify
the benefits of developing an alternative formalism that
applies uniformly to all spectral scenarios, as we will take
up in the remainder of this work.

A. Quantization condition

A key objective of finding the eigenvalues and eigenvec-
tors of a system is to simplify its description by choosing
a suitably adapted basis. For concreteness, we specify
this in the context of effective non-Hermitian Hamiltoni-
ans represented by an NV X IV dimensional square matrix
matrix H. The system is said to be non-defective if it is
completely diagonalizable by a suitable similarity trans-
formation

A=U"'HU, (1)

where A is a diagonal matrix containing the eigenvalues
E; of H, and U contains the corresponding eigenvectors
u; as its columns. These are both determined by the
standard eigenvalue equation

Hui = Elul (2)

Non-defectiveness holds exactly when the matrix has
N linearly independent eigenvectors, and the diagonal-
ization is then achieved by transforming the Hamiltonian
into its eigenbasis. Any finite-dimensional matrix with
simple (i.e., non-degenerate) eigenvalues is diagonaliz-
able, and so is any Hermitian matrix, even if some eigen-
values may be degenerate. More generally, this statement



also holds for normal matrices, which are those that com-
mute with their Hermitian conjugate, [4, AT] = 0 — this
includes, e.g., unitary matrices. For such normal matri-
ces, the matrix U in the similarity transformation is
itself a unitary matrix.

To determine whether a general matrix with some de-
generate eigenvalues is still diagonalizable, we have to
distinguish between the algebraic and the geometric mul-
tiplicity of these eigenvalues.

Algebraically, the eigenvalues E; can be found from the
secular equation

p(E) = det (B1 — H) =0, (3)

hence, the roots of the characteristic polynomial p(F),
which is a polynomial of order N. In keeping with the
physical context of this work, we will refer to this as the
(energy) quantization condition. The simple roots deter-
mine the non-degenerate eigenvalues (or eigenenergies),
while multiple roots determine degenerate eigenvalues of
corresponding algebraic multiplicity «;. Letting the in-
dex run over the distinct eigenvalues only, we then have

p(E) = [[(E - By, (4)

7

where ) . a; = N.

Given an eigenvalue F;, the corresponding eigenvectors
are determined by the eigenvalue equation , which can
be written as a homogeneous system of linear equations,

(E;1 — H)u = 0. (5)

The number of linearly independent solutions u; j, j =
1,2,...,~; of this equation determines the geometric mul-
tiplicity ~; of the given eigenvalue. This multiplicity is
determined by the rank of this eigenvector condition,

~vi =N —rk (FE;1 — H), (6)
and is constrained according to

1<y <o (7)

B. Degeneracy structures

Eigenvalues for which the two multiplicities coincide,
«o; = y;, are known as semisimple eigenvalues, while de-
generate eigenvalues with a; > ; are themselves known
as defective. In the parameter space, the locations
where one finds semisimple degenerate eigenvalues with
«o; = 7; = 2 are known as diabolic points, and higher or-
der degeneracies where o; = ; = n with some n > 2 can
be referred to as n-bolic points. Analogously, the loca-
tions of maximally defective eigenvalues with v; = 1 but
a; = n with some n > 1 are known as an n**-order excep-
tional point (EP-n). At these EPs, n algebraically degen-
erate eigenvalues share a single, unique, eigenvector. In
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FIG. 1. Portray of a representative degeneracy scenario il-
lustrating the different multiplicities that feature in this work.
In (a), the degeneracy of an eigenvalue with algebraic multi-
plicity @ = 11 and geometric multiplicity v = 3 is lifted by
a small generic perturbation. The location of the perturbed
eigenvalues at the vertices of approximately regular polygons
reveals the partial multiplicities (I1,l2,13) = (4,4,3). The
perturbation acts the strongest on the multiplets of largest
partial multiplicity £ = 4, which here is repeated 5 = 2 times.
(b) A similar identification arises from the perturbed eigen-
vectors, which form bundles according to the partial multi-
plicities. We call the degenerate eigenvectors with [; = ¢ the
leading etgenvectors. We develop in this work a unified de-
scription of the physical signatures that applies uniformly to
these general degeneracy scenarios, and remains well-behaved
when the degeneracies are lifted.

the immediate vicinity of the EP in parameter space, the
degeneracy is generically lifted into n simple eigenvalues
that are approximately equally spaced around a circle
centered at their common position at the EP, hence ap-
proximately form a regular polygon. Furthermore, the
eigenvectors of these n simple eigenvalues are all closely
aligned, and converge to the unique eigenvector of the
EP as it is approached.

For a non-defective matrix, the two multiplicities a; =
v; coincide for all of the eigenvalues, hence, all eigenval-
ues are semisimple, and the total number of linearly in-
dependent eigenvectors Y. v; = N, so that they span the
Hilbert space completely. This covers all normal matri-
ces, and in particular, Hermitian matrices such as stan-
dard Hamiltonians encountered in quantum mechanics.
On the other hand, matrices in which 7; = 1 for all the
eigenvalues (including the degenerate ones) are known as
non-derogatory. All eigenvalues are then either simple or
associated with an EP. These are the spectral singulari-
ties that are widely studied in non-Hermitian physics.

However, this does not exhaust the possible spec-
tral scenarios. In between these degeneracy structures
there exist scenarios in which defective eigenvalues FE;
can have several linearly independent eigenvectors, cor-
responding to a geometric multiplicity «; > v, > 1.
For such eigenvalues one can define partial multiplicities
lin > lia > 13-+ > 1; 4, > 1 that obey

lii+lo+lis+- 41 = (8)

Each partition of «y; into ~; different integers therefore
describes a different spectral scenario. By including



the cases of a single [, = «;, and the case where all
lin = lip = - =1, = 1, the specification of the
partial degeneracies covers all possible degeneracy struc-
tures. For instance, if a; = 4 there are five of these sce-
narios, given by the tetrabolic point with v; = 4, the EP4
with v; = 1, the two sets (I1,l3) = (3,1) and (2,2) with
~vi = 2, and the case (I1,l2,1l3) = (2,1,1) with 7; = 3.
One of our goals in this work is to incorporate these de-
generacy scenarios seamlessly into the body of the widely
studied cases with geometric multiplicity v; = 1.

As we will see throughout this work, particular impor-
tance falls to the maximal partial degeneracy,

ligx = 4. 9)

This maximal partial degeneracy may occur repeatedly,
b =11 = lip = ... =l;p, where 3; can be inter-
preted as a degeneracy of geometric nature that counts
the eigenvectors with maximal partial degeneracy. We
will call these eigenvectors with maximal partial degen-
eracy the leading eigenvectors.

We illustrate these different multiplicity notions for a
representative example in Fig. [[] Furthermore, we note
that for an EP-n, ¢; = a; = n and §; = 7; = 1, while for
an n-bolic point ¢; =1 and §; =v; = a; = n.

C. Generalized spectral decomposition

While defective eigenvalues entail that a matrix can no
longer be diagonalized, there always exists a similarity
transformation

J=T"'HT (10)
that brings the matrix into a Jordan normal form [2] 48],
62,[63]. For a non-derogatory matrix, where each distinct
eigenvalue has exactly one eigenvector, J is made out of
«; X oi-dimensional blocks

E, 1 0 00 O

0 F; 1 0 0 O
Ji=J(Ei, ) = : : (11)

0 0 O 0 F; 1

0 0 O 0 0 E;

For a derogatory matrix, these blocks are subdivided
into smaller blocks according to the partial multiplicities
l

R
J(Enlii) 0 .. 0 0
0 J(Enlia) ... 0 0
B=| . z z
0 0 .. J(Eilis1) O
0 0 e 0 J(Ei, liy,)
(12)

where each sub-block is of the form given in Eq. (L1).
The similarity transformation describes the
change into a basis of generalized eigenvectors, which

form a Jordan chain of length /; ;. This chain is deter-
mined by the conditions

Ht§ = Bt
HE) = Bl 4 g9

. (13)
R, = Ef,
which are anchored by the eigenvector t(()i’j ) = u; ; associ-

ated with the given block. The transformation matrix T’
is then obtained by placing the generalized eigenvectors
into its columns.

The Jordan decomposition has significant benefits and
significant issues, which will be central to motivate this
work. Let us start with a feature that is less of an is-
sue. This resides in the fact that the Jordan chains are
not uniquely defined, which is resolved because they can
be used to obtain a uniquely defined generalized spectral
decomposition. There are, in fact, two different types of
choices that one has to make in the construction of the
Jordan normal form. Firstly, in any step of the chain, one
can replace tl(”) — tl(W) + cl(m)tgm) with arbitrary con-
stants cl(m )7 and these replacements then filter further
down the chain. Therefore, the transformation matrix
T is not uniquely defined as well. Secondly, in physical
contexts, the Jordan normal form depends on the choice
of the physical units in which H is formulated. This
is because there exists the choice of placing 1, rather
than another constant, into the off-diagonal elements of
J. For instance, the transformations for two matrices A
and B = cA that only differ by a multiplicative constant
¢ # 1 are distinct. The only exceptions are non-defective
matrices, where J = A simply becomes the diagonal ma-
trix of eigenvalues, and T' = U the matrix containing the
eigenvectors, so that Eq. coincides with Eq. .

Despite of these two choices, the Jordan normal form
implies a unique decomposition of the matrix H [2],

H=> (EP+N,),

7

(14)

where P; are oblique projectors that arise from the diag-
onal elements of J, and N; are nilpotent operators that
arise from the off-diagonal elements. These projectors
and nilpotent matrices are uniquely defined, and directly
reflect the degeneracy structure of the system.

However, while ultimately unique, this decomposition
has two additional issues (see, e.g., the opening para-
graph of Ref. [64]). The first issue is conceptual, as it
follows that each spectral scenario leads to a fundamen-
tally different generalized spectral decomposition. This
implies that the mathematical description of a system
changes singularly in parameter space whenever the al-
gebraic or geometric degeneracy structure of the system
changes, for instance at or just slightly away from an EP.
The second issue is practical, even though it is closely re-
lated. Numerically, the determination of the Jordan nor-
mal form is severely ill-conditioned, which prevents its



reliable use whenever analytical results are inaccessible.
In particular, in the degenerate and near-degenerate sce-
narios, the spectral decomposition cannot reliably be car-
ried out numerically, apart from some special cases where
the eigenvalues are either known analytically or their de-
generacies are enforced by symmetries. The root of this
issue is the exponential propagation of errors through the
chain .

As we review next, these features directly carry over
to the standard approaches to the spectral and physi-
cal response in non-Hermitian systems, and indeed are
reflected in the observable properties of these systems.

D. Perturbative spectral response

The singular and ill-conditioned nature of the gener-
alized spectral decomposition is intimately linked to the
enhanced sensitivity of the eigenvalues to parametric per-
turbations of the Hamiltonian. This is one of the reasons
why we are interested in these systems, as it is important
both in the context of sensor applications, and for the
characterization of the numerical stability of the eigen-
value problem. For instance, as already mentioned, in
the immediate vicinity of an EP-n in parameter space,
the algebraic degeneracy «; = n is generically completely
lifted, resulting in n simple eigenvalues that are approxi-
mately equally spaced around a regular polygon centered
at their common position at the EP. Furthermore, the
eigenvectors of these n simple eigenvalues are all closely
aligned, and converge to the unique eigenvector of the
EP as it is approached. The focus then shifts to the size
of the polygon, which reflects the ill-conditioned nature
of the spectral decomposition.

To quantify this sensitivity and stability, we follow
Refs. [2 65] and write the Hamiltonian as H = Hy+ecH’
where Hg realizes the EP-n for an unperturbed eigen-
value Ei(o)7 and eH' is a perturbation whose strength is
controlled by the parameter €. A generic perturbation
then lifts the degeneracy, leading to distinct eigenvalues
Ei,j,j: ]....,Oél'.

Of particular interest is the perturbation that maxi-
mizes energy shift |AE; ;| = |E;; — Ei(o)\. We will de-
note this maximal energy splitting as |AE|max, and for-
malize its definition by considering all perturbations with
[|[H'||2 = 1, where the spectral norm

[Mv|

[v|

[1M]]> = max (15)
of a matrix denotes the maximal length ratio it can pro-
duce when acting on a vector v [66].

Utilizing the generalized decomposition, this perturba-
tion is found to be placed in the lower-left corner element
of the Jordan block associated with the EP [64] [67]. The
maximally achievable energy shift is then found to be of
the form

|AE gliax ~ Efi. (16)

Here &;, known as the spectral response strength, is given
by [65]

& = IN? 72, (17)

and hence is associated with the nilpotent part of the
generalized spectral decomposition.

Physically, the power-law dependence of the en-
ergy shift on the perturbation strength means that EPs
facilitate sensing with a nonlinear response function. At
the same time, this dependence also prevents the reli-
able numerical realization of these EPs, and thereby also
prevents the reliable construction of the generalized spec-
tral decomposition. Instead, our formalism will identify
continuously varying versions of the spectral response
strength that can be directly calculated from the ele-
ments of Hamiltonian H, on which they depend alge-
braically. These response functions then smoothly con-
verge to the spectral response strength of the EP as it is
approached. Furthermore, our formalism also applies, in
the same form, to spectral scenarios of higher geometric
multiplicity (such as the representative case illustrated

in Fig. .

E. Physical response

The spectral scenarios described above also attract at-
tention as they result in distinct signatures in the phys-
ical response of the system. To develop this in detail,
it is useful to adopt the Dirac notation and distinguish
between the right eigenvectors |R;), which correspond to
the eigenvectors u; discussed so far, and the left eigen-
vectors (L;|. The eigenvalue problem then takes the
form

H|R;) = E;|R;), (L;|H = E;{(L;|. (18)
We furthermore denote a general time-dependent state
of the system in Dirac notation as |1(t)). The time evo-
lution induced by driving the system with an external
source |s(t)) is thus determined by

dY)

i = Hip() + Is(1). (19)
In the frequency or energy domain, where we decompose
|s(t)) into components exp(—iEt)|s(F)), the response
[Y(E)) = (E1 — H)7s(E)) is then mediated by the
Green’s function

G=(F1-H)" (20)
To focus on the system-specific spectral information
in the response, we can consider the spectrally resolved

response power

P(E) = tr ([G(E)]'G(E)). (21)



This quantifies the total intensity that builds up in the
system in response to all possible ways to drive it at unit
strength,

(W(E)Y(E))
(s(E)|s(E)) "

where the overline at the very top indicates the aver-
age over all directions of |s(FE)). This response power
is directly observable, e.g., in the amplified spontaneous
emission of a uniformly pumped medium [41], 42], and
generally is expected to become large close to resonance,
i.e., for energies F close to an eigenvalue F;.

This resonant response is indeed directly borne out in
standard non-Hermitian response theory, which utilizes
the spectral decomposition of H. The Green’s func-
tion then takes the form of a generalized partial fraction
expansion [48] 50, 511, (3],

GE)=> (PiElEi +§N}1(E1Ei)l> . (23)

i

P(E) = (22)

Close to simple eigenvalues, for which the nilpotent terms
with N; are absent, the response power takes a
Lorentzian profile

K;
P(E) ~ BB (24)
where
K, = (i) (LilLi) (25)

(Ll i) |2

is known as the Petermann factor.

At conventional EPs, on the other hand, for which ~; =
1, all of the indicated nilpotent terms up to I = «; are
present. Close to resonance, the leading-order response
power then takes the form of a super-Lorentzian

Py~ (26)
|E— E, P
where
W = (NP N, (27)

In the usual setting of degeneracies with geometric mul-
tiplicity v; = 1, n; = &; equates to the spectral response
strength defined in Eq. . However, we will also cover
cases with 7; > 1 where this identity does not always
hold, and therefore distinguish between both quantities
by calling 7; the physical response strength.

Practically, the determination of the response strength
is again complicated by the singular and ill-conditioned
nature of the generalized spectral decomposition. This is
true even when the response is evaluated directly from its
definition, as casting it into the partial-fraction form
requires very precise knowledge of the resonance energies
E;. As one takes the resonant limit, one attempts to

evaluate the ratio of two numbers that should converge
to 0, which fails if one is not situated at the degener-
acy. This problem is exacerbated by the strong sensi-
tivity of the eigenvalue splitting on small perturbations,
embodied in Eq. . In our approach, these obstacles
will be circumvented by a product expansion of the reso-
nance spectrum, which turns this calculation into a ratio
of quantities that approach a finite value.

F. Response at degeneracies of higher geometric
multiplicity

These complications are further accentuated when
we consider the resonant response near degeneracies
of higher geometric multiplicity. However, we can al-
ready anticipate that a characteristic response should
also emerge in this case. For the perturbative spectral
response, the perturbation that maximizes the energy
splitting resides in the lower-left corner of a Jordan block
with the largest partial multiplicity ¢;. If there are several
such blocks, we need to select the one with the largest
individual response strength &; ;, 7 = 1,2,...,8;. This
translates into the overall response strength [68]

& =INS 7l = max [£,5]. (28)

For the physical response, the sum over the nilpotent
terms in Eq. now terminates at [ = ¢;, i.e., again
in accordance with the maximal partial degeneracy. By
inspecting the Jordan normal form for these scenarios,
we see that this leading-order term is of the general form

8
NSV =6 IR ) (L), (29)
i=1

where §; ; are again the individual response strengths of
the blocks of maximal partial degeneracy, while |R; ;)
and (L; ;| are the right and left eigenvectors associated
with these blocks. These are the leading eigenvectors
introduced at the end of subsection [[IB] whose number
is now given by

Bi = rnk (N~ 1). (30)
The resonant response then comes out as
n?
PE)~ ———— 1
(B)~ g (31)

where the physical response strength is now given by
éifl éifl
771‘2 = tr[(V; )TNi J- (32)

For B; > 1, this contains cross-terms from the differ-
ent eigenvectors, which enter as additional information
so that n; and &; are generally distinct. However, the
formalism that we develop in this work will proof gen-
eral enough to determine and quantify this information
directly.



In summary, different spectral scenarios indeed result
in a qualitatively different physical response. However,
the reliance on a singularly changing spectral decompo-
sition poses a problem for the quantitative evaluation
and practical application of this conventional approach.
Nonetheless, the quantitatively observable physical prop-
erties of these systems should change continuously both
in parameter space and as a function of energy. This indi-
cates that a more direct approach to the response should
reveal all the relevant physical signatures—and indeed,
tell us to what extent the features discussed so far can
be observed at all.

III. DEVELOPING THE FORMALISM

As emphasized in the preceding background section,
the conventional approach to non-Hermitian degeneracy
structures and resonant response adopts a mathemati-
cal framework that changes singularly from one spectral
scenario to another. This impedes its application to prac-
tical problems, and is in stark contrast with the behavior
physically observable properties, which change continu-
ously with system parameters and energy.

To address these issues we will formulate, in this sec-
tion, a unified description of the spectral scenarios, which
we base on smoothly varying algebraic quantities that
can be directly calculated from the Hamiltonian. We aim
at a description that covers both the quantization condi-
tion, which determines the eigenenergies as the roots of
the characteristic polynomial, and the physical response,
which is determined by the Green’s function.

To achieve this goal, we will make use of a particular
powerful mathematical construction, the modal expan-
sion of the adjugate matrix, which we will first introduce
in the context of the quantization condition. At the end
of this section, we will see that the same unifying ap-
proach can be applied to the latter setting, too.

A. Statement of the main result

To develop the framework, we will have to go through
a number of technical steps. Before we start out, it use-
ful to determine the main destination, which we briefly
do here by presenting one of the key results in its most
explicit form. Furthermore, the complete resulting pic-
ture is concisely summarized in Sec. [VI} which can be
consulted for additional guidance.

This key result is given by the expansion

(=)™

Gij(E)= ———— S (E-Q N1 -H
)= S oo - ),
(33)
of the Green’s function. This expression takes the form
of a product expansion of the resonant pole structure, en-

coded in the characteristic polynomial p(E) = det (E1 —

H) in the denominator, and a power-series expansion of
the numerator in the detuning F — €2 from an arbitrary
reference energy {2, which we may, for instance, set to
coincide with one of the resonance energies. The expres-
sions J\f( (Q1 — H), defined below in Eq. ., are par-
tial traces of determinantal minors, hence, obtained from
subdeterminants of the matrix Q1 — H (see Appendix
for additional background). The important point is that
these are continuous algebraic function of the elements of
the Hamiltonian, hence, well behaved and conditioned.
Furthermore, we will describe how these quantities can
be very efficiently obtained.

We will develop these features as part of a general
framework in the remainder of this Section. In the follow-
ing Sec.[[V], we will describe how this framework provides
detailed insights into the spectral and physical response
characteristics across all spectral scenarios.

B. Quantization condition

Our approach is based on the following key insights.

1. An observation about the algebraic multiplicity.

Our first step is to bring the quantization condition of
degenerate eigenvalues into a natural and simple form.
Let us expand the characteristic polynomial p(E) around
a freely chosen reference energy (2,

det (A1 — A)

p(F)=det(E1l—H) =

Z Moo = (A
(34)
where A = E — Q and A = H — Q1. The coefficients c;,
of the shifted-energy polynomial ¢(\) can be viewed as
functions of the elements of A, which itself depends on 2
and the elements of H. Varying these quantities, the first
coefficient in the expansion, ¢y, vanishes exactly when

det A = 0. (35)

This coincides with the quantization condition. There-
fore, for Q = F; set equal to one of the eigenvalues, the
shifted-energy polynomial ¢(\) has a root at A = 0. In-
deed, according to the definition of the algebraic multi-
plicity, the order of the root is a;, which dictates that
the coefficients

=0, k£k=0,1,2,...,q; —1 (36)
all vanish. This then serves as a condition for the alge-
braic degeneracy of the eigenvalue F;. Furthermore, for
a quantitative analysis the focus then shifts to the first
nonvanishing coefficient c,,.

Therefore, part of our task will be to find a conve-
nient and reliable way to express the coefficients cj of
the shifted-energy polynomial ¢(A) in terms of Q and H.
Many such prescriptions exist, but we are let to a partic-
ular one in the next steps.



2. An observation about the geometric multiplicity.

To obtain the geometric multiplicity within our energy-
shifted problem, we need to determine the number of
independent solutions of the eigenvalue equation

Au; = 0. (37)

We now observe that this can be formalized by utiliz-
ing the determinantal minors M[(I?[J] (A) = det(Ap, 1)
of A. These are formed from the determinants of
(N — k) x (N — k)-dimensional submatrices A7 (s that
are obtained from A by deleting k rows with ordered in-
dices I = [1 <41 < i2 < ...,ig < N] and k columns
with ordered indices J = [1 < j; < jo < ...,jk < N]
(Appendix [A] revisits these objects in more detail).

By definition of the geometric multiplicity, the matrix
A has ~; linearly dependent rows and columns, so that
in fact all minors

(k)
M

(A)=0, k=0,1,2,...,v;—1 (38)
vanish. This then serves as a condition for the geomet-
ric multiplicity of the eigenvalue E;, which reads quite
analogously to the condition for the algebraic multi-
plicity. For instance, both sets include the quantization
condition, which can be interpreted as the vanishing of

the zeroth minor, M[(]O[) = det(A4) =0.

This suggests to tie the shifted-energy polynomial g()),
which contains information about the algebraic multiplic-
ity, to the determinantal minors M[(I’?[ 7] (A). This leads
us to the next step.

3. Tying both observations together.

We just noted that the eigenvalue condition itself im-

plies ¢ = det(—A) = 0, which can also be formally in-
terpreted as the vanishing of the zeroth minor, M [(]0[)] (A).

On the other hand, the determinant of a matrix can also
be obtained from the identity

Aadj(A) =det (A)1, (39)

where the adjugate matrix
adj(4) = XMV (4)]"x, (40)
is directly related to the first determinantal minor of A.
Here, ¥;; = (—1)"J;; is a diagonal matrix with alternat-
ing signs on the diagonal. The expressions (—1)i*7 Ml-(;;)
are known as the cofactors, which after exchange of the

row and column indices (hence, transposition) form the
elements of the adjugate matrix.

To see how this ties the two aspects of our problem
together, note that for a matrix with det (A) = 0, the

identity gives
Aadj (A) =0, (41)

This means that the columns of adj (A) deliver solutions
of the eigenvalue equation . This solves the eigen-
value equation for eigenvalues with geometric multiplic-
ity 7; = 1, i.e., simple eigenvalues and generic EPs, for
which the first determinantal minor does not vanish. Our
next task is to expand this link into a complete picture.

4. Utilizing the modal expansion.

This completion is the crucial, and most technical, step
in the development of the formalism. It is achieved by
expanding the adjugate matrix in analogy to the shifted
characteristic polynomial . This leads us to the
modal expansion [46]

N—
adj (E1 — H) = adj (\ M — A) = MBp(A), (42)
k=0

Ju

where the modes By, obey the Faddeev-LeVierre recursion
relation

tr (ABk)

Bva=1 Nk

Bi_1 = AB;, — 1. (43)
On the one hand, this recursion relation can be em-
ployed to efficiently determine the coefficients
tr (ABy)
=" 44
c’“ Nk (44)
of the characteristic polynomial g(A). On the other hand,
by an explicit calculation that is described in Appendix
[A] we can show that the modes can also be directly ex-
pressed in terms of the partial traces of the determinantal
minors, which we define as

k ) ) k
M(,j): Z U(z,p,q,r...)a(],p,q,r...)M[(i);)q)Tm];[j7p7q7rn_].
p,q,r...]
(45)

These partial traces are obtained by contracting all but
one pair of row and column indices, where o(I) = +1 is
the parity of the permutation that orders the sequence
I. With these definitions, we then have the identity

Bi(A) = SWHHD (—A))Ts, (46)

where we recall that ¥;; = §;;(—1)" is the diagonal ma-
trix with alternating entries £1. This identity includes
Eq. as the special case k = 0, in which definition
gives By(A) = adj(—A), while definition (45) gives
N (—A) = MM (—A), and extends this to higher or-
ders of k.

Summarizing the developments to this point, the
modes Bj unify the information from the quantization
condition (expressible as the coefficient of the shifted
characteristic polynomial, see Egs. and ) with
information about the eigenvectors (expressible in terms
of the determinantal minors, see Eqgs. , , and
(46)). Furthermore, they can be directly and efficiently
calculated from the Hamiltonian via the recursion rela-

tion .



5. Extracting the maximal partial multiplicity.

In the next two steps, we identify the exact nature of
the information contained in the modes Bj. For this,
we import knowledge from the conventional spectral de-
composition into our framework, and evaluate the partial
traces N'®) in the Jordan normal form .J. Exploiting the
general block structure specified in Eq. , this gives
the conditions

N® =0if k< a; — 0. (47)

Hence, the partial traces extract the maximal partial
multiplicity ¢; of the eigenvalue. We note that this con-
dition is stricter than the condition on the deter-
minantal minors itself. Mathematically, this difference
arises as the indices p,q,r ... in Eq. are confined to
the diagonal.

In terms of the modes, we therefore have the condition

BkZO, ]CZO,LQ,...,O(Z'—KZ‘—L (48)
so that the first finite mode is given by B, = By, —¢,. As
we will see, this first finite mode plays a central role in

our formalism.

6. Recovering the leading nilpotent term.

Evaluating the recursion relation for k = a; — 4;,
we obtain from this condition the important relation

AB, =0, (49)

so that the column and row spaces of B, give us right
and left eigenvectors, in analogy to what we observed for
adj(A) when ~; = 1 (see step 2.). The eigenvectors ob-
tained in this way are exactly those associated with the
maximal multiplicity, i.e., the leading eigenvectors intro-
duced in the background section. Indeed, evaluating the
mode B, via its link to the partial traces in the gener-
alized spectral decomposition, we obtain the important
identification

B, P 0 =1,
_ 50
Cas {Nfil 0; > 1, (50)

i

where the first case applies to semisimple eigenvalues,
and the second case applies to defective eigenvalues.

This identification has two significant implications.
Firstly, it emphasizes the different nature of the two ap-
proaches. The right hand side of Eq. changes sin-
gularly from one spectral scenario to another, while the
left-hand side can be interpreted as a continuous func-
tion of the Hamiltonian if we keep the indices in B, and
Cq; fixed. Secondly, it shows how the data in the gener-
alized decomposition now becomes directly and reliably
accessible from the elements of the Hamiltonian.

7. Obtaining the spectral response strengths.

With the identification , the spectral response
strength now takes the concrete form

. _ IB.le

e

. (51)

This expresses this quantity in terms of continuously
varying functions that converge to finite values as the
degeneracy scenario is approached, and furthermore can
be efficiently and reliably obtained from the recursion

relation .

This concludes our developments based on the quanti-
zation condition, which determines the spectral response.
In the next subsection, we will see that a consistent
picture emerges when one applies the same concepts to
the Green’s function, which determines the physical re-
sponse.

C. Green’s function

With the preparations from the previous subsection,
we can now establish the arguably most central result of
this work, namely, a systematic and reliable expansion
of the Green’s function that uniformly applies across all
spectral scenarios, and whose most explicit form we al-
ready previewed in Eq. .

For this, we first invert the identity to write this
function as

_adj(E1—H)  adj(El- H)
GB) = det (F1 — H) p(E)

This simply corresponds to the application of Cramer’s
rule for the matrix inversion of E1 — H. The result al-
ready produces the desired product expansion of the res-
onance poles in the denominator, which coincides with
the characteristic polynomial p(E) = [[, (£ — E;)*.

To bring the numerator into an analogously useful
form, we next utilize the modal expansion , upon
which we obtain

(52)

o (E—Q)FBy,
p(E) '

This expression should be interpreted as a product ex-
pansion of the resonant pole structure, still encoded in
the characteristic polynomial p(FE), and a power series ex-
pansion of the response strength in the detuning £ — 2
from an arbitrary reference energy 2, which we may, for
instance, set to coincide with one of the resonance ener-
gies. The earlier mentioned version of this expansion
further emphasizes the regular and algebraic behavior of
this expansion, where all terms are then expressed as
determinants. The partial traces in the numerator are
again continuous functions of this reference energy and
the elements of the Hamiltonian, whose explicit form now
follows from Eq. .

G(E) =

(53)



Applying the expansion of the shifted characteris-
tic polynomial ¢(\) in the denominator, we can also write
this as

ro (B — Q)" By
G(E) = =% .
Pk—o(E — Q)Fcy
Here, all quantities ultimately arise from the character-
istic polynomial, and are expressed in a way that will
facilitate the analysis of the resonant response near an
eigenenergy of the system.

Finally, we compare these expansions with the gen-
eralized spectral decomposition . Evaluating both
expansions at resonance with an eigenvalue F; = ) with
maximal partial degeneracy ¢; (which we carry out in
more detail in Sec. , we then recover the important
identification that we encountered in the quantiza-

tion condition. With this, the physical response strength
takes the form

(54)

, tr(BIB,)
=
|COli

This verifies that we succeeded to consistently replace the
singularly defined data from the spectral decomposition
by smoothly varying data that can be directly evaluated
from the Hamiltonian.

(55)

IV. DETAILED INSIGHTS

So far, we focussed our discussion on the explanation
how the developed formalism allows to determine key
quantities of the conventional response approach, such
as the spectral and physical response strength. These
quantities were originally introduced to characterize the
standard EP degeneracy scenarios with geometric mul-
tiplicity 7; = 1, where both response strengths in fact
coincide. In this section, we describe how the formal-
ism delivers more detailed quantitative and qualitative
insights into the different spectral scenarios, including
those of higher geometric multiplicity v; > 1.

A. The first finite mode

To start this more detailed analysis, let us examine
the information contained in the first finite mode B,. As
mentioned in the discussion of Eq. , the column space
of B, coincides with space spanned by the right leading
eigenvectors of H, while the row space plays the same
role for the left leading eigenvectors of H. In numerical
investigations, this information is reliably extracted by a
singular value decomposition of B5,.

However, we can make this even more precise. Equa-
tion allows us to bring this mode into the specific
form

Bi
B, = ZBi,j, Buj = Caifi,j|Ri,j><Li7j|~ (56)
j=1
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The determination of this decomposition is a stable, well-
behaved problem, so that the quantities it contains can
be reliably extracted even if they are calculated slightly
away from the spectral degeneracy.

Indeed, this construction can be approached from
two different directions. Firstly, the determination of
the leading eigenvectors from the Hamiltonian is well-
conditioned, as a small generic degeneracy-lifting per-
turbation simply produces /¢; closely aligned eigenvectors
(see also the next subsection). Indeed, for ¢; > 1 this
feature makes these vectors easily identifiable, while for
£; = 1 we deal with the harmless case of semisimple eigen-
values. The stability problem of the conventional gener-
alized spectral decomposition does not arise from these
eigenvectors, but from the construction of the general-
ized eigenvectors in the Jordan chain, Eq. , in which
errors propagate exponentially.

Secondly, similar features also apply to the first finite
mode B, directly, which may present itself to us after
we obtained it efficiently by using the recursion relation
(43)). For semisimple eigenvalues E;, a; = ¢; = 1, and
the quantities

bi,j = cth‘,gi,j (57)

are the finite eigenvalues of B, = By. Furthermore, the
right and left eigenvectors associated with these finite
eigenvalues then coincide with the eigenvectors |R; ;) and
(L;,;| of the Hamiltonian. For ¢; > 1, B, is a nilpotent
matrix, but importantly is of finite rank, where

Bi = rnk (By) (58)

recovers the number of leading eigenvectors. The right
leading eigenvectors then span the column space of B,
while the left eigenvectors span the row space. These
spaces can be obtained by column or row reduction,
which is based on Gaussian elimination.

In practical situations the decomposition (56| can
therefore be obtained reliably even when B, is evalu-
ated slightly away from the degeneracy, where one would
discard all numerically small elements of the column-
reduced or row-reduced matrix. This also gives direct
access to the partial response strengths &; ; in the coeffi-
cients b; ;, Eq. . Furthermore, Eq. completes the
practical determination of the relevant eigenvalue multi-
plicities that occur in our formalism.

B. Perturbative spectral response

As we describe next, the previous considerations result
in an efficient, compact, and more general reformulation
perturbative spectral response problem of Sec. [[TD]

We again consider a Hamiltonian H = Hy+eH’, where
Hj realizes a spectral degeneracy scenario of interest, and
eH’ is a perturbation whose strength is controlled by
the parameter £. We denote the unperturbed eigenvalue

that realizes the scenario in question as @ = Ei(o)7 with



algebraic multiplicity a;, geometric multiplicity v;, and
maximal partial multiplicity ¢;, where the latter occurs
B; times. The perturbed eigenvalues then follow from the
solutions E = EZ(O) + (AE);; = E; ji, of the quantization
condition

p(E) = det(E1 — H) = 0. (59)

The additional indices j, k account for the fact that the
degeneracy of Ei(o) is lifted by a generic perturbation,
where we will observe a systematic splitting into groups
labeled by j, and members of the group labeled by k.
For the analysis within our formalism, we identify the
reference energy 2 = Ei(o)
so that A = F — EZ-(O) will give the energy shifts. Analo-
gously, we set Ag = Hy — EZ-(O)]l7 and denote the remain-
ing perturbative part as A’ = A — Ay = eH' — M. The
first finite mode of the unperturbed degenerate system

with the unperturbed energy,

is determined by Ag, and denoted as Bio). Of concep-
tual importance is again the fact that this mode is also
reliably obtained when working slightly away from the
degeneracy, such as from the perturbed matrix A, and
that its determination via the recursion relation is
efficient. For a degeneracy with 5; = 1, such as a con-
ventional EP, we can then extract the relevant element
of the perturbation directly as

h=tr(BOH). (60)

This element enters the leading orders of the shifted char-
acteristic polynomial as

q(A\) ~ ehA¥ ey AV (61)

which captures the perturbation of the eigenvalues of
maximal partial multiplicity. These perturbed eigenval-
ues are thus given by

E;q1; =~ EZ(O) + (—Eh/cai)l/é" exp(2mik/¢;), (62)

forming a single group with members k = 1,2,...,4;.
The energy shifts of these members involves the roots of
unity, and recovers the approximate arrangement of the
eigenvalues on the vertices of a regular polygon in the
complex plane. The size r and rotational position ¢ of
the polygon are encoded in the magnitude and phase of
the complex number

re® = (—eh/cq, ). (63)

For a degeneracy with 8; > 1, we can repeat these
considerations based on the decomposition . This
determines the relevant element of the perturbation in
each sector as

hy = (B H), (64)

which determines the position of the perturbed eigenval-
ues from the given sector in the same way. The perturbed
eigenvalues

Eiji B + (=ehj/ca,) " exp(2mik /L),  (65)

0.007 () 0.02
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FIG. 2. Perturbative description of the spectral response to
external perturbations in the developed framework. The dif-
ferent panels show the lifting of representative degeneracy sce-
narios by applying a small generic perturbation. The open cir-
cles are the exact perturbed energies, while the regular poly-
gons are the predicted positions of the eigenvalues with
maximal partial multiplicity, where the relevant perturbation
matrix element h is obtained from Eq. (64]). These eigenvalues
experience the largest splitting, hence determine the spectral
response strength in the concrete form . Panels (a)
and (b) consider perturbation of a degenerate scenario with
algebraic multiplicity o = 8 and a geometric multiplicity of
~ = 2, but different partial multiplicities (I1,l2) = (4,4) and
(I1,12) = (5,3) respectively. Panels (¢) and (d) consider de-
generacy structures with algebraic multiplicity o = 12 and
geometric multiplicity of v = 3 having partial multiplicities
(l1,12,13) = (6,3,3) and (I1,12,13) = (5,4, 3) respectively.

with £ = 1,2,...,¢;, therefore form [; groups, labeled
by j =1,2,...,05;. Each group again approximates the
shape of a regular polygon, which is scaled and rotated
in the complex plane according to the complex number

ryei®s = (—ehy /o) V5. (66)

These features are illustrated in Fig. [2| where we ap-
ply this compact perturbative approach to four differ-
ent representative degeneracy scenarios. In all cases,
Eq. accurately predicts the perturbed positions of
the eigenvalues associated with the largest partial degen-
eracy based on the relevant matrix element . Fur-
thermore, these eigenvalues are the ones with the largest
splitting, hence, indeed determine the spectral response
strength , which then takes the concrete form .



C. Discriminating the spectral strengths

This compact form of the perturbation theory directly
applies to the spectral response strength. Subject to the
constraint ||H’||s = 1, the relevant matrix element
is maximized for a rank-one perturbation of the form
H' = |L; j)(R; |, where we note the interchanged role
of the right and left eigenvectors when compared to typ-
ical expressions. This maximal value is then given by
hj = cqa,&i,j. It follows that each &; ; bounds the energy
splitting in its sector according to

|AE|fri1ax ~ Eléi,j‘v (67)

in analogy to Eq. . This observation also pro-
vides a constructive demonstration of the relation & =
max; |§; ;|, anticipated in Eq. .

An additional conclusion follows from the mathemat-
ical relation that for matrices M of rank 1, the spectral
norm can be evaluated as ||M||s = \/tr(MTM). Accord-
ing to Eq. , this applies to the first finite mode B,
if 8; = 1. With this, we verify that the two response
strengths &;, Eq. , and n;, Eq. , coincide when
the geometric multiplicity of the leading eigenvectors is
B; = 1. Notably, this then holds even when the total
geometric multiplicity v; > 1.

We next move on to a more detailed discussion of the
physical response.

D. Leading-order resonant response

From here on, we discuss in more detail how our ex-
pansion of the Green’s function recovers and extends
the description of physical response in different spectral
scenarios. In this subsection, we establish the general
form of the leading-order resonant response, which serves
as the starting point for the application to the different
spectral scenarios. These preparations will also provide
additional justifications for some of our earlier observa-
tions in the development of the formalism.

In this expansion, the resonant response arises from
the singular behavior of the denominator, which involves
the characteristic polynomial p(E), and the leading-order
term in the numerator, which involves the modes By, and
is also expressible in terms of the partial traces N %), In
a given degeneracy scenario, these expansions are con-
strained by the conditions and .

The resonant contributions from the denominator are
extracted by writing the characteristic polynomial in
leading-order as

p(E) ~ (E — E;)%cq,, (68)
where we can also set

Ca, = L d%p =[[(&: - Ej)*. (69)

a;l dE* |, it
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In the product, the index j runs over distinct eigenvalues
only.

This singular behavior is further modified by the terms
in the numerator. Setting Q = E; to the resonance in
question, we recover that the leading order arises from
the term B, = B,,—¢,. Accounting for this term, the
leading resonant behavior of the Green’s function is then
given by

1 Ba, 0,
G(E) ~ - 70
(B)~ gy (70)
which we may also express, element by element, as
1y NOTEY (B — H)
Goy(E) ~ S
(E — El) v Ca;

By comparing this expression to the standard expan-
sion , we then verify the important result that exactly
at degeneracy, we can translate between both formalisms
by using the identification Eq. , as already cited in
the development of the formalism above.

The leading-order resonant response power (21)) is
given by

tr BLB, 1
e, > 1B — Eif?57

P(E) ~ (72)

which generalizes Eq. , and further justifies the iden-
tification .

By construction, these expressions apply across all
spectral scenarios. In the following subsections we con-
cretize this quantitatively, and determine explicit re-
sponse criteria that identify when these scenarios are at-
tained.

E. Petermann factor

We start with the resonant behavior arising from a
simple eigenvalue, for with o; = v = ¢, = 5; = 1.
Within the conventional approach, this situation has to
be treated separately from the defective cases, as the
leading resonant response arises from the projector P;,
while the nilpotent part N; vanishes. Accordingly, the
strength of the resonant response is then dictated by the
Petermann factor , which is a dimensionless number
K; > 1 that directly captures the mode nonorthogonality,
instead of a spectral response strength with dimensions
related to energy.

Within our approach, we can still evaluate the leading-
order resonant response from the first finite mode
, where the only difference from the defective case
is that the right and left eigenvectors now have a finite
overlap, (L;|R;) # 0. From this, we straightforwardly
recover the Lorentzian lineshape along with the ad-
jugate formulation of the Petermann factor [69]

x _ BB

P =

‘Cl|2 ) (73)



where By = adj(E;1 — H).

This is an exact result, which allows us to obtain
the Petermann factor directly from the elements of the
Hamiltonian.

Importantly, this result also captures precisely how the
Petermann factor behaves as a spectral degeneracy is ap-
proached. Steering the system to the degeneracy, ¢; — 0,
while the limiting behavior of By depends on «; —¢;. Over
the following subsections, we will utilize this behavior to
establish response quantities that discriminate between
the different degeneracy scenarios.

F. Approaching an exceptional point

Let us consider the case that the approached degen-
eracy is a generic EP-n, where o; = n eigenvalues FE;
converge to a common value Ei(o)7 while all eigenvectors
coalesce according to the geometric multiplicity v; = 1.
The perturbative analysis within the standard approach
of response theory establishes that the diverging behavior
of the Petermann factor is governed by spectral strength
& = n; of the exceptional point itself [65] [69],

&

K; ~ .
(B — By 12

(74)

Within our approach, we recover this behavior by eval-
uating Eq. with our results from subsection As
the EP has «; = ¢;, the first finite mode remains given by
B, = By. Approaching the EP, the numerator of Eq.
therefore converges continuously to a finite value. The
divergence of the Petermann factor arises from

c1 ~ ai(B; — Ei(o))ai_lca (75)

)

which we read off Eq. . Therefore, our starting point
delivers

1 tr B By

K; ~ )
ji(B; — B[ )it ]2 [ea|?

(76)

The second factor indeed converges to the spectral
strength of the EP itself, which in our formalism is given
by

tr BiB,
512 = 771'2 = 02 .

(77)

 ea

This not only recovers Eq. , but also expresses the
response strength as a ratio of continuous functions that
converge to finite values as the EP is approached.

G. Hierarchy of response-strength functions

The link demonstrates that the response strength
of the EP has a well defined meaning also away from
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an EP, while the Petermann factor of a simple eigen-
value serves to indicate when a spectral degeneracy is
approached. Furthermore, this establishes that in our
formalism, the Petermann factor can also be naturally
interpreted as a dimensionless response strength.

This motivates us to introduce the hierarchy of
response-strength functions

|n(”7m)|2 — %

o (78)

where n = 1,2,3,... and m = 0,1,2,... (recall that
co = 0 is the quantization condition). Whenever these
quantities are finite, they should be interpreted as contin-
uous functions of the parameters of the Hamiltonian that
characterize the resonant response of the system in a uni-
form and continuous way. Furthermore, whenever they
diverge, they should give insights into the approached
degeneracy.

The response-strength functions therefore condense
the information in our formalism into a compact form
that provides both quantitative and qualitative insights.
We illustrate this next by considering different spectral
scenarios.

H. Exceptional points revisited

The most direct application of the response-strength
functions is again to a generic EP-n, with n = «;.
The first term in the hierarchy determines the Petermann
factor K; = |r]§1’0) |2 of a simple eigenvalue E; in its exact
calculable form . As one approaches the EP, the

quantities n\"* with n’ < n all diverge, while [5{"”2 —

n? = &2 continuously approaches the common spectral
and physical response strength of the EP.

Moreover, these response-strength functions can also
be used to study the system, e.g., on a submanifold of
parameter space in which some eigenvalues are held at
an EP of minimal order «; (known as an exceptional sur-
face) [35, B3, [7OH72]. They then allow to identify the
positions at which the order of the EP changes, e.g., in-
creases to o) > «; because additional eigenvalues become
degenerate. This is detected by the diverging behavior of
ngai’o), while the spectral strength of the modified EPs

at these locations can be obtained reliably by evaluat-
ing the strength ngai’o)
. (n,0) . . . .

functions »; for a given eigenvalue across a region in
parameter space therefore uncovers in which EPs this
eigenvalue participates, and simultaneously determines

the response strength of these EPs.

. Studying the response-strength

As we describe next, these response-strength functions
also allow us to detect spectral scenarios in which the
geometric multiplicity exceeds one.



I. Higher geometric multiplicity

One of the key points of our formalism is that it di-
rectly applies to scenarios of higher geometric multiplic-
ity. The resonant behavior is then determined by the
largest partial multiplicity ¢;. We recall that in our for-
malism this behavior is dictated by the conditions .
Approaching the degeneracy, the strength of the emer-
gent super-Lorentzian response is then governed
by ngai"aﬁei). Furthermore, this particular response-
strength function is singled out by the fact that the func-

(aivm)

with m < a; —

functions ngn’a"_éi) with n < «; diverge. The latter di-
vergence is analogous to the divergence of the Petermann

factor as an EP is approached.

tions 7 ¢; approach zero, while the

J. n-bolic points

The maximal geometric degeneracy is obtained at n-
bolic points, where o; = 7; = n. At these, we necessarily
have ¢; = 1, so that the resonant term reduces to
a superposition of simple Lorentzians with a physical re-
sponse strength determined by a generalized Petermann
factor

tr(B!_Bn_1)

K =
|cn|?

= [p{™n 2, (79)

This Petermann factor accounts for the fact that for
the diabolic points of non-Hermitian systems, the spaces
spanned by the right and left eigenvectors may still be
distinct. If the two spaces coincide, K = n, while gener-
ally K > n. This information is again fully captured by
the structure of the matrix B, = B,,_1.

V. EXAMPLES

In this section, we illustrate our approach in analyti-
cally accessible examples. The first example involves a
three-level system featuring a DP and an EP. We calcu-
late the Green’s function and response-strength functions
for this example using our exact uniform series expansion,
and demonstrate how this captures the distinct physical
response as the degeneracies are approached in the pa-
rameter space. The second example examines a four-level
system on a generalized exceptional surface, and identi-
fies the signatures of eigenvalue degeneracies of higher ge-
ometric multiplicity. While analytically tractable, these
examples may well represent suitable truncations of con-
crete practical systems, for which our results then apply
in the spirit of quasi-degenerate perturbation theory.
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A. Detecting diabolic and exceptional points

As our first example, we evaluate the uniform expan-
sion of the Green’s function for a three-level system with
eigenvalues that can be merged to form either a DP or
an EP by a suitable choice of system parameters. For
concreteness, we consider a specific Hamiltonian of the
form

H = (80)

oo &
o & 2
o Qo

This Hamiltonian has six parameters, but it is simple
enough to verify and compare all results analytically.
The parameters induce mode non-orthogonality into the
problem, where, in particular, parameters a, b, ¢, d induce
non-orthogonal overlap of the subspaces of the different
energy eigenvalues. These overlaps are not captured in
the Jordan decomposition, which moreover would be nu-
merically unstable in practical settings, as emphasized
earlier in this work.

1. Degeneracy scenarios

The characteristic polynomial is
p(E) = E [ac — (B — w)?], (81)

which upon setting to zero gives the eigenenergies of the
system,

Ey=0, Ei=w=x+ac (82)
We now make two illustrative choices for the system pa-
rameters. First, we set « = b = ¢ = d = w, for which
the eigenenergies are Ey _ 4 = (0,0,2w), and the corre-
sponding right eigenvectors are

—1/2 1 1

|Ro) = -1/2/, |R)=(-1|, [Ry)=|1

1 0 0
(83)
We see that there are two eigenvectors corresponding to
the eigenvalue Ey _ = 0, which determines the geometric

multiplicity 79 = 2 making it a diabolic point. While
these two eigenvectors can be chosen orthogonal to each
other, there remains a finite overlap to |Ry), which is
a consequence of the non-Hermiticity present in the sys-
tem. As the eigenvalues are semisimple, we can also find
a complete set of corresponding left eigenvectors,

<LO| = (07 Oa 1) ;

(L-|= (17*170)7

N =

(L] =

N =

(84)

which are biorthogonal to the right eigenvectors.
Second, we tune a single parameter ¢ and set it to zero,
which transforms the eigenvalues to Ey 1 = (0,w,w), but

(1,1,1),



now the degenerate eigenvalue is an EP with a single set
of selforthogonal right and left eigenvectors

1
|R:|:> = 8 ’ <L:t| = (0,1,d/W) ’ (85)

while the simple eigenvalue has right and left eigenvectors

b—ad/w
[Ro) = d )

—w

(Lo| = (0,0,1).  (86)

From Eq. @, we confirm that the geometric multiplicity
of the degenerate eigenvalue is v+ = 1, so that we indeed
encounter an EP of order 2.

Due to the higher codimension of DPs, finding them in
the parameter space is more difficult than the EPs. As
we will see, our formalism will automatically account for
this feature, and naturally determines the exact general
conditions for these degeneracy scenarios beyond the two
illustrative choices described above.

2. Green’s function

Our next step will be to calculate the Green’s function
G(E) = (F1 — H)™! using our exact series expansion
, which in turn determines the physical response of
the system. We aim to demonstrate that the DPs and the
EPs behave distinctly in terms of the physical response,
where the latter displays an altered super-Lorentzian res-
onant response. For guidance, Fig. [3| illustrates these
features for the two degeneracy scenarios of the previ-
ous subsection numerically in terms of the associated re-
sponse power. The strength of our approach is that the
Green’s function can be determined directly and system-
atically from the data in the Hamiltonian, and further-
more delivers the concrete and most general conditions
and physical signatures of the different degeneracy sce-
narios, as we now develop in detail.

From the previous subsection, we know that the energy
of the exceptional point is Egp = w while that of the
diabolic point is Epp = 0. We, therefore, expand the
Green’s function around these above energies, starting
by setting the reference energy ) = w for the case of
an EP. The uniform expansion takes the following
compact form,

_ L s v — N (w1l —
G_p(E)z[N (Wl — H) + (E — w)N® (wl — H)

+HE-w?1]"s, (87)
where the matrix ¥ now takes the concrete form
0

-1
0

S = (88)

OO =
= O O
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By construction, the partial traces on the right-hand-side
of Eq. are 3 x 3-dimensional matrices that are alge-
braically calculable from the Hamiltonian by applying
their definition . The leading term

0 aw ad
SINVO (il —H))TS=[ew 0 be (89)
0 0 —ac

coincides with the adjugate matrix adj(wl — H). For the
second term, we first determine the second minors for the
ordered sequences of indices (1,2), (1,3), and (2, 3),

—w 0 0
MA(wi—H)y=|-d 0 —c]|. (90)
—b —a 0

Contracting its indices, we arrive at

b
SN (wl — H)TE = dl. (91)
0

oo €
o€ o

We next repeat the above procedure for the degenerate
scenario of a DP after setting the reference energy Q2 = 0
in the uniform expansion of the Green’s function. The
leading term adj(01 — H) takes the following form,

ad—wb 0 0
bc—wd 0 0] . (92)
w?—ac 00

SIND (01 — H)TY =

Likewise, we get the second term by taking a partial trace
of the second minors,

—w a b
SINOO1L -I))TS=| ¢ —w d |. (93)
0 0 —2w

Accounting for Egs. and in Eq. , we re-

cover the complete Green’s function for this system,

1 E(F —w) aF ad+b(E —w)
=g R L)
(94)

whose correctness can be verified by directly applying
Cramer’s rule, as in the initial step of the general
derivation. We can also verify that the exact same form
of the Green’s function is obtained by inserting the ex-
pressions and into the analogous expansion

1 1 2 2 r
6= [M J(—H) + EN®(~H) + E ]1} 2( |
95

corresponding to the uniform expansion with Q = 0.
However, the two expansions differ term by term, which
we now investigate to determine the concrete conditions
and distinct physical response signatures of the two de-
generacy scenarios.



3. Response signatures

Let us begin with the degeneracy at £ = w. After set-
ting the parameter ¢ = 0, the square root term vanishes
in Eq. , giving rise to a double-pole in the denom-
inator of the Green’s function at energy F = w,
according to the algebraic multiplicity a = 2. Within
this setting the first non-vanishing term in the expansion
of the denominator around F = w, Eq. , reduces to

0 aw ad
Bo=SNVD(wi-H)'s=[0 0 0]. (9)
00 0

As this is generically finite, the condition delivers
¢ = a = 2, which implies that the largest partial mul-
tiplicity equals the algebraic multiplicity. Hence, gener-
ically, the resulting degeneracy is an EP. Note that an-
other equivalent possibility is to set the parameter a = 0
rather than ¢, which changes the form of the matrix in
(96), but generically leaves it still finite.

On the other hand, setting both a = ¢ = 0, the mode
vanishes identically, so that the leading-order term
is obtained from , which reduces to

By = SND (il — H)|Ts =

o o €
o & o

b
). (97
0

The condition then delivers ¢ = 1, which is the sig-
nature of a DP, but still realized at £ = w. This mode
only vanishes if we set all parameters to zero, H = 0,
which corresponds to a trivial fully degenerate system.
We now repeat these considerations for the eigenvalue
at £ = 0, for which we already identified one choice of
parameters for which this becomes a DP. Algebraically,
we encounter a two-fold degeneracy at this energy when

w = Vg, (98)

which again results in a double pole in the numerator
of the Green’s function . Demanding that By, the
adjugate matrix in expression , must vanish, gives us
the additional condition

Vad = /b, (99)

for the occurrence of a DP. We see that our initial choice
a =b=c=d = w conforms to this condition.

In both cases, the DP involves additional conditions,
which demonstrates that constructing DPs is more dif-
ficult than constructing EPs of the same order. Indeed,
we recover the generic codimensions for these scenarios,
according to which 2 real parameters need to be con-
trolled to realize an EP2, and 4 real parameters need to
be controlled to realize a DP2.

4. Response-strength functions

Finally, we demonstrate how these insights can be re-
covered directly from the uniformly defined hierarchy of

o)
S
o

w

-3 0 -3 0 3
E E

FIG. 3. Analysis of the spectral degeneracies and their cor-
responding physical response for the example of the Hamil-
tonian , featuring a diabolic point (DP) and an excep-
tional point (EP). In panel (a) we plot the real part of the
energy eigenvalues as a function of the parameter ¢ for fixed
a=b=d=uw =1, revealing the EP at {¢ =0,FE = 1} (red
star) and the DP at {¢ = 1, EF = 0} (green star). (b) Log-
arithmic 3D plot of the spectrally resolved response power
as a function of the parameter ¢ and the energy E,
where a small uniform background loss is added to the sys-
tem so that the decay rate of longest-living state is fixed to
min;(—Im F;/2) = 0.1, ensuring that the leading resonant
behavior is uniformly broadened for all parameters. The EP
and the DP show a contrasting behavior, where the former
shows a very high enhancement in the response power as it is
approached in the parameter space. (c,d) Reponse power as
function of E for fixed ¢ = 0 and ¢ = 1. We note that the EP
in panel (d) enhances the physical response approximately 20
times beyond the signal of the DP in panel (c).

response-strength functions . These functions are de-
fined for evaluating the modes at specific eigenvalues,
hence from the shifted matrices A = H — E;1. First
we note that for a 3 x 3-dimensional matrix, these modes
are given by By = adj(A) and By = A— (tr A)1, while the
coeflicients of the characteristic polynomial are expressed
as ¢; = tradj(A4) and cg = —tr A.
We start with the response-strength function

|77(1’0)|2 _ tr[adj(A) adj(A")]
| trladj(A)]*

(100)

which gives the Petermann factor when evaluated for a
simple eigenvalue. For the eigenvalues of the exam-
ple Hamiltonian 7 this gives the explicit expressions

ad—bw 2 Cc—dadw 2
Ko =14 ledheptbedol (101)
Ky = leltiebl(al+leDlw vad* +Vadtvel?) (1gg)

4]ac||wt+/ac]?

We can verify from these expressions that these Peter-
mann factors diverge when the eigenvalues become de-



generate, precisely replicating the conditions described
above.

To characterize the response at an EP, we can then use
the response-strength function

trfadj(A) adj(A")]
| tr Al?

>0 = (103)

For the eigenvalue Ey = 0 of the example Hamiltonian
, this takes the form

|w? — ac|?® + |ad — bw|? + |bc — dw|?

(2,0),2
= 104
|770 | 4|W|2 ’ ( )
while for the eigenvalues £+ = w £ +/ac it becomes
|n(2»0)|2 — Ual+leD[(al+|eD|wtv/ac|*+|v/adE/eb|*]
+ |wt3+y/ac|?
(105)

For w — +/ac, the functions |né2’0)\2 and |77(_2’0)|2 both
smoothly converge to the response strength

= (lal + [e])[vad — Vbe|?
4|ac|

(106)

of the resulting EP at £ = 0, while for ¢ — 0, the func-
0 |2 converge to the response strength

d)?
2 _ 1,2 (1 |d*
o =lof (1+ (5

of the resulting EP at £ = w. We can can check that this
expression agrees with the response strength obtained
from the uniform expansion of the Green’s function .

We see that the response strength vanishes if
we additional fulfill the condition , so that instead
of an EP we encounter a DP. Analogously, the response
strength vanishes when we additionally set set a =
0. To characterize the response at these DPs, we can use
the response-strength function

tions \ni

(107)

tr[AAT]
|tr A2~

Y2 =1+ (108)

For the eigenvalue Ey = 0 of the example Hamiltonian
, this takes the form

(02 2|w[? + |a* + b + |¢]* + |d|?
K 4w]?

1+ ,(109)

while for the the eigenvalues FL = w £ \/ac we obtain

P =

2lacl + |w £ Vacl® + |a]* + b]* + [c]* + |d]?

[ = 3y/ac]?
(110)

Sending w —+/ac, v/ad—+/cb — 0, the expressions |7762’1) |2
and |77( ) |2 then both converge to the generalized Peter-
mann factor (see Eq. (79))

3 lo (1+1) + a2 (1+ 1)
27 4

(111)
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of the DP at £ = 0. Furthermore, sending a,c — 0,

the expressions |n(j[2 ) |2 both converge to the generalized

Petermann factor

bl + |d?

K=2
M

(112)
of the DP at F = w.

This concludes the discussion of our first example, in
which we demonstrated the analytical versatility of our
formalism, and showed how this allows us to determine
the physical response strengths and the Petermann factor
directly from the data of the Hamiltonian.

B. 4th order degeneracy with variable geometric
multiplicity

For our second example, we consider a system having
a degeneracy with an algebraic multiplicity of o = 4,
whose geometric multiplicity can be varied by tuning the
system parameters. This setting complements the usual
scenario of moving along an exceptional surface in pa-
rameter space, where one stabilizes the system at an or-
dinary EP (with fixed geometric multiplicity v = 1), and
changes the order of the EP (algebraic multiplicity) to
control the response strength without deviating from the
energy of the EP [35] 53], [7T0H72]. Instead, we will change
the response strength by tuning the geometric multiplic-
ity, where we determine the corresponding conditions di-
rectly from our uniform expansion of the Green’s func-
tion.

1. Degeneracy scenarios

We formulate the Hamiltonian of this system in its
upper triangular form,

(113)

oo o€
oo & 2
O € o
€ %o o

where the degenerate eigenvalue is set to w. This form
can always be obtained by a Schur decomposition [46],
which involves a unitary basis change that does not affect
the mathematical nature of the problem, and in practical
settings is numerically well conditioned [73]. For generic
choices of the parameters, this Hamiltonian is maximally
defective, and therefore has only a single pair of right and
left eigenvectors, which are of the simple form

|R) =

, (L] =(0,0,0,1).

1
X (114)

0

This then corresponds to an ordinary EP, where the al-
gebraic multiplicity of the eigenvalue Egp = w is a = 4



while the geometric multiplicity is ¥ = 1. On the other
hand, setting all offdiagonal parameters a to f to zero,
the system exhibits a DP, where the algebraic multiplicity
remains fixed at &« = 4. We aim to identify and distin-
guish between these and other degeneracy scenarios sys-
tematically by considering the physical response of the
system.

2. Green’s function

Similar to the previous example, we will therefore next
determine the Green’s function. However, instead of bas-
ing this on the direct calculation of the partial traces of
the determinantal minors ./\fi{k-), we will use the Faddeev-
LeVierre recursion relation for the modes By, dis-
cussed in subsection [[11 B

We start by explicitly writing Eq. for N =4,

adj (F1 — H) =adj (A1 — A)
= \Bo(A) + A'By(A) + N2By(A) + A3Bs(A), (115)

where A = F — w and

0abdc
A=H —wl = 88%; (116)
0000
We first note that
q(\) = det(A1 — A) = \* (117)
implies that
Ca; =C4 =1 (118)

is the only finite coefficient of the shifted characteristic
polynomial. Furthermore, the strictly upper-triangular
form of A drastically simplifies the application of the re-
cursion relation , as we will demonstrate in the fol-
lowing steps.

The recursion relation is initialized by Bs(4) = 1.
With this we obtain the next generation from the re-
cursion,

tI‘(ABg) _ 4

By = AB3 — 1 ;

(119)

where we utilized
tr(AB3) = tr(A) = 0.

This mode is exactly equivalent to the matrix
BING)(=A))TS, which can be verified, in analogy to the
previous example, by taking the partial trace of the third
minors.

The first mode can be obtained by repeating the above
procedure,

(120)

0 0 ad ae+bf
B tr(ABy) ., [00 0O df
Bl—ABQ_T—A ~“loo o 0
000 0
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Similar to the previous step, tr(AB;) = tr(42%) = 0,
which via Eq. confirms that all the other coefficients
of the characteristic polynomial are zero except c4. We
can again check that this is indeed identical to the ma-
trix formed by the partial trace of the second minors
BINP(=A))TE. Anologously, the zeroth mode simply
takes the form

adf

Bo(A) = A% = adj(—A) = (122)

oS o OO

00
00 O
00 O
00 O

Accounting for all the terms from Egs.(119)), (121)), and
(122) along with B3 = 1 in the modal expansion ([115)),

we obtain the full Green’s function of the system,

% ﬁ ad;:rabE adf+(ae—}]—;j)E+cE2
|05 £ e (123)
00 3 Eli ’

0 0 0 5

which for this tractable example can again be verified by
direct application of Cramer’s rule. However, within our
formalism, we can now again use the individual terms of
the exanpsion to identify different response scenarios.

8. Response signatures and strength functions

As mentioned before, the algebraic multiplicity of the
generic EP is a = 4, while the geometric multiplicity
is v = 1, and this also determines the maximal partial
multiplicity to be £ = 4. Therefore, the condition
tells us that generically, the first finite mode is

B, = Ba_s = B, (124)

while the physical response strength is given by

7’ = *OP = te(BBo) = ladf|’. (125
As indicated, this coincides with the stated response-
strength function, which we will also denote in the other
scenarios for notational clarity. Along with this, the
leading-order resonant response is

|adf |2

(126)

Our next step is to tune the geometric multiplicity of
the degeneracy by varying the system parameters. As
discussed in [V D] the leading-order resonant response de-
pends for a fixed algebraic multiplicity on the maximal
partial multiplicity of any general degeneracy structure.
Therefore a change in the leading-order response detects
a change the maximal partial multiplicity, which starting



from a generic EP also implies a changed geometric mul-
tiplicity of the degenerate eigenvalue. From Eq. (125]),
we read off that this requires

adf =0, (127)
hence to set one of the parameters a, d, or f on the first
offdiagonal in the Hamiltonian (113)) to zero. This leads
to principal cases, d = 0 (CASE 1), and a =0 or f =
0 (CASE 2, with both subcases related by symmetry),
which we illuminate next.

* CASE 1: d=0 *

We begin with the case d = 0, such that the first non-zero
mode is switched to

ae

bf

B, =B =

000 ac+
000 0
000 0 (128)
000 0

We observe that a — ¢ = 1 implies that the maximal par-
tial multiplicity is [y = ¢ = 3, which according to Eq.
has to be complemented by lo = 1. Therefore, the de-
generacy structure is now transformed to partial multi-
plicities (I1,12) = (3,1), and the geometric multiplicity
is v = 2. For this scenario, the leading-order response
power goes as

2

n
P(E)Nm,

(129)
where the corresponding spectral response strength is
now given by

W = I = te(BlB1) = |ae + bf|. (130)
The above calculation illustrates that even though the
algebraic multiplicity of the degeneracy is fixed, changing
its geometric multiplicity can vary the system’s resonant
physical response.

Following the same line of thought, we can again
change the first non-vanishing term in the modal expan-
sion by choosing the system parameters to additionally
fulfill the condition

ae = —bf. (131)
Generically, this choice of parameters does not affect the
rank of the matrix wll — H = —A appearing in Eq. @;
therefore, the geometric multiplicity v = 2 remains the
unchanged. However, the first finite term is now B, =
By = A, and the maximal partial multiplicity is now ¢ =
2. Thus for this situation we have realized a degeneracy
with o = 4, v = 2, and (I1,l2) = (2,2). Since both
partial multiplicities are the same we have two leading
eigenvectors for this scenario, thus 8 = 2, for which we
have to distinguish between the physical and the spectral
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FIG. 4. Comparison of the physical response strength
and the spectral response strength (134]) of the four-level
system as a function of 1/f, where we set d = 0,
a = —-b=c =1, and e = f. This choice of parameters
realizes a degeneracy with geometric multiplicity v = 2 and
partial multiplicities (I1,l2) = (2,2), where the two response
strength differ because there are multiple leading eigenvec-
tors (8 = 2). For f — 0 or f — oo, the system is steered
near degeneracy scenarios with v = 3, where the two response
strengths continuously approach each other. This provides a
uniform and well-conditioned description of all these scenar-
ios, and places them on an equal footing to the commonly
studied exceptional points.

response strengths. First, following a similar calculation,
we determine physical response strength

= ED P = tr(BIBo) = |al* + [b* + [e* + |e|* + | /1%,
(132)

valid subject to the condition (131]), which now deter-

mines the leading-order response power in the form

02

(133)

Secondly, we calculate the spectral response strength
by determining the spectral norm of the matrix B,. This
is equivalent to the largest singular value of By, from
which we obtain

& =2 [+ VT AP T R+ 77, (134
where 72 follows from Eq. (132)), and parameters are
again constrained by condition (131]). Therefore, for this
case, the physical and spectral response strength indeed
differ, where generally ¢2 < n2. Figure [4| compares the
two response strengths for the choice a = —b=c¢ =1
and e = f as a function of 1/f, giving

& = [+ V= T017E] . (135)

The two response strength approach each other for small

n* =3+2[f]%



f, where

2 2 2

g ~3+ 211 (136)
and for large f, where

e fP+1. (137)

As our final step, we consider the case with a geomet-
ric multiplicity of v = 3, where only one set of partial
multiplicities (I1,12,13) = (2,1,1) is possible. Since the
maximal partial degeneracy ¢ = 2, the first finite mode
remains B, = By. Moreover, the form of the leading-
order resonant response remains as given in Eq. .
However, now the rank of the matrix rnk(wl — H) =
rnk(—A) = 1, which enforces us to set the parameters
a=b=0,ore=f=0. We focus on the second case.

The response strengths (132) and (133) then take the
simplified form

i’ =& = laf® + [o* +|ef?, (138)
hence, coincide, in agreement with the observation that
there now again is only a single leading eigenvector (8 =

1).

* CASE 2: a=0or f=0x*

Reverting again to condition , we first note that
the two subcases a = 0 and f = 0 follow a very similar
structure, so that we focus on the specific choice f =
0. Generically, we then again obtain a degeneracy with
geometric multiplicity v = 2 and partial degeneracies
(I1,12) = (3,1), for which the leading mode becomes

(139)

The dominant resonant response is again of the form

(129), where the response strength is now
2 201 712 2

n” = lal*(|d[* + [e[*). (140)

This response strength vanishes if we impose the addi-

tional condition a = 0, upon the leading mode switches
to

B, =By = (141)

OO OO
oo oo
oo
OO O

We once more obtain a degeneracy with partial multi-
plicities (I1,l2) = (2,2), for which the resonant response
becomes of the form ([133)) with

n? = [b]* + [c|* + |d* + |e], (142)
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while the spectral response is characterized by the inde-
pendent strength

& = % [nQ + /1t — 4ed — be|2} .

The rank of A changes further when cd — be = 0, upon
which we obtain a degeneracy with geometric multiplicity
~v = 3, partial multiplicities (I1,l2,l3) = (2,1,1), and
revert back to coinciding response strengths n? = ¢2.

(143)

C. General lessons from the examples

Before summarizing our formalism in the following sec-
tion, we briefly draw lessons from the practical appli-
cations in this example section. We see that the sys-
tem parameters appearing in the Hamiltonian or
(113) can be smoothly varied to achieve all the dis-
tinct spectral scenarios, where our formalism identifies
these systematically based on physically relevant quanti-
ties, without any instability or discontinuity. In partic-
ular, the information occurs in its most condensed form
in the respective response-strength functions, which all
of them are smoothly varying functions of the param-
eters. These quantities can be directly calculated from
the Hamiltonian itself, either by taking partial traces
of the respective minors under consideration, or by us-
ing the Faddeev-LeVierre recursion relation , where
the quantities are linked by Eq. (46). From this, we can
directly determine the leading observable spectral and
physical response of the system, and obtain additional in-
sights, such as the precise conditions, codimensions, and
signatures of degeneracy scenarios with higher geometric
multiplicity.

VI. SUMMARY OF FINDINGS

Before we come to our general conclusions (see
Sec. , let us concisely summarize our approach, and
collect all central equations and findings.

The goal is to describe the spectral features and phys-
ical response of systems with an effective non-Hermitian
Hamiltonian H from a unifying perspective that uni-
formly applies to all spectral scenarios. This description
involves features of the eigenvalues F; and right and left
eigenvectors |R;), (L;| of H, which are encoded in the
characteristic polynomial p(F) = det(E1 — H) and the
Green’s function G = (E1 — H) L.

As a preparatory step, we define the shifted energy
variable A = E — Q and matrix A = H — 1€, with an
arbitrary reference energy . All desired information is
then encoded in the modes By, which can be obtained
efficiently and reliably from the recursion relation

tr (ABg)

=1 _
BNI ) N — k

Bi_1 = ABy, — 1. (144)



Alternatively, these modes can be interpreted in terms of
partial traces N'*)(—A) of the minors of —A introduced
in Eq. ([@8), so that Bj11(A) = SNKF) (—A4)]Ts.

All following statements hold because the modes de-
termine the expansion

N—-1
adj(Al — A) = Y MNBy(A) (145)
1=0
of the adjugate matrix, as well as the coefficients
tr (AB[)
=—-——7>" 146
“ N1 (146)
of the shifted characteristic polynomial
N—1
g(N) = det(\L — A) = Y Ney. (147)
1=0

Reading Bj(A) as a function of H and €2, the desired
information then unfolds in the following steps.

1. The quantization condition is given by ¢y =
det(—A) = 0, hence tr(ABy) = 0, where the solutions
determine the eigenvalues as ) = E;.

2. The algebraic multiplicity «; follows from counting
how many leading coefficients ¢; vanish, which gives the
condition

tr(AB;)) =0, 1=0,1,...,0; — 1. (148)
3. The geometric multiplicity -; follows by determining
how many rows or columns of A are dependent of each

other, which amounts to the condition

MO =0, l=1,...,v (149)

for the determinantal minors M®.

4. The maximal partial degeneracy ¢; follows from the
connection of the partial traces NV of the minors to the
the modal expansion, which amounts to the condition

Bi=0, 1=0,1,...,0; — ¢; — 1. (150)
5. The first nonvanishing mode, B, = B,,_¢,, determines
the right and left eigenvectors of these sectors with max-
imal partial degeneracy. These are the leading eigen-
vectors, whose number we denoted as (3;. They can be
obtained from the spectral decomposition

Bi
B.=Y Bij, Bij=ca&i;lRij)(Lisl, (151)
j=1

which is well behaved as it only involves ordinary eigen-
vectors (of H, or of B, itself), not their generalized ver-
sions that enter the Jordan-chain construction of the gen-
eralized spectral decomposition. The quantities

bi,j = Caigi,j (152)

determine the partial spectral strengths &; ;.
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6. The decomposition leads to a compact reformu-
lation of quasidegenerate perturbation theory, where the
leading-order energy splittings as obtained from pertur-
bation matrix elements

0
hy = te(BO)H). (153)
7. The spectral response strength follows from
B* 2
6 = el (154)
and may also be written as
6] = max . (155)

8. As a direct application of the identity (E1 —
H)adj(El — H) = det(E1 — H), the Green’s function
is expanded as

_ Y (E-Q)'B
Lo (B = Q)

The resonant response in a given spectral scenario is
then inherited from the features described in the previ-
ous steps, where the geometric multiplicity dictates the
behavior of the numerator, and the algebraic multiplicity
dictates the behavior of the denominator. All quantities
in this nonperturbative expansion vary smoothly as dif-
ferent spectral scenarios are approached, and contain de-
tailed information about these scenarios. Practically, this
information is again efficiently obtained by determining
the modes By, from the recursion relation .

G(E)

(156)

9. The physical response strength follows from

., tr(BlB,)

ny = |C |2 (157)

This includes the Petermann factor for simple eigenvalues
(; = v = f; = £; = 1), and extends this notion to n-
bolic points (semisimple eigenvalues with a; =v; = 5; =
n, El = 1).

10. These quantities can be further by expanded into a
hierarchy response-strength functions

| (”vm)|2 — %

i (158)
that systematically quantify, detect, and discriminate be-
tween the different degeneracy scenarios.

VII. CONCLUSIONS

In conclusion, we have presented a general formalism
that describes the spectral and physical response of non-
Hermitian systems uniformly across all spectral degener-
acy scenarios. The formalism links the observable re-
sponse features of these systems to the modal expan-
sion of the adjugate matrix, whose terms can directly,



efficiently, and reliably calculated from the underlying
Hamiltonian of the system itself. This systematic uni-
form expansion circumvents the practical and conceptual
problems with the conventional generalized spectral de-
composition based on the Jordan normal form, which
is ill-conditioned and changes singularly across different
spectral scenarios.

Using the modal expansion we formulated a uniform
expansion of the Green’s function of the system that
captures the physical response of the system to exter-
nal driving, and furthermore obtained detailed insights
into the perturbative spectral response to external pa-
rameter changes, determining the splitting of the degen-
eracy upon application of generic perturbations. Within
the presented formalism, these observable features can be
quantified in terms of response-strength functions, which
smoothly vary in parameter space and systematically de-
tect the signatures of the different degeneracy scenarios.

We have demonstrated that this applies to all spectral
scenarios, and in particular also to those of higher geo-
metric multiplicity. While dealing with these cases, we
revealed the importance of the maximal partial multiplic-
ity of the degeneracy, which determines the number of
leading eigenvectors, and in turn the leading-order spec-
tral and resonant physical response. Furthermore, we
clarified that the physical and spectral response strengths
differ exactly when the maximal partial multiplicity is re-
peated more than once. We illustrated all these concepts
in two examples, where in the first case we have calcu-
lated the Green’s function of the system using the partial
trace of the determinantal minors, and in the latter one,
we obtained it by using the Faddeev-LeVierre recursion
relation.

In practical applications, the concrete determination
of the response strengths of non-Hermitian degeneracies
used to be a significant and challenging obstacle. The
practical utility in our formalism arises from the well-
behaved nature of the response-strength functions, which
vary continuously throughout the whole parameter space,
irrespective of whether one operates far away, near, or
exactly at a given degeneracy. This means that the re-
sponse strengths can also be obtained numerically, e.g.
by simply operating sufficiently close to a degeneracy of
interest, which therefore offers a concrete solution to a
frequently encountered obstacle. Furthermore, the ex-
pressions are also well behaved against analytical approx-
imations. We therefore anticipate that the formalism will
find a wide range of applications, such as for the design
of novel sensors based on degeneracies with higher ge-
ometric multiplicity. More generally, we hope that the
considerations in this work prove useful to pave the path
to non-Hermitian physics beyond the conventionally con-
sidered exceptional points.
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Appendix A: Detailed properties of determinantal
minors and their partial traces

In this Appendix, we give a more comprehensive ac-
count of the determinantal minors and their partial
traces, and establish their connection to the modal ex-
pansion of the adjugate matrix.

1. Determinantal minors

In linear algebra, the minors of a matrix A are the
determinants of submatrices that are obtained by con-
straining the row and column indices to certain subsets.
Two notation conventions exist, where one either spec-
ifies the rows and columns that are kept, or those that
are deleted. We use the latter convention, as this re-
sults in more direct and compact expressions of our fi-
nal results. Specifically, for a square matrix A of di-

mensions N x N, the minors M[(ﬁ’)[]] (A) = det(Ajn,1)
of order k are then given by the determinants of the
(N — k) x (N — k)-dimensional submatrices A7 (s that
one obtains from A by deleting k rows with ordered in-
dices I = [1 <4y < iy < ...,ix < NJand k columns with
ordered indices J = [1 < j; < jo < ...,Jr < NJ.

Therefore Mi%) denotes the elements of the first mi-

nor. The expressions (—1)"*7 M;.; are known as the cofac-
tors, which after exchange of the row and column indices
(hence, transposition) form the elements of the adjugate
matrix
adj(A) = S[MD(A) . (A1)
Here ¥;; = (—1)%;; is the diagonal matrix with alter-
nating signs on the diagonal also used throughout the
main text. These expressions naturally appear in two
linear algebra procedures that are directly relevant for
this work, namely, in the cofactor expansion of determi-
nants and in Cramer’s rule for matrix inversion. Both of
these procedures rely on the identity Aadj(A) = det(A).
Likewise, M; .k, and M; j j:1,m.n denote the second
and third minors of A respectively. In linear algebra,
such higher-order minors appear when the cofactor ex-
pansion of a determinant is carried out to higher order,
while in physics they feature, e.g., in Slater determinants
that describe separable wavefunctions of fermionic sys-
tems. The minors can therefore be interpreted as opera-
tors acting on the antisymmetrized tensor product space
of the underlying Hilbert space. Alternatively, the minors
can be interpreted as completely antisymmetric tensors
M) acting on the full tensor product space. For this



identification, which will be useful, we set

M) = o (D)o (J) M, (A2)
where I and J denote arbitrary (not necessarily ordered)
sequences of indices of identical length k, [I] and [J] the
corresponding ordered sequences, and o(I) = +1 the par-
ity (or signature) of the permutation that orders the se-
quence I. This parity is set to 0 if any indices in the
sequence repeat.

2. Partial traces

Except for the first minor M), the dimensions of the
minors M) are not equal to the dimensions of the ma-
trix A out of which it is formed. To formulate our results,
we will have to convert these tensors into matrices that
operate in the same space as A. For this, we directly
exploit the analogy with Slater determinants, for which
the partial trace offers a conversion from the many-body
space into the underlying single-particle space. This
amounts to contracting the indices of these tensors,

(k)
Z Mi,p,qm-.;j,p,qmu

p,q,7...

w0 _ 1
b (k—1)!

/

= Z o(isp, ¢, 1) (3, Py @ 7 )M pog.r i lpag,r. ]
[p.q,r..]

(A3)

where the sum in the first expression is over all sequences
of length k — 1, while it is constrained to ordered se-
quences not involving ¢ and j in the second expression.
For instance, for a matrix A of dimension N = 4, the
partial trace of the third minor contains elements such
as

N2(34) =0(2,1,3)0(4,1, 3)M[2,1,3];[4,1,3]

= —Mi3134=—As2 (A4)
and
N(;?’Q) =M 231,23+ Mi 24124+ M234234
= A1 + Asz + Aya, (A5)

while more generally, NOV=1 = (tr A)1 — ZATY. We
also note that N = M®  and formally set NOV) =1
to the identity matrix.

3. Mathematical features and connection to the
modal expansion

An important property of the minors is that they van-
ish if N — k, the dimension of the submatrices involved
in their construction, exceeds the rank of the matrix A.
This can be written as M®*) = 0if k < N — rnk(A).
In the main text we exploit this to obtain and algebraic
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statement ([38]) for the geometric multiplicity, and develop
this further into the stricter rank condition involv-
ing the maximal partial degeneracy ¢;. The latter can be
instructively verified by considering the partial traces for
Jordan blocks J; of size N = a.

As the minors are determinants, we can apply the con-
ventional cofactor expansion to these objects, and hence
relate them to minors of higher order (in which an ad-
ditional index is deleted). As we show by detailed con-
struction in the next subsection[A4] for the partial traces
this yields the recursion relation

N®) — ﬁtr WNEDDATS) 1 - NG AT,

(A6)
This recursion relation coincides with the Faddeev-
LeVierre recursion relation for the modes By if we

identify, as in Eq. ,

Bi(A) = SINEFD (- 4)]Ty,

(A7)

The specific version of our main result then follows

when we insert this identification into Eq. (53|). This re-
sult therefore rests on the recursion relation (A6]), which
we derive next.

4. Index-based proof of Eq. (A6

We derive the recursion relation Eq. (A6) by system-
atically applying the cofactor expansion
M$1,$2 = Z M[awl],[bwz}U(axl)a(b'xQ)Bba (AS)
bxo

to the determinantal minors, where x; and x> are two
sequences of equal length, the fixed row index a has to
fulfill @ ¢ z1, and B = XCTY (not to be confused with
B above). We also note that for any ¢ ¢ [az1] we have
the sum rule

> Mige,) b0 (a1)0 (b2) Bye = 0,
bézfz

(A9)

as this effectively places the elements By, of row ¢ into
row a, so that the same row then occurs twice, and any
determinant with repeated rows or columns vanishes.

In the following, x are ordered sequences of length k —
1 and y are ordered sequences of length k. We start

with the representative offdiagonal element 1(@ The
cofactor expansion along row a = 2 gives
N = 37 M
x#1,2
=3 Y Mpug,p2no(212)o(b22)Bye.  (A10)
1,2 bZ[2x]

Next we pair 2z into a sequence y of length k and make
sure that we sum over only those sequences that contain



2 (note that o(21z) = —o(122)),
=D (>0 = > WMy o (1y)a(by) Bre.
b#£2 yF1,b  yF1,2,b
(A11)
The unrestricted sums give us
k
3" My o (ty)olby) = N, (A12)

yZ1,b

while the restricted sum can be completed into the sum
rule above,

> > My pyo(1y)o(by) By

b£2 y#1,2,b

- Z Z M1y),by10 (Ly) o (by) Bye

y#1,2 bg[2y]
= Z [(Z M1y py1o(
yZ1,2 by
= M1y} 12410 (1y)o (2y) B2o]
Z le-‘rl B22.

yF1,2

1y)o (by)Be2)

(A13)

Therefore, we indeed obtain

N = ZNf’;* Y B, (A14)

as dictated for this off-diagonal element by the recursion
relation .

For the representative diagonal element N 1,1 we first
combine the cofactor expansion to all rows a ;é 1 (where
there are N —k choices for any given x), and then proceed
analogously to obtain

k
1(1) _ZMlaz 1z]
zH1

= N _ k Z Z M[lam],[lbz]gazawaba
a,b#1 zZF1,a,b

“N_k& Z Z Miay),(by)Tay Ty Bra
a,b#1 yFa,b

1
T N—k Z Z Miay).[by)Tay Oty Bra
a,b#1yFl,a,b
" B

1
=5 >N

a,b#1

1
—k Z Z Miay),[by)Tay Ty Bba-

y#1 a,bgly

(A15)

In the last term we reverse the cofactor expansion over b
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to obtain
1
W= N —k Z Z Miay),[by)Tay Ty Bra
yZ1 a,b#l,y
1
“N—k > M Miay) [14)0ay 01y B1a)
yZ1l a#ly

1 (k+1)
=¥ % STV -k =1)M,, - Y NEVB,
yZ#1 a#1

(A16)

As indicated, the a-independent term appears N —k — 1
times (as a cannot be 1 or any of the k& numbers in y).
Furthermore, we can rewrite it using

ZM%’U Z Z Mly ay]UlyUa'q al — ZN(kJrl

yZ1l a yFl,a
(A17)
Putting everything together, this gives
(k+1 k+1)
Nl(,l N k Z Nab )B + Z ( Bla

a,b#1 a#1

+A=N-k) S NIVB,

Zk+1
Nk

as dictated for this diagonal element by the recursion
relation .

Everywhere above, the representative indices 1 and 2
can be freely replaced by other indices, which completes
the proof.

o= S NITB,, (A18)

5. Closed form expression of the partial trace

Finally, we make use of one more known mathematical
result for the modes B;. The solution of the Faddeev-
LeVierre recursion relation can be written as [46]

N—k

Br=Y crpAl,

=1

(A19)

where ¢ are again the coeflicients of the characteristic
polynomial. These coefficients can, in turn, be directly
expressed in terms of the matrix elements of A, e.g., by
applying the Newton relations, which relates the coef-
ficients to the traces tr A™ [(4]. Together, this delivers
an explicit expression of the modes By in terms of A,
without reference to their recursive construction.

This explicit expression then also transfers to the par-
tial traces,

N—

7?‘

Ck-‘,—l EATE)I.
=0

(A20)



Therefore, these partial traces can be determined in
three different ways—from their definition , from the
recursion relation , and from the explicit expression
. In each of these formulations, we see again that
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the partial traces become direct algebraic expressions of
the Hamiltonian H, and hence are well-behaved contin-
uous functions of its matrix elements.
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