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Abstract: With the rapid expansion of offshore wind power, wind turbines are 

increasingly exposed to complex environmental conditions and operational 

uncertainties. To ensure long-term operational reliability, this paper proposes an 

enhanced Failure Mode and Effect Analysis (FMEA) framework integrating Fuzzy 

Analytic Hierarchy Process (FAHP) with a Mamdani-based fuzzy inference system for 

risk assessment of offshore wind turbines. The proposed framework aims to 

simultaneously address the key shortcomings of conventional FMEA in risk assessment 

of offshore wind turbine, particularly the neglect of expert evaluation fuzziness, 

inefficient fuzzy rule generation, and inadequate risk classification. The main 

contributions of this method are as follows. First, FAHP-derived consensus weights for 

risk factors (Severity, Occurrence, Detection) are embedded into fuzzy rules. Second, 

risk level distribution matrices automate rule generation, ultimately improving 

efficiency by a factor of 40 compared to traditional multi-expert integration. Third, risk 

prioritization (risk value) and classification are conducted through defuzzification, 

enabling the implementation of differentiated operation and maintenance (O&M) 

strategies. The framework is validated using operational data from an 80-turbine 

offshore wind farm in China, where critical failure modes (e.g., generator overheating, 

r = 0.786) are successfully identified. A comparative analysis with Weighted FMEA 

confirmed the framework’s effectiveness in preserving fuzzy information and 

enhancing risk ranking accuracy. 

Keywords: Risk analysis; Failure mode and Effect Analysis; offshore wind turbine; 

Fuzzy inference system; Fuzzy Analytic Hierarchy Process 

 

1. Introduction 

Currently, the worldwide demand for power is rising, and wind energy, as a clean 

renewable resource, is considered as an effective way to meet this escalating demand. 
Error! Reference source not found.. Offshore wind power, characterized by its ample wind energy 

supplies and reduced land utilization, presents significant application potential 

compared to onshore wind powerError! Reference source not found..According to the 2024 

Global Wind Power Express, the offshore wind sector added 10.8 GW of new capacity 

in 2023, bringing the global cumulative total to 75.2 GWError! Reference source not found.. 

Nonetheless, offshore wind turbines are constantly exposed to harsh marine 

environments such as tides, storms, salt spray corrosion, and high temperatures, which 



can cause degradation or even failure of critical turbine components, potentially leading 

to power generation lossesError! Reference source not found.. Moreover, Offshore wind power 

operation and maintenance (O&M) is significantly constrained by various factors, 

including weather conditions, sea states, transportation availability, and personnel 

scheduling. In particular, under harsh marine environments, maintenance windows are 

short, operational time is limited, and O&M vessels often cannot arrive promptly. These 

restrictions lead to significantly higher O&M expenditures and longer fault response 

cycles. Consequently, conducting risk analysis on turbine components is essential to 

identify and assess potential failure modes, thereby providing decision support for the 

O&M measures and strategies of offshore wind farms and ensuring component 

reliability and operational safety. 

Thus far, risk analysis of offshore turbines has been conducted using techniques 

such as Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), Failure 

Mode Effects and Criticality Analysis (FMECA), and Two-stage FMEA[5]Error! Reference 

source not found.[7]. Owing to its ease of construction and understanding, FMEA has 

emerged as predominant tools for conducting risk assessments on offshore wind turbine. 

As a widely recognized bottom-up, structured semi-quantitative risk assessment 

methodology, FMEA identifies potential failure modes of each component within a 

system and calculates the Risk Priority Number (RPN) to support risk-based ranking 

and prioritization of these failure modes[8][9]. The RPN is systematically determined 

through a rigorous evaluation process where experts assign scores to three risk factors: 

severity (S), occurrence (O), and detection (D). Each of these factors is typically 

evaluated and rated on a scale ranging from 1 to 10, with the RPN being the product of 

these scores[10]. Up to now, with regard to the application of FMEA in Offshore Wind 

Turbines, Arabian-Hoseynabadi et al.[11] pioneered the application of FMEA in the 

reliability analysis of offshore wind turbines, concluding that material failure is the 

most critical failure mode. Kang et al.[12] employed the FMEA to identify the failure 

modes with higher RPNs in floating offshore wind turbines. Sinha et al.[13] analyzed 36 

failure modes of offshore wind turbine gearboxes using the FMEA method.  

Despite advancements in applying FMEA for the risk assessment of offshore wind 

turbines, the current literature highlights several intrinsic limitations of conventional 

FMEA that must be acknowledged[14]. (1) The relative significance of risk factors is not 

taken into consideration. (2) The process of assigning accurate scores to risk factors 

may bring about the loss of experts' uncertain information. (3) The RPN is sensitive to 

variations in the scores, and different combinations of risk factor values may result in 

identical RPN, thereby posing a risk of misleading or inaccurate prioritization outcomes. 

To overcome the inherent limitations of the traditional FMEA method, Sharifi et al.[15] 

applied the FMEA to investigate the new product development process of a dairy 

company, integrating the Shannon Entropy method with the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) to assign weights and rank the 

associated risks. Başaran et al.[16] proposed an enhanced method that combines the 

Fuzzy Analytic Hierarchy Process (FAHP) with Grey Relational Analysis (GRA) to 

rank the risks associated with mobile learning platforms. 



The aforementioned models have achieved notable improvements over the 

traditional FMEA approach, particularly in addressing limitations (1) and (3). However, 

limitation (2) has not been adequately considered. Experts frequently encounter 

uncertainty and ambiguity when evaluating risk factors, and when assessments rely on 

precise values, such fuzzy and uncertain evaluation information is disregarded. 

Consequently, the risk assessment may lack a sufficient foundation for informed 

decision-making. In response to the limitation, Li et al.[17] provided explicit definitions 

and probability ranges for each risk factor index (rated from 1 to 10), and proposed a 

relative-weight method to process the input scores in order to reduce the result 

uncertainty. However, such probability data are often difficult to obtain, and the 

computational complexity of this method increases exponentially with the number of 

failure modes. Yu et al.[18] employed a cloud model to handle the uncertainty in expert 

opinions as well as the fuzziness and randomness in the assessment data. However, the 

cloud model is inherently designed to describe the fuzziness and uncertainty of a single 

concept, making it difficult to capture the complex interactions among multiple input 

risk factors. In contrast, mature fuzzy linguistic and fuzzy mathematics methods, with 

their rule-based explicit relational modeling and interpretable reasoning mechanisms, 

outperform cloud models in terms of semantic interaction representation and dynamic 

decision support. Such methods are thus more suitable for multidimensional risk 

analysis scenarios such as FMEA. To date, Li et al.[19]have applied a fuzzy inference 

system in the safety risk assessment of water diversion infrastructure, enabling the 

fuzzification of risk factor scores and nonlinear risk computation. In this model, fuzzy 

rules are employed to characterize the causal relationships between varying 

combinations of risk factor levels and the corresponding risk levels of failure modes, 

serving as a crucial link between the system inputs and outputs. They have developed 

fuzzy rules based on the knowledge and experience of domain experts, and afterwards 

integrated the rules proposed by different experts to construct a fuzzy rule base that 

reflects multiple perspectives. However, when the number of experts is large and rule 

base itself contains numerous rules, the total number of collected rules can reach several 

hundreds or even thousands, culminating in low integration efficiency and time-

consuming processing. Hu[20] proposed a rule simplification methodology; however, it 

relies on the unrealistic assumption of uniform importance across all risk factors, 

whereas in practice, different factors have varying degrees of impact on risk. 

Consequently, this simplification approach lacks practical applicability. 

Overall, the motives for this paper's research on risk assessment methods for 

offshore wind turbines can be summarized as follows: Firstly, how to effectively 

preserve the fuzzy and uncertain information inherent in expert evaluations, which is 

often overlooked by conventional precise scoring. Secondly, improving the efficiency 

of fuzzy rule generation, particularly when dealing with large-scale rule bases, warrants 

further investigation. Thirdly, the development of rational O&M strategies that account 

for the limited accessibility and short maintenance windows of offshore wind farms—

beyond risk-based prioritization—is essential for improving O&M efficiency.  

In conclusion, this paper proposes an improved FMEA framework for the risk 

assessment of offshore wind turbines, providing a novel solution to current challenges. 



Table 1 illustrates the comparison of existing literature with our paper, and the 

contributions of this study can be summarized as follows: 

(1) The FAHP is employed to determine the consensus weights of risk factors, 

aiming to compress the experts' overall risk perception into three core parameters (the 

weights of S, O, and D) rather than hundreds of fuzzy rules.  

(2) Based on the established consensus risk factor weights and risk factor level 

parameters, a risk index(I) is built and grading standards are developed. This process 

leads to the formulation of risk level distribution matrix that captures various 

combinations of risk factor levels. Ultimately, fuzzy rules integrating the perspectives 

of multiple experts are generated. 

(3) A fuzzy inference system is applied to process expert evaluations, performing 

fuzzy inference based on predefined fuzzy rules. The defuzzified risk value (r) for each 

failure mode is then obtained to support risk prioritization. Next, the membership 

degrees for each failure mode are computed, facilitating the assignment of a discrete 

risk grade. This classification directly informs the selection of appropriate O&M 

strategies. 

The remaining main content of this paper is as follows: In Section 2, we introduce 

the framework of this paper and the methods we have mentioned. In Section 3 we use 

the improved framework in the risk analysis of the offshore wind turbines. A discussion 

and a summary of the paper are presented in Sections 4 and 5, respectively. 

Table 1 Literature comparison 

     Literature 

Dimension 
[15] [16] [17] [18] [19] Our paper 

Limitation (1) √ √ √ √  √ 

Limitation (2)   √  

√ (Poor in revealing 

the interaction of 

risk factors) 

 

√ (Revealing 

the interaction 

of risk factors 

but poor in 

generation of 

fuzzy rules) 

√ (Revealing the 

interaction of risk 

factors and 

enhancing the 

efficiency of 

generating fuzzy 

rules) 

Limitation (3) √ √ √ √ √ √ 

Risk grade 

classification 
     √ 

 

2. Proposed approaches 

2.1 A novel approach framework 

To overcome the limitations of the present FMEA method in offshore wind turbine 

risk analysis, this paper proposes a fuzzy FMEA framework based on a risk level 

distribution matrix. The key steps in the framework are outlined as follows. Following 

the identification of failure modes in offshore wind turbine components and the 

assessment of associated risk factors, experts are initially engaged to evaluate the 



relative significance of risk factors through pairwise comparisons. The FAHP is then 

employed to represent the pairwise comparison results in the form of triangular fuzzy 

numbers, from which consensus weights for the risk factors are derived. Thereafter, a 

parameter I is defined, integrating both the risk factor level parameters and their 

corresponding weights. Based on I, create risk level distribution matrices with multiple 

combinations of risk factor levels to generate fuzzy rules. Finally, the risk factor scores 

are input into the fuzzy inference system, which processes them through fuzzification, 

fuzzy inference, and defuzzification to output r. Grounded in r, the precise risk level 

degree of membership is determined, enabling the final risk ranking and classification 

of failure modes. The proposed framework is illustrated in Fig. 1. 

Failure modes  identification

of wind turbine

Calculation of the relative 

importance of risk factors

I=WS×NS+WO×NO+WD×ND

Establishment of the risk level 

distribution matrix

Score to S,O and D

Fuzzification of risk factor 

scores

Nonlinear risk computation of 

failure modes

Fuzzy rules

FAHP
Consensus weights of risk 

factors

Fuzzy rules

Risk value
O&M 
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Risk grade
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Proposed framwork

Method
Result

 

Fig. 1. Improved FMEA framework diagram 

2.1.1 Methods for determining the weights of risk factors 

As an extension of the AHP, the FAHP is a systematic method that integrates fuzzy 

set theory with hierarchical analysis[21]. Compared to traditional AHP, FAHP more 

accurately reflects human cognitive processes and is more capable of handling the 

uncertainty involved in mapping subjective perceptions of decision-makers into precise 

numerical values[22].This section adopts the FAHP proposed by Zeng et al.[23]to 

determine the weights of risk factors. In this method, experts initially employ a 

predetermined pairwise comparison scale to determine triangular fuzzy numbers 



representing the relative importance of the risk factors; the pairwise comparison scale 

is shown in Table 2. Then, the triangular fuzzy numbers are defuzzified, and the weights 

of the risk factors are calculated accordingly. 

2.1.1.1 Determination and defuzzification of Triangular Fuzzy Numbers 

Specifically, the triangular fuzzy number is composed of three parameters a, b, 

and c, denoted as M (a, b, c)[24]. In this notation, a represents the minimum possible 

value, b represents the most likely value, and c represents the maximum possible value. 

Table 2 Two-by-two comparison scale 

Scale Define 

1 Both are of equal importance 

3 General importance 

5 Higher importance 

7 It's very important. 

9 Absolutely important. 

2,4,6,8 midpoint 

 

For various applications, such as ranking and comparison, fuzzy numbers 

frequently need to be converted into crisp numbers. This conversion process is known 

as defuzzification[25]. In this paper, the geometric mean method is chosen for 

defuzzification[26]. The defuzzification formulas are listed in Equation (1). 

( 4 )
( )

6

a b c
P M

+ +
=   (1) 

After defuzzification, the preliminary pairwise comparison matrix of risk factors 

A=(aij)3×3 is obtained. A is listed in Equation (2). 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
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=  
 
 

   (2) 

2.1.1.2 Calculation of weights 

Step 1: Normalized 

The matrix is then normalized to obtain the new judgment matrix B=(bij)3×3, with 

the normalization formula expressed as Equation (3): 

3

1

ij

ij

ij

i

a
b

a
=

=


   (3) 

Step 2: Obtain the weight 

After normalization, the weights can be calculated using the formula shown in 

Equation (4):
 3

1

3

ij

j

i

b

AW
=

=


   (4) 

 Step 3: Consistency test
 

The consistency test is conducted to ensure that the consistency of the judgment 

matrix is within acceptable limits. The Consistency Index (CI) serves as the measure 

for this test, and its formula is presented in Equation (5).
  



max n

n-1
CI

 −
=   (5)                                      

When CI < 0.1, the analysis is consistent and the consistency test is passed. Where

max is the maximum eigenvalue and n is the dimension of pairwise comparison matrix. 

 

2.1.2 Methods for establishing a risk level distribution matrix 

The risk level of a particular failure mode under various combinations of risk 

factors is displayed in the risk level distribution matrix. Its establishment relies on the 

weights of the risk factors calculated in section 2.1.1 and ultimately applies in section 

2.1.3.  

2.1.2.1Definition of the risk index 

The S, O, and D are each divided into five levels: VL (Very Low), L (Low), M 

(Medium), H (High), and VH (Very High), with ascending integer values assigned 

accordingly. The assignment results of each risk factor are denoted as NS, NO, and ND, 

respectively. Subsequently, these level parameters are integrated with the corresponding 

weights of the risk factors to compute the parameter I. The calculation method is shown 

in formula (6), where WS, WO, and WD are the weights of S, O, and D, respectively: 

s s o o d dI N W N W N W=  +  +    (6) 

2.1.2.2 The establishment of risk level matrix 

To construct the two-dimensional risk-level distribution matrix, this paper first 

fixes the S to a given level and then computes the I for each combination of O and D. 

This indicator divides failure modes into three risk categories: low, medium, and high. 

According to existing literature, based on the developed models and failure data 

collected from both onshore and offshore operators, the failure rate of components in 

floating offshore wind turbines is approximately 26% higher than that of onshore wind 

turbines[27]. It is therefore necessary to establish a high detection rate for high-risk 

scenarios and apply broader rule coverage to high-risk areas, thereby enhancing 

sensitivity to high risks. Hence, the proportions for low, medium, and high-risk levels 

are set to 3:3:4. 

Accordingly, for each of the five distinct S levels, we constructed a 5×5 two-

dimensional risk-level distribution matrix. Each matrix clearly visualizes the risk level 

of failure modes for every O and D combination under the given risk factor weights, 

thereby providing the foundation for the generation of fuzzy rules. Within the matrix, 

low, medium, and high-risk levels are color-coded as green, orange, and red, 

respectively, to facilitate visual identification and analysis.  

2.1.3 Methods for determining the risk value and grade of failure modes 

Based on the previous two sections, we will rank and categorize the failure modes. 

In this section, fuzzy inference system will be used to implement it. The flowchart for 

this section is shown in Fig. 2. 
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Fig. 2. Flowchart for Deriving Risk Value and Risk grade 

2.1.3.1 Fuzzification  

Within this model, four key linguistic variables are defined: S, O, D, and Risk 

grade (R). Prior to fuzzy inference, these variables are partitioned into fuzzy sets—a 

foundational concept in fuzzy inference system[28]. Considering that the scoring range 

of the risk factors is defined from 1 to 10, the corresponding fuzzy membership sets are 

constructed based on the principle of equal interval division to enhance the structural 

clarity of the fuzzy evaluation process. Furthermore, given that offshore wind turbines 

exhibit higher failure rates compared to their onshore counterparts, the numerical range 

assigned to the high level of risk fuzzy set is appropriately extended to improve the 

detectability of high-risk scenarios. The partitioning results are presented in Table 3. 

The use of fuzzy sets enables the integration of linguistically expressed terms with 

mathematical models, thereby facilitating the interpretation and processing of 

knowledge represented in linguistic form. 

Table 3 Division of fuzzy sets 

Language Hierarchy Numerical range 

 S 

Very low impact (S1) 1≤S<3 

Low impact (S2) 3≤S<5 

Medium impact (S3) 5≤S<7 

High impact (S4) 7≤S<9 

Very high impact (S5) 9≤S≤10 

 O 

Very low (O1) 1≤O＜3 

Low (O2) 3≤O＜5 

Medium (O3) 5≤O＜7 

High (O4) 7≤O＜9 

Very high (O5) 9≤S≤10 

 D 

Very high (D1) 1≤D＜3 

High (D2) 3≤D＜5 

Medium (D3) 5≤D＜7 

Low (D4) 7≤D＜9 

Very low (D5) 9≤S≤10 

 R 
Low level of risk (R1) 0≤R≤0.3 

Medium level of risk (R2) 0.3＜R≤0.6 



High level of risk (R3) 0.6＜R≤1 

To preserve the inherent fuzziness and uncertainty in risk factor scores assigned 

by experts, this paper employs membership functions to fuzzify the scores and 

determine their degrees of membership across different fuzzy sets. Various types of 

membership functions are commonly used, including triangular, trapezoidal and 

Gaussian functions[29]. In this study, the Gaussian membership function is selected for 

the fuzzification of risk factor scores due to its ability to smoothly represent the 

probable range of values around the assigned score[30]. The mathematical expression of 

the Gaussian membership function is provided in Equation (7). 

2

2

( )
( , , ) exp

2

pn

pn pn

pn

x
f x


 



 −
= − 

                

    (7) 

pn pn Where  and  are the variance and mean of p when it is at level n, 

respectively, and the four membership functions are illustrated in Fig. 3. 

  

Fig. 3. Gaussian membership function a-d for each variable 

2.1.3.2 Fuzzy inference 

Fuzzy rules constitute the core components of the fuzzy inference system. These 

rules utilize linguistic variables of risk factors as antecedents and risk level as the 

consequent. The fuzzy inference system matches fuzzified input data with the rule 

antecedents to perform the inference process. The fuzzy rules are derived from the 

previously established risk level distribution matrix. Since each risk factor is divided 

into five levels, a total of 5×5×5=125 fuzzy rules are generated, covering all possible 

combinations of risk factor levels. The complete list of these 125 fuzzy rules is provided 

in Appendix 1. Each rule follows the standard if-then structure, which is formalized in 

Equation (8): If the S level is e, the O level is f, and the D level is g, then the risk level 

of the corresponding failure mode is h.  

e f g hf  is  and  is  and  is  then  is I S S O O D D R R，                    (8)   
                      

After inputting the S, O, and D values of the risk factors into the fuzzy inference 

system for fuzzification, the corresponding fuzzy rules will be activated. To transform 



qualitative fuzzy rules into quantitative results, the Mamdani algorithm is used 

here[31].This algorithm aggregates the output fuzzy sets of each rule based on the max-

min composition rule, thereby producing the risk level membership function. The 

formula of the Mamdani algorithm is listed as Equation (9). The inference process is as 

Fig. 4. 

 

 ( ) max min ( ), ( ), ( )R l l lr S O D   =
                   

                     (9) 

 

Fig. 4. Demonstration of the fuzzy inference process 

( )R rIn equation (9), represents the risk level membership function, and l 

( )l Srepresents the rule number.  represents the membership degree of the input S 

( )l Ovalue to a certain S fuzzy set in the l rule. ( )l D, mean the same as above.  

2.1.3.3 Defuzzification 

Currently, the principal defuzzification techniques include the centroid method, 

the mean of maxima, the computation by the center of gravity method, the center of 

means, and the midpoint of an area procedure[32]. The center of gravity method 

computes the center of gravity of the aggregated fuzzy set, thereby accounting for both 

the height and the spread of the output membership function and offering a desirable 

balance and consistency[33]. Consequently, this paper employs the center of gravity 

method to defuzzify and obtain r, the formula is presented in Equation (10).              

 r rdr
r

r dr

R

R




=




（ ）

（ ）
   (10)   

In MATLAB, the r corresponds to the value determined by the membership 

function graph. Specifically, it represents the x-coordinate of the centroid of the area 

enclosed by the membership function curve and the x-axis. This centroid is illustrated 

as the center of gravity of the blue shape in Fig. 5. 

 

 

Fig. 5. Demonstration of defuzzification section 

2.1.3.4 Risk grade of failure modes 

After determining the r of the failure mode, it is substituted into the risk level 



membership function to calculate the degree of membership for each risk grade. The 

risk grade corresponding to the highest membership degree is then selected as the final 

risk classification of the failure mode. 

2.2 Related methods in the framework 

2.2.1Fuzzy Analytic Hierarchy Process (FAHP) 

FAHP, as an extension of AHP, was first proposed by Van Laarhoven and Pedrycz 

in 1983[34]. Since its introduction, FAHP has been widely used in the field of risk 

management. For example, Kaewfak et al.[35] used FAHP for Multimodal transportation 

risk assessment. Spanidis et al.[36] used the FAHP method to determine the likelihood 

that natural hazards risk will take place in the form of weight factors and sub-factors.  

 The method comprises three variants: interval FAHP, triangular FAHP, and 

trapezoidal FAHP, which utilize interval fuzzy numbers, triangular fuzzy numbers, and 

trapezoidal fuzzy numbers, respectively, to represent the relative importance among the 

evaluated factors, rather than relying on crisp values as in the traditional AHP method[37]. 

2.2.2 Mamdani based fuzzy inference system  

Fuzzy inference system was proposed by Lotfy Zadeh in 1965 to help address the 

problem of information fuzziness[38]. Mendel et al.[39] believed that a fuzzy inference 

system is a nonlinear mapping of input data (feature) vectors to scalar outputs (a 

decomposition of vector output cases into a collection of mutually independent 

multiple-input single-output systems). It can simultaneously handle numerical data and 

linguistic knowledge, cleverly linking the two by processing the degree of membership 

between them.  

Nearly forty years after its conception, fuzzy logic is far less controversial than it 

used to be. Today, the widespread influence of fuzzy logic is evident. Lu et 

al.[40]combined fuzzy logic and protective layer analysis to reduce the uncertainty factor 

in the calculation process of traditional protective layer analysis method to analyze the 

risk of fire accidents in leaking pools of crude oil storage tanks and give a risky 

decision-making scheme. Kambalimath et al.[41] mentioned that problems related to 

hydrology often involve imprecision and ambiguity, and that models based on fuzzy 

logic can well deal with these problems. 

The fuzzy inference system is the process of fuzzifying subjective knowledge, 

inference through fuzzy rules, and then outputting crisp values. The general process of 

a fuzzy logic inference is as follows: 

（1）Defining linguistic variables and fuzzy sets 

（2）Determine the membership function 

（3）Creating a rule base 

（4）Fuzzy inference based on Mamdani algorithm  

（5）Defuzzification  

The model of fuzzy inference system is shown in Fig. 6. 



 

Fig. 6. Fuzzy inference system model 

3. Case study 

3.1 Case introduction 

In this section, a case study of an offshore wind farm located off the eastern coast 

of China is presented to conduct a risk analysis of the key components of offshore wind 

turbines and to validate the proposed framework. The wind farm comprises 80 wind 

turbines, each with a rated capacity of 4.2 MW. The risk analysis focuses on critical 

components of the offshore wind turbines, including blades, bearings, generators, 

transformers, gearboxes, pitch systems, yaw systems, and electrical control systems. 

3.2 Data acquisition 

Five experts specializing in offshore wind power were invited to identify the 

failure modes and to evaluate the S, O, and D of each failure mode, with scores assigned 

on a scale from 1 to 10. Detailed information about the participating experts is provided 

in Table 4, while the individual scoring results are presented in Appendix 2. Based on 

the expert evaluations, the comprehensive values of S, O, and D are calculated using 

Equations (11), (12), and (13). 
5

=1

=S W S




  (11) 
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S  OWhere is the evaluation value of expert to S, is the evaluation value of 
 D  W

expert to O, is the evaluation value of expert to D. is the weight of expert , 

which is related to their position and work experience. Referring to the ISO 

30414(Human Capital Reporting), the evaluation criteria of expert weight are shown in 

Table 5. The expert weight is calculated by Equation (14):  
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  (14)      

W  P  EWhere is the weight of expert .  denotes the position score of expert ,  

denotes the work experience score of expert . 

Table 4 Detailed information of experts 

Expert Position Experience 

1 Engineer 8 years 

2 Chief Engineer 16 years 

3 R&D personnel 5 years 



4 Professor 15 years 

5 Operator 4 years 

Table 5 Expert weight evaluation criteria 

  Score 

position 

Engineer/R&D 

personnel/Operator 
4 

Chief Engineer/Professor 6 

Experience 
<10 years 4 

Between 11 and 20 years 6 

After the calculations were completed, the comprehensive values of the risk 

factors for each failure mode are shown in Table 6. 

Table 6 Results of failure mode identification and evaluation 

Serial 

number 
Assemblies Failure mode S O D 

FM1 
Blade 

Blades cracks 8 4 5 

FM2 Slight corrosion 2 7 6 

FM3 
Main bearing 

Bearing damage 9 4 6 

FM4 Bearing vibration 8 6 4 

FM5 
Generate 

Overheat 9 7 1 

FM6 Winding failure 8 6 3 

FM7 
Transformer 

Short circuit 8 4 2 

FM8 Open circuit 8 4 3 

FM9 Pitch system Wrong pitch angle 6 4 2 

FM10 
Yaw system 

Hydraulic leakage 6 5 2 

FM11 Corrosion 5 5 5 

FM12 
Gearbox 

Fractured gear teeth 9 2 3 

FM13 Seized gears 9 4 4 

FM14 Electrical 

controls 

sensor accuracy degradation 3 4 3 

FM15 Output voltage inaccuracy 5 6 6 

 

3.3 Analysis of improved FMEA framework 

3.3.1 Calculation of risk factor weights 

The triangular fuzzy numbers represent the results of experts' pairwise 

comparisons of risk factors. Specifically, ASO, ASD, and AOD represent the comparison 

results of S and O, S and D, and O and D, respectively. Based on the predetermined 

pairwise comparison scale, experts selected triangular fuzzy numbers to represent the 

relative importance of risk factors. Table 7 shows the calculation process of risk factors 

using the method proposed in 2.1.1. 

Through the Delphi method, solicit expert opinions and provide feedback to them, 

repeating this process until a consensus is reached, that is, ASO = (1, 3, 5), ASD = (3, 5, 

7), and AOD = (1, 3, 5). Using the geometric mean method to defuzzify yields aij, and 

aji is the reciprocal of aij. Finally, a preliminary pairwise comparison matrix A=(aij)3×3 

can be formed. For example, in ASO, 1 is the smallest possible value after comparison, 

3 is the most likely value, 5 is the maximum possible value, and 3 is the defuzzified 

value. 



Table 7 Pairwise comparison matrix and consistency test 

 S O D Normalized S O D ∑ AW 

S 1 3 5 S 0.65 0.69 0.56 1.9 0.633 

O 0.33 1 3 O 0.22 0.23 0.33 0.78 0.26 

D 0.2 0.33 1 D 0.13 0.08 0.11 0.32 0.107 

∑ 1.53 4.33 9 ∑ 1 1 1 3  

 S*0.633 O*0.260 D*0.107 ∑ max  

S 

O 

D 

0.633 

0.209 

0.127 

0.78 

0.26 

0.086 

0.535 

0.321 

0.107 

1.948 

0.79 

0.320 

3.032     

 

In the Table 7, the λmax is 3.032, n is 3, and substituting into the consistency test 

formula gives a CI of 0.016, which is less than 0.1, indicating that the consistency test 

is passed. Therefore, the weights of the risk factors S, O, and D are 0.633, 0.26, and 

0.107, respectively. 

3.3.2 Risk level distribution matrix 

Based on the weights calculated in the preceding steps, the formula for calculating 

I is presented in Equation (15). 

s 0.633 0.26 0.107O DI N N N=  +  +    (15) 

Based on the size of I, the two-dimensional 5x5 risk level matrix has been formed 

under five different S levels: 

（1）When S is VL, the risk level distribution matrix is as follows: 

                     The risk level of“O” 

The risk level of

“D” 
VL L M H VH 

VL      

L      

M      

H      

VH      

（2）When S is L, the risk level distribution matrix is as follows: 

                     The risk level of“O” 

The risk level of

“D” 
VL L M H VH 

VL      

L      

M      

H      

VH      

（3）When S is M, the risk level distribution matrix is as follows: 

 

 

 

 



                              The risk level of“O” 

 The risk level of“D” VL L M H VH 

VL                                             

L                                        

M                 

H           

VH           

（4）When S is H, the risk level distribution matrix is as follows: 

                          The risk level of“O” 

 The risk level of“D” VL L M H VH 

VL           

L           

M           

H           

VH           

（5）When S is VH, the risk level distribution matrix is as follows: 

                          The risk level of“O” 

 The risk level of“D” VL L M H VH 

VL           

L           

M           

H           

VH           

The above five risk level matrices clearly and intuitively display the risk level 

distribution of failure modes under different combinations of risk factor levels. For 

example, it can be intuitively observed that when the levels of S, O and D are all 

classified as VL, the corresponding cell in the first matrix is highlighted in green, 

indicating a VL risk level. Accordingly, a complete fuzzy rule can be formulated as 

follows: If S is S1 and O is O1 and D is D1, then R is R1. All of the rules are listed in 

Appendix 1.  

3.3.3 Improvement results and evaluation 

Input the score into the fuzzy inference system, using MATLAB software to output 

the r and calculate the risk level membership degree, and then obtain the results as 

shown in Table 8. 

Table 8 Improved FMEA results 

Seria number r 
Degree of 

membership  
Risk grade Rank 

FM1 0.593 

R1:0 

R2:20.240% 

R3:11.765% 

R2 7 

FM2 0.226 
R1:63.763% 

R2:1.984% 
R1 14 



R3:0 

FM3 0.732 

R1:0 

R2:0.193% 

R3:79..421% 

R3 3 

FM4 0.74 

R1:0 

R2:0.140% 

R3:83.620% 

R3 2 

FM5 0.786 

R1:0 

R2:0.015% 

R3:99.025% 

R3 1 

FM6 0.727 

R1:0 

R2:0.248% 

R3:76.721% 

R3 4 

FM7 0.49 

R1:0 

R2:0.248% 

R3:76.721% 

R2 9 

FM8 0.496 

R1:0.012% 

R2:88.251% 

R3:0.822% 

R2 8 

FM9 0.474 

R1:0.027% 

R2:95.602% 

R3:0.493% 

R2 11 

FM10 0.478 

R1: 0.002% 

R2: 94.059% 

R3: 0.560% 

R2 10 

FM11 0.312 

R1:13.534% 

R2:21.654% 

R3:0 

R2 13 

FM12 0.637 

R1: 0 

R2: 6.721% 

R3:26.501% 

R3 6 

FM13 0.652 

R1:0 

R2:4.150% 

R3:33.641% 

R3 5 

FM14 0.165 

R1:56.113% 

R2:2.796% 

R3:0 

R1 15 

FM15 0.377 

R1:1.832% 

R2:65.705% 

R3:0 

R2 12 

 

In this paper, 15 major failure modes were analyzed and ranked in terms of risk 

based on r. Among them, generator overheating, winding failure, and main bearing 

vibration and damage are recognized as extremely critical failure modes because their 



r exceeds 0.7. It suggests that the generator and main bearing are high-risk vital 

components. To avert the manifestation of these failure modes, they are analyzed 

individually: 

(1) The probability of excessive temperature rise in offshore wind turbine 

generators is relatively high, primarily due to the cooling system tends to experience 

issues such as insufficient cooling medium and coolant blockages after prolonged 

operation, which impede timely heat dissipation. Additionally, abnormal electrical 

operation can also contribute to heat accumulation. This overheating phenomenon may 

not only result in the wind turbine shutdown, but also cause overload damage to 

downstream components, including transformers and cables. In response, it is 

recommended to design redundant cooling circuits and rapid disconnection protection, 

enforce regular and thorough maintenance of the cooling system, and establish an early 

warning temperature threshold of 75 °C for the generator housing. 

(2) Main bearing vibration frequently results in severe oscillations throughout the 

machine and eccentric operation, negatively impacting operational safety and power 

production efficiency. In offshore environments, factors such as wave-induced impacts, 

moisture condensation, and salt spray corrosion can accelerate the degradation and 

failure of the main bearing lubrication system. To address these challenges, it is 

recommended to integrate intelligent lubrication units. By efficiently reducing oil 

emulsification and sludge formation, these systems may automatically replenish or 

replace lubricating grease depending on temperature and vibration thresholds, 

increasing system dependability and main bearing service life. 

(3) Once a main bearing is damaged, it often induces severe vibrations of the entire 

system and may even result in uncontrolled shutdowns, posing significant safety risks. 

Due to prolonged exposure to alternating and impact loads, microcracks can readily 

develop on the surface of rolling elements and progressively propagate into 

macroscopic cracks during operation. Currently, most sensors are installed on the 

bearing housing, making it difficult to directly and effectively monitor the internal 

condition of the bearing, which leaves blind spots in fault detection. To address these 

issues, bearing steels with high corrosion resistance and fatigue strength can be 

employed, and nano-coatings can be applied to the raceway surfaces to enhance wear 

and corrosion resistance. In addition, embedding temperature and oil film thickness 

sensors within the bearing is recommended to enable real-time monitoring of 

lubrication status and frictional changes, thereby improving fault prediction capability 

and operational reliability. 

(4) Generator winding faults typically manifest as insulation breakdown, partial 

short circuits, or winding burnout. In severe cases, such faults may necessitate 

shutdowns and factory-level repairs, incurring high maintenance costs and potential 

damage to downstream electrical equipment, thereby causing additional losses. In 

offshore environments, high humidity and salt spray conditions can accelerate the aging 

of insulation materials. However, early-stage partial discharges and internal hotspots 

are often difficult to detect due to limitations in current monitoring technologies. To 

address these issues, it is recommended to use insulation materials with enhanced 



moisture resistance and higher thermal ratings, and to strengthen online monitoring and 

insulation health assessment methods. 

Besides ranking the failure modes, the risk levels of the failure modes can also be 

categorized via the calculated membership degrees. The results presented in Table 8 

indicate that FM3, FM4, FM5, FM6, FM12, and FM13 are classified as high-risk failure 

modes; FM1, FM7, FM8, FM9, FM10, FM11, and FM15 are categorized as medium 

risk; and FM2 and FM14 are identified as low risk. Given the high O&M costs, limited 

accessibility and short maintenance windows of offshore wind farms, adopting 

differentiated O&M strategies based on the risk classification of failure modes can 

effectively improve maintenance efficiency and support coordinated management. 

Currently, O&M strategies for offshore wind power include corrective maintenance, 

preventive maintenance, condition-based maintenance, and opportunistic 

maintenance[42][43]. Therefore, for high-risk failure modes, a hybrid model of condition 

- based and predictive maintenance is recommended; For medium risk failure modes, 

opportunistic maintenance is a good choice; For low-risk failure modes, corrective 

maintenance is acceptable. 

3.4 Sensitivity analysis  

In this paper, the weights of risk factors are initially reflected in the risk level 

matrix, and fuzzy rules are derived from the risk matrix for fuzzy inference, ultimately 

affecting the output of the failure mode. Therefore, the weights of risk factors are the 

critical part of the method proposed in this paper. 

The weights of risk factors are derived using the FAHP method, which relies on 

experts making pairwise comparisons of risk factors and selecting triangular fuzzy 

numbers to represent the relative importance between them. However, this process is 

based on the subjective judgment of experts, and inviting different groups of experts 

may yield different weight results. Sensitivity analysis of the weights can explain the 

extent to which changes in the weight values of relevant risk factors affect the 

calculation results. 

When the weights fluctuate, the changing weight is W′i= Wi, and 0≤Wi≤1, the 

remaining weights are reversed in equal parts and normalized so that the weighted total 

following the weight fluctuations is 1.The weight Ki of the S and D is changed by the 

parameter  times, making the original weight value fluctuate within the range of ±

10%, the values of   are 0.9 and 1.1. Update the weights of S, O and D, and 

recalculate the risk value of the failure modes. The calculation results are shown in 

Table 9. 

Table 9 Result calculation comparison 

Failure mode 

This paper -10% +10% 

Risk 

value 
rank Risk value Rank Risk value Rank 

FM1 0.593 7 0.593 7 0.593 7 

FM2 0.226 14 0.226 14 0.226 14 

FM3 0.732 3 0.732 3 0.732 3 

FM4 0.74 2 0.74 2 0.74 2 

FM5 0.786 1 0.786 1 0.786 1 



FM6 0.727 4 0.727 4 0.727 4 

FM7 0.49 9 0.49 9 0.49 9 

FM8 0.496 8 0.496 8 0.496 8 

FM9 0.474 11 0.474 11 0.474 11 

FM10 0.478 10 0.478 10 0.478 10 

FM11 0.312 13 0.312 13 0.312 13 

FM12 0.637 6 0.637 6 0.637 6 

FM13 0.652 5 0.652 5 0.652 5 

FM14 0.165 15 0.165 15 0.165 15 

FM15 0.377 12 0.377 12 0.377 12 

From Table 9, it can be seen that when S and D change by 10%, it does not affect 

the magnitude of the final output risk value. This is because within this range of change, 

the fuzzy rules remain unchanged. Therefore, within this range, the calculation results 

are not sensitive to changes in the weights of the risk factors. 

Within the previously defined fluctuation range, S remains the dominant factor 

influencing the risk levels of failure modes. To further investigate the sensitivity of the 

risk assessment to weight variations, a weight perturbation experiment is conducted by 

decreasing the weight of S and increasing the weight of D. The adjusted weights for S, 

O, and D are set to 0.253, 0.104, and 0.643, respectively. Based on these adjusted 

weights, the r is recalculated and the failure modes are re-ranked. The results are then 

compared with those obtained using the original weighting scheme proposed in this 

study, as illustrated in Fig. 7. In Fig. 7, Weight Group 1 represents the results derived 

from the original weights, while Weight Group 2 reflects the outcomes based on the 

adjusted weighting scheme. 

As shown in Fig. 7, when the risk factor weights are assigned according to Weight 

Group 2, most failure modes undergo noticeable changes. Among these, FM5 exhibits 

the most significant variation, primarily due to the increased weight of D in this 

weighting scheme. Since FM5 has a D score of only 1, its overall risk level decreases 

accordingly. 

 

 



Fig.7. Comparison of Weight Perturbation Experimental Results 

3.5 Comparison analysis 

In this section, to verify the rationality and effectiveness of the proposed 

framework, a quantitative comparison is conducted between the proposed method and 

traditional FMEA as well as Weighted FMEA originated from literature [17], as shown 

in Table 10. The normalized scoring results used in the Weighted FMEA method are 

detailed in Appendix 3. 

Table 10 Summary of Calculation Results 

Failure 

mode 

Traditional FMEA Weighted FMEA proposed framework 

RPN Rank Weightd-RPN Rank r Rank 

FM1 160 4 0.1077 6 0.593 7 

FM2 84 9 0.0690 14 0.226 14 

FM3 216 1 0.1191 2 0.732 3 

FM4 192 2 0.1169 3 0.74 2 

FM5 63 11 0.1259 1 0.786 1 

FM6 144 5 0.1150 5 0.727 4 

FM7 64 10 0.1019 9 0.49 9 

FM8 96 8 0.1038 7 0.496 8 

FM9 48 14 0.0829 13 0.474 11 

FM10 60 12 0.0884 11 0.478 10 

FM11 125 7 0.0847 12 0.312 13 

FM12 54 13 0.1024 8 0.637 6 

FM13 144 5 0.1153 4 0.652 5 

FM14 36 15 0.0564 15 0.165 15 

FM15 180 3 0.0923 10 0.377 12 

According to Table 10, the failure mode rankings derived from traditional FMEA 

serve as a reference. For each failure mode, the rankings obtained via the Weighted 

FMEA method and the proposed method are compared against this reference to 

calculate the differences in their ranking positions. If a risk ranking is increased, the 

deviation is recorded as a positive value. A corresponding line chart illustrating these 

deviations is presented in Fig. 8. 

 
Fig. 8. Comparison of failure mode risk ranking deviations (Using traditional FMEA as the 



Baseline) 

As shown in the visualized results in Fig. 8, the ranking of failure modes changes 

significantly under the influence of risk factor weights. Notably, FM2, FM5, FM11, 

FM12, and FM15 exhibit more pronounced changes in ranking. It is worth noting that 

the fluctuation trends of the two methods are generally consistent, which to some extent 

validates the rationality of embedding risk factor weights into the fuzzy rules in this 

study. Furthermore, Fig.8 indicates that the proposed method yields larger overall 

ranking deviations. This is mainly attributed to the fuzzy inference system, which maps 

experts' quantitative ratings into continuous membership intervals through membership 

functions, thereby effectively preserving and revealing the fuzzy and uncertain 

information that is compressed in crisp-value quantification. 

A comparison of the ranking results in Table 10 between the proposed method and 

the Weighted FMEA model reveals that, in the Weighted FMEA approach, FM9 

(incorrect pitch angle) is ranked three positions lower than FM15 (inaccurate output 

voltage), whereas in the proposed method, FM9 is ranked one position higher than 

FM15. From the perspective of post-failure repair difficulty and associated costs, FM9 

typically requires on-site inspection and maintenance by professional technicians, 

which increases both the complexity and cost of repair. In contrast, FM15 is usually 

caused by improper controller parameter settings, sensor faults, or external disturbances. 

These issues can generally be resolved through software adjustments, parameter 

optimization, or replacement of faulty components, making the repair process relatively 

simple and cost-effective. Therefore, it is reasonable for FM9 to be assigned a higher 

risk priority than FM15, and it should receive greater attention. 

Furthermore, FM1 and FM12 also exhibit notable differences in their risk rankings. 

In the Weighted FMEA method, FM1 (blade crack) is ranked two positions higher than 

FM12 (Fractured gear teeth), whereas in the proposed method, FM1 is ranked one 

position lower than FM12. From the perspective of repair difficulty and cost, the 

gearbox—located inside the nacelle—typically requires the use of large-scale lifting 

equipment for disassembly and repair or replacement, which includes not only the cost 

of replacement parts, but also expenses related to crane rental, transportation, labor, and 

power generation losses due to downtime. In contrast, FM1 can often be addressed 

through various methods such as on-site repair or blade replacement. Minor cracks can 

usually be repaired in situ, avoiding the need for large equipment. As such, the repair 

cost is comparatively lower than that of gearbox failures. Therefore, assigning a higher 

risk priority to FM12 over FM1 is reasonable, and FM12 should receive greater 

attention. 

 

4.Discussion 

4.1 Validation and reliability of the results 

4.1.1Validity analysis 

In order to verify the effectiveness of the proposed improved framework, this 

paper adopts the validation method proposed by Wang and Triantaphyllou[44]. This 

validation method includes three test criteria to evaluate the effectiveness of the method, 

as detailed below. 



Test criterion 1: Upon introducing an inferior alternative to a less-than-ideal one, 

an effective MCDM technique should not influence the indication of the optimal option, 

provided that the relative significance of each decision criterion remains constant. 

Test criterion 2: An effective MCDM approach ought to adhere to transferability.  

Test criterion 3: When decomposing an MCDM problem into sub-problems and 

ranking alternatives within each sub-problem using the same method, the aggregated 

ranking of all alternatives must be consistent with their ranking in the original non-

decomposed problem.  

We create the design program in accordance with the three rules:  

Test solution 1: We decide to modify FM4 in order to confirm Test criteria 1. 

Additionally, FM′4 is a representation of the modified FM4. The precise risk value for 

FM4 and FM′4 are listed in Table 11. 

The ranking outcome of the offshore wind turbine risk assessment problem can be 

obtained using the enhanced FMEA framework that we put out in this study. The initial 

ranking outcome is displayed as follows.  

FM5>FM4>FM3>FM6>FM13>FM12>FM1>FM8>FM7>FM10>FM9>FM15>FM11

>FM2>FM14 

We can get a new ranking result by substituting FM4 with FM′4 using the 

suggested enhanced risk assessment FMEA method. The following is the new ranking 

result.  

FM5>FM3>FM6>FM13>FM12>FM1>FM8>FM7>FM10>FM9>FM15>FM11>FM2

>FM14>FM′4 

It is evident that the optimal FM has remained consistent, confirming that the 

model put out in this work satisfies Test criteria 1.  

Test solution 2 &3:  

We separate the entire FM sets into two subsets in order to validate Test Criterion 

2 and 3. Ω = {FM1, FM2, FM3, FM4, FM5, FM6, FM7, FM8, FM9, FM10, FM11, 

FM12, FM13, FM14, FM15} is one way to express the entire set. The subset O can be 

expressed as O= {FM2, FM3, FM4, FM5, FM7, FM10, FM11, FM14, FM15}, while P 

= {FM1, FM2, FM3, FM4, FM5, FM6, FM7, FM8, FM9}. We can determine the 

corresponding ranking outcomes of the two subsets of FMs using the suggested 

enhanced risk assessment FMEA approach.  

Following computation, the subset O ranking result is displayed as follows:  

FM5>FM4>FM7>FM10>FM15>FM11>FM2>FM14 

Following computation, the subset P ranking result is displayed as follows:  

FM3>FM6>FM13>FM12>FM1>FM8>FM7>FM9 

The ranking results of two subsets are shown to be consistent with the ranking 

results of the entire set, confirming that the model put forth in this study satisfies Test 

Criterion 2 & 3.  

Table 11 The r of initial and modified FM1. 

 S O D r 

FM4 

FM′4 

8 

1 

6 

1 

4 

1 

0.740 

0.156 



4.1.2 Reliability analysis 

The simulation experiment was designed using the Monte Carlo method, grounded 

in statistical principles, to verify the validity of the proposed approach. 

Experiment: Comprehensive evaluation values were assigned to the 15 failure 

modes to represent their respective risk levels. Random sequences of these failure 

modes were then generated to simulate their occurrence order. During each simulation, 

if the risk level of a failure mode exceeded the system risk degree (SRD)—set at 0.6—

the system was deemed to have collapsed. Additionally, whenever the cumulative risk 

of sequentially occurring failure modes reached or exceeded 0.6, the simulation 

terminated and the triggering failure mode was recorded. This process was repeated 

multiple times to determine the frequency with which each failure mode precipitated 

system collapse. 

At the same time, the fault tolerance of the system, represented by the SRD must 

also be considered. A higher SRD indicates that the system can tolerate more failure 

modes (FMs), reflecting lower sensitivity to failures. Conversely, a lower SRD suggests 

limited fault tolerance and higher sensitivity to failures. To investigate the impact of 

SRD levels, the experiment was conducted with SRD values ranging from 0.6 to 0.9. 

Therefore, based on the experimental concept, this paper simulated the case. On 

the basis of 200,000 simulations, statistically significant data were obtained, which 

represented the random frequency of each failure mode under different SRDs in 

Appendix 4. To more clearly reflect the results, we presented the data in the form of 

charts, as shown in Fig. 9. We can see that the ranking results based on the random 

frequency of each frequency modulation are the same as those obtained by the proposed 

method, proving the reliability of the proposed method. 

 

a. Random frequency of Each FM at SRD = 0.6  b.Random frequency of Each FM at SRD = 0.7    

 

c. Random frequency of Each FM at SRD = 0.8  d. Random frequency of Each FM at SRD = 0.9   

Fig. 9. The random frequency of each FM under different SRD(a-d) 



4.2 The superiority of the framework 

In response to the shortcomings of classic FMEA, this paper proposes a framework 

for an improved FMEA method and applies it to offshore wind turbine. In this section, 

we analyze the advantages of this improved framework from the following aspects. 

4.2.1 In terms of the treatment of risk factor scores 

Risk factor scores are derived from the expertise and judgment of invited 

specialists, inherently involving a degree of uncertainty. Compressing these evaluations 

into precise numerical values may overlook the inherent fuzziness and uncertainty in 

the assessment process. To address this, Gaussian membership functions are employed 

in this study to fuzzify the risk factor scores. This function allows for a smooth 

representation of the probable range around the assigned scores and effectively maps 

them to the membership degrees of different fuzzy sets, thereby preserving the 

uncertainty and imprecision inherent in expert evaluations. 

4.2.2 In terms of the generation of fuzzy rules 

Fuzzy rules are core to fuzzy inference system, and their generation is highly vital. 

Most current studies rely on integrating the experience of multiple domain experts to 

construct a comprehensive fuzzy rule base. However, this process becomes inefficient 

when dealing with a large number of fuzzy rules. This paper innovatively embeds risk 

factor weights into the fuzzy rules by compressing expert knowledge of overall risk 

perception into 3 core parameters (the weights of S, O and D), rather than 125 

independent rules, thereby improving the efficiency of rule generation, as reflected in 

reduced expert workload and streamlined opinion aggregation, as detailed in Table 12. 

According to Table 12, incorporating risk factor weights into fuzzy rules enhances the 

efficiency of rule generation by up to 40 times in terms of workload, thus substantially 

reducing the time required for the fuzzy rule development process. 

Table 12 Comparison of the Workload between the Two Methods 

Dimension Multi-rule integration method Weight embedding method 

Expert workload Each expert provides 125 rules 

Each expert provides 3 

assessments regarding the 

relative importance of S, O 

and D. 

Opinion aggregation 
Handling 125 N rules (N represents 

the number of experts) 

Handling 3N assessments 

concerning the weights 

4.2.3 In terms of ranking and classifying the failure mode 

 In current FMEA-based risk analysis studies for offshore wind farms, most 

research focuses on determining the risk priority of failure modes and then proposing 

corresponding maintenance suggestions. However, offshore wind farm is characterized 

by significant accessibility constraints, which pose substantial challenges for effective 

maintenance. To address this, this paper not only ranks the risks of failure modes but 

also further classifies their risk levels. By developing differentiated O&M strategies for 

each category, the paper aims to enhance the overall efficiency of O&M work. 

 



5. Conclusion and prospect 

5.1 Conclusions 

To address the inherent limitations of traditional FMEA and the research gaps 

identified in existing literature, this paper proposes a novel improved FMEA framework 

for risk analysis of offshore wind turbines. The conclusions are as follows: 

(1) The weights of risk factors are implicitly embedded into fuzzy rules to 

optimize the efficiency of fuzzy rule generation. Based on this, fuzzy inference system 

is first employed to fuzzify the risk factor scores, which then enables the nonlinear 

computation of overall risk. The resulting output value r is used for risk prioritization, 

and the corresponding membership degree of r is applied to classify risk levels. 

(2) The case study results indicate that generator overheating (with an r of 0.786), 

winding faults (0.727), main bearing vibration (0.740), and main bearing failure (0.732) 

are the most critical failure modes. To mitigate the occurrence of these failure modes, 

efforts can be directed toward four key areas: equipment selection and material 

optimization, intelligent monitoring and fault prediction, O&M with system 

redundancy design, and enhanced structural reliability and environmental adaptability. 

Furthermore, it is recommended to adopt tiered maintenance strategies for failure 

modes based on their respective risk levels. Specifically, a combination of condition-

based maintenance and predictive maintenance strategies is recommended for high-risk 

failure modes. For medium risk modes, an opportunistic maintenance strategy can be 

adopted, while low risk modes may be managed using a corrective maintenance strategy. 

(3) A quantitative comparison is performed between the results obtained from the 

proposed improved framework and those derived from the Weighted FMEA method. 

The deviations between both methods and the traditional FMEA results are used to 

validate the rationale for implicitly incorporating risk factor weights into the fuzzy rules. 

The underlying reasons for the discrepancies in the deviation are also analyzed. In 

addition, the differences in ranking results are examined considering the difficulty and 

cost of fault repair, further confirming the reasonableness and effectiveness of the 

proposed framework. 

5.2 Limitations and future work 

The following summaries the limitations of the proposed FMEA model:  

(1) In this study, the scoring of failure mode risk factors relies on expert judgment, 

and involving different groups of experts can lead to varying results. In future research, 

we plan to adopt expert clustering methods to assess the impact of this effect. 

(2) Once the risk factor weights are established based on expert consensus, the 

rule base is consequently defined. Although this design enhances the efficiency of 

system construction, it inherently limits the robustness of the fuzzy rule base. Therefore, 

future studies may consider introducing dynamic weighting and adaptive rule 

optimization strategies to improve the system's responsiveness and robustness. 

(3) In practical engineering applications, the design and processes of offshore 

wind turbines are continuously optimized throughout their lifecycle. Each time a 

change is introduced, the FMEA should be re-evaluated. However, due to project 

schedule constraints, FMEA updates are often delayed, resulting in assessments that 

may no longer accurately reflect the current failure risks of the product. In the future, a 



unified FMEA database and knowledge management system can be developed to 

integrate design change records, operational data, and maintenance history, thereby 

enabling dynamic management and enhancing the adaptability of FMEA throughout 

the entire product lifecycle. 
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Appendix 

Appendix 1 Fuzzy rule base 

If S is S1 and O is O1 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S1 and O is O2 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S1 and O is O3 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S1 and O is O4 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S1 and O is O5 and D is D1 or D2 or D3, then R is R1 

If S is S2 and O is O1 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S2 and O is O2 and D is D1 or D2 or D3 or D4 or D5, then R is R1 

If S is S2 and O is O3 and D is D1 or D2 or D3, then R is R1 

If S is S3 and O is O1 and D is D1 or D2, then R is R1 

If S is S1 and O is O5, D is D4 or D5, then R is R2 

If S is S2 and O is O3 and D is D4 or D5, then R is R 2 

If S is S2 and O is O4 and D is D1 or D2 or D3 orD4 or D5, then R is R2 

If S is S2 and O is O5 and D is D1 or D2 or D3 orD4 or D5, then R is R2 

If S is S3 and O is O1 and D is D3 orD4 or D5, then R is R2 

If S is S3 and O is O2 and D is D1 or D2 or D3 orD4 or D5, then R is R2 

If S is S3 and O is O3 and D is D1 or D2 or D3 orD4 or D5, then R is R2 

If S is S3 and O is O4 and D is D1 or D2 or D3, then R is R2 

If S is S3 and O is O5 and D is D1, then R is R2 

If S is S4 and O is O1 and D is D1 or D2 or D3 or D4 or D5, then R is R2 

If S is S4 and O is O2 and D is D1 or D2, then R is R2 

If S is S4 and O is O2 and D is D1 or D2, then R is R2 

If S is S3 and O is O4 and D is D4 or D5, then R is R3 

If S is S3 and O is O5 and D is D2 or D3 or D4 or D5, then R is R3 

If S is S4 and O is O2 and D is D3 or D4 or D5, then R is R3 

If S is S4 and O is O3 and D is D1 or D2 or D3 or D4 or D5, then R is R3 

If S is S4 and O is O4 and D is D1 or D2 or D3 or D4 or D5, then R is R3 

If S is S4 and O is O5 and D is D1 or D2 or D3 or D4 or D5, then R is R3 

If S is S5 and O is O1 or O2 or O3 or O4 or O5 and D is D1 or D2 or D3 or D4 or D5, then R is R3 

Appendix 2 The scoring results of each expert 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

 S O D S O D S O D S O D S O D 

FM1 8 4 7 9 4 5 7 5 4 8 3 4 8 3 5 

FM2 2 8 5 3 8 6 2 7 4 2 5 7 3 6 5 

FM3 9 4 6 9 4 7 9 4 6 8 4 6 8 4 6 

FM4 8 5 4 7 6 4 7 7 4 9 6 4 8 7 3 

FM5 9 8 1 10 5 1 9 7 1 9 7 1 10 7 1 

FM6 7 6 2 9 6 3 8 5 3 8 3 6 8 5 3 



FM7 8 4 3 8 3 2 8 4 2 8 4 3 8 4 1 

FM8 8 4 3 8 3 3 8 5 3 7 2 3 8 5 3 

FM9 4 4 2 6 4 3 6 4 2 6 4 2 6 3 2 

FM10 6 4 2 5 6 2 6 5 2 6 5 2 6 5 2 

FM11 5 5 6 4 5 5 4 3 5 5 5 4 5 5 5 

FM12 10 1 4 9 2 4 9 2 4 9 2 4 9 3 3 

FM13 9 3 4 9 4 5 9 3 5 9 4 3 8 4 4 

FM14 3 4 2 4 4 2 2 4 3 3 4 3 3 4 3 

FM15 5 6 6 6 6 6 5 6 6 5 7 6 4 7 6 

Appendix 3 The normalized value 

Serial 

number 
Raw value Normalized value 

FM1 (8, 4, 5) (0.120, 0.085, 0.090) 

FM2 (2, 7, 6) (0.030, 0.148, 0.108) 

FM3 (9, 4, 6) (0.135, 0.085, 0.108) 

FM4 (8, 6, 4) (0.120, 0.128, 0.072) 

FM5 (9, 7, 1) (0.135, 0.148, 0.018) 

FM6 (8, 6, 3) (0.120, 0.128, 0.054) 

FM7 (8, 4, 2) (0.120, 0.085, 0.036) 

FM8 (8, 4, 3) (0.120, 0.085, 0.054) 

FM9 (6, 4, 2) (0.090, 0.085, 0.036) 

FM10 (6, 5, 2) (0.090, 0.106, 0.036) 

FM11 (5, 5, 5) (0.075, 0.106, 0.090) 

FM12 (9, 2, 3) (0.135, 0.043, 0.054) 

FM13 (9, 4, 4) (0.135, 0.085, 0.072) 

FM14 (3, 4, 3) (0.045, 0.085, 0.054) 

FM15 (5, 6, 6) (0.075, 0.128, 0.108) 

Appendix 4 The RF under different SRDS 

 SRD=0.6 SRD=0.7 SRD=0.8 SRD=0.9 

the RF of FM1  0.076835 0.074185 0.072605 0.07372 

the RF of FM2  0.02761 0.02698 0.027395 0.03861 

the RF of FM3  0.09437 0.09423 0.09072 0.07788 

the RF of FM4  0.096025 0.09535 0.09224 0.07912 

the RF ofFM5  0.101985 0.103625 0.09709 0.078105 

the RF of FM6  0.093195 0.092015 0.092785 0.07987 

the RF of FM7 0.06187 0.06171 0.06432 0.06795 

the RF of FM8  0.06136 0.06225 0.06361 0.06655 

the RF of FM9  0.058685 0.058955 0.061955 0.06308 

the RF of FM10 0.060385 0.060025 0.062785 0.06777 

the RF of FM11 0.038355 0.03808 0.037735 0.055405 

the RF of FM12 0.08092 0.08144 0.082585 0.07867 

the RF of FM13 0.082965 0.08406 0.08169 0.077935 



the RF of FM14 0.01929 0.01914 0.01969 0.033135 

the RF of FM15 0.04615 0.047955 0.052795 0.0622 

 

 

  


