
The Soft Skills of Software Learning Development: The

Psychological Dimensions of Computing and Security

Behaviours

A thesis submitted to Lancaster University in partial fulfilment of the requirements for

the degree of doctor of Philosophy

Matthew Ivory, BSc, MSc

Department of Psychology

Lancaster University

September 2025

2

Declaration

The thesis contains original work completed solely by the author under the supervision

of Professor John Towse, Professor Mark Levine, Doctor Miriam Sturdee, and Professor

Bashar Nuseibeh, and has not been submitted in the same form for the award of a higher

degree at this institution or elsewhere.

This PhD research was funded through the EPSRC Doctoral Training Centre.

Any sections of the thesis which have been published are clearly identified in the State-

ment of Authorship.

Name: Matthew Ivory

Signature:

Date: 2025-09-08

3

Acknowledgments

I extend my gratitude towards my supervisors, John Towse, Mark Levine, Miriam

Sturdee, and Bashar Nuseibeh, without whom this thesis would not be what it is. Your

insight and guidance have been appreciated. John, for steering me in the right direction.

It did not go unnoticed, and I saw my work improve each time. I plan to continue on this

path. Mark, for offering distilled insights. Miriam, thank you for offering time to talk and

providing feedback. Bashar, for being the expert software engineer.

To my family, for instilling in me a passion for learning I did not necessarily realise I pos-

sessed. My mother, who I don’t think understood my PhD but supported me regardless.

My father, whose work ethic and academic achievements inspired me more than he knows.

Together, they have consistently shown me love and support. I don’t think they will ever

truly understand their impact, but hopefully this goes some way.

To the Cumbrian fells, for providing space away from the desk when needed. To the

friends who accompanied me on these ventures. Between crisp granite mornings and

warm rhyolite evenings, you gave these times value.

Finally, and most importantly, to my fiancé Anna, my best friend. Your unwavering sup-

port and love have been critical. Your dedication to your work continually impresses me.

Thank you for listening to me and offering encouragement. I think you understood some

of my research, but I imagine you were glad I didn’t ask you to read it.

4

The Soft Skills of Software Learning Development: The

Psychological Dimensions of Computing and Security

Behaviours

Matthew Ivory, BSc, MSc

Abstract

Security is critical to high-quality software, yet vulnerabilities are routinely identified.

Are cognitive and social psychology constructs relevant to software engineers’ security

behaviours? Empirical data to adjudicate this question is currently sparse. I argue that

developers’ psychology is a keystone which bridges technical knowledge and successful

code. Through a multi-phase, mixed-methods approach and five empirical work pack-

ages, I answer questions about which soft skills are valued in software engineering and

how latent psychological theories influence security behaviours. Phase one investigates

the value of psychologically rooted soft skills through explorations of graduate and edu-

cator perceptions. Success is supported by communication, teamwork, problem solving,

and critical thinking. These are translated into latent psychological dimensions: Social

Identity Theory and Dual Processing Theory of Decision Making. Phase two investigates

risk perception around secure coding in line with dual processing, establishing a complex

but important relationship between cognitive reflection and unrealistic optimism for risk

awareness. Security perceptions are explored through social identities, which modulate

how developers represent security, resulting in complex constructions of software and

personal responsibility. Identifying with others enhances developers’ responsibility, but

an absence of shared identities can lead to responsibility being rejected. A final study

5

utilises dual processing theory to explain why security vulnerabilities are ‘invisible’ to

developers, using a groundwork study and power analysis to emphasise the theory’s po-

tential to explain insecure behaviours. Phase one implications and identification of latent

psychological dimensions reduce soft skill ephemerality and speak to improving software

learning development processes. Phase two implications speak to enhanced theoretical un-

derstandings of how social and cognitive psychology can explain secure coding behaviours,

practical applications of raising awareness of dangers of intuitive mindsets and improving

responsibility through freelance platform gamification, and research implications such as

power analyses. This thesis advances our current understanding of the human element in

secure coding.

6

Contents

Declaration 2

Acknowledgments 3

Abstract 4

Statement of Authorship 9

List of Tables 11

List of Figures 12

1 Introduction 16
1.1 Research Questions . 17
1.2 Thesis Construction . 18
1.3 Thesis Creation . 20
1.4 Rationale for Multi-Part Format . 20
1.5 Personal Contributions . 21

2 Literature Review 22
2.1 Current Landscape . 22
2.2 Software Security . 24

2.2.1 Tooling . 25
2.2.2 Artifacts . 26

2.3 Applications of Psychology . 27
2.3.1 Cognition . 28
2.3.2 Social . 32

2.4 Soft Skills . 35
2.5 Other Psychological Perspectives . 37
2.6 Summary . 39
2.7 Methodological Motivations . 40

2.7.1 Overarching Methodological Commitments 40
2.7.2 Research Designs . 42
2.7.3 Analytical Methods . 45

2.8 Open Science . 49
2.8.1 Preregistrations . 49
2.8.2 Data Sharing . 50
2.8.3 Computing Environments . 51
2.8.4 Preprints . 51
2.8.5 Open access . 51
2.8.6 Summary . 52

3 The Soft Skills of Software Learning Development: The Psychological
Dimensions of Computing and Security Behaviours 53
3.1 Statement of Continuous Thesis Summary 60

7

4 What’s in an undergraduate Computer Science Degree; Alumni percep-
tions about soft skills in careers 61
4.1 Statement of Continuous Thesis Summary 91

4.1.1 Contribution to Thesis Argument and Forward Trajectory 92

5 Everything but Programming; Investigating Academics’ Perceptions of
Embedded Soft Skills in Computer Science Undergraduate Education 94
5.1 Statement of Continuous Thesis Summary 126
5.2 Synthesising Phase 1 . 126

5.2.1 Communication and Teamwork . 127
5.2.2 Problem Solving and Critical Thinking 129
5.2.3 Contribution to Thesis Argument and Forward Trajectory 132

6 Recognising The Known Unknowns; the interaction between reflective
thinking and optimism for uncertainty among software developer’s secu-
rity perceptions 134
6.1 Statement of Continuous Thesis Summary 151

6.1.1 Contribution to Thesis Argument and Forward Trajectory 152

7 Can You Hear The ROAR of Software Security? How Responsibility,
Optimism and Risk shape developers’ security perceptions 154
7.1 Statement of Continuous Thesis Summary 193

7.1.1 Contribution to Thesis Argument and Forward Trajectory 194

8 Software Vulnerabilities as Cognitive Blindspots; assessing the suitabil-
ity of a dual processing theory of decision making for secure coding 196
8.1 Statement of Continuous Thesis Summary 222

8.1.1 Contribution to Thesis Argument . 223

9 General Discussion 225
9.1 Summary of Results . 226
9.2 Answering Research Questions . 227
9.3 Theoretical Implications . 229

9.3.1 Soft Skills and Pedagogy . 230
9.3.2 Cognitive Psychology Applications 230
9.3.3 Social Psychology Applications . 231

9.4 Practical Implications . 232
9.4.1 Curriculum Design . 233
9.4.2 Closing the Temporal Gap . 234
9.4.3 Rewards for Secure Coding . 234
9.4.4 Increasing accountability . 234
9.4.5 Educating engineers on decision making styles 235

9.5 Final Thesis Structure . 235
9.6 Reflections on Methodological Coherence and Theoretical Integration 237
9.7 Limitations . 238
9.8 Further Work . 240

8

9.9 Conclusion . 242

Consolidated Bibliography 244

9

Statement of Authorship

Chapter Title: The Soft Skills of Software Learning Development: The Psychological
Dimensions of Computing and Security Behaviours

Publication Status: Published

Published as: Ivory, M. (2022). The Soft Skills of Software Learning Development: The
Psychological Dimensions of Computing and Security Behaviours. Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering 2022,
317–322. https://doi.org/10.1145/3530019.3535344

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor and peer-reviewer feedback.

Chapter Title: What’s in an undergraduate Computer Science Degree; Alumni percep-
tions about soft skills in careers

Publication Status: Under Review

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor feedback.

Chapter Title: Everything but Programming; Investigating Academics’ Perceptions of
Embedded Soft Skills in Computer Science Undergraduate Education

Publication Status: Submitted

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor feedback.

Chapter Title: Recognizing the Known Unknowns; the Interaction Between Reflective
Thinking and Optimism for Uncertainty Among Software Developer’s Security Percep-
tions

Publication Status: Published

https://doi.org/10.1145/3530019.3535344

10

Published as: Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (2023).
Recognizing the Known Unknowns; the Interaction Between Reflective Thinking and
Optimism for Uncertainty Among Software Developer’s Security Perceptions. Technology,
Mind, and Behavior, 4(3: Winter 2023). https://doi.org/10.1037/tmb0000122

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor and peer-reviewer feedback.

Chapter Title: Can you hear the ROAR of software security? How Responsibility, Opti-
mism And Risk shape developers’ security perceptions

Publication Status: Under Review

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor and peer-reviewer feedback.

Chapter Title: Software Vulnerabilities as Cognitive Blindspots; assessing the suitability
of a dual processing theory of decision making for secure coding

Publication Status: Submitted

Principal Author: Matthew Ivory

Contribution: Theoretical conceptualization; manuscript development; manuscript revi-
sions based on supervisor feedback.

Signed confirmation that the above information pertaining to author contribution is cor-
rect

Matthew Ivory John Towse Mark Levine Miriam Sturdee Bashar Nuseibeh

https://doi.org/10.1037/tmb0000122

11

List of Tables

3.1. Coefficients, t-values and p-values for the linear regression of CRT predicting

OWASP vulnerability.

4.1. Values of the factor loadings of the final EFA, ordered by factor eigenvalue and item

loading strength.

5.1. Relevant participant demographics, including their position within the department

and the delivery year of core modules.

5.2. The skills identified in Chapters 4 and 5 as being important for software learning

development. 5a refers to study one and 5b to study two in Chapter 5.

6.1. Reported Ages of Participants Included in the Analysis.

6.2. Qualitative Questions Presented to Participants in the Order Listed.

6.3. The Raw Percentage Agreement Between the Primary Researcher and the Two Re-

searchers Who Completed the Validation Task.

6.4. Transformation of Optimism Task and PURL Scores Toward a Normal Distribution.

6.5. Model Coefficients of the Terms Used in the Modelling of the Presence of

Uncertainty-Related Language.

6.6. Chosen Model for the Second Step Model Using Zero-Truncated PURL as a Depen-

dent Variable.

7.1. Reported age of participants.

8.1. Demographic breakdown of participant ethnicity.

8.2. The presentation order and attributes of the Python puzzles presented to partici-

pants. The puzzle ID relates to the original ID given in Brun et al. (2023) and cyclomatic

12

scores are a measure of code complexity with higher scores indicating more difficult code

to comprehend or modify.

8.3. Percentage of correctly solved answers compared to the sample from Frederick

(2005).

8.4. Potential effect sizes and samples reported from the simulation and power analysis.

* = this duplicated measure is the result of it being included in a second model from hy-

pothesis 3, ** = the values for cybersecurity are based upon linear regression predictions

and assume a linear relationship between power, coefficient, and sample size.

9.1. The skills identified in Chapters 4 and 5 as being important for software learning

development. 5a refers to study one, and 5b to study two in Chapter 5. This graph is

replicated from the Statement of Continuous Thesis Summary in Chapter 5.

List of Figures

2.1. A bibliometric analysis of the co-occurrence of keywords taken from the collection of

research publications spanning the PhD project.

3.1. Outline of research phases within the planned work.

3.2. Transmission of shallow skills can be expected to develop whereby teaching staffs’

understanding of which skills are important feed into the skills students pick up on, which

are reflected in alumni use of these skills.

3.3. Box plot of mean OWASP vulnerability scores by CRT score split by population.

4.1. Histogram of undergraduate graduation year split by department. Bars are grouped

into ten-year intervals.

4.2. Histogram of age and gender splits. Bars are grouped into five-year intervals.

4.3. Survey flow with CS alumni filling out an additional section regarding their expe-

13

rience working with security. This focussed on whether their employment was linked to

security work, and how much of their work is concerned with security.

4.4. Correspondence Analysis plotting skill importance between alumni groups. Dimen-

sion one can be interpreted as importance and explains 84.99% of variance, with the

second dimension interpreted as differenced in department explaining only 10.19% of vari-

ance.

4.5. A representation of the absolute difference in distance and direction between alumni

for each skill. As dimension one explains so much variance, omitting dimension two still

provides a strong representation of the skills reduced to a single dimension.

4.6. Plot of the fitted probabilities for all skills with significant differences between the

two departments. Each individual plot indicates the differences between alumni responses

for each rating level.

4.7. Joint correspondence analysis of skills and their perceived originating source as either

university, through hobbies or through work, split by department. Only items with an

associative strength greater than .25 are included in the plot for clarity. Arrows indicate

the angles of association.

4.8. Associations of skills for each source of development. Items plotted closer towards

the zero axis (the top) have a smaller associative angle, indicating a stronger associa-

tion, and items further from the centre are more strongly associated. A strong cluster of

positively connected skills are seen in the arc between 0 and 10, indicating their strong as-

sociation to their respective sources. Skills seen to be closely associated with a source are

within the righthand side of the positive angles, and skills that are not associated with a

particular source have negative associations and are seen towards the lefthand side.

4.9. Frequencies of each reported skill type per participant.

14

4.10. Soft skills mentioned within the answers of which technical skills were taught and

used in employment. Items mentioned once only are omitted.

4.11. A split-by-skill representation of each skill rated for CS alumni’s security usage in

employment. Items closer to the centre or each other indicate minimal differences in the

way skills are used around security. Dimension one provides over 70% of variance and so

items located further along the x-axis indicated greater perceived importance.

4.12. The source of development for the top five skills reported by CS alumni.

4.13. A plot highlighting the skills that had significant differences between the two alumni

populations.

5.1. A stacked column plot indicating the most mentioned soft skills across all curricula.

Skills mentioned only once in an institution’s curriculum were removed.

5.2. Separating the frequencies by soft skill shows the patterns (or absence of) across

institutions. Only the top six skills are shown.

5.3. Presenting soft skills split by their institution offers a different perspective, showing

how institutions present different skills within their curricula.

5.4. Skills that occur more than three times are included, and only skills that occur more

than five times are labelled. This offers a representation of how soft skills are referenced

within curricula information. Terms with no contextual value, such as ‘computer science’

and ‘module’ are removed as they overwhelm the plot due to their high frequency.

5.5. Network plot of the soft skills and co-occurrences through modules. The connections

indicate skills that are taught in the same modules. Yellow nodes are soft skills, and dark

purple nodes are individual modules

5.6. Proportion of modules within an institution that includes the top six reported soft

15

skills.

5.7. Inspection of soft skills by course structure (module years), no distinct pattern is

observed across skills.

6.1. Map Displaying Approximated Location/Nationality Data of Participants on a Conti-

nent Level.

6.2. Survey Flow Representing the Presentation Order of Measures Given to Participants.

6.3. Distribution of the PURL Scores Before and After Transformation Toward a Normal

Distribution.

6.4. Interaction Plot Between CRT Score (the Propensity for Reflective Thinking) OVT

Score (Optimism Bias) and Model Predicted Values.

7.1. Map displaying the combined location and nationality data of participants on a con-

tinent level. This represents an approximation of both location and nationality of each

participant due to typically low immigration movement. Most participants were from

North America, Europe, or Asia.

8.1. An example of a puzzle containing a blindspot. All puzzles were formatted similarly,

with the context given first, followed by an image of the code, and then asked to describe

the code’s behaviour. Each puzzle was prefaced with the scenario as context. The context

would explain the general setup and use of the code section and provide examples, if nec-

essary, of its use case. It also noted that readers should assume all necessary permissions

are given for execution.

8.2. Study pipeline that participants experienced. All participants experienced the same

survey flow with randomisation in some sections.

16

1 Introduction

Software has a significant role in modern society and is relied upon for many vital tasks.

Financial transactions, medical patient records, and nationally sensitive information de-

pend on software security to conduct actions with integrity and without interference.

Software security is invaluable for software, as malicious tampering or accidental access

to sensitive information can be damaging and potentially cause personal harm (Palassis

et al., 2021). Accordingly, software engineers need to mitigate vulnerabilities within soft-

ware.

Despite the importance of security, we are constantly identifying insecure software in

production-quality software. Over 80% of Android applications contain cryptographic

errors (Egele et al., 2013; Weir et al., 2020b), and many of the vulnerabilities are well-

known, with 70% of software containing one of the ten most common vulnerabilities (Ve-

racode, 2023), with some vulnerabilities having been common knowledge for almost two

decades. Awareness alone does not ensure software security, so other factors must influ-

ence its existence (Rauf et al., 2021).

Software is made by people for people, and it can be considered a by-product of human

behaviour (John et al., 2005). Software engineers’ cognitive and social dimensions in-

fluence functionality and security throughout software development. The psychological

influences can result in irrational behaviours leading to security not being appropriately

accounted for in software. As a result, developers’ behaviour can be positioned as a root

cause for the presence of vulnerabilities in software.

Decision making and the manifestation of behaviour can be examined through psycholog-

ical theories and measures, allowing for an increased understanding of influences. Psy-

chology in software development is not a new idea reaching as far back as the 1970s

(Weinberg, 1971), with a research focus on secure programming environments more re-

cently (Graff & Wyk, 2003). Despite this, technological developments have typically dom-

17

inated software engineering (Lenberg et al., 2014), and technical interventions have been

deployed in hopes that technology can remove human influence. Exceptional software

engineers need more than just technical skills of programming and systems knowledge

(Destefanis et al., 2017), requiring interpersonal skills and critical thinking skills as well

(Groeneveld et al., 2020b). Further research is still needed to understand the role of psy-

chology within software engineering.

To best explore the role of psychological theories in secure software development, it is ben-

eficial to start from a high-level perspective by exploring the perceptions held by relevant

populations. To achieve this aim, the “soft skills” or non-technical skills that support the

application of technical skills should be targeted. Soft skills are a more familiar idea in

software engineering as a common concept of the required skills outside of programming

that contribute to project success. Soft skills are the observable manifestations of latent

psychological structures. Once we identify the valuable skills, the psychological structures

can be extracted and measured to enhance our understanding of security behaviours.

1.1 Research Questions

This PhD seeks to understand whether theories of decision making and social identity

can explain developers’ computing and security behaviours within software engineering. I

present two research questions that structure the thesis:

1. What non-technical skills (or soft skills) are valued within Computer Science and

software engineering?

2. Can psychological variables and constructs shape security behaviours within soft-

ware engineering?

To answer these, I present a series of chapters exploring how social and cognitive fac-

tors influence secure software development. The thesis is separated into two phases, with

phase 1 providing important information about soft skills valued within Computer Sci-

ence (CS) education, followed by translating these findings into more psychologically

18

grounded theories. These dimensions are then tested in phase 2.

Phase 1 comprises Chapters 4 and 5, which address the soft skills delivered during a CS

higher education. Psychology theories are not well established within CS or software engi-

neering, so it is unclear which theories are best deployed for maximal effect. To mitigate

this issue, I leverage valued soft skills within these domains. They are a familiar concept

for students and professionals, meaning the skills can be used to identify the relevant

latent psychological theories that can help us determine the influence of developer’s psy-

chology for secure software development.

Phase 2 (Chapters 6, 7, and 8) targets the second research question. The psychologi-

cally motivated ideas derived from phase 1 are the Social Identity Approach (Haslam,

2012) and the dual processing theory of decision making (Evans, 2003), which are ap-

plied towards security perceptions and software vulnerability detection. These studies

demonstrate the value of these theories within software engineering and contribute to the

understanding of the psychological dimensions of computing and security behaviours.

1.2 Thesis Construction

This thesis is structured as follows:

In Chapter 2, I review relevant literature that supports the research chapters. As part of

the multi-part format, where each research chapter is an individual manuscript submitted

to peer-reviewed venues, there is a need for concision that results in the introduction sec-

tions being selective in the literature covered. Depending on the venue audience, certain

ideas or concepts are given reduced space simply because they are assumed knowledge.

Chapter 2 addresses three main concepts. I review software security issues in general and

how software and its artifacts result in insecure code. I then cover relevant cognitive and

social psychological theories investigated within the secure software development domain.

Finally, I review soft skills within software engineering and education. I then present a

methodology review covering the core research designs, analytical approaches, and the

19

open science approach adopted throughout the thesis. Again, including methodological

reviews are not part of the expected format of typical research papers, so I take the op-

portunity to provide details that are intentionally omitted from later chapters.

Chapter 3 was presented at a doctoral symposium and served as the primer for the an-

ticipated research to be carried out during the PhD and outlines the proposed work and

research justifications. This chapter effectively preregisters the PhD project. The differ-

ences between the expected and actual outcomes are discussed in Chapter 9.

Chapter 4 is the first half of phase 1, where I explore the perceptions of CS and Psychol-

ogy graduates to understand the non-technical skills considered valuable for their careers.

Graduates reported where these skills were primarily developed, offering an insight into

how non-technical skills fit into their personal development. The Psychology sample is

used as a comparative sample, highlighting the differences between the two degrees. The

findings suggest that graduates value skills of problem solving, communication, and team-

work above others. They also report that only problem solving is seen to be associated

with their education. A focus on those working in security roles highlighted organisational

skills over the general developer population.

Chapter 5 is the second part of phase 1 and explores staff perceptions of how non-

technical skills are integrated into their curriculum materials. Through a multi-site

interview and text analysis of curriculum data, these two studies explore staff perceptions

on soft skills and how they are presented to students. These perceptions are then

compared against the soft skills extracted from curriculum content. The findings identify

an alignment between employers and educators, suggesting that the proposed soft skills

gap (Akdur, 2021) results from how students value soft skills. The findings from Chapters

4 and 5 suggest that the psychological underpinnings of social skills of groupwork,

communication, and cognitive skills of critical thinking and problem solving warrant

further investigation.

20

The thesis then takes the findings from phase 1 and translates the valued soft skills into

their potential latent psychological traits. These traits are explored in phase 2.

Continuing with exploring perceptions, Chapters 6 and 7 deploy a quantitative and qual-

itative analysis on the same dataset. The study gathered data regarding security per-

ceptions within software development from software engineer freelancers and current CS

students. Initially, these analyses were planned to be written as a single chapter, but it

was decided that separate chapters were needed to preserve the separate implications.

Chapter 6 suggests that a complex relationship between cognitive reflection and optimism

exists with increased security awareness. Chapter 7 indicates that developers discuss re-

sponsibility, optimism, and risk diversely across secure software development processes.

Chapter 8, the final research chapter, tests the hypothesis that software vulnerabilities

exist as blindspots in software developer’s cognition. I interpret this through dual process-

ing theory and apply intuitive and reflective thinking measures in a code comprehension

task. This chapter uses a modest sample to simulate data for power analyses and assess

appropriate samples required for software engineering research. The findings suggest that

dual processing theory may be appropriate for secure software engineering.

Chapter 9 concludes the thesis, where I discuss the findings and implications, along with

the limitations and future work.

1.3 Thesis Creation

The thesis is fully reproducible, with necessary documents, images, and files stored in an

open-access repository: https://osf.io/2fpbq/. The repository contains links to all the

research chapter components, providing easy access to all the work packages.

1.4 Rationale for Multi-Part Format

The studies presented in Chapters 3-8 are written as research papers; all chapters are

published or submitted to peer-reviewed venues.

https://osf.io/2fpbq/

21

• Chapter 3 is published in the conference proceedings of The International Confer-

ence on Evaluation and Assessment in Software Engineering (EASE) 2022.

• Chapter 4 is under review at ACM Transactions on Computing Education.

• Chapter 5 is under review at ACM Transactions on Computing Education.

• Chapter 6 is published in APA Technology, Mind & Behaviour.

• Chapter 7 is under review at Springer Empirical Software Engineering.

• Chapter 8 is under review at ACM Transactions on Software Engineering and

Methodology.

The multi-part format was chosen given the interdisciplinary nature of the research and

the valuable contributions each chapter makes, and the chapters are presented as distinct

research papers. Together, they provide a cohesive narrative that answers the research

questions posed in this thesis. Most chapters target software engineering audiences rather

than psychological ones because, whilst the content is very much psychological, the rele-

vant audiences are primarily those carrying out research in software engineering.

1.5 Personal Contributions

For this thesis, I was responsible for the majority of the work undertaken across the the-

sis; this included theoretical conceptualisation, study design, ethics, data collection, data

analysis, primary manuscript writing and drafting, manuscript submissions, and respond-

ing to the peer-review process. This was under the guidance of my supervisors, and un-

doubtedly, the thesis would not be in the state it is without them: Professor John Towse,

Professor Mark Levine, Dr Miriam Sturdee (Lancaster University & St. Andrews Univer-

sity), and Professor Bashar Nuseibeh (of Open University & Lero Institute). Contribu-

tions outside of this are noted in the appropriate chapter acknowledgements.

22

2 Literature Review

This thesis explores the interdisciplinary space between psychology and software engineer-

ing, specifically exploring the social and cognitive influences on secure software develop-

ment. In this chapter, I contextualise the thesis by reviewing relevant research around

secure software engineering, psychology implementation in software engineering, and soft

skills in software development. A visual representation of the research is presented by

constructing a bibliometric network plot (Figure 1), followed by an in-depth review of

specific papers. As the thesis is in the multi-part format, each chapter has its own litera-

ture review, so this section intentionally omits content presented in later chapters. I then

provide a methodological review, where I discuss paradigms and approaches, followed by

open science practices highlighting the less visible components enacted.

2.1 Current Landscape

A bibliometric analysis visualises the current research landscape, offering a quantitative

approach to understanding the relationships between publications (Donthu et al., 2021).

In doing so, the research is placed in reduced dimensional space, offering a high-level

overview of their connectivity.

Keyword co-occurrences were used to represent relationships between publications that

share keywords. Co-occurrences were calculated with VOSviewer (Eck & Waltman, 2009)

using 1,164 publications collected between October 2020 and December 2023. Keywords

were normalised to British English spelling, and similar terms were combined (e.g. “dual

process model” and “dual-process theory”). Terms that appeared more than five times

were retained, and manual inspection removed terms unrelated to the thesis (e.g., neuro-

science terms). The files for analysis reproduction are available at https://osf.io/2fpbq/.

The network in Figure 1 contains six clusters. The following observations can be made:

1. The cluster Software Security shares minimal variance with others, indicating its

relative distinctiveness as a domain based on the publications collected.

https://osf.io/2fpbq/

23

Figure 1
A bibliometric analysis of the co-occurrence of keywords taken from the collection of re-
search publications spanning the PhD project

2. The clusters of Decision Making and Behavioural Software Engineering share some

overlap, but the terms are minimally co-located. That is, terms from Decision Mak-

ing are not interspersed amongst the terms in Behavioural Software Engineering;

instead, a small number of terms cause the overlap. It highlights that human as-

pects of software engineering are being carried out using psychological frameworks.

Behavioural software engineering is closer to Computing Education and terms relat-

ing to novice programmers.

3. The separation between Decision Making and Software Security suggests these areas

have little co-occurrence or exposure. It does not indicate an absence, as researchers

have conducted work in this space (e.g., Brun et al., 2023), but instead suggests

24

minimal exposure. A higher co-occurrence between key terms would result in more

proximal distributions. The distance between these clusters suggests that more work

is needed regarding psychological theories applied towards software security.

4. The clusters of Computing Education and Soft Skills overlap, suggesting soft skills

research is applied in educational contexts.

It is worth noting that keywords are author-generated and not a standardised process,

meaning that difference in terminology across disciplines may influence the plot. As the

collation of research articles was personalised to the thesis, it was shaped by the research

questions and how the search and citation acquisition occurred. Despite this, the network

shows clustering and relationships between words. The main takeaway is that social and

cognitive psychology are poorly associated with software engineering security research.

My thesis aims to increase the overlap between the clusters, and in doing so, the research

explores uncharted ground.

2.2 Software Security

Relevant software security research is split into topics of Tooling, which refers to the tools

available to software engineers, such as Application Programming Interfaces (APIs) and

how developers interact with these, and Artifacts, which covers the materials that support

software use (such as documentation) and how their presence and usability impact secure

coding practices. This section is restricted to focusing on software engineers rather than

others in the development process (e.g., users or non-technical stakeholders) to ensure it

has maximal relevance in framing the thesis.

As articulated in Ivory et al. (2023c), software vulnerabilities are the unexpected logic

flows that create software behaviour that enables unintended access to information or

functionality. Vulnerabilities are pervasive within software engineering with serious ramifi-

cations such as impact on medical care (Smart, 2018). Many vulnerabilities detected are

not new, and 70% of software contains a common vulnerability (Veracode, 2020). This

25

issue indicates that the support given to software engineers is inadequate, and developers

must practise secure coding to reduce the presence of vulnerabilities. Secure coding is de-

fined as the practice that ensures software “does not contain known vulnerabilities” (Rauf

et al., 2021).

2.2.1 Tooling

Tools can improve security practices by raising the salience of security issues, such as

interactive tools that highlight insecure code in real-time (Zhu et al., 2014), which reduces

the temporal distance between writing and identifying issues (Oliveira et al., 2014). It is

important to note that the mere existence of these tools does not automatically mitigate

security issues, but they must be used with the intent of achieving secure code (Witschey

et al., 2015). Security is just one of many competing interests within the development

cycle, with other goals including functionality, usability, and privacy (Rauf et al., 2021).

These competing goals may reduce the obligation or intention to ensure security, which

can often be more salient to developers.

When developers deviate from tool default behaviour to suit their personal preferences

(Danilova et al., 2020), this can result in the suppression of security warnings when devel-

opers consider them annoying, irrelevant, or even inaccurate (Gorski et al., 2020). Devel-

opers may view this personalisation positively, but if they experience memory lapses and

forget to reactivate settings to check security, the software may be assumed to be secure

when it is not (Anu et al., 2020).

Tool diffusion occurs through communities (Rogers, 1995), and adoption of new tools

is higher when previous experiences were positive (Witschey et al., 2014). Otherwise,

developers select recognisable tools regardless of security implementation, indicating a

familiarity bias. Tool diffusion relies upon curiosity (Weir et al., 2016), and diffusion can

be constrained by institutional procedures that delay procurement (Xiao et al., 2014).

Security’s reactive nature is seen in that the motivation to adopt new tools is linked to an

increased perception of vulnerability or need for security compliance (Ifinedo, 2012).

26

Developers are often assumed to code securely by default (Wurster & van Oorschot, 2008)

but are actually observed to prioritise functionality over security (Assal & Chiasson,

2019). This functionality-first mindset is evidenced through the event-driven nature of

security implementation (Lopez et al., 2019a). For example, waiting until issues are dis-

covered, or stakeholders requesting fixes (Gutmann, 2002). The mindset is partly borne

from a reliance on APIs to enact secure functionality (Lopez et al., 2020a) and an as-

sumption that tools are secure by default (Xie et al., 2011). This assumption can lead

to a reduced sense of responsibility, as developers deflect blame towards the API when

software vulnerabilities are detected (Wijayarathna & Arachchilage, 2019). Developers

are often reluctant to update API libraries in their software (Kula et al., 2018) because of

concerns about breaking functionality, which would increase the workload associated with

performing security updates (Huang et al., 2019).

2.2.2 Artifacts

Artifacts support software use, and include manuals and documentation (Nazar et al.,

2016). In the context of the thesis, “artifact” relates to the by-products of software and

not research which includes prototypes or publications (Winter et al., 2022). In user

security studies, system security is constrained by user behaviour. Users are not moti-

vated to engage in security practices in addition to their primary goal (Pattinson et al.,

2015), with security being viewed as a barrier (West, 2008). Rather than expect voluntary

changes in behaviour, it is better to design software that mandates security by design. De-

spite these findings, they are infrequently applied to software developers (Green & Smith,

2016), particularly for API developers, who provide the tools for developers (Acar et al.,

2017a).

Developers are reliant on API developers to create usable documentation (Nadi et al.,

2016). Where documentation usability is low, developers often produce functional but

insecure code (Acar et al., 2017c). API developers must recognise that their users – soft-

ware developers who are not always experienced in secure coding – must be accommo-

27

dated and not treated as security experts (Amin & Bhowmik, 2021). API documentation

should incorporate easy-to-use examples and indicate where default function behaviour

is insecure (Patnaik et al., 2022). The difference between expertise expected by API de-

velopers and actual user expertise can result in unusable documentation (Pieczul et al.,

2017). If official artifacts are not usable, they are an additional strain on the developer’s

attention and workload. This strain leads to frustration, which drives developers to seek

usable information elsewhere (Gorski et al., 2020).

Q&A forums, such as StackOverflow, offer more readily-used solutions to software tasks,

but their community-based nature may mean answers are provided by non-experts, and

security professionals do not typically vet these sites. StackOverflow answers offer more

insecure code than official documentation (Acar et al., 2016a), with a quarter of questions

only receiving insecure solutions (Acar et al., 2017b). These responses are not simply

due to well-intentioned novices submitting insecure solutions, as even experienced users

submit insecure solutions (Rahman et al., 2019).

The ability of a concerned developer to actively check proposed answers for security

is limited, as many accepted answers possess no external links to support the answer

(Tahaei et al., 2020b). Answers are often selected based on non-code features, such as

description details (van der Linden et al., 2020b), meaning superficial criteria are used

for decision making. This behaviour is not unexpected because those asking questions

are doing so out of necessity (since they do not have a solution) and likely do not possess

the knowledge to assess the technical aspects of an answer, so the issue is with the infor-

mation provided. Insecure StackOverflow solutions are present in over 15% of Android

applications (Fischer et al., 2017), suggesting these are directly copy-pasted into projects

without security considerations.

2.3 Applications of Psychology

In recent years, psychology has been increasingly applied within software engineering.

Applying psychology to programming is not a novel idea; it was first mentioned in the

28

1970s, with psychology being applied to software engineering more broadly in the 2000s

(Blackwell et al., 2019).

This thesis sits within the growing field of human-centred software engineering, contribut-

ing to a tradition that includes work by Blackwell et al. (2001), Petre (2009) and Whittle

et al. (2021) on embedding human values into software practice. These foundational

contributions have advanced the understanding of how cognition, values, and user im-

pact shape software engineering, with a particular emphasis on tool interaction, design

cognition, and ethical alignment. Building on this, the current thesis extends the human-

centred software engineering agenda by focusing on psychological theories (specifically

dual processing theory and social identity theory) to investigate how developers’ cognitive

and social makeup influences secure software behaviours. Rather than focusing on pre-

viously well-studied concepts such as the cognitive dimensions of notation framework, it

adopts a behavioural lens to examine how psychological and social-cognitive mechanisms

inform computing and secure computing behaviours. This complements existing human-

centred software engineering literature by deepening the behavioural science perspective

and offering a dual-theoretical framing - cognitive and social - that remains underexplored

in the domain. In doing so, it strengthens our understanding of secure software engineer-

ing not only as a socio-technical enterprise but as a psychologically-grounded human

activity, offering new empirical and theoretical contributions to the human-centred soft-

ware engineering landscape.

2.3.1 Cognition

This section reviews cognitive biases, working memory and cognitive load, cognition-

oriented interventions, and early mentions of dual processing theories. Each section over-

laps with the thesis research, supporting the claims made. Neighbouring research areas,

such as neuroscience programming research, are omitted as they do not contribute to the

thrust of the thesis.

29

2.3.1.1 Cognitive biases. Cognitive biases are systematic deviations from expected

decision making performance (Evans, 1984). They are borne from cognitive heuristics,

the “mental shortcuts” used to arrive quickly at optimal or near-optimal decisions (Beike

& Sherman, 1994). Biases result in flawed judgments when heuristics are systematically

applied to ill-suited contexts, and software developers are no different from the general

population regarding their susceptibility to biased thinking (Ralph, 2013). When errors

are missed, they can become vulnerabilities (Patel et al., 2023), and the lack of awareness

over biases results in non-optimal decisions being made (De Wit et al., 2021).

Within software engineering, biases have been identified across the development cycle

(Ralph, 2013), and mitigating biases is not always straightforward, often requiring unique

interventions for specific biases (Mohanani et al., 2020). Biases influence the tools and

methods that developers choose, and developers typically prefer familiar tools (Sergeyuk

et al., 2023), even when they are ill-suited for a particular task (Anu et al., 2020). No

single tool is ideal for every task, and no single tool alone can detect all vulnerabilities

(Elder et al., 2022), so preference for familiar tools can lead to biased decisions.

Biases are notoriously persistent and difficult to combat (Petre, 2022). Encouraging de-

velopers to think reflectively (Chattopadhyay et al., 2022) can increase attentional focus

towards security (Anu et al., 2016). Another method is to reduce the complexity of the

environment, requiring fewer variables to be evaluated (Nagaria & Hall, 2020).

2.3.1.2 Working Memory and Cognitive Load. Working memory is a cognitive

system that holds information for guiding judgment-making (Baddeley, 1986; Jarrold &

Towse, 2006). It comprises several mental components controlled by a central executive

system that directs attentional focus (Baddeley & Hitch, 1974), effectively managing

short- and long-term memory (Chai et al., 2018).

Working memory capacity has been suggested to have a major influence on programming

learning (Prat et al., 2020). Working memory is required during code comprehension to

30

maintain a mental model of the current code state, and as code increases in complexity,

developers likely forget or confuse information (Crichton et al., 2021). Working mem-

ory capacity and recall are associated with the ability to detect non-localised code er-

rors (Baum et al., 2019), meaning higher capacity allows developers to understand more

complex non-linear code. Others find working memory capacity is mediated by program-

ming ability, suggesting a limited role of working memory itself (Bergersen & Gustafsson,

2011).

Humans do not possess a software security-specific working memory component (Oliveira

et al., 2014), meaning that to code securely, it must be attended to fully, but security is

just one of many competing goals (Rauf et al., 2021). Working memory has been applied

to security contexts with mixed results. Oliveira et al. (2018) tested working memory

against vulnerability detection in Java APIs and found no meaningful effect; however, the

same measures applied to Python code found an association between long-term memory

recall and vulnerability detection (Brun et al., 2023), suggesting a possible language-

specific association.

Cognitive load is the amount of information that working memory can process at any

given time. It comprises three components: intrinsic, extrinsic, and germane load. The

inherent difficulty of a task relates to intrinsic load, extrinsic load is the presentation of

the information, and germane load is the processing effort needed to translate the task

information into internal models (Sweller et al., 1998). Many software tasks have a high

intrinsic load due to the nature of software development (Sedano et al., 2017), and so

extrinsic and germane loads are the only aspects that can be reduced (Gonçales et al.,

2021). As software grows, new functionality is often appended to existing code and made

to fit rather than optimised, which increases intrinsic load (Helgesson, 2023).

Working memory’s influence on software development may not be as easily detected as

it is elsewhere because of the development environment. Tools may be used to reduce

31

environment complexity (Brachten et al., 2020) by reducing extrinsic load by offloading

information to technology that would otherwise overwhelm working memory (Zayour et

al., 2013). For example, checklist strategies can reduce cognitive load when conducting

code reviews (Gonçalves et al., 2020) or by assigning information to variables.

2.3.1.3 Interventions. The success of boosting interventions in software engineering

offers support to the notion that cognition plays a significant role in secure coding. When

unprompted for security across different experience levels, it is infrequently implemented,

but security requests increase secure coding (Naiakshina et al., 2018). The situation is

more complex than just “being aware of security means it is implemented” because when

asked about insecure solutions submitted, some developers refused to correct vulnera-

bilities without additional compensation (Naiakshina et al., 2019). Hallett et al. (2021)

replicated the success of boosting interventions, indicating that many developers can code

securely but (consciously or unconsciously) only do so if adequately motivated. Even

when developers indicate personal responsibility for security, it is not addressed unless

prompted (Danilova et al., 2021). Lightweight interventions such as workshops can im-

prove security motivations by providing information that may not have previously existed

(Weir et al., 2020a), allowing teams to recognise new approaches and reflect on their po-

tential. The broadening of perspectives can be beneficial even in groups without security

expertise (Shreeve et al., 2022).

2.3.1.4 Dual Processing Models. The dual processing theory of decision mak-

ing (Evans, 2003) suggests that humans make judgments using one of two systems. The

default-interventionist psychological model of dual processing theory proposes two cogni-

tive systems (Evans & Stanovich, 2013): the default and intuitive system 1 and a more

cognitive and rational system 2 that only engages when sufficiently cued (Damnjanović et

al., 2019). System 1 processing is the default for decision making, driven by heuristics to

reduce complex judgments into simpler operations (Kahneman et al., 1974). In contrast,

system 2 processing is deployed when individuals seek an optimal solution by using all

available information but demands more cognitive effort – and as a result, it is used spar-

32

ingly. System 2 is interventionist and only overrides system 1 when a need for accuracy

is detected. System 1 is liable to generate simpler and less complete mental models than

system 2 (Johnson-Laird, 2010), and blindspots can reside in the gaps created.

So far, dual processing theory has been minimally introduced to software engineering,

primarily highlighting its theoretical potential (Petre, 2022; Pretorius et al., 2018). Lowe

(2019b) reinterpreted previous data through dual processing theory without capturing

measures of it and presented a potential application within computing education (Lowe,

2019a). No models of cognition for software engineering have accounted for dual pro-

cessing, meaning these models do not differentiate between the two processing systems

(Robins, 2022). One empirical study has been conducted with student populations for

defect detection in code (Buffardi, 2023); it was seen that more intuitive thinking styles

correlated with increased acceptance of code containing defects, suggesting that more re-

flective decision making is related to more frequent detection of defects. To the author’s

knowledge, empirical work has yet to be deployed in security contexts.

2.3.2 Social

Here, I review social psychological applications towards software engineering, focusing on

social identity. The social identity approach posits that to understand social behaviours

and individual perceptions, we cannot focus on the individual as an individual, but we

should focus on how behaviours are tied to social identities, which are a person’s self-

definitions of group memberships (Haslam, 2012). Social identity describes group-based

behaviours and how individuals ascribe group membership (Tajfel & Turner, 2010). Social

identities are self-defined groups that allow individuals to associate with others who share

emotionally significant values (Abrams & Hogg, 1990). Group members form perceptions

of others who share membership (the ingroup) and those who do not (the outgroup).

People typically show more prosocial behaviours towards ingroup members (Turner et al.,

1979) and increased negative behaviours towards outgroup members (Brewer, 2017).

33

2.3.2.1 Social Identity in Software Engineering. Software is not developed by

individuals in isolation. It is developed in rich social cultures that influence software pro-

duction (Sharp et al., 2000), requiring extensive communication (Lopez et al., 2020a).

Social identities are present within software engineering communities (Rauf et al., 2020),

where the identity of “software developer” is distinct even within an organisation (Back-

evik et al., 2019). Where social identities are strong enough to form self-perceived dis-

tinctive groupings, this can influence security behaviours, such as where developers avoid

asking security experts for advice (due to perceptions of unshared identities), as they see

themselves as wasting the expert’s time and instead seek information from peers (Nichol-

son et al., 2018). This behaviour can be detrimental, as developers may receive inaccurate

information based on perceived social groups and status.

Organisational security cultures are based upon the security-specific values expected

to be internalised by employees, and they are essential for the maintenance of security

practices (Haney et al., 2018), even in non-security industries (Poller et al., 2016). Where

security-positivity is seen as an attribute of a social group, it is perceived as a shared

responsibility distributed among group members (Assal & Chiasson, 2018b). An increased

security focus can lead to it being assumed a shared value amongst ingroup members

(Lopez et al., 2019a), supporting the security culture. Social and institutional structures

promote accountability, where responsibility for users heightens a developer’s security

sensitivity (Rauf et al., 2020).

In online communities, social interactions can increase membership strength (Mustafa et

al., 2023), which can lead to the communities being trusted similarly to in-person inter-

actions for security information (Xiao et al., 2014). On sites such as StackOverflow, the

conversations and forum posts promote these relationships (Lopez et al., 2019c). When

considered alongside the findings that StackOverflow solutions are frequently insecure

(van der Linden et al., 2020b), it is possible this trust is misplaced. Similarly, in software

security tasks that involve others (such as seeking assistance or advice), developers some-

34

times assume others are providing correct information, and fail to critically reflect on the

dangers of just trusting others (van der Linden et al., 2020a), particularly where their

identities are unknown.

Software ecosystems are large distributed systems of software united by a common tech-

nology (e.g., iOS ecosystem). These ecosystems unite diverse populations, including users

and developers who may otherwise have few shared values (Manikas & Hansen, 2013).

The underlying technology provides a common value across ecosystem users, affording a

shared social identity. These social networks promote increased ecosystem engagement,

driven by the ecosystem-based identity (de Souza et al., 2016). These shared values en-

courage ingroup affiliation, and the presence of shared values can improve performance

across development tasks where a common goal is identified (Teh et al., 2012).

If software engineers perceive no commonality between themselves and their users, then

user values may not be considered during development. Human values, such as diversity,

integrity, and responsibility, are poorly represented within software engineering (Whittle

et al., 2021), which results in unethical software, such as biased algorithms (Galhotra et

al., 2017). When implementing software, there is a limited understanding of the software

used within the context of society resulting in values not being integrated (Winter et al.,

2019). Where values are ‘breached’, it can lead to user dissatisfaction or abandonment of

software (Mougouei et al., 2018), causing issues for developers.

Group influences can affect secure behaviours. When making security decisions in a cy-

bersecurity context, decision making is influenced by the multiple perspectives available,

broadening the decision making space (Shreeve et al., 2020). Interactions between in-

dividuals can be pivotal in ensuring these perspectives and understandings are shared,

resulting in more optimal decisions being made, even for those without cybersecurity

expertise (Shreeve et al., 2022). Group interaction can reduce biases, with developers

offering more realistic estimates than when independently asked (Moløkken-Østvold &

35

Jørgensen, 2004).

2.4 Soft Skills

Soft skills are domain-agnostic, and are valued across industries, employers, and job roles.

Soft skills influence how effectively technical skills can be applied. They are the observ-

able manifestations of latent psychological attributes that complement technical skills

(Ahmed et al., 2015). It is helpful to consult research on soft skills as it offers an insight

into how psychological dimensions are valued in software engineering through familiar

terminology that many practising developers will be familiar with (e.g., problem solving).

Employers who consider technical skills comparatively easier to teach (Liebenberg et al.,

2014) view soft skills positively. They are typically independent of company size or or-

ganisation type (Galster et al., 2022), suggesting that they are not developed in response

to specific organisational structures. One issue with soft skills is that they are typically

poorly defined, so their definitions are inconsistent across software engineering research.

This issue is addressed in Chapter 4.

Within software engineering, soft skills are recognised as a significant distinction between

average and exceptional engineers (Capretz & Ahmed, 2018). SWEBOK (Software En-

gineering Body of Knowledge; Bourque & Fairly, 2014) represents the skills needed for

software engineering employment and recognises cognitive, social, and professional skills.

Soft skills are used throughout a career and are not limited to software-specific activities.

When acclimatising to a new workplace, employees can get overwhelmed by the need to

understand the social infrastructure, but soft skills ease transitions (Rabelo et al., 2022),

improve team integration, and enhance team productivity (Stevens & Norman, 2016).

Interpersonal skills of communication and collaboration are in high demand. Commu-

nication is required for most software roles, including design, programming, and testing

(Ahmed et al., 2012b), highlighting the social nature of software engineering. Social inter-

actions are commonly requested in job adverts (Montandon et al., 2021). Cognitive-based

skills, such as problem solving are considered critical for effective software development

36

(Matturro et al., 2019; Mtsweni et al., 2016), as it is a skill closely tied to programming

(Ahmed et al., 2012b). Problem solving and critical thinking allow real-world issues to be

translated into computational problems to be addressed through software solutions.

Software engineers are also expected to manage their environment, including time man-

agement, self-management, and conflict resolution (Matturro et al., 2019). These require

consistency in their practice to be considered a soft skill, as they are only beneficial with

their continued applications. The ability to move effectively between types of work re-

lates to environment management, and task switching is valuable, mainly when it involves

switching between autonomous work and group work (Ahmed et al., 2012a).

Security-focused domains may require different skills than what is needed in typical de-

velopment, and soft skills should also be valuable within these roles (Furnell & Bishop,

2020). Like general software engineering, communication is crucial (Armstrong et al.,

2020), as are interpersonal skills, adaptability, and innovation (Haney & Lutters, 2017).

Critical thinking, decision making and problem solving are also highlighted (Sussman,

2021), as well as organisational skills as a requirement for creating effective knowledge

bases (Graham & Lu, 2022). Like SWEBOK, CyBOK (Cybersecurity Body of Knowledge;

Rashid et al., 2021) highlights the importance of these skills.

It is essential to understand where soft skills are developed and how they are effectively

taught to aspiring developers. Employers expect graduates to possess the necessary career

skills, including the non-technical (Andersson & Logofatu, 2018). However, a gap between

education and employment is reported (Akdur, 2021), resulting in employers perceiving

graduates to be seeking employment without the necessary soft skills (Liebenberg et al.,

2014).

Delivering soft skills in higher education is essential because, as with students who start

their degree with diverse levels of technical skills, it is the same for soft skill competen-

cies. It is subsequently essential to ensure higher education provides the necessary skills

37

required for software engineering (Balaji & Somashekar, 2009). Exposure to industry-

relevant practical experiences can help students recognise the value of soft skills by inte-

grating them into software project coursework (González-Morales et al., 2011). Ensuring

that soft skills are embedded in modules is necessary to allow students to constantly use

these skills (Hazzan & Har-Shai, 2013). One way of incorporating soft skills is through

project-based learning (Zheng et al., 2015). This learning method typically requires con-

tinued engagement over an extended period, encouraging the development of soft skills

like time and meeting management (Carter, 2011).

2.5 Other Psychological Perspectives

Cognitive and social psychological approaches are not the only approaches applicable

within software engineering. In this section, I cover two other perspectives that could

have been taken in the development and synthesis of this thesis, as well as the reasons for

why they were not used in favour of more psychological approaches.

One approach is organisational psychology, which focuses on the behaviours and actions

that occur within the workplace and other organisational settings (Kraiger, 2001). Or-

ganisational psychology has made significant contributions to understanding software

engineering and security practices at the team and institutional levels, from motivation

(Lenberg et al., 2015), leadership (Haney et al., 2018), organisational culture (Bada et al.,

2019), and policy compliance (Parsons et al., 2014). All these factors influence, to some

degree, the security position of both organisations and the teams within. For example,

leadership advocating for security awareness can filter down and influence how employees

interact and think about security (Haney et al., 2018).

Another potential approach is Human-Computer Interaction (HCI), which focuses on the

processes through which people interact and engage with computer systems. HCI has

played a role in the evolution of usable security and secure software engineering. HCI re-

search has demonstrated how users and developers interact with security features (e.g. se-

cure APIs) and how interface design affects secure behaviour (Cranor, 2005; Green &

38

Smith, 2016). Beyond usability, experience-focused approaches in HCI have drawn atten-

tion to how affect, trust, and meaning-making shape security engagement, offering richer

accounts of how individuals interpret and respond to security cues in practice (Dourish,

2001).

Despite the value of both organisational psychology and HCI as distinct and indepen-

dent research fields, neither is specifically oriented toward capturing the more granular

cognitive and behavioural processes that underpin an individual’s decision-making in

security-critical contexts. Organisational psychology contributes insights into structural,

cultural, and interpersonal influences on security behaviour across teams and institutions;

however, the focus on the organisational group dynamics may overlook the individual and

their cognitive and motivational nuances in favour of the wider organisation (Schneier,

2008). Similarly, HCI provides an understanding of usability and interaction, but typi-

cally emphasises external interfaces over internal human processes like decision-making

or cognitive bias (Camp, 2009). Though both disciplines have strong explanatory power

within their respective domains, social and cognitive psychology are potentially better

suited to analysing how individuals navigate uncertainty, social influence, and complex

decision-making.

It is important to acknowledge that no single discipline can fully account for the complex

nature of secure software engineering. Organisational psychology and HCI offer essential

perspectives, particularly in institutional, and long-term system contexts. Nonetheless,

this thesis draws a deliberate and discrete boundary to focus on the psychological mech-

anisms closest to individual behaviour. This approach reflects a methodological and con-

ceptual alignment with the thesis aim: whether theories of decision making and social

identity can explain security behaviours within software engineering. Social and cogni-

tive psychology provide robust frameworks for modelling cognitive- and socially-mediated

decision-making.

39

It is also worth recognising that the supervision team that oversaw the PhD operate

within the intersection of software engineering, social psychology, and cognitive psychol-

ogy. Much of this work forms a large portion of the existing application of psychology

into software engineering and particularly ideas of social identity (Rauf et al., 2020, 2021).

As a result, in the nascent stages of the PhD project, it is only natural that the team’s

existing work would influence the direction the project would take in terms of theoretical

approach.

2.6 Summary

Software security was reviewed concerning the software and the artifacts available to

software developers. It was followed by social and cognitive psychology applications in

software security and soft skills research and their relevance in software engineering and

CS contexts, before discussing two other relevant methods for interpreting secure software

behaviour. In exploring these topics and revisiting the bibliometric analysis, what is ob-

served is that psychology, particularly theories of social identity and decision making, is

mostly absent in software security research.

Dual processing theory has been touched upon in its theoretical potential but has yet to

be empirically applied to secure software engineering behaviours (Petre, 2022). Previous

research implicitly refers to aspects of the theory, such as bias research, and priming in-

terventions. However, it does not recognise the individual differences in the propensity

or engagement of more reflective thinking styles. In measuring these predispositions to

engage in more rational system 2 processing and applying them to secure software engi-

neering domains, a better understanding of cognition should be achieved.

The influence of social identities within secure software development still needs to be bet-

ter understood. Rauf et al. (2022) report that developers perceive security differently, but

it is necessary to extend this to understand how these differences manifest. By identifying

social identities around secure coding, we can better understand how secure behaviours

occur because of social interactions.

40

As noted previously, soft skills are ephemeral and are loosely tied to more tangible psy-

chological measures. In identifying the valuable soft skills and translating these to psycho-

logical theories, these can be applied in further research with more meaningful impact.

2.7 Methodological Motivations

This thesis comprises a series of related empirical projects and collectively utilises a

mixed-methods approach. Research chapters, oriented towards publication venues, are

necessarily “light” on methodological background, as they focus more on the narrative

of conclusions than justification of evidence, as is typically expected. Accordingly, the

methods and analyses are reviewed here for a more complete narrative and reader com-

prehension. I will cover the research designs implemented and the analytical approaches

taken, as this thesis used both quantitative and qualitative analyses. I will first highlight

the methodological commitments and rigour, before I review the benefits, limitations, and

relevance of the methods before covering the open science approaches.

2.7.1 Overarching Methodological Commitments

The methodological approach taken in this thesis is guided by an overarching commit-

ment to socio-cognitive theory, supported by constructionist and experiential realist epis-

temologies within a pragmatic mixed-methods framework. The central research aim, to

understand the psychological dimensions of computing and secure behaviours, necessi-

tated approaches that could both explore subjective experience and model generalisable

constructs across contexts.

2.7.1.1 Social and Cognitive Foundations. The conceptual framing of the thesis

is underpinned by socio-cognitive theory. From this perspective, individual cognition is

viewed as fundamentally shaped by social contexts, particularly language and interactions.

This perspective guided not only the choice of research questions but also the interpreta-

tion of both qualitative and quantitative data. Where quantitative work sought to model

latent psychological constructs (e.g., cognitive styles), qualitative studies were designed

to understand how these constructs are socially framed and experienced contextually by

individuals. In line with cognitive and social approaches, it is assumed that cognitive

41

structures could be both measured quantitatively and contextualised qualitatively. These

assumptions justified the use of both quantitative modelling and in-depth thematic explo-

ration as complementary modes of inquiry.

2.7.1.2 Epistemological Commitments. This thesis adopts a pluralist epistemo-

logical stance, using constructionism for qualitative inquiry and experiential realism for

quantitative analyses.

• Constructionist epistemology guided qualitative components, recognising that in-

dividuals interpret their experiences through socially and culturally shaped lenses.

The thematic analyses therefore focus on how participants construct meaning.

• Experiential realist epistemology supported the quantitative studies, assuming

underlying constructs (e.g., decision-making styles, or behaviours) can be mea-

sured with sufficient reliability and validity. This moderate realist stance was taken

(rather than a stricter realism stance), which acknowledges that measurement is

always partial and theory-laden.

This dual epistemological stance reflects a pragmatic approach to methodology, which

views the research question as determining the method, rather than the other way around.

This flexibility allowed the thesis to match research tools to the specific aims of each

study, while maintaining coherence across the project.

2.7.1.3 Methodological Integration Across Studies. The thesis is structured in

two broad phases, each containing both qualitative and quantitative components:

• Phase 1 (Chapters 4 and 5) explores stakeholder perceptions of soft skills, using

surveys (Chapter 4) and semi-structured interviews (Chapter 5). These exploratory

studies seek to map out how soft skills are socially constructed and understood

within computing communities.

• Phase 2 (Chapters 6, 7, and 8) builds on the insights from Phase 1 to investigate

42

the psychological dimensions of software engineering through observational and

experimental paradigms. These include more formal hypothesis testing using psy-

chological tests and behavioural models.

Method choices in each study were directly informed by both the theoretical framing and

the findings of prior studies. For example, thematic analysis was selected in Chapter 5

over other methods, such as discourse analysis, due to its flexibility (Braun & Clarke,

2006) and compatibility with a socio-cognitive framing that focuses on shared meanings

rather than solely individual experience, enabling generalisations to be made. Similarly,

the quantitative work models psychological traits as latent variables, assuming they have

predictive utility but are still interpreted in relation to broader social patterns.

By integrating findings across both paradigms, the thesis reflects a coherent commitment

to understanding how individual cognition and social interaction jointly shape soft skill

development and deployment in software engineering contexts.

2.7.2 Research Designs

The research designs deployed are diverse, with surveys, interviews, and experimental

paradigms being the primary methods used in this thesis.

2.7.2.1 Surveys. Chapter 4 used a survey study on soft skill perceptions with CS

and Psychology graduates. Survey studies are designed to extract information from large

populations easily (Jones et al., 2013). Through careful design and development, once

surveys are deployed, they require minimal researcher involvement. Due to their ability

to canvas large samples, surveys explore human perceptions and behaviours (Singleton &

Straits, 1988). The data can be aggregated for the identification of latent patterns and

ideas. Survey studies have three core limitations: a lack of researcher control, response

bias, and attrition.

Once distributed, researchers have little control over how participants impact data quality

and validity (Theofanidis & Fountouki, 2018). By focusing efforts during the planning

43

stages, the survey design can be evaluated for its ability to collect the right information

and how it answers research questions. Preregistering survey materials can motivate re-

searchers to ensure they have carefully considered the materials before data collection.

Not all participants respond to survey invites, requiring a large sample to be canvassed

to ensure enough data is collected. Those who respond are a self-selecting sample which

influences the results (Bethlehem, 2010). Controlling for this is not simple, as it is diffi-

cult to encourage participation from those unwilling even with incentives. This limitation

is typically addressed by accounting for it when considering the implications, and being

aware that identified effects may be inflated as a result.

Attrition occurs when participants do not finish a survey for a variety of reasons, includ-

ing survey flow issues or frustration. A balance lies in developing surveys to ensure all

information is collected and minimising attrition rates. The smallest amount of informa-

tion necessary should be collected, as too many questions can result in disengagement.

Starting with the most essential sections can also improve the collection of usable infor-

mation. Attrition is simply an expected part of survey studies, but the planning stages

are essential to avoid participant frustration.

2.7.2.2 Interviews. In Chapter 5, a semi-structured interview design was deployed

to understand staff perceptions regarding embedded soft skills. Interviews collect rich

information on topics where personal experiences are valued (Taherdoost, 2022). Semi-

structured interviews use pre-determined open-ended questions to guide the interview

with the flexibility to explore other questions that arise from the interview itself. A good

research interview is dominated by the interviewee but is kept relevant and within the

bounds of the research question by the interviewer (Slembrouck, 2015). A poor interview

environment may lead to interviewees not feeling in control of the interaction, resulting

in lower-quality responses as they become less narratively inclined. Questions should

be carefully considered, with the first question regarded as the most important. If the

first question is open-ended and targets simple ideas that engage a narrative mindset,

44

participants may be more willing to offer more information, which has the benefit of

placing the interviewee in charge of the interaction.

Interviews provide rich details that surveys cannot achieve. The time commitment from

the researcher is much higher than in survey studies, but it gathers more in-depth infor-

mation. Interviews complement surveys or experimental research as they offer valuable

information otherwise unobtainable. The use of semi-structured interviews aligns with the

thesis’s constructionist epistemology and socio-cognitive framing. It allows participants to

articulate socially-situated views, offering insight into how these concepts are shaped by

culture and interpersonal dynamics.

2.7.2.3 Observational and Empirical Studies. Observational and empirical stud-

ies draw associations between two or more variables, where the intention is often to un-

derstand how functions of psychology may influence real-world behaviours. Using relevant

psychological measures to capture aspects of cognition alongside software engineering

tasks illuminates and offers valuable insights into whether effects exist that are worth

pursuing in further research. The observational studies were informed by a socio-cognitive

framing that views behaviour as the result of interaction between internal (cognitive) and

external (social/environmental) influences. This framing supports the use of observational

methods to capture naturally occurring behaviours in context.

Core limitations are confounds and the observational nature of the design. Unanticipated

confounding variables can have unseen influences on the data, resulting in inappropriate

implications being drawn. This issue is addressed during the planning stages, and possible

confounds are identified by leveraging previous research. The second issue, which speaks

to the design itself, is that the paradigm can only observe variable association and does

not manipulate variables to determine causal patterns. Observational designs are best

deployed in research contexts where an increased theoretical understanding is desired

before experimental manipulation is used to determine cause and effect.

45

2.7.3 Analytical Methods

This thesis uses a mixed-methods approach to address the complexity of deploying psy-

chology in software engineering contexts. Chapters utilise different analytical methods to

seek answers to the research questions posed. Through this diverse application of meth-

ods, the thesis arrives at a set of implications based on the triangulation of methods.

2.7.3.1 Qualitative Approach. Qualitative data was implemented using thematic

analyses, a method of analysing rich text to identify meaningful patterns that can be

grouped into latent themes. These themes present as recurring ideas identified across

documents, speaking to a common experience (Riger & Sigurvinsdottir, 2016). A core as-

sumption is that the data contains people’s perceptions of their own reality, and through

analysis, it is possible to make sense of their experiences (Banyard & Miller, 1998). The

use of thematic analysis fits with the socio-cognitive framing of the thesis, as it enables

the identification of recurring meaning patterns that emerge through shared language and

social experience.

I approach qualitative research (specifically thematic analyses) from a constructionist per-

spective, aiming to understand a person’s personal reality instead of providing statistical

support for a given hypothesis (Charmaz, 2008). A constructionist approach recognises

that people experience reality differently, and it is these differences which are valuable.

Qualitative research offers the ability to explore complex behaviours that do not translate

easily to quantifiable scenarios.

Thematic analyses are carried out in five stages: familiarisation, code generation, theme

generation, theme review, and theme naming (Braun & Clarke, 2006).

1. Familiarisation: it is important that researchers immerse themselves in the data

through repeated readings. This process allows possible patterns to be identified.

2. Code generation: initial codes are generated across documents, and I use a data-

driven approach allowing codes to be developed from the data (Gibbs, 2007). Codes

46

are the early organisation of data into units of meaning that by themselves are not

themes, as multiple codes may speak to broader concepts (Riger & Sigurvinsdottir,

2016). At this stage, coding all information that potentially indicates a pattern

allows for an unrestricted analysis in later stages (Braun & Clarke, 2006).

3. Theme generation: themes are generated through combining and updating codes

which is why exhaustive code generation is essential. Code clustering and patterns

help create early themes. A hierarchical approach is used to organise initial themes

under umbrella terms to group related themes.

4. Theme review: the suitability of themes is considered, as not all themes are relevant

to research questions. Theme distinction is important, and code coherence is critical.

It is beneficial to review themes and code coherency multiple times.

5. Theme Naming: themes need names and definitions. The central idea attached to

each theme is identified and named. Themes may be implicit or explicit and should

capture meaningful information related to research questions (Riger & Sigurvins-

dottir, 2016). Themes must be rationalised and presented beyond just a description

(Braun & Clarke, 2006). If themes are not rationalised, they can be easily dismissed

in favour of a reader’s preferred rationale.

The major criticism of thematic analysis, or qualitative analysis in general, tends to em-

phasise its subjectivity and that the reliability or validity of the work cannot be guar-

anteed. This absence of guarantee speaks to the broader issue of reliability and validity.

Reliability relates to whether the findings would be obtained in repeated samples, and

validity describes the relationship between the findings and reality (Leung, 2015). Relia-

bility and validity are issues typically presented from a quantitative perspective, where

data should fit into an idea of reality that can be measured and quantified repeatedly.

A constructionist approach emphasises that an individual’s perceived experience is not

representative of a global reality (Charmaz, 2008), so using principles from quantitative

47

approaches to assess qualitative research does not make sense. Instead of using the same

metrics for quantitative work, qualitative work should be assessed against four criteria:

credibility, transferability, dependability, and confirmability (Lincoln & Guba, 1985).

Credibility is whether the participant would find the results believable, as the aim is to

describe their worldview. Confirmability shows that others can corroborate findings and

are minimally influenced by researcher bias. To achieve credibility and confirmability,

having those not involved in the analysis review results can be beneficial in gaining agree-

ment towards the themes identified. Keeping an audit trail of the work carried out, how

the initial codes became themes and how these were combined, split, or removed also

helps. Transferability relates to how far the findings can be applied to other contexts. De-

pendability is a measure of the finding’s consistency and repeatability. Transferability and

dependability can be achieved by providing detailed descriptions of the data collection

process, allowing others to replicate the approach elsewhere.

The researcher’s personal experiences cannot be removed from the analysis. This is ad-

dressed through reflexivity, the critical reflection that considers the researcher’s impact on

reducing unseen influences (Riger & Sigurvinsdottir, 2016). Reflecting on methodological

choices and research assumptions can reduce their impact through recognition. The aim

of reflexivity is not to remove bias but to be transparent about how it may affect findings

(Johnson & Waterfield, 2004). Research questions are also constructed to reduce potential

biasing by keeping them open and without assumed direction.

2.7.3.2 Quantitative Approach. Quantitative analyses are presented from an ex-

periential realist perspective, assuming a “real” world exists independently outside of our

perceptions (Riger & Sigurvinsdottir, 2016). Quantitative analysis requires information

to be numerically represented, which can be done by developing and validating scales and

measures that seek to collect this information. Item response theory asserts that many

scales and measures are intended to determine individual differences upon a latent con-

struct (Thissen & Steinberg, 2009). The collection of items (questions) within a scale is

48

assumed to measure the same latent trait, and the scores derived from a scale refer to an

individual’s strength of the trait. Data can also be considered suitable for factor analyses,

which share similarities with item response theory but focuses on the covariance between

items to identify latent groupings of multiple items (MacCallum, 2009).

Correspondence analyses and multilevel models are detailed in later chapters and so are

given no space here. Quantitative measures are used to measure latent traits numerically

so that hypotheses can be tested through statistical means. In comparing the differences

between groups or the relationships between a real-world action or behaviour (such as

software security awareness), the ability to carry out these behaviours is quantified in

terms of variance explained by the latent traits. These analyses give us an understanding

of what influences these real-world behaviours.

Key issues with quantitative approaches primarily revolve around the reductionist ap-

proach of representing complex human behaviour as numerical values, as well as the as-

sumptions of the realist approach. Realism assumes the researcher can detach themselves

from their perceptions and worldview to identify the true reality correctly (Sukamolson,

2007). This issue is assuaged by taking a less absolute approach through experiential real-

ism, which recognises that the perceptions we hold influence our views, but this subjectiv-

ity is limited. Reducing complex behaviour into quantities can result in basic snapshots of

the measured behaviour, which is a superficial representation of the actual reality (Rah-

man, 2017).

2.7.3.3 Mixed-method Approach. On a surface inspection, combining quantita-

tive and qualitative methods can seem incongruent, but it is possible to combine these

effectively (Sukamolson, 2007). Constructionist approaches can be used where personal

experiences are valuable for recognising motivations, which can then be translated into

a realist approach regarding the shared experiences identified. This pragmatic approach

recognises that a mixed method is needed where certain lines of scientific inquiry are best

answered through different perspectives. The use of mixed methods in this thesis reflects

49

a socio-cognitive and pragmatic orientation. By combining methods that explore subjec-

tive, socially situated understandings with those that model individual cognitive traits,

the research provides a layered account of soft skill development across contexts.

Mixed-method approaches enrich the research by achieving aims that cannot be suitably

achieved by a single approach alone (Kelle, 2006). Each approach has limitations, but

individual weaknesses are reduced when used together. Quantitative approaches reduce

complex behaviours to numeric representations to gain statistical testing. However, it

loses the data richness, and qualitative methods maintain data richness at the expense of

statistical testing, complementing each other. This triangulation of different perspectives

offers a more accurate representation of the event (Scott, 2007b).

In areas where previous research is limited, qualitative methods are effective for “cast-

ing wide” to understand how the landscape is understood broadly. In this thesis, this

primarily refers to phase 1, where I explore the graduate and staff perceptions of soft

skills. These ideas are then translated into their latent psychological dimensions that are

investigated through further studies in phase 2. Both phases use both qualitative and

quantitative methods.

2.8 Open Science

This thesis enacts open science practices throughout, with preregistrations, material shar-

ing, preprints, and open access. They represent a significant posture of the research pro-

gramme that ultimately contributes to more robust and transparent research.

2.8.1 Preregistrations

Preregistrations are a method for formally registering the intended design, methodology,

and analysis for a research project. They provide information about the intended ques-

tions and hypotheses that the project aims to address, as well as offering opportunities

to justify research decisions prior to data collection (Nosek et al., 2018). Preregistrations

improve research credibility and show foresight (Nosek et al., 2019) and provide clarity

50

about which analyses reported were selected a priori and what were post-hoc, reducing

dubious research practices.

2.8.2 Data Sharing

Publicly sharing data allows others to validate published results and offer other re-

searchers opportunities to explore and re-analyse data further (Towse et al., 2021b).

Not only does it benefit others in this regard, but it offers support for the thesis itself,

demonstrating that all the findings from this project can be checked, reproduced, and

validated by interested parties. In sharing the associated data and analysis files, I follow

the FAIR principles, ensuring data is Findable, Accessible, Complete, and Well-described

(Towse et al., 2021a).

To ensure data is findable, Digital Object Identifiers provide permanent links, avoiding

“link rot” – where URLs no longer exist. All data and materials are hosted on the Open

Science Framework, which is searchable and links between manuscripts, preprints, and

any significant research output.

Accessibility ensures that data is useable by the largest audience. Proprietary data for-

mats restrict usage, so all data is stored in universally-readable formats, increasing access.

It is also essential to ensure that data files are accurate and defect-free. In this thesis, the

data files shared are the same files used during analyses and are not simply produced to

satisfy basic data sharing.

To achieve completeness and to ensure sharing practices are meaningful, all essential

data must be shared (Towse et al., 2021a). All datasets required to replicate the thesis

findings are openly available and found through https://osf.io/2fpbq/. Providing analysis

scripts also clarifies the data manipulation process, affording a more straightforward

interpretation of the analysis.

Impactful data should also be well-described. Additional files that describe the analysis

pipeline and the relevance of specific files can increase usability. Including commented

https://osf.io/2fpbq/

51

scripts for clarity and stating where steps were taken outside of computational environ-

ments (such as manual data tagging). Where this occurs, this should be made explicit so

that the reader is aware of the whole process.

It is not just data files and analysis scripts that are shared. Survey designs, interview

questions and other relevant, shareable artifacts are uploaded to open access repositories

to facilitate future research. By providing these materials, the research is more easily

replicated or improved upon by understanding the rationale and the research designs.

2.8.3 Computing Environments

Throughout the PhD journey, best efforts have been made to utilise open-source software.

The quantitative analyses and data manipulation were all carried out predominantly in

R, and qualitative approaches, such as the thematic analyses, were carried out using the

open-source tool Taguette (Rampin & Rampin, 2021). To this end, the thesis document

itself is fully reproducible.

2.8.4 Preprints

Preprints are openly available manuscripts published on dedicated servers (e.g. PsyArXiv,

ArXiv) before the peer review process. They offer rapid means of dissemination, as well

as greater exposure for early career researchers (Sarabipour et al., 2019). Indeed, Chapter

7’s preprint received citations while the paper was undergoing peer review, providing an

early contribution to further research. Throughout the PhD process, when papers were

submitted for peer review, they have also been uploaded to preprint servers along with

data sharing.

2.8.5 Open access

Finally, each research chapter has been published under open access (OA) agreements

that are either Gold or Green publication models. Gold OA is where the final published

version is openly available from the journal/publisher, such as in the case of Chapter 4,

which is published in the APA Open journal Technology, Mind & Behavior, having to

pass rigorous checks for publication in a Gold OA journal. Green OA is the case for all

52

other research chapters, as they are uploaded to preprint servers.

2.8.6 Summary

This thesis represents a programme of work that is open in as many ways as possible,

from preregistering research designs and motivations, ensuring analyses were conducted

in a FAIR way, publishing data and materials, to preprinting manuscripts and open pub-

lishing. Many of these aspects are often concealed, and the output does not necessarily re-

flect the increase in workload associated with a research project. It is more complex than

just a journal submission; one must ensure that the data and materials are anonymised,

shareable, and published simultaneously with manuscript submission. These practices

reflect an invisible but significant aspect of the research process.

53

3 The Soft Skills of Software Learning Development: The Psychological

Dimensions of Computing and Security Behaviours

Ivory, M. (2022). The Soft Skills of Software Learning Development: The Psychological
Dimensions of Computing and Security Behaviours. Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering 2022, pp. 317–322.
https://doi.org/10.1145/3530019.3535344

https://doi.org/10.1145/3530019.3535344

The Soft Skills of Software Learning Development: the
Psychological Dimensions of Computing and Security

Behaviours
Matthew R Ivory

Supervised by Prof. J Towse, Prof. M Levine, Dr. M Sturdee, & Prof. B Nuseibeh
Lancaster University

Lancaster, UK
matthew.ivory@lancaster.ac.uk

ABSTRACT
When writing software code, developers typically prioritise func-
tionality over security, either consciously or unconsciously through
biases and heuristics. This is often attributed to tangible pressures
such as client requirements, but little is understood about the psy-
chological dimensions affecting security behaviours. There is an
increasing demand for understanding how psychological skills af-
fect secure software development and to understand how these
skills themselves are developed during the learning process.

This doctoral research explores this research space, with aims to
identify important workplace-based skills for software developers;
to identify and empirically investigate the soft skills behind these
workplace skills in order to understand how soft skills can influ-
ence security behaviours; and, to identify ways to introduce and
teach soft skills to computer science students to prepare the future
generation of software developers.

The motivations behind this research are presented alongside the
work plan. Three distinct phases are introduced, along with planned
analyses. Phase one is currently in the data collection stage, with
the second phase in planning. Prior relevant work is highlighted,
and the paper concludes with a presentation of preliminary results
and the planned next steps.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; • Software and its engineering; •Human-
centered computing→Human computer interaction (HCI);

KEYWORDS
Soft Skills, Cognitive Psychology, Security, Behavioural

ACM Reference Format:
Matthew R Ivory. 2022. The Soft Skills of Software Learning Development:
the Psychological Dimensions of Computing and Security Behaviours. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2022, June 13–15, 2022, Gothenburg, Sweden
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9613-4/22/06. . . $15.00
https://doi.org/10.1145/3530019.3535344

The International Conference on Evaluation and Assessment in Software Engi-
neering 2022 (EASE 2022), June 13–15, 2022, Gothenburg, Sweden. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3530019.3535344

1 INTRODUCTION
In this research, soft skills are defined as the psychological dimen-
sions, or traits, that underpin behaviour [5]. Commonly, soft skills
are synonymous with workplace-relevant transferable skills, in-
cluding skills such as "teamwork" or "time management", and have
been the focus of previous human factors research [10, 14, 15]. This
current research seeks to go beyond these surface level traits, to
identify the psychological dimensions that underpin transferable
skills. In this body of research, transferable skills are referred to
as "shallow skills", and soft skills are the underlying psychological
dimensions. Shallow skills are referred to as such, because they
provide little in the way of quantifiable skills, and their definitions
often change depending on research context. Shallow skills can be
considered as the manifestation of soft skills, particularly in work-
place situations. Soft skills are the more immutable, psychological
aspects of behaviour.

Software development is the direct product of human interac-
tion, created through the combination of cognitive abilities, social
interactions and the unique culture of software development [3, 23].
In recent years, the software industry has become aware of the sig-
nificance of soft skills for successful software creation [5, 14, 15]. By
2030, there is an anticipated 22% increase in employment opportu-
nities for software developers compared to an average 8% increase
across all other industries1, but a rising concern that graduates
entering the workforce are lacking the necessary cognitive and
social skills required for successful integration into the workplace
[13]. This issue has been evidenced in software security roles, with
research indicating the most important skills required for security
roles are not technical in nature, but are soft skills [8]. As a con-
sequence, it is vital to identify the psychological traits required to
successfully develop secure software.

Security in software is not a new concern, but the responsibil-
ity for security has changed over time. In 1999, Adams and Sasse
[2] argued that software users were "not the enemy" and their fal-
lible security behaviours were not their fault, but rather that of
developers disregarding default user behaviour.

Similarly in 2008, Wurster and van Oorschot [24] posited that
developers were "the enemy" and as they are the ones causing secu-
rity issues, security should be removed from their responsibilities.
1https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm

317

54

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Matthew R Ivory

They suggested the onus should be placed with API developers as
they provide functionality (and security) to other developers. More
recently, this sentiment about API developers was echoed by Green
and Smith [9], who emphasised that developers typically focus on
functionality and expect APIs to be secure by default. One issue
with this argument is that it treats software developers as a homo-
geneous population with little security awareness, but expects API
developers to be somehow more security conscious. API developers
are as human as software developers, subsequently they are sus-
ceptible to the same cognitive and social biases [4, 16]. Rather than
assigning responsibility to different groups, we should identify the
psychological dimensions associated with good security behaviours
and seek to promote these skills in software learning development.

1.1 Motivation and Rationale
The primary motivation is to understand how soft skills relate to
software development, and how people’s skills develop and exhibit
in software development environments. Of particular interest are
the behavioural changes exhibited by relative novices during skill
development, compared to more experienced developers. What po-
tentially incorrect, but intuitive actions are ultimately suppressed
through experience? What habits are built and how do these origi-
nate? What soft skills are required for secure software development
and how do these skills manifest and evolve?

In recent years, increased attention has turned towards the psy-
chology of software developers, particularly in relation to security
[17]. Security vulnerabilities typically leverage psychological pro-
cesses [21], via cognitive processes (such as exploiting expected
use cases), or through exploiting heuristic use. If adversaries ex-
ploit developers’ behaviour, it is important to identify the soft skills
involved and find ways in which these behaviours can be changed
through psychological interventions, which can be taught to novice
and experienced developers alike.

The project is motivated to provide practical impact through
developing teaching materials for Computer Science courses. Incor-
porating psychological interventions into pedagogy will allow for
the development of soft skills and security conscious behaviours in
future generations of software developers.

1.2 Contribution
The main aim of this research is to understand how the software
learning development process occurs and how behaviours change
and evolve. By identifying these processes, we are better placed to
encourage positive behavioural changes, resulting in more efficient
code development. The project also seeks to investigate key soft
skills that affect secure code production. As a result, psychologi-
cal interventions can be developed for promoting better security
practices. To practically encourage relevant behavioural changes in
early-stage software developers (e.g. Computer Science students),
pedagogical materials will be developed for education, with the aim
for these to be incorporated into teaching practices.

2 RESEARCH QUESTIONS
RQ1: What soft skills are considered important for computing and
security practices?

RQ2: How do soft skills evolve and develop in novice software
developers with time and experience?

RQ3: How do software development behaviours evolve and
change with experience?

RQ4: How can relevant soft skills be incorporated into pedagog-
ical practice to promote security behaviours?

3 WORK PLAN
The research incorporates a breadth of analysis methods, including
qualitative and quantitative approaches. This methodological plu-
ralism allows for a broad range of information to be drawn from
the data that would otherwise not be possible with a restricted
methodology. The doctoral research will look at data collected
through interviews, surveys, data scraping and behavioural studies.
Analysis will be varied and include statistical modelling, natural
language processing modelling, and qualitiative approaches, such
as thematic analysis. Not only will it provide broader interpretation
to findings within this space, it allows for stronger links to other
work in similar research spaces.

Figure 1: Outline of research phases within the planned
work.

The research can be split into three phases, as illustrated by Fig-
ure 1. The first phase identifies shallow skills as taught in Computer
Science undergraduate courses. It seeks to understand how shallow
skills are perceived by current students, staff and alumni.

The second phase will build directly on the first phase. By identi-
fying soft skills linked to shallow skills through previous research,
phase two aims to build relationships between secure coding be-
haviours and soft skills. This will be achieved through empirical,
lab-based research involving manipulation and measuring of soft
skills and programming tasks.

Finally, the third phase will focus on incorporating findings
on soft skills into pedagogical materials. This phase will measure
the effectiveness of teaching these ideas, with the aim to raise
awareness and increase the understanding of the psychological
traits of software developers.

A stand-alone study is also being conducted into cognitive re-
flection and risk perception in software developers and computer
scientists, see section 3.4. This will fit in with the phase two work.

Following open science practices, the research will include pre-
registrations, data sharing and reproducible analysis scripts. This

318

55

The Soft Skills of Software Learning Development: the Psychological Dimensions of Computing and Security Behaviours EASE 2022, June 13–15, 2022, Gothenburg, Sweden

will be managed through the use of the Open Science Framework2
and provision of Docker containers with reproducible workflows.

3.1 Phase One: Identification of Shallow Skills
The first phase is currently in the data collection stage. This phase is
comprised of four research projects: an examination of coremodules
in computer science programmes as taken from university websites;
academic staff interviews on how they view shallow skills being
taught; longitudinal interviews with current students on how they
develop their shallow skills over an academic year; and an alumni
survey of computer science graduates and psychology graduates,
collecting data on their perceived importance of shallow skills.

3.1.1 Curriculum Examination. The online course information and
core module descriptions for Computer Science and Psychology
undergraduate courses were collected from eight UK universities
belonging to the N8 research group (Durham, Lancaster, Leeds,
Liverpool, Manchester, Newcastle, Sheffield and York).

To identify shallow skills in natural language texts, a named
entity recognition (NER) model will be developed. Similar work
has been created [6], but without the granularity attempted here.
In efforts to further understand covariance of shallow skills and
language used around them, theNERmodel weights can be analysed
further, including factor analysis to find highly correlated skills.
A preregistration, providing details on the data collection can be
found at https://osf.io/qcw3n.

3.1.2 Alumni Survey. Lancaster University undergraduate alumni
from Computer Science and Psychology were contacted to take
part in a survey. Participants were asked to rank shallow skills for
their importance in current employment. A Psychology sample
were used as a comparative group, particularly when considering
the less vocational nature of psychology undergraduate degrees
(inferred from software development roles attained with a mini-
mum education of a bachelor’s degree3, compared to a minimum
education of a postgraduate degree for most psychology roles4).

Data analysis will focus on loglinear models, correspondence
analysis and exploratory factor analysis to identify the key shal-
low skills for computer science graduates compared to psychology
graduates. The preregistration is found at https://osf.io/5qb6a.

3.1.3 Interviews with Staff and Students. These two projects are
planned, and interview schedules will be arranged for times when
teaching volume is low for staff, and longitudinal student surveys
will begin in line with the start of an academic year.

Staff interviews will look to identify soft skills considered im-
portant by teaching staff and how these are conveyed to students
in teaching materials. Student interviews will be conducted over
the course of the academic year, following the same students to
identify the way in which they recognise and develop shallow skills.
Analysis for both interview studies will use thematic and content
analysis to extract relevant information.

3.1.4 Data Analysis of Phase One. The results from the individual
projects in phase one can be cross-examined to identify areas of

2www.osf.io
3https://nationalcareers.service.gov.uk/job-profiles/software-developer
4https://nationalcareers.service.gov.uk/job-profiles/psychologist

shallow skills that are of most interest. The combined data can
be used to understand the transmission of ideas from academic
staff to students to what they take into the workplace, (see figure 2).
Understanding the development of these skills and their importance
can be used in the second phase. Analysis of data is in planning.

Goal: to identify the shallow skills considered as important within
the transmission of skills in the pedagogical process. Measured through
various quantitative and qualitative methods.

Figure 2: Transmission of shallow skills can be expected to
develop whereby teaching staffs’ understanding of which
skills are important feed into the skills students pick up on,
which are reflected in alumni use of these skills.

3.2 Phase Two: Behavioural Studies
The second phase is in early design stages, but will focus on empiri-
cal behavioural research, based on the findings from phase one. The
exact soft skills to be included is dependent on phase one findings,
as it is important to focus on the skills that are most likely to have
the biggest effect on coding behaviours.

One study will investigate API blindspots, which can be defined
as a misunderstanding or misrepresentation of API function secu-
rity, resulting in vulnerabilities [16]. Using Python snippets from
Brun et al (2021) [4], and measuring soft skills through cognitive
tasks (e.g. the cognitive reflection test [7]), relationships can be
drawn between soft skills and API blindspot awareness.

Similar studies, using different programming paradigms (such as
code debugging, or secure password database creation) will also be
used. It is important to understand the stability of soft skills across
a range of development and security-related tasks.

3.2.1 Data Analysis of Phase Two. Data analysis for phase two
experiments will be predominantly quantitative, using mixed ef-
fects models for group comparisons. These can be used to measure
relationships between soft skills and security behaviours. Preregis-
trations will be published in due course.

Goal: to identify and measure the effect of soft skills on security
behaviours. Measured through mixed effect modelling and group
comparisons.

3.3 Phase Three: Inclusion in Pedagogy
For the final phase, the focus will be on the development of pedagog-
ical materials for introducing students to the soft skills necessary
for secure programming. This phase has not yet reached planning,
as it relies on the work of phase two to be near completion. This
will be achieved through seminars or workshops as methods to

319

56

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Matthew R Ivory

introduce the soft skills, to encourage students to engage with the
psychology behind software development. Effectiveness of sessions
will likely be measured through participant feedback.

To further disseminate research findings and promote inclu-
sion of soft skills into current pedagogical materials, engagement
through publication will be pursued. By raising awareness of re-
search through publication, conferences and posters, along with the
provision of basic materials for others to work with, phase three
looks to create a meaningful impact in the domain of software
learning development.

Goal: to develop and deliver teaching materials in order to pro-
mote soft skills within computer science curricula. Measured through
student engagement and feedback.

3.4 Risk Perception and Cognitive Reflection
In this individual differences study aligned with phase two research,
groups of professional software developers and computer science
students were compared regarding risk perception in software.
Participants completed a cognitive reflection test, a risk-oriented
decision task, and answered qualitative questions about how they
understand risk in software development.

Cognitive reflection is a person’s ability to inhibit intuitive re-
sponses in favour of more reflective responses, indicating their skill
in reflective thinking in search of a correct answer. Cognitive reflec-
tion was measured through the Cognitive Reflection Test (CRT) [7].
This is a three question test, including items such as, "A paperclip
and an elastic band cost £1.10 in total. The elastic band costs £1
more than the paperclip. How much does the paperclip cost?" The
intuitive answer is 10 pence, but upon reflection the correct answer
is 5 pence. The risk-orientation task focussed on how participants
view susceptibility of themselves and the "average developer" when
considering security vulnerabilities as listed by OWASP (e.g. SQL
injection). Data analysis is in progress. The preregistration can be
found at: https://osf.io/zbqe4.

3.4.1 Data Analysis of Risk Perception Study. Data will be analysed
through quantitative measures, such as linear modelling, along with
more qualitative methods, including thematic and content analyses.

Goal: to identify potential relationships between risk-related be-
haviours in software development and cognitive reflection. Measured
through linear modelling and group comparisons.

3.5 Validity Threats and Controls
Validity threats to the research are broadly discussed, relevant to
the project overall. More granular considerations are included in
preregistration documents.

One key threat is the consideration of software developers as a
population. It is easy to treat developers as a homogeneous popula-
tion who demonstrate similar characteristics, subsequently making
approaches to promoting security behaviours intolerant to variance
within the population. This can be controlled through mixed effect
models, where population characteristics can be included in the
analysis to identify the effect these have on behaviours.

This is a relatively new research field [17], somuch of the planned
research is exploratory. This can often lead to a series of analysis
methods being used, increasing type I errors. To control for this, pre-
registration procedures are published prior to data collection. Open

data and reproducible analysis scripts will be uploaded following
study completion, to allow replication and to confirm findings.

Using a range of methodologies, as highlighted in the work plan,
may result in a trade-off between breadth of analysis and depth of
analysis. To control for this, analysis plans and research choices will
be well considered through the use of preregistration documents.
By considering methodologies prior to execution, the connection
between the studies within the wider research can be well justified.

Another threat to validity is the generalisation to different pro-
gramming languages or work cultures. Not all languages have
similar structures, and differences have been shown in security
awareness between Java and Python APIs [4]. This can be con-
trolled for by acknowledging that results may only apply to a sin-
gle language. By focussing on Python, which is the most popular
language5, findings will have relevance to many developers. The
inclusion of preregistration documents, materials and analyses will
also allow for replications, either directly or conceptually.

The tasks used in the second phase are designed to provide con-
sistency across participants, reducing task variance and improving
statistical power. This comes at a cost, which is that the tasks are
less industry-specific, reducing the validity. This PhD research is
specifically focussed on the software learning process, and work
beyond the PhD may look into more industry specific tasks, or
applying similar research to different programming languages.

4 RELEVANT PRIORWORK
In this section the current literature relevant to the research is
discussed. This is not an exhaustive literature review, but aims to
identify key research influencing the doctoral research.

4.1 Phase One
In phase one, key research identified shallow skills in software
development, such as Matturro et al. (2019) [14], who conducted
a systematic analysis and identified 23 separate skills. Similarly,
Stevens and Norman (2016) looked at job adverts to identify the
most important shallow skills for developers [20]. These research
papers provided context for the important shallow skills.

Groeneveld et al. [10] analysed computer science curricula for
modules that taught shallow skills explicitly, but did not look into
the implicitly taught skills in all modules. This motivated the inves-
tigation of the course curricula for text relevant to shallow skills.

Finding an absence of research that provided associations be-
tween shallow skills and soft skills is the motivation for phase one.
The literature search for phase one has found little evidence of
work associating security awareness and soft skills.

4.2 Phase Two
In the second phase, a series of work has been carried out con-
cerning API blindspots and developers’ use of heuristics when
evaluating software code. Oliveira et al. (2018) [16] highlighted this
issue with Java puzzles, finding that security blindspots in code
snippets were difficult to identify, possibly due to developers’ expec-
tation of APIs being secure as default. Brun et al. (2021) [4] followed
this work with a replication using Python code. They found that
developers who exhibited better long term memory recall were
5https://www.tiobe.com/tiobe-index/python/

320

57

The Soft Skills of Software Learning Development: the Psychological Dimensions of Computing and Security Behaviours EASE 2022, June 13–15, 2022, Gothenburg, Sweden

more successful in solving puzzles with blindspots. They found that
short term memory, memory span and episodic memory had no
effect on solving the puzzles. Other works that touch on psychology
in security include Hallett et al (2021) [12], where boosting secu-
rity awareness through requiring planning promoted a small effect
on security, and Shreeve et al (2020) [19] who identified decision
making processes related to cybersecurity.

4.3 Phase Three
For the third phase, Taylor-Jackson et al. (2020) [21] advocated
including psychology in security education, particularly when con-
sidering that vulnerabilities are often psychological in nature (e.g.
phishing, API blindspots). They discuss the benefits of exposing
computer scientists to the different ideas and styles of thinking
found within psychology. There are also wider calls for inclusion
of soft skills in university education [11]. It is important that the
findings from the first two research phases are used for positive
impact and one immediate way to achieve this, is to answer the
calls for increasing soft skill teachings in cybersecurity courses to
benefit future software developers.

4.4 Risk Perception
For this study, key items are papers on cognitive reflection by
Frederick (2005) [7] and Thomson and Oppenheimer (2016) [22].
Combined with the understanding that developers are often not
the most security conscious, as highlighted by Acar et al (2017) [1],
it is clear that the understanding of risk by developers in a software
context is poorly understood in relation to cognitive measures.

5 CURRENT STATUS
5.1 Early Results Analysis
Some of the preliminary results from the risk perception study
(section 3.4) are mentioned here. The third hypothesis stated in
the preregistration is examined here, "Mean scores closer to zero
on the novel OWASP risk task will be found with higher scores
of cognitive reflection". Data from 143 (70 students, 73 developers)
participants is used.

The OWASP task is a measure devised for this study where
participants were asked to respond to two sets of questions, the
first asking about the percentage of web applications they believe
to be created by others that suffer from one of the top five OWASP
vulnerabilities (injection flaws, broken authentication, sensitive
data exposure, XML External Entity and broken access control).
Then following a separation task, participants were then asked to
rate the percentage of web applications that they had developed that
suffered from the same vulnerabilities. Scores closer to 100 indicate
high optimism that they do not produce flawed products, scores
near 0 indicate similar levels of flaws in both their own and other
people’s products, and scores approaching -100 indicate beliefs that
their own work is highly susceptible to these vulnerabilities.

To test the hypothesis above, a linear regression was run to see
whether CRT scores significantly predicted OWASP vulnerability
scores and whether this differed between the two populations. The
model formula was "Vulnerability ∼ CRT". The overall regression
was statistically significant (R2 = .05, F(3, 139) = 15.13, p = .017. Esti-
mates, values and significance of model items can be seen in Table

Table 1: Coefficients, t-values and p-values for the linear re-
gression of CRT predicting OWASP vulnerability

Estimate Std. Error t value p*

Intercept 11.00 3.13 3.52 <.001***
CRTscore1 14.08 4.59 3.07 .003**
CRTscore2 5.61 4.86 1.15 .250
CRTscore3 10.67 4.91 2.17 .031*

*Significant alpha values of <.001 indicated by ***

1. Despite significant terms in the model summary, the variance
explained by the model is negligible (∼5%) and further models will
need to be developed to explain more variance in these scores.

Figure 3 shows the distribution of vulnerability scores for each
level of CRT score as a box plot. Post-hoc Tukey tests identified no
significant differences between any of the groups with all p > .05,
except for those who scored zero and those who correctly scored
one, adjusted p = .014. This indicates that there is little significant
relationship between CRT scores and results on the novel OWASP
risk task.

What is noted with the Vulnerability scores, and can be seen in
Figure 3, is that most scores on the OWASP task, regardless of CRT
scores, are around or above 0. One-way t-tests on the Vulnerability
scores were run for both the developer and the student samples.
In the Developer sample (mean score = 17.48), the scores were
significantly higher than 0, t(69) = 7.16, p < .001. Similarly for
the student sample (mean score = 18.94), scores were significantly
higher than 0, t(69) = 7.26, p < .001.

This finding is indicative of optimism bias [18], suggesting that
both professionals and student developers consider themselves to
be better than average at preventing these OWASP-listed security
issues. A score of zero would indicate respondents understand they
were average, but higher scores suggest an over-optimistic outlook
on their own abilities, which could lead to a more relaxed view on
these security issues. These findings will be further developed and
discussed in future publications.

5.2 Next Steps
In the short term, the next steps are to continue with phase one
data collection, and planning of phase two. It is intended that the
research will progress according to the research phases outlined
above. Following the completion of the doctoral work, future work
would include the investigation of psychological interventions for
developing soft skills and measuring their impact on security be-
haviours in longitudinal research.

The steps beyond the PhD research as outlined above is to focus
on the skills that explain the largest variance in secure coding
behaviours, and seek to identify the best ways to promote continued,
stable use of these behaviours as opposed to short-term changes
(such as those achieved through nudging, e.g. IDE pop-ups serving
as reminders to look for blindspots).

6 CONCLUSION
This paper provides an overview of the planned work within the
PhD research titled "The Soft Skills of Software Learning Develop-
ment: the Psychological Dimensions of Computing and Security

321

58

EASE 2022, June 13–15, 2022, Gothenburg, Sweden Matthew R Ivory

Figure 3: Box plot of mean OWASP vulnerability scores by
CRT score split by population.

Behaviours". The research is diverse in both aims and processes,
ranging from thematic analysis of interviews, to modelling rela-
tionships between psychological dimensions and security issues, to
incorporating the findings into pedagogy.

This project seeks to investigate the software learning develop-
ment process; to better understand the behavioural changes and
soft skill development of both computing and security behaviours.
By identifying these changes, and when and how they develop, we
can seek to promote these changes earlier in the learning cycle,
allowing for more effective learning and encouraging positive be-
haviours for software development. In doing so, not only can we
exhibit greater awareness of the psychology behind secure soft-
ware development, we can develop interventions for encouraging
these secure behaviours, reducing the likelihood of these security
vulnerabilities. All public preregistrations, published data, analy-
ses, and links to further research outputs will be accessible from
https://osf.io//v93zt.

REFERENCES
[1] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L.

Mazurek, and Sascha Fahl. 2017. Developers Need Support, Too: A Survey of
Security Advice for Software Developers. In 2017 IEEE Cybersecurity Development
(SecDev). IEEE, Cambridge, MA, USA, 22–26. https://doi.org/10.1109/SecDev.
2017.17

[2] Anne Adams andMartina Angela Sasse. 1999. Users Are Not the Enemy. Commun.
ACM 42, 12 (Dec. 1999), 40–46. https://doi.org/10.1145/322796.322806

[3] Faheem Ahmed, Luiz Fernando Capretz, Salah Bouktif, and Piers Campbell. 2015.
Soft Skills and Software Development: A Reflection from the Software Industry.
International Journal of Information Processing and Management 4, 3 (July 2015),
171–191. https://doi.org/10.4156/ijipm.vol14.issue3.17 arXiv:1507.06873

[4] Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha Myers, and Natalie C.
Ebner. 2021. Blindspots in Python and Java APIs Result in Vulnerable Code.
arXiv:2103.06091 [cs] (March 2021). arXiv:2103.06091 [cs]

[5] Luiz Fernando Capretz and Faheem Ahmed. 2018. A Call to Promote Soft Skills
in Software Engineering. Psychology and Cognitive Sciences - Open Journal 4, 1
(Aug. 2018), e1–e3. https://doi.org/10.17140/PCSOJ-4-e011 arXiv:1901.01819

[6] Silvia Fareri, Nicola Melluso, Filippo Chiarello, and Gualtiero Fantoni. 2021.
SkillNER: Mining and Mapping Soft Skills from Any Text. Expert Systems with
Applications 184 (Dec. 2021), 115544. https://doi.org/10.1016/j.eswa.2021.115544

arXiv:2101.11431
[7] Shane Frederick. 2005. Cognitive Reflection and Decision Making. Journal of

Economic perspectives 19, 4 (2005), 25–42.
[8] Steven Furnell and Matt Bishop. 2020. Addressing Cyber Security Skills: The

Spectrum, Not the Silo. Computer Fraud & Security 2020, 2 (Feb. 2020), 6–11.
https://doi.org/10.1016/S1361-3723(20)30017-8

[9] Matthew Green and Matthew Smith. 2016. Developers Are Not the Enemy!: The
Need for Usable Security APIs. IEEE Security Privacy 14, 5 (Sept. 2016), 40–46.
https://doi.org/10.1109/MSP.2016.111

[10] Wouter Groeneveld, Brett A. Becker, and Joost Vennekens. 2020. Soft Skills:
What Do Computing Program Syllabi Reveal About Non-Technical Expecta-
tions of Undergraduate Students?. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 287–293. https:
//doi.org/10.1145/3341525.3387396

[11] Sandra Patricia Guerra-Báez. 2019. A Panoramic Review of Soft Skills Training
in University Students. Psicologia Escolar e Educacional 23 (2019), 1–10. https:
//doi.org/10.1590/2175-35392019016464

[12] Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve, and Awais Rashid. 2021. “Do
This! Do That!, And Nothing Will Happen” Do Specifications Lead to Securely
Stored Passwords?. In Proceedings of the 43rd International Conference on Software
Engineering (ICSE ’21). IEEE, Madrid, Spain, 486–498. https://doi.org/10.1109/
ICSE43902.2021.00053

[13] Janet Liebenberg, Magda Huisman, and Elsa Mentz. 2014. Knowledge and Skills
Requirements for Software Developer Students. International Journal of Social,
Behavioral, Educational, Economic, Business and Industrial Engineering 8, 8 (2014),
6.

[14] Gerardo Matturro, Florencia Raschetti, and Carina Fontán. 2019. A Systematic
Mapping Study on Soft Skills in Software Engineering. Journal of Universal
Computer Science 25, 1 (2019), 26.

[15] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva,
Marco Tulio Valente, Fabio Petrillo, and Yann-Gaël Guéhéneuc. 2021. What
Skills Do IT Companies Look for in New Developers? A Study with Stack
Overflow Jobs. Information and Software Technology 129 (Jan. 2021), 106429.
https://doi.org/10.1016/j.infsof.2020.106429

[16] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A DeLong, Justin Cappos, and
Yuriy Brun. 2018. {API} Blindspots: Why Experienced Developers Write Vulnera-
ble Code. In Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018).
USENIX Association, Baltimore, MD, USA, 315–328.

[17] Irum Rauf, Marian Petre, Thein Tun, Tamara Lopez, Paul Lunn, Dirk Van Der Lin-
den, John Towse, Helen Sharp, Mark Levine, Awais Rashid, and Bashar Nu-
seibeh. 2021. The Case for Adaptive Security Interventions. ACM Trans-
actions on Software Engineering and Methodology 31, 1 (Sept. 2021), 9:1–9:52.
https://doi.org/10.1145/3471930

[18] Tali Sharot. 2011. The Optimism Bias. Current Biology 21, 23 (Dec. 2011), R941–
R945. https://doi.org/10.1016/j.cub.2011.10.030

[19] Benjamin Shreeve, Joseph Hallett, Matthew Edwards, Pauline Anthonysamy,
Sylvain Frey, and Awais Rashid. 2020. "So If Mr Blue Head Here Clicks the Link.."
Risk Thinking in Cyber Security Decision Making. ACM Transactions on Privacy
and Security 24, 1 (Nov. 2020), 5:1–5:29. https://doi.org/10.1145/3419101

[20] Matt Stevens and Richard Norman. 2016. Industry Expectations of Soft Skills in
IT Graduates: A Regional Survey. In Proceedings of the Australasian Computer
Science Week Multiconference (ACSW ’16). Association for Computing Machinery,
New York, NY, USA, 1–9. https://doi.org/10.1145/2843043.2843068

[21] Jacqui Taylor-Jackson, John McAlaney, Jeffrey L. Foster, Abubakar Bello, Alana
Maurushat, and John Dale. 2020. Incorporating Psychology into Cyber Security
Education: A Pedagogical Approach. In Financial Cryptography and Data Security
(Lecture Notes in Computer Science), Matthew Bernhard, Andrea Bracciali, L. Jean
Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne, and Massimiliano
Sala (Eds.). Springer International Publishing, Cham, 207–217. https://doi.org/
10.1007/978-3-030-54455-3_15

[22] Keela S Thomson and Daniel M Oppenheimer. 2016. Investigating an Alternate
Form of the Cognitive Reflection Test. Judgment and Decision making 11, 1 (2016),
99.

[23] John Towse, Mark Levine, Marian Petre, Arosha Bandara, Tamara Lopez, Awais
Rashid, Irum Rauf, Helen Sharp, Thein Tun, Dirk van der Linden, and Bashar
Nuseibeh. 2020 (in press). The Case for Understanding Secure Coding as a
Psychological Enterprise. Cyberpsychology, Behavior, and Social Networking (2020
(in press)).

[24] Glenn Wurster and Paul van Oorschot. 2008. The Developer Is the Enemy. In
Proceedings of the 2008 New Security ParadigmsWorkshop (NSPW ’08). Association
for Computing Machinery, New York, NY, USA, 89–97. https://doi.org/10.1145/
1595676.1595691

322

59

60

3.1 Statement of Continuous Thesis Summary

“Everyone has a plan ’till they get punched in the face” - Mike Tyson, 1987

In this chapter, I present the intended plan for the PhD project. I detail the project, its

motivations, and describe the intended research phases as published in 2022. This chapter

serves as a primer for the remainder of the thesis, with the phased work plan being the

main contribution, outlining and justifying the components of each phase. Scholarly work

is not always straight like an arrow, and the chronology of the research phases did not

take place in the precise linear sequence of thesis chapters. Instead, components were

pursued in overlapping waves. Nonetheless, preliminary findings from phase 1 still

informed phase 2 decisions and offered constructive information.

Elements from all three phases were completed, but some components could not be

addressed (discussed further in Chapter 9), and ultimately, resource constraints meant

that only some of the intended research could be completed. The work plan was

conceptualised during the early stages of the programme and formalised for publication in

January 2022, 15 months after PhD commencement, and with 21 months remaining, it

naturally evolved over this time. Some gaps between plans and activities can be

attributed to naïvety, but my personal development replaced this with realism over the

PhD development. The absence of these components does not detract from the substance

of the thesis and the meaningful contributions that the work can make to our

understanding of the psychological dimensions of computing and security behaviours in

software engineers.

The following five chapters cover the research conducted, with phase 1 comprising

Chapters 4 and 5, and phase 2 comprising Chapters 6, 7, and 8. The next chapter begins

phase 1 by exploring the perceptions of CS graduates regarding the value of soft skills.

This is important to understand as it offers the opportunity to link their skill

development to education and to identify the most important non-technical aspects of

their careers.

61

4 What’s in an undergraduate Computer Science Degree; Alumni

perceptions about soft skills in careers

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (in review). What’s in an
undergraduate Computer Science Degree; Alumni perceptions about soft skills in
careers. Transactions on Computing Education. https://osf.io/8me4w

https://osf.io/8me4w

What’s in an undergraduate Computer Science degree? Alumni perceptions
about soft skills in careers

MATTHEW IVORY, Lancaster University, Great Britain

JOHN TOWSE, Lancaster University, Great Britain

MIRIAM STURDEE, University of St Andrews, Scotland

MARK LEVINE, Lancaster University, Great Britain

BASHAR NUSEIBEH, LERO, Republic of Ireland and Open University, United Kingdom

Software engineering skills are broad and varied, encompassing not only technical abilities, but cognitive and social
dimensions as well. Previous research establishes soft skills as being central for software engineering, e.g., teamwork,
communication, and problem solving, but the relationship between these skills and how higher education prepares
future software engineers for the workplace is unclear. These programmes should teach students the soft skills
required for their careers, but a better understanding of which skills are valued and taught is needed. The perceptions
of undergraduate alumni about the value of soft skills and where they were developed are reported on in this
preregistered study of computer science and psychology alumni (using the latter as a contrast group). Replicating
previous conclusions, computer science alumni rated problem solving, communication, and teamwork as amongst the
most important skills, but when examining where these skills originate from, problem solving was strongly associated
with education, and teamwork was strongly linked with employment. Communication is weakly associated with
education, with influence from employment sources too. Alumni working in security-related careers highlighted that
organisational skills were important more so than for the alumni population more broadly. We make recommendations
for prioritisation of skill development based on the skills reported by the alumni. We suggest potential ways to
encourage learning opportunities that promote scenarios students will find familiar during their careers, better
preparing students for the needs of the workplace.

CCS Concepts: • Security and privacy → Social aspects of security and privacy; • Human-centered
computing → Empirical studies in HCI ;

Additional Key Words and Phrases: graduate employability, faculty perceptions, soft skills, computer science, higher
education

Authors’ addresses: Matthew Ivory, Lancaster University, Department of Psychology, Lancaster, Lancashire, LA1 4YW, Great
Britain, matthew.ivory@lancaster.ac.uk; John Towse, Lancaster University, Department of Psychology, Lancaster, Lancashire,
LA1 4YW, Great Britain, j.towse@lancaster.ac.uk; Miriam Sturdee, University of St Andrews, School of Computer Science,
North Haugh, St Andrews, LA1 4YW, Scotland, m.sturdee@lancaster.ac.uk; Mark Levine, Lancaster University, Department
of Psychology, Lancaster, Lancashire, LA1 4YW, Great Britain, mark.levine@lancaster.ac.uk; Bashar Nuseibeh, LERO,
Ireland, Lancaster, Lancashire, LA1 4YW, Republic of Ireland, Open University, United Kingdom, bashar@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

62

2 Ivory et al.

ACM Reference Format:
Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2025. What’s in an undergraduate
Computer Science degree? Alumni perceptions about soft skills in careers. 1, 1 (July 2025), 29 pages. https:
//doi.org/10.475/123 4

1 INTRODUCTION

The importance of software in modern society cannot be understated, and subsequently the skills required
to create functionally useful and secure software should be incorporated into Computer Science (CS) higher
education programmes. Developing software is a complex cognitive-socio-technical enterprise, requiring more
than just skills of programming languages and systems [24]. Software engineers’ cognition and social skills
play a critical role in project success [41, 63], but where we have a reduced understanding of the origin of
soft skills, the ability to prepare students for employment is limited. While educators may design curricula to
incorporate specific skills, if students do not perceive these skills to be present, this limits their employability.

Some skills cannot be adequately developed prior to employment, and so employers will also need to
commit to training new employees, and prospective employees are constrained in what they can offer. For
technical skills, such as proprietary tools, training is simply a necessity. For non-technical skills, these are
often domain-agnostic and can be developed prior to employment. A small amount of training may be
required to align the existing skills with employer’s cultures or processes, but skills of teamwork or problem
solving are typically applicable in a great variety of roles. Ensuring that students are developing these skills
during their education improves their graduate employability.

Human behaviours are often referred to as soft skills or non-technical skills [30, 48], and engineers should
be able to recognise the value of soft skills and use them in practice [9]. Soft skills are domain-agnostic,
covering a range of psychologically-rooted abilities, including interpersonal communication, habits, and
cognition [2], and soft skills often determine the success of technical skill application [26, 49]. In the context
of software development, some of the more valued soft skills include problem solving, communication, and
teamwork [3]. For security-related software development, various forms of communication, teamwork, and
social skills are required for working in cybersecurity roles [39].

Many software engineers or those working in adjacent fields complete an undergraduate CS education.
These undergraduate programmes have a significant role in preparing students for future employment,
offering students opportunities to practice and develop their soft skills in controlled environments. Due to
increasingly levels of security awareness around software, these programmes often incorporate cybersecurity
and security training, and so it is important to understand what skills are considered important for these
industries too.

It is imperative we understand the relationship between the skills that are valued within software
engineering and the skills that are developed during an undergraduate education. In doing so, our findings
can inform CS undergraduate programmes to address all relevant skills. CS educators have a responsibility
to expose their students to opportunities to develop these skills, and increase student awareness as to their
importance, and the present research maps this responsibility to the skills used in employment through
exploring graduate perceptions.

To address the limited understanding of how soft skills bridge between education and employment, we
surveyed CS undergraduate alumni about the skills valued in the workplace, where they developed these
Manuscript submitted to ACM

63

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 3

skills, and explored the skills required in security roles. In previous research in this domain, the population is
considered in a vacuum, lacking any comparative groups for reference. To address this shortfall, we collected
data from psychology alumni to form the reference group. Specifically, CS undergraduate programmes are
often highly driven to prepare students for careers in software engineering. This makes sense as over 79%
of graduates find employment in software engineering [6]. In contrast, many psychology graduates enter
non-psychology careers, such as sales or teaching [58], and psychology professions often require graduate-level
programmes. This combination of participants provides a unique perspective to our research that is absent
in other related work.

1.0.1 Hypotheses and Research Questions. Our research was driven to better understand the mapping
between undergraduate CS education and employment activities, with a complementary analysis of security-
related work. Previous studies often focus on employers or current employees in a particular domain, but
by placing the focus on individuals as CS alumni, we can make stronger associations between their skills
used and how these were formed or developed during their education, which can offer implications for
undergraduate pedagogy, as it highlights the skills that are considered important, but also whether they
are taught effectively in the programme or not. We were motivated to make comparisons between two
undergraduate programmes, as through a comparison of CS and psychology alumni gives a contrast in the
skills necessary and highlights how the skills are emphasised differently in their education, as well as how
these then correspond to employment.

We also explore the soft skills and alumni perceptions within security-related employment as cybersecurity
increasingly becomes more and more valued within software engineering. As more universities offer cyberse-
curity courses [52], it is key to ensure the skills required with security sectors are reflected in the education
offered within CS courses. If different skills are required when working in security-sensitive domains, then
these requirements can be used to help inform conversations around the skills highlighted and emphasized
in present education programmes.

To focus the research, two hypotheses were preregistered:
H1. Computer Science undergraduate alumni will prioritise different groupings of soft skills to Psychology

alumni, representing two different populations of perceived soft skill importance.
H2. Computer Science undergraduate alumni involved in security-related work will prioritise different soft

skills than those who are less involved in security.
To help structure the analysis plan, and complement the hypotheses, five research questions were

preregistered at (https://osf.io/5qb6a). These questions help in breaking down the complex dataset.
RQ1: How do undergraduate alumni understand the importance of soft skills in their employment (current

or most recent)?
RQ2: How do Computer Science and Psychology undergraduate alumni differ in the soft skills deemed

important for their workplace?
RQ3: How do undergraduate alumni recall being introduced to soft skills, via education or through

employment?
RQ4: How do the technical skills possessed by alumni relate to the perceived importance of soft skills in

employment?

Manuscript submitted to ACM

64

4 Ivory et al.

RQ5: How do Computer Science undergraduate alumni differ in their use of security in their work, and
how do the required soft skills differ between those who use security and those who do not?

1.1 Contribution

Our research provides three unique contributions:

1. We identify the skills considered to be the most important by CS alumni, these being problem solving,
communication, responsibility, teamwork, and analytical thinking.

2. We identify links between skills and their sources of development (through education, employment, or
personal means), where education is strongly associated with problem solving and analytical thinking,
teamwork with employment, and communication is not strongly associated with any one source.

3. We highlight the soft skills that are considered as the most important for those who work in a security
context, with those working in higher security domains reporting important skills of communication,
problem solving, and organisation.

1.2 Structure

The rest of the paper is structured as follows. Section two explores the existing literature surrounding
soft skills in software engineering and CS. Section three describes the methodology used, including the
participants, measures, and analysis processes. Section four provides the results. Section five discusses the
results and implications. Section six concludes the paper.

2 RELATED WORK

2.1 Psychology within Software Engineering

Psychology’s important role in software engineering has become increasingly visible [14], with an understand-
ing technical skill alone does not define an exceptional software engineer [17, 30]. Soft skills are psychological
in nature, encompassing personality, habits, social aptitude, and cognition [2]. They can be considered as
the surface features underpinned by psychologically quantifiable measures and theories.

In recent years research has been carried out in software engineering with psychology as the focus,
examining behaviours involved in secure software development. Security provides an additional complexity to
software development and reflects the requirement to protect personal and sensitive information. Technical
knowledge and experience have little effect for secure software development [10, 53], suggesting social or
cognitive factors must be involved, reaffirming a need to better understand the soft skills and psychology
linked to secure development.

Software engineers often assume tools are secure by default, increasing the chances of security vulnerabilities
[50]. Long term memory recall was linked to an increased detection of insecure code [10], perhaps indicating
a greater ability to recall relevant technical information. Individual differences play a role in security,
and cognitive biases impact perceptions of risk [37], as well as cognitive cues prompting greater security
behaviours [33, 51]. Social identity plays a role in secure development, and developers that perceive more
group differences in a project subsequently experience reduced responsibility and commitment to testing
software security [36]. Others report increased interaction with security teams encourages security behaviours
in others [64], likely due to an increased sharing of social identities.
Manuscript submitted to ACM

65

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 5

2.1.1 Soft skills in Industry. The understanding of which soft skills are relevant for software engineering
often comes from industry data, such as job adverts or interviews with current employees or managers. Two
of the commonly reported soft skills are teamwork and communication [3, 30, 38, 46, 48]. These findings
indicate that the industry is group-oriented, requiring communication, both between teams and stakeholders.
Another key skill was problem solving [3, 22, 45]. Problem solving requires a mindset allowing for real-world
problems to be interpreted within a software setting. Organisation was frequently mentioned as necessary to
guarantee projects can be maintained even if employees leave by ensuring they adhere to workflows and
institutional decisions [3].

Soft skills are seen to improve employee integration and enhance team productivity [59], highlighting the
importance of soft skills for using technical skills effectively. Other employers note that technical skills are
easier to teach compared to soft skills [23, 43].

2.1.2 Soft Skills in Cybersecurity. Within cybersecurity, communication is seen as crucial [5], along with
critical thinking, adaptability, innovation, and interpersonal skills [34]. Communication is needed for conveying
the need for security or security information, along with being able to communicate to a wide audience.
Interpersonal skills included displaying positivity and building rapport and trust between clients and peers.
Decision making and problem solving were highlighted [61], and organisational skills, as a requirement for
creating knowledge bases [27].

In exploring where these soft skills originated from, there is no clear consensus of a single origin, and a
conflict between perception of many soft skills being immutable and innate, and a split between education
and employment [39]. Others rated communication, motivation, and a willingness to learn/curiosity as a
priority for being taught in cybersecurity education [5].

Communication, problem solving, organisational, and interpersonal skills have been mentioned already in
general software engineering, indicating that cybersecurity skill requirements are similar to those in general
software engineering too.

2.1.3 Soft skills in Education. The higher education sector is partly responsible for preparing students
for employment. Groeneveld et al. [31] identified self-reflection, conflict resolution, communication, and
teamwork as the most taught skills, which were reflected in a further examination of modules focusing on
soft skills, identifying teamwork, ethics, communication, and presentation skills [29]. Others identified ethics
and analytical thinking styles as important [18]. Research conducted with alumni by Calitz et al. [13] and
Watson and Blincoe [62] found skills of problem solving, teamwork and communication prioritised above
other skills.

It is seen that student perceptions of important soft skills are different to the skills valued by employers
[60], with graduates not possessing the relevant skills for employment [54]. Students entering CS programmes
come with preconceptions that technical skills, such as programming, are the more valuable skills and
prioritise these over soft skills [35]. Students often confuse skill importance with enjoyment, associating
lower value with less-enjoyable activities [42]. It is wrong to assume students will strengthen the appropriate
skills, or that soft skills develop organically without opportunities, and so it is crucial CS degrees facilitate
students’ development of these skills. It is imperative students are provided with ways to upskill [8], meeting
prospective employer’s wishes for pre-existing soft skills [4].

Manuscript submitted to ACM

66

6 Ivory et al.

We offer a unique contribution through the report on the present study, contributing to our existing
knowledge around the soft skills needed within software engineering. Previous research has identified the
skills desired by software engineering employers, and security-specific domains. Others have noted that
student perceptions do not necessarily align with industry expectations, and that they undervalue soft skills
compared to technical competencies. We offer a greater understanding of how CS alumni perceive soft skills
as being valued in their employment, and where these skills were developed. This work contributes to closing
the gap between student skills and employer expectations, by identifying the sources of important skills.

3 METHODS

3.1 Participants

Alumni from Lancaster University were contacted if they had completed a degree in CS (n = 750) or
psychology (n = 1,576). An 11.62% response rate was achieved (276 responses), and 128 were retained for
analysis. The 128 responses contained enough data to answer most research questions (1, 2, 4, and 5) and
100 of these responses were able to be used for answering question 3. All participants provided informed
consent.

Of the 128 participants, 69 were psychology alumni, and 59 were CS alumni. The spread of graduation
years is reported in Figure 1. The ages of respondents were similar between departments with a mean age
of 41.32 (SD = 13.97, median = 38.00) in psychology, and 48.03 (SD = 15.92, median = 50.00) for CS.
Reported gender for CS alumni was 13.56% female and 86.44% male, and psychology alumni reported
59.42% female, 37.68% male and 2.90% other. Figure 2 shows participant gender and age.

For CS alumni, 54 (91.53%) had worked in an industry or role related to software engineering post-
graduation, compared to 9 (13.04%) psychology alumni. For psychology employment, 25 psychology alumni
(36.23%) and four CS alumni (6.78%) reported related roles. This reflects the high versus low industry-
preparation status of these degree pathways.

In this research, our demographic of interest were alumni who completed an undergraduate degree at
Lancaster University, and in the rest of the paper, references to “university” explicitly refer to the institution
where the alumni completed their undergraduate education. It is acknowledged that “university” can be
considered a Westernised term, but we use it in the context of the institution where the sampled students
studied.

3.2 Measures

The survey was presented through Qualtrics, an online surveying tool, and completed remotely. The survey
is found on OSF (https://osf.io/s52r7/). Figure 3 shows survey flow, consisting of an information sheet,
informed consent, and demographic information. The demographic questions included age, gender, education,
employment status, job history and department of study. Participants were asked about their technical
skills, with CS participants asked about security usage. No restrictions were placed on what participants
considered to be technical skills. Following this, both groups ranked 23 skills (detailed in Skill definition
validation) on a five-point Likert scale ranging from “Not Important” to “Very Important” in relation to
current employment. Participants were asked where these skills were developed, undergraduate education,
employment, or personal development. Finally, participants were debriefed.
Manuscript submitted to ACM

67

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 7

Fig. 1. Histogram of undergraduate graduation year split by department. Bars are grouped into ten-year intervals.

3.3 Procedure

3.3.1 Skill definition validation. A recent study found over 400 different soft skill types [19], highlighting
the sheer magnitude of skills. Presenting participants with over 400 options was not appropriate, and so
we developed a select list of commonly identified skills. Items were taken from Stevens and Norman [59],
Matturro et al. [46], and Ahmed et al. [3], resulting in 23 distinct soft skills. The definitions of these skills
were created using the above works and their cited sources.

To assess definition distinctiveness, they were validated using an independent participant pool recruited
through Prolific, an online recruitment platform. Over three rounds of validation were conducted with 20
participants in each round. The task had participants presented with a list of soft skills and definitions and
were then asked to match each definition to the most appropriate term. Multiple terms could be selected
and were ordered.

Following each round, definitions were updated to aim for term distinctiveness. To identify these definitions,
mean rankings, standard deviations and frequency counts were calculated. These were combined to provide
a metric: mean × SD

count
. Correct definition-term items with a score less than half of the next score were

deemed appropriate, and terms with a count less than the square root of total participant count were not
considered to be strong associations. After three rounds, definitions were considered appropriate and with
high distinction. See (https://osf.io/s52r7/) for the skills and definitions.

Manuscript submitted to ACM

68

8 Ivory et al.

Fig. 2. Histogram of age and gender splits. Bars are grouped into five-year intervals.

Fig. 3. Survey flow with CS alumni filling out an additional section regarding their experience working with security. This
focussed on whether their employment was linked to security work, and how much of their work is concerned with security.

3.4 Data analysis

Two analysis methods were used, correspondence analysis with ordinal regression and factor analysis.
Correspondence analysis offers the identification of relationships between individual skills against other
categorical data (such as skill importance), and exploratory factor analysis (EFA) can be used to identify
latent skillsets.

The analysis methods were preregistered (https://osf.io/5qb6a). The conducted analysis deviated from
the preregistration as it used ordinal regression rather than loglinear regression. Both achieve a similar
Manuscript submitted to ACM

69

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 9

goal, but the interpretation of large loglinear models is difficult and requires a reference skill, meaning the
interpretation is always a comparison between skills.

3.4.1 Correspondence Analysis. Correspondence analysis represents relationships between categorical and
ordinal variables in reduced dimensional space. It shows skill importance relaitve to other skills, not necessarily
which skills are the most categorically important. Two interpretation methods are used; the first being the
absolute distance of a point from the origin (0,0) indicating skill strength, and the angle between the vector
of importance rating drawn from the origin and the vector of skill. Smaller angles indicate higher association,
and right-angles indicate no association.

When working with ordinal data, correspondence analysis requires “doubling” [28], anchoring responses
against upper and lower bounds to differentiate between constant responses, otherwise a response of “Strongly
Agree” on a Likert scale (5,5,5,5) is interpreted as having the same profile as all “Strongly Disagree” (1,1,1,1).
Joint correspondence analyses allow for comparisons between two or more groups.

3.4.2 Ordinal Logistic Regression. Ordinal logistic regression, or proportional odds logistic regression are
used to build upon the correspondence analyses by offering a statistical analysis of the findings. Likert scales
are limited in that the distance between responses is not constant (the difference between “Very Important”
and “Quite Important” may be different than “Quite Important” and “Important”). Ordinal regressions
accommodate for this variable distance by examining odds-ratios [11]. They are the most appropriate way
for modelling ordinal Likert data.

3.4.3 Factor Analysis. EFA groups large numbers of items into latent factors, based upon the response
profiles. EFA is used when there are no pre-existing factors, allowing for free association. Skills associated
with the same factor are assumed to share common variance, indicating a latent grouping structure.

3.5 Data Validity

The requirement for correspondence analysis is there is no missing data, data independence, and the scales
used are identical for all responses. This is ensured through the survey design. People could not respond
more than once and could only sort skills into a single category, missing data was filtered from analysis, and
all scales were identical for all participants.

For ordinal regression, data must be ordered with more than two possible outcomes (for example, a
five-point Likert scale), and the proportional odds assumption must be satisfied. To test this assumption the
Brant-Wald test was used. Non-significant values suggest the data satisfies this assumption, which was met
in all reported instances.

For EFA, Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of Sphericity can be used. KMO is used as
an indicator for data factorability, our KMO score was .85, passing the threshold of .80 [15]. Bartlett’s test
assesses association between variables, with a significant result indicating correlations in the data. Bartlett’s
test was 1234.50, p = <.001, indicating suitability.

4 RESULTS

This section is structured using the research questions. We provide a description of the analysis, followed by
an extraction of key findings and their relevance to the research question and hypothesis.

Manuscript submitted to ACM

70

10 Ivory et al.

Table 1. Values of the factor loadings of the final EFA, ordered by factor eigenvalue and item loading strength.

Computational
Thinking

Social Workplace Independence Visionary

Analytical Thinking 0.74
Problem Solving 0.70
Methodical Thinking 0.63
Critical Thinking 0.63
Organisational 0.53
Initiative 0.50
Communication 0.75
Interpersonal 0.67
Conflict Management 0.64
Ethical Thinking 0.51
Decision Making 0.43
Handling Pressure 0.57
Responsibility 0.53
Flexibility 0.53
Willingness to Learn 0.53
Teamwork 0.46
Motivation 0.44
Autonomy 0.77
Adaptability 0.54
Creativity 0.75
Innovative 0.67

4.1 Testing Hypothesis One: Differences in Valued Skills for CS and Psychology Alumni

Hypothesis 1 stated, “Computer Science undergraduate alumni will prioritise different groupings of soft
skills to Psychology alumni, representing two different populations of perceived soft skill importance.”

First, an exploratory factor analysis was conducted to reduce the 23 skills into smaller sets of similarly
rated skillsets. EFA factors with larger eigenvalues indicate greater importance in response to the survey
question “how important are the following skills to your job role”. Parallel analysis was used to identify the
optimal factor count, with eigenvalues above one used as a threshold. The optimal number of factors was
five, using weighted least squares and varimax rotation.

Leadership and time management cross-loaded against multiple factors, indicating minimal unique
contribution and were removed. The factor analysis was rerun resulting in no cross-loading. Final factor
scores are presented in Table 1, with loadings under .4 suppressed. Fit indices of RMSEA = .05 [CI = .02,
.07], TLI = .93 were acceptable [21]. Correlations between factors ranged from -.09 to .12 confirming factor
distinctiveness.

It can be useful to name factors for easier interpretation and the identified factors were named as:
Computational Thinking (eigenvalue, λ = 6.67), Social (λ = 2.31), Workplace (λ = 1.47), Independence
(λ = 1.33) and Visionary (λ = 1.18). It is noted these names recognise core items, but as the skills are
factored according to their importance, they could easily be called “Most Important”, “Important”, “Less
than Important”, “Unimportant”, and “Not Necessary”, but as this is reflected in the eigenvalues, more
Manuscript submitted to ACM

71

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 11

descriptive names were chosen. The factorisation provides an answer to the first research question of what
skills are considered important to the undergraduate alumni group as a whole.

The second research question asked how the two alumni groups differ in their reported importance of
skills, and to answer this using the reduced set of skillsets, a linear regression model can be used to examine
differences between the two alumni groups, examining the interaction between department and skillsets,
with a random effect of participant to account for individual differences in participant responses. Pairwise
comparisons were carried out, which returned no significant relationships. An R2

conditional of .09 provided
minimal variance, and model diagnostics suggested a poor model fit. Subsequently, the factor analysis
provides little contribution to the question of how the two groups differ in their ratings.

Looking more broadly at the individual skills, a joint correspondence analysis of importance ratings
for each skill between groups was used. Ratings of “Not important” and “Less than Important” were
combined to remove zeroes in the data improving coherence. Correspondence analysis plots ordinal data
in reduced dimensional space and as shown in Figure 4, the first dimension explains 84.99% variance and
can be interpreted as importance (and dimension two as department with 10.19% variance). To note are
the barycentres, which are the cumulative average of the two groups (denoted by the larger points on the
figure), from this we can see that overall psychology alumni were more intense in their ratings suggesting
they rated the skills higher on average.

As the first dimension explains such high variance, the analysis can be reduced to a single dimension,
shown in Figure 5. Psychology alumni are centred on zero allowing the CS responses to vary, reflecting
perceived importance. To test for statistically significant differences between the two alumni populations,
ordinal logistic regressions were used. For brevity, only skills with significant differences are reported.

4.1.1 Ethics. For differences in ethics, CS alumni are associated with odds .72 times lower of rating ethics
highly compared to psychology alumni, β = -1.27, t = -3.81, p < .001. Figure 6 shows the score probabilities
for each level of the rating, with all skills.

4.1.2 Time Management. CS alumni had .61 lower odds of ranking time management skills as highly as
psychologist alumni, β = -.95, t = -2.73, p = .006. Differences are seen in Figure 6, with psychology alumni
ranking time management highly compared to CS alumni.

4.1.3 Team Skills. CS alumni had 1.90 times higher odds of rating team skills more importantly than
psychology alumni with a large difference in the “Very Important” ratings by CS alumni as shown by
Figure 6, β = .64, t = 1.95, p = .051. CS alumni were more likely to report team skills as “Very Important”
compared to psychology alumni.

4.1.4 Interpersonal. For interpersonal skills, CS alumni had .58 times lower odds of ranking highly compared
to psychology alumni, β = -.88, t = -2.51, p = .012. Both demonstrated low probabilities of reporting low
importance as shown in Figure 6.

4.1.5 Communication. Like interpersonal skills, CS alumni were associated with .60 times lower odds of
ranking communication as high as psychology alumni, β = -.92, t = -2.43, p = .015. Figure 6 shows the
difference in the rating scale with greater probability of CS alumni ranking communication lower than “Very
Important”.

Manuscript submitted to ACM

72

12 Ivory et al.

Fig. 4. Correspondence Analysis plotting skill importance between alumni groups. Dimension one can be interpreted as
importance and explains 84.99% of variance, with the second dimension interpreted as differenced in department explaining
only 10.19% of variance.

RQ2 contributes to answering H1, that the two alumni populations differ in their prioritised skills. Using
EFA, no significant differences were seen, but on a more granular level, CS alumni valued teamwork higher
than psychology alumni, who valued communication, interpersonal skills, time management, and ethics more
than CS alumni.

RQ3 explored how undergraduate alumni recalled being introduced to soft skills. Participants were asked
to sort the soft skills they possessed into being developed through education, employment, personal interests,
or that they did not possess the skill. The latter were removed from the analysis, as they provided little
descriptive power, and removal had minimal effect on the analysis.

A joint correspondence analysis identified the sources that alumni associated skills originating from. Figure
7 reports items with an associative strength greater than .25 for easier representation. The first dimension
explains 68.28% of the variance and can be interpreted as a continuum of Education to Occupation. The
y-axis provided 29.49% variance representing a spectrum of Personal Development, with higher values
indicating more self-led development. Figure 8 identifies angles of less than 30° and greater than 150° and
the strengths associated with each skill. Only skills with a strength greater than .25 are included to aid
clarity. Skills with a small positive angle (less than 30) are positively aligned with the source, and items
that are linked through obtuse angles of 150-180° are negatively associated with a source.
Manuscript submitted to ACM

73

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 13

Fig. 5. A representation of the absolute difference in distance and direction between alumni for each skill. As dimension
one explains so much variance, omitting dimension two still provides a strong representation of the skills reduced to a single
dimension.

Using the associative angles and strengths of the correspondence analysis, four key interpretations can be
made:

1. Both groups viewed analytical and methodical thinking as originating from university. Differences were
seen with CS alumni associated problem solving with university, and psychology alumni associated
critical thinking and ethics with education. These are the primary skills that graduates develop in
university prior to employment, representing the strengths of these degrees.

2. For CS alumni, a willingness to learn, ethics, and motivation were associated with personal development.
A willingness to learn was weakly associated with personal development for psychology alumni, and
creativity being more strongly associated.

3. Skills such as leadership, conflict management, and decision making were associated with employment
by both alumni groups. CS alumni felt team working was linked with employment more so than other
sources. Psychology alumni associated flexibility and adaptability with employment more strongly
than CS alumni.

Manuscript submitted to ACM

74

14 Ivory et al.

Fig. 6. Plot of the fitted probabilities for all skills with significant differences between the two departments. Each individual
plot indicates the differences between alumni responses for each rating level

4. the barycentre (the average of all skills combined by alumni population) for CS alumni is positioned
closer to employment as an overall source of skill development, whereas psychology alumni associated
more skills with their education.

The fourth research question explored how the technical skills possessed by alumni related to the perceived
importance of soft skills in employment. When asked for the technical skills taught and used, participants
responded with free text answers that were manually categorised. Twenty technical skill types were derived,
seen in Figure 9.

Frequently mentioned skills by CS alumni were programming, followed by declarative knowledge (a broad
skill category encompassing concepts like computational theory, history, or skills such as UML). and then
data management. In comparison, psychology alumni referenced statistics and data analysis (which included
tool use such as SPSS, R, NVivo), along with technical writing which included policy documents. Psychology
alumni also used research skills, like designing studies, surveys, and interviews. The skills mentioned by CS
Manuscript submitted to ACM

75

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 15

Fig. 7. Joint correspondence analysis of skills and their perceived originating source as either university, through hobbies or
through work, split by department. Only items with an associative strength greater than .25 are included in the plot for
clarity. Arrows indicate the angles of association.

alumni align with skills needed in software engineering roles, which is unsurprising as over 91% reported
software engineering relevant roles.

Alumni also listed soft skills in the free-text responses here, which are shown in Figure 10. The most common
skills mentioned were problem solving, communication, and teamwork. In the survey flow, participants were
presented with this question prior to completing the soft skill ranking task, indicating that some participants
considered these as technical skills, perhaps highlighting their considered importance.

4.2 Addressing Hypothesis Two: Skills Valued for Security-Related Work

Hypothesis two, “Computer Science undergraduate alumni involved in security-related work will prioritise
different soft skills than those who are less involved in security”, was answered through asking how CS
undergraduate alumni differ in their use of security, as well as differences between levels of security use.

A joint correspondence analysis was carried out with the question, “Do you use security in your role?”
which had a five-point Likert response of “None at all”, “A little”, “A moderate amount”, “A lot”, and
“A great deal”. “None at all” and “A little” were combined into one factor called “Little to none” due to
minimal responses to “None at all”. Responses were doubled and Figure 11 provides the correspondence
analysis plot split into skill-isolated plots.

The first dimension explains 70.54% variance and can be interpreted as skill importance, with the second
dimension explaining 17.37% variance and interpreted as rating intensity, corresponding to either high or low
scores (“Very Important” or “Less than Important”). Higher scores on dimension one were more positively

Manuscript submitted to ACM

76

16 Ivory et al.

Fig. 8. Associations of skills for each source of development. Items plotted closer towards the zero axis (the top) have a
smaller associative angle, indicating a stronger association, and items further from the centre are more strongly associated.
A strong cluster of positively connected skills are seen in the arc between 0 and 10, indicating their strong association to
their respective sources. Skills seen to be closely associated with a source are within the righthand side of the positive
angles, and skills that are not associated with a particular source have negative associations and are seen towards the
lefthand side.

associated with security usage. As self-reported security usage increased, skills of communication, critical
thinking, decision-making, flexibility, initiative, innovation, organisation, and problem solving were rated
more highly.
Manuscript submitted to ACM

77

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 17

Fig. 9. Frequencies of each reported skill type per participant.

Fig. 10. Soft skills mentioned within the answers of which technical skills were taught and used in employment. Items
mentioned once only are omitted.

Participants were asked for further security usage detail providing context. Those who reported using
a great deal of security included cybersecurity industries, security team leads, handling financial data,
security consulting, or working for national defence contractors. Those who used a lot of security reported
data confidentiality, fixing insecure code, adhering to security recommendations, and secure sectors such as
aerospace. Those reporting a moderate amount of security mentioned data confidentiality, physical building

Manuscript submitted to ACM

78

18 Ivory et al.

security, preventing common insecure code issues (e.g., OWASP top 10), and secure system design. Those who
used security a little mentioned GDPR adherence, personnel vetting, integrating software with automated
security scans, and basic input validations. This reflects a general trend in the self-reported security levels
with higher levels of security aligning with tasks or domains that can be reasonably considered as more
security-conscious (e.g., national defence versus GDPR adherence).

Due to the relatively small dataset of those asked about security (n = 59), ordinal models of specific skills
contained high multicollinearity levels and so further analysis was not conducted.

The responses answer H2 in that security work will require specific skills in comparison to lower security-
related work, with an indication that communication, problem solving, critical thinking, decision-making,
flexibility, initiative, innovation, and organisation were required more than others.

4.3 Results Summary

For RQ1, and how undergraduate alumni understand the importance of soft skills for employment, factor
analysis was used. Five skillsets were found, grouped by importance. Skillsets included Computational
Thinking (analytical thinking, problem solving, methodical skills, critical thinking, organisational skills, and
initiative), Social (communication, interpersonal, conflict management, ethical thinking, and decision making),
Workplace (handling pressure, responsibility, flexibility, willingness to learn, teamwork, and motivation),
Independence (autonomy and adaptability), and Visionary (innovation and creativity) skills.

For RQ2, how do the two alumni groups differ in the soft skills deemed important for work, this was
answered using a joint correspondence analysis. The responses were reduced to a single dimension explaining
84.99% variance. An ordinal regression was carried out on skills demonstrating the greatest differences.
CS alumni had 72% lower odds of rating ethics highly compared to psychology alumni, 61% lower odds
of rating time management skills highly, 58% lower odds for interpersonal skills, and 60% lower odds for
communication. Inversely, CS alumni had 90% higher odds of reporting team skills as important compared
to psychology alumni.

For RQ3, how do undergraduate alumni recall being introduced to soft skills? A joint correspondence
analysis of where skills were developed was used. CS alumni associated analytical and methodical thinking,
and problem solving with university; a willingness to learn, motivation and ethical thinking through personal
development, and leadership, conflict management, teamwork, and decision making through employment.
Teamwork and interpersonal skills were developed under more occupational settings than university.

For RQ4, how do the technical skills possessed by alumni relate to the perceived importance of soft skills
in employment? An answer was provided through tagging of technical skills identified as being taught in
education and used in employment. Key skills identified were various programming languages, declarative
knowledge, and data management.

For RQ5, how CS alumni differ in their security usage and how the required soft skills differ, a corre-
spondence analysis indicates that significant skills for security include communication, flexibility, initiative,
innovation, organisation, and problem solving. The data was not appropriate for further statistical analysis
due to insufficient data quantities.

Manuscript submitted to ACM

79

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 19

Fig. 11. A split-by-skill representation of each skill rated for CS alumni’s security usage in employment. Items closer to the
centre or each other indicate minimal differences in the way skills are used around security. Dimension one provides over
70% of variance and so items located further along the x-axis indicated greater perceived importance.

Manuscript submitted to ACM

80

20 Ivory et al.

5 DISCUSSION

In this preregistered study, we report on the perceptions of soft skills for CS alumni, the sources of skill
development, and compared their valued skills against a sample of psychology alumni. We include an
exploration of the soft skills valued in security-related work. A multi-pronged analysis found computational
thinking, communication, and social skills were valued by both CS and psychology alumni, indicating the
universal nature of these skills. For CS alumni, the skills of problem solving, analytical, and methodical
thinking were developed during education, whereas more workplace-specific skills, like leadership and
teamwork, were associated with employment, and curiosity and motivation were linked with more personal
interests and hobbies. In contrast to psychology alumni CS alumni valued team skills more, indicating
the importance of team working in the industry. For skills around security work, key skills included
communication, problem solving, critical thinking, decision-making, flexibility, initiative, innovation, and
organisation.

We explored alumni perceptions regarding the skills they value in employment and where these skills
originate from. Importantly, the intentional collection of their perceptions emphasises the role of their
individual experiences, and how this may contrast with reality. The experiential nature of soft skills in
education is arguably more valuable to understand than what a curriculum offers as it relates to the beliefs
alumni hold about their own abilities. Student perceptions are updated over the course of their education,
and soft skills increase in their value [12]. Despite this change, students’ skills are different to industry
expectations [54, 60].

CS alumni valued skills such as problem solving and communication, with less distinction between other
skills. Problem solving, communication, and teamwork are key skills that have been previously identified
as important for software engineering [3, 13, 45, 59, 62], indicating an alignment between industry and
CS alumni. This is unsurprising, as most of the sample (91%) reported having had at least one software
engineering-related job position since graduation. This is indicative that the skills desired by software
engineering employers are the skills that are being used by their employees.

5.1 Sources of Valued Soft Skills

If undergraduate programmes are to prepare students for the world beyond education, it is important they
introduce and develop the skills valued in the workplace. Figure 12 shows the top five important skills for
CS alumni and their origins as shown. It is the same as Figure 7 but only shows CS alumni top five reported
skills for enhanced clarity. It is clear these skills are associated with different sources. Problem solving and
analytical thinking are developed during their university education. These skills represent the strengths of
the CS undergraduate course, as it gives students opportunities to develop the skills considered important
for the careers chosen by the alumni.

Figure 12 shows that problem solving is closely associated with their education, likely due to the influence
of programming which is seen to develop problem solving skills [1]. This suggests that students are well
prepared for the technical aspects of software engineering. CS courses have previously been seen to teach
problem solving well [57], and this is a soft skill that can be considered as being integral to a CS undergraduate
programme. The skill of communication had a small positive association with education over the other two

Manuscript submitted to ACM

81

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 21

Fig. 12. The source of development for the top five skills reported by CS alumni.

sources. Responsibility was poorly associated with any specific source. It is noted these weak associations do
not imply these skills are not developed anywhere, but rather that there is no consensus on its source.

Teamwork was most associated with employment, which possibly contrasts the expectation from educators
who emphasise it in their teachings. Teamwork has long been recognised as a core skill for CS students
[44], and subsequently included in most curricula. Despite this, alumni perceive teamwork being developed
during employment. This may be a result of participants perceiving employment to have a stronger role over
education in understanding how team work is carried out, and so was chosen as only one source could be
selected. More concerningly, it may reflect participants not considering education to have provided them
with effective team working skills. It is important that the CS undergraduate education continues to foster
the development of team working skills.

One method of encouraging team-working skills is through project-based learning [55], allowing students
to develop their team working skills in a controlled environment with opportunities to explore without
serious ramifications (such as impacts on business success). This benefits not only the students who enter
the workplace with the necessary skills, but employers also as new employees require less training.

Ethical thinking was ranked low in the valued skills of CS alumni, indicating either a general agreement
over its influence in CS alumni careers, or that ethics in education is different to the way ethics is handled in
industry. In recent years, ethics has become more of a component in education [20, 56], and so our findings
may not reflect the perception of recent graduates as we surveyed a broad range of graduation years. One
way to improve the value of ethics is to ensure that teaching materials possess ecological validity, such
as incorporating realistic ethical scenarios or information into teaching materials. Producing these more
concrete examples can improve how ethics is perceived by students [32]. If students are entering careers

Manuscript submitted to ACM

82

22 Ivory et al.

with minimal understanding of thinking ethically, they risk causing harm to others. We emphasise that our
findings are not reflective of an idea that CS alumni do not value ethics, but that in relation to other skills,
it is not as valued.

Our findings show the CS undergraduate course provides students with opportunities to develop their
problem solving and analytical thinking skills, which are reported as being some of the most valuable soft
skills. Problem solving and analytical thinking are some of the programme’s strengths with problem solving
being highly valued. Teamwork is an important skill in the workplace but fails to be considered adequately
taught during education. It is important that students are given experience in working in teams or projects
that translate into their future work. We note that ethics, despite its place on the curriculum in many
courses, failed to be valued to the same degree as other skills. Further work is needed to understand why,
and to ensure students are being made aware of the value of ethics.

5.2 Comparisons With Psychology Alumni

To ensure our findings were not considered in a vacuum, we provide a contrast between CS and psychology
alumni, which offers context to the perceptions of CS alumni. Taking the stance that psychology alumni
have greater career variance compared to CS alumni, it highlights how a CS education prepares graduates
for their likely employment in software engineering. We see a potential universal nature for some of the more
important skills, such as communication and problem solving, which are noted in other technical industries
including science [25], and business [16, 40].

When exploring differences between the two groups, we found CS alumni valued ethics, time management,
interpersonal skills, and communication lower than psychology alumni. In contrast, they valued teamwork
more than psychology alumni. These skills reflect the differences in perceptions between CS and psychology
alumni. It is necessary to interpret these findings alongside the importance ratings, and to this end, a
simplified representation of these skills is shown in Figure 13. The distance from the barycentre and plot
coordinates represents the differences between the two groups. For time management, interpersonal skills,
and communication they show similar distances from their respective barycentres in the same direction,
indicating differences primarily in the intensity of the ratings rather than one group valuing the skills more.

The findings suggest whilst ethics is of no major importance to psychology alumni, it is undervalued
by CS alumni and represented the biggest difference between the two groups. The comparison against
psychology alumni suggests CS alumni may be entering employment with a reduced sense of importance
around ethics. Incorporating ethics into software engineering is challenging, with many organisations lacking
ethical guidelines, placing responsibility on individuals [47], and on entering the industry, recent graduates
may feel that what ethics they did learn is not applicable to their work.

Teamwork was seen as being valued more by CS alumni, considered more important than the average
skill rating. As over 91% of CS alumni reported a software engineering related role, this indicates these roles
require team working, which aligns with many software teams using team-based project management such
as agile working [7]. The value of teamwork for CS alumni, with the finding that this was associated with
having been developed in employment rather than education, suggests that improved methods of including
teamwork in undergraduate programmes should be considered.

Manuscript submitted to ACM

83

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 23

Fig. 13. A plot highlighting the skills that had significant differences between the two alumni populations.

5.3 Security-related Skills

With increased security use, skills of communication, critical thinking, decision making, flexibility, initiative,
innovation, organisation, and problem solving were considered important. If there were no link between
certain skills and security usage, the correspondence analysis would have shown very tightly clustered points
for each skill. This was not the case, and the skills that show deviation from the main cluster as security
usage increased are required more often when working in security.

Cybersecurity professionals have previously reported communication and teamwork as being valuable soft
skills for their profession [39], as well as being curious [5]. Along with our own findings that problem solving
is associated with undergraduate education, skills of organisation and flexibility were more associated with
employment than education, and communication, initiative, and innovation were not seen to load strongly
against any one source, suggest that the skills needed for cybersecurity are variable in their development
source. Curricula that incorporate aspects of security should consider how to incorporate these skills into
their content.

We suggest that modules and courses focused on cybersecurity should ensure they provide opportunities
to develop these key skills in a security context. Whilst many of the skills are not linked with a definitive
source, educators should ensure they are introducing and providing opportunities to develop these skills,
boosting the prominence of their presence in cybersecurity teaching materials.

Manuscript submitted to ACM

84

24 Ivory et al.

5.4 Threats to Validity

This research targeted CS alumni from the same institution, limiting generalisability to other programmes.
However, the spread of graduation years encompasses multiple iterations of the CS programme, spanning
significant developments in CS as a discipline. As such, the findings speak to a more generalised experience
of skills across time. This indicates the skills reported are consistently desired, and that their importance is
not a new phenomenon.

The use of ordinal scales limits the analysis options due to subjectivity of individuals’ interpretation of
distance between points on the scale. Despite limitations of ordinal scales, the research was designed to better
understand which skills are of interest to CS alumni, reflecting the use of soft skills that CS alumni possess
and the role of university in their development. The use of ordinal logistic regression and correspondence
analysis were select as the most appropriate methods for analysing these data types.

The ordinal regression models, used for making comparisons between the valued importance of the two
populations, offered minimal variance explanation, which was anticipated due to the fluid definitions of
soft skills. Soft skills as a defined concept are weak, but we controlled for this by giving participants a
defined list of what each skill referred to. This list was validated prior to data collection, as described in Skill
definition validation. A second issue of soft skill predictive power is more complex, and our findings show
whilst associations exist between soft skills and the variables examined, they are not particularly strong.
This was expected and the motivation behind this research was to identify the key skills to allow further
psychological research to examine these areas more closely.

Finally, the findings are recognised as being of a Western-centric position, potentially limiting generalis-
ability to the global population. One of the aims of this research was to link the skills used in employment
to a specific population of alumni from an undergraduate programme. In doing so, we provide strong links
between a particular educational programme and the skills that are delivered and then used. Our materials,
processes, and analyses are all available for use at (https://osf.io/s52r7/), allowing future work to use the
same paradigm with different populations.

5.5 Further Work

This research uncovered relevant soft skills providing a base to build future research upon. With an
understanding of the skills considered relevant for CS alumni, and security use, further work can explore
these skills by examining the links between more measurable psychological concepts that contribute to
soft skills. As previously acknowledged, soft skills and their definitions are ephemeral and broad, whereas
psychological ideas of cognition and social interaction are more easily measured and supported by theory,
such as social identity being responsible for interpersonal skills, or cognitive heuristics research supporting
problem solving and analytical thinking approaches.

6 CONCLUSION

We carried out a preregistered survey study with alumni of both CS and psychology departments to
understand the skills considered important for employment, and where these skills originate from. By
focusing on the alumni association, as opposed to industry or job title, our findings speak to the way the CS
undergraduate programme influences skill perceptions.
Manuscript submitted to ACM

85

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 25

The most prioritised skills could be grouped into computational thinking, social skills and communication
through a factor analysis based off data from both CS and psychology alumni, suggesting these skills are of
a universal requirement in employment. University education was identified by CS alumni as responsible for
developing computational thinking skills, such as analytical and methodical thinking, and problem solving.
Employment developed skills of leadership and teamwork, and curiosity and motivation were associated
with personal development instead. For CS alumni working in security, key skills were communication,
organisation, and problem solving.

The research implications extend towards improving undergraduate programmes. We highlight the skills
valued by CS alumni in their employment and emphasise where these skills were developed. Key skills are
those of communication and problem solving, which are valued in employment, and for those working in
security. Educators who wish to improve CS graduate employability should ensure their modules cover
the key skills in a multitude of ways, allowing students to develop and experience these skills prior to
employment.

ACKNOWLEDGEMENTS

We thank Dharini Balasubramaniam for her invaluable comments in improving our manuscript.

Manuscript submitted to ACM

86

26 Ivory et al.

REFERENCES
[1] Friday Joseph Agbo, Samuel T. Yigzaw, Ismaila Temitayo Sanusi, Solomon Sunday Oyelere, and Alem Habte Mare. 2021.

Examining Theoretical and Pedagogical Foundations of Computational Thinking in the Context of Higher Education. In
2021 IEEE Frontiers in Education Conference (FIE). 1–8. https://doi.org/10.1109/FIE49875.2021.9637405

[2] Faheem Ahmed, Luiz Fernando Capretz, Salah Bouktif, and Piers Campbell. 2015. Soft Skills and Software Development:
A Reflection from Software Industry. International Journal of Information Processing and Management 4, 3 (July
2015), 171–191. https://doi.org/10.48550/arXiv.1507.06873 arXiv:1507.06873

[3] Faheem Ahmed, Luiz Fernando Capretz, and P. Campbell. 2012. Evaluating the Demand for Soft Skills in Software
Development. IT Professional 14, 1 (Jan. 2012), 44–49. https://doi.org/10.1109/MITP.2012.7

[4] Christina Andersson and Doina Logofatu. 2018. Using Cultural Heterogeneity to Improve Soft Skills in Engineering
and Computer Science Education. In 2018 IEEE Global Engineering Education Conference (EDUCON). 191–195.
https://doi.org/10.1109/EDUCON.2018.8363227

[5] Miriam E. Armstrong, Keith S. Jones, Akbar Siami Namin, and David C. Newton. 2020. Knowledge, Skills, and Abilities
for Specialized Curricula in Cyber Defense: Results from Interviews with Cyber Professionals. ACM Transactions on
Computing Education 20, 4 (Nov. 2020), 29:1–29:25. https://doi.org/10.1145/3421254

[6] Association of Graduate Careers Advisory. 2022. What Can I Do with a Computer Science Degree? — Prospects.Ac.Uk.
https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-degree/computer-science.

[7] Corey Baham and Rudy Hirschheim. 2021. Issues, Challenges, and a Proposed Theoretical Core of Agile Software
Development Research. Information Systems Journal 32, 1 (2021), 103–129. https://doi.org/10.1111/isj.12336

[8] K. V. A. Balaji and P. Somashekar. 2009. A Comparative Study of Soft Skills Among Engineers. IUP Journal of Soft
Skills 3, 3/4 (Sept. 2009), 50–57.

[9] Randy Bancino and Claire Zevalkink. 2007. Soft Skills: The New Curriculum for Hard-Core Technical Professionals.
Techniques: Connecting Education and Careers (J1) 82, 5 (May 2007), 20–22.

[10] Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha M. Myers, and Natalie C. Ebner. 2023. Blindspots in Python and
Java APIs Result in Vulnerable Code. ACM Transactions on Software Engineering and Methodology (April 2023).
https://doi.org/10.1145/3571850

[11] Paul-Christian Bürkner and Matti Vuorre. 2019. Ordinal Regression Models in Psychology: A Tutorial. Advances in
Methods and Practices in Psychological Science 2, 1 (March 2019), 77–101. https://doi.org/10.1177/2515245918823199

[12] Manuel Caeiro-Rodŕıguez, Mario Manso-Vázquez, Fernando A. Mikic-Fonte, Mart́ın Llamas-Nistal, Manuel J. Fernández-
Iglesias, Hariklia Tsalapatas, Olivier Heidmann, Carlos Vaz De Carvalho, Triinu Jesmin, Jaanus Terasmaa, and
Lene Tolstrup Sørensen. 2021. Teaching Soft Skills in Engineering Education: An European Perspective. IEEE Access 9
(2021), 29222–29242. https://doi.org/10.1109/ACCESS.2021.3059516

[13] André Calitz, Margaret Cullen, and Jéan Greyling. 2015. South African Alumni Perceptions of the Industry ICT Skills
Requirements.

[14] Luiz Fernando Capretz and Faheem Ahmed. 2018. A Call to Promote Soft Skills in Software Engineering. Psychology and
Cognitive Sciences - Open Journal 4, 1 (Aug. 2018), e1–e3. https://doi.org/10.17140/PCSOJ-4-e011 arXiv:1901.01819

[15] Barbara A. Cerny and Henry F. Kaiser. 1977. A Study Of A Measure Of Sampling Adequacy For Factor-Analytic Correla-
tion Matrices. Multivariate Behavioral Research 12, 1 (Jan. 1977), 43–47. https://doi.org/10.1207/s15327906mbr1201 3

[16] A. K. Chattoraj and Saleha Shabnam. 2015. Importance of Soft Skill in Business. Anusandhanika 7, 2 (July 2015),
105–110.

[17] Giuseppe Destefanis, Marco Ortu, Steve Counsell, Stephen Swift, Roberto Tonelli, and Michele Marchesi. 2017. On
the Randomness and Seasonality of Affective Metrics for Software Development. In Proceedings of the Symposium
on Applied Computing (SAC ’17). Association for Computing Machinery, New York, NY, USA, 1266–1271. https:
//doi.org/10.1145/3019612.3019786

[18] Rosanne English and Alan Hayes. 2022. Towards Integrated Graduate Skills for UK Computing Science Students. In
Proceedings of the 2022 Conference on United Kingdom & Ireland Computing Education Research (UKICER ’22).
Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3555009.3555018

[19] Silvia Fareri, Nicola Melluso, Filippo Chiarello, and Gualtiero Fantoni. 2021. SkillNER: Mining and Mapping Soft Skills
from Any Text. Expert Systems with Applications 184 (Dec. 2021), 115544. https://doi.org/10.1016/j.eswa.2021.115544
arXiv:2101.11431

[20] Casey Fiesler, Natalie Garrett, and Nathan Beard. 2020. What Do We Teach When We Teach Tech Ethics? A Syllabi
Analysis. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20).
Association for Computing Machinery, New York, NY, USA, 289–295. https://doi.org/10.1145/3328778.3366825

[21] W. Holmes Finch. 2020. Using Fit Statistic Differences to Determine the Optimal Number of Factors to Retain in
an Exploratory Factor Analysis. Educational and Psychological Measurement 80, 2 (April 2020), 217–241. https:

Manuscript submitted to ACM

87

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 27

//doi.org/10.1177/0013164419865769
[22] Raluca Florea and Viktoria Stray. 2018. Software Tester, We Want to Hire You! An Analysis of the Demand for Soft

Skills. In Agile Processes in Software Engineering and Extreme Programming (Lecture Notes in Business Information
Processing), Juan Garbajosa, Xiaofeng Wang, and Ademar Aguiar (Eds.). Springer International Publishing, Cham,
54–67. https://doi.org/10.1007/978-3-319-91602-6 4

[23] Kevin P. Gallagher, Kate M. Kaiser, Judith C. Simon, Cynthia M. Beath, and Tim Goles. 2010. The Requisite Variety
of Skills for IT Professionals. Commun. ACM 53, 6 (June 2010), 144–148. https://doi.org/10.1145/1743546.1743584

[24] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay Catal, and Michael Felderer. 2020. Closing the Gap Between
Software Engineering Education and Industrial Needs. IEEE Software 37, 2 (March 2020), 68–77. https://doi.org/10.
1109/MS.2018.2880823

[25] Anäıs Gibert, Wade C. Tozer, and Mark Westoby. 2017. Teamwork, Soft Skills, and Research Training. Trends in
Ecology & Evolution 32, 2 (Feb. 2017), 81–84. https://doi.org/10.1016/j.tree.2016.11.004

[26] Sharlett Gillard. 2009. Soft Skills and Technical Expertise of Effective Project Managers. Issue in Informing Science
and Information Technology 6, 1 (2009), 723–729.

[27] C. Matt Graham and Yonggang Lu. 2022. Skills Expectations in Cybersecurity: Semantic Network Analysis of Job
Advertisements. Journal of Computer Information Systems 0, 0 (Sept. 2022), 1–13. https://doi.org/10.1080/08874417.
2022.2115954

[28] Michael Greenacre. 2017. Correspondence Analysis in Practice. CRC Press.
[29] Wouter Groeneveld, Brett A. Becker, and Joost Vennekens. 2020. Soft Skills: What Do Computing Program Syllabi

Reveal About Non-Technical Expectations of Undergraduate Students?. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’20). Association for Computing Machinery,
New York, NY, USA, 287–293. https://doi.org/10.1145/3341525.3387396

[30] Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. 2020. Non-Cognitive Abilities of Exceptional
Software Engineers: A Delphi Study. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 1096–1102. https://doi.org/10.
1145/3328778.3366811

[31] Wouter Groeneveld, Joost Vennekens, and Kris Aerts. 2019. Software Engineering Education Beyond the Technical: A
Systematic Literature Review. https://doi.org/10.48550/arXiv.1910.09865 arXiv:cs/1910.09865

[32] Barbara J. Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu, Alison Simmons, and Jim Waldo.
2019. Embedded EthiCS: Integrating Ethics across CS Education. Commun. ACM 62, 8 (July 2019), 54–61. https:
//doi.org/10.1145/3330794

[33] Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve, and Awais Rashid. 2021. “Do This! Do That!, And Nothing Will
Happen” Do Specifications Lead to Securely Stored Passwords?. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 486–498. https://doi.org/10.1109/ICSE43902.2021.00053

[34] Julie M Haney and Wayne G Lutters. 2017. Skills and Characteristics of Successful Cybersecurity Advocates. In
Thirteenth Symposium on Usable Privacy and Security. USENIX Association, Santa Clara, CA, USA.

[35] Jim Ivins, Brian R Von Konsky, David Cooper, and Michael Robey. 2006. Software Engineers and Engineering: A
Survey of Undergraduate Preconceptions. In Proceedings. Frontiers in Education. 36th Annual Conference. 6–11.
https://doi.org/10.1109/FIE.2006.322364

[36] Matthew Ivory, Miriam Sturdee, John Towse, Mark Levine, and Bashar Nuseibeh. 2023 (in review). Can You Hear
the ROAR of Software Security? How Responsibility, Optimism And Risk Shape Developers’ Security Perceptions.
Empirical Software Engineering (2023 (in review)). https://doi.org/10.31234/osf.io/pexvz

[37] Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2023. Recognizing the Known Unknowns;
the Interaction Between Reflective Thinking and Optimism for Uncertainty Among Software Developer’s Security
Perceptions. Technology, Mind, and Behavior 4, 3: Winter 2023 (Dec. 2023). https://doi.org/10.1037/tmb0000122

[38] Jingdong Jia, Zupeng Chen, and Xiaoping Du. 2017. Understanding Soft Skills Requirements for Mobile Applications
Developers. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), Vol. 1. 108–115. https://doi.org/10.1109/
CSE-EUC.2017.29

[39] Keith S. Jones, Akbar Siami Namin, and Miriam E. Armstrong. 2018. The Core Cyber-Defense Knowledge, Skills, and
Abilities That Cybersecurity Students Should Learn in School: Results from Interviews with Cybersecurity Professionals.
ACM Transactions on Computing Education 18, 3 (Aug. 2018), 11:1–11:12. https://doi.org/10.1145/3152893

[40] Michael Jones, Cindi Baldi, Carl Phillips, and Avinash Waikar. 2016. The Hard Truth about Soft Skills: What Recruiters
Look for in Business Graduates. College Student Journal 50, 3 (Sept. 2016), 422–429.

[41] Damien Joseph, Soon Ang, Roger H. L. Chang, and Sandra A. Slaughter. 2010. Practical Intelligence in IT: Assessing
Soft Skills of IT Professionals. Commun. ACM 53, 2 (Feb. 2010), 149–154. https://doi.org/10.1145/1646353.1646391

Manuscript submitted to ACM

88

28 Ivory et al.

[42] Antti Knutas, Timo Hynninen, and Maija Hujala. 2021. To Get Good Student Ratings Should You Only Teach
Programming Courses? Investigation and Implications of Student Evaluations of Teaching in a Software Engineering
Context. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET). 253–260. https://doi.org/10.1109/ICSE-SEET52601.2021.00035

[43] Janet Liebenberg, Magda Huisman, and Elsa Mentz. 2014. Knowledge and Skills Requirements for Software Developer
Students. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering
8, 8 (2014), 6.

[44] Robert Lingard and Shan Barkataki. 2011. Teaching Teamwork in Engineering and Computer Science. In 2011 Frontiers
in Education Conference (FIE). F1C–1–F1C–5. https://doi.org/10.1109/FIE.2011.6143000

[45] Gerardo Matturro. 2013. Soft Skills in Software Engineering: A Study of Its Demand by Software Companies in Uruguay.
In 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). 133–136.
https://doi.org/10.1109/CHASE.2013.6614749

[46] Gerardo Matturro, Florencia Raschetti, and Carina Fontán. 2019. A Systematic Mapping Study on Soft Skills in Software
Engineering. Journal of Universal Computer Science 25, 1 (2019), 26.

[47] Anna Mitchell, Dharini Balasubramaniam, and Jade Fletcher. 2022. Incorporating Ethics in Software Engineering:
Challenges and Opportunities. In 2022 29th Asia-Pacific Software Engineering Conference (APSEC). 90–98. https:
//doi.org/10.1109/APSEC57359.2022.00021

[48] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva, Marco Tulio Valente, Fabio Petrillo, and
Yann-Gaël Guéhéneuc. 2021. What Skills Do IT Companies Look for in New Developers? A Study with Stack Overflow
Jobs. Information and Software Technology 129 (Jan. 2021), 106429. https://doi.org/10.1016/j.infsof.2020.106429

[49] E. Mtsweni, Tertia Hörne, and J. Poll. 2016. Soft Skills for Software Project Team Members. (2016). https:
//doi.org/10.7763/IJCTE.2016.V8.1035

[50] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through Hoops: Why Do Java Developers
Struggle with Cryptography APIs?. In Proceedings of the 38th International Conference on Software Engineering (ICSE

’16). Association for Computing Machinery, New York, NY, USA, 935–946. https://doi.org/10.1145/2884781.2884790
[51] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, and Matthew Smith. 2019. ”If You Want,

I Can Store the Encrypted Password”: A Password-Storage Field Study with Freelance Developers. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300370

[52] NCSC. 2021. More Master’s Degrees at UK Universities Recognised by Cyber Security Experts.
https://www.ncsc.gov.uk/news/more-university-degrees-certified.

[53] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul
Bobhate, Lois A. DeLong, Justin Cappos, and Yuriy Brun. 2018. {API} Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). 315–328.

[54] Mohamad Osmani, Vishanth Weerakkody, Nitham M. Hindi, Rajab Al-Esmail, Tillal Eldabi, Kawaljeet Kapoor, and
Zahir Irani. 2015. Identifying the Trends and Impact of Graduate Attributes on Employability: A Literature Review.
Tertiary Education and Management 21, 4 (Dec. 2015), 367–379. https://doi.org/10.1080/13583883.2015.1114139

[55] Stuart Palmer and Wayne Hall. 2011. An Evaluation of a Project-Based Learning Initiative in Engineering Education.
European Journal of Engineering Education 36, 4 (Aug. 2011), 357–365. https://doi.org/10.1080/03043797.2011.593095

[56] Rob Reich, Mehran Sahami, Jeremy M. Weinstein, and Hilary Cohen. 2020. Teaching Computer Ethics: A Deeply
Multidisciplinary Approach. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 296–302. https://doi.org/10.1145/3328778.
3366951

[57] Shima Salehi, Karen D. Wang, Ruqayya Toorawa, and Carl Wieman. 2020. Can Majoring in Computer Science
Improve General Problem-solving Skills?. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 156–161. https:
//doi.org/10.1145/3328778.3366808

[58] Karen Stamms, Luona Lin, and Peggy Christidis. 2016. Datapoint: What Do People Do with Their Psychology Degrees?
Monitor on Psychology 47, 6 (June 2016), 12.

[59] Matt Stevens and Richard Norman. 2016. Industry Expectations of Soft Skills in IT Graduates: A Regional Survey. In
Proceedings of the Australasian Computer Science Week Multiconference (ACSW ’16). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/2843043.2843068

[60] Chiara Succi and Magali Canovi. 2020. Soft Skills to Enhance Graduate Employability: Comparing Students and
Employers’ Perceptions. Studies in Higher Education 45, 9 (Sept. 2020), 1834–1847. https://doi.org/10.1080/03075079.
2019.1585420

Manuscript submitted to ACM

89

What’s in an undergraduate Computer Science degree? Alumni perceptions about soft skills in careers 29

[61] Lori L. Sussman. 2021. Exploring the Value of Non-Technical Knowledge, Skills, and Abilities (KSAs) to Cybersecurity
Hiring Managers. Journal of Higher Education Theory and Practice 21, 6 (2021), 99–117.

[62] Catherine Watson and Kelly Blincoe. 2017. Attitudes Towards Software Engineering Education in the New Zealand
Industry. (2017).

[63] Jen-Her Wu, Yi-Cheng Chen, and Jack Chang. 2007. Critical IS Professional Activities and Skills/Knowledge: A
Perspective of IS Managers. Computers in Human Behavior 23, 6 (Nov. 2007), 2945–2965. https://doi.org/10.1016/j.
chb.2006.08.008

[64] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social Influences on Secure Development Tool Adoption:
Why Security Tools Spread. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work &
Social Computing. Association for Computing Machinery, Baltimore, MD, USA, 1095–1106. https://doi.org/10.1145/
2531602.2531722

Manuscript submitted to ACM

90

91

4.1 Statement of Continuous Thesis Summary

“Organisations would be well served by diversifying the soft skills of their software

developers. This would provide richer talent and viewpoints to help them tackle the

inherent complexity of software construction.” - Ahmed et al., 2012

This chapter seeks to describe and understand soft skill perceptions among graduates

from the CS and Psychology departments. It shows that CS graduates value problem

solving, communication, and teamwork skills. These skills are not homogeneous in origin;

problem solving is positively associated with their university education, whereas

teamwork is associated more strongly with the workplace, and communication has no

strong associations with any specific source. Soft skills valued for security work cannot be

statistically tested due to data quantity, but responsibility and organisational skills are

reported as valuable over the overall graduate population’s perceptions. Using the

psychology graduates as a contrasting sample, CS graduates rate ethics as less valuable

than the psychologists, along with skills of time management, interpersonal skills, and

communication. Conversely, CS graduates value teamwork significantly more than

psychology graduates.

Graduate perceptions indicate that social and cognitive skills are valuable for software

engineering roles, as many CS graduates reported working within software

engineering-related domains. This supports previous findings where similar skills are seen

to be valued for software engineering (Ahmed et al., 2012b; Calitz et al., 2015; Matturro,

2013; Stevens & Norman, 2016; Watson & Blincoe, 2017). In investigating skill

development sources, it is identified that education teaches computational skills well, such

as problem solving and analytical thinking, but that more socially-aligned skills are

associated more with employment, indicating that despite efforts from educators, students

do not recognise the opportunities to develop these skills.

As an answer to the first research question, “What non-technical skills (or soft skills) are

valued within computer science and software engineering?”, the three primary skills of

92

problem solving, communication, and teamwork are offered - this is fully answered in

Chapter 9. How they are developed is more nuanced, with the evidence suggesting that

undergraduate programmes must reflect on fully integrating communication and

teamwork into their modules and have students recognise the opportunities to improve

these skills before seeking employment.

This chapter also plays a foundational role in shaping the conceptual and empirical

framing of soft skills that underpins subsequent chapters. While later chapters draw from

different participant samples (e.g., freelance developers), this initial study offers a

generalisable baseline by illustrating key soft skill constructs and their associated domains

of development. This chapter set out the initial framework from which the rest of the

thesis develops.

In the next chapter, I present a two-study paper exploring the embedded soft skills in

curricula leveraging staff perceptions and curricula content. Through multi-site interviews

with core module leaders, staff perceptions about the most valued soft skills and how they

are incorporated into modules are exposed, along with the staff perspective regarding

student engagement with soft skills. The second study applies a content analysis

approach to extract soft skills from publicly available course material.

4.1.1 Contribution to Thesis Argument and Forward Trajectory

This chapter contributes to the overarching thesis, which explores whether theories of

decision-making and social identity can explain developers’ computing and security

behaviours within software engineering. Specifically, it addresses the first research

question by empirically identifying the non-technical (or “soft”) skills recent computer

science graduates perceive as essential in software development roles. The findings offer

insight into how these skills are shaped by different developmental contexts, namely

education versus employment, and highlight a potential misalignment between academic

preparation and industry expectations.

More broadly, this chapter helps establish one of the contributions of the thesis: that the

93

psychological and interpersonal dimensions of software engineering work are often

unevenly supported across educational and professional contexts. By foregrounding this

misalignment, the chapter positions the well-known idea of soft skills as central to the

wider interdisciplinary argument of the thesis, that software engineering practice cannot

be fully understood without serious engagement with underlying psychological constructs.

The next chapter builds directly upon this chapter by shifting focus from graduate

perceptions to educator perspectives and curricular content, providing a deeper

institutional and pedagogical context for understanding how soft skills may be embedded

in university CS programmes.

94

5 Everything but Programming; Investigating Academics’ Perceptions of

Embedded Soft Skills in Computer Science Undergraduate Education

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (in review). Everything but
Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in
Computer Science Undergraduate Education. Transactions on Computing Education.
https://doi.org/10.31234/osf.io/y7guj

https://doi.org/10.31234/osf.io/y7guj

Everything but Programming; Investigating Academics’ Perceptions of
Embedded Soft Skills in Computer Science Undergraduate Education

MATTHEW IVORY, Lancaster University, Great Britain

JOHN TOWSE, Lancaster University, Great Britain

MIRIAM STURDEE, University of St Andrews, Scotland

MARK LEVINE, Lancaster University, Great Britain

BASHAR NUSEIBEH, Lero, Republic of Ireland and Open University, United Kingdom

Student employability is a key goal of a computer science undergraduate education. A soft skills gap has previously
been reported between employer requirements and the skills graduates offer, suggesting that educators are inadequately
preparing students for their future careers. It is important to identify the links between educators and the materials
they claim to teach as it offers insight into how non-technical aspects of software engineering are promoted. We
report on two studies where we first explore the staff perceptions of embedded soft skills in five computer science
undergraduate courses, before identifying soft skill presence in curricula across eight UK universities. A multi-site
interview with educators identified core skills of critical thinking, communication, and teamwork being included in
curricula for student employability. Staff believe students experience a temporal delay between being introduced to
skills and actually valuing them. In the second study, we mined publicly-available course and module information,
and then analysed non-technical skill references. Soft skills are commonly found in proximity to other soft skills,
suggesting they are taught or assessed together. Software engineering was seen to be closely linked to teamwork and
communication, emphasising it is taught as a social enterprise. Taking these two studies together, educators show a
close alignment to curricula, and the skills valued by higher education institutions reflect the skills valued in software
engineering industries, suggesting the skill gap is the result of student misconceptions.

CCS Concepts: • Security and privacy → Social aspects of security and privacy; • Human-centered
computing → Empirical studies in HCI ;

Additional Key Words and Phrases: soft skills, graduate employability, student misconceptions, curriculum analysis

Authors’ addresses: Matthew Ivory, Lancaster University, Department of Psychology, Lancaster, Lancashire, LA1 4YW, Great
Britain, matthew.ivory@lancaster.ac.uk; John Towse, Lancaster University, Department of Psychology, Lancaster, Lancashire,
LA1 4YW, Great Britain, j.towse@lancaster.ac.uk; Miriam Sturdee, University of St Andrews, School of Computer Science,
North Haugh, St Andrews, LA1 4YW, Scotland, ms535@st-andrews.ac.uk; Mark Levine, Lancaster University, Department of
Psychology, Lancaster, Lancashire, LA1 4YW, Great Britain, mark.levine@lancaster.ac.uk; Bashar Nuseibeh, Lero, Ireland,
Castletroy, Co. Limerick, LA1 4YW, Republic of Ireland, Open University, United Kingdom, Bashar.Nuseibeh@open.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

95

2 Ivory et al.

ACM Reference Format:
Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2025. Everything but Programming;
Investigating Academics’ Perceptions of Embedded Soft Skills in Computer Science Undergraduate Education. 1, 1
(July 2025), 31 pages. https://doi.org/10.475/123 4

1 INTRODUCTION

Graduate employability is a key outcome of an undergraduate education. Recent Computer Science (CS)
graduates face intense competition when seeking employment, and in 2023, CS undergraduate applicants in
the UK increased by nearly 10% [7], suggesting an ever-growing body of prospective employees vying for
the same job positions. Consequently, students want their education to provide them with the key skills
required to stand out from other job applicants. Students are reliant on staff to teach them the necessary
skills [30], but student misconceptions can restrict their ability to fully engage with the teachings, leading
to incorrect value being assigned to technical and non-technical skills. Following graduation, students are
then perceived to not possess the soft skill competencies required by employers, resulting in a soft skills gap
between education and employment [4]. From both the student and employer perspective, it is the educator
who is responsible for developing these soft skills, and so an exploration of their perceptions is beneficial to
further illuminate the gap, and surface important issues around soft skill development.

Soft skills are the domain-agnostic, non-technical skills that determine the success of technical skill
application [34], and they are emphasised as being important to the health of software engineering [12].
Despite this, students’ expectations do not typically accommodate soft skills, which leads them to undervalue
educator efforts to nurture these skills. This results in the soft skills gap between employer expectations and
what graduates offer [36]. The situation raises important questions that deserve answers. How do staff design
and implement educational materials to reduce this soft skills gap? How do staff handle the tensions between
what students want, and what they need (as determined by prospective employers)? In this empirical project,
we report on two complementary studies, where we evidence how staff address and resolve this tension,
as well as extract soft skills from curricula material to understand how skills are embedded across the
educational pathway.

Employers, students, and educators comprise a stakeholder triad, each group invested in the soft skill
development process but with different motivations. Employers are motivated to recruit graduates who
offer the necessary skills, because they directly experience the consequences of employees not possessing
the relevant skills [44]. Students are motivated to gain the necessary experience and expertise required to
secure employment [54], and educators are motivated to teach the necessary soft skills because graduate
employability is an important metric, and not least, because they want to ensure future generations of
software engineers possess the skills required to make an impact. Out of the three stakeholder groups,
only the student population is expected to actively change and develop expertise in the soft skills being
taught. Employers expect this change to occur during education [47] because educational environments
are suitably-placed to allow students to test and develop their own ideas and understandings of soft skills.
Despite the different motivations, they are insufficient to close the skill gap. While students are those
who actively need to develop these skills, educators are directly responsible for cultivating the necessary
environment for soft skill development, and it is this that we are interested in: the educator perspective.
Manuscript submitted to ACM

96

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 3

Educators are not unsupported when it comes to deciding which soft skills to include in their curriculum.
The SE2014 (Software Engineering 2014 [6]) provides a framework for CS curricula design that includes key
soft skills to be taught. SE2014 is built upon the Software Engineering Body of Knowledge (SWEBOK [8]),
which represents the skills needed for software engineering. The fact that SE214 is derived from SWEBOK
suggests that a strong alignment between what employers want and what educators teach, but how staff
interpret the guidelines and then implement then is not necessarily homogeneous, and it is this that we seek
to understand.

Recognising that the closing of the soft skills gap is not a unilaterally-sided task, educators must work to
present the necessary skills, but employers need to recognise the tension between student wants and student
needs. To this end, we need to evidence the importance of soft skills, recognise the need for learning and
training opportunities, and understand how to direct the triad of stakeholders towards a common position.
Identifying the embedded skills is essential as it reflects the human-intensive nature of software engineering
[12]. Our research was motivated to address the soft skills gap, by exploring the educator stakeholder
perspective. We identified three preregistered research questions to guide the study:

1. How do academic staff understand how soft skills are taught in their core modules?
2. What importance do staff ascribe to certain soft skills, in comparison to other skills?
3. How do important soft skills align with the information available in online course and module

information?

We answer these questions in this two-study project. The first study reports on a multi-site interview
study regarding educators’ perceptions on soft skills within their module and CS course. The second study
deploys a content analysis to extract references to soft skills from publicly-available curriculum content.
Taken together, the findings offer a unique perspective into how soft skills are embedded across CS teaching,
and how students are perceived to receive these skills.

2 RELATED WORK

The employer-student-educator triad helps to contextualise the issues around the topic of soft skills in CS
education. In this section, I address relevant literature on the perspectives held by prospective employers,
students, and academic staff.

2.1 Future Employer Perceptions

Employers typically prioritise soft skills [50], in part because technical skills are perceived as easier to
teach to new employees [40]. By reducing the on-boarding time for new employees, they can meaningfully
contribute to the company quicker, which benefits the company as it frees up resources otherwise required
for training. Despite this, graduates are reportedly approaching companies without the required soft skills
making them a less attractive hire, and particular deficiencies are seen for soft skills such as communication
and group working [31].

Employers explicitly request soft skills in job adverts [22], emphasising that these are expected from
prospective employees. Employers typically display a homogeneous view on the relevant soft skills, just with
small differences in the order of importance [4]. Two primary soft skills are teamwork and communication
[2, 26, 35, 42, 45]. Collaborative skills are also seen to be tied into contemporary methods of working, such

Manuscript submitted to ACM

97

4 Ivory et al.

as Agile approaches [49]. Problem solving is also reported as being essential for various roles [2, 21, 41].
These skills are repeatedly identified as being essential for software engineering.

Employers are seen to blame educators for the soft skills gap, suggesting that they are failing to make
students aware of the importance of soft skills [36], and others emphasise the need for educators to ensure
curricula include adequate soft skills [47]. This occurs despite the SE2014 being in place which suggests that
the support for curriculum design is derived from software engineering practitioners. Despite this, Akdur [4]
reported that graduates are perceived not to possess the required skills when entering employment.

2.2 Student and Graduate Perceptions

To maximise impact and effectiveness, students must buy-in to the relevance of soft skill development, as
they are the only stakeholders who are required to develop these skills. Broadly speaking, students are seen
to hold misconceptions about soft skills, and typically prefer to prioritise technical knowledge acquisition
over soft skill development [33], which is particularly evident for students with technical career aspirations
[32]. This misalignment of priority skills occurs despite evidence for collaborative skills improving software
quality in student work [39].

Students also conflate enjoyment with value during tasks [37] and so if students have a negative experience
with an activity or project that they associate with soft skills, they will attach a lower value to these soft
skills, in favour of tasks and activities that they see as more enjoyable. This may feed into their conception
that technical skills are more important [33], for example programming tasks can be typically autonomous
alleviating the need for collaboration with others, and it can be satisfying to solve problems through code.
Students are seen to value distinctly different skills than those reported as desirable by employers. Students
focus more on networking and other skills that they perceive as key to securing a job [51], rather than
developing the skills asked for by employers.

Gathering data from graduates can be beneficial as they represent a population of ex-students who
have experienced the educational process. CS graduates recognise the value of soft skills in their careers,
emphasising the value of social and cognitive skills [11, 56]. Valued skills are not all developed during
education, with group-working skills reported as being developed in employment [34], highlighting that a CS
education may not be as effective as intended. Graduates have expressed concerns over their preparedness for
collaborating in employment [16], indicating they do not perceive educators to have successfully carried out
their role. From a contrasting perspective, when asked about the development of professional skills (which
includes critical thinking, ethics, and group working), graduates report that they possess skills needed for
employment [15].

2.3 The Educator’s Role

Students trust educators to teach them the skills needed for employment [30], and subsequently educators
need to ensure that their courses provided opportunities for students to develop soft skills, ideally over an
extended period to allow for a gradual development process [28]. Amidst suggestions from industry that
educators need to be teaching these skills [48], it benefits everyone to understand what soft skills are being
taught and how they are embedded within curricula.

Examinations of curricula and modules can expose the soft skills that are prioritised within computer
science and software engineering, with a systematic review identifying self-reflection, conflict resolution,
Manuscript submitted to ACM

98

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 5

communication, and teamwork as the most taught skills [27], which were reflected in a further examination of
soft skill-specific modules, identifying teamwork, ethics, communication, and presentation skills [25]. Others
identified ethics and analytical thinking styles as being valuable within curricula [18].

Educator perceptions influence student perceptions, and students converge towards staff over time,
resulting in increased soft skill valuation [24], with late-stage students demonstrating closer alignment to
their educators than early-stage students do [10]. In general, those who are further through their education
align more closely with the views of educators [38]. These findings highlight that students do gradually
develop a better representation of the role of soft skills, but it is still limited, and total agreement is not
achieved.

3 STUDY 1

Study 1 is a multi-site interview study with 12 educators across five institutions. This study offers insight
into staff perceptions of embedded soft skills within core undergraduate modules.

3.1 Methodology

The study was preregistered on the Open Science Framework, lodging details on the study design, data
collection strategies, and analytic plans. The preregistration can be accessed at https://osf.io/9yt35/
?view only=d8a5ff2663714a11a2ea250a59bfef81. Data, analysis scripts, and supplementary materials are
found at https://osf.io/25ecz/?view only=917e6de233484d59abaac243647c89a2.

3.1.1 Participants. Interviews were conducted with 12 staff members from five universities in the UK
N8 research group (Durham, Lancaster, Leeds, Liverpool, Manchester, Newcastle, Sheffield, and York).
This university group was chosen as they are all research-intensive institutions in the North of England,
highlighting a shared commitment to research excellence that feeds into teaching. Educators teaching core
modules for the Computer Science (UCAS code G400) undergraduate course were invited to participate via
email. Participants from five institutions responded. Four from institution A (11 contacted), two from B (13
contacted), two from C (11 contacted), three from D (17 contacted), and one from E (12 contacted). See
Table 1 for further details. For anonymity, participants were assigned random identifiers denoting institution
using letters A through E, and a number (e.g., A1, B3) to distinguish individuals. No interviewees were
personally known to the interviewer.

The invite explained the research and purpose of the contact. Those who responded were sent further
information and a link where they could schedule an interview. Three educators expressed interest but did
respond further. Four declined, stating their module did not include soft skills. All participants provided
informed consent. The Faculty Ethics Committee approved the research.

3.1.2 Methodology. A semi-structured interview was deployed, and the interview guide is in Appendix
A. Beforehand, the interviewer made notes regarding participants’ modules, department information, and
any information offered during email exchanges. Each interview started with the interviewer describing
the project, allowing participants to ask questions, and confirming they consented to the interview being
recorded for transcription.

The first question, “tell me about the undergraduate module(s) that you teach”, was designed to engage
participants in a narrative mindset and provided information to direct the interview further. Questions were

Manuscript submitted to ACM

99

6 Ivory et al.

Table 1. Relevant participant demographics, including their position
within the department and the delivery year of core modules.

Interviewee Position Module(s) Year
A1 Lecturer 1
A2 Lecturer 1
A3 Reader 2
A4 Professor 1
B1 Senior Lecturer 2
B2 Lecturer 2
C1 Senior Lecturer 1
C2 Senior Lecturer 1, 3
D1 Lecturer 1
D2 Senior Teaching Fellow 1
D3 Teaching Fellow 1
E1 Senior University Teacher 1

based on the interview guide and interviewer notes. The first author conducted all interviews via Microsoft
Teams, which provided automatic transcriptions and were kept to one hour. Transcriptions were validated
against the original recordings and were anonymised. Transcriptions were sent to interviewees for content
approval and consent to transcripts being shared under open science practices. Approval was sought to
ensure staff were happy with the anonymisation carried out. Minor changes were made following feedback,
which only improved interviewee anonymisation.

3.1.3 Analysis. Data were subject to a thematic analysis following the five stages: code familiarisation,
code generation, theme generation, theme review, and theme naming [9]. The first author familiarised
themselves via the transcription validation process and multiple readings. Initial notes were made during
readings, and preliminary codes were developed. This process was iterated until no new quotes were added
and no additional codes were generated. This process ended when further reading generated no substantial
changes. Codes were then reviewed, which included merging or splitting codes where necessary. Themes
were then formed by grouping the codes. Themes were reviewed through authors’ discussion and assessed
for independence, coherency, and distinctiveness. Finally, themes were given relevant names. Transcripts
were coded in Taguette, an open-source qualitative analysis tool [46]. The codebook and the tagged dataset
are available in the OSF repository.

3.2 Results

Two key themes that contribute to answering the research questions were identified. The first theme of
Valued Soft Skills relates to soft skills identified as components of teaching materials. The second theme
of Student Perceptions relates to how educators understand the student experience. The quotes have been
edited for clarity and coherence, but the original intent is maintained. The use of quotes is selective rather
than exhaustive and represents staff perceptions.

3.2.1 Valued Soft Skills. The soft skills mentioned can be split into three skillsets: Cognitive, Social, and
Professional. Cognitive skills relate to internal mental processes for reasoning and applying technical
Manuscript submitted to ACM

100

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 7

knowledge. Social skills are those involved in interpersonal communication and are required to facilitate
successful interactions with others. Professional skills are required for high performance and functioning in a
work environment, in the context of this research, they are distinct from social and cognitive skills.

Cognitive. Educators emphasised the cognitive development opportunities that students are exposed to
throughout the course. Many of these opportunities include tasks involving programming and other related
activities, such as code comprehension or code writing. One exception to this general rule was educators
deploying cognitive puzzles, such as sudoku, to teach logic-based reasoning. Removing the coding element
ensures students develop the cognitive foundations needed for programming tasks. These puzzle-solving
sessions preceded programming tasks and offered students opportunities to deploy the logical processes and
programmatic approach required to program successfully.

“The aim over a series of seven or eight [sessions] is to teach all the skills of programming without ever
writing a line of code. That’s our overall aim of these workshops, and they’re all generally built around logic
puzzles.” – A2

Other opportunities for students to develop mental models needed for more complex tasks involved using
low-level languages such as Assembly, which was used for its machine-readable syntax; by exposing students
to programming languages with minimal abstraction, they can develop their internal representation of how
programming works. Almost opposite to using non-programming tasks to teach logic, low-level languages
can be used to teach about how programming works without requiring knowledge of complex functions.
Doing so gives students the mental models to use when working with high-level languages that abstracts
many low-level language behaviours.

“They’re looking at code that they’ll never use again, but it’s giving them the mental foundation so that
when they’re writing in a higher level language, they can refer back” – C2

Students want to be taught fashionable languages, but educators stress the need to teach languages
that offer pedagogical advantages (such as Assembly) because they help students develop essential mental
representations and the necessary technical knowledge. Educators emphasise that understanding the concepts
of programming are more valuable and language-agnostic than the language itself. Learning these less-popular
languages ensures that students develop the mental representations necessary for programming.

“A degree in computer science isn’t a vocational course on programming. Learning a programming
language is not the object for the exercise. Understanding what programming is and how to solve the problem
computationally, such that when you’re thrown into a new language and a new situation, you can get your
bearings with reference to some broader concepts.” – E1

By giving students the cognitive foundations required, students are expected to reach a point where they
can translate a real-world problem into computational space, allowing for it to be solved through software
code. This is a critical milestone as it ensures students can successfully engage in more complex software
engineering tasks.

“The purpose is to try and get them all to a level where they can think about a problem as a computer
programme.” – D1

Staff need to ensure students experience the opportunity to solve problems independently and own the
responsibility for developing their understanding. Part of this means staff should be careful not to obstruct

Manuscript submitted to ACM

101

8 Ivory et al.

students’ learning opportunities by resolving issues that are or just above the level of where students should
be.

“One of the things I found really hard is to tell my teaching assistants to never solve the student’s problems,
Definitely not on their keyboard, unless it’s something weird. But in general, just to say, What, the problem
here? And to engage [students] in this process” – A4

A problem solving mindset can be facilitated using projects that necessitate critical approaches. Projects
often require a mix of both technical and non-technical competencies, which can be used to demonstrate to
students the value of soft skills. Project-based learning offers opportunities for students to apply the more
abstract understandings developed during puzzles or low-level language-based tasks with more relevance to
software engineering.

“[The] programming project is not an easy module, and it is made deliberately so that students learn how
real world applications work in terms of testing and debugging. At an advanced level, C is not easy to work
when you have to do a lot of memory allocation and deallocation and most of the students struggle with
segmentation faults. They don’t know where the code is going wrong. So it’s basically approaching the problem
solving skills and following good programming practice.” – D3

The progression of students’ cognitive models of software engineering often begins with removing software
nuances (using logic puzzles or low-level languages) before exposing students to increasingly complex
situations. Once they possess the necessary mental models, they can perform tasks related to software
engineering careers.

“When you ask students to find the one line that has a bug on it in a 6,000 class Java programme, they
have to be analytical, and we teach them the code reading skills to help them track down the source of the
bug.” – A3

The two previous comments succinctly highlight what the end goal of a student’s cognitive development
is driving towards – the ability to effectively problem solve using a critical mindset. Critical thinking can
be defined as “being able to critically review the information and determine its importance for informing
decisions and being able to use evaluative and inferential reasoning to increase the likelihood of a desired
outcome” [34], and this is what educators are encouraging students to develop. Through an incremental
development process, students are directed towards these essential cognitive capabilities required for technical
tasks such as programming.

Social. Students are encouraged to develop their communication and group working skills during their
education. Communication includes aspects of speaking, reading, and writing. Group working skills focus on
how communication is used in intragroup and intergroup contexts to complete shared goals. The pedagogical
aim of social development is to help students communicate in professional and articulate ways. Peer discussions
are valuable for developing communication skills and boosting students’ understanding. By allowing multiple
perspectives to be presented, students can challenge their preconceptions by reflecting on other perspectives.
Discussions can be incorporated through software engineering relevant ways using asynchronous tools. The
tools mentioned include institutional education systems (e.g., Moodle and Blackboard) and industry-specific
tools like GitLab. Asynchronous tools allow educators to help facilitate discussions, and they provide features
that promote more efficient working (such as notifications) and practical applications to future employment.

Manuscript submitted to ACM

102

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 9

“We adopt Gitlab, but we use the bug trackers as generalised issue trackers. We tell them to use that issue
tracker as a general task planning thing. So put deadlines and assign them to people. If you’ve got issues,
put comments in there so notifications get shot round to people. Because that’s the way it’s going to be in a
company.” – B2

Two skills mentioned together were reading and writing. They form a valuable part of a student’s skillset,
spanning technical and academic materials. These skills are typically not taught explicitly but are indirectly
required to excel academically.

“I think reading comprehension is a soft skill. I would say we don’t teach it. We assume they have it and
that’s an interesting thing.” – C2

The ability to actively comprehend written materials is also an important aspect of student development,
allowing them to explore information critically to further their technical skills. Reading skills can be facilitated
by engaging students in various materials, including academic and technical information, and teaching them
about relevant or trustworthy sources.

“I show them there’s quite a lot of reference material and if they want to know how a function works, they
look up the definition of it. If they want to use a library function in C, it’s really well defined exactly what
the inputs are, what the output is, exactly what it does. If you give it the wrong inputs and if you can read
that and understand it, then you can use that function and be happy.” – D1

Students must understand how to utilise communication in both intragroup and intergroup contexts.
Successful groups consist of individuals who share common values or goals, which ties them into a group
structure; where these values are not shared, it can result in group breakdown that impedes goal-directed
behaviour. Students must learn about how groupwork influences different tasks and situations, and one skill
that comes with groupwork is the flexibility of approach. A2 facilitates this by giving students various tasks,
and by experiencing group successes and difficulties, they provide opportunities for students to develop an
understanding of group functionality.

“Just because working in pairs as part of your team worked for task A. It doesn’t mean it’s necessarily
going to be the perfect one for task B. For that first session we let them just go for it. And we’d rather that
they, through trial and error, figure things out and naturally learn.” – A2

Groupwork does not necessitate in-person working. Asynchronous working styles were emphasised by
educators for communication, and it is also necessary for students to develop remote group working skills,
as it reflects how tasks are typically handled in employment. Communication between group members
(intragroup) can be facilitated on a course cohort level, creating a shared identity for all students on the
academic course. Through systems like Blackboard, students can request and provide assistance, allowing
them to explore how communication is used within intragroup settings to achieve shared goals.

“I think the soft skill they learn is how to collaborate with different members of the team more efficiently.
We have a space on our Blackboard system where if they have any questions they can ask them. I encourage
other students to chime in and try to answer them. I monitor these discussions and if I see that an answer
is not correct, or it needs adjustment then I can jump in. They create a self-organised community where
they’re trying to help each other in answering questions” – A1

Longer-term projects offer students team working experiences to prepare them for future careers. Many
educators use group-based projects as they combine multiple soft skills and give students experience in more

Manuscript submitted to ACM

103

10 Ivory et al.

complex, long-term tasks. Projects typically require the distribution of specific tasks because the project is
too time-intensive for one person to complete.

“The goal of it is to give students experience of doing a medium scale project from: ‘here’s an idea’, coming
up with requirements, a design, implementation, testing, it being done for an actual end user as opposed to
themselves. As well as doing it in the context of a group because most software development in the future
will happen in groups.” – B2

Conflict Management exists as a by-product of teamwork because students will invariably experience
group breakdown. A3 highlights this issue of working collaboratively via GitLab and where differences
in working style can lead to frustration. Staff consider it a learning experience in understanding effective
collaboration and different working styles.

“When they have a team member who just does nothing and is invisible to them. They say, we’re all
pushing our commits and updating our issues. But this person, we have no idea what they’re doing. And
sometimes those people will come in the day before the deadline and push a lot of stuff. So from that they
start to understand the important role of visibility of working and managing a team.” – A3

Group breakdown can occur when students distance themselves from others and fail to contribute. In
these situations, emotions can be high, and it can be difficult to articulate or justify complaints about peers.
D2 offers students a solution through practical methods, such as taking meeting minutes. These provide
a way for students to articulate issues, with the benefit of educators being able to review minutes for fair
grading.

“I think at the time they find [taking minutes] very helpful because almost all of them have to deal with
one group member who’s not really performing. And so, learning how to deal with them through the minutes
is a useful skill. It takes the characters and the personality out a bit.” – D2

Students are exposed to intragroup skills such as communication, conflict management, and handling
group breakdown, as well as intergroup skills, including communicating with individuals outside their project
groups. Some courses introduced components where students were expected to communicate with various
stakeholders. Intergroup communication (between groups) requires a different set of skills than intragroup
communication because individuals may not share the same goals or values, requiring different means of
communication. Students experienced intergroup settings where they were required to engage with “clients”
(from within the university) as part of requirements gathering. This intergroup working was not a common
approach to education, partly due to the complexity of arranging it.

“It’s about talking to the client and getting the requirements out of it and learning the important skill that
the client isn’t technical and has no idea what they want. And how do you handle that relationship?” – E1

Educators aim to inculcate students about the relevance of intergroup communication by offering workplace
context to specific skill development. This highlights that more than technical skills are needed, particularly
when others possess the same technical skills; students must understand how to engage with management or
stakeholders to communicate a point effectively.

“You can be very good at coding but if someone else is better than you in communicating what they have
done, what are your unique skills? What is the unique aspect of your work then if the other person can do the
job. So I think this kind of argument for them, this is very important, and it catches their attention.” – B1

Intergroup communication was much more limited compared to intragroup exposure. However, intergroup
communication can also be framed through the sustained interaction between educator and student, which
Manuscript submitted to ACM

104

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 11

manifests through presentation opportunities or assessments where students are required to deliver high-level
information to an individual outside of their group. These development opportunities are much more implicit
and speak to the nature of the education system.

Professional Skills. Professional skills, which includes ethical thinking and time management, are valuable
for successful employment. In SE2014, professional skills include ethical thinking, whereas time management
is not referenced, indicating the implicit expectation to manage and complete activities across the curriculum.

Ethical thinking refers to the way people consider the implications of their actions. It is commonly
developed in association with communication, allowing students to engage with each other and be exposed
to a greater range of perspectives, which educators can mediate.

“We asked students in groups to read 10 positive news stories and 10 negative ones, and to make some
short notes about why they think this technology is positive, why they think this technology is negative. And
at the end of the session we asked them to reflect on the ethical implication, social implication, economics of
industry, implication of what they have read. I think this is kind of connected with the ‘what does it mean to
you’, to reflect on the impact that your work can have in real life” – B1

Others mentioned opportunities to employ educators who specialise in topics such as ethics. In doing
so, they gain the expertise, passion, and interest for incorporating ethics. One of the interviewers noted
that not all modules were necessarily taught by domain experts (and whilst they were referring to technical
experts, the notion stands for soft skills) who sometimes lacked the passion required. This may transfer to
the development of students’ valuation of these skills, as they typically converge towards staff values [38].

“Ethics spans right across the university and they set up a teaching centre where they could collect
appropriate staff and those. Staff get seconded across various courses and there’s also a faculty ethics team
as well that looks at issues across our faculty. If there’s an ethical component to what we’re teaching, we
would generally second someone from that unit to teach it.” – D1

Time management is recognised to be a complex skill to teach, but that it is essential for students to
learn. Looking at the course holistically, A1 notes that the department offers so many activities that it is
unrealistic for a student to attend everything. From this, students must manage their time to attend to
what they consider the most important things for their personal goals.

“If they attend every single class, lab, lecture, and all the external activities that we organise, there is
really no time to go home and do exercises. So they have to make decisions of what to attend and what not
to attend.” – A1

Students must manage their time successfully and know when to finish an open-ended task. The diminishing
returns on programming tasks can be meaningful learning opportunities. Programming assignments can be
made intentionally challenging and time-consuming. However, these attributes offer pedagogical advantages,
requiring students to effectively manage their time and decide when they have sufficiently completed an
assignment.

“A lot of interviews have coding interviews, and they use similar style principles. So they have five days
to do it. It’s hard. It takes time. We had a few students, who said ‘I just didn’t even bother with the final
task’, but that’s fine. That’s the point in a way, as well as to know when to manage their expectations, we
have some students who will stay up till who knows what hour in the morning trying to hammer this bit of
coursework to gain an extra 1%.” – A2

Manuscript submitted to ACM

105

12 Ivory et al.

3.2.2 Perceptions of student engagement. Student engagement was primarily negatively perceived by edu-
cators. Staff felt that students misrepresent the purpose of a CS degree, limiting their ability to develop
soft skills. These misconceptions lead students to attend to their technical development and reduce their
attention towards soft skills, resulting in students avoiding or rejecting opportunities to develop or use soft
skills, as they perceive them as irrelevant to their careers. Subsequently, students experience a temporal
delay between the opportunities to develop soft skills and requiring them, highlighting the event-driven
nature of soft skill development. This mismatch may contribute to the skill gap observed between education
and employment, where students are not expecting to be exposed to soft skills content.

Preconceptions about what a CS course encapsulates are tied to how modern university education is
perceived. As university fees increase, students demand greater value for their money, representing the
“student consumer” [53]. This consumer identity may legitimise student expectations that educators must
teach the technical content students want to be taught, rather than soft skills. This transactional relationship
means students evaluate the cost-benefit of their education, and where they perceive no benefit, they
challenge why they are being taught these skills. As students are seen to devalue soft skills, this can lead to
tensions between what students want and what they would benefit from being taught in the long term.

“Getting people to sit still and listen when they think they’ve signed up for something, and that’s the issue.
A lot of the current mood is this notion of we are the customers, now give us what we want.” – E1

Student preconceptions and previous experiences can influence how they internalise the soft skills material
they are presented. Näıve perceptions of what is required to secure a career may lead to an overvaluation of
technical skills, either because of prior experiences (such as programming hobbies) or a misunderstanding of
software engineering.

“They’re coming back to Uni after maybe some gap year, and they don’t see the purpose of [soft skills].
The students who just arrived from school, they feel [soft skills] don’t have anything to contribute from the
career perspective” – C1

Students may misrepresent what a software engineering career involves, expecting a highly technical
endeavour, reducing their receptiveness towards soft skills. Students may avoid engaging in soft skills because
of these perceptions, contributing to the soft skills gap. This finding points towards more general perceptions
of students, in that underdeveloped skills may remain this way because students refuse to engage in difficult
tasks.

“I have guest speakers come and talk about what it’s really like working in industry. One of the students
asked, ‘what if you don’t like working with other people?’ And the industry speaker said, ‘please don’t work in
the software industry’.” – D2

“Sometimes it is hard to convince our students that we are not making their life difficult.” – D3
Students may refuse soft skills because they devalue any skills associated with tasks they find challenging

and avoid both the task and similar tasks that involve the same skills. Their reduced value results in students
attending less focus on their development in favour of activities that they find more enjoyable or rewarding
[37].

“I think there is a mismatch between what we do and what the students expect, or even what the students
are good at.” – D1

Building off D1’s comment about a mismatch between the CS course material and what students are
good at is reflected in the following quote by B1, who notes that students do not enjoy writing outside of
Manuscript submitted to ACM

106

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 13

programming scenarios. Steady constant exposure can be essential to ensure students recognise where these
skills hold value to counter disengagement with skill development. It is a gradual process, but it is necessary
to emphasise the persistent presence of soft skills in software development.

“Students hate to write. They’re not used to it. And the first reaction [is] we don’t want to do that. But
then this is a little bit of work that [I] do across the course to create a kind of consistency [to] make them
understand why this is important.” – B1

Soft skills and their domain-agnostic nature can result in students disengaging as they do not see a direct
link between the skills and software engineering, emphasising a student’s misperception of the CS degree
being a programming course. The students’ categorisation of soft skills as being more relevant to other
professions evidences their view of computer science and reflects a misunderstanding of what is required in
the workplace, which may involve managing or leading a team as they progress through their careers.

“Various bits of peer marking go on which has to be moderated. There’s a tension that we often say it’s
for you to try and bring on the rest of the group. [And students say], I didn’t sign up to do a management
or a leadership course. I’m not a teacher. Why am I having to supervise this guy? And that’s working in a
team.” – E1

A temporal delay was observed between the point where students are first introduced to soft skills and
the point when they realise the importance or relevance of these skills. Staff perceive students to reject soft
skills during their educational journey, and it is only when they enter the workplace (through placements or
employment) that they recognise their value.

“What they don’t realise is what they’re buying is me knowing better than them about what they’re going
to need in ten years’ time. And that’s where we come to those project weeks. They pathologically hate them
until they’ve graduated, and they come back and say, ‘no, that’s the thing I talked about in an interview.
That’s the thing that’s helped me for most of my career’.” – E1

The temporal delay reported reflects the event-driven nature of soft skill development. The following two
quotes represent two possible event types that can bring on the valuation of soft skills. In A4’s example, they
refer to students recognising the value of soft skills in situations where they were originally taught these
skills against their desires, and it is post-graduation when they are required to use these skillsets that their
impact is recognised. In contrast, D2 describes a different experience students undergo, where an absence of
soft skills drives the recognition. Students must have been exposed to these soft skills at some point in their
education, where they were required to be implemented to recognise this absence. The event should offer
students opportunities to judge whether to use these skills. In choosing not to use these skills voluntarily,
their absence may be recognised, driving the recognition of the need for the skill.

“so we have got a lot of anecdotal evidence where people who hated their second year software engineering
Course unit two years after graduation, come back and said this was the most relevant thing I’ve ever learned.”
– A4

“When I supervise my third years, I say, ‘Guys, I’m leaving it up to you to work out how you want to
work in a group. You’re welcome to do all the minutes and stuff I taught you in the first year, but I’m not
going to check’. Invariably, they don’t bother, but usually at the feedback at the end they say they wish they
had done so.” – D2

Staff perceive the student experience of soft skills as largely negative, with students rejecting or avoiding
opportunities to develop these skills. This rejection is based on student misconceptions about soft skills and

Manuscript submitted to ACM

107

14 Ivory et al.

their value. Soft skill development is an event-driven process in which students must experience situations
where soft skills are either used successfully and tied into goal attainment or where goals were not met due
to an absence of a specific skill.

3.3 Discussion

In this first discussion, we cover the main findings and limitations from the interviews before a more
comprehensive general discussion later. We reported on the staff perceptions regarding the embedded soft
skills. Interviews were conducted across five institutions, offering an enhanced understanding of the soft
skills gap between graduates and employment. Using a thematic analysis, we identified core soft skills, which
can be separated into cognitive, social, and professional skills. We also identified a pattern in how staff
perceive students, with a general refusal of soft skills during education, and only once students enter the
industry do they understand the value of soft skills.

3.3.1 Staff Perceptions of how Soft Skills are Taught. We answer the first research question, “How do academic
staff understand how soft skills are taught in their core modules?” by identifying the skills taught directly
and indirectly. Direct methods relate to the intentional incorporation of skills in the course, and indirect
methods relate to where skills are a by-product of other activities. Skills can also be delivered explicitly or
implicitly, relating to how the skills are presented.

Critical thinking and problem solving are taught explicitly, using non-programming activities to facilitate
the development of a critical mindset and implicitly through debugging activities. Non-programming activities
are generally viewed positively [52], as they allow the development of critical thinking without requiring an
understanding of programming first. Implicit methods, such as debugging, promote reasoning around failure,
which can act as a catalyst for critical thinking [17]. Critical thinking and problem solving are valuable for
programming-specific skills and are core components of learning effectively, as students need the necessary
mental models. Part of the learning process was engaging with the tasks and having staff present to facilitate
individual skill development.

Communication was taught directly, forming a key part of teaching materials in explicit and implicit
approaches. Explicit activities focused on intragroup skills, such as peer discussions, and implicit methods
included tools like GitLab that provided students with experience working with software engineering tools
and using them collaboratively to maximise effectiveness. Communicating through these tools is a method
received positively by students as it offers more accessible communication methods [20].

Online forums and discussion spaces are reported to increase student engagement through increased
discussion of sharing solutions and common concerns [23]. We see that these ideas have been used successfully
in practice to the benefit of students and educators, as at least two of the universities mentioned using
GitLab. Others may also use this tool, but it was not mentioned in interviews.

Ethics was often directly implemented and was predominantly viewed positively by educators. Ethics
was often taught in conjunction with communication, encouraging multiple viewpoints to be heard when
considering ethical and legal approaches. The perceptions of ethics held by graduates emphasise a poor
regard for its role in the workplace [34], despite employers recognising its importance in the workplace [43].

Skills taught indirectly included conflict management, reading, writing, and time management. Conflict
management was indirectly taught through groupwork and manifested where tensions or breakdowns occurred.
Manuscript submitted to ACM

108

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 15

This skill arose organically as a facet of group dynamics and was not manufactured by staff. Staff perceived
conflict as an unavoidable consequence of collaboration but supported students navigating these difficult
situations. Reading, writing, and time management are all components of general learning and academic
success.

From the direct-indirect interpretation of skills, we are afforded an idea of how skills are taught during
the CS undergraduate education. Many skills are taught alongside others, and technical skills or tools were
leveraged to highlight the relevance of certain soft skills towards software engineering. Understanding that
skills can be taught in these different styles may mean students do not necessarily recognise all instances
when they are taught soft skills and may reject activities explicitly about soft skill development. The core
skills of critical thinking, problem solving, communication, and teamwork support previous studies reporting
similar findings from graduate populations [11, 56], curricula [25], and employment [2, 42].

Teaching implies a student audience, and so it is helpful to recognise how student engagement is perceived
by staff, as this can influence how content is delivered. Students were perceived to view their education as a
“vocational programming course” (E1), which has been reported previously [29]. This preconception echoes
previous findings that students think non-technical skills are unnecessary for technical careers [32]. While
educators and employers agree with the importance of soft skills, our findings suggest staff do not perceive
students to recognise the value of soft skills, aligning with previous findings where students undervalue soft
skills [10] in favour of the skills they enjoy [37].

Students were also perceived to experience a temporal delay between being taught soft skills and recognising
their value. It is often only once out of education, and being exposed to situations where either a soft skill is
deployed and recognised to be successful, or situations occurs where an absence of a specific soft skill is
noticeable that students realise the importance and value of possessing these skills. As many of the events
that drive this recognition are industry-based, students are potentially unaware of the skills they should
demonstrate in interviews [5].

3.3.2 What skills are important. The second research question asked, “What importance do staff ascribe to
certain soft skills, in comparison to other skills?”. From the direct-indirect interpretation of how skills are
taught, certain skills are recognised as more valuable than others. For skills to be taught directly, educators
make conscious decisions to incorporate activities that promote skill development, indicating their perceived
value. Indirect skills are typically a by-product of the general learning cycle. The skills referenced as being
directly taught are valued enough by educators to ensure they have sufficient space within the curriculum.

3.3.3 Limitations. We recognise the likelihood of a self-selection bias for this study, such that participants
report favourable attitudes towards soft skills. Indeed, the four educators who declined the interview declared
an absence of soft skills in their modules. Consequently, the sample is not fully representative of a teaching
department. Despite missing information on what skills are potentially undervalued across curricula, the
interviewees offered insights into how soft skills are perceived by educators.

The semi-structured interview approach incorporated, at times, a more conversational interaction, which
may have influenced interview topics, resulting in specific skills being mentioned that would not have otherwise.
The benefits outweigh potential biases, as it encouraged greater interaction and further information from
the interviewee. For transparency, the anonymised transcripts are made available in the online repository.

Manuscript submitted to ACM

109

16 Ivory et al.

4 STUDY 2

The first study offered important insight into the educator perspective on their modules. Through these
interviews, the manner of how soft skills are taught – directly or indirectly, and implicitly or explicitly –
surfaces key information about how technical skills are often structured around the non-technical skills and
are used as the method to convey the soft skill content. What remains missing, is how this information
relates to how soft skills are embedded with a curriculum. In this second study, we report on a natural
language processing approach to identify the embedded soft skills in CS curricula, which provides a more
descriptive approach to understanding how soft skills present within CS education, and in combination with
the results from the first study, it answers the third research question, “How do these skills align with the
information available in online courses and module information?”.

Previous studies have used manual detection methods [18, 25], but natural language processing models
can expedite the identification process and offer a more uniform detection of keywords across documents.
Fareri et al. [19] developed a model that detected the presence of soft skills and applied this to job profile
data, finding general skills of leadership, autonomy, conflict management, and communication as highly
valued across job profiles. To the authors’ knowledge, similar methods have yet to be directly applied to
curriculum information.

4.1 Methodology

Data collection targeted websites of the N8 universities, which were scraped for information related to
undergraduate CS courses, including course descriptions, core module information, and any publicly available
course-relevant data. The academic year 22/23 was targeted because this was the same academic year
the interviews were conducted, which was achieved using the Internet Archive. Scripts for scraping these
datasets can be found in the OSF repository along with the scraped data: https://osf.io/25ecz/?view only=
917e6de233484d59abaac243647c89a2. The Faculty Ethics committee approved this secondary data collection
and analysis.

4.1.1 Analysis. SkillNER, a skill-based Named Entity Recognition (NER) model [3], was used to extract soft
skills. An NER is an algorithm specialising in identifying keywords based on probabilities and co-occurrences.
SkillNER was developed from using 31,278 individual terms (336 soft skills, 29,091 hard skills, and 1,851
certifications) taken from job adverts and other employment-related materials. The analysis pipeline is
available on OSF. SkillNER was implemented using Python 3.11 and R 4.2.2 for data analysis.

The dataset was passed through SkillNER. Important soft skills that were not identified by the process
were modified in the text to increase extraction rates (e.g., “team” was not recognised and was changed
to “teamwork”), which was carried out by data exploration. Following data annotation, the soft skills
were grouped according to the skills identified in REDACTED FOR REVIEW , as many identified terms
were similar (such as “collaborate” and “collaboration”, or “solving problems” and “problem solving”).
Some soft skills by REDACTED FOR REVIEW were identified as hard skills by SkillNER (such as “time
management”); these were redefined as soft skills. Identified terms related to the teaching and educational
aspect of soft skills (such as “teaching” or “module”) were removed. Terms that had a skill probability over
.60 were retained.
Manuscript submitted to ACM

110

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 17

4.2 Results

References to soft skills are not homogeneous across institutions, and soft skills make up between 12.90% and
27.20% of all referenced skills, with a mean average of 17.45% (SD = 4.89). The most frequently mentioned
soft skills across the combined curricula were teamwork, communication, professional skills, ethical thinking,
critical thinking, and problem solving as shown in Figure 1. Professional skills were the only soft skill absent
in the list developed in Ivory et al. [34]. Visualising the soft skills between institutions is made more explicit
in Figure 2, that some universities have a more even spread across mentions of soft skills, but still, the
pattern is inconsistent across institutions, and Figure 3 on an institutional level, offering complementary
perspectives.

The institutions are disparate in the levels of soft skills reported. The figures indicate little agreement
between institutions regarding how frequently soft skills are mentioned. These figures present the frequencies
as proportions because different word counts were extracted from each institution. Teamwork has a presence
across all institutions. Professional skills are dominated by three institutions (Lancaster, Leeds, and
Newcastle), and most institutions refer to each of the key six skills, except an absence of ethical thinking for
Sheffield and problem solving for York.

Skill co-occurrences – how often two skills appear in proximity – can be a useful way to understand
skill relationships. In Figure 4, the technical and soft skills are plotted together in a network-based upon
within-sentence co-occurrence. The more frequently co-occurring skills are denoted by the strength of the
connecting edge, and node size is relative to skill frequency.

We observed that soft skills of teamwork, communication, professional skills, ethical thinking, interper-
sonal skills, and critical thinking are strongly linked. Technical skills of software engineering and software
development are intrinsically linked with the cluster of soft skills, emphasising that these are taught as
team-based activities. Problem solving was mentioned more frequently alongside programming skills and
autonomy, indicating that programming emphasises problem solving skills and independent working.

Figure 5 displays relationships between the soft skills and modules across all institutions to assess whether
soft skills are taught together or separately. The nodes’ size indicates the number of associative links, and
the most dispersed skills were communication, critical thinking, ethical thinking, professional skills, problem
solving, and teamwork. It can also be seen that 38 modules are only associated with a single soft skill.

Figure 6 offers a different perspective by displaying the proportion of modules that include one of the key
six soft skills. It is seen that despite teamwork being the most frequently identified skill (by term matches),
it is typically present in around 20% of modules. Communication is most broadly embedded, appearing
in over a third of modules in five institutions. Professional skills are widely embedded within Newcastle’s
curricula but less so for other institutions. The data in these two figures shows that the distribution of soft
skills throughout curricula is highly dependent on institutions.

Exploring the soft skills taught across the course structure separated by year, in Figure 7, we see little
pattern across the different institutions. The heterogeneity is apparent where some years contain no soft
skills, suggesting an inconsistent approach to introducing and teaching soft skills. Ethical thinking is rarely
included beyond the second year for any institution, despite dissertation projects requiring ethical approval
for human-based research.

Manuscript submitted to ACM

111

18 Ivory et al.

Fig. 1. A stacked column plot indicating the most mentioned soft skills across all curricula. Skills mentioned only once in
an institution’s curriculum were removed.

4.3 Discussion

In this curricula analysis, we extracted soft skills using an NER model. In scraping publicly available
information on CS undergraduate courses, we investigated skill frequencies and co-occurrences. The main
findings from this exploration are that communication, critical thinking, ethical thinking, professional skills,
problem solving, and teamwork were the most frequently mentioned. No clear patterns were identified between
or within institutions for how soft skills are mentioned. On an individual institutional level, institutions are
Manuscript submitted to ACM

112

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 19

Fig. 2. Separating the frequencies by soft skill shows the patterns (or absence of) across institutions. Only the top six skills
are shown.

heterogeneous in referencing soft skills, and this may not necessarily reflect reality. Some institutions may
be more descriptive in their module information or reserve information for internal use, making comparisons
between institutions difficult. The analysis highlights that soft skills are commonly mentioned in proximity,
indicating they are taught or assessed together. The exceptions to this were problem solving and autonomy,
which were more closely associated with programming. It was also seen that software engineering was closely
linked to skills of teamwork and communication.

Manuscript submitted to ACM

113

20 Ivory et al.

Fig. 3. Presenting soft skills split by their institution offers a different perspective, showing how institutions present different
skills within their curricula.

The most frequently mentioned soft skills of teamwork and communication are those highly valued by
software engineering employers [2, 35, 45, 50], as are the skills of critical thinking and problem solving
[18]. This suggests higher education and industry are aligned in the skills valued, supporting the notion
that CS undergraduate education is positioned to inculcate students with the appropriate soft skills for
software engineering careers. This finding is further supported by previous curriculum analyses identifying
communication, teamwork, and ethical thinking [18, 25].
Manuscript submitted to ACM

114

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 21

Fig. 4. Skills that occur more than three times are included, and only skills that occur more than five times are labelled.
This offers a representation of how soft skills are referenced within curricula information. Terms with no contextual value,
such as ‘computer science’ and ‘module’ are removed as they overwhelm the plot due to their high frequency.

Ethical thinking was the fourth most frequently mentioned skill across the curricula and saw reasonable
exposure across most institutions. Despite this emphasis, graduates rank ethics very low for employment
[34], and this, along with the reported soft skills gap [4], is indicative that student perceptions significantly
impact how soft skills develop.

Manuscript submitted to ACM

115

22 Ivory et al.

Fig. 5. Network plot of the soft skills and co-occurrences through modules. The connections indicate skills that are taught
in the same modules. Yellow nodes are soft skills, and dark purple nodes are individual modules.

Skills of software engineering and software development were strongly associated with teamwork and
communication, suggesting these are presented to students as social activities. This association reflects
employer expectations that software engineering is carried out collaboratively [1].

4.3.1 Limitations. The NER model could not identify all references to soft skills without prior processing
steps, which was addressed in the analysis pipeline, where the original text was modified to ensure that
Manuscript submitted to ACM

116

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 23

Fig. 6. Proportion of modules within an institution that includes the top six reported soft skills.

SkillNER identified references to teamwork, groupwork, ethical and moral thinking. It remains possible that
other terms were not detected. Some skills, such as groupwork or time management, were classed as technical
skills by the NER model, but to maintain consistency with previous research, we classified these as soft
skills according to the definitions used in REDACTED FOR REVIEW . Both issues indicate a broader issue
with soft skill research: they are ephemeral concepts with loose definitions. This is not just a limitation of
the present study but also speaks to general soft skills research. The findings indicated reasonable alignment
with current understandings of valued soft skills despite model limitations.

Manuscript submitted to ACM

117

24 Ivory et al.

Fig. 7. Inspection of soft skills by course structure (module years), no distinct pattern is observed across skills.

5 GENERAL DISCUSSION

In this two-study paper, we first interviewed staff to identify the perceptions of embedded soft skills across
core modules, followed by the extraction of soft skills from curricula to converge on valued soft skills. It was
seen that staff valued skills including communication, groupwork, and critical thinking, which were mentioned
across modules but were also extensively taught directly, highlighting perceived importance. The second
study applied an NER model to core module content, highlighting heterogeneous frequencies across different
institutions and a strong link between software development and groupwork. In this general discussion, we
draw the findings from both studies together, and describe future research.

The first study answered research questions 1 and 2 by interpreting soft skills taught directly or indirectly.
For question 1, “How do academic staff understand how soft skills are taught in their core modules?” the
interviews highlighted that soft skills are taught in various ways, but combining soft skills with relevant
software engineering tools or practices provides ways for students to recognise the value of soft skills. The
second research question asked, “What importance do staff ascribe to certain soft skills, in comparison to
other skills?”, and the skills intentionally incorporated into the teaching materials can be seen as more
valuable. Staff are constrained by competing modules and time, so they must make conscious decisions
about how, and which, soft skills are given space within curricula.
Manuscript submitted to ACM

118

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 25

To answer the third research question of “How do important soft skills align with the information
available in online course and module information?”, the information from study 1 and study 2 are assessed
together. General agreement between the most valued skills is seen as educators spoke about communication,
groupwork, and critical thinking as being intentionally included within their materials, and these are also
the skills identified most frequently. The course information and curricula are assumed to reflect the skills
embedded within the course. Extracting soft skills presents a course-wide representation of the skills that
educators value. This alignment indicates that the curriculum information is accurate, and educators are
teaching the soft skills they advertise.

No discernible patterns were seen between or within institutions, suggesting that despite frameworks
like SE2104, there is little conformity between institutional curriculum design. This is positive in that it
highlights unique institutional offerings that can be tailored to their branding, but this absence of uniformity
suggests the frameworks are interpreted very differently, to the extent that certain skills are not focused
on in certain institutions. This can lead to potential choices that students are required to make in their
selection of education at a point in time where their misconceptions may draw them to programmes that
reference lower levels of soft skills. It should be encouraged that curricula reflect the true contents of their
course and ensure that the relevant skills are targeted and mentioned.

The skills identified are some of the most desired by employers, who desire employees who can communicate
and collaborate effectively [2, 41, 45]. Our findings suggest educators are aligned with employer expectations,
highlighting that the educators interviewed are aware of which skills are needed to secure employment. This
alignment indicates that the soft skills gap may result from student perceptions and how they develop these
skills. While staff perceptions influence how students perceive soft skills [10], it is reliant on students to fully
realise their value [24].

Many students start their undergraduate education believing a CS degree is primarily a vocational
programming course [29], accompanied by the misconception that programming is all that is required for
a successful career. Despite these preconceptions, students graduate from their courses with a stronger
sense of the breadth of skills needed [38]. Our findings suggest the CS undergraduate course is set up to
ensure graduates possess the necessary skills for software engineering, but the difficulty is ensuring students
recognise this.

The research implications suggest educators should bring forward the events that motivate students’
recognition of soft skills and reduce the temporal gap between being taught and appreciating their relevance.
To close the soft skills gap, students must reflect on their own goals and recognise the role of soft skills [13].
Students’ preconceptions about the importance of soft skills manifest in technical skill prioritisation over
soft skills [33]. While preconceptions can be altered through exposure to soft skills, bringing perceived value
up for specific skills [10], this is still limited by internal understanding of their value.

Staff recognise that students fail to value soft skills unless prompted by some event involving soft skill
use, so incorporating more industry-specific events into the curriculum can increase students’ value of
soft skills. There are multiple ways to achieve this; one method would involve industry partners offering
industry experiences to contextualise soft skills. Another opportunity could be to integrate short-term
industry placements into the curriculum, allowing students to experience real-world situations that offer
events to reduce the perceived temporal distance. The event-driven nature of soft skill development should

Manuscript submitted to ACM

119

26 Ivory et al.

be integrated into modules through project work, along with ensuring students are aware of the relevance of
soft skills [36].

Further implications result from the application of the NER model. Similar approaches can be applied
during curriculum designs to ensure that soft skills are embedded throughout the content. Embedding soft
skills across core modules would offer repeated exposure to these skills and emphasise their alignment with
technical skills. By deploying NER models, staff can ensure that soft skills are suitably distributed across
modules and are not localised to specific modules.

Our research offers a unique contribution to the understanding of CS higher education and its role in
teaching soft skills. Previous work has explored educator perceptions and what they teach, highlighting that
CS courses should prepare students for employment [55] by giving them experience with relevant tools and
methods widely used in software engineering [14]. We contribute by exploring educator perceptions about
the embedded soft skills and their presence in curricula. We find that skills align with employer expectations,
suggesting that students may be the weak link in the soft skill development process.

5.0.1 Future Work. Staff reportedly say students reject soft skills until they experience an event that empha-
sises soft skill relevance. We suggest the soft skills gap observed is formed through students’ misunderstanding
of the skills’ value for employment. By conducting longitudinal studies following students through their
academic careers, it may be possible to map soft skill development to their education. Using survey studies
following whole cohorts and interviews to pinpoint specific moments or modules that altered a perception, it
may be possible to contribute a greater understanding of how soft skills develop and potential reasons for
refusal, misunderstanding, or acceptance.

One study limitation noted was the self-selecting sample. Capturing information from across all educators
would offer meaningful insight into the distribution of educators’ perceptions of soft skills and where these
skills exist within a curriculum. It was recognised that not all educators see soft skills as having space within
their modules, but gathering representative views is necessary to understand how students are exposed to
soft skills.

The NER algorithm was applied to a geographically restricted population. Exploring a larger sample
and systematically mapping modules between universities can be used to investigate whether soft skills are
taught in similar contexts. This development would offer important information about where students can
develop soft skills, complementing existing research. All the future studies detailed here offer significant
implications for CS curricula design, ensuring soft skills are effectively embedded and calibrated to allow
students to recognise the value of soft skills.

6 CONCLUSION

In this two-part preregistered study, we explored the staff perceptions and curriculum presentations of
embedded soft skills within the CS undergraduate course. Staff perceived soft skills of communication, critical
thinking, ethical thinking, problem solving, and teamwork as valuable soft skills that warrant including and
teaching directly to students. Staff talk about the intentional space made in their modules to teach and
develop these skills whilst supporting students. Staff views on student engagement were largely negative, with
students rejecting the value of soft skills during education but recognising it once in industry, highlighting the
event-driven nature of soft skill development. The NER analysis of the curricula highlighted important soft
Manuscript submitted to ACM

120

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 27

skills of communication, critical thinking, ethical thinking, professional skills, problem solving, and teamwork
showing high association between staff perceptions and the descriptions of the courses. The implications of
these findings highlight congruency between employer expectations and the educational course in prioritising
specific soft skills. The findings imply that student perceptions likely have a strong influence over their
internalisation of soft skills, which results in the reported skill gap. Our findings indicate that the critical
factor in causing the soft skills gap may be student perceptions, as we observe a positive relationship between
the soft skills described in curricula, the soft skills prioritised by educators, and the skills considered essential
in employment.

Manuscript submitted to ACM

121

28 Ivory et al.

APPENDIX

Appendix A

Module Leader and Author Interview Guide
Questions (main questions in bold, follow up questions in italics)

• Tell me about the undergraduate module that you teach. What do you think works well with your
course? What key concepts are taught to students? How is the course delivered?

• What do you understand the term “soft skills” to mean? < I can then bring up the definitions of soft
skills that I refer to; things such as teamwork or responsibility, problem solving Some of these which
are more present than we may think originally >

• How important do you think these skills to be in Computer Science or Software Development? Who is
responsible for ensuring software developers possess the non-technical skills necessary for industry?

• Do you teach or emphasise any specific soft skills in the module, either intentionally
or as a result of other aims/goals/external requirements of the module? If YES: why
are these included in the module? If NOT INTENTIONAL: is there any reason why they are not
purposely included? Are these the responsibility of someone else or do the opportunities for these soft
skills develop naturally?

• What other aspects of the undergraduate programme are you aware of that focus on soft
skills and how do you think these contribute to students’ development?

• Has the module, under your supervision, been altered or adapted to emphasise or reduce
focus on particular soft skills? If YES: why has this been altered? If NO: why not? Do you think
the balance of teaching requires no further development or inspection?

• What soft skills do you prioritise in teaching in the undergraduate programme? Do you
think this is different to what students prioritise?

• Why are they prioritising these skills? How do these skills integrate in the course? Are they introduced
and students left to their own development, or is it more intentional and they’re pushed to improve?
Contentious perhaps, but do these skills help improve students’ career prospects or are they more
ideological?

• Do you have any further thoughts or ideas relating to soft skills in software development
and computer science? Anything that has not been covered by previous questions? Any last thoughts
on the balance of technical and non-technical skills.

Manuscript submitted to ACM

122

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 29

REFERENCES
[1] Faheem Ahmed, Luiz Fernando Capretz, Salah Bouktif, and Piers Campbell. 2015. Soft Skills and Software Development:

A Reflection from Software Industry. International Journal of Information Processing and Management 4, 3 (July
2015), 171–191. https://doi.org/10.48550/arXiv.1507.06873 arXiv:1507.06873

[2] Faheem Ahmed, Luiz Fernando Capretz, and P. Campbell. 2012. Evaluating the Demand for Soft Skills in Software
Development. IT Professional 14, 1 (Jan. 2012), 44–49. https://doi.org/10.1109/MITP.2012.7

[3] Anas Ait Aomar. 2023. SkillNER: A (Smart) Rule Based NLP Module to Extract Job Skills from Text.
https://github.com/AnasAito/SkillNER.

[4] Deniz Akdur. 2021. Skills Gaps in the Industry: Opinions of Embedded Software Practitioners. ACM Transactions on
Embedded Computing Systems 20, 5 (July 2021), 43:1–43:39. https://doi.org/10.1145/3463340

[5] Christina Andersson and Doina Logofatu. 2018. Using Cultural Heterogeneity to Improve Soft Skills in Engineering
and Computer Science Education. In 2018 IEEE Global Engineering Education Conference (EDUCON). 191–195.
https://doi.org/10.1109/EDUCON.2018.8363227

[6] Mark Ardis, David Budgen, Gregory W. Hislop, Jeff Offutt, Mark Sebern, and Willem Visser. 2015. SE 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. Computer 48, 11 (Nov. 2015), 106–109.
https://doi.org/10.1109/MC.2015.345

[7] BCS. 2023. University Computing Departments Met with Record Applicant Numbers as AI Hits the Mainstream —
BCS. https://www.bcs.org/articles-opinion-and-research/university-computing-departments-met-with-record-applicant-
numbers-as-ai-hits-the-mainstream/.

[8] Pierre Bourque and Richard E. Fairley. 2014. Guide to the Software Engineering Body of Knowledge. Technical Report
3.0. IEEE Computer Society. 1–335 pages.

[9] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology. Qualitative research in psychology
3, 2 (2006), 77–101. https://doi.org/10.1191/1478088706qp063oa

[10] Manuel Caeiro-Rodŕıguez, Mario Manso-Vázquez, Fernando A. Mikic-Fonte, Mart́ın Llamas-Nistal, Manuel J. Fernández-
Iglesias, Hariklia Tsalapatas, Olivier Heidmann, Carlos Vaz De Carvalho, Triinu Jesmin, Jaanus Terasmaa, and
Lene Tolstrup Sørensen. 2021. Teaching Soft Skills in Engineering Education: An European Perspective. IEEE Access 9
(2021), 29222–29242. https://doi.org/10.1109/ACCESS.2021.3059516

[11] André Calitz, Margaret Cullen, and Jéan Greyling. 2015. South African Alumni Perceptions of the Industry ICT Skills
Requirements.

[12] Luiz Fernando Capretz and Faheem Ahmed. 2018. A Call to Promote Soft Skills in Software Engineering. Psychology and
Cognitive Sciences - Open Journal 4, 1 (Aug. 2018), e1–e3. https://doi.org/10.17140/PCSOJ-4-e011 arXiv:1901.01819

[13] Secil Caskurlu, Iryna Ashby, and Marisa Exter. 2017. The Alignment Between Formal Education and Software Design
Professionals’ Needs in Industry: Faculty Perception. In 2017 ASEE Annual Conference & Exposition.

[14] Vincent A. Cicirello. 2017. Student Developed Computer Science Educational Tools as Software Engineering Course
Projects. Journal of Computing Sciences in Colleges 32, 3 (Jan. 2017), 55–61.

[15] Catalina Cortázar, Iñaki Goñi, Andrea Ortiz, and Miguel Nussbaum. 2024. Are Professional Skills Learnable? Beliefs
and Expectations Among Computing Graduates. ACM Transactions on Computing Education (Jan. 2024). https:
//doi.org/10.1145/3641551

[16] Michelle Craig, Phill Conrad, Dylan Lynch, Natasha Lee, and Laura Anthony. 2018. Listening to Early Career Software
Developers. Journal of Computing Sciences in Colleges 33, 4 (April 2018), 138–149.

[17] David DeLiema, Maggie Dahn, Virginia Flood, Ana Asuncion, Dor Abrahamson, Noel Enyedy, and Francis Steen. 2019.
Debugging as a Context for Fostering Reflection on Critical Thinking and Emotion. In Deeper Learning, Dialogic
Learning, and Critical Thinking. Routledge, 209–228.

[18] Rosanne English and Alan Hayes. 2022. Towards Integrated Graduate Skills for UK Computing Science Students. In
Proceedings of the 2022 Conference on United Kingdom & Ireland Computing Education Research (UKICER ’22).
Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3555009.3555018

[19] Silvia Fareri, Nicola Melluso, Filippo Chiarello, and Gualtiero Fantoni. 2021. SkillNER: Mining and Mapping Soft Skills
from Any Text. Expert Systems with Applications 184 (Dec. 2021), 115544. https://doi.org/10.1016/j.eswa.2021.115544
arXiv:2101.11431

[20] Joseph Feliciano. 2015. Towards a Collaborative Learning Platform: The Use of GitHub in Computer Science and
Software Engineering Courses. Thesis.

[21] Raluca Florea and Viktoria Stray. 2018. Software Tester, We Want to Hire You! An Analysis of the Demand for Soft
Skills. In Agile Processes in Software Engineering and Extreme Programming (Lecture Notes in Business Information
Processing), Juan Garbajosa, Xiaofeng Wang, and Ademar Aguiar (Eds.). Springer International Publishing, Cham,
54–67. https://doi.org/10.1007/978-3-319-91602-6 4

Manuscript submitted to ACM

123

30 Ivory et al.

[22] Matthias Galster, Antonija Mitrovic, Sanna Malinen, and Jay Holland. 2022. What Soft Skills Does the Software
Industry *Really* Want? An Exploratory Study of Software Positions in New Zealand. In Proceedings of the 16th ACM
/ IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM ’22). Association for
Computing Machinery, New York, NY, USA, 272–282. https://doi.org/10.1145/3544902.3546247

[23] Lucia M. M. Giraffa, Marcia Cristina Moraes, and Lorna Uden. 2014. Teaching Object-Oriented Programming in
First-Year Undergraduate Courses Supported By Virtual Classrooms. In The 2nd International Workshop on Learning
Technology for Education in Cloud (Springer Proceedings in Complexity), Lorna Uden, Yu-Hui Tao, Hsin-Chang Yang,
and I-Hsien Ting (Eds.). Springer Netherlands, Dordrecht, 15–26. https://doi.org/10.1007/978-94-007-7308-0 2

[24] Carolin Gold-Veerkamp. 2019. A Software Engineer’s Competencies: Undergraduate Preconceptions in Contrast to
Teaching Intentions. In Proceedings of the 52nd Hawaii International Conference on System Sciences. https:
//doi.org/10.24251/HICSS.2019.937

[25] Wouter Groeneveld, Brett A. Becker, and Joost Vennekens. 2020. Soft Skills: What Do Computing Program Syllabi
Reveal About Non-Technical Expectations of Undergraduate Students?. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’20). Association for Computing Machinery,
New York, NY, USA, 287–293. https://doi.org/10.1145/3341525.3387396

[26] Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. 2020. Non-Cognitive Abilities of Exceptional
Software Engineers: A Delphi Study. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 1096–1102. https://doi.org/10.
1145/3328778.3366811

[27] Wouter Groeneveld, Joost Vennekens, and Kris Aerts. 2019. Software Engineering Education Beyond the Technical: A
Systematic Literature Review. https://doi.org/10.48550/arXiv.1910.09865 arXiv:cs/1910.09865

[28] Orit Hazzan and Gadi Har-Shai. 2013. Teaching Computer Science Soft Skills as Soft Concepts. In Proceeding of
the 44th ACM Technical Symposium on Computer Science Education (SIGCSE ’13). Association for Computing
Machinery, New York, NY, USA, 59–64. https://doi.org/10.1145/2445196.2445219

[29] Michael Hewner. 2013. Undergraduate Conceptions of the Field of Computer Science. In Proceedings of the Ninth
Annual International ACM Conference on International Computing Education Research (ICER ’13). Association for
Computing Machinery, New York, NY, USA, 107–114. https://doi.org/10.1145/2493394.2493414

[30] Michael Hewner. 2014. How CS Undergraduates Make Course Choices. In Proceedings of the Tenth Annual Conference
on International Computing Education Research. ACM, Glasgow Scotland United Kingdom, 115–122. https://doi.
org/10.1145/2632320.2632345

[31] Francisco Iniesto, Julia Sargent, Bart Rienties, Ariadna Llorens, Araceli Adam, Christothea Herodotou, Rebecca
Ferguson, and Henry Muccini. 2021. When Industry Meets Education 4.0: What Do Computer Science Companies
Need from Higher Education?. In Ninth International Conference on Technological Ecosystems for Enhancing
Multiculturality (TEEM’21) (TEEM’21). Association for Computing Machinery, New York, NY, USA, 367–372.
https://doi.org/10.1145/3486011.3486475

[32] Mona Itani and Issam Srour. 2016. Engineering Students’ Perceptions of Soft Skills, Industry Expectations, and Career
Aspirations. Journal of Professional Issues in Engineering Education and Practice 142, 1 (Jan. 2016), 04015005.
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000247

[33] Jim Ivins, Brian R Von Konsky, David Cooper, and Michael Robey. 2006. Software Engineers and Engineering: A
Survey of Undergraduate Preconceptions. In Proceedings. Frontiers in Education. 36th Annual Conference. 6–11.
https://doi.org/10.1109/FIE.2006.322364

[34] Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2023. What’s in an Undergraduate
Computer Science Degree; Alumni Perceptions about Soft Skills in Careers. Transactions on Computing Education
(2023).

[35] Jingdong Jia, Zupeng Chen, and Xiaoping Du. 2017. Understanding Soft Skills Requirements for Mobile Applications
Developers. In 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), Vol. 1. 108–115. https://doi.org/10.1109/
CSE-EUC.2017.29

[36] Haleh Karimi and Anthony Pina. 2021. Strategically Addressing the Soft Skills Gap Among STEM Undergraduates.
Journal of Research in STEM Education 7, 1 (July 2021), 21–46. https://doi.org/10.51355/jstem.2021.99

[37] Antti Knutas, Timo Hynninen, and Maija Hujala. 2021. To Get Good Student Ratings Should You Only Teach
Programming Courses? Investigation and Implications of Student Evaluations of Teaching in a Software Engineering
Context. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET). 253–260. https://doi.org/10.1109/ICSE-SEET52601.2021.00035

[38] Clayton Lewis, Michele H. Jackson, and William M. Waite. 2010. Student and Faculty Attitudes and Beliefs about
Computer Science. Commun. ACM 53, 5 (May 2010), 78–85. https://doi.org/10.1145/1735223.1735244

Manuscript submitted to ACM

124

Everything but Programming; Investigating Academics’ Perceptions of Embedded Soft Skills in Computer
Science Undergraduate Education 31

[39] Sherlock A. Licorish, Matthias Galster, Georgia M. Kapitsaki, and Amjed Tahir. 2022. Understanding Students’ Software
Development Projects: Effort, Performance, Satisfaction, Skills and Their Relation to the Adequacy of Outcomes
Developed. Journal of Systems and Software 186 (April 2022), 111156. https://doi.org/10.1016/j.jss.2021.111156

[40] Janet Liebenberg, Magda Huisman, and Elsa Mentz. 2014. Knowledge and Skills Requirements for Software Developer
Students. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering
8, 8 (2014), 6.

[41] Gerardo Matturro. 2013. Soft Skills in Software Engineering: A Study of Its Demand by Software Companies in Uruguay.
In 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). 133–136.
https://doi.org/10.1109/CHASE.2013.6614749

[42] Gerardo Matturro, Florencia Raschetti, and Carina Fontán. 2019. A Systematic Mapping Study on Soft Skills in Software
Engineering. Journal of Universal Computer Science 25, 1 (2019), 26.

[43] Anna Mitchell, Dharini Balasubramaniam, and Jade Fletcher. 2022. Incorporating Ethics in Software Engineering:
Challenges and Opportunities. In 2022 29th Asia-Pacific Software Engineering Conference (APSEC). 90–98. https:
//doi.org/10.1109/APSEC57359.2022.00021

[44] K. Molokken-Ostvold and M. Jorgensen. 2005. A Comparison of Software Project Overruns - Flexible versus Sequential
Development Models. IEEE Transactions on Software Engineering 31, 9 (Sept. 2005), 754–766. https://doi.org/10.
1109/TSE.2005.96

[45] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva, Marco Tulio Valente, Fabio Petrillo, and
Yann-Gaël Guéhéneuc. 2021. What Skills Do IT Companies Look for in New Developers? A Study with Stack Overflow
Jobs. Information and Software Technology 129 (Jan. 2021), 106429. https://doi.org/10.1016/j.infsof.2020.106429

[46] Rémi Rampin and Vicky Rampin. 2021. Taguette: Open-Source Qualitative Data Analysis. Journal of Open Source
Software 6, 68 (Dec. 2021), 3522. https://doi.org/10.21105/joss.03522

[47] Barbara A. Ritter, Erika E. Small, John W. Mortimer, and Jessica L. Doll. 2018. Designing Management Curriculum for
Workplace Readiness: Developing Students’ Soft Skills. Journal of Management Education 42, 1 (Feb. 2018), 80–103.
https://doi.org/10.1177/1052562917703679

[48] Mahbub Sarkar, Tina Overton, Christopher Thompson, and Gerry Rayner. 2016. Graduate Employability: Views of
Recent Science Graduates and Employers. International Journal of Innovation in Science and Mathematics Education
24, 3 (Aug. 2016).

[49] Christopher Scaffidi. 2018. Employers’ Needs for Computer Science, Information Technology and Software Engineering
Skills Among New Graduates. International Journal of Computer Science, Engineering and Information Technology
8, 1 (Feb. 2018), 01–12. https://doi.org/10.5121/ijcseit.2018.8101

[50] Matt Stevens and Richard Norman. 2016. Industry Expectations of Soft Skills in IT Graduates: A Regional Survey. In
Proceedings of the Australasian Computer Science Week Multiconference (ACSW ’16). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/2843043.2843068

[51] Chiara Succi and Magali Canovi. 2020. Soft Skills to Enhance Graduate Employability: Comparing Students and
Employers’ Perceptions. Studies in Higher Education 45, 9 (Sept. 2020), 1834–1847. https://doi.org/10.1080/03075079.
2019.1585420

[52] Sarah Tasneem. 2012. Critical Thinking in an Introductory Programming Course. Journal of Computing Sciences in
Colleges 27, 6 (June 2012), 81–83.

[53] Michael Tomlinson. 2017. Student Perceptions of Themselves as ‘Consumers’ of Higher Education. British Journal of
Sociology of Education 38, 4 (May 2017), 450–467. https://doi.org/10.1080/01425692.2015.1113856

[54] Sander Valstar, Sophia Krause-Levy, Alexandra Macedo, William G. Griswold, and Leo Porter. 2020. Faculty Views
on the Goals of an Undergraduate CS Education and the Academia-Industry Gap. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 577–583. https://doi.org/10.1145/3328778.3366834

[55] Sander Valstar, Caroline Sih, Sophia Krause-Levy, Leo Porter, and William G. Griswold. 2020. A Quantitative Study of
Faculty Views on the Goals of an Undergraduate CS Program and Preparing Students for Industry. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (ICER ’20). Association for Computing
Machinery, New York, NY, USA, 113–123. https://doi.org/10.1145/3372782.3406277

[56] Catherine Watson and Kelly Blincoe. 2017. Attitudes Towards Software Engineering Education in the New Zealand
Industry. (2017).

Manuscript submitted to ACM

125

126

5.1 Statement of Continuous Thesis Summary

“Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a

lifetime.” - Maimonides

This chapter presents two studies that explore the embedded soft skills in undergraduate

CS degrees. Chapter 4 focuses on university graduates’ perspective, and the present

chapter explores the other side, the staff who design and structure the student experience.

In the first study, I interview staff perceptions of embedded soft skills in core programme

modules. Using thematic analysis, an emphasis on cultivating critical thinking,

communication, and teamwork skills emerges. Staff observe the event-driven nature of

soft skill development and perceive students to view soft skills negatively at first, which

changes once they are exposed to industry situations that demand these skills. The

second study applies a Named Entity Recognition (NER) algorithm to curricula and

module information. It identifies a pattern in how soft skills are embedded, typically

appearing in proximity to other soft skills. Software engineering is closely linked to skills

of teamwork and communication, indicating it is taught as a social activity.

This chapter speaks to the soft skills gap (Akdur, 2021) by suggesting educators are

aware of the skills desired by industry and consequently incorporate them into their

modules. This chapter explores the software learning development process by analysing

the curricula and whether they are set up to support students in developing their soft

skills. The skills mentioned and embedded within the courses strongly align with SE2014

(Ardis et al., 2015), suggesting a sense of homogeneity across educator perceptions. In

offering an answer to the thesis’ first research question, the skills of communication,

critical thinking, problem solving, teamwork, and ethical thinking are presented.

5.2 Synthesising Phase 1

In this transitory space between phases 1 and 2, I reflect on the findings from the first

phase and focus on two psychological constructs that have potential value for

understanding software engineering behaviours. Table 1 reports the top skills from the

127

Skill Chapter 4 Chapter 5a Chapter 5b

Communication
Critical Thinking
Problem Solving
Teamwork
Ethical Thinking
Conflict Management
Professional Skills
Reading/Writing
Responsibility
Time Management

Table 1
The skills identified in Chapters 4 and 5 as being important for software learning
development. 5a refers to study one and 5b to study two in Chapter 5.

previous chapter and the two studies in the present chapter. The core skills identified are

communication, teamwork, problem solving, and critical thinking. In the rest of this

section, I link these soft skills to two key and well-researched concepts within psychology.

These psychological concepts are underutilised in software engineering research and would

benefit from greater exposure. These psychological ideas are reviewed in Chapter 2.

5.2.1 Communication and Teamwork

Communication, as defined in Chapter 4, is “being able to convey information to various

parties in a manner that is well received and understood, in both written and oral forms”.

Communication is the “lifeblood” of an organisation (Goldhaber, 1974) and allows

individuals and groups to share information and manage relationships (Pikkarainen et al.,

2008). Organisational communication is consistent with the social identity approach, as

an individual’s sense of belonging to a team is related to recognising shared values within

project teams (Postmes et al., 2001). Through communication, social identities are

maintained via the diffusion of shared norms (Lapinski & Rimal, 2005) and the ability to

express identities through language (Scott et al., 1998).

Communication is integral to working collaboratively because information needs to be

shared between individuals working towards a common goal (Klünder et al., 2016).

128

Communication requires an internal representation of the knowledge to be conveyed and

an understanding of the audience and their internal knowledge construction. The dyadic

interaction between a speaker and listener is bounded by their individual perceptions and

internal knowledge representation, as well as the consideration of other people’s

perceptions, offering a broadening of perspectives (Fussell & Krauss, 1992).

Communication has long been acknowledged as necessary within software engineering

(Stelzer & Mellis, 1998). Computer-mediated communication can also form identities built

around the technology (Amaral & Monteiro, 2002), as seen in the literature surrounding

software ecosystems (de Souza et al., 2016). Within software engineering, communication

is often computer-mediated; for example, GitHub issues pages and Q&A forums such as

StackOverflow are invaluable resources for soliciting advice from others.

The social identity theory is predicated upon the formation of groups that share values

and observe group norms. As a result, the relationship between the soft skill of teamwork

and social identity theory should be relatively self-evident. For thesis completion, the

links are detailed. Teamwork is built upon shared norms and is defined in Chapter 4 as

“being capable of working with others effectively and contributing to the end goal; being

able to cooperate with others during required tasks”.

Teamwork is a collaborative effort by individuals who share a common goal. Within

organisations, teams may exist until a goal is completed (such as delivering a product), or

they may be more persistent, reflecting the requirements of a job role. Shared goals allow

individuals to identify with others, which sparks the formation of organisational teams

(Lembke & Wilson, 1998). These goals may be mandated as part of their role (all

programmers share a goal of writing code) or through project teams (designers,

programmers, and testers all contributing to the same project). This shared goal becomes

a value that draws individuals together.

Large organisations may have multiple project groups working in parallel, and cultivating

129

an organisation-wide identity can help reduce conflict between internal groups (Haslam &

Parkinson, 2005), evidencing that diverse populations of individuals can work together

harmoniously where they can identify with some common value. Even within these

internal teams, groups are most successful when individuals share an identity, as it aids

the self-regulation of the group, reducing the need for supervision (Haslam et al., 2000),

which can result in more effective goal-directed behaviour. Social identity theory has

strong connections to the soft skills of communication and teamwork (Scott, 2007a), and

based on their value for software engineering and security work, social identity theory is

appropriate to use in exploring the behaviours of software engineers.

5.2.2 Problem Solving and Critical Thinking

Problem solving is defined in Chapter 4 as “being able to understand and solve complex

problems; being able to evaluate a situation and provide an effective solution”, and

Critical Thinking is defined as “being able to critically review information and determine

its importance for informing decisions; being able to use evaluative and inferential

reasoning to increase the likelihood of a desired outcome”.

Problem solving is often considered one aspect of critical thinking, which comprises the

mental processes, strategies, and representations needed to solve problems and make

decisions (Sternberg, 1986a). As a critical thinking component, problem solving is the

information processing unit, where the task environment determines an individual’s

behaviour (Newell & Simon, 1972). It is a cyclic process of individuals recognising a

problem, defining it, developing a solution, allocating resources, and monitoring progress

before evaluating the solution (Sternberg, 1986b).

Problem solving is not always performed critically and can be deployed uncritically

(Bailin & Siegel, 2003). For example, an intuitive and non-critical solution to keeping

patient records secure is not allowing anyone access, rendering the database secure but

unusable. In contrast, a critical perspective would acknowledge that some people require

legitimate access, and that the prior solution is non-optimal. Instead, they may choose to

130

restrict access to named individuals via access control systems. This critical/uncritical

distinction suggests the existence of at least two problem solving mechanisms.

To sufficiently solve a problem, one must alter their mental representation (Pretz et al.,

2003), requiring a critically reflective approach. Critical thinking can be regarded as an

approach to making judgments based upon some form of criteria that deems it “good”

thinking in that it is reasoned and rational (Bailin & Siegel, 2003). A critically thinking

individual is “appropriately moved by reason” (Siegel, 2013) and aspires to engage in

reflective practices (Ennis, 1987; Scheffler, 1965). This difference in approaches is

explained by the dual processing theory of decision making, which posits the existence of

an intuitive default system and an interventionist and more cognitively critical system

(Evans, 2003).

Critical thinking is synonymous with rationality (Bailin & Siegel, 2003) as both are

interested in how effectively reasoning is applied during decision making (Scheffler, 1965).

Rationality is tied to normative behaviours, yet individuals are repeatedly shown to

choose non-normative solutions, evidenced numerous times (e.g., Kahneman & Tversky,

1979, 1982; Wason, 1960; Wason & Evans, 1974). Irrationality is not an adaptive trait, for

it does not benefit us to willingly make irrational choices that lead to increased risk

without suitable reward. One perspective on decision making is that human rationality is

bounded by an individual’s knowledge and mental representation at the time of judgment.

So people make decisions based on available information (Simon, 1990), which may result

in non-optimal decisions because they were considered the best judgment at the time.

From this bounded rationality, individuals engage in “satisficing”, the practice of aiming

for a good-enough or satisfactory result instead of the optimal one (Simon, 1956).

To satisfice, individuals make use of heuristics to arrive at an ecologically rational answer,

and these heuristics form a part of an adaptive toolbox (Gigerenzer, 2002). Notably, the

heuristics are considered ecologically rational where they benefit decision making in

suitable environments (Gigerenzer, 2015), but where they fail to provide adequate choices,

131

their poor fit to the decision context results in biased and irrational choices (Gigerenzer &

Todd, 1999; Kahneman et al., 1974).

If the psychology literature views problem solving as just one component of critical

thinking (Sternberg, 1986a), why are they identified in Chapters 4 and 5 as separate soft

skills, to the extent that in Chapter 4, little association was seen between the value of

critical thinking and problem solving? One answer is the popular combination of

programming and problem solving (an internet search for “programming problem solving”

returns over 99 million more results than “programming critical thinking”). Through

exposure, these terms become synonymous and familiar, particularly when presented

outside the more formal definitions in psychology. This popularity highlights the

importance of phase 1, where efforts to identify the most important soft skills captured

some ideas that are not commonly mentioned alongside software engineering. This phase

signals the ephemeral concept of soft skills in popular use and demonstrates the necessity

of these studies for the thesis. Key ideas are exposed by gaining information from

software populations using familiar terminology. In the example of cognitive skills, the

critical aspect combined with problem solving supports the relevance of dual processing

theory. As previously noted, problem solving is not always critical and may be

implemented intuitively (Bailin & Siegel, 2003). The distinction between critical and

uncritical problem solving in software engineering tends towards the notion that different

cognitive systems can be deployed during decision making.

While considered as separate soft skills, problem solving and critical thinking both share

a basis in “good” reasoning and rationality. Rationality is bounded by our proximal

stimuli and the mental representations we hold at the time of decision making, and

rational thinking is linked to more deliberate, reflective processing styles as proposed in

the dual processing theory of decision making. I use this to suggest that dual processing

theory holds value within software engineering, that warrants further exploration, which

is carried out in Chapters 6 and 8.

132

In this phase, I identified the most valued soft skills for software engineering and CS from

graduates and educators of the CS undergraduate programme. The core skills identified

were communication, teamwork, problem solving, and critical thinking. From this, the

psychological theory of social identity offers reasonable grounding for communication and

teamwork, and the dual processing theory grounds critical thinking and problem solving.

In phase 2, I investigate these theories in secure software engineering, by applying dual

processing theory in Chapters 6 and 8, and social identity theory in Chapter 7.

5.2.3 Contribution to Thesis Argument and Forward Trajectory

This chapter advances the central thesis argument by investigating how soft skills are

intentionally embedded within computer science curricula, offering an institutional and

educator-based perspective that complements the graduate-focused findings in Chapter 4.

By revealing both staff perceptions and curricular patterns, this chapter provides

compelling evidence that educators are aware of industry needs and attempt to embed

relevant soft skills into programme design, particularly communication, teamwork, critical

thinking, and problem solving. Up to this point in the thesis, the argument has

progressed from establishing the importance of soft skills through to identifying graduate

perceptions of valued soft skills and their developmental sources. Chapter 5 adds another

layer by exposing how educators conceptualise and implement these skills, as well as how

these skills manifest structurally within academic programmes.

Looking forward, the next chapters transition from general software education to

security-focused software engineering. Chapters 6 and 8 operationalise dual processing

theory to examine how problem solving and critical thinking play out in security-specific

contexts, while Chapter 7 explores social identity theory in relation to teamwork and

communication in secure software engineering environments. These theoretical

applications further explore the behavioural dimensions identified in this phase, deepening

the psychological and domain-specific insights that underpin the thesis.

The foundational study on the perceptions of software graduates and academic staff

133

regarding essential soft skills - communication, teamwork, problem solving, and critical

thinking - serves as a starting point for exploring these skills’ influence across diverse

software engineering contexts. While the initial sample is drawn from undergraduate

graduates and university staff, representing a relatively homogenous academic

environment, the identified core skills are well-established across industry literature and

professional standards, such as SE2014 (Ardis et al., 2015), supporting their broader

relevance. Moreover, these soft skills are inherently transferable and foundational to

effective software development irrespective of specific roles, experience levels, or work

settings.

The subsequent empirical studies in this thesis draw from populations with differing

software experience, including freelance developers and professional practitioners, whose

motivations and contexts vary considerably from those in academia. The rationale for

extending the soft skills framework to these populations is premised by the notion that

the cognitive and social competencies fundamental to software engineering are consistent

across different groups, albeit manifested in contextually specific ways. By anchoring later

investigations in the initial study’s conceptualisation of soft skills, the thesis maintains

coherence while enabling nuanced exploration of how these skills interact with

psychological constructs and security behaviours across varied populations.

134

6 Recognising The Known Unknowns; the interaction between reflective

thinking and optimism for uncertainty among software developer’s

security perceptions

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (2023). Recognizing the
Known Unknowns; the Interaction Between Reflective Thinking and Optimism for
Uncertainty Among Software Developer’s Security Perceptions. Technology, Mind, and
Behavior, 4(3: Winter 2023). https://doi.org/10.1037/tmb0000122

https://doi.org/10.1037/tmb0000122

SINGLE-STUDY PAPER

Recognizing the Known Unknowns; the Interaction Between
Reflective Thinking and Optimism for Uncertainty Among
Software Developer’s Security Perceptions

Matthew Ivory1, John Towse1, Miriam Sturdee2, Mark Levine1, and Bashar Nuseibeh3, 4
1 Department of Psychology, Lancaster University
2 School of Computer Science, St. Andrews University
3 Department of Computer Science and Information, LERO (Irish Software Research Centre), Limerick, Ireland
4 School of Computing and Communications, Open University

Software development is a complex process requiring aspects of social, cognitive, and technical skills. Software engineers face high
levels of uncertainty and risk during functional and security decision making. This preregistered study investigates behavioral
measures of cognitive reflection, risk aversion, and optimism bias among professional freelance software developers and computer
science students, to expose relationships between uncertainty-associated language and risk sensitivity. We employ content analysis
with a mixed-effect model to understand how psychological dimensions influence risk sensitivity in secure software development.
We show an interaction between cognitive reflection and optimism bias in the proportion of uncertainty-related language used.
Overly optimistic outlooks combined with higher cognitive reflection drives up expressions of uncertainty, while pessimistic or
realistic individuals reduce uncertainty as cognitive reflection increases. Software engineers who hold average or pessimistic views
on the security of their code are more likely to speakmore intuitively about security and risk.We discuss the potential of our findings
in relation to understanding how to leverage language used by engineers as markers of risk aversion. Encouraging increased
discourse could be used as a catalyst for increased cognitive reflection and grounding optimistic behaviors, leading to more careful
decisions.

Keywords: software engineer, cognitive reflection, optimism bias

Supplemental materials: https://doi.org/10.1037/tmb0000122.supp

Action Editor: Nick Bowman was the action editor for this article.
ORCID iD: Matthew Ivory https://orcid.org/0000-0002-5296-5897.
Acknowledgements: The authors extend their gratitude to Kat Benier and

Maha Sweetha Singaravelu Shanmugam for assisting in the data validation
process.
Funding: Funding was provided by the Engineering and Physical

Sciences Research Council for the project, “The Soft Skills of Software
Learning Development: The Psychological Dimensions of Computing and
Security Behaviours.” All research involved in this project was approved by
the University Faculty Ethics committee. Participants provided informed
consent before commencing with the research study.
Disclosures: The authors declare that there is no conflict of interest.
Data Availability: This article has been preregistered and can be accessed

at https://doi.org/10.17605/OSF.IO/ZBQE4. Data, analysis, and any
materials required to reproduce this article are openly accessible at
https://doi.org/10.17605/OSF.IO/SJ8BT. The data have been used previ-
ously, and subject to a thematic analysis that complements this article. A

preprint of this can be found at https://doi.org/10.31234/osf.io/pexvz, and the
analysis method is different enough to necessitate an independent article.
Open Science Disclosures:
The data are available at https://osf.io/sj8bt/files/osfstorage.

The experimental materials are available at https://osf.io/sj8bt/files/
osfstorage.

The preregistered design and analysis plan (transparent changes notation)
is accessible at https://osf.io/zbqe4.
Open Access License: This work is licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0; http://creativecommons.org/
licenses/by/4.0). This license permits copying and redistributing the work in any
medium or format, as well as adapting the material for any purpose, even
commercially.
Contact Information: Correspondence concerning this article should

be addressed to Matthew Ivory, Department of Psychology, Lancaster
University, Lancaster LA14YW, United Kingdom. Email: matthew.ivory@
lancaster.ac.uk

Technology, Mind, and Behavior
© 2023 The Author(s)
ISSN: 2689-0208 https://doi.org/10.1037/tmb0000122

1

135

Software is at the foundation of our modern world; we rely on it
for almost everything, from communication to financial transac-
tions, to information storage. When software fails or is altered by
malicious actors, this has real-world consequences, including
psychological harm (Palassis et al., 2021). Consequently, reducing
software vulnerabilities—for example, by applying psychological
insights and methods to those who create software—is becoming
increasingly important.
Secure coding is defined as a programming practice that avoids

software vulnerabilities (Rauf et al., 2021), allowing for data
exchanges and logic flows to occur without interference by third
parties. For our purposes, a security vulnerability is defined as an
unexpected logic flow resulting in exploitable situations allowing
for unintended access to information or functionality. Reducing
vulnerabilities and increasing risk sensitivity in software engineers
therefore has the potential for improving secure coding practices.
The solution appears simple—“Write secure software!,” yet such

imperatives are usually not sufficient for secure coding (Hallett
et al., 2021). It is well established that warnings or commands alone
do not motivate action unless an individual perceives the importance
of the command (Dash & Gladwin, 2007). Despite software
security’s importance, 76% of software possessed at least one well-
known vulnerability in a recent review (Veracode, 2020), and 69%
of software engineers were unaware of third-party vulnerabilities
within their own code (Kula et al., 2018). Our approach works
toward a better understanding of the psychological profiles of those
who write software, to ultimately facilitate an increase in the
salience of security and deployment of secure practices.
Secure coding can be achieved through technical interventions,

such as using dedicated testing teams or rigorous workflows, but
with over 40% of the app software engineer community comprising
of solo or amateur software engineers (van der Linden et al., 2020),
it is important to address the individual within the development
process, rather than just roles and technical solutions.
When investigating software engineers’ priorities, functionality

has repeatedly superseded security (Kirlappos et al., 2013; Lopez,
Sharp, et al., 2019), despite implicit security expectations in high-
quality software (Tahaei & Vaniea, 2019). Even when given
security-specific coding tasks (such as password storage), security is
often omitted unless prompted (Hallett et al., 2021; Naiakshina
et al., 2019). A reduced security focus has been attributed variously
to a perception of effort (Kirlappos et al., 2013), absence of
responsibility (Gotterbarn, 2001), and even to mistaken assumptions
that their tools are secure (Nadi et al., 2016; Palombo et al., 2020).
To our knowledge, the disposition toward risk and uncertainty has
not been systematically explored.
To that end, we use a novel approach to highlight links between

domain-general psychological constructs such as cognitive reflection,
risk aversion, and optimism biases as mediators of how engineers
might think about security. This research emphasizes the need to
consider individual differences in the psychology of engineers as their
actions can have significant impact within the real world, consistent
with the suggestion that heuristics and biases impact secure software
decision making (Brun et al., 2022; Oliveira et al., 2014, 2018).
By deliberately using abstract cognitive measures as opposed to

signals from software-specific activities, we aim to develop an
understanding of how cognition shapes or molds those activities.
Through a quantitative analysis of language use around security
perceptions, we can highlight links between software security and

the language used. Language is grounded in perception and action
and can be used to share our internalized models with others
(Hagoort, 2023; Jackendoff, 2009). Through studying how software
engineers describe security within their work and their personal
experiences (or absence of), we can associate their language with
cognition, which reflects their internal models and beliefs, and may
reflect their real-world behavior, but importantly, it may provide an
opportunity to identify potentially insecure coding practices.

Cognitive Processing Styles

Dual processing theory frames decision making and reasoning in
terms of individual propensity to engage in different cognitive styles
(Evans, 2003). System 1 processing is driven by intuition and
heuristic use, allowing individuals to reduce complex decisions into
simpler operations requiring less cognitive effort (Kahneman et al.,
1974; Kahneman & Frederick, 2002). Heuristics form “mental
shortcuts” that can be used in multiple scenarios to simplify and
speedup decisions (Beike & Sherman, 1994). Through heuristic use,
System 1 processing is much faster, automatic, and intuitive
compared to more drawn-out processing, or System 2. System 2
processing involves deliberate, thought-out, and analytic judge-
ments, allowing for abstract and hypothetical thinking. System 2 is
more computationally demanding than System 1, attempting to
arrive at optimal solutions by analyzing available information, and is
reserved for situations that cannot be resolved with System 1
processing.

A default-interventionist model of dual processing (Evans &
Stanovich, 2013; Kahneman & Frederick, 2002) suggests decision
making uses System 1 as a default, and System 2 is deployed only
when it is sufficiently cued and available (Damnjanović et al., 2019;
Evans, 2010b). Both systems can possess conscious and uncon-
scious aspects of cognition (Evans, 2010a).

If System 2 is not sufficiently cued, then decision making relies on
heuristics. Gigerenzer (2002) suggested that these heuristics form
part of an adaptive toolbox, allowing for rational decisions within
the constraints of the available information (bounded rationality).
Importantly, a core aspect of the adaptive toolbox is that heuristics
can be considered ecologically rational if they benefit decision
making within specific contexts (Gigerenzer, 2015). When
heuristics fail to provide good choices, it is not strictly the cognitive
mechanism itself, but rather its poor fit to the decision context
(Gigerenzer & Todd, 1999; Kahneman et al., 1974). This is relevant
to writing secure code, as it has been suggested previously that
heuristics do not provide rational decisions in these contexts
resulting in biased decision making (Oliveira et al., 2018).

Biases can be defined as systematic, flawed response patterns that
deviate from expected normative performance (Evans, 1984). Not
all heuristics invoke biases and poor decisions, but in certain
instances, they can result in nonoptimal decisions. One example of a
context where heuristics become biases is software security. In daily
life, we possess no security heuristic, and by extension, no heuristic
exists for secure coding (Oliveira et al., 2014). Oliveira et al. primed
developers for security which increased their sensitivity to software
vulnerabilities, dual-processing theory would frame this as priming
that triggers System 2 processing. Previous work following the
claim that software security is heavily impacted by biased thinking
has examined links between general cognition and secure coding
(Brun et al., 2022; Oliveira et al., 2018), whereas we build upon this

2 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH136

claim by using widely deployed measures of thinking and dual
processing to examine the individual differences.
Previous research suggests security prompting can increase code

quality (Hallett et al., 2021), specific vulnerability identification
(Spadini et al., 2020), and code comprehension (Danilova et al.,
2021). Moreover, System 1 processing can be suppressed in favor of
System 2 through prompting, either overtly through verbal/written
requests (Evans & Stanovich, 2013; Pennycook et al., 2020), or
implicitly through metacognitive prompts (Alter et al., 2007; Alter
& Oppenheimer, 2008).
So how can we measure the disposition toward types of thinking

and biases? We review evidence that cognitive reflection examines
the activation of the processing systems, prospect theory measures
risk seeking behaviors, and optimism bias is a proxy for intuitive
processing.

Cognitive Reflection

Cognitive reflection is the ability to reflect upon a question before
answering and inhibiting the immediate response and is most
commonly measured using a form of the Cognitive Reflection Test
(CRT; Frederick, 2005). In this article, we take the position that CRT
is a useful measure of an individual’s propensity to activate System
2 processing in response to a question requiring more deliberate
thought, and by virtue of engaging system 2, is also a measure of
System 1 suppression (Frederick, 2005).
Specifically, the CRT has been widely deployed as a measure of

System 2 engagement, through the suppression of System 1. The
CRT presents questions with intuitive, yet incorrect answers and one
must reflect on the question to respond correctly. An example of a
CRT question is, “A bat and a ball cost $1.10 in total. The bat costs
$1.00 more than the ball. How much does the ball cost?”1 The
intuitive and incorrect response is the most common answer
(Frederick, 2005; Sinayev & Peters, 2015), implying that indeed
System 1 thinking is a default mechanism.
CRT has been informative for illuminating decision making in the

workplace. Teachers in higher education demonstrated higher CRT
being associated with teaching more technology-related materials
(Janssen et al., 2019), implying educators with higher reflective
thinking are more suited to teaching fields that require high levels of
logical thinking (such as information technology). In terms of teaching
experience, CRT was associated with increased rationality and greater
consideration of future events (Čavojová & Jurkovič, 2017).
To our knowledge, there is no empirical work investigating CRT

and software development, however, CRT has been linked with
predicting susceptibility to detecting phishing emails (Jones et al.,
2019), loss aversion (Frederick, 2005), and forecasting (Moritz
et al., 2014).

Optimism Bias

Bias susceptibility can be used as a proxy to capture the strength
of System 1 processing. Unrealistic optimism is a bias where
individuals perceive themselves to be less likely to experience
negative events compared to others (Sharot, 2011;Weinstein, 1980).
People typically exhibit a persistent bias regarding future events, in
that they overestimate the likelihood they will experience positive
events and underestimate the chances of experiencing negative ones.
This bias covers a broad range of events, from life events such as car

accidents to more mundane events, such as estimating the time
required to complete a project (Cappos et al., 2014).

For cybersecurity, users have been found to underestimate their
risk online, increasing their vulnerability cybersecurity attacks
(West, 2008; Wiederhold, 2014). In a thematic analysis of the same
data presented in this article, engineers reported negative events as
being damaging to their identity as an engineer (Ivory et al., 2023),
indicating that for some, they associate the potential of software
vulnerabilities in one’s code as being a negative event. As such, a
logical assumption would be that software developers are also
susceptible to optimistic outlooks toward their work, and under-
estimating the likelihood of negative events, such as vulnerabilities
in their code (as a potential marker of low-quality work).

Optimism in the software development domain has been
previously investigated using professionals, with software engineers
being worse at estimating time management than those in
nontechnical roles (Mølokken & Jørgensen, 2005). Both software
engineers and executives experience difficulties in making security-
related decisions, demonstrating overconfidence in their software
security (Loske et al., 2013). We extend the understanding of
optimism bias in a security-specific context by relating this to the
language used around software security.

Risk Aversion

Risk aversion can be linked to prospect theory, which suggests
decisions maximize gains and minimize losses (Kahneman &
Tversky, 1979). People experience negativity from a loss more
strongly than positivity from gains. Accordingly, people typically
make choices that minimize loss over maximizing gain (Levy, 1992).

Frederick (2005) reported an association with prospect theory and
CRT, showing higher CRT scores accompanied increased risk
aversion to losses (i.e., an increased willingness to accept a sure loss
than to risk a greater loss). Frederick also showed people make
riskier decisions when facing potential gains (willing to risk greater
gains than accept sure gains). This supports the idea risk aversion is
influenced by heuristics and cognitive biases. Risk aversion has
wider generalizability toward, for example, general decision making
under risk (Abdellaoui et al., 2007).

Kina et al. (2016) examined software engineer tool adoption
practices and found that when new tools are not guaranteed to
maximize profit and contain risks, engineers are more risk averse and
instead rely upon the known familiarity of familiar tools. This
suggests a certainty effect, or bias in play. When examining factors
that shape software project decisions, loss magnitude was considered
a more significant factor than loss likelihood, highlighting the
relevance of choice value (Keil et al., 2000). By measuring risk
aversion as a function of risk sensitivity in language used when
talking about security, we can examine how security is framed and
how the framing manifests in the language used.

Motivations

There have been calls for more psychological research within
computing and software security (Acar et al., 2016; Capretz &
Ahmed, 2018), with greater appreciation of the individual involved,
and the heterogeneity of behaviors relevant to development roles.

1 The intuitive response is 10 cents, but the correct answer is 5 cents.

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 3137

The present research answers these calls by exploring the role of
individual cognition and its effect on security perceptions. We
address this by investigating the cognitive differences seen in risk
sensitivity when talking about security in software. Within software
engineering, the role of biases and heuristics has been acknowledged
(Chattopadhyay et al., 2020; Petre, 2022), as well as in a systematic
review, while noting that research has yet to fully characterize and
describe their impact (Mohanani et al., 2020). Psychology is well
positioned to respond to this gap through empirical research.
Through cognitive measures and the analysis of individual
differences, we can apply dual processing theory to better
understand how this ultimately explains perceptions of security
within software development.
Two different populations were included in our sample, freelance

developers, and computer science students, as they represent two
different timepoints in the software engineer lifecycle. Students
represent early stage, less experienced engineers, and freelancers
represent those who have experience from prior projects. The
motivation for using both populations is to better understand how
security perceptions and risk sensitivity may change (or not change)
over the lifecycle of engineers. Increasing awareness of the
cognitive features that underpin security perceptions in software
across the engineer lifecycle, we are better placed to provide
interventions at the most effective points. If risk sensitivity is similar
across both populations, then intervening as early as possible may be
the solution, whereas if a difference is seen, indicating an event or
events altering risk sensitivity, then interventions should look to
address these events.
This article is part of a larger project (Ivory, 2022) that examines

both cognitive links and risk perception, alongside social identity,
and responsibility within software development. The project
comprises two independent, self-contained components, with the
complementary package focusing on a thematic analysis of
responsibility and risk acceptance (Ivory et al., 2023). The overall
project information and data can be found at https://doi.org/10
.17605/OSF.IO/P6DY5.

Hypotheses

Three hypotheses were created to direct this research:

Hypothesis 1: Higher risk aversion scores will be associated
with increased awareness and sensitivity to risk in language
describing professional work related to software development.
Lower risk aversion (higher risk attraction) will be associated
with less awareness and sensitivity to risk in language
describing professional work.

Hypothesis 2: Higher cognitive reflection test scores will be
associated with increased awareness and sensitivity to risk in
language describing professional work. Lower cognitive reflec-
tion (higher risk attraction) will be associated with less awareness
and sensitivity to risk in language describing professional work.

Hypothesis 3:Mean scores closer to zero on the novel OWASP2

risk task will be found with higher scores of cognitive
reflection. Scores of zero are expected to represent a realistic,
unclouded view of risk which should align with more reflective
thinking styles.

Methodology

Participants

As per the preregistration, we required a minimum sample of 122
participants, 61 from each population to meet a desired power level
of 80%. A sample of 150 were sought to account for low-quality
responses. We recruited 149 participants and excluded data from
eight participants; four failed over 50% of attention checks, one
preferred not to provide gender information (one observation would
not be appropriate to use in analysis to make meaningful
implications), and three provided responses of less than 20 words
to the questions. Our data corpus thus comprises 141 participants
(“software engineers”), 69 of whom were professional freelance
software (six females and 63 males) developers and 72 were
computer science (CS) students (31 female and 41 male).

All research involved in this project was approved by the
University Faculty Ethics committee. Participants provided informed
consent before commencing with the research study.

We recruited developers using the freelance website, https://www
.upwork.com/. We uploaded an advertisement (available on OSF;
https://doi.org/10.17605/OSF.IO/P6DY5) asking participants to
complete a study about their understanding of security in software
development. We specified that participants should be currently
working in software development, have experience writing secure
code and have been involved in noneducation-based software
projects. We compensated freelance developers at rate of £10/hr.
The student sample was collected from two sources, using internal
university mailing lists and the recruitment website, Prolific. We
compensated CS students at a rate of £8.50/hr.

Age details can be found in Table 1. Due to data collection issues,
nationality data for developers are unavailable, which was substituted
with country-level location. Figure 1 shows an approximation of
participant location and nationality by presenting continental-level
data. Most people do not emigrate from their origin country, with
around one in 30 migrating internationally (McAuliffe &
Triandafyllidou, 2021). Representing both nationality and location
together approximates both data types on a continental scale.
Ethnicity and socioeconomic status were not collected in the study
design and cannot be reported or discussed.

Materials

Participants completed the study through the online surveying
software Qualtrics. The survey (in study presentation order) included
demographic information, an OpenWebApplication Security Project
(OWASP) vulnerability task (OVT), four open-text response
questions focused on risk awareness, aversion, and mitigation in

Table 1
Reported Ages of Participants Included in the Analysis

Age Developer Student

18–24 28 42
25–34 34 20
35–44 6 8
45–54 1 2

2 See section OWASP Vulnerability Task for further details.

4 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH138

software development, a gambling task and two versions of CRTs
(Frederick, 2005; Thomson & Oppenheimer, 2016).

OWASP Vulnerability Task

The OVT is designed to measure unrealistic optimism in software
security by leveraging familiar concepts, such as well-known
vulnerabilities that are well established and consistently highlighted
year-on-year. It can be expected that software engineers will perceive
including vulnerabilities in their own code as a more negative event
than vulnerabilities created by other developers. The OVT builds
upon the finding that individuals tend to underestimate the likelihood
of negative events affecting them (Sharot, 2011; Weinstein, 1980).
While previous cybersecurity research has focused on users and their
optimism (West, 2008;Wiederhold, 2014), we devised ameasure that
is specific for software developers who engage in secure coding. The
OVT is a measure of comparative optimism between an individual’s
estimation of their own likelihood of including security vulnerabilities
compared to an average developer.
The measure uses the 2021 top five vulnerabilities: Injection flaws,

Broken Authentication, Sensitive Data Exposure, XML External
Entity flaws, and BrokenAccess Control.3 The top five vulnerabilities
were used as opposed to the full list of 10 as less experienced
developers are more likely to be familiar with these vulnerabilities.
The OVT consists of two parts, separated by a secondary task, and

presented in a randomized order to reduce recall effects. The first asks
participants to estimate the percentage likelihood of a specific
vulnerability existing in web applications released by the “average
developer.” The second part asks respondents the likelihood of
themselves introducing these vulnerabilities into their own code.
Similar measures have been used previously, asking participants for
twomeasures of success, with the first being about personal confidence
in correctly answering a question, followed by a second asking about
the percentage of other people who would answer correctly (De Neys
et al., 2013; Frederick, 2005; Hoover & Healy, 2019).

Perceptions of Software Security

The qualitative questions consisted of four items asking
participants about their experiences, thoughts, and opinions on
security within software development. Participants had the option to
write answers or record audio responses using Phonic (https://www
.phonic.ai). Participants were asked to write for at least 4 min or speak
for 2 min per question. The questions asked are shown in Table 2.

Risk Aversion

The gambling exercise replicated that used by Frederick (2005).
Thirteen questions sought preference between two options of
gaining or losing money. Eight questions contrasted gain scenarios
(“Gain £100 for sure or a 90% chance of £500”), and five contrasted
loss scenarios (“Lose £50 for sure or a 10% chance to lose £800”).
All questions were presented in a randomized order.

Cognitive Reflection

We employed two CRTs. The original CRT (Frederick, 2005),
and the CRT-2 (Thomson & Oppenheimer, 2016), an alternate
version designed both to reduce the numerical nature of the
questions and address floor effects. We reworded question texts,
altering names and values to mitigate attempts to answer questions
through an online search for a matching string. The core principle of
each question was not modified. An example is changing the word
“bat” and “ball” for “article clip” and “elastic band,” respectively.
We checked whether participants had seen or answered CRT
questions before, although previous research (Białek & Pennycook,
2018; Stagnaro et al., 2018) suggests scores are stable across repeat
exposure. We recorded response times to the CRT questions and

Figure 1
Map Displaying Approximated Location/Nationality Data of Participants on a Continent Level

Note. This approximates location and nationality of each participant due to expected immigration movement. “Participant
Distribution” by Matthew Ivory, licensed under CC BY 4.0 from https://doi.org/10.17605/OSF.IO/P6DY5.

3 Definitions can be found on the OWASP top ten list—https://owasp.org/
www-project-top-ten/.

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 5139

instructed participants to complete the CRT questions as fast as
possible to reduce internet searching.

Procedure

Participants were presented through Qualtrics with an informa-
tion sheet that described aims and intentions, following which they
gave their informed consent. Participants then answered demo-
graphic questions, completed the first OVT for the average software
engineers, split by the qualitative questions, then completed the
second OVT. This was followed by the gambling task and the CRT
measures. Finally, participants were presented with a debrief sheet

that provided further information, references, and contact details for
the researchers. The survey flow is shown in Figure 2.

Research Design

The study comprises a between-participants observational survey
design grouped by a two-level factor of population (freelancer vs.
student). Data from two independent populations were collected
and contrasted. Data validity can be seen in the OSF repository
additional online materials.

Data Operationalization

Question responses were operationalized through content
analysis. As participants had been asked to write for at least 4
min or speak for 2 min per question, we did not expect short
responses. The average response wordcount for developers were on
average 81.09 words long (SD = 61.71), and the students’ responses
were longer at 94.38 words (SD = 38.38). As a preregistration
deviation, we removed responses of 20 word or less (forming a
proxy of low quality) as they were less than one standard deviation
from the average response (for developers). Of the short responses,
38 were removed in total, from 22 participants. Two participants
(both freelancers) had all responses removed, two participants had
three responses omitted, six had two responses removed, and 12
participants had only one response removed.

Responses were unnested into single words, words that appeared
five or fewer times were removed, remaining words were stemmed
to their shortest form (e.g., “secured” and “secure” were stemmed to
“secur”). Stopwords (“and,” “because,” “though”) were removed to
reduce noise. Then using the Computer Science Academic Vocabulary
List (Roesler, 2020), words were tagged as computer science/software
relevant. The remaining words were manually tagged for topics of
uncertainty, software products, workplace specific language, finance,
geographic references, legal, and shallow skills. Following coding, all
taggedwordswere reviewed for appropriateness, and discussed among
the research team. Two independent researchers were given a sample
of all the retained words and asked to categorize them using the
finalized tags, resulting in 20% of all words being reviewed
independently (each researcher reviewing 10%).

Interrater reliability was initially assessed through Cohen’s κ
(Cohen, 1960). Yet, this measure does not perform well when
handling imbalances in the marginal distributions of confusion
matrices (Warrens, 2014). In the present case of assessing the
reliability of topic coding, the distributions are greatly skewed in

Table 2
Qualitative Questions Presented to Participants in the Order Listed

Number Question

1 Describe a time when you successfully developed and
released/launched a software project, either in a
professional or personal capacity. This could either be a
recent example, or perhaps a project you were
particularly proud/happy with. Please include
information concerning the purpose of the project and
how important security was during development.

2 When considering the process of developing and launching
software/web applications, what is at risk of potentially
going wrong and how could these risks affect you? You
should consider the size or the significance of the
potential factors that may go wrong and how this may
affect you (e.g., risk of functional failure, financial
losses, damage to reputation, etc.)

3 If you were to consider software development as a series of
‘gambles’ (decisions that confer possible risk), what
gambles would be considered worthwhile or worth a risk
during the process of developing software? Why? These
gambles may be considered from both an individual
perspective and as a team. Both decisions that you take
individually, or decisions that are enforced by policy,
should be considered.

4 What approaches or considerations, do you, or your team,
take when aiming to identify potential risks or security
vulnerabilities when developing software? What is the
reasoning behind these decisions? You should consider
the decisions and thought processes behind selecting
certain tools (such as static analysis tools), as well as
identifying specific tools.

Note. Participants were asked to respond to these with either a written
response or to record an audio response. Participants were requested to
write for at least 4 min or speak for 2 min per question.

Figure 2
Survey Flow Representing the Presentation Order of Measures Given to Participants

Note. All participants received the same order of measures with randomization within the measures (detailed in
text where appropriate). OVT = Open Web Application Security Project vulnerability task; CRT = Cognitive
Reflection Test.

6 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH140

favor of negative ratings from researchers, Consequently, small
deviations from the positive-positive ratings greatly affect the value
of Cohen’s κ. Since percentage of raw agreement is not reliant on
marginal distributions (von Eye & von Eye, 2008) we use this as a
preferred and complementary measure of interrater reliability.
To calculate κ and percentage agreements, confusion matrices

were constructed with the primary researcher’s ratings against the
combined ratings of the secondary researchers. As the secondary
researchers rated separate sections of the data, there was no
overlap between the words and so were combined. From this the
percentage of both parties identifying a word belonging to a topic
or not provided the interrater reliability. We report the raw
percentage agreements in Table 3 as it provides a coarse-grade
assessment of potential bias, and we provide the data and the
analysis code in the online repository at https://doi.org/10.17605/
OSF.IO/SJ8BT (Ivory et al., 2022), providing full transparency of
data reliability.
Following the reliability assessment, proportional variables were

then calculated through topic occurrence divided by word count,
creating the variable “proportion of uncertainty-related language”
(PURL), as well as proportion of computer science language. This
resulted in a value of topic proportion for each question per
participant.

Data Transformations

We used data transformations to prepare variables for suitable
analysis. We scaled continuous variables, CRT, OVT, Gambling
scores, PURL, and proportion of computer science language between
0 and 1. We transformed variables with substantially nonnormal
distributions to improve normality (see Table 4): OVT scores and
PURL scores (with values of zero removed—see the Analytic
Strategy section). These transformations are a deviation from our
preregistration, and for transparency, additional online materials are
available at https://doi.org/10.17605/OSF.IO/SJ8BT that detail the
reasons for requiring these transformations. In short, models that used
the untransformed data suffered violations of model assumptions and
were less effective than models that used the transformed data.

Analysis

Analysis was conducted in R (Version 4.1.0). Data, analysis
scripts, and instructions for reproducing the results seen in this
article can be found in the OSF repository here at https://doi.org/10
.17605/OSF.IO/SJ8BT.

Analytic Strategy

To address hypotheses one and two, a two-step model was
employed due to the zero-inflated nature of PURL induced through a
floor effect (i.e., not all responses used language around uncertainty).
The first step was a logistic mixed-effect regression model to
determine the existence of uncertainty-related language based on
other variables. The second step was a linear mixed-effect regression
model to understand the impact of cognition on PURL. For
addressing Hypothesis 3, a linear model was built to compare
vulnerability scores by cognitive reflection.

Mixed-effect models were used as these handle nested data
appropriately. As each participant provided four different text
responses, it is important to treat these as independent to each other,
but dependent on the participant. This allows for greater model fit,
and accounts for participant-level variation in PURL as well as at the
question level.

Results

Addressing Hypotheses 1 and 2: Individual
Differences in Risk and Reflection in Software

To test Hypotheses 1 (that generalizable risk perspectives increase
risk sensitivity) and 2 (that generalizable reflective decision-making
increases risk sensitivity), a two-step or hurdle model, was developed
to first identify the presence of uncertainty-related language, followed
by the second model for determining PURL, including risk aversion
(as operationalized through gambling task scores), and cognitive
reflection (operationalized through CRT scores). Hypothesis 1 is
assessed through the inclusion of the loss aversion scores in ensuing
models, and Hypothesis 2 is assessed through the inclusion of CRT
terms in the models.

In the two-step model, the first model represents a hurdle to be
passed, which determines whether uncertainty is reflected in the text.
If uncertainty is present and the hurdle is “cleared,” the second

Table 3
The Raw Percentage Agreement Between the Primary Researcher
and the Two Researchers Who Completed the Validation Task

Topic Agreement

Risk .87
Product .88
Workplace .86
Finance .91
Geographic .97
Legal .91
Shallow skills .94

Note. The two researchers both completed a separate 10% of the words
available and so were combined allowing for the creation of Cohen’s κ
between the primary researcher and the two researchers combined.
Agreement is calculated through the confusion matrix and is the sum of
both the primary and secondary researchers rating a word as true or false,
divided by the sum total of words.

Table 4
Transformation of Optimism Task and PURL Scores Toward a
Normal Distribution

Measure
Transform
power

Shapiro–Wilks p value

Original Updated Original Updated

OVT 1.425 .96 .98 .006 .036
PURL .05 .75 .99 <.001 .013

Note. Transform power is the optimal value identified through the
Shapiro–Wilks test provided through using Tukey ladder of powers. The
ladder applies a range of power transformations and reassesses the data for
heteroscedasticity. The values listed under the Shapiro–Wilks section
reflect the value before and after transformation, and the p value columns
show the pre- and postvalues from the Shapiro–Wilks test. OVT = Open
Web Application Security Project vulnerability task; PURL = proportion
of uncertainty-related language.

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 7141

model provides predictive power for PURL in the zero-truncated
data. Exploratory results that were not preregistered are included in
the additional online materials found on OSF.

Step 1

The first step was a binary mixed-effect logistic regression model
to identify the presence of uncertainty-related language. Not all
sentences written by participants included uncertainty, and so PURL
distribution was zero-dominated. This model presents the first
hurdle, and if the threshold of zero language is crossed, then data are
subject to the second step.
This model was developed using a forward-step approach starting

with the null model to model the existence of uncertainty language
within responses. For model refinement, outliers were identified
using Cook’s distance, which measures the influence specific
datapoints have over the model fit. Items with a value three times
greater than the mean of all the distances were flagged and removed.
The final model, with coefficients seen in Table 5, had an Akaike
information criterion of 2515.00, explained variance of R2

conditional =
.23 and correct classification of 68.13% of data.

Step 2

The second step focused on data containing PURL. This enabled a
mixed-effects linear regression model for predicting the amount of
PURL in a response. The dependent variable, PURL was zero-
truncated, assessed for normality, and transformed toward a more
normal distribution. Figure 3 shows the zero-truncated distribution,
and the subsequent transformed distribution. The nontransformed
zero-truncated data’s Shapiro–Wilks value = .75, p < .001, and the
transformed data,W = .99, p = .013. While still nonnormal, it is less
right-skewed than the untransformed data. Appendix provides
examples of how PURL manifested in responses.
Model building began with the null model with terms added

sequentially. A mixed-effect model was chosen due to the data’s
nested structure. Each independent datapoint indicated a sentence

nested within a response, which were nested under participants. For
this, a random intercept of participant was included, with a random
slope of question to allow for individual differences in language use.

Hat values were used to identify high leverage points, which are
datapoints that measure the distance from the observed and fitted
values, higher values indicate higher leverage, and we examined
values two times greater than the mean hat value. Little relationship
was seen, and removal provided negligible effect on the model.
Removing influential outliers through Cook’s distance had little
effect on the model and so all items were retained.

The final model can be seen in Table 6 and reports an R2
conditional of

.66. The absence of risk aversion scores in the final model indicates

Table 5
Model Coefficients of the Terms Used in the Modelling of the
Presence of Uncertainty-Related Language

Term β Significance

Intercept −1.35 ***
CS prop 8.39 ***
Question 2 1.91 ***
Question 3 1.84 ***
Question 4 0.96 ***
Question 2: CSprop −5.36 **
Question 3: CSprop −2.6
Question 4: CSprop −0.35
(1|participant)

Note. The beta value reflects the model coefficient and is given alongside
the significance of the term in the model. The terms relating to Questions
2, 3, and 4 are present through the inclusion of a categorical term of
question, this is included as the questions ask about different ideas, and
likely vary in frequency of PURL language. That is, the terms Questions
2, 3, and 4 represent the variability in the presence of these different
questions. The intercept represents the first question, and so the question
terms are interpreted in comparison to the first question, the model tells us
that for Questions 2, 3, and 4, their beta values are positive compared to
the first question indicating a higher likelihood of the presence of
uncertainty-related language. PURL = proportion of uncertainty-related
language; CSprop = proportion of Computer Science-related language.
*p < .05. **p < .01. ***p < .001.

Figure 3
Distribution of the PURL Scores Before and After Transformation Toward a Normal Distribution

Note. The contrasting plots provide a visualization of the difference in distribution made from the
transformations. PURL = proportion of uncertainty-related language.

8 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH142

no support for Hypothesis 1, and the inclusion of both a CRT term
and CRT interaction with optimism supports Hypothesis 2. The
model effects are shown in Figure 4, which shows predicted PURL
levels for varying strengths of optimism bias. The figure shows a
distinct interaction between the optimism bias when measured
alongside cognitive reflection. The three levels of OVT presented
(low, neutral, and high) serve solely as a visualization aid and not
actual groupings made in the analysis. When cognitive reflection
was low, PURL was also low, however, as the more optimistic

participants increased in their reflection, they spoke more to
uncertainty when discussing software. Those displaying an average,
or pessimistic view on vulnerability, tended to speak more about
uncertainty intuitively, but cognitive reflection suppressed this
language, and in extreme pessimism suppressed language to similar
levels of the overly optimistic and intuitive.

Addressing Hypothesis 3

To test for the effects of optimism bias in software development,
first a simple linear regression compared OVT scores between
students (M = 16.72) and developers (M = 18.10) which was found
to be nonsignificant, F(1, 139) = .12, p = .727, R2

adjusted = −.01. To
test whether software engineers demonstrate a general optimism
bias to vulnerability inclusions, a one-sample t test was conducted
against a true mean of 0. It was found that the mean score calculated
across both developers and CS students, 17.40, 95% CI [13.51,
21.28], was significantly different from an average of zero, t(140) =
8.86, p < .001.

To test Hypothesis 3, a linear regression model was used to predict
OVT scores using both CRT measures. A series of models were built
to identify the most parsimonious model using Akaike information
criterion as the suitability criterion. No model was constructed that
provided a significantly better fit than the null model, indicating no
strong relationship between OVT scores and cognitive reflection
scores. Consequently, we do not reject Hypothesis 3’s null hypothesis
that there is no relationship between OVT scores and CRT.

Discussion

We asked whether domain-general, psychological measures of
cognitive reflection, risk aversion, alongside optimism bias for
security vulnerabilities would predict how software engineers talk
about risk perception when discussing their software security.
Using data collected from freelance software developers and CS
students, we analyzed PURL through a mixed-effects hurdle model,
The key finding was an interaction between cognitive reflection
and unrealistic optimism for PURL. Also, engineers were typically
overly = optimistic about personal susceptibility toward security
vulnerabilities. Meanwhile, risk aversion was not a strong indicator
of PURL, nor did we find a systematic relationship between
cognitive reflection and optimism.

Answering the Call for Increased Psychology in
Software Engineering Research

This article answers calls for increased psychology-based
research in software development (Acar et al., 2016; Capretz &
Ahmed, 2018) by showing that software engineers are subject to the
same cognitive constraints as nonengineers. The language used by
engineers talking about secure coding can be usefully framed with
respect to dual-processing theory.

Additionally, a systematic review (Mohanani et al., 2020) within
software engineering points toward the breadth of biases affecting
software (Fagerholm et al., 2022; Ralph, 2011). Our quantitative, data-
driven study extends the understanding of heuristics and biases for
secure software.Moreover, the present study underscores the potential
for different cognitive constructs to interact in the software domain,
revealing the complexity of how heuristics can shape software risk.

Table 6
Chosen Model for the Second Step Model Using Zero-Truncated
PURL as a Dependent Variable

Term β Variance Significance

Intercept 0.91 ***
CRT −0.04 **
OVT −0.04 *
CRT × OVT 0.07 *
Question 2 0.01 ***
Question 3 0.01 ***
Question 4 0.02 ***
Random (Question 1) .0006
Random (Question 2) .0006
Random (Question 3) .0006
Random (Question 4) .0006

Note. The terms listed are those present in the model for determining PURL
in responses, with coefficient values listed in the beta column, along with
confidence intervals in the CI column. The variance for the random effects is
given providing a value for how much variation these terms provide and
finally, the significance of each term for the model is given. The terms relating
to the Questions 2, 3, and 4 are present through the inclusion of a categorical
term of question, this is included as the questions ask about different ideas, and
likely vary in frequency of PURL language. OVT = Open Web Application
Security Project vulnerability task; PURL = proportion of uncertainty-related
language; CRT = Cognitive Reflection Test; CI = confidence interval.
*p < .05. **p < .01. ***p < .001.

Figure 4
Interaction Plot Between CRT Score (the Propensity for Reflective
Thinking) OVT Score (Optimism Bias) and Model Predicted Values

Note. To provide easier interpretation of the interaction, the plot presents
three “groups”—of low, neutral, and high OVT scores. In reality, this
grouping does not exist and is a continuum, but the grouping represents the
extremes effectively. OVT = Open Web Application Security Project
vulnerability task; PURL = proportion of uncertainty-related language;
CRT = Cognitive Reflection Test.

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 9143

Risk Aversion

Prospect theory proposes that people are more sensitive to losses
over gains (Frederick, 2005; Kahneman & Tversky, 1979). As a
group, software engineers show this asymmetry too, yet we did not
find evidence to support Hypothesis 1 that greater risk aversion
would associate with greater risk sensitivity in language. There are
two interpretations we present that may explain this finding.
One interpretation is that engineers do not systematically frame

security decisions in terms of gains or losses. Software security is
often made up of smaller, independent decisions, each with their
own framing and outcome value. Typically, software engineers
perceive security as a barrier (Lopez et al., 2022), or lower priority
than functionality (Lopez, Sharp, et al., 2019), but this may not
translate well into mental models of software, meaning that security
is poorly considered in terms of risk aversion. It could also be
interpreted that risk aversion is unrelated to risk taking behavior as
there are other factors that determine the behavior. In economic
research, it is seen that low risk aversion can lead to riskier trading
decisions (Hoffmann et al., 2015), which contrasts with our
expected findings. Further research and a better understanding of the
link between software developers’ language and risk behavior is
warranted to better understand this finding.

Cognitive Reflection

The lack of evidence for a direct relationship between CRT and
risk sensitivity might reflect (a) the study design, (b) the lack of
sensitivity of CRT to capture relevant individual differences, or (c) a
more complex relationship than a bivariate link. We believe the
evidence points to (c) because we obtained an interaction between
CRT and optimism for risk sensitivity. Moreover, this interaction
negates the likelihood that (a) or (b) are wholly satisfactory.
The implication is that the specific simple and direct relationship

between cognitive reflection and uncertainty language is weak, and a
software engineer’s ability to reflect on decisions does not manifest
in the language used concerning security. Fine-tuning either—or
both—of these constructs might enable stronger evidence to emerge
of their link. However, we did find an indirect relationship between
CRT cognitive reflection and risk sensitivity in language, one that
supports the broad thrust of the initial prediction.

Optimism

Experienced freelancers and CS students collectively demon-
strated a significantly greater optimistic belief in their own secure
coding behaviors (see Rhee et al., 2012; Weinstein, 1980) with
no noticeable differences between the populations. Measuring
unrealistic optimism can serve as a proxy of System 1 processing,
as the presence of one bias indicates an increased likelihood of
other biases being present too (Ralph, 2011). Insofar as both
developers and CS students reported similar levels of optimism, the
present research supports the findings of Oliveira et al. (2018) and
Brun et al. (2022) that experience does not reduce susceptibility in
biases in vulnerability detection.
Observing optimism bias in both new and experienced software

engineers reinforces our conclusion that this is an intuitive, instinctive
perception. It is neither simply a naïve aspiration nor a survivor bias.

Interaction: Cognitive Reflection and Optimism

The second step in the hurdle model focused on relationships
between cognition and risk sensitivity. The key finding was an
interaction between cognitive reflection and optimism that provided
predictive power for uncertainty-related language. Those who
displayed high optimism spoke less frequently about uncertainty,
but as cognitive reflection increased, so did uncertainty. Conversely,
pessimistic software engineers frequently mentioned uncertainty,
but decreased in uncertainty as cognitive reflection increased. In
other words, the way that engineers talk about uncertainty and
security is dependent on multiple facets of cognition. This provides
some support for Hypothesis 2 but not in its entirety.

The finding that cognitive reflection or optimism alone explain
very little variance in security perceptions highlights the entangled
nature of cognition in the real-world. Despite cognitive reflection
and optimism being two clearly defined measures of cognition
within the psychological literature, in data collected from a complex
domain, we see that these aspects of cognition are linked and cannot
be considered totally modular.

Those naturally optimistic about security, and who deploy
System 1 thinking, are less likely to discuss uncertainty—perhaps
because it is not seen as an issue. Indeed, Assal and Chiasson (2018)
found that overly optimistic software engineers view additional
security implementation as holding minimal value, as they believe
their current level of security to be sufficient. When considering
security, therefore, they may require stronger cues or framing to
activate System 2 when making security decisions. Meanwhile,
those naturally pessimistic about security, talked more about
uncertainty and here System 2 thinking is associated with increased
uncertainty (Siegrist et al., 2005).

Reduced self-confidence may mean engineers feel overwhelmed
when presented with security decisions, which is not helped by a
lack of documentation supporting their choices (Acar et al., 2017) or
lone working environments (van der Linden et al., 2020). By
activating System 2 processing and thinking critically about security
decisions, the naturally pessimistic may find increased confidence
in their abilities to code securely. One catalyst for System 2 thinking
during secure decision making might be peer communication
(Shreeve et al., 2022), which allows for the balancing of
perspectives and a reduction of biases. Both examples of the
naturally optimistic and pessimistic aligns with the dual-processing
theory (Evans, 2003), suggesting that software engineers who can
easily activate System 2 processing will experience reduced biased
judgment during secure decision making.

A practical ramification of this interaction is that discussions
within development teams may help to improve security decisions.
While developers working alone do not have access to such support,
engagement with interactive websites—such as Stack Overflow—
can provide a digital community to engage with (Lopez, Tun, et al.,
2019) beyond a simple question-and-answer format. Encouraging
developers to interact even asynchronously can potentially provide a
community that motivates more reflective thinking. Developing an
understanding of how social identity affects these communities and
increases engagement between peers can help on this front.

Rewarding Secure Behaviors

Our findings have implications for how software engineer
freelancers (as the focus of this research) are rewarded for practicing

10 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH144

secure coding. The implications are also relevant for engineers
working in more permanent roles within a company. Rewards can be
used as an incentive to encourage certain behaviors and reduce
unwanted ones. Rewards can be intrinsic or extrinsic; intrinsic
rewards are those internal to the individual and are inherently found
in the task itself and upon completion, and extrinsic rewards are
external to the task, such as pay or recognition (Ajila & Abiola,
2004).
Intrinsic rewards can boost task performance with motivation also

playing a mediating role (Manzoor et al., 2021). Intrinsic rewards
can stem from expressions of appreciations by senior employees
or promotions based on work quality, and so in nonfreelance
engineering roles, this is easily managed by ensuring that employees
are recognized for their secure coding practices. Motivation for
accuracy or quality can lead to a greater expenditure of cognitive
effort (Kunda, 1990), and these motivations can be achieved through
an expectation to defend or explain one’s decisions (Tetlock &
Kim, 1987).
Extrinsic rewards are not as straightforward for freelance engineers

as they can be for contracted engineers, as the companies may be less
inclined to provide incentives for secure code if they do not see
freelancers as part of the company. One way to provide an extrinsic
reward is through the recruitment platforms that they use. If
freelancers can be publicly recognized for their secure coding
practices in the previous work, this may be seen as a potential reward
for quality work as it boosts their profile, increasing potential work
offers. The exact nature of verifying secure coding practices on
freelance platforms is beyond the scope of this article, but if a system
can be devised that is universally trusted and easily implementable,
then the use of gamification may work as a reward system.
Gamificationmethods have been shown to have long-term behavioral
effects (Hamari, 2017), but gamification should be done with caution
as not all findings support their efficacy (Barreto & França, 2021). If
badges are perceived by platform-users meaningful and trusted, these
may act as a reward system that can be used for freelancers.
The use of rewards, either intrinsic or extrinsic, for encouraging

secure coding behaviors can be used to increase motivation and
subsequently increase task performance. In a secure coding specific
context, by rewarding secure behaviors, this can be linked to greater
cognitive engagement, and through the dual-processing theory, lead
to reduced bias interference. In the interaction seen between
cognitive reflection and optimism, by increasing the likelihood of
engaged System 2 processing, clients, stakeholders, and employees
can focus on managing optimism rather than juggling two aspects of
cognition at a time.

A Comparison Between Professionals and Students

The finding that population was not a significant term in the
modeling process supports the assumptions of our key take-home
message, that the data offer credibility for using CS samples in
future research in place of professional developers.
The persistence of biases and similar approaches to uncertainty

around security implies these are general and widespread character-
istics, rather than something unique to students that is modified by
experience. This signals that psychological interventionsmay have an
effect across the software engineering domain, and not limited to
inexperienced or early stage developers. It also shows that individuals
who may be predisposed toward more intuitive, impulsive modes of

decision making are not impervious to learning, or seeking support
from their work environment to ensure that they make appropriate
choices at key points during projects.

Acknowledging that professional developer populations can be
harder to access, easier access to a population whose only significant
difference is experience provides momentum to further research
projects. CS students provide an alternative, cheaper, and easier way
to explore hypotheses before confirming findings in professional
developers.

Insofar as we proposed novel quantitative hypotheses that
addressed general psychological constructs, we have no specific
reason to expect that participant diversity (e.g., with respect to the
age, gender, and location) would affect performance. Moreover,
the profile of these variables broadly corresponds with those of the
community—most of our participants were aged 18 and 35 for both
groups, which aligns with the Stack Overflow 2022 (https://survey
.stackoverflow.co/2022) results that reported over 63% of respon-
dents were aged between 18 and 34. Similarly, the gender split
reported by our sample was 74% male compared to Stack
Overflow’s reported 92% male audience. This indicates either a
potential shift in the future gender split of software developers, with
more female developers currently learning to develop software, or it
reflects a potential gender split in survey response propensity with
more females choosing to participate in nonstandard freelance work
offers. The sample was globally distributed representing the global,
diverse nature of software development.

Reflecting on Heuristics

Our research is built upon the theoretical foundations of dual-
processing theory and heuristics. We define heuristics as “mental
shortcuts” that can be used in multiple scenarios to simplify and
speedup decisions (Beike & Sherman, 1994), but when heuristics do
not provide appropriate decisions for certain contexts, then they
become biases (Gigerenzer, 2015; Kahneman et al., 1974).

Two main schools of heuristics exist, both of which share
commonalities but deviate on other aspects. For a more comprehen-
sive discussion over the major differences, the reader is referred to
Hjeij and Vilks (2023) and Samuels et al. (2012). The first school of
thought is that proposed by Daniel Kahneman and Amos Tversky in
the 1970s (Kahneman et al., 1974), who posit that heuristics are
evolutionary mechanisms that use generalizations or rules-of-thumb
to reduce cognitive load. They suggest that while they help us make
quick decisions, they are often inaccurate. More importantly, we use
heuristics even when there is little guarantee they will produce a
correct answer. In short, Kahneman and Tversky suggest that human
decision making is largely irrational.

The second school is that of bounded rationality started by
Herbert Simon and continued by Gigerenzer (2015). One of the
main contributions is the adaptive toolbox which defines heuristics
as efficient processes which ignore information in favor of speed,
but with one significant difference, that these heuristics are often
ecologically rational and can provide answers that are nearly, or
as-good as optimized decision-making mechanisms. Part of
Gigerenzer’s toolbox was the concept of fast and frugal heuristics,
where less information is more (Gigerenzer, 2008).

The difference between the two schools can be distilled into a
difference in research focus. Kahneman and Tversky examined
the decisions that people make (Kahneman & Klein, 2009),

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 11145

whereas Gigerenzer examines cognitive mechanisms (Gigerenzer &
Gaissmaier, 2011). Both agree that if a heuristic is ill-fitted to
the context, then they are biased and can be considered irrational.
In our present research, we are examining the context of secure
coding, for which no heuristic has evolved to handle (Oliveira et al.,
2018), and so whether you subscribe primarily to Kahneman and
Tversky’s definition of heuristics, or Gigerenzer’s, both approaches
support the idea that in this context, intuitive, heuristic-based
decisions are likely to produce incorrect and irrational decisions.

Limitations

In this section, we draw attention to two domains of limitations:
internal validity in terms of sampling and statistics, and external
validity in terms of construct accuracy.
With respect to the former, we recognize that the work draws on

self-reports of risk. We knew that asking participants about their
experiences with developing software in the context of risk and
uncertainty might prime security. All participants completed the
same survey, and any priming effect would be across all participants.
A different issue is that some participants responded to question
prompts in a superficial or terse way. We asked respondents to write
for at least 4 min or speak for 2 min per each qualitative, text-
response question. Yet some responses were only three words long,
limiting data quality. Typically, when this occurred, it was across
all a participant’s text responses rather than specific questions.
Drawing on a freelance online marketplace, we may have recruited
participants who are focused on completing tasks quickly to
maximize their hourly pay. Our preregistered sampling strategy was
designed tomitigate data quality differences, proportions of language
were used to ensure a relative association between response length
and topic frequencies, and only responses longer than 20 words
were analyzed. Nonetheless, further work that elicits richer data
would be useful.
In the statistical (hurdle) model, the second step produced

increased residuals in predicting high PURL, due to scarcer
datapoints in the higher ranges. This could be a signal of a violation
to the underlying distribution, however, Schielzeth et al. (2020)
concluded mixed-effects models are relatively robust to such issues.
We suggest this remains an appropriate analytic device, while
welcoming any opportunity to complement these findings with
convergent statistical approaches.
To measure optimism, we used a novel, software developer

specific task, the OVT. The intention was to measure relative
optimismbetween an individual and the “average” developer. Official
statistics for the percentage of software applications suffering
from specific OWASP vulnerabilities do not exist and so an
absolute measure of optimism is unobtainable. By measuring relative
optimism, we elicit information on domain-specific security concepts.
The measure consists of two sections, one about personal risk and the
other of the average developer. This was presented to participants in a
fixed order which is like previous work using self-reported ratings of
confidence (De Neys et al., 2013; Frederick, 2005; Hoover & Healy,
2019). Simplicity was valued and took research precedence in this
regard, though of course it remains an open question as to whether
different responses could be obtained through alternating section
presentation. Note that a mixed order would have required additional
model analytic terms, potentially resulting in overfitting, as well as
reducing the analytic focus on the other cognitive measures.

Many studies have used CRT to understand individual differences
in cognition. The first of two recurrent concerns is the extent to
which performance is confounded by numerical ability, Although
CRT associates strongly with numeracy (Liberali et al., 2012;
Sinayev & Peters, 2015; Welsh et al., 2013), CRT responses have
been shown to measure more than numeracy alone, as people tend
to respond with a predictable intuitive and incorrect response
(Pennycook & Ross, 2016). A second concern is interpretive; the
attribution substitution hypothesis suggests that when using System
1 processing individuals unconsciously substitute complex deci-
sions with computationally simpler ones (Hoover & Healy, 2019,
2021; Kahneman & Frederick, 2002). For our purposes, however,
we simply note that showing the systematicity of the association
between CRT scores and software cognition is the key first step.
Disentangling the nuances of how conscious system switching or
question framing might affect conceptual interpretation—of specific
CRT questions—is left for more detailed enquiry.

Future Work

Our future researchwill extend beyond the research described here,
by leveraging preexisting paradigms (Brun et al., 2022) for measuring
blindspots within application programming interfaces. By using a
paradigm that reflects real-world scenarios, involving code reviews
with insecure elements, measures of developers’ actions can be taken
to associate with cognition. Previous work using this paradigm
has not fully explored the relationships with heuristics and dual-
processing theory which we anticipate being able to draw clear
connections between. This will further evidence the need to examine
software security through the lens of psychology to better understand
the effect of cognition and individual differences in secure software
development.

Conclusion

Understanding how software engineers talk about risk and
security in software is important as it provides insight into how they
approach software development. The main finding from this study is
that an interaction between cognitive reflection and optimism goes
someway to explain risk sensitivity in language used by engineers
when discussing software development, risk, and security. It was
also seen that software developers and CS do not differ significantly
in their approaches to security and risk. Additionally, software
developers and CS both exhibit optimistic perceptions on their
likelihood to include vulnerabilities in their own software. Future
research should expand upon this work by performing similar
measures alongside software development tasks.

References

Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under
prospect theory: A parameter-free measurement. Management Science,
53(10), 1659–1674. https://doi.org/10.1287/mnsc.1070.0711

Acar, Y., Fahl, S., & Mazurek, M. L. (2016). You are not your developer,
either: A research agenda for usable security and privacy research beyond
end users [Conference session]. IEEE Cybersecurity Development,
Boston, MA, United States. https://main.sec.uni-hannover.de/publications/
conf-secdev-acarfm16/

Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M. L., & Fahl, S.
(2017). Developers need support, too: A survey of security advice for

12 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH146

software developers [Conference session]. 2017 IEEE Cybersecurity
Development (SecDev), Cambridge, MA, United States. https://doi.org/10
.1109/SecDev.2017.17

Ajila, C., & Abiola, A. (2004). Influence of rewards on workers performance
in an organization. Journal of Social Sciences, 8(1), 7–12. https://doi.org/
10.1080/09718923.2004.11892397

Alter, A. L., & Oppenheimer, D. M. (2008). Effects of fluency on
psychological distance and mental construal (or why New York is a large
city, but New York is a civilized jungle). Psychological Science, 19(2),
161–167. https://doi.org/10.1111/j.1467-9280.2008.02062.x

Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007).
Overcoming intuition: Metacognitive difficulty activates analytic reason-
ing. Journal of Experimental Psychology: General, 136(4), 569–576.
https://doi.org/10.1037/0096-3445.136.4.569

Assal, H., & Chiasson, S. (2018).Motivations and amotivations for software
security [Conference session]. Fourteenth symposium on usable privacy
and security (Vol. 4).

Barreto, C. F., & França, C. (2021). Gamification in software engineering:
A literature review [Conference session]. 2021 IEEE/ACM 13th
international workshop on cooperative and human aspects of software
engineering (CHASE), Madrid, Spain. https://doi.org/10.1109/CHA
SE52884.2021.00020

Beike, D. R., & Sherman, S. J. (1994). Social inference; inductions,
deductions, and analogies. In R. S. Wyer & T. K. Srull (Eds.), Handbook
of social cognition (2nd ed., pp. 209–285) Lawrence Erlbaum.

Białek, M., & Pennycook, G. (2018). The cognitive reflection test is robust to
multiple exposures. Behavior Research Methods, 50(5), 1953–1959.
https://doi.org/10.3758/s13428-017-0963-x

Brun, Y., Lin, T., Somerville, J. E., Myers, E. M., & Ebner, N. C. (2022).
Blindspots in Python and Java APIs result in vulnerable code. ACM
Transactions on Software Engineering and Methodology, 32(3), 1–31.
https://doi.org/10.1145/3571850

Cappos, J., Zhuang, Y., Oliveira, D. S., Rosenthal, M., & Yeh, K.-C. (2014).
Vulnerabilities as blind spots in developer’s heuristic-based decision-
making processes [Conference session]. 2014 workshop on new security
paradigms workshop—NSPW ‘14, Victoria, British Columbia, Canada.
https://doi.org/10.1145/2683467.2683472

Capretz, L. F., & Ahmed, F. (2018). A call to promote soft skills in software
engineering. Psychology and Cognitive Sciences—Open Journal, 4(1),
e1–e3. https://doi.org/10.17140/PCSOJ-4-e011

Čavojová, V., & Jurkovič, M. (2017). Comparison of experienced vs. novice
teachers in cognitive reflection and rationality. Studia Psychologica, 59(2),
100–112. https://doi.org/10.21909/sp.2017.02.733

Chattopadhyay, S., Nelson, N., Au, A.,Morales, N., Sanchez, C., Pandita, R.,
& Sarma, A. (2020). A tale from the trenches: Cognitive biases and
software development [Conference session]. ACM/IEEE 42nd interna-
tional conference on software engineering, Seoul, South Korea. https://
doi.org/10.1145/3377811.3380330

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/
001316446002000104

Damnjanović, K., Novković, V., Pavlović, I., Ilić, S., & Pantelić, S. (2019).
A cue for rational reasoning: Introducing a reference point in cognitive
reflection tasks. Europe’s Journal of Psychology, 15(1), 25–40. https://
doi.org/10.5964/ejop.v15i1.1701

Danilova, A., Naiakshina, A., Rasgauski, A., & Smith, M. (2021). Code
reviewing as methodology for online security studies with developers—A
case study with freelancers on password storage [Conference session].
Seventeenth USENIX Conference on Usable Privacy and Security,
Berkeley, CA, United States.

Dash, N., &Gladwin, H. (2007). Evacuation decision making and behavioral
responses: Individual and household. Natural Hazards Review, 8(3), 69–
77. https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(69)

De Neys, W., Rossi, S., & Houdé, O. (2013). Bats, balls, and substitution
sensitivity: Cognitive misers are no happy fools. Psychonomic Bulletin
& Review, 20(2), 269–273. https://doi.org/10.3758/s13423-013-
0384-5

Evans, J. S. B. T. (1984). Heuristic and analytic processes in reasoning.
British Journal of Psychology, 75(4), 451–468. https://doi.org/10.1111/j
.2044-8295.1984.tb01915.x

Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning.
Trends in Cognitive Sciences, 7(10), 454–459. https://doi.org/10.1016/j
.tics.2003.08.012

Evans, J. S. B. T. (2010a). Thinking twice: Two minds in one brain. Oxford
University Press.

Evans, J. S. B. T. (2010b). Intuition and reasoning: A dual-process
perspective. Psychological Inquiry, 21(4), 313–326. https://doi.org/10
.1080/1047840X.2010.521057

Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher
cognition: Advancing the debate. Perspectives on Psychological Science,
8(3), 223–241. https://doi.org/10.1177/1745691612460685

Fagerholm, F., Felderer, M., Fucci, D., Unterkalmsteiner, M., Marculescu,
B., Martini,M., Tengberg, L. G.W., Feldt, R., Lehtelä, B., Nagyváradi, B.,
& Khattak, J. (2022). Cognition in software engineering: A taxonomy and
survey of a half-century of research. ACM Computing Surveys, 54(Suppl.
11), 1–36. https://doi.org/10.1145/3508359

Frederick, S. (2005). Cognitive reflection and decision making. Journal of
Economic Perspectives, 19(4), 25–42. https://doi.org/10.1257/089533005
775196732

Gigerenzer, G. (2002). Adaptive thinking: Rationality in the real world.
Oxford University Press.

Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological
Science, 3(1), 20–29. https://doi.org/10.1111/j.1745-6916.2008.00058.x

Gigerenzer, G. (2015). Simply rational: Decision making in the real world.
Oxford University Press.

Gigerenzer, G., &Gaissmaier, W. (2011). Heuristic decisionmaking.Annual
Review of Psychology, 62(1), 451–482. https://doi.org/10.1146/annurev-
psych-120709-145346

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart.
Oxford University Press.

Gotterbarn, D. (2001). Informatics and professional responsibility. Science
and Engineering Ethics, 7(2), 221–230. https://doi.org/10.1007/s11948-
001-0043-5

Hagoort, P. (2023). The language marker hypothesis. Cognition, 230, Article
105252. https://doi.org/10.1016/j.cognition.2022.105252

Hallett, J., Patnaik, N., Shreeve, B., & Rashid, A. (2021). “Do this! Do that!,
And nothing will happen” Do specifications lead to securely stored
passwords? [Conference session]. 43rd international conference on
software engineering (ICSE ‘21), Madrid, ES, Spain. https://doi.org/10
.1109/ICSE43902.2021.00053

Hamari, J. (2017). Do badges increase user activity? A field experiment on
the effects of gamification. Computers in Human Behavior, 71, 469–478.
https://doi.org/10.1016/j.chb.2015.03.036

Hjeij, M., & Vilks, A. (2023). A brief history of heuristics: How did research
on heuristics evolve? Humanities and Social Sciences Communications,
10(1), 1–15. https://doi.org/10.1057/s41599-023-01542-z

Hoffmann, A. O. I., Post, T., & Pennings, J. M. E. (2015). How investor
perceptions drive actual trading and risk-taking behavior. Journal of
Behavioral Finance, 16(1), 94–103. https://doi.org/10.1080/15427560.2015
.1000332

Hoover, J. D., & Healy, A. F. (2019). The bat-and-ball problem: Stronger
evidence in support of a conscious error process. Decision, 6, 369–380.
https://doi.org/10.1037/dec0000107

Hoover, J. D., & Healy, A. F. (2021). The bat-and-ball problem: A word-
problem debiasing approach. Thinking & Reasoning, 27(4), 567–598.
https://doi.org/10.1080/13546783.2021.1878473

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 13147

Ivory, M. (2022). The soft skills of software learning development: The
psychological dimensions of computing and security behaviours
[Conference session]. International conference on evaluation and
assessment in software engineering 2022, Gothenburg, Sweden. https://
doi.org/10.1145/3530019.3535344

Ivory, M., Sturdee, M., Towse, J. N., Levine, M., & Nuseibeh, B. (2023).
Can you hear the ROAR of software security? How Responsibility,
Optimism And Risk shape developers’ security perceptions. PsyArXiv.
https://doi.org/10.31234/osf.io/pexvz

Ivory, M., Towse, J. N., Sturdee, M., Levine, M., & Nuseibeh, B. (2022).
Cognitive reflection, optimism and uncertainty in software development.
https://doi.org/10.17605/OSF.IO/SJ8BT

Jackendoff, R. S. (2009). Language, consciousness, culture: Essays on
mental structure. MIT Press.

Janssen, E. M., Meulendijks, W., Mainhard, T., Verkoeijen, P. P. J. L.,
Heijltjes, A. E. G., van Peppen, L. M., & van Gog, T. (2019). Identifying
characteristics associated with higher education teachers’ Cognitive
Reflection Test performance and their attitudes towards teaching critical
thinking. Teaching and Teacher Education, 84, 139–149. https://doi.org/
10.1016/j.tate.2019.05.008

Jones, H. S., Towse, J., Race, N., & Harrison, T. (2019). Email fraud: The
search for psychological predictors of susceptibility. PLOS ONE, 14(1),
Article e0209684. https://doi.org/10.1371/journal.pone.0209684

Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute
substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D.
Kahneman (Eds.), Heuristics and biases (1st ed., pp. 49–81). Cambridge
University Press. https://doi.org/10.1017/CBO9780511808098.004

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A
failure to disagree. American Psychologist, 64, 515–526. https://doi.org/
10.1037/a0016755

Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1974). Judgment under
uncertainty: Heuristics and biases (1st ed.). Cambridge University Press.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of
decision under risk. Econometrica, 47(2), 263–291. https://doi.org/10
.2307/1914185

Keil, M., Wallace, L., Turk, D., Dixon-Randall, G., & Nulden, U. (2000). An
investigation of risk perception and risk propensity on the decision to
continue a software development project. The Journal of Systems and
Software, 53, 145–157. https://doi.org/10.1016/S0164-1212(00)00010-8

Kina, K., Tsunoda, M., Hata, H., Tamada, H., & Igaki, H. (2016). Analyzing
the decision criteria of software developers based on prospect theory
[Conference session]. 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), Osaka, Japan. https://
doi.org/10.1109/SANER.2016.115

Kirlappos, I., Beautement, A., & Sasse, M. A. (2013). “Comply or die” is
dead: Long live security-aware principal agents. In A. A. Adams, M.
Brenner, & M. Smith (Eds.), Financial cryptography and data
security (pp. 70–82). Springer. https://doi.org/10.1007/978-3-642-
41320-9_5

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do
developers update their library dependencies?: An empirical study on the
impact of security advisories on library migration. Empirical Software
Engineering, 23(1), 384–417. https://doi.org/10.1007/s10664-017-9521-5

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin,
108, 480–498. https://doi.org/10.1037/0033-2909.108.3.480

Levy, J. S. (1992). An introduction to prospect theory. Political Psychology,
13(2), 171–186.

Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012).
Individual differences in numeracy and cognitive reflection, with
implications for biases and fallacies in probability judgment. Journal of
Behavioral Decision Making, 25(4), 361–381. https://doi.org/10.1002/
bdm.752

Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., & Nuseibeh, B.
(2019). Talking about security with professional developers [Conference

session]. 2019 IEEE/ACM joint 7th international workshop on
conducting empirical studies in industry (CESI) and 6th international
workshop on software engineering research and industrial practice
(SER IP), Montreal, QC, Canada. https://doi.org/10.1109/CESSER-IP
.2019.00014

Lopez, T., Sharp, H., Tun, T., Bandara, A. K., Levine, M., & Nuseibeh, B.
(2022). Security responses in software development. ACM Transactions
on Software Engineering and Methodology, 32(3), 1–29. https://doi.org/
10.1145/3563211

Lopez, T., Tun, T., Bandara, A., Mark, L., Nuseibeh, B., & Sharp, H. (2019).
An anatomy of security conversations in stack overflow [Conference
session]. 2019 IEEE/ACM 41st international conference on software
engineering: Software engineering in society (ICSE-SEIS), Montreal, QC,
Canada. https://doi.org/10.1109/ICSE-SEIS.2019.00012

Loske, A.,Widjaja, T., &Buxmann, P. (2013, December 18). Cloud computing
providers’ unrealistic optimism regarding IT security risks: A threat to users?
ICIS 2013 proceedings. Association for Information Systems. https://aisel.ai
snet.org/icis2013/proceedings/BreakthroughIdeas/11

Manzoor, F., Wei, L., & Asif, M. (2021). Intrinsic rewards and employee’s
performance with the mediating mechanism of employee’s motivation.
Frontiers in Psychology, 12, Article 563070. https://doi.org/10.3389/
fpsyg.2021.563070

McAuliffe, M., & Triandafyllidou, A. (2021).World migration report 2022.
International Organisation For Migration. https://publications.iom.int/
books/world-migration-report-2022

Mohanani, R., Salman, I., Turhan, B., Rodríguez, P., & Ralph, P. (2020).
Cognitive Biases in Software Engineering: A Systematic Mapping Study.
IEEE Transactions on Software Engineering, 46(12), 1318–1339. https://
doi.org/10.1109/TSE.2018.2877759

Mølokken, K., & Jørgensen, M. (2005). Expert estimation of web-
development projects: Are software professionals in technical roles
more optimistic than those in non-technical roles? Empirical Software
Engineering, 10(1), 7–30. https://doi.org/10.1023/B:EMSE.0000048321
.46871.2e

Moritz, B., Siemsen, E., & Kremer, M. (2014). Judgmental Forecasting:
Cognitive Reflection and Decision Speed. Production and Operations
Management, 23(7), 1146–1160. https://doi.org/10.1111/poms.12105

Nadi, S., Krüger, S., Mezini, M., & Bodden, E. (2016). Jumping through
hoops: Why do Java developers struggle with cryptography APIs?
[Conference session]. 38th international conference on software engineer-
ing, Austin, Texas. https://doi.org/10.1145/2884781.2884790

Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., & Smith, M.
(2019). “If you want, I can store the encrypted password”: A password-
storage field study with freelance developers [Conference session]. 2019
CHI conference on human factors in computing systems, Glasgow,
Scotland. https://doi.org/10.1145/3290605.3300370

Oliveira, D. S., Lin, T., Rahman, M. S., Akefirad, R., Ellis, D., Perez, E.,
Bobhate, R., DeLong, L. A., Cappos, J., & Brun, Y. (2018). API
blindspots: Why experienced developers write vulnerable code
[Conference session]. Fourteenth USENIX Conference on Usable
Privacy and Security (SOUPS ’18), Baltimore, MD, United States.
https://doi.org/10.5555/3291228.3291253

Oliveira, D. S., Rosenthal, M., Morin, N., Yeh, K.-C., Cappos, J., & Zhuang,
Y. (2014). It’s the psychology stupid [Conference session]. 30th annual
computer security applications conference, New Orleans, Louisiana,
United States. https://doi.org/10.1145/2664243.2664254

Palassis, A., Speelman, C. P., & Pooley, J. A. (2021). An exploration of the
psychological impact of hacking victimization. SAGEOpen, 11(4). https://
doi.org/10.1177/21582440211061556

Palombo, H., Tabari, A. Z., Lende, D., Ligatti, J., & Ou, X. (2020). An
ethnographic understanding of software (in)security and a co-creation
model to improve secure software development [Conference session].
Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020),
Berkeley, CA, United States. https://doi.org/10.5555/3488905.3488917

14 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH148

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020).
Fighting COVID-19 misinformation on social media: Experimental
evidence for a scalable accuracy-nudge intervention. Psychological
Science, 31(7), 770–780. https://doi.org/10.1177/0956797620939054

Pennycook, G., & Ross, R. M. (2016). Commentary: Cognitive reflection vs.
calculation in decision making. Frontiers in Psychology, 7, Article 9.
https://doi.org/10.3389/fpsyg.2016.00009

Petre,M. (2022). Exploring cognitive bias “in thewild”: Technical perspective.
Communications of the ACM, 65(4), Article 114. https://doi.org/10.1145/
3517215

Ralph, P. (2011). Toward a theory of debiasing software development. In S.
Wrycza (Ed.),Research in systems analysis and design:Models andmethods
(pp. 92–105). Springer. https://doi.org/10.1007/978-3-642-25676-9_8

Rauf, I., Petre,M., Tun, T., Lopez, T., Lunn, P., VanDer Linden, D., Towse, J.,
Sharp, H., Levine, M., Rashid, A., & Nuseibeh, B. (2021). The case for
adaptive security interventions.ACMTransactions on Software Engineering
and Methodology, 31(1), 1–52. https://doi.org/10.1145/3471930

Rhee, H.-S., Ryu, Y. U., & Kim, C.-T. (2012). Unrealistic optimism on
information security management. Computers & Security, 31(2), 221–
232. https://doi.org/10.1016/j.cose.2011.12.001

Roesler, D. (2020). A computer science academic vocabulary list [Master’s
thesis].

Samuels, R., Stich, S., & Bishop, M. (2012). Ending the rationality wars;
How to make disputes about human rationality disappear. In S. Stich (Ed.),
Collected papers: Vol. 2. Knowledge, rationality, and morality, 1978–
2010 (pp. 236–268). Oxford University Press.

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue,
H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., &
Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to
violations of distributional assumptions. Methods in Ecology and
Evolution, 11(9), 1141–1152. https://doi.org/10.1111/2041-210X.13434

Sharot, T. (2011). The optimism bias. Current Biology, 21(23), R941–R945.
https://doi.org/10.1016/j.cub.2011.10.030

Shreeve, B., Gralha, C., Rashid, A., Araujo, J., & Goulão,M. (2022).Making
sense of the unknown: How managers make cyber security decisions.
ACM Transactions on Software Engineering and Methodology, 32(4), 1–
33. https://doi.org/10.1145/3548682

Siegrist, M., Gutscher, H., & Earle, T. C. (2005). Perception of risk: The
influence of general trust, and general confidence. Journal of Risk
Research, 8(2), 145–156. https://doi.org/10.1080/1366987032000105315

Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in
decision making. Frontiers in Psychology, 6, Article 532. https://doi.org/
10.3389/fpsyg.2015.00532

Spadini, D., Çalikli, G., & Bacchelli, A. (2020). Primers or reminders? The
effects of existing review comments on code review [Conference session].
2020 IEEE/ACM 42nd international conference on software engineering
(ICSE), Seoul, South Korea.

Stagnaro, M., Pennycook, G., & Rand, D. G. (2018). Performance on the
Cognitive Reflection Test is stable across time. Judgment and
Decision Making, 13, 260–267. https://doi.org/10.1017/S19302975
00007695

Tahaei, M., & Vaniea, K. (2019). A survey on developer-centred security
[Conference session]. 2019 IEEE European symposium on security and
privacy workshops (EuroS&PW), Stockholm, Sweden. https://doi.org/10
.1109/EuroSPW.2019.00021

Tetlock, P. E., & Kim, J. I. (1987). Accountability and judgment processes in
a personality prediction task. Journal of Personality and Social
Psychology, 52, 700–709. https://doi.org/10.1037/0022-3514.52.4.700

Thomson, K. S., & Oppenheimer, D. M. (2016). Investigating an alternate
form of the cognitive reflection test. Judgment and Decision Making,
11(1), 99–113. https://doi.org/10.1017/S1930297500007622

van der Linden, D., Anthonysamy, P., Nuseibeh, B., Tun, T., Petre, M., Levine,
M., Towse, J., & Rashid, A. (2020). Schrödinger’s security: Opening the box
on app developers’ security rationale [Conference session]. ACM/IEEE
42nd International Conference on Software Engineering, Seoul, South
Korea. https://doi.org/10.1145/3377811.3380394

Veracode. (2020). State of software security (Vol. 11). https://www.veracode
.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-
volume-11-veracode-report.pdf

von Eye, A., & von Eye, M. (2008). On the marginal dependency of Cohen’s
K. European Psychologist, 13(4), 305–315. https://doi.org/10.1027/1016-
9040.13.4.305

Warrens, M. J. (2014). On marginal dependencies of the 2 × 2 kappa.
Advances in Statistics, 2014, Article e759527. https://doi.org/10.1155/
2014/759527

Weinstein, N. D. (1980). Unrealistic optimism about future life events.
Journal of Personality and Social Psychology, 39(5), 806–820. https://
doi.org/10.1037/0022-3514.39.5.806

Welsh, M. B., Burns, N. R., & Delfabbro, P. H. (2013). The Cognitive
Reflection Test: How much more than numerical ability? [Conference
session]. Cognitive science conference (Vol. 7).

West, R. F. (2008). The psychology of security. The Psychology of Security,
51(4), 34–40. https://doi.org/10.1145/1330311.1330320

Wiederhold, B. K. (2014). The role of psychology in enhancing
cybersecurity. Cyberpsychology, Behavior, and Social Networking,
17(3), 131–132. https://doi.org/10.1089/cyber.2014.1502

(Appendix follows)

DUAL-SYSTEMS THINKING IN SECURE SOFTWARE CREATION 15149

Appendix

Examples of Sentences and Their Transformed PURL Score

Subject ID PURL Sentence Keywords

01 .00 I was assigned a project to handle a drinks factory day-to-day purchases, sales,
and employee records three months ago.

N/A

89 .24 The main considerations I take when aiming to identify potential risks or security
vulnerabilities when developing software are to consider the ways in which
information could be compromised.

Risks, security, compromised

126 .35 Where personal experience is not available, I would regularly visit a risk
assessment template throughout the development process and ensure that
potential risks are regularly identified during the development lifecycle.

Risk, risks

09 .58 Good decisions always make software development smooth and secure, team lead
would be a big factor, his ideas and decisions matters most

Decision, secure, decisions

143 .75 I would say that user data collected from already existing secured software will
provide additional protection from risks, such as Gmail, bank accounts, and
other similar places where there is already an existed security.

Secured, protection, risks, security

Note. PURL = proportion of uncertainty-related language; ID = identification number; N/A = not applicable.

Received April 7, 2023
Revision received September 4, 2023

Accepted September 11, 2023 ▪

16 IVORY, TOWSE, STURDEE, LEVINE, AND NUSEIBEH150

151

6.1 Statement of Continuous Thesis Summary

“Whatever stance one adopts on the contentious normative issues of whether a preference

can be ‘wrong’ and whether more reflective people make ‘better’ choices, respondents who

score differently on the CRT make different choices, and this demands some explanation.”

- Frederick, 2005

In this chapter, I report on a study exploring the security perceptions of freelance

software engineers in relation to dual processing theory. Developers are asked how they

recognise and mitigate security risks during development and complete measures of

cognitive reflection, risk aversion, and optimism bias. I identify an interaction between

cognitive reflection and optimism through mixed-effect regression modelling in the

language used around uncertainty. Optimistic outlooks combined with higher cognitive

reflection increase uncertainty, but realistic or pessimistic views accompanied by increased

reflection reduce uncertainty. Software engineers with average or pessimistic views on the

security of their code are more likely to speak intuitively about risk.

This study contributes to the thesis by providing the first evidence about the

psychological dimensions of security behaviours. The interaction between psychological

variables emphasises the complexity of secure coding behaviours yet also supports the

framework that dual processing theory is informative with respect to secure behaviours,

confirming ideas from Petre (2022) and Robins (2022). This chapter offers one answer to

the second research question, “What influence do the identified psychological dimensions

have on security behaviours within software engineering?”. Developers tend to

overemphasise their ability to code securely compared to a general developer population,

indicating they are typically biased towards security vulnerabilities. Optimism combined

with cognitive reflection found an interaction for risk awareness, suggesting that

awareness is not easily reduced into measures of cognition.

The chapter also strengthens the overarching thesis contribution by empirically testing

how cognitive traits underpin security behaviours in a software context. It introduces

152

measurable psychological variables of cognitive reflection and optimism that link back to

the soft skills identified earlier in the thesis (e.g. decision-making). By doing so, this

chapter helps demonstrate that soft skills are not only socially valued (as seen in the

earlier chapters) but also behaviourally consequential in shaping how developers perceive

and respond to risk. This bridges the soft skill frameworks introduced in Chapters 4 and

5 with psychological theory, contributing to a more integrative understanding of developer

behaviour.

I explore the same rich text data in the upcoming chapter through a thematic analysis.

Initially, it was envisaged that Chapters 6 and 7 would be a combined, single empirical

chapter. However, it became apparent that the depth and richness of the analysis

required separate treatment. Combining all the different ideas would overburden the

reader and undermine the strength of the conclusions one hopes to emphasise. As well as

clarifying the different ideas, separating the analyses also offered an opportunity to

disseminate research strategically for different audiences to emphasise the

interdisciplinary nature of the work. The present chapter is published in an APA

psychology journal, whereas the upcoming chapter is under review in a software

engineering journal. Addressing two different audiences draws them to an important

interdisciplinary research space.

6.1.1 Contribution to Thesis Argument and Forward Trajectory

This chapter advances the thesis argument by being the first to empirically explore dual

processing theory as a psychological dimension of secure software development. Through

the interaction of optimism and cognitive reflection, the study demonstrates that

cognitive processing styles can meaningfully shape how developers conceptualise and talk

about risk. This supports the thesis’s broader argument that secure software engineering

is influenced not only by technical competence but also by underlying cognitive traits,

thereby reinforcing the need to understand and support software development in

context-specific, psychological terms.

153

By connecting security-related behaviour to specific psychological mechanisms, this

chapter contributes directly to the thesis’s central claim: that psychological theory offers

a valid and underexplored lens through which to explain secure software practices. It

extends the thesis beyond normative discussions of skills into explanatory models that

account for how developers think, decide, and act under uncertainty. Chapter 6 marks the

beginning of an exploration of the psychological underpinning of soft skills, where soft

skills are no longer treated generically, but rather are embedded within the behavioural

realities of software engineering under uncertainty.

The next chapter builds directly on this work by analysing the same interview dataset

through the lens of social identity theory, focusing specifically on how developers discuss

responsibility, optimism, and risk. This shift provides a complementary, socially-oriented

interpretation of secure behaviour and allows the thesis to examine both individual

cognition and social identity as distinct but interacting forces in secure software

development.

154

7 Can You Hear The ROAR of Software Security? How Responsibility,

Optimism and Risk shape developers’ security perceptions

Ivory, M., Sturdee, M., Towse, J., Levine, M., & Nuseibeh, B. (in review). Can you hear
the ROAR of software security? How Responsibility, Optimism And Risk shape
developers’ security perceptions. Empirical Software Engineering.
https://doi.org/10.31234/osf.io/pexvz

https://doi.org/10.31234/osf.io/pexvz

Can you hear the ROaR of software security? How Responsibility, Optimism
and Risk shape developers’ security perceptions

MATTHEW IVORY, Lancaster University, Great Britain

MIRIAM STURDEE, University of St Andrews, Great Britain

JOHN TOWSE, Lancaster University, Great Britain

MARK LEVINE, Lancaster University, Great Britain

BASHAR NUSEIBEH, LERO, Republic of Ireland and Open University, United Kingdom

How do the psychological perceptions of software developers shape secure software development? We engage freelance
software engineers and computer science students about their security posture and reveal how self-defined social
identities alongside heuristics and biases affect approaches to development. We also identify behaviours indicative of
increased risk of project delays or failure. A thematic analysis extracted three core themes of Responsibility, Optimism
and Risk (ROaR). We show how language about responsibility for security is framed through psychological concepts
of diffusion, displacement, and acceptance of responsibility. We also examine the way developers orientate to risk
awareness, appetites for risk, and risk mitigation strategies. Examples of unrealistic optimism biases are highlighted
and discussed. The data underline the importance of acknowledging the human values within the socio-technical
system of software development. We emphasise the relevance and applicability of core psychological research and
theories for software engineering and offer examples of how these contribute to a deeper understanding of the software
development cycle.

CCS Concepts: • Security and privacy → Social aspects of security and privacy;

Additional Key Words and Phrases: thematic analysis, responsibility, risk, optimism, security

ACM Reference Format:
Matthew Ivory, Miriam Sturdee, John Towse, Mark Levine, and Bashar Nuseibeh. 2024. Can you hear the ROaR of
software security? How Responsibility, Optimism and Risk shape developers’ security perceptions. 1, 1 (February 2024),
38 pages. https://doi.org/10.475/123 4

Authors’ addresses: Matthew Ivory, Lancaster University, Department of Psychology, Lancaster, Lancashire, LA1 4YW, Great
Britain, matthew.ivory@lancaster.ac.uk; Miriam Sturdee, University of St Andrews, School of Computer Science, St Andrews,
Fife, KY16 9SX, Great Britain, ms535@st-andrews.ac.uk; John Towse, Lancaster University, Department of Psychology,
Lancaster, Lancashire, LA1 4YW, Great Britain, j.towse@lancaster.ac.uk; Mark Levine, Lancaster University, Department of
Psychology, Lancaster, Lancashire, LA1 4YW, Great Britain, mark.levine@lancaster.ac.uk; Bashar Nuseibeh, LERO, Ireland,
Lancaster, Lancashire, LA1 4YW, Republic of Ireland, Open University, United Kingdom, bashar@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

155

2 Ivory et al.

1 INTRODUCTION

Developing secure software is a complex process, affected by a combination of social, cognitive, and technical
factors [70]. One method of achieving secure software is through secure coding, a programming practice that
avoids exploitable software vulnerabilities [69]. Despite efforts from software engineering communities to
provide developers with tools [53], documentation [2], and practices [89] for improving secure behaviours,
software engineers still produce insecure software [76]. Alarmingly, two-thirds of software contains at least
one OWASP top ten vulnerability [86], underlining failures even with respect to common and well-known
vulnerabilities. In this paper, we provide a complementary approach to understanding and facilitating secure
coding - through a focus on developers’ individual perceptions and beliefs. We argue that developers’ own
framing of the concepts of Responsibility, Optimism And Risk (ROaR) provides an important contribution
to the challenge of security.

Cybersecurity protocols exist for the purpose of ensuring secure computer communication, but often
the breakdown in security stems from people’s behaviours, rather than the software itself [61]. Despite the
abundance of efforts to improve security, human behaviour is still often considered the weak link in the
chain [72]. Much of previous work focuses on improving user behaviour in cybersecurity, but we turn the
spotlight towards the developers. If we acknowledge that developers are also users [73], we can more easily
accept the heterogeneity in their approach to security, which we can use to better design interventions and
tools for promoting secure behaviours.

A frequent finding in software engineering research is that functionality is prioritised over security
[40, 57, 77]. Software security is often invisible to end-users, often assuming security defaults are enough
[25]. In a similar vein, security during development is often treated as a non-functional requirement, in that
it is an implicitly assumed attribute of high-quality software [78]. It is therefore increasingly accepted that
security requires more than reliance on technical competence and must incorporate human factors of social
behaviours and decision making. Software developers are a core component in the software development
cycle, whose actions can have direct consequences.

Only once we adequately appreciate how developers view security can we begin implementing effective
interventions [68], whether psychological or technical. Security can be seen as a barrier to achieving goals, and
even if not, it is typically considered to be a low priority. By considering these behaviours in a psychological
frame, we draw out ideas that have been implicitly touched upon in previous research, but not explicitly
framed.

Our research deployed a thematic analysis on the perception and understanding of risks in the software
development cycle, as articulated by software engineer freelancers and computer science (CS) students with
an emphasis on security through a survey study. We collected data from both freelancers and students
as they represent a diversity of software engineering experience, from the early stages through to those
developing software as a career. These form important groups insofar as their views on software security are
unencumbered by company processes, groups, and structures [41]. The complementary, quantitative analysis
of the data indicated no real differences between the two groups [33] that suggests security is perceived
similarly across a broad range of experiences. Solo or freelance developers are a large percentage of the
developer community [85], and if we only explore security studies with professional, established developers,
their perceptions may be conflated or influenced by their employer’s motivations or policies, not reflecting

Manuscript submitted to ACM

156

Responsibility, Optimism And Risk in developers’ security perceptions 3

the true individual differences in security. Freelancers are often employed in situations where they may be the
sole software engineer within a project, such as making changes or updates to small business websites, and
in such scenarios, the employers may be unaware of or unable to articulate security requirements properly,
leaving the developer responsible for ensuring that their software remains secure.

RQ1: How do social identities and group memberships affect the way that risk is approached by
software developers, particularly when considering software security? To address our first question,
we examined the data through psychological theories of individual and group interactions. By mapping these
theories to the security perceptions of software developers in their interaction with software development,
we sought to provide explanations for these views based in psychology. It is important to recognise that
software is not developed in isolation, and developers not only communicate with one another, but possess
rich unique social cultures that shape and form the way software is produced [43, 74]. We utilised the Social
Identity Approach (SIA) to frame ways that software developers form social groups, think about themselves
in relation to others, and how they interact with these groups.

SIA posits that to understand social behaviours and individual’s perceptions, we cannot focus on the
individual as an individual, instead it is necessary to focus on how behaviours and perceptions are tied
to social identities, that are their self-definitions of social group memberships [30]. SIA is built upon
Social Identity Theory which describes the complexities of group-based behaviours, and how individuals
ascribe membership to groups and how these impact real-world behaviours [79]. Social identities are the
self-categorisation of group memberships and can be defined by an individual’s understanding that they
belong to certain social groups through shared personal and emotional values [1].

Social groups are perceived differently by an individual depending on whether they see themselves as
a member of a group (the ingroup) or whether they do not self-identify as a member of the group (the
outgroup). People typically show more positive, altruistic behaviours to ingroup members [39, 84], and more
negative, discriminatory behaviours to outgroup members [14]. To the extent that psychological evidence
shows that developers construct and dynamically change their affiliative relationships with others, it is
important to explore how they express their roles set against “others”, as this provides opportunity to
better understand the social identities ascribed to themselves but also to others involved in the software
development process.

Social identities are not congruent with typecasts, but are fluid, self-defined group memberships to allow
individuals to associate with others who share emotionally significant norms and values [1]. The saliency of
an identity fluctuates depending on the social context an individual experiences, giving way to different
memberships. For example, one may self-perceive as a “computer scientist” in academic conferences, but
affiliate more as a “software engineer” when conducting research. Social identity reflects perceived group
affiliations within social circumstances, allowing individuals to associate or distance themselves from others,
rather than reflecting immutable stereotypes.

Individuals who see themselves as having a software developer identity will ascribe to common norms and
values considered to be associated with being a software developer. The identity of software developer does
not necessarily overlap with others in their organisation, with Backevik et al. [7] finding a clear “us versus
them” view between developers and stakeholders. They found that software developers did not identify with
stakeholders in the company and rated their ingroup members (other developers) more positively than other

Manuscript submitted to ACM

157

4 Ivory et al.

teams (with whom they shared no identities). This positive rating can reinforce the social group [71], further
promoting trust in others, creating a social feedback loop that reinforces security behaviours.

RQ2: How do cognition, cognitive heuristics and biases affect the way that risk is approached
by software developers, particularly when considering software security? To address the second
question, we applied cognitive psychology theories to developers’ security beliefs to understand how cognition
shapes security perceptions. We understand from psychological research that prior knowledge, perceptions,
and environmental feedback affect our decision-making abilities [38], and software development is full
of decision-making opportunities, such as solution implementation, optimisation or choosing appropriate
frameworks. We examine the data from the perspective of dual-processing theory [22, 34].

Heuristics are cognitive “shortcuts” people rely upon during decision making. Heuristics make use of
frameworks and cognitively simple processes to make intuitive, instinctive judgments [35]. The use of
heuristics as a decision-making style has been termed system 1 processing [34]. As heuristics rely upon
simple cognitive processes, when they fail to be effective, they become biases, which are the systematic
errors in decision-making.

To prevent biases, people need to use more conscious, deliberate decision-making processes, called system 2
processing. These processing styles cannot occur simultaneously, and the default intuitive system 1 processing
is suppressed when system 2 processing is activated. System 2 processing is computationally more demanding
of our cognitive capacity which is why it is not the automatic processing style, but it allows for abstract and
hypothetical reasoning [22], which is critical for complex tasks such as software code production.

Evidence shows heuristics and biases shape software development and vulnerability [57] and yet there are
individual differences both in propensity to use heuristics and the influence of domain contexts in which
they may manifest themselves. That is, they are not inherently and ubiquitously observed. Accordingly, we
consider evidence for two distinct types of bias, specifically optimism and risk appetite, amongst developers.

In answering these two research questions, we contribute a psychological analysis of responsibility, risk,
and optimism in secure coding behaviours through the lens of ROaR. We also provide a demonstration of
how theories of social and cognitive psychology can be integrated within software engineering, deepening
our understanding of behaviours and perceptions exhibited.

Our analysis extracted three themes forming ROaR: Responsibility, Optimism, and Risk & Uncertainty.
Responsibility is operationalised with respect to the mechanisms of refusing and accepting responsibility,
with three subthemes of diffusion, displacement, and acceptance of responsibility. The theme of Optimism
provides evidence for different manifestations of the unrealistic optimism bias. The third theme of Risk &
Uncertainty shows how risk behaviours are exhibited, including subthemes of risk appetite, risk mitigation,
direction of risk, and bad code versus bad actors. Our themes resonate with research findings and arguments,
but we are unaware of previous efforts to integrate these with psychology frameworks as attempted here.

This paper is structured as follows. In Section 2 we present the methodology. Section 3 presents the
findings from our thematic analysis. Section 4 contextualises our research alongside related work. Section 5
discusses the findings, and the paper concludes in Section 6.

2 METHODOLOGY

Ivory et al. [33] reported a quantitative analysis of software developers and their cognitive reflection and
generic optimism bias. They showed an interaction between these variables and the uncertainty expressed in
Manuscript submitted to ACM

158

Responsibility, Optimism And Risk in developers’ security perceptions 5

their language. However, such a quantitative analysis of individual differences doesn’t naturally address the
attributions made about software development risk. In the present analysis, we use a qualitative approach
by examining the rich text responses, offering a complementary analysis that provides a more nuanced
understanding of how security and risk are perceived by software developers.

Our study was preregistered on the Open Science Framework (OSF), lodging details on the study design,
data collection strategies and analytic plans. The preregistration can be accessed at https://doi.org/10.
17605/OSF.IO/ZBQE4. Moreover, to promote open science, data, analysis scripts, and supplementary
materials can be found at https://doi.org/10.17605/OSF.IO/4MQKD.

2.1 Participants

Data from 145 participants were used (73 professional freelance developers and 72 CS students). Freelancers
were recruited from Upwork, a freelance developers’ website1. An advert invited participants to submit
applications to a study regarding security understanding. Freelance participants were required to be working
in software development where security in software was included and to have fluent English writing skills.
They were asked to confirm their experience with writing secure code (e.g., sanitising inputs) and to
provide details of a project they had been involved in to confirm eligibility. Freelancers were compensated at
£10/hour, reflecting their professional experience and time. Each request was reviewed, five applicants were
declined for not meeting the requirements, and one for providing identical responses to a previous applicant.

Students were collected using internal university mailing lists and the participant recruitment website
Prolific. Criteria for participation required fluent English, current studentship, and to be studying computer
science. The research offer was not advertised to those who do not meet these criteria. Six were recruited
from mailing lists and 66 from Prolific. Student participants were compensated at £8.50/hour.

When referring to both groups collectively in this paper, the term “software developer” is used. Questions
invited participants to consider what can go wrong during software development, how these may affect
themselves, what risks are worth taking during the software development process, and the approaches they
take to identify risks.

All data collection occurred in early 2021 before large language models such as Chat-GPT were publicly
available, reducing any likelihood that the data analysed were generated by non-human participants. Due to
research restrictions at the time due to social and physical distancing being required, in-person interviews
were not appropriate, resulting in the survey design used.

The ages reported by participants are shown in Table 1. Reflecting the global nature of freelance work,
the nationality and location of participants was diverse. Due to data collection issues, nationality data is
unavailable for the developer sample, which is replaced with country-level location data. Figure 1 shows an
approximation of location/nationality of participants by presenting the continent-level data. Most people do
not leave the country they were born in, with one in 30 migrating internationally [46], and so representing a
mix of both nationality and location data together approximates both data types on a continent scale.

1Similar participant pools have been previously used in research. For examples, see Hallett et al. [28] and Rauf et al. [68]

Manuscript submitted to ACM

159

6 Ivory et al.

Fig. 1. Map displaying the combined location and nationality data of participants on a continent level. This represents
an approximation of both location and nationality of each participant due to typically low immigration movement. Most
participants were from North America, Europe, or Asia.

Table 1. Reported age of participants

Age Developer Student
18 - 24 30 42
25 - 34 36 20
35 - 44 6 8
45 - 54 1 2

2.2 Data Collection

Qualtrics, an online surveying platform, was used to collected data. All participants were told the study would
take around 30 minutes to complete. All methods and materials were approved for use by the University
ethics committee prior to data collection.

2.2.1 Materials. Following sign-up, participants were presented with an information sheet detailing the study
and what was expected. Participants gave informed consent, then completed the survey. The survey consisted
of basic demographic information (age, gender), alongside software development specific demographics, such
as developer experience, team size, and programming languages known. They responded to a set of cognitive
measures not included in the present analysis but used in Ivory et al. [33]. This was followed by the four
questions listed below. Finally, participants were debriefed and provided researcher contact details. The
survey can be seen at https://doi.org/10.17605/OSF.IO/P6DY5.

The questions did not deceive participants as to the study’s intent, because if participants were not primed
for talking about security, useable data would likely be sparse. This research decision was made based
Manuscript submitted to ACM

160

Responsibility, Optimism And Risk in developers’ security perceptions 7

upon the research findings of others, where an absence of priming results in little to no security behaviours
witnessed [28, 52]. Whilst this choice may have resulted in a self-selection of security-conscious participants,
this would result in more useable data than if they did not mention security at all.

1. Describe a time when you successfully developed and released/launched a software project, either in a
professional or personal capacity. This could either be a recent example, or perhaps a project you
were particularly proud/happy with. Please include information concerning the purpose of the project
and how important security was during development.

2. When considering the process of developing and launching software/web applications, what is at risk
of potentially going wrong and how could these risks affect you? You should consider the size or the
significance of the potential factors that may go wrong and how this may affect you (e.g., risk of
functional failure, financial losses, damage to reputation etc.)

3. If you were to consider software development as a series of ‘gambles’ (decisions that confer possible
risk), what gambles would be considered worthwhile or worth a risk during the process of developing
software? Why? These gambles may be considered from both an individual perspective and as a
team. Both decisions that you take individually, or decisions that are enforced by policy, should be
considered.

4. What approaches or considerations, do you, or your team, take when aiming to identify potential risks
or security vulnerabilities when developing software? What is the reasoning behind these decisions?
You should consider the decisions and thought processes behind selecting certain tools (such as static
analysis tools), as well as identifying specific tools.

2.3 Analysis

A thematic analysis identified core themes surrounding how software development was perceived by developers.
We followed the analysis steps proposed by Braun and Clarke [13] of familiarisation, code generation, theme
generation, theme review, and theme naming; the first author was responsible for familiarisation, code
generation and initial theme generation, all authors were involved in discussions around refining and reviewing
themes until agreement was achieved. Data familiarisation was carried out by reading through all participant
responses grouped by individual, then grouped by question to develop familiarity with the relationships
within and between participants. During this stage, initial codes (sections of text containing potential themes
or topics) were noted to focus further readings. The data were revisited and coded with labels highlighting
meaningful content. This process was iterated until further readings provided no additions to existing codes
or the creation of new codes, and all content had been inspected for content relevant to each code. Initial
themes were generated, and codes were merged, renamed, or separated where necessary to align with the
themes. Themes were reviewed, defined, and named, and subthemes were grouped together under umbrella
themes. Finally, the themes and subthemes were reviewed once more for coherency, independence, and
distinctiveness to ensure multiple themes did not cover the same content and ideas. Following this, theories
from psychology that explained the themes appropriately were identified.

Data were coded using Taguette, an open-source qualitative analysis tool [67]. The codebook is available
in Appendix A with primary and auxiliary themes and codes.

Manuscript submitted to ACM

161

8 Ivory et al.

3 RESULTS

Thematic analysis was applied to the data, which led to the identification of three key concepts, specifically
Responsibility, Optimism, and Risk & Uncertainty. These themes were chosen as they captured and represented
the data effectively, and in doing so addressed the research questions. The order of the acronym ROaR does
not indicate a priority but serves as a memorable label for these themes.

Responsibility highlights how the ownership of consequences is viewed in software development and how
individuals either refuse or accept this ownership. Three subthemes are included: diffusion of responsibility,
displacement of responsibility, and acceptance of responsibility. Optimism captures instances of predispositions
towards positive views, or overly optimistic perceptions of software in both security and functionality
contexts. As such it highlights examples of the unrealistic optimism bias and how these persist within
software development. Risk & Uncertainty looks at how the existence of unknown consequences is managed
and how related behaviours are expressed. Subthemes include risk appetite, risk mitigation, direction of risk,
and bad code versus bad actors.

To aid reader comprehension spelling errors are corrected or context is provided using square parentheses.
Freelancer quotes are denoted with an F, and students with an S.

3.1 Responsibility

This theme highlights three psychological representations of responsibility: diffusion, displacement, and
acceptance. Diffusion of responsibility refers to the psychological phenomenon where increases in group size
reduces the personal responsibility felt by an individual by increasing feelings of anonymity and reducing
accountability. Displacement of responsibility is where an individual minimises their responsibility by
transferring it to another who they consider having greater seniority or authority to themselves. Acceptance
of responsibility demonstrates instances where individuals assume responsibility for actions and consequences,
typically through emotional, moral, or social motivations.

We define responsibility as the assumed ownership of one’s actions and associated consequences. Causal
responsibility is the direct relationship between an actor and their actions but does not account for emotional
or moral motivations. Moral responsibility is grounded in philosophical research and speaks to a willingness
to operate in a morally acceptable manner through reducing potential harm and maximising good [23].
Subsequently, responsibility refers to the moral or ethical responsibilities of developers as opposed to
their causal responsibility. Responsibility can be either accepted or refused, and two manners of refusing
responsibility are described below.

Personal responsibility can be diffused or displaced resulting in reduced accountability, which has been
linked to increases in making risky decisions for others [58]. Similarly, lower levels of responsibility often
result in people reporting less control over a task or situation [6], decreasing the likelihood someone will
act, and potentially rely more on others to take control and responsibility [45]. Decreased responsibility
minimises a person’s perceived role in any harmful consequences of poor or insecure code. If an individual
refuses to acknowledge their contribution to a negative outcome, any harm can be attributed to others
instead, exonerating themselves [50].

3.1.1 Diffusion of Responsibility. Diffusion of responsibility is defined as a socio-psychological event where an
individual experiences reduced responsibility for an action (or absence of action) when they believe others
Manuscript submitted to ACM

162

Responsibility, Optimism And Risk in developers’ security perceptions 9

to be present or involved [32]. In a group context, diffusion of responsibility reduces the teams’ ability to
achieve goals when individuals experience decreased responsibility towards their contributions.

Diffusion can be a result of an organisation’s workflow, with assumptions that others in the team will spot
issues and correct these. These assumptions are likely combined with a diminished sense of responsibility
over ensuring their code is as good as possible. It is acknowledged that in many organisations it is standard
procedure to have code reviewed by others, but code review is reliant on the reviewers being able to
comprehend the code and identify weak areas. With diffused responsibility, security and testing teams
experience a higher workload than if everyone took responsibility for their own contribution. Participant S88
highlights their personal expectations and refers to those responsible as other teams, with their language
indicating distance between themselves and the others assumed to also consider security. From this, S88
could see reviews as not part of their role or identity, and so pushes this task away from themselves, without
clear identification of who should take responsibility.

“I would expect the program to be mulled over by many other Junior/Senior Designer and Admin teams” -
S88

Trust can also be invoked through social identity. S112 refers to trusting teammates instead of using a less
personal term (such as others). A shared identity, such as working on the same team, leads to increased levels
of trust in group members [8]. This increased trust could have an unintended consequence of promoting
reliance and subsequent diffusion of responsibility. A reliance on others only works when all group members
share in the same values as others, but if a member feels less connected to the group, they can deviate from
group expectations on security [70], which could result in diffusion compromising the software.

“Trusting your teammates to have followed the procedure for writing the code correctly and to trust them
to verify the functionality of their code” – S112

Tools and third-party software can also be seen as a catalyst for diffusion of responsibility. These objects
represent the work and efforts of other developers, and consequently an extension to an individual’s social
team involved in their software development. This reliance on other people’s code can be linked to the belief
that published tools are secure by design [60], which is not always the case. By virtue of tools being available,
developers may infer this to mean that they must have been carefully tested and reviewed.

“When using official and up to date tools and frameworks majority of known security risks are already
mitigated” – F08

F08 utilised technology as a diffusion mechanism. Often diffusion occurs between individuals rather than
an individual and object, but software produced by official well-known organisations could be viewed as
output from ingroup members. This deferment may be built upon a belief the individual shares social ties
with developers working within other organisations, emphasising the trust given to ingroup members [8].
Similar styles of social identities are seen in the open-source software domain, with shared social identity
driving engagement in a project with others, despite never having met them [31].

If diffusion of responsibility is a danger to secure code production, then how might it be reduced? One
suggestion is to deanonymize or hold individuals clearly accountable [58, 59]. Developers may find themselves
accountable to either the ingroup or the outgroup, which can affect the behaviours exhibited in these
intergroup and intragroup relations. In our findings, sometimes respondents described the concern of being
visible (and thus potentially accountable) to the outgroup. On other occasions, their accountability was to
the ingroup.

Manuscript submitted to ACM

163

10 Ivory et al.

“I took serious measures on security before I even started the development and had to look for quicker ways
to implement the system, but with advanced security to avoid client looking for me after product delivery.” –
F01

“There were some APIs that are not hidden away in a VPC because I didn’t have the time to configure
them. Being the only guy on the team to handle all this I was always concerned that I might have missed
something and that it would come back to bite me.” – S77

For F01 and S77, we can see the way they orientate to intergroup or intragroup concerns. F01 presents
a clear view of the clients as an outgroup, which shapes their responsibility for their work. The client
outgroup can identify the individual as being responsible, increasing an individual’s accountability, which
the individual may seek to reduce. Conversely, S77 identifies a concern for their relationship to the in-group.
They feel they are the only one responsible for the software and might end up letting the team down. Both
quotes present a reduction of diffusion through increased accountability and reduced anonymity. However,
for one, the inter-group relations are key, while for the other the intra-group relations are the motivator. F01
appears keen to avoid further interaction with the outgroup and so highlights their use of “advanced security”
to avoid this. This could be interpreted as including higher levels of security than may be necessary, to
avoid future interactions with clients. S77 acknowledges that they are the only one capable of completing a
certain task, and with this comes a heightened sense of accountability. This outgroup identity (in the sense
that others on the team are not handling the software development) forces S77 to be acutely aware of the
software security. Both quotes represent different ways in how the social groups can shape the way that
responsibility is felt by the individual.

3.1.2 Displacement of Responsibility. Displacement of responsibility is a form of refusal to accept responsibility
for personal actions, when they are operating within a delegate role carrying out decisions made by authority
figures [10]. The stronger the perceived legitimacy of an authority figure, the weaker the self-responsibility
for an individual’s actions. Displacement stems from social cognitive theory and moral disengagement,
where individuals choose not to exercise self-regulatory mechanisms when faced with enacting irresponsible
decisions [9, 90].

Responsibility can be displaced upwards through hierarchies, especially to senior executives, managers,
and team leads. Diffusion occurs throughout a group, whereas displacement occurs where responsibility can
be “passed up the chain” onto management or team leaders, institutional policies, or even stakeholders and
clients. By displacing responsibility towards the organisation [44], developers are provided an opportunity to
see their task as simply the implementation of someone else’s intentions (typically management), removing
personal connections, allowing developers to ignore implications of the project outcomes [7].

The way individuals refer to their actions provides insights into their identity perception. F08’s language
emphasises their exclusion from the group, referring to “my goal”, “my concerns” and displacing responsibility
“away from me”. They explicitly refer to an active aim to distance themselves from responsibility through
the reporting mechanisms commonly seen in hierarchical organisations, placing social distance between
themselves and others involved. Many freelancers may have little influence over the project beyond their
contractual obligation, and so reporting issues is the extent of their ability, but the language used by F08
signals a clear distance and absence of any personal responsibility for any issues.

Manuscript submitted to ACM

164

Responsibility, Optimism And Risk in developers’ security perceptions 11

“My goal is to assess the potential risks, fix them, or at least report the risk and my concerns. This way I
remove responsibility away from me.” – F08

Management or leadership roles provide obvious opportunities for displacing responsibility, particularly
when considering the implementation of software features and security. Displacement of responsibility to
those in management roles is evidenced by F25 who perceives little connection between their work and
any potential risk because a senior figure is seen as responsible for identifying issues in their code. In the
example of F09, they directly reference the team leader as being responsible for decision making during
software development. The references to an outgroup with authority, such as team leads or senior developers,
indicates a clear displacement pathway.

“Damage to reputation financial losses were never in my mind while developing any feature maybe as that
is not directly linked to me and someone senior to me is always there to review those aspects.” – F25

“Good decisions always make software development smooth and secure. Team lead would be a big factor,
his ideas and decisions [matter] most.” – F09

Institutional documentation, such as policies or workflows, can also be used as a method of displacement.
These are often formal documents designed to encourage consistency and standardisation. These can be
perceived as an extension of management, as often they are approved by those in positions to determine
team-wide or company-wide policies. As such, they present a clear displacement opportunity, representing
a proxy for management. Like the diffusion seen using objects and technology, policies can be considered
delegates of authority figures.

“While developing software all the standard set of procedures related to security are followed as per
mentioned by our company policies” – F45

“In general it is better to stick to best practises defined by internal company policy or at least settled in
the developer community” – F61

Other avenues for displacement responsibility are through clients or stakeholders. When developers are
hired for their skills to implement the technical aspects of software and nothing more, developers can feel
absolved of any need to query decisions made by others and focus purely on implementation [26]. In the
example provided by F69, they mention that their employer does not require security, but more importantly,
they do not mention including security in their work regardless. This implies that they may be displacing
responsibility to their employer by creating functional, yet insecure software. This displacement is further
evidenced by a clear divide of responsibility in the language used, as they repeatedly refer to themselves as
“I” and their employee as “they”. They even identify the responsibility structure in the words, “I was their
mobile developer”. F69 presents a strong ingroup and outgroup within their response, with their employee
as an outgroup and themselves as the mobile developer.

“I have worked with a company in USA and they were developing a social media platform for events
projects etc and I was their mobile developer. . . They did not force me to obey any security rules and
guidelines and the only thing they wanted was fully working application” – F69

Displacement of responsibility requires a salient authority figure to be identified as responsible. Where
diffusion of responsibility allows for responsibility to be unassumed, displacement occurs when developers
transfer the responsibility for their personal actions towards a senior figure, such as management, policies, or
clients. Displacement of responsibility can occur for both functional and security related aspects of software.

Manuscript submitted to ACM

165

12 Ivory et al.

3.1.3 Acceptance of Responsibility. Acceptance of responsibility can result from various factors, with the
shared outcome that individuals assume more responsibility for their own actions and consequences. Accep-
tance of responsibility is often linked with increased moral, emotional or social valence.

When it comes to accepting responsibility, one of the strongest motivators is possessing a moral or
emotional connection to their actions, which can be self-imposed or imposed through social connections
with others, such as users. Self-imposed connections stems from a desire to reduce personal consequences
and avoiding negative emotions. F15 presents a social identity of app developer with a value of “protecting
users from harm”. Their use of personal language indicates that they see this value as being part of the role
of app developer.

“As app developers we are sometimes responsible for some intimate parts of human life of the users. So by
not protecting the app properly we may easily ruin someone’s life and that’s a huge burden to carry.” - F15

Others accept responsibility through social motives, such as user engagement or empathy for users. F69
mentions that users trust developers to keep their information secure and this can be seen as the motivator,
contributing to accepting responsibility. They use language such as “our” and “us”, indicating their identity
claim as a software developer. Associated with this identity are norms and values, one of which is providing
quality, secure software. To identify as a software developer, an individual is required to meet these norms,
which motivates an individual’s desire to protect users.

“Our responsibility as a software developer is protecting the user data from stealing and prevent these
vulnerabilities and fix them and patch them. . . the things that users trust us. And we should protect their
data from [being stolen] because they are important for them.” - F69

Others demonstrate a moral connection with their work, without mention of personal consequences,
focusing more on the potential damage to others. This may be motivated by developers being empathetic to
the user base and implicitly understanding the expectations of users, as indicated by F23.

“The security of a website is [important] that’s why we [usually] care about user data first [because] no
one want to have his data published or used for any reason without his [permission].” – F23

In contrast to instances of diffusion when using third party tools, some individuals refused opportunities
for diffusion by being cautious of using code or software that they were not involved in. Whilst not strictly
an acceptance of responsibility, it is a refusal of diminishing personal responsibility, increasing personal
responsibility. F17 demonstrates this caution by mentioning the need to be certified secure, rather than
simply selecting tools for their functionality.

“Development team need to use only those third-party tools which are security certified and have no
potential security glitch. Both security analysis tools and third-party libraries must be security flaws proof.
Reason for this process is to mitigate all the potential risks beforehand.” – F17

Acceptance of responsibility was linked with security conscientiousness and an emotional connection to
the consequences. Developers felt that users trusted or relied upon them to produce secure, effective software
which in turn cultivates a feeling of responsibility. A common theme seen in the examples of acceptance of
responsibility is the personal language used, such as “we” or “our responsibility”, evidencing their identity
claim is strongly linked with responsible development.

Manuscript submitted to ACM

166

Responsibility, Optimism And Risk in developers’ security perceptions 13

3.2 Optimism

The theme of optimism highlights potential software development-related examples of unrealistic optimism
bias [88]. The unrealistic optimism bias is where individuals see themselves to be less likely to experience
negative events than others, and more likely to experience positive events. This has been shown across a
wide range of scenarios including failure to properly calculate the time required to complete a task, known
as the planning fallacy [16], and genuine optimistic belief that personal outcomes are more favourable than
someone else in the same circumstance.

We use unrealistic optimism as just one example of how cognition can affect our perceptions, certainly
around security. Acknowledging that software security is not supported by specific cognitive processes or
heuristics [33], it is an activity that will more easily succumb to biases. Potential instances of unrealistic
optimism are more easily identifiable in discussions over behaviours, but the presence of one bias suggests
an increased likelihood of others influencing an individual’s behaviour.

“We need to write code in such way that no hacker can expose those” - F4
If developers refuse to accept responsibility for their code, then testing behaviours are likely reduced and

security issues missed. Unrealistic optimism in software development can be risky, as it allows developers to
have an increasingly relaxed view about security. Not only can this prove to be problematic for stakeholders
and clients who may be expecting secure, robust software, but also for the developer, who may find that
opportunities for work slowly dry up if they become associated with poor software.

Others refuse the possibility they may be victims, such as F29, by ignoring malicious actors such as
those who may target software recreationally [18]. They acknowledge their own, and others, lack of security
knowledge and the accompanying belief that being a target is very unlikely. Others are optimistic that
securing their software according to the threats they are already aware of (and comfortable dealing with) is
sufficient. If this reduces their security awareness/training incentives, future software may be secured to an
outdated standard.

“most of us don’t know much about security and they may ignore it apart some basic [development] rules
to respect because we don’t believe we could someday become a [victim] of hacking.” - F29

Developers expressing an optimism bias often spoke about security and risk in absolutes and dismissed
uncertainty or insecure code as issues of other developers, but not for themselves. Or they expressed
confidence in their processes that meant they restricted their views on security in the development cycle.
This may be associated with a security blindness, in that optimism prevents developers from reflecting upon
their development choices.

3.3 Risk & Uncertainty

The theme of Risk & Uncertainty explores risk-related behaviours within software development. This includes
subthemes of risk appetite, risk mitigation, direction of risk, and bad code versus bad actors. Risk appetite
is defined as the willingness to engage in risk-taking behaviour, acknowledging the risk and uncertainty of
consequences. Larger risk appetites imply greater acceptance of risk. Risk mitigation covers behaviours that
are directly aimed at reducing risk and uncertainty. Risk direction focuses on whom the risk affects, whether
it is directed towards the developer, or externally towards users and stakeholders. Bad code versus bad

Manuscript submitted to ACM

167

14 Ivory et al.

actors explores how security issues are framed in terms of insecure code being at fault or intentional bad
actors being the problem.

3.3.1 Appetite. Appetite for risk exists for both security and functionality. Risk appetite can be characterised
by conscious decisions resulting in increased risk. These decisions may be active or passive, in that active
decisions are those which intentionally reduce efforts in specific areas, and passive decisions are those that
increase risk through focusing efforts in areas that cause reduction of attention elsewhere. Choosing to focus
on optimisation or choosing to reduce security testing may result in the same insecure code, but for different
reasons. Understanding risk appetite provides context for which risks are considered acceptable, and we can
use this to focus on reducing dangerous risk appetites where they are unnecessary.

F16 demonstrates a passive risk appetite, with security being reduced in favour of functionality. They
acknowledge this potential risk, but believe they produce secure enough code naturally, and so the value of
increased security-related behaviours does not seem appropriate.

“We don’t take any special processes to identify risks or security vulnerabilities. I’m not sure what the
exact reasoning behind these decisions are but I think we are more focused on developing and maintaining
the software. Furthermore, I feel like our processes are already pretty secure.” - F16

F47 also demonstrates a passive risk appetite, by delaying the inclusion of security measures. This risk
appetite is hinged upon the expectation that developing security later does not disrupt software functionality.
In excessively prioritising functionality, securing the code may never be fully achieved, resulting in skipping
over aspects of security, or becoming more reliant on external sources to identify security issues [4].

“I would also build something first quickly before [securing] it. I wouldn’t leave it to the last moment but
there [definitely] has to be a [proof of concept] of the product before you start thinking of [securing] it.” - F47

Active risk appetite is characterised by choosing to increase risk, which can be through or through using
new ideas for improving software at the risk of increased errors such as that mentioned by S145. Active risk
appetites were commonly associated with increasing functionality within given time constraints.

“Something that could dramatically improve the speed of a process but could also introduce quite a few
new bugs I would say that is a risk worth taking.” – S145

Through time constraints, software developers need to decide what to prioritise. This decision-making
process must consider the risks associated with choices that consume time available for the project. This can
be linked to the planning fallacy, which is the underestimation of the required time to complete a task [16].

“For less security critical software it may be justified to reduce the level of scrutiny the software is placed
under if time or cost pressure is an issue” – S118

Technical debt is the sacrifice of software maintainability in favour of producing a minimum viable product
[83]. S107 presents an example of technical debt being chosen through the decision-making process, and
choosing to accept a risk appetite that affects themselves or others who may need to refactor software later.
This highlights a trade-off between having software produced fast, or having software produced well with
expectations of longevity. Technical debt arises from a series of decisions which have been linked to biases
such as anchoring, optimism and confirmation bias [12].

“Whenever we are developing software we have to make quick and difficult decisions. We don’t have
the time or budget to build a perfect system so we do have to weigh up which aspects are most important.

Manuscript submitted to ACM

168

Responsibility, Optimism And Risk in developers’ security perceptions 15

Maintainability is something we often tradeoff, we gamble the future of our software in rushing to get it out
as quickly as possible.” - S107

3.3.2 Mitigation. Risk mitigation refers to actions taken to reduce or minimise uncertainty and risk.
Risk mitigation was most referenced alongside planning and testing, and heavily linked to security. By
demonstrating awareness for potential risks, and actively planning for these, developers take on responsibility.

The initial planning stages allows developers to exert conscious, deliberate judgements over decisions,
reducing potential biases. Previous work highlights that by asking developers to create design specifications
prior to writing secure code, this can prompt people into thinking more about security, acting as a priming
effect [28]. Without a conscious awareness of potential security issues, this results in a restricted view on
risk, which can result in blindspots [15, 56], where the developer is unable to see or understand where risks
are present. By including risk management documents in planning stages, it can prompt developers to make
more reflective judgements.

“Before starting our project, we will list and filter out problems and vulnerability issues that are concerned
with our system or software with their cost also then we will study how we can approach these problems” -
F66

Software testing provides opportunities to evaluate software, and to identify issues. It offers a chance to
ensure software meets requirements prior to launch or pushes to production. Testing is a reactive process,
dealing with code and software in its present form, which is different to the proactive planning stage. During
the testing process, risk mitigation strategies may be at risk of being affected by confirmation bias, the
tendency to seek evidence to confirm a prior belief, rather than to disprove [87]. This reactive view during
testing could be a cause of confirmation bias where the testing involved only focuses on confirming beliefs of
how the software should work, as opposed to attempting to break and actively find faults.

“I perform tests for the applications that I make, I always try to handle all the security issues that I have
come to be accustomed with before going forward with the application deployment.” - F27

Risk mitigation can also be approached using third parties or products, such as security consultants,
vulnerability detection tools or online information sources, such as the OWASP project. These can be seen
as expert sources, which are trusted to provide information not easily available to the developer. Using
these resources can demonstrate a developer’s awareness of their own ignorance, and in doing so requires
developers to trust in both the source’s competence and benevolence [19]. Interactions with those who
prioritise security, increases the likelihood of adopting security tools and behaviours [92].

“We consider tools to identify security issues that are recommended in a large number of online articles
and also having low cost.” - F25

Risk mitigation strategies are diverse and cover the entire spectrum of software development, from initial
planning to later-stage testing. These strategies require developers to be aware of risks and to be motivated
to reduce these risks. If the risk is completely unknown, then it cannot be addressed, and if motivation is
not present, developers are not going to be willing to expend extra effort in mitigating risks.

3.3.3 Direction of Risk. Risk direction refers to where consequences of a risk are directed, towards oneself
or others. Understanding risk direction provides knowledge on why certain risks are considered acceptable.
Research indicates that decisions made involving others can often be riskier than decisions involving the

Manuscript submitted to ACM

169

16 Ivory et al.

self, and that the circumstances of the decision are critical to understanding when self-other decisions vary,
specifically in the perceived social identity of others, and in framing the decision as either a gain or loss [64].

Risks affecting the self are a significant concern having potential real-world implications. Developers are
likely to try and reduce self-risk, as these are experienced on an emotional level. Losses are characteristically
avoided during decision making, and people exert reasonable effort into minimising losses [36]. Experiencing
failures or having to abandon projects due to self-directed risks could challenge a developer’s perception of
their competence, and so developers would seek to reduce self-directed risk [21].

“If any of my software get hacked or damage it will [affect] me financially as well as damage my reputation”
- F13

“If data is stolen you risk being sued for damages by individuals and corporations potentially. Your
reputation as a company would be decimated also and it could easily bankrupt the company.” – S107

Risk to others was typically presented without any personal emotional connection. Developers are aware
of the potential risks but keep an emotional distance. This can be evidenced through the lack of personal
language when talking about these risks. This contrasts to the self-directed risk examples (F13 and S107)
who use language such as “my software”, “my reputation”, “you risk”, “your reputation”, indicating a
stronger emotional and social tie to the consequences of risks. When talking about risk to others, the
decreased personal language implies reduced social connectivity, and whilst they acknowledge the risk and
its impact on others, beyond this they do not consider this as a risk to themselves personally. In doing so,
this can reduce a developer’s sense of responsibility for risk over others which can lead to potentially harmful
code [7]. For F52 and F56, they express no personal language that links their actions to the consequences of
insecure code.

“having the access of admin panel could hamper the reputation cause the client was school children. And
the students will be exposed to harmful contents” - F52

“there are several risks such as any development flaws by the developer or any bug where the hackers can
enter into the system etc. These factors can affect the users directly” - F56

3.3.4 Bad Code versus Bad Actors. This subtheme examines two main perspectives taken when considering
security in software: bad code and bad actors. Bad code refers to security vulnerabilities that are caused by
insecure or poor code, without specific reference to malicious intent. Bad actor refers to security issues that
are the direct result of somebody trying to gain unauthorised access, or to deliberately damage software.
Both present different views, with bad code being a direct result of developers’ own actions and bad actors
being a result of external forces.

“Many beginner developers are not very focused on security and they just want to finish the project because
of this misunderstanding there can be many issues like cross site scripting, DDoS attacks, and so many this
type of vulnerabilities will lead them to big failures” - F66

Bad code was associated with risk appetite, particularly in increasing the likelihood of bad code resulting
from speeding up the development process, or simply prioritising deadlines rather than ensuring code was
secure. Bad code can be associated with inexperience and misunderstanding the importance of security,
mentioned by F66, or it can be associated with irresponsibility and a lack of care, as presented by F61.

“Irresponsibility of workers can lead to the presence of misconfiguration vulnerabilities and bug” - F61

Manuscript submitted to ACM

170

Responsibility, Optimism And Risk in developers’ security perceptions 17

When referencing bad actors in a security context, a common idea was viewing software from the
perspective of a bad actor to see where vulnerabilities were. F48’s comment on edge cases fits in line with
the definition of security blindspots by Oliveira et al. [57], of vulnerabilities being edge cases that are not
seen through our normal use of heuristics and decision making.

“There are some edge cases which neither developer nor tester sometimes able to find it, so such things
can severely affect the whole functionality of. . . software and someone may use that with bad intentions.” -
F48

The other common connection with bad actors was self-risk, more so than risk to others despite it often
being users’ data that is at risk. The risk of having software that is successfully attacked by bad actors was
associated with consequences that affected the developer themselves, more so than affecting the stakeholders.

“Any time you have authentication and store an email address or personal information there is a risk that
the information could be accessed by unauthorized parties. This can lead to liability and a loss of customers.
Depending on the type of personal data that is accessed there could be lawsuits causing significant legal bills.”
- S143

Mentions of bad actors and bad code were associated with different ideas. Bad code was linked with risk
appetite and a willingness to develop less than ideal code in circumstances where they saw a gain in the
development cycle, or simply through sacrificing quality under time pressures. Bad actors were presented
as a constant uncertainty in the development process. These present two different views on what causes
vulnerabilities in software, with bad code being the responsibility of the developer, whereas bad actors are
seen as a persistent threat that one simply must accept as a risk in software development. In viewing bad
actors in this way, developers can feel less responsible for vulnerabilities that are actively abused by others
due to the ability to distribute blame wider than themselves [26].

4 RELATED WORK

Our work is positioned in the intersection of software engineering and psychology, building upon the
foundations, and contributing to our understanding of the psychology of those involved in creating software,
rather than consumers. Within software engineering, there is a large body of work exploring software security
as well as the behaviours exhibited by the engineers. Some of the research explicitly draws upon psychological
theories, such as cognitive load or social identity, whereas some implicitly use these theories to draw attention
to behaviours and perceptions observed. In the present work, we use data collected on the perceptions of
software security and use this to exemplify how cognitive and social theories can be used within software
engineering.

In this section, we explore the research that both implicitly and explicitly use psychology, highlighting that
it is more pervasive than perhaps initially thought. We present the works grouped by their social or cognitive
nature, highlighting that even without mentioning specific theories, research into software development and
security is abound with psychology.

4.1 Cognition in Software Engineering

Software developers have been found to write code intuitively and impulsively [66], indicating that the
decision-making processes engaged during code creation are not necessarily reflective and conscious, but
rather based upon heuristics or unconscious choices. This reflects ideas from dual-processing theory [22],

Manuscript submitted to ACM

171

18 Ivory et al.

where the default system 1 uses heuristics and instinctive mechanisms for decision-making. Decision making
does not only concern conscious, deliberate decisions but also the unconscious decisions that seemingly just
happen.

System 1 processing is dominated with heuristics, but these can easily become biases when they are
ill-suited for the context. Biases result in systematic errors that provide less than ideal results. Biases have
been seen across the software development process from design [80] to testing [91], with common biases
including confirmation bias, anchoring, and overconfidence or optimism bias [47, 65]. The presence of these
biases across software development highlights that when developers are coding intuitively, they are prone to
make these mistakes.

A programme of work has explored the idea of how heuristic-based thinking can affect a developer’s
ability to detect software vulnerabilities, [17]. They hypothesised that without engaging in security-aware,
deliberate thinking, vulnerabilities will often be missed during code reviews. This was explored in both Java
[56] and Python [15] with findings that neither programming experience nor expertise modulate the ability
to detect software vulnerabilities.

Other works support the idea of cognition playing a role in secure coding practices and can be interpreted
using dual processing theory. Research into prompting or priming participants for security increases their
secure coding practices, both through explicitly requesting security [51], as well as implicitly by boosting
the planning stages to encourage enhanced security awareness [28]. The priming process can act as a cue to
engage in more deliberate, reflective thinking styles which can increase security awareness. The necessary
cues for engaging system 2 processing for specific tasks can also be altered and made more sensitive, with
experiences of security issues in software increasing the awareness over future potential vulnerabilities,
leading developers to take increase care towards security [5].

Further supporting the idea of dual processing theory in software development is that security behaviours
are associated with an increased need for cognition and rational thinking, as well as decreased avoidant,
procrastinatory behaviour [20, 27]. These psychological measures are linked to more conscious, reflective
styles of thinking aligned with system 2 processing. An interaction between measures of the two systems,
cognitive reflection and optimism was seen for increased awareness over risk in secure development [33].

Cognitive load, the amount of information capable of being held in one’s working memory, should
be accounted for when handling complex software [94] and tools should consider reducing unnecessary
information or data that does not align with general human cognition. Others have considered using cognitive
load theory to address the creation of source code directly [82] through minimising the complexity of functions
and decisions made during code creation.

These studies highlight the importance of cognition during the development process, with some referencing
psychological theories and some not. In both situations, the presence of psychology is obvious, with many
of the findings taken together pointing to the applicability of lesser-used theories, such as dual processing
theory of decision making [22]. The works mentioned here contextualise the current research as we provide
examples of how common themes seen in the development process can be interpreted using theories from
psychology.

Manuscript submitted to ACM

172

Responsibility, Optimism And Risk in developers’ security perceptions 19

4.2 Social Psychology in Software Engineering

Developers who possess a strong social connection with members of their group have been seen to produce
more secure code [70], with strong social and institutional structures creating heightened accountability,
which results in stronger group membership. Shared values amongst group members also means that each
individual trusts that their teammates will value security as strongly as they do [40].

In organisations where security is the priority, such as cryptographic software, it has been found that
strong security cultures permeated the organisations with a shared consensus of the importance of security
[29], speaking to the idea of social identities altering developers’ values without explicating stating this
in psychological terms. In non-security specific workplaces, it has been shown that an absence of security
culture reduces the efficacy of security awareness [62].

Software developers often use online forums, such as StackOverflow for information gathering, and they
also form communities with relationships being developed through the conversations had on these forums
[42]. These communities are built around positive social interactions, which boosts the perception of a shared
social identity within the community [49].

Backevik et al. [7] explored social identities within agile project teams, finding that successful teams were
built upon a strong team identity, with individuals rating each other positively and seeing each other as
developers. They found those outside of the development team were not considered to belong to shared
social groups, representing a strong ingroup-outgroup dynamic within these projects. Assal and Chiasson
[5] found in security-positive teams of engineers, they saw security as a shared responsibility, reflecting the
shared value of security within their shared social identity.

When exploring the security decisions made by managers or those with responsibility in software projects,
Shreeve et al. [75] found that even with minimal cybersecurity expertise, senior management figures can make
appropriate decisions using logic and risk planning strategies. One of the strategies used was communication,
and engaging in interactions can be beneficial in exploring multiple options. This has been seen elsewhere,
where increased communication prompted engaging with different perspectives providing a more holistic
awareness of security [48].

The social structures of a company have been seen to impact upon how developers make decisions, with
individuals seeking advice from people perceived to be their peers rather than security experts, over fears of
time-wasting [55]. This could become problematic when peers provide incorrect information. Risks may end
up being downplayed or disregarded by those without the required knowledge.

5 DISCUSSION

In our analysis, three key emergent themes were identified in how software developers discussed their
development of secure software. We present these as a trio of equal-weighted aspects of security perceptions,
ROaR: Responsibility, Optimism, and Risk. We highlight three subthemes of responsibility: where devel-
opers diffuse responsibility between teams or technology; displace responsibility towards senior employees;
and acceptance of responsibility. The theme of optimism highlighted several instances where individuals
demonstrated potentially overly optimistic views about the development process, particularly in terms of
security. Finally, risks and uncertainty in the development process were framed in terms of appetite and the
risks that individuals deem acceptable, how they mitigated issues, and the direction of which risks faced.

Manuscript submitted to ACM

173

20 Ivory et al.

Our research and the findings provide examples of how general theories such as the social identity approach
can be mapped and deployed in software engineering domains with a focused and practical manner. The
theories we use are not the only theories appropriate for interpreting the data but represent how they can
be applied. Previous work has suggested the psychology literature is vast but affords little applicability to
software engineering [94], however we provide evidence to show that within the language used by developers,
instances of responsibility, optimism and risk can be identified, and interpreted using general theories from
psychology.

5.1 Responsibility

Responsible software development is critical because the use of software can have tangible consequences for
society [54]. While some developers may perceive software development solely as a problem-solving exercise,
allowing them to reduce personal responsibility for the ethical impacts of software [26], the reality is that
software can have a profound impact on the people who use it or are affected by its (mis)behaviour.

Through the analysis of the data, we identified three theories of responsibility that can be applied to
the language used by software developers around security. We demonstrated that examples of diffusion,
displacement, and acceptance can be seen within the language used. The examples can also be linked to the
more general theory of social identity, with acceptance of responsibility typically being linked to an increase
in shared identities between individuals.

Diffusion of responsibility was exemplified through expectations of others reviewing code, using personal
language (“us” and “teammates”, not “them”) indicating increased trust, and diffusion through trusting
in tools and technology created by others. Where diffusion was seen through expectations, self-perceived
responsibility is typically reduced as groups or teams grow larger. Solo freelancers cannot assume others will
handle responsibility for the simple fact that no one else is involved in the project. In these situations, we
highlighted examples of where developers diffused using the third-party tools and technology.

Others trust in their peers to follow procedures and to test their work as well. This can break down
through diffusion and social loafing if everyone believes that they do not need to fully test their code as
it will be picked up by their peers, whom they trust to operate to high standards. Depending on group
factors, such as size or dispersion, diffusion behaviours can be increased as teams get larger or less connected
(geographically or through communication), and individual’s feeling like their actions contribute little to the
team goal [3].

We suggest that it may be possible that developers use tools developed by other software engineers and
make assumptions they have been tested for functionality and security. Whilst the sample consisted of
freelancers, not all were solely independent workers, indicated by some referencing working in groups or in
larger projects. Security has been described as event-driven [40], with a reliance on psychologically external
cues to initiate security behaviours, such as static analysis tools or stakeholder requirements. As a result,
developers were found to lack ownership over security which can be interpreted as a rejection of responsibility
via diffusion or displacement. Lopez et al. [40] found developers often rely upon security defaults within the
tools used which reflects the diffusion via technology presented in the current research.

Social identity and the notion of shared identities can also play a role in diffusion, where a mistaken
assumption from an individual that another shares an identity that values security results in an expectation
that security will be assessed in the group. When the shared value is not present, it is easier for developers
Manuscript submitted to ACM

174

Responsibility, Optimism And Risk in developers’ security perceptions 21

to focus on their own values (such as fast project completion) than to consider others. Xie et al. [93] also
identified developers’ perceptions of others being responsible for security, referring to this as a misplaced
sense of trust.

In displacing responsibility, developers mentioned senior employees or managers, using institutional policies
or documents, or towards clients and stakeholders. It is important to note that we are not suggesting that
these are inappropriate avenues to entrust responsibility, but instead we offer examples of where displacement
may occur, resulting in weakened software. When referring to management or senior employees, the personal
language used indicated a difference in social identities, with a distinction between the personal and the
other (“they” and “them”). The absence of a shared identity affords the developer an easier way to refuse a
responsibility for security.

With institutional policy, there are circumstances where this is best practice or gold standard, but there
are also instances where this is not the case. One respondent (F69) found their employer had very loose
requirements over security, to which they made no mention of ensuring security themselves. As Poller et al.
[63] found, developers prioritised aligning their behaviours with management’s policies over enacting personal
values of security, highlighting instances of displacing responsibility.

The acceptance of responsibility can be linked to the concept of shared values and how intergroup
and intragroup relations are experienced. The trust placed in developers by users becomes an aspect of
user expectations, which motivate responsibility for security [93]. In doing so, developers may perceive
users as being more identifiable and possessing some form of shared group identity, perhaps through the
common interest in the software, which enhances developers’ motivation to meet user expectations [81].
These ideas reflect the present research findings of acceptance of responsibility, reflecting greater attention
given towards tasks and an awareness of the consequences of their decisions, which can increase engagement
and performance [71].

The acceptance of responsibility, and handling of risk can also be linked with social identity. The social
connection with risks directed towards others was practically non-existent in participant responses, indicating
minimal concern for consequences to others. When considering risks towards oneself, the language used
was personal and more emotional, indicating that a risk such as software failure was a direct attack on
the individual’s identity, resulting in efforts to regain their self-perceived identity [21]. Where a value of
the software developer identity is “producing quality software”, failing to achieve this value would directly
challenge their identity.

Treating developers as ethically responsible individuals, rather than simply rewarding good behaviour
encourages developers to internalise the ethical and social implications of their actions, with less need
to reject responsibility [11]. Managers should motivate developers to consider the social implications of
their code and the dangers of assuming others are responsible. Freelancers can also apply these findings by
creating questions for potential clients or stakeholders about the software’s social implications to not only
create a discussion space, but to provide self-reinforcing responsibility. Increasing their own accountability
by de-anonymising themselves can also help increase responsibility.

In practice, employers can use these findings to encourage team leaders and managers to foster a stronger
security culture. A strong top-down culture ensures that values relating to security considered important by
management will be adopted by all members of the organisation. This small change in work environment

Manuscript submitted to ACM

175

22 Ivory et al.

can improve personal responsibility through social identity theory. Further work may be required to identify
effective ways of nurturing and developing these cultures in existing workplaces.

Takeaway Message 1: Theories of responsibility can be applied to software development
cultures, and employers and employees should consider how to motivate responsibility throughout
an organisation when considering security.

5.2 Optimism Bias

Optimism bias was identified throughout the responses from developers and represents one of the many
potential biases affecting software development [47]. The presence of biases indicates the use of system 1
processing, the intuitive, heuristic-based style of cognition. The unrealistic optimism bias was linked with
contrasting opinions to reality. Developers saw themselves as capable of identifying security issues and
resolving these in the short term, whereas research showing developers are typically blind to security issues
[56], suggesting our participants experienced optimistic perspectives. Another optimistic perspective was
about likelihood of being a victim of insecure code or malicious actors. Unrealistically optimistic views have
strong implications on software security, as this can feed into motivation reduction and responsibility to
code securely. Optimism bias was also seen in risk appetites, where developers believed they provide secure
code by default and so focussing on security is not worth considering, or in optimism that they are only at
risk of the vulnerabilities they have dealt with in the past.

Examples included reduced security testing through optimism over not being a victim of hackers, or
through a belief that they possess enough security knowledge and that they cover all possibilities. The
presence of optimistic beliefs suggests that system 1 processing is being engaged during the software
development process, meaning that there is the possibility for reduced awareness of the need for security. We
highlight that dual processing theory of decision making is an appropriate psychological theory to be applied
to the software development cycle. Despite it being a general theory typically tested and built using general
populations, we identify examples of system 1 processing via optimism bias. By mapping this theory onto
software engineering, we offer a fresh perspective into why security is often handled in less-than-ideal ways.

Takeaway Message 2: Optimism bias can affect developer’s perceptions and behaviours, in
turn influencing the software they produce. Being aware this can be identified through language;
the way developers talk about security can provide insight into whether increased awareness of
security is needed.

5.3 Risk & Uncertainty

The psychological literature draws links between system 2 processing, the more reflective, deliberate processing
style, and awareness of risk [24]. By drawing out references to risk appetites, mitigation, direction of risk,
and those responsible for vulnerabilities, we present evidence of the presence of system 2 processing in
software development. This further supports our suggestion that dual processing theory is a relevant theory
to apply to software development.

Passive risk appetites were linked with prioritising functionality and delaying security implementation.
Active appetites involved increasing functional requirements, reducing security testing through time con-
straints, or entering technical debt. Decision makers should be aware of decisions that deprioritise security
through passive or active decisions. Passive risk appetites can be dangerous as the focus is not about reducing
Manuscript submitted to ACM

176

Responsibility, Optimism And Risk in developers’ security perceptions 23

security but increasing functionality which is viewed positively. By acknowledging the existence of these
risky decisions, security can potentially be seen as more salient during decision making. Risk appetites can
be influenced by both system 1 or system 2 processing, and without further testing, it is not possible to
draw strong inferences from our present findings. Our findings do indicate the presence of different methods
of handling decisions around security, and the mention of active and passive risk appetites suggests that
theories of decision making are appropriate to apply here. Drawing upon other research, we know that
priming developers for secure coding has a positive influence [57], indicating the link between security and
system 2 processing.

Security has been seen to be considered a lower priority than functionality [37], and this may be attributed
to the more visible nature of functional requirements [78], which means that during the interaction with
software, security becomes less salient, which ties into our findings on passive risk appetites. If developers
behave passively during the software development process, they are at greater risk of producing insecure
code.

Risk mitigation was commonly mentioned in line with planning and testing with a security perspective,
but a variety of biases can affect successful mitigation practices, such as unrealistic optimism or confirmation
bias. To successfully mitigate risks, developers need to possess security knowledge, a willingness to look
for issues and understand how to mitigate the issues. By creating a top-down security emphasis, group
behaviours will align with security awareness, increasing the likelihood of deliberate judgements being made,
reducing biases, and promoting system 2 thinking.

Consequences of risk were associated with personal risk more than risk to others. Individuals are motivated
to avoid losses [36], and so decisions viewed as potential losses motivate developers to attend to these risks.
Risks to others were commonly associated with an absence of emotional connection. By keeping this social
distance, developers can accept greater risks for others [64]. Whilst risk is predominantly associated with
cognition and decision making, in terms of consequences we also draw upon social identity theory, where a
lack of shared identity affords the developers to keep an emotional perspective away from their code.

The theme of bad code versus bad actors highlights different representations of potential risk in a security
context. Bad code was associated with instances where developers reduced actions around security inclusion
or testing when faced with deadlines, providing further evidence to the idea that functionality is considered
more important than security [40] and is knowingly prioritised by developers. Others attributed poor code to
a lack of care or awareness in their code, indicating an increased need for clear attribution of responsibility.
In doing so, and as highlighted in the responsibility theme, increased responsibility may lead to increased
care and awareness of an individual’s actions and choices.

Mentions of bad actors impacting software mentioned edge cases, indicated the existence of security
blindspots, which have been seen to exist in previous empirical work [56]. Other mentions of bad actors
were associated with the consequences of having software compromised or data stolen. This could be linked
to a notion that bad actors often utilise attack vectors that are not anticipated, or even non-technical, such
as using phishing attempts to gain user credentials for easier access. Some developers mentioned that their
software was only used internally, and so security was not necessary despite the potential for bad actors to
use social engineering to gain access to information or data.

Manuscript submitted to ACM

177

24 Ivory et al.

Takeaway Message 3: Passive risk appetites and poor risk mitigation strategies are likely linked
with intuitive system 1 processing and less reflective thinking. Dual processing theory holds value
for interpreting software developer’s decision making around risk.

In this research, we propose that two general psychological theories, social identity theory and dual
processing theory of decision making can be successfully mapped and deployed within software development
research. It is important to make these key links between well-established theories in social and cognitive
psychology and the domain of software development. It is well understood that software security is a complex
topic, with vulnerabilities constantly being identified [86], but we demonstrate in the present study, that the
theories of social identity and dual processing have relevant applications within software security research.

5.4 Threats to Validity

5.4.1 Internal. The study design meant that participants could provide very short answers of ten or less
words (nine participants wrote at least one short response), so some responses were not as rich as expected.
This was seen more in the developer sample and may be due to the recruitment method used. Upwork is
primarily for software development jobs rather than research, and so participants may be motivated to finish
as fast as possible to maximise pay rewards. Other methods for eliciting high quality qualitative data need
to be considered for future, such as in-person interviews, however it is acknowledged that the present study
design allowed for many participants to be included, reducing the effect of the individual short responses on
the overall data quality.

Differences in how language is used can affect the interpretation of the responses. Applying a Western-
centric, native English-speaking view on these responses may alter the original participants’ beliefs. When
reading and coding data, multiple readings were used to try and gain the best understanding of the underlying
point, rather than focussing on face value of the text. Differences in perspective and language skill will
always occur in thematic analyses, and this is acknowledged. Further research may look to focus on smaller
communities of developers to build a localised representation of their views.

The study design meant that participants were aware that the study was interested in software security,
as it was stated in both the title and description of the study. Consequently, participants were primed for
security through information sheets and the questions asked, potentially resulting in them emphasising their
security and downplaying dangerous risk appetites. Despite this, responses were not homogeneous, and did
not all present a pro-security, zero-risk view. If the security aspect of the research attracted security-conscious
participants, we would have anticipated watertight responses regarding their security in software. As this
isn’t seen, it is unlikely that the absence of obfuscation significantly affected the data quality.

The data analysis was carried out by the first author, and consequently the codes and themes are
potentially impacted by their personal biases and perspectives. The coder’s perspective is acknowledged to
be that primarily of a psychological interest. The initial codes and themes that emerged are consequently
psychologically related. During theme review, the interdisciplinary combination of the authors was leveraged
through discussions over the relevance and impact of the themes.

5.4.2 External. A key limitation of the study is generalisability. The study was carried out via an online
survey asking freelance developers and CS students about their security and risk during the software
development process. Not all developers fall into these categories, and most of the software that is distributed
Manuscript submitted to ACM

178

Responsibility, Optimism And Risk in developers’ security perceptions 25

on a large, global scale is written by employed developers in organisations. It is important to understand
how the findings may relate to other populations of developers not addressed in this research. Freelancers are
a community used in previous research as an easier population to collect data from than organisations. One
benefit of using freelancers is that they represent a diverse community, with potentially less influence from
their employer (conducting a study within a single organisation limits generalisability to the organisation’s
security culture).

A potential threat to data validity are the sources. Upwork is primarily for recruiting freelancers for
software projects not academic research, and vice versa for Prolific. Data quality might be affected by
source – for example we lacked the means to verify claims of expertise and experience of freelancers, while
Prolific has built-in quality control processes and guardrails. For Upwork, there are no such controls, and
users are primarily incentivised by receiving positive feedback on their work to continue receiving job offers.
Five applicants were removed due to not meeting criteria, and one suspected of being a duplicate account.
Nonetheless, Upwork is a recruitment tool that has been used previously in software engineering research
and represents a method of recruiting freelance engineers from a diverse pool.

Our findings are reliant on the idea that the identified themes and language used by participants reflects
their actions within software development, but without further data these links cannot be made in the
present study. Key objectives from this project were, first, to consider whether developers’ views about
software projects produced coherent themes and, second, to evaluate how these might speak to psychological
constructs from different domains. The claims or conclusions from our work therefore lay the foundation
upon which other research can test, confirm, complement, or challenge the generality of the conclusions here.
We are reassured that the findings from the present study have good support in the psychology, cybersecurity,
and software engineering research communities as noted in the discussion.

5.5 Future Research

Our future research will investigate how risk aversion, responsibility and biases identified in language used
around software development are reflected in the code written by the same developers. Understanding
whether developers who demonstrate greater risk aversion produce more secure software than those with
larger risk appetites is important for identifying areas of interest to focus on.

A study combining a code comprehension or code writing paradigm, with a scenario-based measure of
perceived responsibility and risk appetite, along with a qualitative examination of developers’ responsibility
and risk aversion (as used in the present research) could achieve this result. A quantitative examination of
secure code comprehension or production, through developers’ self-reported perceptions could allow us to
understand how developers’ actions are reflected in the language used in discussing secure software.

6 CONCLUSION

Developers’ understanding of responsibility, security and risk was examined, with links to psychological
theories for explanations. We identified ROaR, three themes were identified of responsibility, optimism,
and risk & uncertainty. Evidence for the influences of how responsibility was viewed, how risk was framed
and handled, and core cognitive biases was presented. Implications spoke to motivating developers to take
responsibility for their contribution to software, as well as identifying areas of risk that are likely to occur
and reducing over-optimistic views on security. Through these themes, we present examples of how two core

Manuscript submitted to ACM

179

26 Ivory et al.

theories of psychology, social identity theory and dual processing theory, can be applied to software security.
We highlight how these general theories can be mapped to the complex environment of software development
with success, advocating the continued application of these theories in software engineering research.

Manuscript submitted to ACM

180

Responsibility, Optimism And Risk in developers’ security perceptions 27

REFERENCES
[1] Dominic Abrams and Michael Hogg. 1990. An Introduction to the Social Identity Approach. In Social Identity Theory:

Constructive and Critical Advances. Harvester Wheatsheaf, London, United Kingdom, 1–9.
[2] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L. Mazurek, and Sascha Fahl. 2017.

Developers Need Support, Too: A Survey of Security Advice for Software Developers. In 2017 IEEE Cybersecurity
Development (SecDev). IEEE, Cambridge, MA, USA, 22–26. https://doi.org/10.1109/SecDev.2017.17

[3] Omar A. Alnuaimi, Lionel P. Robert, and Likoebe M. Maruping. 2010. Team Size, Dispersion, and Social Loafing
in Technology-Supported Teams: A Perspective on the Theory of Moral Disengagement. Journal of Management
Information Systems 27, 1 (July 2010), 203–230. https://doi.org/10.2753/MIS0742-1222270109

[4] Vaibhav Anu, Kazi Zakia Sultana, and Bharath K. Samanthula. 2020. A Human Error Based Approach to Understand-
ing Programmer-Induced Software Vulnerabilities. In 2020 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). 49–54. https://doi.org/10.1109/ISSREW51248.2020.00036

[5] Hala Assal and Sonia Chiasson. 2018. Security in the Software Development Lifecycle. In Proceedings of the Fourteenth
USENIX Conference on Usable Privacy and Security. USENIX Association, Baltimore, MD, USA, 281–296. https:
//doi.org/10.5555/3291228.3291251

[6] Ann Elisabeth Auhagen and Hans-Werner Bierhoff. 2002. Responsibility: The Many Faces of a Social Phenomenon.
Taylor & Francis, Oxfordshire, United Kingdom.

[7] Andreas Backevik, Erik Tholén, and Lucas Gren. 2019. Social Identity in Software Development. In 12th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, Montreal, QB, Canada,
107–114. https://doi.org/10.1109/chase.2019.00033

[8] Daniel Balliet, Junhui Wu, and Carsten K. W. De Dreu. 2014. Ingroup Favoritism in Cooperation: A Meta-Analysis.
Psychological Bulletin 140 (2014), 1556–1581. https://doi.org/10.1037/a0037737

[9] Albert Bandura. 1986. Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall, Inc,
Englewood Cliffs, NJ, US. xiii, 617 pages.

[10] Albert Bandura. 2002. Selective Moral Disengagement in the Exercise of Moral Agency. Journal of Moral Education
31, 2 (June 2002), 101–119. https://doi.org/10.1080/0305724022014322

[11] Melissa S. Baucus and Caryn L. Beck-Dudley. 2005. Designing Ethical Organizations: Avoiding the Long-Term
Negative Effects of Rewards and Punishments. Journal of Business Ethics 56, 4 (Feb. 2005), 355–370. https:
//doi.org/10.1007/s10551-004-1033-8

[12] Klara Borowa, Andrzej Zalewski, and Szymon Kijas. 2021. The Influence of Cognitive Biases on Architectural Technical
Debt. In 2021 IEEE 18th International Conference on Software Architecture (ICSA). IEEE, Stuttgart, Germany,
115–125. https://doi.org/10.1109/ICSA51549.2021.00019

[13] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology. Qualitative research in psychology
3, 2 (2006), 77–101. https://doi.org/10.1191/1478088706qp063oa

[14] Marilynn B. Brewer. 2017. Intergroup Discrimination: Ingroup Love or Outgroup Hate? In The Cambridge Handbook
of the Psychology of Prejudice. Cambridge University Press, New York, NY, US, 90–110. https://doi.org/10.1017/
9781316161579.005

[15] Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha M. Myers, and Natalie C. Ebner. 2023. Blindspots in Python and
Java APIs Result in Vulnerable Code. ACM Transactions on Software Engineering and Methodology (April 2023).
https://doi.org/10.1145/3571850

[16] Roger Buehler, Dale Griffin, and Michael Ross. 1994. Exploring the ”Planning Fallacy”: Why People Underestimate
Their Task Completion Times. Journal of personality and social psychology 67, 3 (1994), 366. https://doi.org/10.
1037/0022-3514.67.3.366

[17] Justin Cappos, Yanyan Zhuang, Daniela Seabra Oliveira, Marissa Rosenthal, and Kuo-Chuan Yeh. 2014. Vulnerabilities
as Blind Spots in Developer’s Heuristic-Based Decision-Making Processes. In Proceedings of the 2014 Workshop on
New Security Paradigms Workshop - NSPW ’14. ACM Press, Victoria, British Columbia, Canada, 53–62. https:
//doi.org/10.1145/2683467.2683472

[18] Samuel Chng, Han Yu Lu, Ayush Kumar, and David Yau. 2022. Hacker Types, Motivations and Strategies: A
Comprehensive Framework. Computers in Human Behavior Reports 5 (March 2022), 100–167. https://doi.org/10.
1016/j.chbr.2022.100167

[19] Hein Duijf. 2021. Should One Trust Experts? Synthese 199, 3 (Dec. 2021), 9289–9312. https://doi.org/10.1007/
s11229-021-03203-7

[20] Serge Egelman and Eyal Peer. 2015. Scaling the Security Wall: Developing a Security Behavior Intentions Scale (SeBIS).
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). Association
for Computing Machinery, New York, NY, USA, 2873–2882. https://doi.org/10.1145/2702123.2702249

Manuscript submitted to ACM

181

28 Ivory et al.

[21] Naomi Ellemers, Russell Spears, and Bertjan Doosje. 2002. Self and Social Identity. Annual review of psychology 53, 1
(2002), 161–186. https://doi.org/10.1146/annurev.psych.53.100901.135228

[22] Jonathan St. B. T. Evans. 2003. In Two Minds: Dual-Process Accounts of Reasoning. Trends in Cognitive Sciences 7,
10 (Oct. 2003), 454–459. https://doi.org/10.1016/j.tics.2003.08.012

[23] John Martin Fischer and Mark Ravizza. 1998. Responsibility and Control: A Theory of Moral Responsibility. Cambridge
University Press.

[24] Shane Frederick. 2005. Cognitive Reflection and Decision Making. Journal of Economic perspectives 19, 4 (2005),
25–42. https://doi.org/10.1257/089533005775196732

[25] Alisa Frik, Juliann Kim, Joshua Rafael Sanchez, and Joanne Ma. 2022. Users’ Expectations About and Use of Smartphone
Privacy and Security Settings. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–24. https://doi.org/10.1145/3491102.3517504

[26] Donald Gotterbarn. 2001. Informatics and Professional Responsibility. Science and Engineering Ethics 7, 2 (June
2001), 221–230. https://doi.org/10.1007/s11948-001-0043-5

[27] Margaret Gratian, Sruthi Bandi, Michel Cukier, Josiah Dykstra, and Amy Ginther. 2018. Correlating Human Traits and
Cyber Security Behavior Intentions. Computers & Security 73 (March 2018), 345–358. https://doi.org/10.1016/j.cose.
2017.11.015

[28] Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve, and Awais Rashid. 2021. “Do This! Do That!, And Nothing Will
Happen” Do Specifications Lead to Securely Stored Passwords?. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 486–498. https://doi.org/10.1109/ICSE43902.2021.00053

[29] Julie M Haney, Mary F Theofanos, Yasemin Acar, and Sandra Spickard Prettyman. 2018. ”We Make It a Big
Deal in the Company”: Security Mindsets in Organizations That Develop Cryptographic Products. In USENIX
Conference on Usable Privacy and Security (SOUPS ’18). USENIX Association, Baltimore, MD, USA, 17. https:
//doi.org/10.5555/3291228.3291257

[30] S. Alexander Haslam. 2012. The Social Identity Approach. In Psychology in Organizations: The Social Identity
Approach (2 ed.). SAGE Publications Ltd, London, 17–39. https://doi.org/10.4135/9781446278819

[31] Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of Software Developers in Open Source
Projects: An Internet-based Survey of Contributors to the Linux Kernel. Research Policy 32, 7 (July 2003), 1159–1177.
https://doi.org/10.1016/S0048-7333(03)00047-7

[32] Michael Hogg and Graham Vaughan. 2017. Social Psychology. Pearson Education, Limited, Harlow, United Kingdom.
[33] Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2023. Recognizing the Known Unknowns;

the Interaction Between Reflective Thinking and Optimism for Uncertainty Among Software Developer’s Security
Perceptions. Technology, Mind, and Behavior 4, 3: Winter 2023 (Dec. 2023). https://doi.org/10.1037/tmb0000122

[34] Daniel Kahneman. 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux, New York, NY, USA.
[35] Daniel Kahneman, Paul Slovic, and Amos Tversky (Eds.). 1974. Judgment under Uncertainty: Heuristics and Biases

(1st ed.). Cambridge University Press, Cambridge, United Kingdom.
[36] Daniel Kahneman and Amos Tversky. 1979. Prospect Theory: An Analysis of Decision under Risk. Econometrica 47, 2

(1979), 263–291. https://doi.org/10.2307/1914185 arXiv:1914185
[37] Iacovos Kirlappos, Adam Beautement, and M. Angela Sasse. 2013. “Comply or Die” Is Dead: Long Live Security-

Aware Principal Agents. In Financial Cryptography and Data Security, David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan,
Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Andrew A.
Adams, Michael Brenner, and Matthew Smith (Eds.). Vol. 7862. Springer Berlin Heidelberg, Berlin, Heidelberg, 70–82.
https://doi.org/10.1007/978-3-642-41320-9 5

[38] Markus Knauff and Ann G. Wolf. 2010. Complex Cognition: The Science of Human Reasoning, Problem-Solving, and
Decision-Making. Cognitive Processing 11, 2 (May 2010), 99–102. https://doi.org/10.1007/s10339-010-0362-z

[39] Mark Levine, Amy Prosser, David Evans, and Stephen Reicher. 2005. Identity and Emergency Intervention: How Social
Group Membership and Inclusiveness of Group Boundaries Shape Helping Behavior. Personality & Social Psychology
Bulletin 31, 4 (April 2005), 443–453. https://doi.org/10.1177/0146167204271651

[40] Tamara Lopez, Helen Sharp, Thein Tun, Arosha K. Bandara, Mark Levine, and Bashar Nuseibeh. 2019. ”Hopefully We
Are Mostly Secure”: Views on Secure Code in Professional Practice. In 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). IEEE, Montreal, QB, Canada, 61–68. https://doi.org/10.
1109/chase.2019.00023

[41] Tamara Lopez, Helen Sharp, Thein Tun, Arosha K. Bandara, Mark Levine, and Bashar Nuseibeh. 2022. Security
Responses in Software Development. ACM Transactions on Software Engineering and Methodology (Aug. 2022).
https://doi.org/10.1145/3563211

Manuscript submitted to ACM

182

Responsibility, Optimism And Risk in developers’ security perceptions 29

[42] Tamara Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh, and H. Sharp. 2019. An Anatomy of Security Conversations
in Stack Overflow. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering
in Society (ICSE-SEIS). 31–40. https://doi.org/10.1109/ICSE-SEIS.2019.00012

[43] Tamara Lopez, Thein Than Tun, Arosha K. Bandara, Mark Levine, Bashar Nuseibeh, and Helen Sharp. 2020. Taking
the Middle Path: Learning About Security Through Online Social Interaction. IEEE Software 37, 1 (Jan. 2020), 25–30.
https://doi.org/10.1109/MS.2019.2945300

[44] Kai-Uwe Loser and Martin Degeling. 2014. Security and Privacy as Hygiene Factors of Developer Behavior in Small and
Agile Teams. In ICT and Society (IFIP Advances in Information and Communication Technology). Springer, Berlin,
Heidelberg, 255–265. https://doi.org/10.1007/978-3-662-44208-1 21

[45] Donald G. Marquis. 1962. Individual Responsibility and Group Decisions Involving Risk. Industrial Management
Review 3, 2 (1962), 8.

[46] Marie McAuliffe and Anna Triandafyllidou. 2021. World Migration Report 2022. international organisation for migration,
17 Route des Morillons, 1211 Geneva 19, Switzerland.

[47] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodŕıguez, and Paul Ralph. 2020. Cognitive Biases in Software
Engineering: A Systematic Mapping Study. IEEE Transactions on Software Engineering 46, 12 (Dec. 2020), 1318–1339.
https://doi.org/10.1109/TSE.2018.2877759

[48] Kjetil Mølokken and Magne Jørgensen. 2005. Expert Estimation of Web-Development Projects: Are Software Professionals
in Technical Roles More Optimistic Than Those in Non-Technical Roles? Empirical Software Engineering 10, 1 (Jan.
2005), 7–30. https://doi.org/10.1023/B:EMSE.0000048321.46871.2e

[49] Sohaib Mustafa, Wen Zhang, and Muhammad Mateen Naveed. 2023. What Motivates Online Community Contributors to
Contribute Consistently? A Case Study on Stackoverflow Netizens. Current Psychology 42, 13 (May 2023), 10468–10481.
https://doi.org/10.1007/s12144-022-03307-4

[50] Clifford Mynatt and Steven J. Sherman. 1975. Responsibility Attribution in Groups and Individuals: A Direct Test of
the Diffusion of Responsibility Hypothesis. Journal of Personality and Social Psychology 32, 6 (Dec. 1975), 1111–1118.
https://doi.org/10.1037/0022-3514.32.6.1111

[51] Alena Naiakshina. 2020. Don’t Blame Developers! Examining a Password-Storage Study Conducted with Students,
Freelancers, and Company Developers. (Dec. 2020).

[52] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, and Matthew Smith. 2019. ”If You Want,
I Can Store the Encrypted Password”: A Password-Storage Field Study with Freelance Developers. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300370

[53] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir, and Sascha Fahl. 2017. A Stitch in
Time: Supporting Android Developers in Writing Secure Code. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Dallas Texas USA, 1065–1077. https://doi.org/10.1145/3133956.
3133977

[54] Steven P. Nichols. 1997. Professional Responsibility: The Role of the Engineer in Society. Science and Engineering
Ethics 3, 3 (Sept. 1997), 327–337. https://doi.org/10.1007/s11948-997-0039-x

[55] James Nicholson, Lynne Coventry, and Pam Briggs. 2018. Introducing the Cybersurvival Task: Assessing and Addressing
Staff Beliefs about Effective Cyber Protection. In Fourteenth Symposium on Usable Privacy and Security (SOUPS
2018). 443–457.

[56] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul
Bobhate, Lois A. DeLong, Justin Cappos, and Yuriy Brun. 2018. {API} Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). 315–328.

[57] Daniela Seabra Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cappos, and Yanyan Zhuang. 2014.
It’s the Psychology Stupid. In Proceedings of the 30th Annual Computer Security Applications Conference. Association
for Computing Machinery, New Orleans, LA, USA, 296–305. https://doi.org/10.1145/2664243.2664254

[58] Julius Pahlke, Sebastian Strasser, and Ferdinand M. Vieider. 2012. Risk-Taking for Others under Accountability.
Economics Letters 114, 1 (Jan. 2012), 102–105. https://doi.org/10.1016/j.econlet.2011.09.037

[59] Julius Pahlke, Sebastian Strasser, and Ferdinand M. Vieider. 2015. Responsibility Effects in Decision Making under
Risk. Journal of Risk and Uncertainty 51, 2 (Oct. 2015), 125–146. https://doi.org/10.1007/s11166-015-9223-6

[60] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay Ligatti, and Xinming Ou. 2020. An Ethnographic Understanding
of Software ({In)Security} and a {Co-Creation} Model to Improve Secure Software Development. In Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020). 205–220.

[61] Andrew S. Patrick, A. Chris Long, and Scott Flinn. 2003. HCI and Security Systems. In CHI ’03 Extended Abstracts
on Human Factors in Computing Systems (CHI EA ’03). Association for Computing Machinery, New York, NY, USA,
1056–1057. https://doi.org/10.1145/765891.766146

Manuscript submitted to ACM

183

30 Ivory et al.

[62] Andreas Poller, Laura Kocksch, Katharina Kinder-Kurlanda, and Felix Anand Epp. 2016. First-Time Security Audits as
a Turning Point? Challenges for Security Practices in an Industry Software Development Team. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’16). Association for
Computing Machinery, New York, NY, USA, 1288–1294. https://doi.org/10.1145/2851581.2892392

[63] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katharina Kinder-Kurlanda. 2017. Can Security
Become a Routine?: A Study of Organizational Change in an Agile Software Development Group. In Proceedings of the
2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. ACM, Portland Oregon
USA, 2489–2503. https://doi.org/10.1145/2998181.2998191

[64] Evan Polman and Kaiyang Wu. 2020. Decision Making for Others Involving Risk: A Review and Meta-Analysis. Journal
of Economic Psychology 77 (March 2020), 102184. https://doi.org/10.1016/j.joep.2019.06.007

[65] Paul Ralph. 2011. Toward a Theory of Debiasing Software Development. In Research in Systems Analysis and Design:
Models and Methods (Lecture Notes in Business Information Processing), Stanis law Wrycza (Ed.). Springer, Berlin,
Heidelberg, 92–105. https://doi.org/10.1007/978-3-642-25676-9 8

[66] Paul Ralph and Ewan Tempero. 2016. Characteristics of Decision-Making during Coding. In Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering (EASE ’16). Association for
Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/2915970.2915990

[67] Rémi Rampin and Vicky Rampin. 2021. Taguette: Open-Source Qualitative Data Analysis. Journal of Open Source
Software 6, 68 (Dec. 2021), 3522. https://doi.org/10.21105/joss.03522

[68] Irum Rauf, Tamara Lopez, Helen Sharp, Marian Petre, Thein Tun, Mark Levine, John Towse, Dirk van der Linden,
Awais Rashid, and Bashar Nuseibeh. 2022. Influences of Developers’ Perspectives on Their Engagement with Security in
Code. In 2022 IEEE/ACM 15th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, Washington, D.C., USA, 86–95. https://doi.org/10.1145/3528579.3529180

[69] Irum Rauf, Marian Petre, Thein Tun, Tamara Lopez, Paul Lunn, Dirk Van Der Linden, John Towse, Helen Sharp, Mark
Levine, Awais Rashid, and Bashar Nuseibeh. 2021. The Case for Adaptive Security Interventions. ACM Transactions
on Software Engineering and Methodology 31, 1 (Sept. 2021), 9:1–9:52. https://doi.org/10.1145/3471930

[70] Irum Rauf, Dirk van der Linden, Mark Levine, John Towse, Bashar Nuseibeh, and Awais Rashid. 2020. Security
but Not for Security’s Sake. In ICSEW’20: Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops. Association for Computing Machinery, Seoul, Republic of Korea, 141–144. https:
//doi.org/10.1145/3387940.3392230

[71] Richard M Ryan and Edward L Deci. 2000. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social
Development, and Well-Being. American Psychologist 55, 1 (2000), 67. https://doi.org/10.1037/0003-066X.55.1.68

[72] M. A. Sasse, S. Brostoff, and D. Weirich. 2001. Transforming the ‘Weakest Link’ — a Human/Computer Interaction
Approach to Usable and Effective Security. BT Technology Journal 19, 3 (July 2001), 122–131. https://doi.org/10.
1023/A:1011902718709

[73] Christine Satchell and Paul Dourish. 2009. Beyond the User: Use and Non-Use in HCI. In Proceedings of the 21st
Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7. ACM,
Melbourne Australia, 9–16. https://doi.org/10.1145/1738826.1738829

[74] Helen Sharp, Hugh Robinson, and Mark Woodman. 2000. Software Engineering: Community and Culture. IEEE
Software 17, 1 (Jan. 2000), 40–47. https://doi.org/10.1109/52.819967

[75] Ben Shreeve, Catarina Gralha, Awais Rashid, João Araujo, and Miguel Goulão. 2022. Making Sense of the Unknown:
How Managers Make Cyber Security Decisions. ACM Transactions on Software Engineering and Methodology (Aug.
2022). https://doi.org/10.1145/3548682

[76] S.W. Smith. 2003. Humans in the Loop: Human-Computer Interaction and Security. IEEE Security & Privacy 1, 3
(May 2003), 75–79. https://doi.org/10.1109/MSECP.2003.1203228

[77] Mohammad Tahaei, Adam Jenkins, Kami Vaniea, and Maria Wolters. 2020. “I Don’t Know Too Much About It”: On the
Security Mindsets of Computer Science Students. In International Workshop on Socio-Technical Aspects in Security
and Trust. Springer, Copenhagen, Denmark, 20. https://doi.org/10.1007/978-3-030-55958-8

[78] Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred Security. In 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, Stockholm, Sweden, 129–138. https://doi.org/
10.1109/EuroSPW.2019.00021

[79] Henri Tajfel and John C. Turner. 2010. An Integrative Theory of Intergroup Conflict. In Rediscovering Social Identity
(1st ed.), Tom Postmes and Nyla Branscombe (Eds.). Routledge, London, United Kingdom, 56–65.

[80] Antony Tang. 2011. Software Designers, Are You Biased?. In Proceedings of the 6th International Workshop on SHAring
and Reusing Architectural Knowledge. ACM, Waikiki, Honolulu HI USA, 1–8. https://doi.org/10.1145/1988676.1988678

[81] Martin Tanis and Tom Postmes. 2005. A Social Identity Approach to Trust: Interpersonal Perception, Group Membership
and Trusting Behaviour. European Journal of Social Psychology 35, 3 (2005), 413–424. https://doi.org/10.1002/ejsp.256

Manuscript submitted to ACM

184

Responsibility, Optimism And Risk in developers’ security perceptions 31

[82] Alberto Luiz Oliveira Tavares de Souza and Victor Hugo Santiago Costa Pinto. 2020. Toward a Definition of Cognitive-
Driven Development. In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).
776–778. https://doi.org/10.1109/ICSME46990.2020.00087

[83] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An Exploration of Technical Debt. Journal of Systems and
Software 86, 6 (June 2013), 1498–1516. https://doi.org/10.1016/j.jss.2012.12.052

[84] John C. Turner, Rupert Brown, and Henri Tajfel. 1979. Social Comparison and Group Interest in Ingroup Favouritism.
European Journal of Social Psychology 9, 2 (1979), 187–204. https://doi.org/10.1002/ejsp.2420090207

[85] Dirk van der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Tun, Marian Petre, Mark Levine, John Towse, and
Awais Rashid. 2020. Schrödinger’s Security: Opening the Box on App Developers’ Security Rationale. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 149–160. https://doi.org/10.1145/3377811.
3380394

[86] Veracode. 2020. State of Software Security. Technical Report 11. Veracode.
[87] Peter Wason. 1960. On the Failure to Eliminate Hypotheses in a Conceptual Task. Quarterly Journal of Experimental

Psychology 12, 3 (July 1960), 129–140. https://doi.org/10.1080/17470216008416717
[88] Neil D. Weinstein. 1980. Unrealistic Optimism about Future Life Events. Journal of Personality and Social Psychology,

39, 5 (1980), 806–820. https://doi.org/10.1037/0022-3514.39.5.806
[89] Charles Weir, Ingolf Becker, and Lynne Blair. 2021. A Passion for Security: Intervening to Help Software Developers. In

International Conference on Software Engineering: Software Engineering in Practice. IEEE, Madrid, Spain, 21–30.
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

[90] Robert Wood and Albert Bandura. 1989. Social Cognitive Theory of Organizational Management. Academy of
Management Review 14, 3 (July 1989), 361–384. https://doi.org/10.5465/amr.1989.4279067

[91] Marvin Wyrich, Andreas Preikschat, Daniel Graziotin, and Stefan Wagner. 2021. The Mind Is a Powerful Place:
How Showing Code Comprehensibility Metrics Influences Code Understanding. arXiv:2012.09590 [cs] (Feb. 2021).
arXiv:cs/2012.09590

[92] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social Influences on Secure Development Tool Adoption:
Why Security Tools Spread. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work &
Social Computing. Association for Computing Machinery, Baltimore, MD, USA, 1095–1106. https://doi.org/10.1145/
2531602.2531722

[93] Jing Xie, Heather Richter Lipford, and Bill Chu. 2011. Why Do Programmers Make Security Errors?. In 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 161–164. https://doi.org/10.1109/
VLHCC.2011.6070393

[94] Iyad Zayour, Imad Moukadem, and Issam Moghrabi. 2013. Complexity Is in the Brain of the Beholder: A Psychological
Perspective on Software Engineering’s Ultimate Challenge. Journal of Software 8, 5 (May 2013), 1079–1085. https:
//doi.org/10.4304/jsw.8.5.1079-1085

Manuscript submitted to ACM

185

32 Ivory et al.

7 APPENDIX

Primary
Code

Secondary
Code

Description Example

Cognition decision making Reference to the need
to make decisions in a
conscious manner

“any gambles I would take would be decisions
to stray to conventional UI/UX methodology
or incorporate different new agile practices
and ways of working”

Cognition cognitive bias Reference to cognitive
biases

“i perform tests for the applications that i
make, i always try to handle all the security
issues that i have come to be accustomed
with before going forward with the application
deployment”

Development
Stages

training Reference to training “Treating user security as a priority at the
beginning of a software project is a good way
to ensure that there is some measure of pro-
tection. Another policy would be to require
ongoing security training and education for
the whole software development team”

Development
Stages

time Mentions of time as a
factor in development

“major example of this would be when you
are dealing with time constraints. Most com-
panies have only so much time to create new
programs, or else they risk financial issues. So
oftentimes a development teams has to make
the decision of whether to rush a program to
the finish line or if they should spend extra
time making sure everything works fine”

Development
Stages

ethics Mentions of ethical or
moral ideas in line with
data handling or soft-
ware development

“there are also more malicious risks in this
area; some less morally-conscious program-
mers may put their customers/users at risk
by taking a gamble on the security side of
things”

Manuscript submitted to ACM

186

Responsibility, Optimism And Risk in developers’ security perceptions 33

Development
Stages

testing software testing phase “Sometimes to improve security we should
allow intruders to hack the system, in mean-
while we need to track their activity. In this
way, we can have an idea of security flaws.
Above technique can be achieved through
white hat hackers, white hat hackers need
to be recruited and allowed to security test
the system. It is quite intuitive that hacker
will then know about the security flaws but at
the same time we need to trust the person to
get the better idea of our own security flaws
and to avoid major security flaws. ”

Development
Stages

planning/research Any actions denoting
a planned approach to
development

“The risk of potentially going wrong is with
us every time, but It can be reduced by taking
prior steps, it starts from requirement gather-
ing and then development methodologies”

Domain education a formal knowledge ac-
quisition that is sepa-
rate from training in
the development work-
place

“there is always the chance that I would get
counter hacked or just plan hacked. I could
lose the equipment in a flash, or I could get
screwed over by a larger company. At the least,
this would all just be learning experience. ”

Domain finance mentions of financial
consequences from ac-
tions, budgets or con-
sideration of money in
their development cy-
cle

“Risk of financial losses is the one if the dead-
line was not met by our team. This will affect
our team since it will inject stress to the team
members knowing that financial losses will
occur if deadline was not met”

Domain law Reference to legal mat-
ters

“Data handled by an application could be mis-
handled in other ways, causing: sensitive data
from being made unintentionally available to
unauthorised users, or data to be corrupted.
If data protection regulations are broken, I
would have broken the law, and my reputation
(and wallet) will suffer as a result”

Manuscript submitted to ACM

187

34 Ivory et al.

Emotion positive emotion Self-experienced posi-
tive emotion

“I am super happy with this projects as a pro-
fessional because I helped my client to save
millions of dollars. As a result, my client is go-
ing to pay out bonuses to their employees and
I continued to be awarded with new project
enhancements to work with”

Emotion negative emotion Self-experienced nega-
tive emotion

“I often feel overwhelmed by the fear of facing
damage to my professional reputation. At the
same time I am also at risk of having all my
hard work in vain because of functional failure
of the web application”

Functionality priority reference to functional-
ity being the priority
within the work

“some individuals(Junior Dev) who are work-
ing on features make decisions to use the open-
source packages/dependencies for faster de-
velopment. I think this gamble is not worth
it if security is a major concern. ”

Functionality failure Reference of failing
functionality

“always the chance that something minute
has gone wrong and whatever was made will
not run properly; I find that smaller problems
are often the trickiest to deal with, because
it’s harder to find what went wrong”

Functionality general Reference to general
functionality within
the software

“when i have to take data from client and to
send data to apis, i have check the data type
also.. like if there is string type needed in api
and i am sending number, so i have to validate
that at the user end”

Interpersonal team Reference to team
work or team mates

“As a team, a huge gamble I found is releas-
ing early alphas for free testing, it depends
on your clients, if they are not tech savey,
they might not understand what a bug is, or
features that are planned might be cut off
and they might assume that they might never
come or will take longer to developer than
realistic”

Interpersonal third party (peo-
ple)

reference to third party
people, such as contrac-
tors for pen-testing

“we make our research to consider the most
important security rules, and incase needed
we will be hiring security experts to provide
us with the necessary information and tools
to protect our solution”

Manuscript submitted to ACM

188

Responsibility, Optimism And Risk in developers’ security perceptions 35

Interpersonal communication
with peer

Communication be-
tween peers, managers
or those who act
within the develop-
ment area

“Another gamble worth taking is consulting
with multiple developers and having your code
checked and seen if it could be improved by
anybody. Vice versa a gamble not worth hav-
ing is not doing that and having potential
trouble in the future, it’s just not worth it”

Interpersonal communication
with client

Communication with
clients, those request-
ing or using software.
Clients/Users are con-
sidered as similar in
this context

“in the life cycle of software developments
there’s a stage where you receive the product
requirements from the clients. So what in most
cases, these products requirements are not are
not really exhaustive. So there will surely be
chunks left out that you would have to fill in
yourself. Filling this in would be, um, can be
called the gamble because it might go wrong.
It might go right”

Interpersonal (third party) prod-
uct

Mentions of third party
products or services

“Laravel seemed to take care of a lot of se-
curity concerns and having read a bunch of
articles online, i knew what to do and what
not to do. ”

Optimism optimism Indications of opti-
mism bias, such as that
they could never be in-
secure

“I’m not afraid of functional failure because
by the time the app is finished and launched
I’ll have to perform all the tests needed just
to be sure that after launching, everything
will go smoothly”

Responsibility Self Responsibility for ac-
tions or consequences
falls to an individual,
specifically a software
developer

“anything that involves a breach of customer
data or authority can have serious follow on
repercussions. The key issues to me are the
ethical dimension to the end user, by losing
the data your compromising some part of
their life that you wouldn’t want to. This
has a moral and emotional personal impact.
Outside of this there’s a reduction of profes-
sional standing for being responsible for such
a breach”

Manuscript submitted to ACM

189

36 Ivory et al.

Responsibility Other (external to
company)

Responsibility is
passed to someone
outside of the devel-
opment sphere, e.g.
clients or users. NOT
managers or other
teams

“I would allow users the right to decide
whether they want to add extra layers of
protection such as two-factor authentication
for their account, because some users prefer
the convenience of not having to authenticate
their account with each login”

Responsibility Other (person
internal to com-
pany)

Reference of responsi-
bility belong to some-
one else within the de-
velopment cycle (such
as peers or colleagues)

“the IT Security team must ensure that every
payment is secure and bank accounts of the
clients are not in danger”

Responsibility Other (object or
service internal to
company)

Responsibility that is
passed to internally
used objects - this re-
lates to APIs, frame-
works or other tools
that are considered to
be part of the software
development domain

“I usually get different third party pro-
grams/services to check over my software to
make sure that it is safe and that there isn’t re-
ally any problems or issues with it that could
lead to a vulnerability. My reasoning is that
in my opinion, it’s definitely easier to do it
this way and it is typically faster than doing
it urself”

Risk general Mention of actions,
behaviours or conse-
quences that confer
risk that are out of
the control of the de-
velopers. The existence
of risk without men-
tion of mitigation or
appetite

“The main risk is functional failure because
if the client requirements are not met then
the reason for the application is not complete
and might force them to either terminate the
arrangement or even require financial returns”

Risk Self risk Consequences pose a
risk to the individual
who started the action

“We are working only with the enterprise com-
panies so there is a huge risk of working with
such clients because you have to deliver 100%
exact thing which they have in their mind.
and if you are fail to do this your reputation ,
money , time is lost”

Manuscript submitted to ACM

190

Responsibility, Optimism And Risk in developers’ security perceptions 37

Risk Mitigation/reductionReference to efforts
made to reduce risk
within the workflow.

“if any third-party tools are being used or
any other service is used to deploy to server
first research about the service provider, their
history reviewed. after being clear about the
security of the system then only that service
is used”

Risk Risk to others Consequences pose a
risk to others out-
side of the develop-
ment sphere, such as
clients

“When the product is finished I launch se-
ries of tests depending on the functionality of
the app. I sometimes will try to use pentest
tools to check some parts of the app or even
consult with more experience pentesters. As
app developers, we are sometimes responsible
for some intimate parts of human life (of the
users). So by not protecting the app properly,
we may easily ruin someone’s life, and that’s
a huge burden to carry”

Risk Appetite Mentions of risk taking
behaviour

“we don’t take any special processes to iden-
tify risks or security vulnerabilities. I’m not
sure what the exact reasoning behind these
decisions are but I think we are more focused
on developing and maintaining the software”

Risk Avoidance Reference to gambles,
risks or uncertainty be-
ing untenable. Abso-
lutism regarding there
must be an absence of
risk

“Any risk that reduces security would never
be worth attempting unless there is little to
no data or information that would result in
possible problems if taken”

Security general Reference of security
without specific men-
tion of priority or what
kind

“security of the endpoints exposed were taken
care by either basic authentication or oauth
authentication depending on the business
needs. Some data was also being store on the
cloud and the fields involving personal data
was gdpr tagged”

Manuscript submitted to ACM

191

38 Ivory et al.

Security priority Security referred to as
a priority

“You must first of all protect your code give
access to only who’s working on that project
then think of CORS and who can use server
APIS then think of authentication then think
about failure on logic ,then may test code
against SQL injecting and attacks and test
logic too you have test many times before
launch app”

Security bad actor Active attempts to
penetrate software
from bad actors.

“Also exposing my customers to risk, by threat
actors either utilising vulnerabilities in the ap-
plication to target them, or by fully compro-
mising the solution and then initiating attacks
against them from a server stand point”

Security Secondary (not
priority)

Mention or reference
to security being less
than important, partic-
ularly under time pres-
sure and being given
less importance than
before

“The important of usability was way ahead of
security and i had a strict schedule for release -
so i had minimum of time focusing on security,
i mainly relied on Laravel to do the work for
me (which is limited i guess)”

Security bad code Mention of code that
is weak in security, but
not through bad actors,
but rather poor imple-
mentation

“There were some APIs that are not hidden
away in a VPC because I didn’t have the time
to configure them”

Security privacy Mentions of data pri-
vacy

“The recent software that we released on our
customer is a Passport Management System.
This system manages citizen data and security
is very important on the development. The
team need to make sure that no citizen data
will be exposed from Enrolment to the Deliv-
ery of the citizen passport. To make sure that
this is properly implemented, security checks
were performed all through out the project
duration. ”

Manuscript submitted to ACM

192

193

7.1 Statement of Continuous Thesis Summary

“Developers are responsible for the software they implement. . . Getting developers to care

about security is essential in order to produce software which protects its users.” -

Naiakshina et al., 2017

This chapter used the same dataset as Chapter 6 but explored the rich text responses

through a thematic analysis. This chapter reports three themes: Responsibility,

Optimism, and Risk. These are highlighted as potential ways to interpret developers’

perspectives on developer actions and behaviours and not as definitive ways of

understanding how freelance developers perceive risk.

Chapters 6 and 7 utilised different analytic approaches, with Chapter 6 adopting a

quantitative, more confirmatory approach and Chapter 7 following a qualitative

exploration of the data, and together they offer complementary analyses. There was a risk

that using a mixed-methods approach would have yielded divergent findings, complicating

the research in this area, but this was not seen. Concepts such as risk awareness were

detected through keywords in Chapter 6 and the thematic analysis which highlighted the

different ways that risk was mentioned. These two chapters demonstrate that a

mixed-methods analysis provides a more exhaustive investigation of risk perceptions.

Social identity theory (Abrams & Hogg, 1990) is relevant to secure software development,

but it has only been linked to software development a handful of times (e.g., Backevik et

al., 2019; Rauf et al., 2021). In an exploration of social identity in robotics software

engineering, Gavidia-Calderon et al. (2023) found that ethics is often deprioritised, but

conforming with a group identity increases personal responsibility, meaning that engineers

are more likely to act ethically.

With the current data, risky software behaviours declined when developers either felt a

personal risk or perceived a shared identity with software users, evidencing the role of

social identities in modifying behaviours. The social identity approach was identified as a

194

potential fundamental theory in phase 1, and this chapter provides support for its

relevance.

This chapter also strengthens the overall thesis contribution by demonstrating that the

secure behaviour of developers cannot be fully understood without accounting for social

context. In contrast to the previous chapter focused on cognition, this chapter shows how

group affiliation, specifically identification with users or the development community, can

motivate ethical and responsible coding practices. In doing so, it brings together domains

such as responsibility and communication with psychological theories that explain how

and why these skills manifest in behaviour.

In previous chapters, I have focused on exploring the perceptions of people working within

software engineering, with less opportunity to study more direct behaviours and coding

choices observed in software engineering. In the following and final research chapter, I

examine how dual processing theory applies to code comprehension tasks. Code

comprehension is a core facet of software development, as developers are frequently

expected to work with existing code. I take an existing hypothesis that security

vulnerabilities are typically handled through system 1 processing (Cappos et al., 2014),

and I apply as-yet unused (in software engineering) measures for dual processing theory

to understand the relationship between the ability to detect insecure code and the

propensity to engage in reflective styles of cognition.

7.1.1 Contribution to Thesis Argument and Forward Trajectory

This chapter advances the thesis argument by introducing social identity theory as a

critical and relevant lens for understanding secure software behaviours. While previous

chapters emphasised cognition and reasoning (such as Chapter 6), this chapter shows that

social context and group identification also play a key role. Specifically, developers

demonstrated greater responsibility and reduced risky behaviours when they identified

with end users or felt personally accountable, which is an insight that adds a

socially-grounded dimension to the psychological profile of secure software engineering.

195

This supports the thesis’s broader claim that soft skills like responsibility, ethics, and

communication are deeply influenced by both cognitive styles and social affiliations.

Importantly, this chapter continues to build the integrative case that secure software

development must be understood not merely through technical competence or isolated

traits, but through the interaction of psychological constructs, group dynamics, and

socially constructed values. As such, this chapter moves the thesis toward a more

complete behavioural model of software engineering; one that accounts for how developers

think, feel, and align themselves socially when making decisions.

To this point, the thesis has progressed from identifying soft skills and their development,

to exploring the cognitive and social psychological dimensions that underpin those skills

in security-relevant contexts. Together, Chapters 6 and 7 show that reflective thinking

and group-based responsibility are not only conceptually important but behaviourally

impactful in shaping how software engineers engage with risk.

The next and final empirical chapter further extends the application of dual processing

theory, this time in the context of code comprehension tasks. Shifting from self-reported

behaviours to more direct measures of secure coding performance, it explores whether the

propensity for reflective thinking predicts the ability to detect security vulnerabilities in

code. This chapter builds on prior findings by assessing the observable outcomes of

reflective cognition in practical coding scenarios closing the loop between perception,

psychology, and practice that has been evidenced in the previous chapters.

196

8 Software Vulnerabilities as Cognitive Blindspots; assessing the suitability

of a dual processing theory of decision making for secure coding

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (in review). Software
Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing
theory of decision making for secure coding. Transactions on Software Engineering
and Methodology. https://doi.org/10.31234/osf.io/v7fqb

https://doi.org/10.31234/osf.io/v7fqb

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a
dual processing theory of decision making for secure coding

MATTHEW IVORY, Lancaster University, Great Britain

JOHN TOWSE, Lancaster University, Great Britain

MIRIAM STURDEE, University of St Andrews, Scotland

MARK LEVINE, Lancaster University, Great Britain

BASHAR NUSEIBEH, Lero, Republic of Ireland and Open University, United Kingdom

Security vulnerabilities are present in many software systems, putting those who entrust software with their data in
harm’s way. Many vulnerabilities are avoidable since they are not new and are well-described. Despite this awareness,
they remain widespread. One hypothesis for their persistence is that they represent software blindspots, problems
that are implicit in the mental models of developers and thus escape attention (Brun et al., 2023; Oliveira et al. 2018).
Our current understanding of how cognitive influences secure coding is limited, and we address this by extending the
hypothesis by suggesting differences in decision making approaches alter the ability to detect vulnerabilities. Through
an empirical study and power analysis, we show the potential value of dual processing theory, where individuals make
decisions using one of two cognitive systems: a default system reliant on heuristics and intuitive mechanisms, and a
more deliberate and computational interventionist system. This preregistered study replicates key predictions from
previous blindspot research, extends the analysis towards cognition, and models effect sizes of variables that might
impact software security. We complement this analysis with data simulations to expose the sampling scale of empirical
studies that would be necessary for highly powered work in this domain.

CCS Concepts: • Security and privacy → Social aspects of security and privacy; • Human-centered
computing → Empirical studies in HCI ;

Additional Key Words and Phrases: security, cognitive psychology, dual processing theory, code comprehension,
blindspots

ACM Reference Format:
Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2024. Software Vulnerabilities as
Cognitive Blindspots; assessing the suitability of a dual processing theory of decision making for secure coding. 1, 1
(February 2024), 25 pages. https://doi.org/10.475/123 4

Authors’ addresses: Matthew Ivory, Lancaster University, Department of Psychology, Lancaster, Lancashire, LA1 4YW, Great
Britain, matthew.ivory@lancaster.ac.uk; John Towse, Lancaster University, Department of Psychology, Lancaster, Lancashire,
LA1 4YW, Great Britain, j.towse@lancaster.ac.uk; Miriam Sturdee, University of St Andrews, School of Computer Science,
North Haugh, St Andrews, LA1 4YW, Scotland, ms535@st-andrews.ac.uk; Mark Levine, Lancaster University, Department of
Psychology, Lancaster, Lancashire, LA1 4YW, Great Britain, mark.levine@lancaster.ac.uk; Bashar Nuseibeh, Lero, Ireland,
Castletroy, Co. Limerick, LA1 4YW, Republic of Ireland, Open University, United Kingdom, Bashar.Nuseibeh@open.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

197

2 Ivory et al.

1 INTRODUCTION

Software vulnerabilities are a pervasive issue within software engineering, and they can have serious real-
world consequences, such as impact on urgent medical care [71] or psychological harm [55]. Many of the
vulnerabilities detected in modern software are not new. Well-known vulnerabilities are detected in over
three-quarters of software, indicating that despite their notoriety, they remain unhandled despite the tools
available to software developers. To address this, we offer support to the hypothesis that vulnerabilities
exist as cognitive blindspots in decision making during secure coding.

Secure coding is the practice that ensures software “does not contain known vulnerabilities” [63], and
vulnerabilities are defined as unexpected logic flows which create compromising software behaviours, allowing
for unintended access to information or functionality [33]. It is observed that technical expertise and
experience are poor indicators of predispositions towards secure coding [10], as is security knowledge [50].
Acknowledging that technical expertise has minimal effect on producing secure code, we should explore more
psychological factors to explain how individuals can identify vulnerabilities during code reviews.

One psychologically-motivated explanation focuses on software engineers’ cognitive capabilities and the
cognitive salience of critical choices. We explore the role of human decision making and cognitive psychology
to understand individual differences in secure coding predispositions better. By treating software engineers
as a diverse population displaying individual cognitive differences, and who must satisfice [70], we can better
understand how cognition influences vulnerability detection. One theory is that security vulnerabilities are
systematically missed by developers because they occupy blindspots in their attention and information
processing.

In a software engineering context, a blindspot is code where the expected behaviour of a function diverges
from the intended behaviour. It has been suggested that vulnerabilities in software code exist because
of these blindspots [13]. Oliveira et al. [51] tested the hypothesis with measures of working memory and
cognitive processing speed. They asked engineers to solve short Java programming puzzles that contained
either a blindspot in the form of insecure API use or no blindspot. They found puzzles without a blindspot
were solved significantly more often than puzzles with a blindspot, supporting the general hypothesis
that vulnerabilities are often missed, but neither working memory nor processing speed affected accuracy.
Brun et al. [10] replicated the study using Python, confirming the previous finding and demonstrating this
phenomenon as language agnostic. They saw limited effect on blindspot detection with the same measures
of cognition, only finding a significant effect on long-term memory capacity. This body of research explored
cognition but did not provide information on why cognitive blindspots exist in security contexts. We propose
to address this issue by applying the dual processing theory of decision making [21] towards the same code
comprehension tasks used.

Dual processing theory posits individuals make decisions using two distinct systems, a default intuitive
system that relies upon heuristics, and a second system that uses all available information to make reasoned
choices [22]. In taking the position that decision making processes are not homogeneous and that individual
differences are present in general populations [23], we seek to test whether this heterogeneity influences
secure coding. Dual processing theories of decision making are relatively absent within software engineering
research despite having a proven influence on performance in general judgments [77]. Only one known
study has explored dual processing theory in software engineers that found a complex relationship between

Manuscript submitted to ACM

198

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 3

risk sensitivity and system 2 engagement [33]. To date, software tasks have remained unexplored, which is
addressed in this paper.

In this study, we offer a partial replication of previous findings by Cappos et al. [13], Oliveira et al. [51],
and Brun et al. [10] that blindspot presence results in reduced comprehension and that technical expertise
has little effect in explaining blindspot detection. We extend their hypothesis by applying a dual processing
theory of decision making. We use a modest sample of 37 participants to test the potential of dual processing
theory in software research, recognising that supporting evidence is sparse, and so we use the data to conduct
power analyses to identify the necessary samples required for cognitive psychology in secure coding research.
This study offers a greater connection between software engineering and the individual differences observed
in decision making competencies.

We successfully replicate findings that blindspots are difficult to detect, and that detection cannot be
explained by technical knowledge or experience. We offer mixed results for the application of dual processing,
but this was primarily due to data insensitivity (highlighting the need for larger samples), and we do not
reject dual processing theory’s value for explaining secure coding.

The paper is structured as follows. In section 2, we essential psychological background content relevant
to the theoretical underpinnings of this study. Section 3 details the hypotheses, relevant methodological
decisions, measures, and procedures for research transparency. We report our results in section 4, which
are discussed in terms of their theoretical support and implications for software engineering practice and
research in section 5. To contextualise our study within the wider software engineering literature, we explore
related work in section 6. Section 7 summarises the study’s contributions.

2 BACKGROUND

This section covers the essential psychological content that contextualises the research. This paper defines
cognitive blindspots as units of information that are systematically overlooked, typically through unconscious
or intuitive approaches to making judgments, resulting in non-optimal decisions. Blindspots are due to
the human disposition to deploy decision making heuristics (mental short-cuts). Where heuristics lead to
fallacies or erroneous thinking, they create biases. These are systematic, flawed judgments that deviate from
ideal performance [20].

Biases are present throughout the whole software development process [62], and their influence can result
in non-optimal decisions being made. In the example of tool selection, developers tend to use familiar tools
[68], even if they are not appropriate for specific tasks [5]. No single tool can detect all software vulnerabilities
meaning that a familiarity bias can result in non-optimal decisions [19].

Human working memory is sharply limited [7], creating the potential for overload. Heuristics help manage
the cognitive complexity of the decision space by rendering the problem down to a simplified form [9].
However, because the mental representations of the task are now partial, incomplete, or non-exhaustive [36],
important facets can become obscured to the mind’s eye, creating cognitive blindspots. From a psychological
perspective, this means that vulnerabilities that are known “in principle” to a developer are hidden from
view during the software task.

The presence of heuristics, biases, and attentional blindness all point towards the presence of more than
one system of cognitive information processing, because we recognise different approaches to decision making,

Manuscript submitted to ACM

199

4 Ivory et al.

where choices can be made intuitively and unconsciously, or we can exert effort and make more careful,
reasoned choices. These differences can be explained by the dual processing theory.

The default-interventionist psychological model of dual processing theory proposes two cognitive systems
[22]: the default and intuitive system 1 and a more intentional and rational system 2 that is only engaged
when sufficiently cued [16]. System 1 processing is the default style of decision making, driven by heuristics
to reduce complex judgments into simpler cognitive operations [37]. In contrast, system 2 processing is
more deliberate but computationally demanding and is typically deployed when individuals seek an optimal
solution by using all available information. System 2 is the interventionist mode, and it only overrides System
1 when an individual consciously or unconsciously sees a greater need for accuracy. System 1 is liable to
generate simpler, less complete mental models than System 2 [35], and blindspots can reside in the created
gaps.

3 METHODOLOGY

This section presents the preregistered hypotheses that motivated the following research design choices. The
sample and recruitment strategy are reported, followed by the materials and study design.

We present this study as the groundwork required for deploying psychological measures in software
engineering. We utilise a modest sample of 37 participants to assess the suitability and practicality of
deploying dual processing theory in secure software engineering research. We recognise that the sample is not
sufficient to translate into meaningful, practical implications (which is avoided in the discussion), but the
sample is used to simulate data and conduct power analyses to determine the suitable effect sizes for future
research. Choosing not to collect large numbers of participants for this study ensured that resources were
managed suitably, which is necessary when working with software engineers who require a high compensation
rate to participate in research.

3.1 Hypotheses

The study was preregistered, lodging the design and hypotheses in advance, which can be found here:
doi.org/10.17605/OSF.IO/CE78G. Hypothesis 1 is a replication of Brun et al. [10] used to test the effect of
blindspots in Python code. Hypothesis 2 applies cognitive reflection measures to assess the propensity for
dual processing. Hypothesis 3 uses optimism bias as a proxy for a tendency towards system 1 processing.
Hypothesis 4 and 5 use scales of rational and intuitive decision making to test the strength of an individual’s
tendency towards either cognitive system. Hypothesis 6 replicates the hypothesis from Brun et al. relating
to the self-reported measures of puzzle interaction. Hypotheses 7 and 8 are based on previous findings that
experience and declarative knowledge do not moderate vulnerability detection.

1. Python puzzles containing API blindspots will be more difficult to solve than scenarios without
blindspots correctly.

2. Developers with higher levels of cognitive reflection will solve scenarios with blindspots more effectively
than developers with lower cognitive reflection.

3. Developers demonstrating realistic levels of optimism will solve scenarios with blindspots more
effectively than developers with higher levels of optimism.

Manuscript submitted to ACM

200

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 5

4. Developers with higher levels of rational decision making will solve scenarios with blindspots more
effectively than developers with lower levels of rational decision making.

5. Developers with lower levels of an intuitive decision making style will solve scenarios with blindspots
more effectively than developers with higher levels of intuitive decision making.

6. Developers’ perceived ratings of puzzle difficulty, effort, familiarity, and confidence will affect their
ability to solve scenarios containing blindspots.

7. Developers with more experience and familiarity with programming and Python will show no difference
in their ability to solve scenarios with API blindspots.

8. Developers with more cybersecurity knowledge and experience will show no differences in their ability
to solve scenarios with API blindspots.

3.2 Participants

For this study, a sample of 37 participants was used, which is suitably powered to assess the replication in
hypothesis 1 and offers adequate data to simulate further data to estimate the required scale of empirical work
to address psychological questions in software engineering. Participants were recruited from Upwork.com, a
freelancing website. Adverts invited freelancers to submit proposals for a “Code Review”. Five adverts were
placed to promote visibility (when one stopped receiving proposals, it was archived, and an identical advert
uploaded). The collection process took 21 days. As part of the submission, potential participants confirmed
they were over 18, had at least one year’s experience with Python that was not limited to a university course,
had experience with API functions, and asked to describe a recent Python project briefly. The advertising
materials and information sheet deceived participants about the study’s true intention to avoid potential
biasing. The materials described the study as interested in general code comprehension and its association
with cognitive function. The Faculty-level ethics committee approved the deception. Participants received
$28 as compensation for their time and effort.

In total, 126 proposals were submitted, and 89 were rejected. Rejection criteria were not formalised
before data collection to ensure that only high-quality participants were selected. Examples of rejected
proposals included suspicion of duplicate accounts (with two or more different applicants giving almost
identical answers and no prior Upwork experience), use of AI-generated content for screening questions
(determined via online checkers or manual inspection), a failure to mention appropriate experience, a lack of
English fluency (assessed from responses and further communication), or failure to convince the primary
researcher that they fulfilled the criteria properly. In cases where it was unclear whether participants were
to be approved, further communication was established to determine whether a proposal would be accepted.
Upwork profiles, job history, and linked profiles (e.g., GitHub) were also used to determine eligibility. Due
to this rigorous selection process, no attrition was seen for accepted participants.

The mean age of the 37 participants was 29.11 (SD = 9.55), ranging from 19 to 71. One participant
preferred not to report gender, 35 reported male, and one self-described as “freelancer”. This overwhelming
male-dominated sample was not targeted nor intended. Participant ethnicity is reported in Table 1, with the
vast majority being White or Asian. Two participants had no education beyond high school level, two had
some university experience, 18 had an undergraduate degree, 3 had some postgraduate university education,
and 12 had postgraduate degrees. The average experience in general programming was 6.05 years (SD =
4.67), and Python experience was less at 4.39 years (SD = 2.46).

Manuscript submitted to ACM

201

6 Ivory et al.

Table 1. Demographic breakdown of participant ethnicity

Ethnicity Count
Asian (Indian, Pakistani, Bangladeshi, Chinese, any other Asian background) 14
Mixed two or more ethnic groups 2
Other (Arab or any others) 3
Prefer not to say 2
White 16

3.3 Materials

This section describes the psychological measures and code comprehension puzzles used for assessing blindspot
detection. This study utilised an observational survey design where participants completed various measures
without assignment to different experimental groups.

Measures of dual processing theory include the cognitive reflection test [23] and the rational and intuitive
subscales of the general decision making style scale [67], both of which are described below. Cognitive
reflection has been identified to play a role in explaining risk awareness around security in populations of
software developers [33], and the rational decision making subscale has been identified as a predictor of
good users’ behaviours [28]. These psychological measures have prior use in security research and offer an
opportunity to interpret complex behaviours.

3.3.1 Cognitive Reflection Test. The Cognitive Reflection Test (CRT; Frederick [23]) is a three-question
test designed for measuring cognitive reflection, an individual’s tendency to engage in system 2 processing
during decision making. The questions offer intuitive but incorrect responses, and only through system 2
engagement is the correct answer identified. The most well-known CRT question is, “A bat and a ball cost
$1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?”. The intuitive and
incorrect response of 10 cents is the most common answer [23], instead of the correct answer of five cents,
implying that system 1 processing is the default processing style. To the authors’ knowledge, CRT has only
been applied once before with software developers where an interaction between cognitive reflection and
optimistic perceptions of software security was detected [33].

We used two cognitive reflection tests, CRT and CRT-2. The CRT was initially developed by Frederick [23],
and the CRT-2 by Thomson and Oppenheimer [76]. The second version was designed to reduce the numerical
nature of the original test. In the present study, the wording was altered, so attempts to find answers via
online searches would be more difficult, but the question design remained unaltered. Participants were also
asked whether they had seen the questions before to measure whether they may have been responding based
on previous experience; however, this is not a significant concern as research has shown CRT performance is
stable over time [74]. Response times were also recorded.

3.3.2 OWASP Vulnerability Test. The OWASP Vulnerability Test (OVT; Ivory et al. [33]) was used as a
domain-specific measure of optimism bias for software engineers. This measure consists of two sections, and
the first asks participants to estimate the likelihood of the average developer producing software containing
one of the top five OWASP vulnerabilities (injection flaws, broken authentication, sensitive data exposure,
XML external entity flaws, and broken access control). They are presented with five questions, one for
each vulnerability, in a randomised order. Following a separation task, participants are asked about the
Manuscript submitted to ACM

202

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 7

Table 2. The presentation order and attributes of the Python puzzles presented to participants. The puzzle ID relates to
the original ID given in Brun et al. (2023) and cyclomatic scores are a measure of code complexity with higher scores
indicating more difficult code to comprehend or modify

Puzzle ID Vulnerability Type Blindspot Type Cyclomatic Score
1 P02 Injection Validation Missing 5
2 P09 Injection Validation Missing 3
3 PX06 Injection 2
4 P21 Overflow Function Misuse 2
5 P30 File TOCTTOU 3
6 P36 File Validation Missing 4
7 PX15 SSL 2
8 P31 File Missing Verification 3

same vulnerabilities but to report the likelihood of themselves incorporating these vulnerabilities. This test
measures comparative optimism, as previously used in other research [31].

3.3.3 General Decision Making Style Scale. The General Decision Making Style Scale (GDMS) measures five
styles of decision making [67]: rational, avoidant, dependent, intuitive, and spontaneous. These subscales
assess an individual’s decision making approach. The 25-question scale is presented in a randomised matrix
with a five-point Likert response (strongly disagree – strongly agree). For the hypotheses, only the rational
and intuitive subscales were of interest, as they are theoretically linked to dual processing theory, with the
intuitive scale mapping against system 1 processing and higher levels of rational decision making mapping
onto system 2.

3.3.4 Puzzles. The Python puzzles were developed by Brun et al. [10]. They consist of 10-21 lines of code
with an accompanying scenario description providing context to the puzzle. An example of a scenario and
puzzle is shown in Figure 1. Participants read the scenario and code and answered a free-text question
about the behaviour once the code was executed. They are then asked a multiple-choice question of expected
behaviour given specific inputs. Following this, they were asked to rate their confidence in solving the puzzle
from 1-10, the percentage of others they would expect to solve the puzzle (from 1-100), perceived difficulty
(from 1-10), familiarity with the functions (from 1-10), and scenario clarity (from 1-10). To aid the deception,
they were asked whether any parts of the puzzle were confusing and how, whether there were unfamiliar
functions, and to list these. They were asked what resources they used to review the code and, finally, to
report the fatigue they experienced in completing the puzzle (from 1-10). Puzzles were scored as being
correct or incorrect based on the multiple-choice question.

We presented participants with eight puzzles, six with blindspots and two without blindspots. Five of the
six blindspot puzzles focused on input/output vulnerabilities, including networking activity and reading
and writing to and from streams, files, and internal memory buffers. The sixth was a string manipulation
vulnerability of user input. Puzzles were presented in two blocks, allowing participants to take a break in
between. Each block had three blindspot puzzles and one non-blindspot puzzle and were balanced in terms
of cyclomatic complexity. Table 2 shows the puzzle order, type of vulnerability and cyclomatic complexity.
The complete set of puzzles used, their order, and associated questions can be found in the online repository
here: https://osf.io/2r4zx.

Manuscript submitted to ACM

203

8 Ivory et al.

Fig. 1. An example of a puzzle containing a blindspot. All puzzles were formatted similarly, with the context given first,
followed by an image of the code, and then asked to describe the code’s behaviour. Each puzzle was prefaced with the
scenario as context. The context would explain the general setup and use of the code section and provide examples, if
necessary, of its use case. It also noted that readers should assume all necessary permissions are given for execution.

3.4 Procedure

Following participant approval participants were sent an Upwork contract and an attached information
sheet. Participants were not told of the specific goal of examining blindspots in puzzles until data collection
was complete. See Figure 2 for the study pipeline.

Participants were sent an online Qualtrics link and could only participate if they provided full informed
consent. Participants completed the eight Python puzzles. They then completed demographic questions of age,
Manuscript submitted to ACM

204

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 9

Fig. 2. Study pipeline that participants experienced. All participants experienced the same survey flow with randomisation
in some sections.

gender, ethnicity, employment, and education. They were then asked to report general and Python-specific
programming experience.

After this, the cognitive measures were presented, randomised within each measure, with the first OVT
section, then the CRT measures, the GDMS questions, and finally, the second part of the OVT measure.
Once participants completed the cognitive measures, they were asked questions on cybersecurity, reporting
how much of their knowledge was self-taught or formally taught and the frequency with which they were
required to employ it. They were then given a debrief explaining the study’s true purpose, which was
followed by the same puzzles with explanations of the vulnerabilities to ensure participants were aware of
their potential blindspots. This concluded the study.

3.5 Analysis

Analysis was implemented through R 4.2.2, and data, analysis scripts, and instructions for reproducing the
results can be found here: https://osf.io/2r4zx.

Two model types were used: mixed-effect ordinal logistic regression (MOLR) and general linear regression
models. Where independent variables could vary across puzzles within participants (e.g., perceived confidence
of solving different puzzles), MOLR models with a dependent variable of puzzle accuracy and random effect
of puzzle were used to control for differences between participants and handle the nested data structure.
Where independent variables did not vary, such as test scores, linear regression models were used with
a dependent variable of total puzzle accuracy. The GDMS responses were subject to confirmatory factor
analysis to compute single scores for the rational and intuitive subscales. These models are the same as
those used by Brun et al. [10]. As with the analysis by Brun and colleagues, Bayes factors were used to
assess models that had non-significant effects to determine whether the absence of an effect is due to data
insensitivity (reflected in a value between .33 and 1) or a preference to accept the null hypothesis (a value
under .33).

Following this, we conducted power analyses by simulating new data to understand the minimum number
of participants for future confirmatory work and further explore the cognitive measures that are significant
predictors with larger samples.

Statistical power is the probability of rejecting the null hypothesis in favour of an alternative hypothesis
where a true effect does exist [39]. In lay terms, statistical power asks, “If I run my experiment 100 times,
how many times will I find a significant result?”. Power is a valuable tool for ensuring that research provides
meaningful results. A standard threshold for suitable power in experimental psychology is 80% [11], and it

Manuscript submitted to ACM

205

10 Ivory et al.

is modulated by the number of observations within the dataset used. As a result, experimental research
in software engineering must ensure that adequate samples are used. When using mixed-effect regression
models, data simulation is one method for determining statistical power for varying participant levels [39].

In our research, we ask an as-yet unanswered question: What are the plausible effect sizes and required
sample sizes to address psychological questions of software engineering? To do so, we frame the current
experiment as groundwork, providing the conceptual foundations for dual processing theory in software
engineering and highlighting the role of statistical power for meaningful research. Collecting a modest sample
provides the data and modelling opportunity to estimate the required scale of empirical work to address
psychological questions in software engineering. The motivation for answering this question stems from the
recognition that in psychology, many studies are not sufficiently powered, which has led to many findings
not replicating [43].

The data collected was used to simulate 740 unique and new observations. These were used to explore the
required participant numbers for suitable power. Original data were transformed by applying random noise
to independent variables to simulate new data. Noise was sampled from a range of one standard deviation
and randomly added or subtracted from the existing values. Values higher or lower than the possible variable
limits were set to the maximum and minimum values, respectively. Simulated data reflected the general
patterns observed by transforming independent variables and not dependent variables (i.e., accuracy) in this
way. This process was performed 20 times to create a novel simulated dataset with 740 observations.

To calculate statistical power, 1,000 iterations of each model tested the hypotheses using a random
subset of the 740 observations for each iteration. Iterations were conducted for sample sizes from 10 to
740 participants. Model coefficients and p values were extracted for all model terms. From this, power was
calculated for each sample size as the percentage of the 1,000 models that provided significant terms at the
.05 level. H1 was not included in the calculations because 37 participants provided ample power per the
preregistration.

Power calculations were conducted simultaneously using a High-End Computing Cluster due to their
computationally intensive nature. The calculations were performed using R 3.6.0, and scripts, data, and
associated files for reproducing these calculations are found at https://osf.io/2r4zx/.

The two methods of assessing data suitability and their effects, Bayes factors and data simulation, are
used to provide more information on the measures used and the value of dual processing theory. The power
analysis is in addition to the preregistered plan, as it is often conducted in the planning stages of a research
project. We include it here to motivate further research to ensure suitable sample sizes are used. It offers
the opportunity to use a larger sample derived from the existing data and determine potential effects. The
methods complement each other as Bayes factors rely upon the models created from the existing data to
determine how well the models perform, and the simulated sample offers a dataset larger than is reasonable
to collect in typical research.

4 RESULTS

The main hypotheses were tested using the data collected from the 37 participants, and then all the
hypotheses bar H1 were subject to power analyses. H1 was predetermined to be suitably powered using the
data provided by Brun et al. [10]. We report on the analysis of original data and power simulations in the
same subsections.
Manuscript submitted to ACM

206

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 11

Table 3. Percentage of correctly solved answers compared to the sample from Frederick (2005)

Score Frederick (2005) Present Study
0 33% 0%
1 28% 5.41%
2 23% 16.21%
3 17% 78.38%

4.1 H1: The Effect of Blindspot on Accuracy

To address the hypothesis that Python puzzles with an API blindspot will be more challenging to solve
than those without, a MOLR model was used, regressing the presence of blindspots against accuracy with
a random effect of participant. The data did not support the model, so the random effect was removed,
resulting in the simpler model, which was supported by the Bayesian Inference Criterion (BIC). The revised
model had a BIC value of 368.12 compared to the original 373.81.

The revised model was found to be significant, with the blindspot presence having a coefficient β of -1.26,
p < .001, giving an odds-ratio of .28, indicating that if a puzzle possesses a blindspot, the odds a participant
solves the puzzle incorrectly is 3.53 times more likely than solving it correctly. Participants in the present
study were more than twice as likely to solve puzzles without blindspots than reported in Brun et al. [10].

4.2 H2: The Effect of Cognitive Reflection

Comparing the CRT scores against the original findings by Frederick [23] in Table 3, our responses are very
different to the original findings, with a large majority successfully answering all questions. It is unclear
why participants scored so highly on measures that do not typically elicit high performance, but it may
be due to the use of generative AI language models providing answers. Testing this potential cause with
Chat-GPT found that six of the seven questions were correctly solved. As such, our findings should be
treated cautiously as they may not reflect the intended measure.

To address H2, that higher levels of cognitive reflection will associate with solving scenarios with blindspots
more effectively, a linear regression using both CRT and CRT-2 was deployed. Model examination suggested
removing the CRT term, leaving only CRT-2 as a predictor. BIC values indicated that the model using only
CRT-2 was preferable. The model using solely CRT-2 was non-significant, p = .077. The Bayes factor for the
model using both CRT variables compared to the null is .21, indicating that null hypothesis acceptance is
more likely than data insensitivity, but for the model with just CRT-2, the Bayes factor was .93, suggesting
that data insensitivity is far more likely than the null hypothesis.

4.3 H3: The Effect of Optimism and Confidence

To test the effect seen in Ivory et al. [33], that engineers are likely to see themselves as less likely to be
susceptible to including vulnerabilities in their work, the mean average of the OVT task was 125.84 (SD =
17.88), with a minimum score of 95 and a maximum of 155. A score of 100 would indicate individuals scoring
themselves as equally likely as the general engineering population, but the higher average score indicates
that the optimistic self-belief is persistent across samples. A one-sample t-test confirms that the OVT scores
significantly differ from an average score of 100, t(36) = 8.79, p <.001, with a large effect size d = 1.441.

Manuscript submitted to ACM

207

12 Ivory et al.

We hypothesised that developers who demonstrate realistic levels of optimism will solve scenarios with
blindspots more effectively than developers with higher levels of optimism, acting as a measure of system 1
processing. MOLR for accuracy scores with OVT, self-confidence, confidence in others, and random effects
yielded just a significant effect of self-confidence. This indicated a less complex model was appropriate using
just self-confidence and random effects, as the difference between the two models was not significant, p =
.792.

The model with only self-confidence was significant, with a coefficient of .21, p = .014, equivalent to
an odds ratio increase of 1.23, meaning that the odds of correctly solving a puzzle increase by 1.23 times
for each unit increase in confidence. This finding indicates that self-confidence is an indicator of correctly
solving puzzles containing blindspots. Testing the non-significant terms in the model, a Bayes factor of .01
was reported indicating that the null hypothesis is more likely.

4.4 H4: The Effect of Rational Decision Making

H4 hypothesised that developers with higher GDMS rational scores would solve scenarios with blindspots
more effectively. This was tested using linear regression, and the model was not significant, F(1, 32) = 1.61,
p = .214, indicating that rational decision making does not affect the detection of vulnerabilities. The Bayes
factor was .39, indicating data insensitivity.

4.5 H5: The Effect of the Intuitive Style of Decision Making

H5 expected that lower GDMS intuitive scores would associate with solving puzzles with blindspots more
accurately. Linear regression did not support this, F(1, 32) = .90, p = .351. The Bayes factor was .27,
indicating a preference towards the null.

4.6 H6: The Effect of Puzzle Attributes

H6 tested the non-directional statement that developers’ perceived ratings of puzzle difficulty, effort,
familiarity, and confidence would affect their ability to solve scenarios containing blindspots. The MOLR
model was found to be non-significant with no significant terms. The Bayes factor reported was .002,
indicating a strong preference for the null hypothesis, suggesting that perceived ratings did not influence
puzzle-solving ability.

4.7 H7: The Effect of Expertise and Experience

H7 stated that experience and programming ability would not affect puzzle solving, based upon previous
findings, and the hypothesis sought to replicate the finding by Brun et al. [10] and Oliveira et al. [51].
Linear regression with total puzzles solved as the dependent variable, with programming experience, Python
experience, and general programming familiarity as predictors, was not significant, F(3,30) = 1.83, p = .163.
The Bayes factor was .09, suggesting that no effect was more likely than data insensitivity. This supports
our hypothesis and confirms findings by Brun et al. [10].

4.8 H8: The Effect of Security Knowledge

H8 hypothesised that cybersecurity knowledge and experience would have no effect on blindspot detection.
Linear regression using cybersecurity experience and level of formal cybersecurity knowledge as predictors
Manuscript submitted to ACM

208

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 13

did not yield a significant effect, F(5,28) = .41, p = .840, and a Bayes factor of < .01 indicates a strong
chance of no effect being present, supporting our hypothesis.

4.9 Findings Summary

H1 sought to replicate findings from Brun et al. [10] that API blindspots in code would be harder to solve
than puzzles without, and we found a significant effect supporting this hypothesis. H2 tested dual processing
through cognitive reflection and found no significant difference for vulnerability detection, with contrasting
results from the two measures, failing to support the hypothesis; CRT responses were seen to be inconsistent
with expected responses, suggesting compromised data, but CRT-2 alone offered a Bayes factor of .93
indicating the non-significant difference was due to data insensitivity and not an absence of an effect. H3

tested whether a measure of optimism bias could explain detection ability, but Bayes factors indicated that
no effect likely exists, failing to support the hypothesis. H4 and H5 used measures of rational and intuitive
decision making to further explore dual processing, finding no significant differences, likely due to data
insensitivity. H6 is a replication from Brun et al.; no difference was seen for puzzle attributes. H7 and H8

were confirmatory tests of the findings in Brun et al., and no significant effects were seen for technical or
security expertise, supporting our hypotheses.

4.10 Simulated Samples for Power Analysis

Power calculations were derived from model simulations. Table 4 shows the required sample sizes needed
to achieve a statistical power of .80 and the expected effect (the average coefficient within the regression
model) achieved with appropriate power. Measures where no effect was detected, even in large samples
included: hypothesis 3, where the effect for OVT and confidence tends towards zero, as was also seen for
perceived effort in hypothesis 6. For hypothesis 8, the sample size is predicted to be over twice as large as
the simulated sample, assuming a linear relationship between sample size and power. For all other measures
used, they achieved statistical power within 740 participants, with seven of the remaining ten measures
achieving power in 203 participants or less.

H2: The large sample associated with the CRT suggests any effect is small and unlikely to have any
significant impact, whereas CRT-2 is likely to be more effective as a measure, with a .37 increase in accuracy
for every correct response to CRT-2.

H3: A unit increase in perceived self-confidence was associated with a coefficient of .16.
H4 and H5: For the GDMS scale, a unit increase in rational thinking results in a .26 increase in overall

accuracy, and a unit increase in intuitive thinking results in a .17 decrease in the total puzzles accurately
solved.

H6: For perceived difficulty, a unit increase in rating was associated with a coefficient of -.04, resulting
in a minor decrease in accuracy. For familiarity with functions, a .07 coefficient was reported, relating to
an increase in accuracy, and for self-confidence in a model with the terms of difficulty and familiarity, a
coefficient of .13 was reported.

H7: For Python experience, a small coefficient of .10 is seen, suggesting that for a unit increase in reported
Python experience, overall accuracy increases by .10, and for technical proficiency, a -.12 decrease is seen in
overall accuracy.

Manuscript submitted to ACM

209

14 Ivory et al.

Table 4. Potential effect sizes and samples reported from the simulation and power analysis. * = this duplicated measure is
the result of it being included in a second model from hypothesis 3, ** = the values for cybersecurity are based upon linear
regression predictions and assume a linear relationship between power, coefficient, and sample size.

Hypothesis Measure Coefficient Size Required Sample
2 CRT -0.18 698
2 CRT-2 0.37 93
3 OVT
3 Confidence-others
3 Confidence-self 0.16 63
4 Rational 0.26 179
5 Intuitive -0.17 371
6 Difficulty -0.04 694
6 Effort
6 Familiarity 0.07 186
6 Confidence-self* 0.13 88
7 Experience 0.10 144
7 Technical Proficiency -0.12 203
8 Cybersecurity Experience** -0.05 1517

H8: For cybersecurity experience, an effect of -.05 was detected, indicating a minimal decrease in overall
accuracy for each unit increase in experience.

5 DISCUSSION

We successfully replicated the finding that blindspot puzzles were challenging. This is true even for those that
cause well-known vulnerabilities, such as code injection or missing input validation. The effect we obtained
was statistically reliable and had a larger effect size than in the Brun et al. [10] paper from which the
materials were derived. We also replicated that technical expertise is not a predictor of vulnerability detection.
It also extended that study in two important respects - the potential mediating factors of psychological
variables and the modelling of effect and sampling requirements for relevant research studies.

5.1 Theoretical Support

We support the hypothesis proposed by Cappos et al. [13] by reporting on measures of dual processing
systems in decision making. The power analysis indicates that dual processing theory may be associated with
vulnerability detection. We saw no association for optimism bias susceptibility. For non-cognitive measures,
self-confidence in solving puzzles was associated with higher accuracy, as was familiarity with code functions.
The self-perceived difficulty was negatively associated. In contrast to Brun et al. [10], we saw a small positive
effect for Python experience and a small negative effect for general proficiency.

The successful replication of Brun et al. [10] and Oliveira et al. [51] is valuable, but it generates
further unanswered questions, specifically “What is it about blindspots that render software engineers less
capable of identifying them?”. From the cognitive science perspective, blindspots can be explained through
decision making styles, and the implications that intuitive versus rational approaches influence the mental
representation of the software problem. An intuitive approach (system 1 thinking) increases the likelihood
that the coding problem is not fully represented in their mental model, thereby creating the blindspot
Manuscript submitted to ACM

210

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 15

itself. More analytic and algorithmic thinking is expected to identify the puzzle issues and form a more
complete mental model that allows them to work toward a solution. Encouraging developers to create mental
representations of software security can help them to draw inferences around its success [34].

We find this explanatory framework very appealing and plausible. However, the evidence from the current
data is clearly somewhat mixed. The prediction from this above argument is that participants with higher
CRT scores would solve more blindspot puzzles (by virtue of deploying more system 2 thinking). The
data did not support this unequivocally. However, this may be due, at least in part, to the assessment of
CRT performance, which may have been confounded by AI use. Despite the rigorous review of potential
participants, data quality suffered in the CRT responses. It is unclear why a test that typically experiences
floor effects did not present any zero-score responses, with over 78% answering all questions correctly.
Participants may have used external resources like Chat-GPT to provide answers. The survey flow did
not state that participants could not use resources at this point in the survey. If this was the case and
participants were not being tested on their reflective abilities, no genuine conclusions can be drawn. As a
result, the CRT data may be contaminated and not provide valuable findings. Future work should ensure
participants know they cannot use resources to answer questions designed to measure cognition.

This study’s primary theoretical outcome is its support for the proposed paradigm of security vulnerabilities
occupying blindspots in our cognition [13]. By applying the dual processing theory [21], we used system 1 and
system 2 processing measures to explore the potential effects these have on detecting security vulnerabilities.
When interpreting results via dual processing theory, it is of little surprise that factors of technical expertise or
cybersecurity had little impact. One’s tendency to engage system 2 processing is a separate cognitive process
to declarative knowledge, and the cue required to suppress system 1 is not linked to general intelligence [75].
The finding that higher levels of rational decision making styles tend towards increased detection, and higher
levels of intuitive decision making tend towards decreased detection aligns with dual processing theory,
highlighting that developers who tend towards more rational, system 2 processing styles of decision making
are more likely to spot vulnerabilities.

We used two methods for assessing the data beyond the statistical modelling of the collected data:
Bayes factors, and data simulation. We used Bayes factors to explore the likelihood of null results being
a result of data insensitivity or that no effect is present. We also used simulated data to identify effects
collected from a larger sample. These methods offer a greater insight into the data, mitigate the limitation
of using a small sample size, and provide an enhanced understanding of the reported non-significant results.
Agreement between the two methods was found for the two measures that have an effect: CRT-2 and rational
decision making. Intuitive decision making has a weak Bayes factor of .27, and the evidence points towards
a potentially small effect existing. For measures of function familiarity and self-confidence, the sample sizes
identified via the power analysis (186 for function familiarity and 88 for self-confidence) suggest these are
also worth exploring in further research with larger samples.

The OVT was used to measure domain-specific optimism bias and to collect information on the likelihood
or strength of biases used during system 1 processing. Whilst an effect for overly optimistic views was seen
for the sample in general, it did not associate with detecting blindspots in any significant pattern. This may
be because, despite being domain-specific for software engineers, it is not specific enough when considering
Python code. It may also be that whilst it is a measure of optimism bias, it does not adequately capture
system 1 processing.

Manuscript submitted to ACM

211

16 Ivory et al.

Many of the effects we identify are relatively small, indicating that solely employing engineers based on
our findings would not solve security issues. The effects are more subtle and are indicative of the complexity
of software engineering. Reducing these complex behaviours into easy-to-capture aspects of cognition would
not be appropriate for determining who is assigned security tasks. However, they are an appropriate step
forward in understanding how to support software engineers in identifying vulnerabilities.

5.2 Implications

The primary outcome of this research is that it confirms that further work using this paradigm and dual
processing theory would benefit the software engineering community. Linking the theory to the paradigm
with preliminary results also provides opportunities to explore targeted interventions for improving system 2
engagement when interacting with software code. Prompting for security has been shown to have a positive
effect [30], but these changes are often short-lasting [80].

API developers should consider their role in supporting software developers, particularly with functions
that have security implications, such as cryptography or file handling. Documentation usability has long
been criticised as driving developers to look for information outside of official sources [26], resulting in
weakened software [3]. API developers should ensure documentation is clear, providing secure examples
[59] and not treating developers as security experts [4], as well as noting when functions are not secure by
default or where potential vulnerabilities may occur.

Our replication of the finding that programming experience, technical knowledge, or cybersecurity
experience have no significant effect on blindspot detection can be used to help educate developers about the
dangers of thinking that these factors will help them produce high-quality, secure code. By targeting these
ideas and delivering the message that intuition is not a positive trait to possess during security-essential
tasks, developers can be made aware of the need to engage in reflective and critical thinking styles during
security phases.

Companies that can do so should employ or delegate security testing to specific teams or individuals
whose primary role is security-focused. Typically, developers are seen to prioritise functionality over security
when tasked with both [6], and an absence of clearly defined roles for security can lead to a diminished
sense of responsibility for ensuring software is secure [32]. Identifying specific security roles can reduce the
presence of conflicting tasks, allowing for enhanced security focus, which may increase reflective thinking
around security. Not all software projects can employ additional staff as security testers, but even assigning
protected time where security is the sole focus can help boost deliberative thinking about security.

The indication that decision making styles may affect blindspot detection (as seen through the data
simulation and power analysis) has implications for those involved in writing or reviewing code. The notion
that increased rationality and decreased decision making are associated with greater detection of blindspots
suggests that interventions should account for these differences. The findings do not suggest that those
who report lower rational decision making styles are ill-suited for security tasks, as dual processing theory
highlights a difference in the cue strength that causes system 2 to intervene during the decision making
process.

Research from domains where decision making is critical, such as medical and clinical diagnostics, has
previously explored potential interventions for enhancing rationality. These interventions include cognitive
forcing strategies [15], which promote the development of internal models through learning metacognitive
Manuscript submitted to ACM

212

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 17

processes, recognising biases and where they may occur, before applying mental or physical checks to ensure
developers are accounting for these biases. For software engineering, an example of a cognitive forcing
strategy would be to provide materials and workshops to teach engineers about decision making theories
and heuristics and biases. Providing context for specific biases, such as confirmation bias during testing
stages [66], and the importance of using metacognitive awareness of planning non-confirmatory tests to
identify edge cases and vulnerabilities more easily can increase awareness over decision making approaches.
Cognitive forcing strategies are naturally individual and account for individual differences in default decision
making styles. Those typically more intuitive may favour physical checks such as checklists that encourage
rational thinking. In contrast, more nuanced prompts may suit those predisposed to more rational styles.

Diverse perspectives may also be beneficial in engaging more reflective thinking styles. A catalyst for
engaging system 2 processing can be peer communication [69], as it allows for greater exploration of potential
viewpoints and reduces potential biases. Aligning with different social identities, such as those shared by
software users, can enhance feelings of responsibility [32], which can also result in decisions being taken
that account for others [38]. By acknowledging these views, developers may look at software code differently,
allowing them to identify security vulnerabilities that would otherwise be missed.

5.3 Research Implications

The power simulations suggest cognitive reflection has a potential link to blindspot detection. This implication
is less evident than expected from the data, as participants scored higher on both tests than previous
research would suggest. The simulation found a negative association for CRT and a positive association for
CRT-2. These findings are incongruent as they are intended to measure the same cognitive dimension. As
a result, it is not easy to draw meaningful conclusions from the findings without being too selective as to
the interpretation. If, as previously suggested, AI was used to answer the questions, then the data and the
models offer no real insight. As such, we decline to provide any strong discussion over these findings.

Appropriately powered studies have been an issue in psychology research as a history of inadequately
powered research has rendered many published results inaccurate [8], with only around 40% of results
being reproducible [53]. This issue is not limited to psychology research but has been explored in security
research, with a similar absence of well-powered studies being detected [54]. We emphasise the importance
of conducting a priori power analyses and demonstrate methods for doing so (small samples followed by
data simulation).

The study and data simulation exposes methods for software engineering research to ensure that empirical
research is suitably powered to identify true effects. Previous research that applies psychologically motivated
ideas towards security (such as cognition, working memory, or prompting) has used sample sizes between 40
and 138 participants. In the present findings, we report requiring samples between 93 and 179 to detect
the larger psychological effects. From this, we encourage future work in this domain to use simulations or
previous findings to determine the minimum sample sizes needed. Alternatively, refining the measures and
experimental conditions to increase the effect sizes through controlling the environment can reduce the
sample size required.

It is also recognised that the sharing of data by Brun et al. [10] is a positive contribution to the software
engineering research community, as they provide validated materials, enabling further research to compare
findings more directly [78]. Software research typically deploys non-standardised tasks that make comparisons

Manuscript submitted to ACM

213

18 Ivory et al.

with other research more difficult. Sharing data and materials helps to standardise software security research,
making findings more comparable across studies.

5.4 Limitations

One of this study’s main limitations is the sample size of 37 participants. With a modest and knowingly
underpowered small sample, the results should be treated cautiously, and this is recognised and handled in
two ways. The first is through the conservative discussion of the results and their implications, focusing more
on the support the findings provide for the “vulnerabilities as blindspots” paradigm [13]. By deliberately
keeping the discussion from translating findings to practical application at this stage, we recognise the limits
of the research. The second is the inclusion of the simulation of 740 novel observations. With the simulated
data, statistical power was calculated for future research, and combined with the provision of all research
materials, this provides a clear path for confirmatory studies.

The sample was collected online using Upwork, an online freelancing platform criticised for potentially
including inexperienced or low-quality participants [48]. So, to ensure data quality, we used multiple resources
to verify participants’ experience as programmers, and they were asked screening questions about this
experience and prompted for further details if initial responses were not satisfactory. Their freelance profiles
were also checked for previous work and experience; GitHub or other linked public sites were checked
or requested if missing, along with any other resources available to check suitability. Finally, applicants
suspected of responding using AI-generated content were declined, along with those who could only provide
information limited to academic settings, as student participants were not used. As a result, only 29.37% of
applicants were accepted.

5.5 Future Work

The obvious and initial development would be to carry out a suitably powered confirmatory study. For most
cognitive measures collected, a minimum sample size of 203 participants would be required to achieve a
statistical power level of .8 (giving an 80% chance of detecting a true effect if it exists). A sample of around
100 would be sufficient to capture the stronger effects measured.

Other developments that warrant further exploration are to remove measures that likely hold no predictive
value and explore other measures in their place, such as the Need for Cognition scale [12], a measure of an
individual’s tendency to engage in cognition during decision making.

Additional opportunities exist to test the effectiveness of psychological interventions for reducing software
engineers’ blindspots when producing or interacting with software code. Previous research has shown the
benefit of short-term interventions such as nudging [49], but longer-term interventions should be explored or
developed to promote the persistence of security behaviours, such as cognitive forcing.

6 RELATED WORK

This study builds upon a previous programme that posits software vulnerabilities are often missed by
engineers as the vulnerabilities occupy cognitive blindspots [13]. Support for this idea came from Oliveira
et al. [52], who tested the effect of priming engineers to review data for security. Following this, other studies
explored cognitive aspects of blindspot detection using Java [51] and Python [10]. Both studies supported the
paradigm, particularly for the underlying hypothesis that security vulnerabilities are difficult for engineers to
Manuscript submitted to ACM

214

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 19

detect. Our research extends the paradigm by applying dual processing theory [21] and measures of system
1 and system 2 processing to the hypothesis.

The remainder of this section provides context for our research regarding cognition research in software
engineering, API security, and the use of dual processing theory in other applied domains.

6.1 Cognition and Software Engineering

Within software security, an increased focus has been placed on the cognition and behaviours of those
involved in software creation [24]. Security is perceived as a reactive, event-driven process [41] with little
priority over functionality [40]. The reduced perceived importance of security and its temporal association
with specific events (as opposed to procedural, proactive workflows) means that it is less likely to be at the
forefront of an engineer’s mind during decision making, aligning with the dual processing theory.

Using prompts to encourage secure coding is of some benefit. Prompting can be the cue required to
engage system 2 processing and override or suppress system 1. Simple interventions of requesting security
have demonstrated their power in improving security with a broad range of populations, including students
[50], freelancers [49], and professional developers [48]. Prompting can also work more subtly, such as asking
engineers to write design specifications before writing secure code [30].

The cognitive load demanded by software development is significant and diverse, with requirements
including functionality, performance, usability, and security, amongst others [63]. Cognitive load research in
secure software development is limited, but manually conducted reviews and tests would likely overload
cognitive capacities, resulting in increased presence of software vulnerabilities [19].

Biases within software security have been explored previously and aid in explaining many common issues
[44]. One commonly reported bias is optimism bias, which is found in many forms, such as underestimating
time requirements for projects [45], downplaying security threats [42], or reduced concern over software
security [33]. Other biases include confirmation bias, where individuals seek information that confirms
internal hypotheses rather than disprove them [73]. Confirmation bias is seen as an issue in software testing
[66], as engineers may be less motivated or capable of applying non-confirmatory tests on edge cases, where
vulnerabilities often lie. Biases result from system 1 processing, and their noted prevalence in software
engineering research highlights just how common this processing is.

Research into cognition and psychology surrounding software engineering has explored ideas relevant to
understanding security behaviours. We contribute to this existing research by applying a theory of decision
making that aligns with work by others [10, 13, 51], highlighting its potential to explain behaviours observed
surrounding software vulnerabilities.

6.2 API Usability and Security

API usability research explores how their design affects a user’s performance and how it impacts software
security [46]. API misuse is a significant issue within software development, with nearly 90% of Android
applications possessing at least one cryptographic API fault [18]. This section highlights three issues found
in usability research about security.

One of the core issues identified as reducing API security usability is an absence of documentation. This
absence affects an engineer’s awareness of the security of API functions. It has been highlighted that where
documentation is difficult to read or too low-level in detail, engineers must read a lot of documentation to

Manuscript submitted to ACM

215

20 Ivory et al.

understand basic principles and ensure their API use is secure [47]. Others also found that the absence of
easy-to-use documentation resulted in functionally correct but insecure software [27]. While simpler APIs are
more secure than complex APIs, good documentation can moderate API complexity [1]. API documentation
should be written in the most precise and simplest terms possible, making default behaviour (whether secure
or insecure) explicit to ensure API users are not required to become experts before use [58]. Despite this,
API developers assume user expertise [14], which is at odds with the finding that many developers use APIs
for functionality over security [29], and APIs that do not reflect this behaviour, perhaps by requiring users
to specify security settings, are more likely to be used insecurely. In the opposite direction, developers expect
APIs to be secure by default [57], reflecting their lack of expertise in the API and their desire to get their
software created with minimal effort.

The API creator’s intent affects how it is expected to be used [64], and misunderstandings can result
in the API being used incorrectly. How an API is designed makes a difference in how it can be used, and
the absence of high-level information makes the intentions harder to grasp. Usability can be reflected in
the examples provided for function use in documentation. Where a mismatch between an example and a
user’s desire is seen, this creates friction during the learning and usage process. This lack of actionable or
easily-used examples can cause issues for engineers, who seek answers elsewhere instead of relying upon
official documentation, such as online forums, including StackOverflow [79]. Security solutions from online
forums can be functionally correct yet insecure, particularly compared to official documentation, which is
more secure but typically more challenging [2].

Our research explored how cognition and dual processing theory affect the ability to comprehend API use
within existing code. The research above highlights the issues developers face, with the clear and actionable
goal of producing simpler documentation, as it reduces extrinsic cognitive load and offers clear pathways for
engineers. We complement this by highlighting how individual differences amongst software engineers can
affect the ability to use this information and detect blindspots.

6.3 The Application of Dual Processing Theory

We present the first study into secure software development that explicitly uses dual processing theory to
interpret the results. Within software engineering, the theory’s potential has been discussed [see 60, 61, 65],
but it has not been empirically tested.

Previous research has applied the theory to other domains where decision making is critical, such as
in medical applications [17], suggesting that symptoms may be overtreated in situations of uncertainty
due to a reliance on system 1 processing. The overtreatment may result from clinicians wishing to reduce
potential negative emotions from a decision. In nursing, dual processing theory affects decisions in clinical
environments [56].

Dual processing theory has been applied in academic contexts with students exploring experimental
models [72]. When evaluating incorrect models, presenting students with additional information can provide
a sufficient cuing mechanism for engaging system 2. Financial literacy is also moderated by intuitive versus
rational decision making, where intuitive, heuristic-based decisions reduce a person’s financial performance
in stock market simulations [25]. Dual processing theory applies to various domains where decision making
is critical, and it stands to reason that software security is no different. Our findings lend support to this
position.
Manuscript submitted to ACM

216

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 21

7 CONCLUSIONS

We report on a study that assessed the viability of using the dual processing theory of decision making [21]
to explain why software vulnerabilities are often missed during code review. This research advances the
paradigm that security vulnerabilities often exist as cognitive blindspots [13]. System 1 and 2 processing
measures were used alongside Python puzzles containing blindspots.

Our findings suggest cognitive reflection and rational decision making are linked to better performance,
whereas intuitive decision making is negatively associated. We support previous findings that technical
experience and expertise do not affect blindspot detection. The results are discussed for the support they
offer the paradigm and potential ways the findings could be utilised in practical settings once validated with
confirmatory research. This study provides the foundations for further work in providing software engineers
with psychology-based interventions that are not restricted to programming languages, environments, or
IDEs but are grounded in their cognitive competencies.

REFERENCES
[1] Yasemin Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky. 2017. Comparing the Usability

of Cryptographic APIs. In 2017 IEEE Symposium on Security and Privacy (SP). 154–171. https://doi.org/10.1109/
SP.2017.52

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L. Mazurek, and Christian Stransky. 2016. You Get
Where You’re Looking for: The Impact of Information Sources on Code Security. In 2016 IEEE Symposium on Security
and Privacy (SP). 289–305. https://doi.org/10.1109/sp.2016.25

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L. Mazurek, and Sascha Fahl. 2017.
Developers Need Support, Too: A Survey of Security Advice for Software Developers. In 2017 IEEE Cybersecurity
Development (SecDev). IEEE, Cambridge, MA, USA, 22–26. https://doi.org/10.1109/SecDev.2017.17

[4] Md Rayhan Amin and Tanmay Bhowmik. 2021. Information on Potential Vulnerabilities for New Requirements: Does It
Help Writing Secure Code?. In 2021 IEEE 29th International Requirements Engineering Conference (RE). 408–413.
https://doi.org/10.1109/RE51729.2021.00046

[5] Vaibhav Anu, Kazi Zakia Sultana, and Bharath K. Samanthula. 2020. A Human Error Based Approach to Understand-
ing Programmer-Induced Software Vulnerabilities. In 2020 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). 49–54. https://doi.org/10.1109/ISSREW51248.2020.00036

[6] Hala Assal and Sonia Chiasson. 2019. ’Think Secure from the Beginning’; A Survey with Software Developers. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. 1–13. https:
//doi.org/10.1145/3290605.3300519

[7] Alan D. Baddeley. 1986. Working Memory. Clarendon Press/Oxford University Press, New York, NY, US. xi, 289
pages.

[8] Monya Baker. 2016. 1,500 Scientists Lift the Lid on Reproducibility. Nature 533, 7604 (May 2016), 452–454. https:
//doi.org/10.1038/533452a

[9] Denise R. Beike and Steven J. Sherman. 1994. Social Inference; Inductions, Deductions, and Analogies. In Handbook of
Social Cognition (2nd ed. ed.), Robert S. Wyer and Thomas K. Srull (Eds.). L. Erlbaum Associates, Hillsdale, N.J.

[10] Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha M. Myers, and Natalie C. Ebner. 2023. Blindspots in Python and
Java APIs Result in Vulnerable Code. ACM Transactions on Software Engineering and Methodology (April 2023).
https://doi.org/10.1145/3571850

[11] Marc Brysbaert and Michaël Stevens. 2018. Power Analysis and Effect Size in Mixed Effects Models: A Tutorial. 1, 1
(Jan. 2018), 9. https://doi.org/10.5334/joc.10

[12] John T. Cacioppo and Richard E. Petty. 1982. The Need for Cognition. Journal of Personality and Social Psychology
42, 1 (1982), 116–131. https://doi.org/10.1037/0022-3514.42.1.116

[13] Justin Cappos, Yanyan Zhuang, Daniela Seabra Oliveira, Marissa Rosenthal, and Kuo-Chuan Yeh. 2014. Vulnerabilities
as Blind Spots in Developer’s Heuristic-Based Decision-Making Processes. In Proceedings of the 2014 Workshop on
New Security Paradigms Workshop - NSPW ’14. ACM Press, Victoria, British Columbia, Canada, 53–62. https:
//doi.org/10.1145/2683467.2683472

Manuscript submitted to ACM

217

22 Ivory et al.

[14] Partha Das Chowdhury, Joseph Hallett, Nikhil Patnaik, Mohammad Tahaei, and Awais Rashid. 2021. Developers Are
Neither Enemies Nor Users: They Are Collaborators. In 2021 IEEE Secure Development Conference (SecDev). 47–55.
https://doi.org/10.1109/SecDev51306.2021.00023

[15] Pat Croskerry. 2003. Cognitive Forcing Strategies in Clinical Decisionmaking. Annals of Emergency Medicine 41, 1
(Jan. 2003), 110–120. https://doi.org/10.1067/mem.2003.22

[16] Kaja Damnjanović, Vera Novković, Irena Pavlović, Sandra Ilić, and Slobodan Pantelić. 2019. A Cue for Rational
Reasoning: Introducing a Reference Point in Cognitive Reflection Tasks. Europe’s Journal of Psychology 15, 1 (Feb.
2019), 25–40. https://doi.org/10.5964/ejop.v15i1.1701

[17] Benjamin Djulbegovic, Iztok Hozo, Jason Beckstead, Athanasios Tsalatsanis, and Stephen G. Pauker. 2012. Dual
Processing Model of Medical Decision-Making. BMC Medical Informatics and Decision Making 12, 1 (Sept. 2012), 94.
https://doi.org/10.1186/1472-6947-12-94

[18] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An Empirical Study of Cryptographic
Misuse in Android Applications. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security - CCS ’13. ACM Press, Berlin, Germany, 73–84. https://doi.org/10.1145/2508859.2516693

[19] Sarah Elder, Nusrat Zahan, Rui Shu, Monica Metro, Valeri Kozarev, Tim Menzies, and Laurie Williams. 2022. Do
I Really Need All This Work to Find Vulnerabilities? Empirical Software Engineering 27, 6 (Aug. 2022), 154.
https://doi.org/10.1007/s10664-022-10179-6

[20] Jonathan St. B. T. Evans. 1984. Heuristic and Analytic Processes in Reasoning. British Journal of Psychology 75, 4
(1984), 451–468. https://doi.org/10.1111/j.2044-8295.1984.tb01915.x

[21] Jonathan St. B. T. Evans. 2003. In Two Minds: Dual-Process Accounts of Reasoning. Trends in Cognitive Sciences 7,
10 (Oct. 2003), 454–459. https://doi.org/10.1016/j.tics.2003.08.012

[22] Jonathan St. B. T. Evans and Keith E. Stanovich. 2013. Dual-Process Theories of Higher Cognition: Advancing the
Debate. Perspectives on Psychological Science 8, 3 (May 2013), 223–241. https://doi.org/10.1177/1745691612460685

[23] Shane Frederick. 2005. Cognitive Reflection and Decision Making. Journal of Economic perspectives 19, 4 (2005),
25–42. https://doi.org/10.1257/089533005775196732

[24] Steven Furnell. 2021. The Cybersecurity Workforce and Skills. Computers & Security 100 (Jan. 2021), 102080.
https://doi.org/10.1016/j.cose.2020.102080

[25] Markus Glaser and Torsten Walther. 2014. Run, Walk, or Buy? Financial Literacy, Dual-Process Theory, and Investment
Behavior. https://doi.org/10.2139/ssrn.2167270

[26] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. 2020. Listen to Developers! A Participatory
Design Study on Security Warnings for Cryptographic APIs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13. https:
//doi.org/10.1145/3313831.3376142

[27] Peter Leo Gorski, Luigi Lo Lacono, Dominik Wermke, Christian Stransky, Sebastian Möller, Yasemin Acar, and Sascha
Fahl. 2018. Developers Deserve Security Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse. Fourteenth Symposium on Usable Privacy and Security (2018), 265–281.

[28] Margaret Gratian, Sruthi Bandi, Michel Cukier, Josiah Dykstra, and Amy Ginther. 2018. Correlating Human Traits and
Cyber Security Behavior Intentions. Computers & Security 73 (March 2018), 345–358. https://doi.org/10.1016/j.cose.
2017.11.015

[29] Matthew Green and Matthew Smith. 2016. Developers Are Not the Enemy!: The Need for Usable Security APIs. IEEE
Security Privacy 14, 5 (Sept. 2016), 40–46. https://doi.org/10.1109/MSP.2016.111

[30] Joseph Hallett, Nikhil Patnaik, Benjamin Shreeve, and Awais Rashid. 2021. “Do This! Do That!, And Nothing Will
Happen” Do Specifications Lead to Securely Stored Passwords?. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 486–498. https://doi.org/10.1109/ICSE43902.2021.00053

[31] Jerome D. Hoover and Alice F. Healy. 2019. The Bat-and-Ball Problem: Stronger Evidence in Support of a Conscious
Error Process. Decision 6 (2019), 369–380. https://doi.org/10.1037/dec0000107

[32] Matthew Ivory, Miriam Sturdee, John Towse, Mark Levine, and Bashar Nuseibeh. 2023 (in review). Can You Hear
the ROAR of Software Security? How Responsibility, Optimism And Risk Shape Developers’ Security Perceptions.
Empirical Software Engineering (2023 (in review)). https://doi.org/10.31234/osf.io/pexvz

[33] Matthew Ivory, John Towse, Miriam Sturdee, Mark Levine, and Bashar Nuseibeh. 2023. Recognizing the Known Unknowns;
the Interaction Between Reflective Thinking and Optimism for Uncertainty Among Software Developer’s Security
Perceptions. Technology, Mind, and Behavior 4, 3: Winter 2023 (Dec. 2023). https://doi.org/10.1037/tmb0000122

[34] Philip Nicholas Johnson-Laird. 1983. Mental Models: Towards a Cognitive Science of Language, Inference, and
Consciousness. Harvard University Press.

[35] Philip N. Johnson-Laird. 2010. Mental Models and Human Reasoning. Proceedings of the National Academy of Sciences
107, 43 (Oct. 2010), 18243–18250. https://doi.org/10.1073/pnas.1012933107

Manuscript submitted to ACM

218

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 23

[36] Daniel Kahneman and Shane Frederick. 2002. Representativeness Revisited: Attribute Substitution in Intuitive Judgment.
In Heuristics and Biases (1 ed.), Thomas Gilovich, Dale Griffin, and Daniel Kahneman (Eds.). Cambridge University
Press, 49–81. https://doi.org/10.1017/CBO9780511808098.004

[37] Daniel Kahneman, Paul Slovic, and Amos Tversky (Eds.). 1974. Judgment under Uncertainty: Heuristics and Biases
(1st ed.). Cambridge University Press, Cambridge, United Kingdom.

[38] Roderick M. Kramer, Pamela Pommerenke, and Elizabeth Newton. 1993. The Social Context of Negotiation: Effects of
Social Identity and Interpersonal Accountability on Negotiator Decision Making. Journal of Conflict Resolution 37, 4
(Dec. 1993), 633–654. https://doi.org/10.1177/0022002793037004003

[39] Levi Kumle, Melissa L.-H. Võ, and Dejan Draschkow. 2021. Estimating Power in (Generalized) Linear Mixed Models:
An Open Introduction and Tutorial in R. Behavior Research Methods 53, 6 (Dec. 2021), 2528–2543. https://doi.org/
10.3758/s13428-021-01546-0

[40] Tamara Lopez, Helen Sharp, Thein Tun, Arosha Bandara, Mark Levine, and Bashar Nuseibeh. 2019. Talking About
Security with Professional Developers. In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th International Workshop on Software Engineering Research and Industrial Practice
(SER IP). 34–40. https://doi.org/10.1109/CESSER-IP.2019.00014

[41] Tamara Lopez, Helen Sharp, Thein Tun, Arosha K. Bandara, Mark Levine, and Bashar Nuseibeh. 2019. ”Hopefully We
Are Mostly Secure”: Views on Secure Code in Professional Practice. In 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). IEEE, Montreal, QB, Canada, 61–68. https://doi.org/10.
1109/chase.2019.00023

[42] André Loske, Thomas Widjaja, and Peter Buxmann. 2013. Cloud Computing Providers’ Unrealistic Optimism Regarding
IT Security Risks: A Threat to Users?. In ICIS 2013 Proceedings. ICIS, Milano, Italy.

[43] Scott E. Maxwell, Michael Y. Lau, and George S. Howard. 2015. Is Psychology Suffering from a Replication Crisis?
What Does “Failure to Replicate” Really Mean? American Psychologist 70, 6 (2015), 487–498. https://doi.org/10.
1037/a0039400

[44] Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodŕıguez, and Paul Ralph. 2020. Cognitive Biases in Software
Engineering: A Systematic Mapping Study. IEEE Transactions on Software Engineering 46, 12 (Dec. 2020), 1318–1339.
https://doi.org/10.1109/TSE.2018.2877759

[45] Kjetil Mølokken and Magne Jørgensen. 2005. Expert Estimation of Web-Development Projects: Are Software Professionals
in Technical Roles More Optimistic Than Those in Non-Technical Roles? Empirical Software Engineering 10, 1 (Jan.
2005), 7–30. https://doi.org/10.1023/B:EMSE.0000048321.46871.2e

[46] Brad A. Myers and Jeffrey Stylos. 2016. Improving API Usability. Commun. ACM 59, 6 (May 2016), 62–69.
https://doi.org/10.1145/2896587

[47] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through Hoops: Why Do Java Developers
Struggle with Cryptography APIs?. In Proceedings of the 38th International Conference on Software Engineering (ICSE

’16). Association for Computing Machinery, New York, NY, USA, 935–946. https://doi.org/10.1145/2884781.2884790
[48] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020. On Conducting Security Developer

Studies with CS Students: Examining a Password-Storage Study with CS Students, Freelancers, and Company Developers.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376791

[49] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von Zezschwitz, and Matthew Smith. 2019. ”If You Want,
I Can Store the Encrypted Password”: A Password-Storage Field Study with Freelance Developers. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300370

[50] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej Dechand, and Matthew Smith. 2017.
Why Do Developers Get Password Storage Wrong? A Qualitative Usability Study. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 311–328. https://doi.org/10.1145/3133956.3134082

[51] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez, Rahul
Bobhate, Lois A. DeLong, Justin Cappos, and Yuriy Brun. 2018. {API} Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). 315–328.

[52] Daniela Seabra Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin Cappos, and Yanyan Zhuang. 2014.
It’s the Psychology Stupid. In Proceedings of the 30th Annual Computer Security Applications Conference. Association
for Computing Machinery, New Orleans, LA, USA, 296–305. https://doi.org/10.1145/2664243.2664254

[53] Open Science Collaboration. 2015. Estimating the Reproducibility of Psychological Science. Science 349, 6251 (Aug.
2015), aac4716. https://doi.org/10.1126/science.aac4716

Manuscript submitted to ACM

219

24 Ivory et al.

[54] Anna-Marie Ortloff, Christian Tiefenau, and Matthew Smith. 2023. {SoK}: I Have the (Developer) Power! Sample Size
Estimation for Fisher’s Exact, {Chi-Squared}, {McNemar’s}, Wilcoxon {Rank-Sum}, Wilcoxon {Signed-Rank} and
t-Tests in {Developer-Centered} Usable Security. In Nineteenth Symposium on Usable Privacy and Security (SOUPS
2023). 341–359.

[55] Alexa Palassis, Craig P. Speelman, and Julie Ann Pooley. 2021. An Exploration of the Psychological Impact of Hacking
Victimization. SAGE Open 11, 4 (Oct. 2021), 21582440211061556. https://doi.org/10.1177/21582440211061556

[56] John Paley, Helen Cheyne, Len Dalgleish, Edward A. S. Duncan, and Catherine A. Niven. 2007. Nursing’s Ways
of Knowing and Dual Process Theories of Cognition. Journal of Advanced Nursing 60, 6 (2007), 692–701. https:
//doi.org/10.1111/j.1365-2648.2007.04478.x

[57] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay Ligatti, and Xinming Ou. 2020. An Ethnographic Understanding
of Software ({In)Security} and a {Co-Creation} Model to Improve Secure Software Development. In Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020). 205–220.

[58] Nikhil Patnaik, Andrew C. Dwyer, Joseph Hallett, and Awais Rashid. 2021. Don’t Forget Your Classics: Systematizing
45 Years of Ancestry for Security API Usability Recommendations. arXiv:cs/2105.02031

[59] Nikhil Patnaik, Andrew C Dwyer, Joseph Hallett, and Awais Rashid. 2022. SLR: From Saltzer & Schroeder to 2021...:
47 Years of Research on the Development and Validation of Security API Recommendations. ACM Transactions on
Software Engineering and Methodology (Sept. 2022). https://doi.org/10.1145/3561383

[60] Marian Petre. 2022. Exploring Cognitive Bias ’in the Wild’: Technical Perspective. Commun. ACM 65, 4 (April 2022),
114–114. https://doi.org/10.1145/3517215

[61] Carianne Pretorius, Maryam Razavian, Katrin Eling, and Fred Langerak. 2018. Towards a Dual Processing Perspective of
Software Architecture Decision Making. In 2018 IEEE International Conference on Software Architecture Companion
(ICSA-C). 48–51. https://doi.org/10.1109/ICSA-C.2018.00021

[62] Paul Ralph. 2013. Possible Core Theories for Software Engineering. In 2013 2nd SEMAT Workshop on a General
Theory of Software Engineering (GTSE). 35–38. https://doi.org/10.1109/GTSE.2013.6613868

[63] Irum Rauf, Marian Petre, Thein Tun, Tamara Lopez, Paul Lunn, Dirk Van Der Linden, John Towse, Helen Sharp, Mark
Levine, Awais Rashid, and Bashar Nuseibeh. 2021. The Case for Adaptive Security Interventions. ACM Transactions
on Software Engineering and Methodology 31, 1 (Sept. 2021), 9:1–9:52. https://doi.org/10.1145/3471930

[64] M. P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from Developers. IEEE Software 26, 6 (Nov. 2009),
27–34. https://doi.org/10.1109/MS.2009.193

[65] Anthony V. Robins. 2022. Dual Process Theories: Computing Cognition in Context. ACM Transactions on Computing
Education 22, 4 (Sept. 2022), 41:1–41:31. https://doi.org/10.1145/3487055

[66] Iflaah Salman, Burak Turhan, and Sira Vegas. 2019. A Controlled Experiment on Time Pressure and Confirmation Bias
in Functional Software Testing. Empirical Software Engineering 24, 4 (Aug. 2019), 1727–1761. https://doi.org/10.
1007/s10664-018-9668-8

[67] Susanne G. Scott and Reginald A. Bruce. 1995. Decision-Making Style: The Development and Assessment of a
New Measure. Educational and Psychological Measurement 55, 5 (Oct. 1995), 818–831. https://doi.org/10.1177/
0013164495055005017

[68] Agnia Sergeyuk, Sergey Titov, Yaroslav Golubev, and Timofey Bryksin. 2023. Overcoming the Mental Set Effect in
Programming Problem Solving. (2023).

[69] Ben Shreeve, Catarina Gralha, Awais Rashid, João Araujo, and Miguel Goulão. 2022. Making Sense of the Unknown:
How Managers Make Cyber Security Decisions. ACM Transactions on Software Engineering and Methodology (Aug.
2022). https://doi.org/10.1145/3548682

[70] H. A. Simon. 1956. Rational Choice and the Structure of the Environment. Psychological Review 63, 2 (1956), 129–138.
https://doi.org/10.1037/h0042769

[71] William Smart. 2018. Lessons Learned Review of the WannaCry Ransomware Cyber Attack. Technical Report.
National Health Service, London, United Kingdom. 1–42 pages.

[72] J. Caleb Speirs, MacKenzie R. Stetzer, Beth A. Lindsey, and Mila Kryjevskaia. 2021. Exploring and Supporting Student
Reasoning in Physics by Leveraging Dual-Process Theories of Reasoning and Decision Making. Physical Review Physics
Education Research 17, 2 (Nov. 2021), 020137. https://doi.org/10.1103/PhysRevPhysEducRes.17.020137

[73] Webb Stacy and Jean MacMillan. 1995. Cognitive Bias in Software Engineering. Commun. ACM 38, 6 (1995), 57–63.
https://doi.org/10.1145/203241.203256

[74] Michael Stagnaro, Gordon Pennycook, and David G Rand. 2018. Performance on the Cognitive Reflection Test Is Stable
across Time. Stagnaro, MN, Pennycook, G., & Rand, DG (2018) Performance on the Cognitive Reflection Test is
stable across time. Judgment and Decision Making 13 (2018), 260–267.

[75] Keith E. Stanovich and Richard F. West. 2014. The Assessment of Rational Thinking: IQ ̸= RQ. Teaching of Psychology
41, 3 (July 2014), 265–271. https://doi.org/10.1177/0098628314537988

Manuscript submitted to ACM

220

Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of
decision making for secure coding 25

[76] Keela S Thomson and Daniel M Oppenheimer. 2016. Investigating an Alternate Form of the Cognitive Reflection Test.
Judgment and Decision making 11, 1 (2016), 99.

[77] Maggie E. Toplak, Richard F. West, and Keith E. Stanovich. 2011. The Cognitive Reflection Test as a Predictor
of Performance on Heuristics-and-Biases Tasks. Mem Cognit 39, 7 (Oct. 2011), 1275–89. https://doi.org/10.3758/
s13421-011-0104-1 arXiv:21541821

[78] Andrea Towse, David A. Ellis, and John Towse. 2021. Making Data Meaningful: Guidelines for Good Quality Open
Data. The Journal of Social Psychology 161, 4 (July 2021), 395–402. https://doi.org/10.1080/00224545.2021.1938811

[79] Dirk van der Linden, Emma Williams, Joseph Hallett, and Awais Rashid. 2020. The Impact of Surface Features on
Choice of (in)Secure Answers by Stackoverflow Readers. IEEE Transactions on Software Engineering (2020), 1–1.
https://doi.org/10.1109/tse.2020.2981317

[80] Merije Van Rookhuijzen, Emely De Vet, and Marieke A. Adriaanse. 2021. The Effects of Nudges: One-Shot Only?
Exploring the Temporal Spillover Effects of a Default Nudge. Frontiers in Psychology 12 (2021).

Manuscript submitted to ACM

221

222

8.1 Statement of Continuous Thesis Summary

“We can be blind to the obvious, and blind to our own blindness” - Daniel Kahneman,

2011

This chapter applies measures of dual processing towards vulnerability detection in

Python code to explore the suitability of the theory for explaining the variance observed

in differences in vulnerability detection. This chapter tests the hypothesis that software

vulnerabilities occupy blindspots in our cognition (Cappos et al., 2014) and extends it by

applying measures of decision making to assess whether intuitive and rational thinking

styles alter detection success. I replicate previous findings from Brun et al. (2023) that

code containing blindspots is more challenging to solve, and I then assess the suitability

of cognitive measures for explaining variance in vulnerability detection.

In the modest sample of 37 participants, I confirmed previous findings that blindspots are

difficult to detect, and that technical nor security expertise significantly improve

vulnerability detection. No significant effects in this sample were detected to support dual

processing theory. However, Bayes factors indicate that many of these non-significant

findings are due to the low sample size and data insensitivity instead of a preference for

the null hypothesis. This modest sample is used to simulate 740 novel observations, and a

power analysis is conducted on this dataset, offering potential effect sizes and minimum

sample sizes required for investigating psychological dimensions within secure software

development. For CRT-2, an effect in the expected direction is observed in a simulated

sample of 93 participants. Rational and intuitive decision making styles are also seen to

support the general hypothesis for samples of 179 and 371 participants, respectively, and

both are in the expected direction to support the dual processing theory. That is,

increased rationality was associated with increased detection, and higher intuitive styles

were associated with lower detection rates. The findings from the groundwork sample,

Bayes factors, and power simulation further evidence that conducting psychological

research in the software engineering domain is complex, and potential associations are

223

likely masked by the environment itself. This chapter offers valuable research-related

implications for other software engineering researchers, such as the need for sharing and

standardisation of software behaviour measures and the role of power analyses to ensure

sufficient research quality. The power analysis indicates that some significant effects are

detected in modest samples, and further research should control the experimental setup

carefully.

This chapter highlights the potential value of dual processing theory for software

engineering research by conducting a groundwork study supported by a simulated dataset

to determine likely effect sizes and directions of measures. The findings support the idea

that dual processing is a valid theory to interpret security behaviours in software

engineering. Increased system 2 use has been correlated with defect detection for

functionality (Buffardi, 2023), and it is recognised that software development requires

intensive cognitive engagement (Rauf et al., 2021) which emphasises the requirement for

system 2 engagement.

8.1.1 Contribution to Thesis Argument

This chapter contributes to the thesis by empirically investigating the role of dual

processing theory in the practical task of detecting security vulnerabilities in code. While

previous chapters explored cognitive reflection and social identity through self-reported

behaviours and thematic analysis, this chapter provides direct evidence from code

comprehension experiments, reinforcing the argument that System 2 (reflective) thinking

improves vulnerability detection, whereas intuitive (System 1) thinking may hinder it.

The replication of blindspot challenges in vulnerability detection further grounds the

theory in software engineering practice.

Despite a modest sample size limiting statistical power, the simulated data and power

analyses offer valuable guidance for future research design, highlighting the complexity

and demands of psychological research within software engineering contexts. These

findings support the claim that cognitive styles, particularly the engagement of reflective

224

reasoning, are fundamental to secure software development behaviours.

By extending dual processing theory to the concrete domain of code comprehension, this

chapter demonstrates that psychological constructs can be meaningfully integrated with

software engineering tasks. It exemplifies how a behavioural science approach can offer

new interpretations of persistent challenges in secure coding – specifically, that many

security vulnerabilities remain undetected not because of technical failure but because of

cognitive blindspots. Readers are encouraged to see this work as a bridge between the

psychological sciences and empirical software engineering, contributing to a more

complete, interdisciplinary account of secure development behaviour.

Together with earlier chapters on cognitive and social dimensions, this chapter

strengthens the interdisciplinary framework underpinning the thesis: that security-related

software engineering behaviour is best understood through integrating cognitive

psychology and social identity theories with traditional software engineering concepts. In

doing so, it reinforces a key claim of the thesis: that psychological and social dimensions

are not peripheral to software engineering but central to understanding and improving

developer behaviour.

225

9 General Discussion

Secure software development is not trivial, and software engineers face many competing

factors, of functionality, usability, performance, and, importantly, security (Rauf et al.,

2021). Despite a plethora of available support, including tools and documentation,

engineers continue to produce insecure software (Weir et al., 2020b). Software is the

by-product of human behaviour (John et al., 2005), and it can be hypothesised that

individual differences and personal perceptions influence how software security is

implemented. Based on these foundations, the thesis was designed – through empirical

study – to investigate and illuminate the spaces between secure software development and

those who attempt to develop it. This chapter integrates the specific work packages and

reflects on the broader interpretations and conclusions.

The core of this thesis comprises five research chapters, covering five research studies that

investigated the influence of cognitive and social psychology on secure software

engineering behaviours. The thesis used a phased work plan. Phase 1 explored the soft

skills relevant to software development. The findings were synthesised to emphasise

potential latent psychological theories that could describe or predict variances in soft skill

competencies. Moreover, two critical theories were identified, social identity theory

(Abrams & Hogg, 1990) and the dual processing theory of decision making (Evans, 2003),

as potentially fruitful theories to test because they offer explanations for why insecure

behaviours persist. Phase 2 then tested these theories against security perceptions and

secure coding behaviours.

Analysis of the literature demonstrated that relatively few empirical projects have applied

contemporary psychological concepts to software development scenarios. Adjacent areas

to the thesis were identified, such as cognitive bias (Mohanani et al., 2020) and working

memory (Brun et al., 2023), with working memory being linked to learning programming

(Prat et al., 2020). However, as far as can be established, minimal empirical work

addresses dual processing theory or social identity concerning secure coding behaviours.

226

Starting with soft skills, which are more familiar concepts to software engineers, phase 1

helped inform and shape the choices of psychological theories that are likely to have the

most impact on software engineering, as well as providing assurances that the research

implications are relevant.

9.1 Summary of Results

In the first research paper, Chapter 4, a survey study investigated the valued soft skills of

CS graduates to identify where these skills were developed. The CS sample was compared

against psychology graduates. The latter group provided a comparison in that nearly 80%

of CS students enter software engineering employment (Association of Graduate Careers

Advisory, 2022) after their undergraduate degree. In contrast, psychology graduate

employability is more diverse and psychology-specific careers typically require further

study (Stamms et al., 2016). CS graduates reported that skills of problem solving,

analytical thinking, and methodical thinking were developed during education, whereas

more workplace-oriented skills, like leadership and teamwork, were associated with

employment. In contrast to psychology graduates, CS graduates placed greater value on

team skills. Key skills required for security included communication, responsibility,

problem solving, critical thinking, decision making, flexibility, initiative, innovation, and

organisation.

Chapter 5 reported on two convergent studies. In study one, I conducted a multi-site

interview with CS educators to understand their perceptions of soft skills and how these

skills are integrated into core modules. Valued skills embedded within the modules were

separated into cognitive, social, and professional skills. Students were perceived to be

initially resistant to the idea of soft skills, and changes in this are event-driven, typically

through industry exposure. Study two extracted the soft skills embedded within curricula

information, which found frequent mentions of teamwork, communication, professional

skills, ethical thinking, critical thinking, and problem solving. Soft skills were often found

in proximity, indicating they were taught or assessed in the same modules. The

227

exceptions to this were problem solving and autonomy, which were closely tied to

programming, and software engineering was linked to teamwork and communication,

highlighting the social nature of how software engineering is taught.

In Chapter 6, security and risks in software engineering were investigated as a function of

measures of cognitive reflection, risk aversion, and unrealistic optimism bias. An

interaction between cognitive reflection and unrealistic optimism for uncertainty-based

language was identified, suggesting developers spoke about risk in complex ways. High

optimism and reflection indicated greater uncertainty awareness and more pessimistic

views reduced uncertainty as cognitive reflection increased. In general, developers were

typically over-optimistic about personal susceptibility towards security vulnerabilities.

Chapter 7 focused on rich text responses from the same data as Chapter 6 and subjected

them to a thematic analysis. Three core themes of Responsibility, Optimism, and Risk

were identified that emphasised nuanced ways of interpreting security and risk sensitivity.

These themes are characterised with respect to social identity theory, highlighting its

applicability for software engineering. Responsibility was interpreted in numerous ways,

through diffusion, displacement, or acceptance. Similarly, developers assessed risk through

direction and a personal appetite for uncertainty.

In Chapter 8, dual processing theory was applied towards a code comprehension task to

test the hypothesis that software vulnerabilities exist as cognitive blindspots. This

chapter offered the first experimental exploration of dual processing theory in secure

software engineering. Previous findings of Brun et al. (2023) were replicated – that

blindspots are hard to detect, and that technical and security expertise have little effect

on detection rates. Statistical power analyses indicated that dual processing theory has

potential for successfully interpreting secure coding behaviours.

9.2 Answering Research Questions

Two research questions were posed to structure this thesis:

228

1. What non-technical skills (or soft skills) are valued within computer

science and software engineering?

The first question is answered using the phase 1 findings. The non-technical skills valued

by both graduates and educators align, and the most valued skills from each study are

reported in Table 2. From this, all three studies unanimously identified communication,

teamwork, critical thinking, and problem solving. These four skills can be grouped into

social dimensions (communication & teamwork) and cognitive dimensions (critical

thinking & problem solving).

Soft skills represent one dimension distinguishing between good and exceptional software

developers (Capretz & Ahmed, 2018), and the thesis findings corroborate and extend

previous research that reports the value of communication (Ahmed et al., 2012b;

Montandon et al., 2021), teamwork (Groeneveld et al., 2020b; Jia et al., 2017), problem

solving (Florea & Stray, 2018; Matturro, 2013), and critical thinking (Matturro et al.,

2019).

Skill Chapter 4 Chapter 5a Chapter 5b

Communication
Critical Thinking
Problem Solving
Teamwork
Ethical Thinking
Conflict Management
Professional Skills
Reading/Writing
Responsibility
Time Management

Table 2
The skills identified in Chapters 4 and 5 as being important for software learning
development. 5a refers to study one, and 5b to study two in Chapter 5. This graph is
replicated from the Statement of Continuous Thesis Summary in Chapter 5.

2. Can psychological variables and constructs shape security behaviours

within software engineering?

229

The second question is answered throughout the research chapters, offering diverse

findings and implications in sections 9.3 and 9.4. Here, I provide more detailed answers to

this question, offering contributions to theoretical, practical, and research

implementations for improving secure coding behaviours.

The soft skills identified in phase 1 were synthesised into latent theories of social identity

and dual processing. The interaction identified in Chapter 6 suggested a complex

relationship between perceptions of security risks and cognition, highlighting that the

uncertainty awareness of developers is not linearly tied to measures of cognitive reflection.

Chapter 7 explored the same dataset quantitatively and identified the role of social

identity influencing responsibility around software security. Responsibility is identified in

Chapter 4 as a valued soft skill, and Chapter 7 reinforces this with social identity

interpretations integrating responsibility, communication, and group work. In Chapter 8,

the relationship between cognition and vulnerability detection was variable; the

groundwork sample demonstrated minimal support, but further analyses indicated this

was likely due to sample size. These findings suggest that while cognition and social

psychology can explain variance in secure coding practices, the relationship is complex

and further research requires careful control of possible confounds.

9.3 Theoretical Implications

Calls have been made for more psychology research within software engineering and

greater integration of psychology and software engineering research (Acar et al., 2016b;

Capretz & Ahmed, 2018), and my thesis answers these calls. The research chapters are

preprinted and have all been published or submitted to peer-reviewed venues to increase

the visibility of the work conducted in this area. The thesis delivers research findings

based on two contemporary psychological theories, responding to the call by testing

empirically cognition and social identity within secure software engineering.

230

9.3.1 Soft Skills and Pedagogy

The findings from phase 1 offer complementary perspectives on how software engineers

are exposed to soft skills during their education. Using standardised definitions for

otherwise ephemeral concepts, phase 1 identified the most valued soft skills through a

triangulation process. The findings speak to the possibility that the soft skills gap

(Akdur, 2021) is affected by the student’s reluctance to embrace the value of soft skills

until they experience the need for them, rather than a misalignment between industry

and educator expectations. These findings indicate the experiential impact of coming face

to face with soft skills in more professional contexts. These event-driven catalysts are

seen in other learning domains too, supporting the idea of event-driven development.

Exposing secondary school students to practical data collection engages them in the

activity and increases their motivation for tasks involving their own data compared to

pre-existing data (Martin et al., 2010) Similarly, medical trainees are often exposed to

practical experience as early as possible to develop their skills (Sawyer et al., 2015).

9.3.2 Cognitive Psychology Applications

This thesis in not the first place where dual processing theory has been applied towards

software engineering, but much of the literature was published “in parallel” with the

thesis. This work has been primarily conceptual rather than empirical (e.g., Petre, 2022;

Pretorius et al., 2018; Robins, 2022), with one empirical study correlating cognitive

reflection against functional defect detection (Buffardi, 2023). To my knowledge, this

thesis is the first empirical application of dual processing theory within secure software

development, but the existing work offers support to the notion that it is a suitable

theory to apply toward decision making in secure software engineering.

In Chapters 6 and 8, I applied the theory to make quantitative predictions, supported by

subsequent analysis. Specifically, Chapter 6 establishes an interaction between optimism

bias and cognitive reflection for security perceptions, indicating that the psychological

theories that often demonstrate clear effects in general populations are more nuanced in

231

applied contexts. Similarly, Chapter 8’s power analysis evidenced the need for large

samples to detect effects related to dual processing, or precise empirical measures to

reduce noise. However, in some cases, the data tended towards accepting the null

hypothesis (that dual processing has no role in predicting security behaviours), reiterating

the uncertainty and nuances of software engineering psychology.

These findings raise the question, “Why is the effect more nuanced than in standard

psychology experiments?”. One answer is that no direct link between dual processing

decision making exists, and secure coding simply is very complex. Another answer lies in

the research approach, where the designs used so far were not sufficient for isolating

decision making states from other influences in secure coding. The thesis cannot fully

answer this question, but next steps (as outlined in 9.8) would suggest that the causal

nature of dual processing needs to be tested to provide better answers to this question.

The findings align with previous work, where software development requires cognitive

effort (Rauf et al., 2021), which demands system 2 engagement and consequently means

that it is being deployed in competing contexts such as for functionality as well as

security. System 2 engagement correlates with increased defect detection for functionality

tests (Buffardi, 2023), supporting the thesis findings for the relevance within secure

contexts.

9.3.3 Social Psychology Applications

Chapter 7 highlights how responsibility for security can be conceptualised through social

identity theory. The thesis findings offer support for diverse social identities existing in

secure software development and for interpreting how social identity may influence

approaches towards responsibility and risk acceptance. Rauf et al. (2022) identified that

security perceptions in developer communities are not homogenous, and in explorations of

freelance communities, Rauf et al. (2023) identified diverse ways in which these

perceptions manifest. Security cultures and motivations for security use range from

internal motivators, such as feelings of responsibility, to external requirements, such as

232

app store policies. It was also seen that some freelancers do not consider security as a

concern, citing reasons including that security is only necessary for large projects, or that

their processes are already secure enough. This work, published in parallel with the PhD

(while Chapter 7 underwent peer review), provides supporting evidence for the findings in

Chapter 7. The thesis focuses on examining these security perceptions through the lens of

social identity, enabling a greater interpretation of why these perceptions may exist

within the freelancer community. The thesis leverages pre-existing, well-researched

psychological constructs for investigating causal relationships between social groups and

security thinking.

The success of group-based work is about more than just social factors of communication

and group management. Group diversity, in terms of individual cognitive differences, can

be valuable for the balancing of perspectives (Shreeve et al., 2022), and this diversity can

offer opportunities for greater engagement in more reflective thinking (Coffeng et al.,

2023). Developers are encouraged to seek multiple perspectives while secure coding to

increase deliberative thinking.

9.4 Practical Implications

The practical implications and applications of this thesis are diverse due to the research

approach. They also differ in terms of their realistic “delivery schedules”. That is, some

are more speculative than others, and some are more fully formed. They include

opportunities to improve curricula, promote security behaviours from freelancers, and

educate current and developing engineers about the possible dangers of working

intuitively and its impact on secure code.

It is worth reiterating a point made in Chapter 8 that the findings from phase 2 should

not be used as performance indicators or recruitment metrics. Instead, the thesis

emphasises the need for multiple perspectives within software development, from ranges

of cognitive styles to the strength of social identities. These provide a balancing of

perspectives, and if all developers presented homogeneous cognitive states and social ties,

233

then only technical expertise and experience would predict secure coding, which Chapter

8 indicates is not true.

9.4.1 Curriculum Design

Findings from phase 1 offer implications towards curriculum design. Problem solving was

strongly linked to graduates’ education, suggesting the undergraduate programme delivers

this skill well. However, social communication and teamwork skills were reportedly not

associated with education. A larger issue exists within education, in that educators need

to teach what students prospectively need, and this can change dramatically over the

course of an individual’s career. What an educator was taught is not necessarily what

they should teach. This emphasises the importance of teaching principles rather than

declarative information because this supports flexibility in preparation of the future.

Chapters 4 and 5 suggest incorporating project-based learning with involvement from

industry partners to speed up the recognition of soft skill’s value, allowing students a

controlled environment to practice these skills. Natural language processing approaches

can be utilised to check curriculum material for soft skill distributions and ensure they

are embedded across the course.

In Chapter 5, educators emphasised that ethical thinking is often taught in an overt,

direct way and forms an integral part of the curriculum, a reflection of the inclusion of

ethics in the SE2014 (Ardis et al., 2015), SWEBOK (Bourque & Fairley, 2014), and

CyBOK (Rashid et al., 2021). However, Chapter 4 showed that graduates place a low

value on the importance of ethics. The reasons for this are unclear, but it may be due to

differences in how education and industry understand ethics. Even frameworks such as

SWEBOK state that staying abreast of contemporary ethical standards is the individual’s

responsibility, and the academic equivalent, SE2014, indicates educators should ensure

students are familiarised with the ACM/IEEE code of ethics without further scaffolding.

To mitigate this, educators and industry partners should work together to identify the

necessary ethical components, offering enhanced support for student’s ethical awareness

234

and development.

9.4.2 Closing the Temporal Gap

Chapter 5 finds students do not always recognise the value of soft skills, avoiding

development opportunities or disengaging with course content on their topic, and this is

potentially reflected in the finding that despite teamwork and communication being

taught and emphasised within core module content, graduates report it as being

developed outside of education. These findings echo the event-driven nature of soft skill

development, pointing to the need for educators to provide these catalytic events.

Educators should seek to develop activities that require genuine team elements with a

strong, practical, and industry-applicable motivation.

9.4.3 Rewards for Secure Coding

Chapter 6 suggests that reward systems can be implemented to engage engineers in

reflective or critical thinking to boost secure coding. Rewards can increase personal

motivation to achieve quality work, which typically involves greater cognitive effort

(Kunda, 1990). Reward systems do not need to be financially based when working with

freelancers, as public recognition through gamification (such as profile badges) can be

used to increase traffic to freelancers recognised for producing secure code. Lopez et al.

(2018) explored the use of badges and points on StackOverflow, finding that they are

beneficial for increasing engagement. Other methods exist for the improvement of security

awareness through gamification, such as the Motivating Jenny project (Lopez et al.,

2020b) who presented game-based interventions for raising security awareness in developer

teams.

9.4.4 Increasing accountability

Chapter 7 highlighted how responsibility is framed and that social identities can lead to a

reduced acceptance of personal responsibility. Management should emphasise a top-down

security culture and enable freelancers or temporary staff to share these values, leading to

greater individual responsibility. Methods for ensuring freelancers adopt similar social

235

identities are beyond the scope of this thesis but making security a substantial part of an

organisation’s branding, certainly during recruitment, can reinforce this value as being

required for potential employees. Increasing accountability of individuals can be used to

enhance the awareness of risk directed to oneself, which would also boost responsibility.

Similarly, ensuring developers are cognisant of their users and reducing the social distance

between developer and user may also increase personal responsibility for secure coding.

9.4.5 Educating engineers on decision making styles

In Chapter 8, I replicated the finding that programming experience and technical

knowledge have little effect on software vulnerability detection and found indications that

dual processing theory can explain individual differences in vulnerability detection.

Educators can use these findings to educate CS students (and current developers) about

the dangers of assuming that technical knowledge guarantees secure software. Teaching

these populations about how intuitive decision making is not the best approach for

writing code, can be used to increase developers’ awareness of the need to engage in

reflective and critical styles of thinking.

9.5 Final Thesis Structure

As noted in the Chapter 3 statement, there are differences between the intended thesis

structure proposed in Chapter 3 and the final thesis structure. Namely, three major

differences are worth discussing.

1. The work plan in Chapter 3 mentioned three phases, but the thesis only mentions

phases 1 and 2. Phase 3 comprised methods for disseminating research through a)

seminars, workshops, and tutorials and b) research publications. As of thesis

submission, two chapters are published in peer-reviewed venues, and four are

published on preprint servers while under peer review. Phase 3 intended to cover

intervention development to raise awareness of psychological dimensions in

pedagogy, but it was not possible to incorporate this into the programme due to

resource constraints.

236

2. The intended plan had a student interview study in phase 1 that was not conducted.

The primary reasons for this omission were finite resources and an initial naïvety

about the investment that would be required. In addition, the thesis timeline did

not align with a schedule to follow a cohort throughout the academic calendar and

ideally over multiple years. This timeline was not possible and would have detracted

from the feasibility of what was undertaken. Phase 1 findings indicate that this

study is still beneficial to thoroughly test the idea that the skill gap is attributable

to student misconceptions.

3. The intended phase 2 plan mentioned three studies, and the final phase 2 work only

contains one of these studies, with Chapters 6 and 7 being defined as a “standalone”

study. Again, naïvety accounts for the absence of debugging and database creation

tasks. That is, there are reasons why some empirical paradigms are currently rare in

the research field. The methodological development of stimuli and protocols is

neither straightforward nor quick. Nonetheless, the final thesis outcome still

provides empirical substance, breadth, and coherence. Additionally, as highlighted

in Chapter 8, studying cognition in software engineering requires a large sample size,

which would not have been possible to cover with the PhD funding alone.

Taken together, the studies in this thesis demonstrate that secure software development is

not solely a technical challenge, but a cognitive and social one. By combining behavioural

science and psychological methods with empirical software engineering, this thesis offers

an interdisciplinary framework that positions soft skills as central to understanding and

improving secure coding behaviours. Across graduate perceptions, staff practice,

developer psychology, and experimental code comprehension, the thesis shows that

reasoning styles, social identities, and reflective capacities shape how developers perceive,

discuss, and respond to risk. This work thus invites readers to view secure software

engineering through a psychological and sociotechnical lens, one that complements, rather

than competes with, technical expertise.

237

9.6 Reflections on Methodological Coherence and Theoretical Integration

This thesis adopted a socio-cognitive and pragmatic mixed-methods framework, which

informed both the design and interpretation of the research studies. Across diverse

methodologies there was a consistent theoretical commitment to understanding

computing and secure behaviours soft skills as both individually internalised and socially

situated psychological phenomena.

By aligning the qualitative studies with a constructionist epistemology, the research was

able to explore how participants co-constructed meaning in their specific institutional and

disciplinary contexts. Thematic analysis, selected for its flexibility and alignment with

this epistemological stance, enabled the identification of shared meaning patterns across

groups, which could then be generalised conceptually to inform subsequent studies.

The quantitative studies, framed within an experiential realist epistemology, extended this

inquiry by testing models of behaviour and latent psychological constructs. While these

paradigms differ epistemologically, they were united by a socio-cognitive theoretical lens

that emphasises the interaction between internal beliefs and external structures in

shaping outcomes. Importantly, the thesis demonstrates how a methodologically pluralist

approach, when guided by a coherent theoretical frame, can produce high quality,

valuable findings. Rather than viewing qualitative and quantitative studies as isolated or

merely additive, the thesis treated them as complementary.

This integration supports a triangulated understanding of social and cognitive behaviours.

An understanding that reflects both the measurable and the meaningful, the cognitive

and the contextual. In this way, the thesis provides an example of how socio-cognitive

approaches can function as a unifying framework across methodological boundaries,

yielding insights that neither approach could achieve alone.

238

9.7 Limitations

Specific research limitations and threats to validity are detailed in the relevant chapters.

This section focuses on the broader constraints that affect the thesis.

The studies were conducted online because of the coronavirus pandemic that mandated

physical distancing measures and partly because of the populations targeted. The

interview study in Chapter 5 could have been in-person, but participants volunteered for

online interviews. In other words, online data collection primarily occurred through force

of circumstances. There are notable benefits to online data collection, including increased

diversity, faster data collection, and the ability to reach dispersed populations. Still, there

are downsides, too. Online participants may demonstrate reduced attentiveness compared

to in-person paradigms (Newman et al., 2021), likely explained by scenarios where

participants complete experiments in parallel with other activities, such as watching

television. The juggling of multiple tasks can reduce attention and validity as participants

are less motivated to provide detailed information, distorting the effect sizes observed. A

weakened effect increases the likelihood that null effects are detected where a true effect

should exist. For example, weakened motivation for information provision was a specific

issue in Chapters 6 and 7, but controls were set to reduce this behaviour, including timers

restricting participants from submitting answers too soon. However, as organisations

adopt hybrid or remote working patterns, online studies likely reflect working

environments. Particularly with software engineers, where most of their time is conducted

online or in front of a computer, engaging in online digital experiments may be similar to

typical environments.

It is also harder to control for diversity within online samples (Casler et al., 2013), and

within-participant variability is likely higher than in-person studies, meaning effect sizes

may be diminished. Despite these potential issues, Casler et al. (2013) did not find

evidence for differences between online and in-person studies, suggesting it may not be an

issue. However, perhaps a more unique limitation to the thesis than is commonly seen in

239

general psychological research is related to online participant recruitment. Users of

freelance platforms are diverse and self-identifying or, rather, self-branding (Blyth et al.,

2022). For researchers, this makes participant screening more involved than other

recruitment strategies, as freelancer profiles contain the content they wish to promote. As

discovered in Chapter 8, many profiles purporting to be experienced software engineers

were inexperienced CS students. This increased the time investment needed for screening,

and the potential diversity within the community is far greater than advertised. Despite

this, freelance communities are still valuable populations to understand, as solo

developers increasingly produce software (van der Linden et al., 2020a), and freelance

communities are recognised as a unique population of interest (Rauf et al., 2023).

Another issue with using online participants is that with the introduction of artificial

language models (e.g., ChatGPT), participants used these tools to respond to screening

questions. These responses look promising, but upon reading, it is clear they possess no

real value. This increases time investment. While a limiting factor, it does offer one

straightforward method of screening. In software engineering, ChatGPT is a valid tool for

assisting software production. However, it was not expected that participants would use it

to answer rich text answers, and it can become difficult to disentangle what is written by

a participant or AI. This only affected Chapter 8, as all other studies were conducted

prior to ChatGPT release, or were interview studies. To reduce the chance of

programming-related questions (such as code comprehension) being answered by AI in

Chapter 8, I provided code snippets as images rather than text, which minimised

participants’ ability to copy-paste the code directly into AI tools. Due to the timeline of

the thesis, no other studies were affected.

The thesis was intended to comprise high-quality research with suitably powered

statistical analyses and comprehensive qualitative information. Adequate power usually

means larger sample sizes, which comes with the trade-off of cost. The PhD budget was

limited in its purchasing power when acknowledging the higher-than-average cost of

240

recruiting professional software engineers compared to compensating undergraduate

psychology students. Chapter 8 exemplifies this tension, where only 37 participants were

recruited. Data simulation was used to carry out a power analysis to address this

shortfall. Different populations were targeted to address tensions between powered

research and available resources (including graduates, staff, and freelancers) by

triangulation of these sources.

9.8 Further Work

This thesis sets the stage for further research into the cognitive and social constructs that

may inform security behaviours within software engineering. Chapter 8 culminates at a

stage that indicates the need for a well-powered confirmatory study that addresses the

potential noise in collecting psychological measures in software engineers. Deploying

further studies of dual processing theory for secure coding in brownfield tasks (such as

reviewing code) and greenfield tasks (such as writing secure code) can boost our

understanding of the relationship between cognitive state and secure behaviours. These

findings can then be used to develop interventions that leverage individual cognitive

differences to reveal causal relationships between cognition and secure coding.

The broader influence of cognition in secure coding warrants further exploration beyond

dual processing theory. As this area of research is still in its early stages, it is pertinent to

investigate cognition from multiple perspectives to ensure that potential influences are

suitably addressed. For example, revisiting the findings reviewed in Chapter 2 that

working memory has little influence in secure coding, it is beneficial to understand why

this may have occurred despite displaying some effect in bug detection. Working memory

has clear links with task success and high-level cognition (Baddeley & Hitch, 1974), so

why is it not considered an attribute of secure coding? Speculatively, code-based

activities do not require high levels of working memory as overloads are absorbed into

tools. The high variability in individual computer environments may accommodate for

working memory deficiencies. Further research that controls variables that may attenuate

241

working memory in secure coding would enhance our understanding of individual

cognitive differences in this domain.

The findings from the social identity work in Chapter 7 indicated that the perceived

social distance between developers and their users can modulate feelings of responsibility

for ensuring software is secure. Incorporating elements of the design used in Rauf et al.

(2022), where individuals were primed to think of themselves as members of the developer

community or not, the influence of social identity strength can be explored against the

vulnerability detection task used in Chapter 8. This work would offer multiple

advancements in that using the same materials as Chapter 8 allows for easier comparisons

between findings, and previous work recognises that relationships exist between social

identities and approaches to secure coding (see Chapter 7 and Rauf et al., 2023 for

examples). However, to date, no causal relationships have been identified.

The thesis also emphasises the need for future work to ensure that adequate sample sizes

are used, and that study designs should be carefully controlled to ensure that detected

effects contain as minimal noise as possible. It is seen throughout the research, such as in

Chapter 8, that expected effects were not reported and that this is assumed to be the

result of participants using AI to answer psychological measures. Any work carried out in

this space should be carefully planned to reduce possible confounds.

These research areas are not the only possible research developments but represent the

thesis work’s direct progression. The thesis lays the groundwork for these research

programmes, evidencing their likelihood of success by providing a better understanding of

how secure coding can be achieved and offer the identification of relationships between

psychological concepts and secure software engineering currently lacking in secure

software engineering. Further work must seek to observe these relationships and confirm

their causal nature.

242

9.9 Conclusion

This thesis highlights that the psychological dimensions of software engineers are complex.

Secure software development and the behaviours exhibited within are multifaceted. The

development cycle has many competing interests, including functionality, usability, and

security (Rauf et al., 2021). This complex environment means that understanding the

psychology of individuals is vital but difficult to isolate. In this thesis, I approached the

absence of psychological research in software engineering by first understanding the

valuable soft skills for software engineering, before translating these into latent

psychological theories that were applied to secure software engineering behaviours.

In phase 1, I identified the key soft skills present within CS education, finding that

students only learn some of their valued skills during education, despite the efforts of

educators to provide opportunities for students to develop these skills. The core skills

could be grouped: communication & teamwork, and problem solving & critical thinking.

Social identity theory (Haslam, 2012) and the dual processing theory of decision making

(Evans, 2003) were identified as suitable methods for interpreting the psychology of

software engineering.

In phase 2, through an analysis of developer-held perceptions of security risks, the role of

system 2 activation (measured by CRT) was found to have an effect in interaction with

optimistic beliefs. The role of social identity was applied to developer perceptions, and

how developers handle responsibility and risk can be interpreted through understanding

social identities and the representation of ingroup and outgroup behaviours. This research

was followed by a replication study that confirmed blindspots in code are difficult to

detect, as well as a further development that tested dual processing theory’s relationship

with vulnerability detection. No significant effects were found within the groundwork

sample for dual processing, but power simulations suggest that suitably powered studies

would find effects in samples between 100 and 200 participants, depending on which

measures are used.

243

The thesis has implications for software learning development in CS education and for

practising software engineers. Phase 1 advocates the integration of meaningful social skill

exercises that expose students to the reality of these skills’ value, with the aim to close

the temporal gap observed and have students recognise the value of soft skills during

education, not after. Phase 2 findings suggest that teaching opportunities should be used

to highlight aspects of dual processing and how intuitive programming can be detrimental

to security. For practising engineers, phase 2 indicates language can offer insight into how

developers perceive others in the development cycle, which can be used to identify

potential areas where responsibility can be refused or where unacceptable risks are taken.

The findings suggest developers should be conscious about how their documentation is

written and whether insecure default or potentially opaque descriptions can reduce other

developers’ ability to produce secure code.

By establishing a role for social identity theory and dual processing theory as the latent

dimensions of key soft skills, the research findings offer a small but meaningful

contribution to understanding how individuals influence secure software development.

This thesis provides multiple answers to the call for increased psychology research in

software engineering (Capretz & Ahmed, 2018) and explains why secure coding

behaviours are not always observed. It is hoped that the thesis research will inspire others

to research the interdisciplinary area of secure software development.

244

Consolidated Bibliography

Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss Aversion Under Prospect

Theory: A Parameter-Free Measurement. Management Science, 53 (10), 1659–1674.

https://doi.org/10.1287/mnsc.1070.0711

Abrams, D., & Hogg, M. (1990). An Introduction to the Social Identity Approach. In

Social identity theory: Constructive and critical advances (pp. 1–9). Harvester

Wheatsheaf. https://books.google.co.uk/books?id=hJjZAAAAMAAJ

Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M. L., & Stransky, C.

(2017a). Comparing the Usability of Cryptographic APIs. 2017 IEEE Symposium on

Security and Privacy (SP), 154–171. https://doi.org/10.1109/SP.2017.52

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L., & Stransky, C. (2016a). You

Get Where You’re Looking for: The Impact of Information Sources on Code Security.

2016 IEEE Symposium on Security and Privacy (SP), 289–305.

https://doi.org/10.1109/sp.2016.25

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L., & Stransky, C. (2017b). How

Internet Resources Might Be Helping You Develop Faster but Less Securely. IEEE

Security Privacy, 15 (2), 50–60. https://doi.org/10.1109/MSP.2017.24

Acar, Y., Fahl, S., & Mazurek, M. L. (2016b). You are Not Your Developer, Either: A

Research Agenda for Usable Security and Privacy Research Beyond End Users. IEEE

Cybersecurity Development, 3–8.

https://main.sec.uni-hannover.de/publications/conf-secdev-acarfm16/

Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M. L., & Fahl, S. (2017c).

Developers Need Support, Too: A Survey of Security Advice for Software Developers.

2017 IEEE Cybersecurity Development (SecDev), 22–26.

https://doi.org/10.1109/SecDev.2017.17

Adams, A., & Sasse, M. A. (1999). Users are not the enemy. Communications of the

ACM, 42 (12), 40–46. https://doi.org/10.1145/322796.322806

Agbo, F. J., Yigzaw, S. T., Sanusi, I. T., Oyelere, S. S., & Mare, A. H. (2021). Examining

https://doi.org/10.1287/mnsc.1070.0711
https://books.google.co.uk/books?id=hJjZAAAAMAAJ
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/sp.2016.25
https://doi.org/10.1109/MSP.2017.24
https://main.sec.uni-hannover.de/publications/conf-secdev-acarfm16/
https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1145/322796.322806

245

theoretical and pedagogical foundations of computational thinking in the context of

higher education. 2021 IEEE Frontiers in Education Conference (FIE), 1–8.

https://doi.org/10.1109/FIE49875.2021.9637405

Ahmed, F., Capretz, L. F., Bouktif, S., & Campbell, P. (2012a). Soft skills requirements

in software development jobs: a cross-cultural empirical study. Journal of Systems and

Information Technology, 14 (1), 58–81. https://doi.org/10.1108/13287261211221137

Ahmed, F., Capretz, L. F., Bouktif, S., & Campbell, P. (2015). Soft Skills and Software

Development: A Reflection from Software Industry. International Journal of

Information Processing and Management, 4 (3), 171–191.

https://doi.org/10.48550/arXiv.1507.06873

Ahmed, F., Capretz, L. F., & Campbell, P. (2012b). Evaluating the Demand for Soft

Skills in Software Development. IT Professional, 14 (1), 44–49.

https://doi.org/10.1109/MITP.2012.7

Ait Aomar, A. (2023). SkillNER: A (smart) rule based NLP module to extract job skills

from text [{{GitHub}} Repository]. In SkillNER.

https://github.com/AnasAito/SkillNER.

Ajila, C., & Abiola, A. (2004). Influence of Rewards on Workers Performance in an

Organization. Journal of Social Sciences, 8 (1), 7–12.

https://doi.org/10.1080/09718923.2004.11892397

Akdur, D. (2021). Skills Gaps in the Industry: Opinions of Embedded Software

Practitioners. ACM Transactions on Embedded Computing Systems, 20 (5), 43:1–43:39.

https://doi.org/10.1145/3463340

Alnuaimi, O. A., Robert, L. P., & Maruping, L. M. (2010). Team Size, Dispersion, and

Social Loafing in Technology-Supported Teams: A Perspective on the Theory of Moral

Disengagement. Journal of Management Information Systems, 27 (1), 203–230.

https://doi.org/10.2753/MIS0742-1222270109

Alter, A. L., & Oppenheimer, D. M. (2008). Effects of Fluency on Psychological Distance

and Mental Construal (or Why New York Is a Large City, but New York Is a Civilized

https://doi.org/10.1109/FIE49875.2021.9637405
https://doi.org/10.1108/13287261211221137
https://doi.org/10.48550/arXiv.1507.06873
https://doi.org/10.1109/MITP.2012.7
https://doi.org/10.1080/09718923.2004.11892397
https://doi.org/10.1145/3463340
https://doi.org/10.2753/MIS0742-1222270109

246

Jungle). Psychological Science, 19 (2), 161–167.

https://doi.org/10.1111/j.1467-9280.2008.02062.x

Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007). Overcoming intuition:

Metacognitive difficulty activates analytic reasoning. Journal of Experimental

Psychology: General, 136 (4), 569–576. https://doi.org/10.1037/0096-3445.136.4.569

Amaral, M. J., & Monteiro, M. B. (2002). To be without being Seen: Computer-Mediated

Communication and Social Identity Management. Small Group Research, 33 (5),

575–589. https://doi.org/10.1177/104649602237171

Amin, M. R., & Bhowmik, T. (2021). Information on Potential Vulnerabilities for New

Requirements: Does It Help Writing Secure Code? 2021 IEEE 29th International

Requirements Engineering Conference (RE), 408–413.

https://doi.org/10.1109/RE51729.2021.00046

Andersson, C., & Logofatu, D. (2018). Using cultural heterogeneity to improve soft skills

in engineering and computer science education. 2018 IEEE Global Engineering

Education Conference (EDUCON), 191–195.

https://doi.org/10.1109/EDUCON.2018.8363227

Anu, V., Sultana, K. Z., & Samanthula, B. K. (2020). A Human Error Based Approach

to Understanding Programmer-Induced Software Vulnerabilities. 2020 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW),

49–54. https://doi.org/10.1109/ISSREW51248.2020.00036

Anu, V., Walia, G., Hu, W., Carver, J., & Bradshaw, G. (2016). Effectiveness of Human

Error Taxonomy during Requirements Inspection: An Empirical Investigation.

531–536. https://doi.org/10.18293/SEKE2016-177

Ardis, M., Budgen, D., Hislop, G. W., Offutt, J., Sebern, M., & Visser, W. (2015). SE

2014: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering. Computer, 48 (11), 106–109. https://doi.org/10.1109/MC.2015.345

Armstrong, M. E., Jones, K. S., Namin, A. S., & Newton, D. C. (2020). Knowledge,

Skills, and Abilities for Specialized Curricula in Cyber Defense: Results from

https://doi.org/10.1111/j.1467-9280.2008.02062.x
https://doi.org/10.1037/0096-3445.136.4.569
https://doi.org/10.1177/104649602237171
https://doi.org/10.1109/RE51729.2021.00046
https://doi.org/10.1109/EDUCON.2018.8363227
https://doi.org/10.1109/ISSREW51248.2020.00036
https://doi.org/10.18293/SEKE2016-177
https://doi.org/10.1109/MC.2015.345

247

Interviews with Cyber Professionals. ACM Transactions on Computing Education,

20 (4), 29:1–29:25. https://doi.org/10.1145/3421254

Assal, H., & Chiasson, S. (2018a). Motivations and Amotivations for Software Security.

Fourteenth Symposium on Usable Privacy and Security, 4.

Assal, H., & Chiasson, S. (2018b). Security in the Software Development Lifecycle.

Proceedings of the Fourteenth USENIX Conference on Usable Privacy and Security,

281–296. https://doi.org/10.5555/3291228.3291251

Assal, H., & Chiasson, S. (2019). ’Think secure from the beginning’; A survey with

Software Developers. Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems - CHI ’19, 1–13. https://doi.org/10.1145/3290605.3300519

Association of Graduate Careers Advisory. (2022). What can I do with a computer

science degree? | Prospects.ac.uk. What Can I Do with a Computer Science Degree?

https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-degree/computer-

science

Auhagen, A. E., & Bierhoff, H.-W. (2002). Responsibility: The Many Faces of a Social

Phenomenon. Taylor & Francis.

Backevik, A., Tholén, E., & Gren, L. (2019). Social Identity in Software Development.

12th International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE), 107–114. https://doi.org/10.1109/chase.2019.00033

Bada, M., Sasse, A. M., & Nurse, J. R. C. (2019). Cyber Security Awareness Campaigns:

Why do they fail to change behaviour? arXiv:1901.02672 [Cs].

http://arxiv.org/abs/1901.02672

Baddeley, A. D. (1986). Working memory (pp. xi, 289). Clarendon Press/Oxford

University Press.

Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), Psychology

of Learning and Motivation (Vol. 8, pp. 47–89). Academic Press.

https://doi.org/10.1016/S0079-7421(08)60452-1

Baham, C., & Hirschheim, R. (2021). Issues, challenges, and a proposed theoretical core

https://doi.org/10.1145/3421254
https://doi.org/10.5555/3291228.3291251
https://doi.org/10.1145/3290605.3300519
https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-degree/computer-science
https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-degree/computer-science
https://doi.org/10.1109/chase.2019.00033
http://arxiv.org/abs/1901.02672
https://doi.org/10.1016/S0079-7421(08)60452-1

248

of agile software development research. Information Systems Journal, 32 (1), 103–129.

https://doi.org/10.1111/isj.12336

Bailin, S., & Siegel, H. (2003). Critical Thinking. In The Blackwell Guide to the

Philosophy of Education (pp. 181–193). John Wiley & Sons, Ltd.

https://doi.org/10.1002/9780470996294.ch11

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533 (7604),

452–454. https://doi.org/10.1038/533452a

Balaji, K. V. A., & Somashekar, P. (2009). A Comparative Study of Soft Skills Among

Engineers. IUP Journal of Soft Skills, 3 (3/4), 50–57.

Balliet, D., Wu, J., & De Dreu, C. K. W. (2014). Ingroup favoritism in cooperation: A

meta-analysis. Psychological Bulletin, 140, 1556–1581.

https://doi.org/10.1037/a0037737

Bancino, R., & Zevalkink, C. (2007). Soft Skills: The New Curriculum for Hard-Core

Technical Professionals. Techniques: Connecting Education and Careers (J1), 82 (5),

20–22.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory

(pp. xiii, 617). Prentice-Hall, Inc.

Bandura, A. (2002). Selective Moral Disengagement in the Exercise of Moral Agency.

Journal of Moral Education, 31 (2), 101–119.

https://doi.org/10.1080/0305724022014322

Banyard, V. L., & Miller, K. E. (1998). The powerful potential of qualitative research for

community psychology. American Journal of Community Psychology, 26 (4), 485–505.

https://doi.org/10.1023/A:1022136821013

Barreto, C. F., & França, C. (2021). Gamification in Software Engineering: A literature

Review. 2021 IEEE/ACM 13th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), 105–108.

https://doi.org/10.1109/CHASE52884.2021.00020

Baucus, M. S., & Beck-Dudley, C. L. (2005). Designing Ethical Organizations: Avoiding

https://doi.org/10.1111/isj.12336
https://doi.org/10.1002/9780470996294.ch11
https://doi.org/10.1038/533452a
https://doi.org/10.1037/a0037737
https://doi.org/10.1080/0305724022014322
https://doi.org/10.1023/A:1022136821013
https://doi.org/10.1109/CHASE52884.2021.00020

249

the Long-Term Negative Effects of Rewards and Punishments. Journal of Business

Ethics, 56 (4), 355–370. https://doi.org/10.1007/s10551-004-1033-8

Baum, T., Schneider, K., & Bacchelli, A. (2019). Associating working memory capacity

and code change ordering with code review performance. Empirical Software

Engineering, 24 (4), 1762–1798. https://doi.org/10.1007/s10664-018-9676-8

BCS. (2023). University Computing departments met with record applicant numbers as

AI hits the mainstream | BCS [Blog]. In University Computing departments met with

record applicant numbers as AI hits the mainstream.

https://www.bcs.org/articles-opinion-and-research/university-computing-departments-

met-with-record-applicant-numbers-as-ai-hits-the-mainstream/.

Beike, D. R., & Sherman, S. J. (1994). Social Inference; Inductions, Deductions, and

Analogies. In R. S. Wyer & T. K. Srull (Eds.), Handbook of social cognition (2nd ed.).

L. Erlbaum Associates.

Bergersen, G. R., & Gustafsson, J.-E. (2011). Programming Skill, Knowledge, and

Working Memory Among Professional Software Developers from an Investment

Theory Perspective. Journal of Individual Differences, 32 (4), 201–209.

https://doi.org/10.1027/1614-0001/a000052

Bethlehem, J. (2010). Selection Bias in Web Surveys. International Statistical Review,

78 (2), 161–188. https://doi.org/10.1111/j.1751-5823.2010.00112.x

Białek, M., & Pennycook, G. (2018). The cognitive reflection test is robust to multiple

exposures. Behav Res Methods, 50 (5), 1953–1959.

https://doi.org/10.3758/s13428-017-0963-x

Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., Kutar, M.

S., Loomes, M., Nehaniv, C. L., Petre, M., Roast, C., Roe, C., Wong, A., & Young, R.

M. (2001). Cognitive Dimensions of Notations: Design Tools for Cognitive Technology.

In M. Beynon, C. L. Nehaniv, & K. Dautenhahn (Eds.), Cognitive Technology:

Instruments of Mind (pp. 325–341). Springer.

https://doi.org/10.1007/3-540-44617-6_31

https://doi.org/10.1007/s10551-004-1033-8
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1027/1614-0001/a000052
https://doi.org/10.1111/j.1751-5823.2010.00112.x
https://doi.org/10.3758/s13428-017-0963-x
https://doi.org/10.1007/3-540-44617-6_31

250

Blackwell, A. F., Petre, M., & Church, L. (2019). Fifty years of the psychology of

programming. International Journal of Human-Computer Studies, 131, 52–63.

https://doi.org/10.1016/j.ijhcs.2019.06.009

Blyth, D. L., Jarrahi, M. H., Lutz, C., & Newlands, G. (2022). Self-branding strategies of

online freelancers on Upwork. New Media & Society, 14614448221108960.

https://doi.org/10.1177/14614448221108960

Borowa, K., Zalewski, A., & Kijas, S. (2021). The Influence of Cognitive Biases on

Architectural Technical Debt. 2021 IEEE 18th International Conference on Software

Architecture (ICSA), 115–125. https://doi.org/10.1109/ICSA51549.2021.00019

Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering Body of

Knowledge (No. 3.0; pp. 1–335). IEEE Computer Society.

https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf

Brachten, F., Brünker, F., Frick, N. R. J., Ross, B., & Stieglitz, S. (2020). On the ability

of virtual agents to decrease cognitive load: an experimental study. Information

Systems and e-Business Management, 18 (2), 187–207.

https://doi.org/10.1007/s10257-020-00471-7

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

Research in Psychology, 3 (2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brewer, M. B. (2017). Intergroup discrimination: Ingroup love or outgroup hate? In The

Cambridge handbook of the psychology of prejudice (pp. 90–110). Cambridge

University Press. https://doi.org/10.1017/9781316161579.005

Brun, Y., Lin, T., Somerville, J. E., Myers, E. M., & Ebner, N. C. (2022). Blindspots in

Python and Java APIs Result in Vulnerable Code. ACM Transactions on Software

Engineering and Methodology. https://doi.org/10.1145/3571850

Brun, Y., Lin, T., Somerville, J. E., Myers, E. M., & Ebner, N. C. (2023). Blindspots in

Python and Java APIs Result in Vulnerable Code. ACM Transactions on Software

Engineering and Methodology. https://doi.org/10.1145/3571850

Brun, Y., Lin, T., Somerville, J. E., Myers, E., & Ebner, N. C. (2021). Blindspots in

https://doi.org/10.1016/j.ijhcs.2019.06.009
https://doi.org/10.1177/14614448221108960
https://doi.org/10.1109/ICSA51549.2021.00019
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://doi.org/10.1007/s10257-020-00471-7
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1017/9781316161579.005
https://doi.org/10.1145/3571850
https://doi.org/10.1145/3571850

251

Python and Java APIs Result in Vulnerable Code. arXiv:2103.06091 [Cs].

https://arxiv.org/abs/2103.06091

Brysbaert, M., & Stevens, M. (2018). Power Analysis and Effect Size in Mixed Effects

Models: A Tutorial. 1 (1), 9. https://doi.org/10.5334/joc.10

Buehler, R., Griffin, D., & Ross, M. (1994). Exploring the "planning fallacy": Why people

underestimate their task completion times. Journal of Personality and Social

Psychology, 67 (3), 366. https://doi.org/10.1037/0022-3514.67.3.366

Buffardi, K. (2023). Cognitive Reflection in Software Verification and Testing. 2023

IEEE/ACM 45th International Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET), 1–10.

https://doi.org/10.1109/ICSE-SEET58685.2023.00006

Bürkner, P.-C., & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A

Tutorial. Advances in Methods and Practices in Psychological Science, 2 (1), 77–101.

https://doi.org/10.1177/2515245918823199

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality

and Social Psychology, 42 (1), 116–131. https://doi.org/10.1037/0022-3514.42.1.116

Caeiro-Rodríguez, M., Manso-Vázquez, M., Mikic-Fonte, F. A., Llamas-Nistal, M.,

Fernández-Iglesias, M. J., Tsalapatas, H., Heidmann, O., De Carvalho, C. V., Jesmin,

T., Terasmaa, J., & Sørensen, L. T. (2021). Teaching Soft Skills in Engineering

Education: An European Perspective. IEEE Access, 9, 29222–29242.

https://doi.org/10.1109/ACCESS.2021.3059516

Calitz, A., Cullen, M., & Greyling, J. (2015). South African Alumni Perceptions of the

Industry ICT Skills Requirements.

Camp, L. J. (2009). Mental models of privacy and security. IEEE Technology and Society

Magazine, 28 (3), 37–46. https://doi.org/10.1109/MTS.2009.934142

Cappos, J., Zhuang, Y., Oliveira, D. S., Rosenthal, M., & Yeh, K.-C. (2014).

Vulnerabilities as Blind Spots in Developer’s Heuristic-Based Decision-Making

Processes. Proceedings of the 2014 Workshop on New Security Paradigms Workshop -

https://arxiv.org/abs/2103.06091
https://doi.org/10.5334/joc.10
https://doi.org/10.1037/0022-3514.67.3.366
https://doi.org/10.1109/ICSE-SEET58685.2023.00006
https://doi.org/10.1177/2515245918823199
https://doi.org/10.1037/0022-3514.42.1.116
https://doi.org/10.1109/ACCESS.2021.3059516
https://doi.org/10.1109/MTS.2009.934142

252

NSPW ’14, 53–62. https://doi.org/10.1145/2683467.2683472

Capretz, L. F., & Ahmed, F. (2018). A Call to Promote Soft Skills in Software

Engineering. Psychology and Cognitive Sciences - Open Journal, 4 (1), e1–e3.

https://doi.org/10.17140/PCSOJ-4-e011

Carter, L. (2011). Ideas for adding soft skills education to service learning and capstone

courses for computer science students. Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education, 517–522.

https://doi.org/10.1145/1953163.1953312

Caskurlu, S., Ashby, I., & Exter, M. (2017, June). The Alignment Between Formal

Education and Software Design Professionals’ Needs in Industry: Faculty Perception.

2017 ASEE Annual Conference & Exposition.

Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of

participants and data gathered via Amazon’s MTurk, social media, and face-to-face

behavioral testing. Computers in Human Behavior, 29 (6), 2156–2160.

https://doi.org/10.1016/j.chb.2013.05.009

Čavojová, V., & Jurkovič, M. (2017). Comparison of experienced vs. novice teachers in

cognitive reflection and rationality. Studia Psychologica, 59 (2), 100–112.

https://doi.org/10.21909/sp.2017.02.733

Cerny, B. A., & Kaiser, H. F. (1977). A Study Of A Measure Of Sampling Adequacy For

Factor-Analytic Correlation Matrices. Multivariate Behavioral Research, 12 (1), 43–47.

https://doi.org/10.1207/s15327906mbr1201_3

Chai, W. J., Abd Hamid, A. I., & Abdullah, J. M. (2018). Working Memory From the

Psychological and Neurosciences Perspectives: A Review. Frontiers in Psychology, 9.

https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00401

Charmaz, K. (2008). Constructionism and the Grounded Theory Method. In J. A.

Holstein & J. F. Gubrium (Eds.), Handbook of Constructionist Research. Guilford

Press.

Chattopadhyay, S., Nelson, N., Au, A., Morales, N., Sanchez, C., Pandita, R., & Sarma,

https://doi.org/10.1145/2683467.2683472
https://doi.org/10.17140/PCSOJ-4-e011
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1016/j.chb.2013.05.009
https://doi.org/10.21909/sp.2017.02.733
https://doi.org/10.1207/s15327906mbr1201_3
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00401

253

A. (2020). A tale from the trenches: cognitive biases and software development.

Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering, 654–665. https://doi.org/10.1145/3377811.3380330

Chattopadhyay, S., Nelson, N., Au, A., Morales, N., Sanchez, C., Pandita, R., & Sarma,

A. (2022). Cognitive biases in software development. Communications of the ACM,

65 (4), 115–122. https://doi.org/10.1145/3517217

Chattoraj, A. K., & Shabnam, S. (2015). Importance of Soft Skill in Business.

Anusandhanika, 7 (2), 105–110.

Chng, S., Lu, H. Y., Kumar, A., & Yau, D. (2022). Hacker types, motivations and

strategies: A comprehensive framework. Computers in Human Behavior Reports, 5,

100–167. https://doi.org/10.1016/j.chbr.2022.100167

Chowdhury, P. D., Hallett, J., Patnaik, N., Tahaei, M., & Rashid, A. (2021). Developers

Are Neither Enemies Nor Users: They Are Collaborators. 2021 IEEE Secure

Development Conference (SecDev), 47–55.

https://doi.org/10.1109/SecDev51306.2021.00023

Cicirello, V. A. (2017). Student developed computer science educational tools as software

engineering course projects. Journal of Computing Sciences in Colleges, 32 (3), 55–61.

Coffeng, T., van Steenbergen, E. F., de Vries, F., Steffens, N. K., & Ellemers, N. (2023).

Reflective and decisive supervision: The role of participative leadership and team

climate in joint decision-making. Regulation & Governance, 17 (1), 290–309.

https://doi.org/10.1111/rego.12449

Cortázar, C., Goñi, I., Ortiz, A., & Nussbaum, M. (2024). Are Professional Skills

Learnable? Beliefs and Expectations Among Computing Graduates. ACM

Transactions on Computing Education. https://doi.org/10.1145/3641551

Craig, M., Conrad, P., Lynch, D., Lee, N., & Anthony, L. (2018). Listening to early

career software developers. Journal of Computing Sciences in Colleges, 33 (4),

138–149.

Cranor, L. F. (2005). Security and Usability: Designing Secure Systems That People Can

https://doi.org/10.1145/3377811.3380330
https://doi.org/10.1145/3517217
https://doi.org/10.1016/j.chbr.2022.100167
https://doi.org/10.1109/SecDev51306.2021.00023
https://doi.org/10.1111/rego.12449
https://doi.org/10.1145/3641551

254

Use. O’Reilly Media, Inc.

Crichton, W., Agrawala, M., & Hanrahan, P. (2021). The Role of Working Memory in

Program Tracing. Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems, 1–13. https://doi.org/10.1145/3411764.3445257

Croskerry, P. (2003). Cognitive forcing strategies in clinical decisionmaking. Annals of

Emergency Medicine, 41 (1), 110–120. https://doi.org/10.1067/mem.2003.22

Damnjanović, K., Novković, V., Pavlović, I., Ilić, S., & Pantelić, S. (2019). A Cue for

Rational Reasoning: Introducing a Reference Point in Cognitive Reflection Tasks.

Europe’s Journal of Psychology, 15 (1), 25–40. https://doi.org/10.5964/ejop.v15i1.1701

Danilova, A., Naiakshina, A., Rasgauski, A., & Smith, M. (2021). Code Reviewing as

Methodology for Online Security Studies with Developers – A Case Study with

Freelancers on Password Storage. 21.

Danilova, A., Naiakshina, A., & Smith, M. (2020). One Size Does Not Fit All: A

Grounded Theory and Online Survey Study of Developer Preferences for Security

Warning Types. 2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE), 136–148.

Dash, N., & Gladwin, H. (2007). Evacuation Decision Making and Behavioral Responses:

Individual and Household. Natural Hazards Review, 8 (3), 69–77.

https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(69)

De Neys, W., Rossi, S., & Houdé, O. (2013). Bats, balls, and substitution sensitivity:

cognitive misers are no happy fools. Psychonomic Bulletin & Review, 20 (2), 269–273.

https://doi.org/10.3758/s13423-013-0384-5

de Souza, C. R. B., Figueira Filho, F., Miranda, M., Ferreira, R. P., Treude, C., & Singer,

L. (2016). The Social Side of Software Platform Ecosystems. Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems, 3204–3214.

https://doi.org/10.1145/2858036.2858431

De Wit, J., Pieters, W., Jansen, S., & Van Gelder, P. (2021). Biases in security risk

management: Do security professionals follow prospect theory in their decisions?

https://doi.org/10.1145/3411764.3445257
https://doi.org/10.1067/mem.2003.22
https://doi.org/10.5964/ejop.v15i1.1701
https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(69)
https://doi.org/10.3758/s13423-013-0384-5
https://doi.org/10.1145/2858036.2858431

255

Journal of Integrated Security and Safety Science.

https://doi.org/10.18757/JISSS.2021.1.5700

DeLiema, D., Dahn, M., Flood, V., Asuncion, A., Abrahamson, D., Enyedy, N., & Steen,

F. (2019). Debugging as a Context for Fostering Reflection on Critical Thinking and

Emotion. In Deeper Learning, Dialogic Learning, and Critical Thinking (pp. 209–228).

Routledge.

Destefanis, G., Ortu, M., Counsell, S., Swift, S., Tonelli, R., & Marchesi, M. (2017). On

the randomness and seasonality of affective metrics for software development.

Proceedings of the Symposium on Applied Computing, 1266–1271.

https://doi.org/10.1145/3019612.3019786

Djulbegovic, B., Hozo, I., Beckstead, J., Tsalatsanis, A., & Pauker, S. G. (2012). Dual

processing model of medical decision-making. BMC Medical Informatics and Decision

Making, 12 (1), 94. https://doi.org/10.1186/1472-6947-12-94

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to

conduct a bibliometric analysis: An overview and guidelines. Journal of Business

Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Dourish, P. (2001). Where the Action is: The Foundations of Embodied Interaction. MIT

Press.

Duijf, H. (2021). Should one trust experts? Synthese, 199 (3), 9289–9312.

https://doi.org/10.1007/s11229-021-03203-7

Eck, N. van, & Waltman, L. (2009). Software survey: VOSviewer, a computer program

for bibliometric mapping. Scientometrics, 84 (2), 523–538.

https://doi.org/10.1007/s11192-009-0146-3

Egele, M., Brumley, D., Fratantonio, Y., & Kruegel, C. (2013). An empirical study of

cryptographic misuse in android applications. Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security - CCS ’13, 73–84.

https://doi.org/10.1145/2508859.2516693

Egelman, S., & Peer, E. (2015). Scaling the Security Wall: Developing a Security

https://doi.org/10.18757/JISSS.2021.1.5700
https://doi.org/10.1145/3019612.3019786
https://doi.org/10.1186/1472-6947-12-94
https://doi.org/10.1016/j.jbusres.2021.04.070
https://doi.org/10.1007/s11229-021-03203-7
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1145/2508859.2516693

256

Behavior Intentions Scale (SeBIS). Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, 2873–2882.

https://doi.org/10.1145/2702123.2702249

Elder, S., Zahan, N., Shu, R., Metro, M., Kozarev, V., Menzies, T., & Williams, L. (2022).

Do I really need all this work to find vulnerabilities? Empirical Software Engineering,

27 (6), 154. https://doi.org/10.1007/s10664-022-10179-6

Ellemers, N., Spears, R., & Doosje, B. (2002). Self and Social Identity. Annual Review of

Psychology, 53 (1), 161–186. https://doi.org/10.1146/annurev.psych.53.100901.135228

English, R., & Hayes, A. (2022). Towards Integrated Graduate Skills for UK Computing

Science Students. Proceedings of the 2022 Conference on United Kingdom & Ireland

Computing Education Research, 1–7. https://doi.org/10.1145/3555009.3555018

Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In

Teaching thinking skills: Theory and practice (pp. 9–26). W H Freeman/Times Books/

Henry Holt & Co.

Evans, J. St. B. T. (1984). Heuristic and analytic processes in reasoning. British Journal

of Psychology, 75 (4), 451–468. https://doi.org/10.1111/j.2044-8295.1984.tb01915.x

Evans, J. St. B. T. (2003). In two minds: dual-process accounts of reasoning. Trends in

Cognitive Sciences, 7 (10), 454–459. https://doi.org/10.1016/j.tics.2003.08.012

Evans, J. St. B. T. (2010a). Thinking twice: Two minds in one brain (pp. viii, 240).

Oxford University Press.

Evans, J. St. B. T. (2010b). Intuition and Reasoning: A Dual-Process Perspective.

Psychological Inquiry, 21 (4), 313–326. https://doi.org/10.1080/1047840X.2010.521057

Evans, J. St. B. T., & Stanovich, K. E. (2013). Dual-Process Theories of Higher

Cognition: Advancing the Debate. Perspectives on Psychological Science, 8 (3),

223–241. https://doi.org/10.1177/1745691612460685

Fagerholm, F., Felderer, M., Fucci, D., Unterkalmsteiner, M., Marculescu, B., Martini, M.,

Tengberg, L. G. W., Feldt, R., Lehtelä, B., Nagyváradi, B., & Khattak, J. (2022).

Cognition in Software Engineering: A Taxonomy and Survey of a Half-Century of

https://doi.org/10.1145/2702123.2702249
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.1146/annurev.psych.53.100901.135228
https://doi.org/10.1145/3555009.3555018
https://doi.org/10.1111/j.2044-8295.1984.tb01915.x
https://doi.org/10.1016/j.tics.2003.08.012
https://doi.org/10.1080/1047840X.2010.521057
https://doi.org/10.1177/1745691612460685

257

Research. ACM Computing Surveys, 54 (11s), 1–36. https://doi.org/10.1145/3508359

Fareri, S., Melluso, N., Chiarello, F., & Fantoni, G. (2021). SkillNER: Mining and

Mapping Soft Skills from any Text. Expert Systems with Applications, 184, 115544.

https://doi.org/10.1016/j.eswa.2021.115544

Feliciano, J. (2015). Towards a Collaborative Learning Platform: The Use of GitHub in

Computer Science and Software Engineering Courses [Thesis].

Fiesler, C., Garrett, N., & Beard, N. (2020). What Do We Teach When We Teach Tech

Ethics? A Syllabi Analysis. Proceedings of the 51st ACM Technical Symposium on

Computer Science Education, 289–295. https://doi.org/10.1145/3328778.3366825

Finch, W. H. (2020). Using Fit Statistic Differences to Determine the Optimal Number of

Factors to Retain in an Exploratory Factor Analysis. Educational and Psychological

Measurement, 80 (2), 217–241. https://doi.org/10.1177/0013164419865769

Fischer, F., Bottinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., & Fahl, S. (2017).

Stack Overflow Considered Harmful? The Impact of Copy&Paste on Android

Application Security. 121–136. https://doi.org/10.1109/sp.2017.31

Fischer, J. M., & Ravizza, M. (1998). Responsibility and Control: A Theory of Moral

Responsibility. Cambridge University Press.

Florea, R., & Stray, V. (2018). Software Tester, We Want to Hire You! an Analysis of the

Demand for Soft Skills. In J. Garbajosa, X. Wang, & A. Aguiar (Eds.), Agile

Processes in Software Engineering and Extreme Programming (pp. 54–67). Springer

International Publishing. https://doi.org/10.1007/978-3-319-91602-6_4

Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic

Perspectives, 19 (4), 25–42. https://doi.org/10.1257/089533005775196732

Frik, A., Kim, J., Sanchez, J. R., & Ma, J. (2022). Users’ Expectations About and Use of

Smartphone Privacy and Security Settings. Proceedings of the 2022 CHI Conference

on Human Factors in Computing Systems, 1–24.

https://doi.org/10.1145/3491102.3517504

Furnell, S. (2021). The cybersecurity workforce and skills. Computers & Security, 100,

https://doi.org/10.1145/3508359
https://doi.org/10.1016/j.eswa.2021.115544
https://doi.org/10.1145/3328778.3366825
https://doi.org/10.1177/0013164419865769
https://doi.org/10.1109/sp.2017.31
https://doi.org/10.1007/978-3-319-91602-6_4
https://doi.org/10.1257/089533005775196732
https://doi.org/10.1145/3491102.3517504

258

102080. https://doi.org/10.1016/j.cose.2020.102080

Furnell, S., & Bishop, M. (2020). Addressing cyber security skills: The spectrum, not the

silo. Computer Fraud & Security, 2020 (2), 6–11.

https://doi.org/10.1016/S1361-3723(20)30017-8

Fussell, S. R., & Krauss, R. M. (1992). Coordination of knowledge in communication:

Effects of speakers’ assumptions about what others know. Journal of Personality and

Social Psychology, 62 (3), 378–391. https://doi.org/10.1037/0022-3514.62.3.378

Galhotra, S., Brun, Y., & Meliou, A. (2017). Fairness Testing: Testing Software for

Discrimination. Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, 498–510. https://doi.org/10.1145/3106237.3106277

Gallagher, K. P., Kaiser, K. M., Simon, J. C., Beath, C. M., & Goles, T. (2010). The

requisite variety of skills for IT professionals. Communications of the ACM, 53 (6),

144–148. https://doi.org/10.1145/1743546.1743584

Galster, M., Mitrovic, A., Malinen, S., & Holland, J. (2022). What Soft Skills Does the

Software Industry *Really* Want? An Exploratory Study of Software Positions in

New Zealand. Proceedings of the 16th ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement, 272–282.

https://doi.org/10.1145/3544902.3546247

Garousi, V., Giray, G., Tuzun, E., Catal, C., & Felderer, M. (2020). Closing the Gap

Between Software Engineering Education and Industrial Needs. IEEE Software, 37 (2),

68–77. https://doi.org/10.1109/MS.2018.2880823

Gavidia-Calderon, C., Bennaceur, A., Lopez, T., Kordoni, A., Levine, M., & Nuseibeh, B.

(2023). Meet your Maker: A Social Identity Analysis of Robotics Software

Engineering. Proceedings of the First International Symposium on Trustworthy

Autonomous Systems, 1–5. https://doi.org/10.1145/3597512.3600206

Gibbs, G. (2007). Analyzing Qualitative Data. SAGE Publications, Ltd.

https://doi.org/10.4135/9781849208574

Gibert, A., Tozer, W. C., & Westoby, M. (2017). Teamwork, Soft Skills, and Research

https://doi.org/10.1016/j.cose.2020.102080
https://doi.org/10.1016/S1361-3723(20)30017-8
https://doi.org/10.1037/0022-3514.62.3.378
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/1743546.1743584
https://doi.org/10.1145/3544902.3546247
https://doi.org/10.1109/MS.2018.2880823
https://doi.org/10.1145/3597512.3600206
https://doi.org/10.4135/9781849208574

259

Training. Trends in Ecology & Evolution, 32 (2), 81–84.

https://doi.org/10.1016/j.tree.2016.11.004

Gigerenzer, G. (2002). Adaptive Thinking: Rationality in the Real World. Oxford

University Press, USA.

Gigerenzer, G. (2008). Why Heuristics Work. Perspectives on Psychological Science, 3 (1),

20–29. https://doi.org/10.1111/j.1745-6916.2008.00058.x

Gigerenzer, G. (2015). Simply Rational: Decision Making in the Real World. Oxford

University Press.

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic Decision Making. Annual Review of

Psychology, 62 (1), 451–482. https://doi.org/10.1146/annurev-psych-120709-145346

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart (pp. xv,

416). Oxford University Press.

Gillard, S. (2009). Soft Skills and Technical Expertise of Effective Project Managers.

Issue in Informing Science and Information Technology, 6 (1), 723–729.

Giraffa, L. M. M., Moraes, M. C., & Uden, L. (2014). Teaching Object-Oriented

Programming in First-Year Undergraduate Courses Supported By Virtual Classrooms.

In L. Uden, Y.-H. Tao, H.-C. Yang, & I.-H. Ting (Eds.), The 2nd International

Workshop on Learning Technology for Education in Cloud (pp. 15–26). Springer

Netherlands. https://doi.org/10.1007/978-94-007-7308-0_2

Glaser, M., & Walther, T. (2014). Run, Walk, or Buy? Financial Literacy, Dual-Process

Theory, and Investment Behavior ({{SSRN Scholarly Paper}} No. 2167270).

https://doi.org/10.2139/ssrn.2167270

Goldhaber, G. M. (1974). Organizational communication. (No Title).

https://cir.nii.ac.jp/crid/1130282272132859776

Gold-Veerkamp, C. (2019, January). A Software Engineer’s Competencies:

Undergraduate Preconceptions in Contrast to Teaching Intentions. Proceedings of the

52nd Hawaii International Conference on System Sciences.

https://doi.org/10.24251/HICSS.2019.937

https://doi.org/10.1016/j.tree.2016.11.004
https://doi.org/10.1111/j.1745-6916.2008.00058.x
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1007/978-94-007-7308-0_2
https://doi.org/10.2139/ssrn.2167270
https://cir.nii.ac.jp/crid/1130282272132859776
https://doi.org/10.24251/HICSS.2019.937

260

Gonçales, L. J., Farias, K., & da Silva, B. C. (2021). Measuring the cognitive load of

software developers: An extended Systematic Mapping Study. Information and

Software Technology, 136, 106563. https://doi.org/10.1016/j.infsof.2021.106563

Gonçalves, P. W., Fregnan, E., Baum, T., Schneider, K., & Bacchelli, A. (2020). Do

Explicit Review Strategies Improve Code Review Performance? Proceedings of the

17th International Conference on Mining Software Repositories, 606–610.

https://doi.org/10.1145/3379597.3387509

González-Morales, D., Antonio, L. M. M. de, & García, J. L. R. (2011). Teaching “soft”

skills in Software Engineering. 2011 IEEE Global Engineering Education Conference

(EDUCON), 630–637. https://doi.org/10.1109/EDUCON.2011.5773204

Gorski, P. L., Acar, Y., Lo Iacono, L., & Fahl, S. (2020). Listen to Developers! A

Participatory Design Study on Security Warnings for Cryptographic APIs.

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,

1–13. https://doi.org/10.1145/3313831.3376142

Gorski, P. L., Lo Lacono, L., Wermke, D., Stransky, C., Möller, S., Acar, Y., & Fahl, S.

(2018). Developers Deserve Security Warnings, Too: On the Effect of Integrated

Security Advice on Cryptographic API Misuse. Fourteenth Symposium on Usable

Privacy and Security, 265–281.

Gotterbarn, D. (2001). Informatics and professional responsibility. Science and

Engineering Ethics, 7 (2), 221–230. https://doi.org/10.1007/s11948-001-0043-5

Graff, M., & Wyk, K. R. V. (2003). Secure Coding: Principles and Practices. O’Reilly

Media, Inc.

Graham, C. M., & Lu, Y. (2022). Skills Expectations in Cybersecurity: Semantic

Network Analysis of Job Advertisements. Journal of Computer Information Systems,

0 (0), 1–13. https://doi.org/10.1080/08874417.2022.2115954

Gratian, M., Bandi, S., Cukier, M., Dykstra, J., & Ginther, A. (2018). Correlating human

traits and cyber security behavior intentions. Computers & Security, 73, 345–358.

https://doi.org/10.1016/j.cose.2017.11.015

https://doi.org/10.1016/j.infsof.2021.106563
https://doi.org/10.1145/3379597.3387509
https://doi.org/10.1109/EDUCON.2011.5773204
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1007/s11948-001-0043-5
https://doi.org/10.1080/08874417.2022.2115954
https://doi.org/10.1016/j.cose.2017.11.015

261

Green, M., & Smith, M. (2016). Developers are Not the Enemy!: The Need for Usable

Security APIs. IEEE Security Privacy, 14 (5), 40–46.

https://doi.org/10.1109/MSP.2016.111

Greenacre, M. (2017). Correspondence Analysis in Practice. CRC Press.

Groeneveld, W., Becker, B. A., & Vennekens, J. (2020a). Soft Skills: What do Computing

Program Syllabi Reveal About Non-Technical Expectations of Undergraduate

Students? Proceedings of the 2020 ACM Conference on Innovation and Technology in

Computer Science Education, 287–293. https://doi.org/10.1145/3341525.3387396

Groeneveld, W., Jacobs, H., Vennekens, J., & Aerts, K. (2020b). Non-cognitive Abilities

of Exceptional Software Engineers: A Delphi Study. Proceedings of the 51st ACM

Technical Symposium on Computer Science Education, 1096–1102.

https://doi.org/10.1145/3328778.3366811

Groeneveld, W., Vennekens, J., & Aerts, K. (2019). Software Engineering Education

Beyond the Technical: A Systematic Literature Review (No. arXiv:1910.09865). arXiv.

https://doi.org/10.48550/arXiv.1910.09865

Grosz, B. J., Grant, D. G., Vredenburgh, K., Behrends, J., Hu, L., Simmons, A., &

Waldo, J. (2019). Embedded EthiCS: Integrating ethics across CS education.

Communications of the ACM, 62 (8), 54–61. https://doi.org/10.1145/3330794

Guerra-Báez, S. P. (2019). A panoramic review of soft skills training in university

students. Psicologia Escolar e Educacional, 23, 1–10.

https://doi.org/10.1590/2175-35392019016464

Gutmann, P. (2002). Lessons Learned in Implementing and Deploying Crypto Software.

In Proc. USENIX Security Symp, 315–325.

Hagoort, P. (2023). The language marker hypothesis. Cognition, 230, 105252.

https://doi.org/10.1016/j.cognition.2022.105252

Hallett, J., Patnaik, N., Shreeve, B., & Rashid, A. (2021). “Do this! Do that!, and

Nothing will Happen” Do Specifications Lead to Securely Stored Passwords? 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 486–498.

https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1145/3341525.3387396
https://doi.org/10.1145/3328778.3366811
https://doi.org/10.48550/arXiv.1910.09865
https://doi.org/10.1145/3330794
https://doi.org/10.1590/2175-35392019016464
https://doi.org/10.1016/j.cognition.2022.105252

262

https://doi.org/10.1109/ICSE43902.2021.00053

Hamari, J. (2017). Do badges increase user activity? A field experiment on the effects of

gamification. Computers in Human Behavior, 71, 469–478.

https://doi.org/10.1016/j.chb.2015.03.036

Haney, J. M., & Lutters, W. G. (2017). Skills and Characteristics of Successful

Cybersecurity Advocates. Thirteenth Symposium on Usable Privacy and Security.

Haney, J. M., Theofanos, M. F., Acar, Y., & Prettyman, S. S. (2018). "We make it a big

deal in the company": Security Mindsets in Organizations that Develop Cryptographic

Products. USENIX Conference on Usable Privacy and Security, 17.

https://doi.org/10.5555/3291228.3291257

Haslam, S. A. (2012). The Social Identity Approach. In Psychology in Organizations:

The Social Identity Approach (2nd ed., pp. 17–39). SAGE Publications Ltd.

https://doi.org/10.4135/9781446278819

Haslam, S. A., & Parkinson, B. (2005). Pulling together or pulling apart?: Towards

organic pluralism in social psychology. The Psychologist, 18 (9), 550–554.

Haslam, S. A., Powell, C., & Turner, J. (2000). Social Identity, Self-categorization, and

Work Motivation: Rethinking the Contribution of the Group to Positive and

Sustainable Organisational Outcomes. Applied Psychology, 49 (3), 319–339.

https://doi.org/10.1111/1464-0597.00018

Hazzan, O., & Har-Shai, G. (2013). Teaching computer science soft skills as soft concepts.

Proceeding of the 44th ACM Technical Symposium on Computer Science Education,

59–64. https://doi.org/10.1145/2445196.2445219

Helgesson, D. (2023). Exploring cognitive waste and cognitive load in software

development - a grounded theory.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in

Open Source projects: An Internet-based survey of contributors to the Linux kernel.

Research Policy, 32 (7), 1159–1177. https://doi.org/10.1016/S0048-7333(03)00047-7

Hewner, M. (2014). How CS undergraduates make course choices. Proceedings of the

https://doi.org/10.1109/ICSE43902.2021.00053
https://doi.org/10.1016/j.chb.2015.03.036
https://doi.org/10.5555/3291228.3291257
https://doi.org/10.4135/9781446278819
https://doi.org/10.1111/1464-0597.00018
https://doi.org/10.1145/2445196.2445219
https://doi.org/10.1016/S0048-7333(03)00047-7

263

Tenth Annual Conference on International Computing Education Research, 115–122.

https://doi.org/10.1145/2632320.2632345

Hewner, M. (2013). Undergraduate conceptions of the field of computer science.

Proceedings of the Ninth Annual International ACM Conference on International

Computing Education Research, 107–114. https://doi.org/10.1145/2493394.2493414

Hjeij, M., & Vilks, A. (2023). A brief history of heuristics: how did research on heuristics

evolve? Humanities and Social Sciences Communications, 10 (1), 1–15.

https://doi.org/10.1057/s41599-023-01542-z

Hoffmann, A. O. I., Post, T., & Pennings, J. M. E. (2015). How Investor Perceptions

Drive Actual Trading and Risk-Taking Behavior. Journal of Behavioral Finance,

16 (1), 94–103. https://doi.org/10.1080/15427560.2015.1000332

Hogg, M., & Vaughan, G. (2017). Social Psychology. Pearson Education, Limited.

Hoover, J. D., & Healy, A. F. (2019). The bat-and-ball problem: Stronger evidence in

support of a conscious error process. Decision, 6, 369–380.

https://doi.org/10.1037/dec0000107

Hoover, J. D., & Healy, A. F. (2021). The bat-and-ball problem: a word-problem

debiasing approach. Thinking & Reasoning, 27 (4), 567–598.

https://doi.org/10.1080/13546783.2021.1878473

Huang, J., Borges, N., Bugiel, S., & Backes, M. (2019). Up-To-Crash: Evaluating

Third-Party Library Updatability on Android. 2019 IEEE European Symposium on

Security and Privacy (EuroS P), 15–30. https://doi.org/10.1109/EuroSP.2019.00012

Ifinedo, P. (2012). Understanding information systems security policy compliance: An

integration of the theory of planned behavior and the protection motivation theory.

Computers & Security, 31 (1), 83–95. https://doi.org/10.1016/j.cose.2011.10.007

Iniesto, F., Sargent, J., Rienties, B., Llorens, A., Adam, A., Herodotou, C., Ferguson, R.,

& Muccini, H. (2021). When industry meets Education 4.0: What do Computer

Science companies need from Higher Education? Ninth International Conference on

Technological Ecosystems for Enhancing Multiculturality (TEEM’21), 367–372.

https://doi.org/10.1145/2632320.2632345
https://doi.org/10.1145/2493394.2493414
https://doi.org/10.1057/s41599-023-01542-z
https://doi.org/10.1080/15427560.2015.1000332
https://doi.org/10.1037/dec0000107
https://doi.org/10.1080/13546783.2021.1878473
https://doi.org/10.1109/EuroSP.2019.00012
https://doi.org/10.1016/j.cose.2011.10.007

264

https://doi.org/10.1145/3486011.3486475

Itani, M., & Srour, I. (2016). Engineering Students’ Perceptions of Soft Skills, Industry

Expectations, and Career Aspirations. Journal of Professional Issues in Engineering

Education and Practice, 142 (1), 04015005.

https://doi.org/10.1061/(ASCE)EI.1943-5541.0000247

Ivins, J., Von Konsky, B. R., Cooper, D., & Robey, M. (2006). Software Engineers and

Engineering: A Survey of Undergraduate Preconceptions. Proceedings. Frontiers in

Education. 36th Annual Conference, 6–11. https://doi.org/10.1109/FIE.2006.322364

Ivory, M. (2022). The Soft Skills of Software Learning Development: the Psychological

Dimensions of Computing and Security Behaviours. Proceedings of the International

Conference on Evaluation and Assessment in Software Engineering 2022, 317–322.

https://doi.org/10.1145/3530019.3535344

Ivory, M., Sturdee, M., Towse, J., Levine, M., & Nuseibeh, B. (2023 (in review)). Can

you hear the ROAR of software security? How Responsibility, Optimism And Risk

shape developers’ security perceptions. Empirical Software Engineering.

https://doi.org/10.31234/osf.io/pexvz

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (2023a). What’s in an

undergraduate Computer Science Degree; Alumni perceptions about soft skills in

careers. Transactions on Computing Education.

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (2023b). Software

Insecurity as Cognitive Blindspots; Security Vulnerabilities through a Cognitive

Psychology Lens. https://doi.org/10.17605/OSF.IO/CE78G

Ivory, M., Towse, J., Sturdee, M., Levine, M., & Nuseibeh, B. (2023c). Recognizing the

Known Unknowns; the Interaction Between Reflective Thinking and Optimism for

Uncertainty Among Software Developer’s Security Perceptions. Technology, Mind, and

Behavior, 4 (3: Winter 2023). https://doi.org/10.1037/tmb0000122

Jackendoff, R. S. (2009). Language, Consciousness, Culture: Essays on Mental Structure.

MIT Press.

https://doi.org/10.1145/3486011.3486475
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000247
https://doi.org/10.1109/FIE.2006.322364
https://doi.org/10.1145/3530019.3535344
https://doi.org/10.31234/osf.io/pexvz
https://doi.org/10.17605/OSF.IO/CE78G
https://doi.org/10.1037/tmb0000122

265

Janssen, E. M., Meulendijks, W., Mainhard, T., Verkoeijen, P. P. J. L., Heijltjes, A. E.

G., van Peppen, L. M., & van Gog, T. (2019). Identifying characteristics associated

with higher education teachers’ Cognitive Reflection Test performance and their

attitudes towards teaching critical thinking. Teaching and Teacher Education, 84,

139–149. https://doi.org/10.1016/j.tate.2019.05.008

Jarrold, C., & Towse, J. (2006). Individual differences in working memory. Neuroscience,

139 (1), 39–50. https://doi.org/10.1016/j.neuroscience.2005.07.002

Jia, J., Chen, Z., & Du, X. (2017). Understanding Soft Skills Requirements for Mobile

Applications Developers. 2017 IEEE International Conference on Computational

Science and Engineering (CSE) and IEEE International Conference on Embedded and

Ubiquitous Computing (EUC), 1, 108–115. https://doi.org/10.1109/CSE-EUC.2017.29

John, M., Maurer, F., & Tessem, B. (2005). Human and social factors of software

engineering: workshop summary. ACM SIGSOFT Software Engineering Notes, 30 (4),

1–6. https://doi.org/10.1145/1082983.1083000

Johnson, R., & Waterfield, J. (2004). Making words count: the value of qualitative

research. Physiotherapy Research International: The Journal for Researchers and

Clinicians in Physical Therapy, 9 (3), 121–131. https://doi.org/10.1002/pri.312

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language,

Inference, and Consciousness. Harvard University Press.

Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the

National Academy of Sciences, 107 (43), 18243–18250.

https://doi.org/10.1073/pnas.1012933107

Jones, H. S., Towse, J., Race, N., & Harrison, T. (2019). Email fraud: The search for

psychological predictors of susceptibility. PLOS ONE, 14 (1), e0209684.

https://doi.org/10.1371/journal.pone.0209684

Jones, K. S., Namin, A. S., & Armstrong, M. E. (2018). The Core Cyber-Defense

Knowledge, Skills, and Abilities That Cybersecurity Students Should Learn in School:

Results from Interviews with Cybersecurity Professionals. ACM Transactions on

https://doi.org/10.1016/j.tate.2019.05.008
https://doi.org/10.1016/j.neuroscience.2005.07.002
https://doi.org/10.1109/CSE-EUC.2017.29
https://doi.org/10.1145/1082983.1083000
https://doi.org/10.1002/pri.312
https://doi.org/10.1073/pnas.1012933107
https://doi.org/10.1371/journal.pone.0209684

266

Computing Education, 18 (3), 11:1–11:12. https://doi.org/10.1145/3152893

Jones, M., Baldi, C., Phillips, C., & Waikar, A. (2016). The hard truth about soft skills:

What recruiters look for in business graduates. College Student Journal, 50 (3),

422–429.

Jones, T., Baxter, M., & Khanduja, V. (2013). A quick guide to survey research. Annals

of The Royal College of Surgeons of England, 95 (1), 5–7.

https://doi.org/10.1308/003588413X13511609956372

Joseph, D., Ang, S., Chang, R. H. L., & Slaughter, S. A. (2010). Practical intelligence in

IT: Assessing soft skills of IT professionals. Communications of the ACM, 53 (2),

149–154. https://doi.org/10.1145/1646353.1646391

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.

Kahneman, D., & Frederick, S. (2002). Representativeness Revisited: Attribute

Substitution in Intuitive Judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.),

Heuristics and Biases (1st ed., pp. 49–81). Cambridge University Press.

https://doi.org/10.1017/CBO9780511808098.004

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to

disagree. American Psychologist, 64, 515–526. https://doi.org/10.1037/a0016755

Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1974). Judgment under uncertainty:

Heuristics and biases (1st ed.). Cambridge University Press.

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under

Risk. Econometrica, 47 (2), 263–291. https://doi.org/10.2307/1914185

Kahneman, D., & Tversky, A. (1982). Intuitive prediction: Biases and corrective

procedures. In A. Tversky, D. Kahneman, & P. Slovic (Eds.), Judgment under

Uncertainty: Heuristics and Biases (pp. 414–421). Cambridge University Press.

https://doi.org/10.1017/CBO9780511809477.031

Karimi, H., & Pina, A. (2021). Strategically Addressing the Soft Skills Gap Among

STEM Undergraduates. Journal of Research in STEM Education, 7 (1), 21–46.

https://doi.org/10.51355/jstem.2021.99

https://doi.org/10.1145/3152893
https://doi.org/10.1308/003588413X13511609956372
https://doi.org/10.1145/1646353.1646391
https://doi.org/10.1017/CBO9780511808098.004
https://doi.org/10.1037/a0016755
https://doi.org/10.2307/1914185
https://doi.org/10.1017/CBO9780511809477.031
https://doi.org/10.51355/jstem.2021.99

267

Keil, M., Wallace, L., Turk, D., Dixon-Randall, G., & Nulden, U. (2000). An

Investigation of Risk Perception and Risk Propensity on the Decision to Continue a

Software Development Project. The Journal of Systems and Software, 53, 145–157.

Kelle, U. (2006). Combining qualitative and quantitative methods in research practice:

purposes and advantages. Qualitative Research in Psychology, 3 (4), 293–311.

https://doi.org/10.1177/1478088706070839

Kina, K., Tsunoda, M., Hata, H., Tamada, H., & Igaki, H. (2016). Analyzing the Decision

Criteria of Software Developers Based on Prospect Theory. 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), 1, 644–648. https://doi.org/10.1109/SANER.2016.115

Kirlappos, I., Beautement, A., & Sasse, M. A. (2013). “Comply or Die” Is Dead: Long

Live Security-Aware Principal Agents. In D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B.

Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, A. A. Adams,

M. Brenner, & M. Smith (Eds.), Financial Cryptography and Data Security (Vol.

7862, pp. 70–82). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-41320-9_5

Klünder, J., Schneider, K., Kortum, F., Straube, J., Handke, L., & Kauffeld, S. (2016).

Communication in Teams - An Expression of Social Conflicts. In C. Bogdan, J.

Gulliksen, S. Sauer, P. Forbrig, M. Winckler, C. Johnson, P. Palanque, R. Bernhaupt,

& F. Kis (Eds.), Human-Centered and Error-Resilient Systems Development (pp.

111–129). Springer International Publishing.

https://doi.org/10.1007/978-3-319-44902-9_8

Knauff, M., & Wolf, A. G. (2010). Complex cognition: The science of human reasoning,

problem-solving, and decision-making. Cognitive Processing, 11 (2), 99–102.

https://doi.org/10.1007/s10339-010-0362-z

Knutas, A., Hynninen, T., & Hujala, M. (2021). To Get Good Student Ratings should

you only Teach Programming Courses? Investigation and Implications of Student

https://doi.org/10.1177/1478088706070839
https://doi.org/10.1109/SANER.2016.115
https://doi.org/10.1007/978-3-642-41320-9_5
https://doi.org/10.1007/978-3-319-44902-9_8
https://doi.org/10.1007/s10339-010-0362-z

268

Evaluations of Teaching in a Software Engineering Context. 2021 IEEE/ACM 43rd

International Conference on Software Engineering: Software Engineering Education

and Training (ICSE-SEET), 253–260.

https://doi.org/10.1109/ICSE-SEET52601.2021.00035

Kraiger, K. (2001). Industrial–Organizational Psychology: Science and Practice. In N. J.

Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral

Sciences (pp. 7367–7371). Pergamon.

https://doi.org/10.1016/B0-08-043076-7/01393-0

Kramer, R. M., Pommerenke, P., & Newton, E. (1993). The Social Context of

Negotiation: Effects of Social Identity and Interpersonal Accountability on Negotiator

Decision Making. Journal of Conflict Resolution, 37 (4), 633–654.

https://doi.org/10.1177/0022002793037004003

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers

update their library dependencies?: An empirical study on the impact of security

advisories on library migration. Empirical Software Engineering, 23 (1), 384–417.

https://doi.org/10.1007/s10664-017-9521-5

Kumle, L., Võ, M. L.-H., & Draschkow, D. (2021). Estimating power in (generalized)

linear mixed models: An open introduction and tutorial in R. Behavior Research

Methods, 53 (6), 2528–2543. https://doi.org/10.3758/s13428-021-01546-0

Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108, 480–498.

https://doi.org/10.1037/0033-2909.108.3.480

Lapinski, M. K., & Rimal, R. N. (2005). An Explication of Social Norms. Communication

Theory, 15 (2), 127–147. https://doi.org/10.1111/j.1468-2885.2005.tb00329.x

Lembke, S., & Wilson, M. G. (1998). Putting the “Team” into Teamwork: Alternative

Theoretical Contributions for Contemporary Management Practice. Human Relations,

51 (7), 927–944. https://doi.org/10.1177/001872679805100704

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software engineering: A

definition and systematic literature review. Journal of Systems and Software, 107,

https://doi.org/10.1109/ICSE-SEET52601.2021.00035
https://doi.org/10.1016/B0-08-043076-7/01393-0
https://doi.org/10.1177/0022002793037004003
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.3758/s13428-021-01546-0
https://doi.org/10.1037/0033-2909.108.3.480
https://doi.org/10.1111/j.1468-2885.2005.tb00329.x
https://doi.org/10.1177/001872679805100704

269

15–37. https://doi.org/10.1016/j.jss.2015.04.084

Lenberg, P., Feldt, R., & Wallgren, L.-G. (2014). Towards a behavioral software

engineering. Proceedings of the 7th International Workshop on Cooperative and

Human Aspects of Software Engineering, 48–55.

https://doi.org/10.1145/2593702.2593711

Leung, L. (2015). Validity, reliability, and generalizability in qualitative research. Journal

of Family Medicine and Primary Care, 4 (3), 324–327.

https://doi.org/10.4103/2249-4863.161306

Levine, M., Prosser, A., Evans, D., & Reicher, S. (2005). Identity and emergency

intervention: How social group membership and inclusiveness of group boundaries

shape helping behavior. Personality & Social Psychology Bulletin, 31 (4), 443–453.

https://doi.org/10.1177/0146167204271651

Levy, J. S. (1992). An Introduction to Prospect Theory. Political Psychology, 13 (2,),

171–186. http://www.jstor.org/stable/3791677

Lewis, C., Jackson, M. H., & Waite, W. M. (2010). Student and faculty attitudes and

beliefs about computer science. Communications of the ACM, 53 (5), 78–85.

https://doi.org/10.1145/1735223.1735244

Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012). Individual

Differences in Numeracy and Cognitive Reflection, with Implications for Biases and

Fallacies in Probability Judgment. Journal of Behavioral Decision Making, 25 (4),

361–381. https://doi.org/10.1002/bdm.752

Licorish, S. A., Galster, M., Kapitsaki, G. M., & Tahir, A. (2022). Understanding

students’ software development projects: Effort, performance, satisfaction, skills and

their relation to the adequacy of outcomes developed. Journal of Systems and

Software, 186, 111156. https://doi.org/10.1016/j.jss.2021.111156

Liebenberg, J., Huisman, M., & Mentz, E. (2014). Knowledge and Skills Requirements for

Software Developer Students. International Journal of Social, Behavioral, Educational,

Economic, Business and Industrial Engineering, 8 (8), 6.

https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1145/2593702.2593711
https://doi.org/10.4103/2249-4863.161306
https://doi.org/10.1177/0146167204271651
http://www.jstor.org/stable/3791677
https://doi.org/10.1145/1735223.1735244
https://doi.org/10.1002/bdm.752
https://doi.org/10.1016/j.jss.2021.111156

270

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. SAGE.

Lingard, R., & Barkataki, S. (2011). Teaching teamwork in engineering and computer

science. 2011 Frontiers in Education Conference (FIE), F1C-1-F1C-5.

https://doi.org/10.1109/FIE.2011.6143000

Lopez, T., Sharp, H., Tun, T., Bandara, A. K., Levine, M., & Nuseibeh, B. (2019a).

"Hopefully We Are Mostly Secure": Views on Secure Code in Professional Practice.

12th International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE), 61–68. https://doi.org/10.1109/chase.2019.00023

Lopez, T., Sharp, H., Tun, T., Bandara, A. K., Levine, M., & Nuseibeh, B. (2022).

Security Responses in Software Development. ACM Transactions on Software

Engineering and Methodology. https://doi.org/10.1145/3563211

Lopez, T., Sharp, H., Tun, T., Bandara, A., Levine, M., & Nuseibeh, B. (2019b). Talking

About Security with Professional Developers. 2019 IEEE/ACM Joint 7th

International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th

International Workshop on Software Engineering Research and Industrial Practice

(SER IP), 34–40. https://doi.org/10.1109/CESSER-IP.2019.00014

Lopez, T., Tun, T. T., Bandara, A. K., Levine, M., Nuseibeh, B., & Sharp, H. (2020a).

Taking the Middle Path: Learning About Security Through Online Social Interaction.

IEEE Software, 37 (1), 25–30. https://doi.org/10.1109/MS.2019.2945300

Lopez, T., Tun, T. T., Bandara, A., Levine, M., Nuseibeh, B., & Sharp, H. (2018). An

investigation of security conversations in stack overflow: perceptions of security and

community involvement. Proceedings of the 1st International Workshop on Security

Awareness from Design to Deployment, 26–32.

https://doi.org/10.1145/3194707.3194713

Lopez, T., Tun, T., Bandara, A., Mark, L., Nuseibeh, B., & Sharp, H. (2019c). An

Anatomy of Security Conversations in Stack Overflow. 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Society

(ICSE-SEIS), 31–40. https://doi.org/10.1109/ICSE-SEIS.2019.00012

https://doi.org/10.1109/FIE.2011.6143000
https://doi.org/10.1109/chase.2019.00023
https://doi.org/10.1145/3563211
https://doi.org/10.1109/CESSER-IP.2019.00014
https://doi.org/10.1109/MS.2019.2945300
https://doi.org/10.1145/3194707.3194713
https://doi.org/10.1109/ICSE-SEIS.2019.00012

271

Lopez, T., Weir, C., Cooper, H., Tun, T., Bandara, A., Levine, M., Nuseibeh, B., &

Sharp, H. (2020b). Motivating Jenny Developer Security Toolkit.

https://doi.org/10.21954/ou.rd.c.4957223.v1

Loser, K.-U., & Degeling, M. (2014). Security and Privacy as Hygiene Factors of

Developer Behavior in Small and Agile Teams. ICT and Society, 255–265.

https://doi.org/10.1007/978-3-662-44208-1_21

Loske, A., Widjaja, T., & Buxmann, P. (2013, December). Cloud Computing Providers’

Unrealistic Optimism regarding IT Security Risks: A Threat to Users? ICIS 2013

Proceedings.

Lowe, T. (2019a). Debugging: The key to unlocking the mind of a novice programmer?

2019 IEEE Frontiers in Education Conference (FIE), 1–9.

https://doi.org/10.1109/FIE43999.2019.9028699

Lowe, T. (2019b). Explaining Novice Programmer’s Struggles, in Two Parts: Revisiting

the ITiCSE 2004 working group’s study using dual process theory. Proceedings of the

2019 ACM Conference on Innovation and Technology in Computer Science Education,

30–36. https://doi.org/10.1145/3304221.3319775

MacCallum, R. C. (2009). Factor Analysis. In The SAGE Handbook of Quantitative

Methods in Psychology (pp. 123–147). SAGE Publications Ltd.

https://doi.org/10.4135/9780857020994

Manikas, K., & Hansen, K. M. (2013). Software ecosystems – A systematic literature

review. Journal of Systems and Software, 86 (5), 1294–1306.

https://doi.org/10.1016/j.jss.2012.12.026

Manzoor, F., Wei, L., & Asif, M. (2021). Intrinsic Rewards and Employee’s Performance

With the Mediating Mechanism of Employee’s Motivation. Frontiers in Psychology, 12.

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.563070

Marquis, D. G. (1962). Individual Responsibility and Group Decisions Involving Risk.

Industrial Management Review, 3 (2), 8.

Martin, S., Stanton Fraser, D., Fraser, M., Woodgate, D., & Crellin, D. (2010, October).

https://doi.org/10.21954/ou.rd.c.4957223.v1
https://doi.org/10.1007/978-3-662-44208-1_21
https://doi.org/10.1109/FIE43999.2019.9028699
https://doi.org/10.1145/3304221.3319775
https://doi.org/10.4135/9780857020994
https://doi.org/10.1016/j.jss.2012.12.026
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.563070

272

The impact of hand held mobile technologies upon children’s motivation and learning:

9th World Conference on Mobile and Contextual Learning.

Matturro, G. (2013). Soft skills in software engineering: A study of its demand by

software companies in Uruguay. 2013 6th International Workshop on Cooperative and

Human Aspects of Software Engineering (CHASE), 133–136.

https://doi.org/10.1109/CHASE.2013.6614749

Matturro, G., Raschetti, F., & Fontán, C. (2019). A Systematic Mapping Study on Soft

Skills in Software Engineering. Journal of Universal Computer Science, 25 (1), 26.

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a

replication crisis? What does “failure to replicate” really mean? American

Psychologist, 70 (6), 487–498. https://doi.org/10.1037/a0039400

McAuliffe, M., & Triandafyllidou, A. (2021). World Migration Report 2022. international

organisation for migration.

Mitchell, A., Balasubramaniam, D., & Fletcher, J. (2022). Incorporating Ethics in

Software Engineering: Challenges and Opportunities. 2022 29th Asia-Pacific Software

Engineering Conference (APSEC), 90–98.

https://doi.org/10.1109/APSEC57359.2022.00021

Mohanani, R., Salman, I., Turhan, B., Rodríguez, P., & Ralph, P. (2020). Cognitive

Biases in Software Engineering: A Systematic Mapping Study. IEEE Transactions on

Software Engineering, 46 (12), 1318–1339. https://doi.org/10.1109/TSE.2018.2877759

Mølokken, K., & Jørgensen, M. (2005). Expert Estimation of Web-Development Projects:

Are Software Professionals in Technical Roles More Optimistic Than Those in

Non-Technical Roles? Empirical Software Engineering, 10 (1), 7–30.

https://doi.org/10.1023/B:EMSE.0000048321.46871.2e

Molokken-Ostvold, K., & Jorgensen, M. (2005). A comparison of software project

overruns - flexible versus sequential development models. IEEE Transactions on

Software Engineering, 31 (9), 754–766. https://doi.org/10.1109/TSE.2005.96

Moløkken-Østvold, K., & Jørgensen, M. (2004). Group Processes in Software Effort

https://doi.org/10.1109/CHASE.2013.6614749
https://doi.org/10.1037/a0039400
https://doi.org/10.1109/APSEC57359.2022.00021
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1023/B:EMSE.0000048321.46871.2e
https://doi.org/10.1109/TSE.2005.96

273

Estimation. Empirical Software Engineering, 9 (4), 315–334.

https://doi.org/10.1023/B:EMSE.0000039882.39206.5a

Montandon, J. E., Politowski, C., Silva, L. L., Valente, M. T., Petrillo, F., & Guéhéneuc,

Y.-G. (2021). What skills do IT companies look for in new developers? A study with

Stack Overflow jobs. Information and Software Technology, 129, 106429.

https://doi.org/10.1016/j.infsof.2020.106429

Moritz, B., Siemsen, E., & Kremer, M. (2014). Judgmental Forecasting: Cognitive

Reflection and Decision Speed. Production and Operations Management, 23 (7),

1146–1160. https://doi.org/https://doi.org/10.1111/poms.12105

Mougouei, D., Perera, H., Hussain, W., Shams, R., & Whittle, J. (2018). Operationalizing

human values in software: a research roadmap. Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 780–784.

https://doi.org/10.1145/3236024.3264843

Mtsweni, E., Hörne, T., & Poll, J. (2016). Soft Skills for Software Project Team Members.

https://doi.org/10.7763/IJCTE.2016.V8.1035

Mustafa, S., Zhang, W., & Naveed, M. M. (2023). What motivates online community

contributors to contribute consistently? A case study on Stackoverflow netizens.

Current Psychology, 42 (13), 10468–10481. https://doi.org/10.1007/s12144-022-03307-4

Myers, B. A., & Stylos, J. (2016). Improving API usability. Communications of the ACM,

59 (6), 62–69. https://doi.org/10.1145/2896587

Mynatt, C., & Sherman, S. J. (1975). Responsibility attribution in groups and

individuals: A direct test of the diffusion of responsibility hypothesis. Journal of

Personality and Social Psychology, 32 (6), 1111–1118.

https://doi.org/10.1037/0022-3514.32.6.1111

Nadi, S., Krüger, S., Mezini, M., & Bodden, E. (2016). Jumping through hoops: Why do

Java developers struggle with cryptography APIs? Proceedings of the 38th

International Conference on Software Engineering, 935–946.

https://doi.org/10.1023/B:EMSE.0000039882.39206.5a
https://doi.org/10.1016/j.infsof.2020.106429
https://doi.org/10.1111/poms.12105
https://doi.org/10.1145/3236024.3264843
https://doi.org/10.7763/IJCTE.2016.V8.1035
https://doi.org/10.1007/s12144-022-03307-4
https://doi.org/10.1145/2896587
https://doi.org/10.1037/0022-3514.32.6.1111

274

https://doi.org/10.1145/2884781.2884790

Nagaria, B., & Hall, T. (2020). Reducing Software Developer Human Errors by

Improving Situation Awareness. IEEE Software, 37 (6), 32–37.

https://doi.org/10.1109/MS.2020.3014223

Naiakshina, A. (2020). Don’t Blame Developers! Examining a Password-Storage Study

Conducted with Students, Freelancers, and Company Developers.

Naiakshina, A., Danilova, A., Gerlitz, E., & Smith, M. (2020). On Conducting Security

Developer Studies with CS Students: Examining a Password-Storage Study with CS

Students, Freelancers, and Company Developers. Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems, 1–13.

https://doi.org/10.1145/3313831.3376791

Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., & Smith, M. (2019). "If you

want, I can store the encrypted password": A Password-Storage Field Study with

Freelance Developers. Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, 1–12. https://doi.org/10.1145/3290605.3300370

Naiakshina, A., Danilova, A., Tiefenau, C., Herzog, M., Dechand, S., & Smith, M. (2017).

Why Do Developers Get Password Storage Wrong? A Qualitative Usability Study.

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 311–328. https://doi.org/10.1145/3133956.3134082

Naiakshina, A., Danilova, A., Tiefenau, C., & Smith, M. (2018). Deception Task Design

in Developer Password Studies: Exploring a Student Sample. 297–313.

https://www.usenix.org/conference/soups2018/presentation/naiakshina

Nazar, N., Hu, Y., & Jiang, H. (2016). Summarizing Software Artifacts: A Literature

Review. Journal of Computer Science and Technology, 31 (5), 883–909.

https://doi.org/10.1007/s11390-016-1671-1

NCSC. (2021). More Master’s degrees at UK universities recognised by cyber security

experts. https://www.ncsc.gov.uk/news/more-university-degrees-certified.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-hall

https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1109/MS.2020.3014223
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1007/s11390-016-1671-1

275

Englewood Cliffs, NJ. http://www.sci.brooklyn.cuny.edu/~kopec/cis718/fall_2005/2/

Rafique_2_humanthinking.doc

Newman, A., Bavik, Y. L., Mount, M., & Shao, B. (2021). Data Collection via Online

Platforms: Challenges and Recommendations for Future Research. Applied Psychology,

70 (3), 1380–1402. https://doi.org/10.1111/apps.12302

Nguyen, D. C., Wermke, D., Acar, Y., Backes, M., Weir, C., & Fahl, S. (2017). A Stitch

in Time: Supporting Android Developers in Writing Secure Code. Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security,

1065–1077. https://doi.org/10.1145/3133956.3133977

Nichols, S. P. (1997). Professional responsibility: The role of the engineer in society.

Science and Engineering Ethics, 3 (3), 327–337.

https://doi.org/10.1007/s11948-997-0039-x

Nicholson, J., Coventry, L., & Briggs, P. (2018). Introducing the Cybersurvival Task:

Assessing and Addressing Staff Beliefs about Effective Cyber Protection. Fourteenth

Symposium on Usable Privacy and Security (SOUPS 2018), 443–457.

Nosek, B. A., Beck, E. D., Campbell, L., Flake, J. K., Hardwicke, T. E., Mellor, D. T.,

van ’t Veer, A. E., & Vazire, S. (2019). Preregistration Is Hard, And Worthwhile.

Trends in Cognitive Sciences, 23 (10), 815–818.

https://doi.org/10.1016/j.tics.2019.07.009

Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The

preregistration revolution. Proceedings of the National Academy of Sciences, 115 (11),

2600–2606. https://doi.org/10.1073/pnas.1708274114

Oliveira, D. S., Lin, T., Rahman, M. S., Akefirad, R., Ellis, D., Perez, E., Bobhate, R.,

DeLong, L. A., Cappos, J., & Brun, Y. (2018). {API} Blindspots: Why Experienced

Developers Write Vulnerable Code. Fourteenth Symposium on Usable Privacy and

Security (SOUPS 2018), 315–328.

Oliveira, D. S., Rosenthal, M., Morin, N., Yeh, K.-C., Cappos, J., & Zhuang, Y. (2014).

It’s the psychology stupid. Proceedings of the 30th Annual Computer Security

http://www.sci.brooklyn.cuny.edu/~kopec/cis718/fall_2005/2/Rafique_2_humanthinking.doc
http://www.sci.brooklyn.cuny.edu/~kopec/cis718/fall_2005/2/Rafique_2_humanthinking.doc
https://doi.org/10.1111/apps.12302
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1007/s11948-997-0039-x
https://doi.org/10.1016/j.tics.2019.07.009
https://doi.org/10.1073/pnas.1708274114

276

Applications Conference, 296–305. https://doi.org/10.1145/2664243.2664254

Open Science Collaboration. (2015). Estimating the reproducibility of psychological

science. Science, 349 (6251), aac4716. https://doi.org/10.1126/science.aac4716

Ortloff, A.-M., Tiefenau, C., & Smith, M. (2023). {SoK}: I Have the (Developer) Power!

Sample Size Estimation for Fisher’s Exact, {Chi-Squared}, {McNemar’s}, Wilcoxon

{Rank-Sum}, Wilcoxon {Signed-Rank} and t-tests in {Developer-Centered} Usable

Security. Nineteenth Symposium on Usable Privacy and Security (SOUPS 2023),

341–359.

Osmani, M., Weerakkody, V., Hindi, N. M., Al-Esmail, R., Eldabi, T., Kapoor, K., &

Irani, Z. (2015). Identifying the trends and impact of graduate attributes on

employability: A literature review. Tertiary Education and Management, 21 (4),

367–379. https://doi.org/10.1080/13583883.2015.1114139

Pahlke, J., Strasser, S., & Vieider, F. M. (2012). Risk-taking for others under

accountability. Economics Letters, 114 (1), 102–105.

https://doi.org/10.1016/j.econlet.2011.09.037

Pahlke, J., Strasser, S., & Vieider, F. M. (2015). Responsibility effects in decision making

under risk. Journal of Risk and Uncertainty, 51 (2), 125–146.

https://doi.org/10.1007/s11166-015-9223-6

Palassis, A., Speelman, C. P., & Pooley, J. A. (2021). An Exploration of the

Psychological Impact of Hacking Victimization. SAGE Open, 11 (4),

21582440211061556. https://doi.org/10.1177/21582440211061556

Paley, J., Cheyne, H., Dalgleish, L., Duncan, E. A. S., & Niven, C. A. (2007). Nursing’s

ways of knowing and dual process theories of cognition. Journal of Advanced Nursing,

60 (6), 692–701. https://doi.org/10.1111/j.1365-2648.2007.04478.x

Palmer, S., & Hall, W. (2011). An evaluation of a project-based learning initiative in

engineering education. European Journal of Engineering Education, 36 (4), 357–365.

https://doi.org/10.1080/03043797.2011.593095

Palombo, H., Tabari, A. Z., Lende, D., Ligatti, J., & Ou, X. (2020). An Ethnographic

https://doi.org/10.1145/2664243.2664254
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1080/13583883.2015.1114139
https://doi.org/10.1016/j.econlet.2011.09.037
https://doi.org/10.1007/s11166-015-9223-6
https://doi.org/10.1177/21582440211061556
https://doi.org/10.1111/j.1365-2648.2007.04478.x
https://doi.org/10.1080/03043797.2011.593095

277

Understanding of Software ({In)Security} and a {Co-Creation} Model to Improve

Secure Software Development. Sixteenth Symposium on Usable Privacy and Security

(SOUPS 2020), 205–220.

Parsons, K., McCormac, A., Butavicius, M., Pattinson, M., & Jerram, C. (2014).

Determining employee awareness using the Human Aspects of Information Security

Questionnaire (HAIS-Q). Computers & Security, 42, 165–176.

https://doi.org/10.1016/j.cose.2013.12.003

Patel, D., Patel, H., Sultana, K. Z., & Anu, V. (2023). Programmer Cognition Failures as

the Root Cause of Software Vulnerabilities: A Preliminary Review. 2023

Intermountain Engineering, Technology and Computing (IETC), 242–246.

https://doi.org/10.1109/IETC57902.2023.10152150

Patnaik, N., Dwyer, A. C., Hallett, J., & Rashid, A. (2021). Don’t forget your classics:

Systematizing 45 years of Ancestry for Security API Usability Recommendations (No.

arXiv:2105.02031). arXiv. https://arxiv.org/abs/2105.02031

Patnaik, N., Dwyer, A. C., Hallett, J., & Rashid, A. (2022). SLR: From Saltzer &

Schroeder to 2021...: 47 years of research on the development and validation of

Security API recommendations. ACM Transactions on Software Engineering and

Methodology. https://doi.org/10.1145/3561383

Patrick, A. S., Long, A. C., & Flinn, S. (2003). HCI and security systems. CHI ’03

Extended Abstracts on Human Factors in Computing Systems, 1056–1057.

https://doi.org/10.1145/765891.766146

Pattinson, M., Butavicius, M., Parsons, K., McCormac, A., & Calic, D. (2015). Factors

that Influence Information Security Behavior: An Australian Web-Based Study. In T.

Tryfonas & I. Askoxylakis (Eds.), Human Aspects of Information Security, Privacy,

and Trust (pp. 231–241). Springer International Publishing.

https://doi.org/10.1007/978-3-319-20376-8_21

Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting

COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable

https://doi.org/10.1016/j.cose.2013.12.003
https://doi.org/10.1109/IETC57902.2023.10152150
https://arxiv.org/abs/2105.02031
https://doi.org/10.1145/3561383
https://doi.org/10.1145/765891.766146
https://doi.org/10.1007/978-3-319-20376-8_21

278

Accuracy-Nudge Intervention. Psychological Science, 31 (7), 770–780.

https://doi.org/10.1177/0956797620939054

Pennycook, G., & Ross, R. M. (2016). Commentary: Cognitive reflection vs. calculation

in decision making. Frontiers in Psychology, 7.

https://doi.org/10.3389/fpsyg.2016.00009

Petre, M. (2009). Insights from expert software design practice. Proceedings of the 7th

Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering, 233–242.

https://doi.org/10.1145/1595696.1595731

Petre, M. (2022). Exploring cognitive bias “in the wild”: technical perspective.

Communications of the ACM, 65 (4), 114–114. https://doi.org/10.1145/3517215

Pieczul, O., Foley, S., & Zurko, M. E. (2017). Developer-centered security and the

symmetry of ignorance. NSPW 2017: Proceedings of the 2017 New Security

Paradigms Workshop, 46–56. https://doi.org/https://doi.org/10.1145/3171533.3171539

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of

agile practices on communication in software development. Empirical Software

Engineering, 13 (3), 303–337. https://doi.org/10.1007/s10664-008-9065-9

Poller, A., Kocksch, L., Kinder-Kurlanda, K., & Epp, F. A. (2016). First-time Security

Audits as a Turning Point? Challenges for Security Practices in an Industry Software

Development Team. Proceedings of the 2016 CHI Conference Extended Abstracts on

Human Factors in Computing Systems, 1288–1294.

https://doi.org/10.1145/2851581.2892392

Poller, A., Kocksch, L., Türpe, S., Epp, F. A., & Kinder-Kurlanda, K. (2017). Can

Security Become a Routine?: A Study of Organizational Change in an Agile Software

Development Group. Proceedings of the 2017 ACM Conference on Computer

Supported Cooperative Work and Social Computing, 2489–2503.

https://doi.org/10.1145/2998181.2998191

Polman, E., & Wu, K. (2020). Decision making for others involving risk: A review and

https://doi.org/10.1177/0956797620939054
https://doi.org/10.3389/fpsyg.2016.00009
https://doi.org/10.1145/1595696.1595731
https://doi.org/10.1145/3517215
https://doi.org/10.1145/3171533.3171539
https://doi.org/10.1007/s10664-008-9065-9
https://doi.org/10.1145/2851581.2892392
https://doi.org/10.1145/2998181.2998191

279

meta-analysis. Journal of Economic Psychology, 77, 102184.

https://doi.org/10.1016/j.joep.2019.06.007

Postmes, T., Tanis, M., & de Wit, B. (2001). Communication and Commitment in

Organizations: A Social Identity Approach. Group Processes & Intergroup Relations,

4 (3), 227–246. https://doi.org/10.1177/1368430201004003004

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C. H. (2020). Relating

Natural Language Aptitude to Individual Differences in Learning Programming

Languages. Sci Rep, 10 (1), 3817. https://doi.org/10.1038/s41598-020-60661-8

Pretorius, C., Razavian, M., Eling, K., & Langerak, F. (2018). Towards a Dual

Processing Perspective of Software Architecture Decision Making. 2018 IEEE

International Conference on Software Architecture Companion (ICSA-C), 48–51.

https://doi.org/10.1109/ICSA-C.2018.00021

Pretz, J., Naples, A., & Sternberg, R. (2003). Recognising, Defining, and Representing

Problems. In J. E. Davidson & R. J. Sternberg (Eds.), The Psychology of Problem

Solving (pp. 3–30). Cambridge University Press.

Rabelo, D., Lopes, A., Mendes, W., de Souza, C., Gama, K., Monteiro, D., & Pinto, G.

(2022). The Role of Non-Technical Skills in the Software Development Market.

Proceedings of the XXXVI Brazilian Symposium on Software Engineering, 31–40.

https://doi.org/10.1145/3555228.3555254

Rahman, A., Farhana, E., & Imtiaz, N. (2019). Snakes in Paradise?: Insecure

Python-Related Coding Practices in Stack Overflow. 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), 200–204.

https://doi.org/10.1109/MSR.2019.00040

Rahman, S. (2017). The Advantages and Disadvantages of Using Qualitative and

Quantitative Approaches and Methods in Language “Testing and Assessment”

Research: A Literature Review. Journal of Education and Learning, 6 (1), 102–112.

https://eric.ed.gov/?id=EJ1120221

Ralph, P. (2013). Possible core theories for software engineering. 2013 2nd SEMAT

https://doi.org/10.1016/j.joep.2019.06.007
https://doi.org/10.1177/1368430201004003004
https://doi.org/10.1038/s41598-020-60661-8
https://doi.org/10.1109/ICSA-C.2018.00021
https://doi.org/10.1145/3555228.3555254
https://doi.org/10.1109/MSR.2019.00040
https://eric.ed.gov/?id=EJ1120221

280

Workshop on a General Theory of Software Engineering (GTSE), 35–38.

https://doi.org/10.1109/GTSE.2013.6613868

Ralph, P. (2011). Toward a Theory of Debiasing Software Development. In S. Wrycza

(Ed.), Research in Systems Analysis and Design: Models and Methods (pp. 92–105).

Springer. https://doi.org/10.1007/978-3-642-25676-9_8

Ralph, P., & Tempero, E. (2016). Characteristics of decision-making during coding.

Proceedings of the 20th International Conference on Evaluation and Assessment in

Software Engineering, 1–10. https://doi.org/10.1145/2915970.2915990

Rampin, R., & Rampin, V. (2021). Taguette: Open-source qualitative data analysis.

Journal of Open Source Software, 6 (68), 3522. https://doi.org/10.21105/joss.03522

Rashid, A., Chivers, H., Danezis, G., Lupu, E., Martin, A., & Schneider, S. (2021). The

Cyber Security Body of Knowledge (Version 1.1.0).

Rauf, I., Lopez, T., Sharp, H., Petre, M., Tun, T., Levine, M., Towse, J., van der Linden,

D., Rashid, A., & Nuseibeh, B. (2022). Influences of developers’ perspectives on their

engagement with security in code. 2022 IEEE/ACM 15th International Workshop on

Cooperative and Human Aspects of Software Engineering (CHASE), 86–95.

https://doi.org/10.1145/3528579.3529180

Rauf, I., Petre, M., Tun, T., Lopez, T., Lunn, P., Van Der Linden, D., Towse, J., Sharp,

H., Levine, M., Rashid, A., & Nuseibeh, B. (2021). The Case for Adaptive Security

Interventions. ACM Transactions on Software Engineering and Methodology, 31 (1),

9:1–9:52. https://doi.org/10.1145/3471930

Rauf, I., Petre, M., Tun, T., Lopez, T., & Nuseibeh, B. (2023). Security Thinking in

Online Freelance Software Development. 2023 IEEE/ACM 45th International

Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS),

13–24. https://doi.org/10.1109/ICSE-SEIS58686.2023.00008

Rauf, I., van der Linden, D., Levine, M., Towse, J., Nuseibeh, B., & Rashid, A. (2020).

Security but not for security’s sake. ICSEW’20: Proceedings of the IEEE/ACM 42nd

International Conference on Software Engineering Workshops, 141–144.

https://doi.org/10.1109/GTSE.2013.6613868
https://doi.org/10.1007/978-3-642-25676-9_8
https://doi.org/10.1145/2915970.2915990
https://doi.org/10.21105/joss.03522
https://doi.org/10.1145/3528579.3529180
https://doi.org/10.1145/3471930
https://doi.org/10.1109/ICSE-SEIS58686.2023.00008

281

https://doi.org/10.1145/3387940.3392230

Reich, R., Sahami, M., Weinstein, J. M., & Cohen, H. (2020). Teaching Computer Ethics:

A Deeply Multidisciplinary Approach. Proceedings of the 51st ACM Technical

Symposium on Computer Science Education, 296–302.

https://doi.org/10.1145/3328778.3366951

Rhee, H.-S., Ryu, Y. U., & Kim, C.-T. (2012). Unrealistic optimism on information

security management. Computers & Security, 31 (2), 221–232.

https://doi.org/10.1016/j.cose.2011.12.001

Riger, S., & Sigurvinsdottir, R. (2016). Thematic Analysis. In L. Jason & D. Glenwick

(Eds.), Handbook of Methodological Approaches to Community-based Research:

Qualitative, Quantitative, and Mixed Methods (pp. 33–41). Oxford University Press.

Ritter, B. A., Small, E. E., Mortimer, J. W., & Doll, J. L. (2018). Designing Management

Curriculum for Workplace Readiness: Developing Students’ Soft Skills. Journal of

Management Education, 42 (1), 80–103. https://doi.org/10.1177/1052562917703679

Robillard, M. P. (2009). What Makes APIs Hard to Learn? Answers from Developers.

IEEE Software, 26 (6), 27–34. https://doi.org/10.1109/MS.2009.193

Robins, A. V. (2022). Dual Process Theories: Computing Cognition in Context. ACM

Transactions on Computing Education, 22 (4), 41:1–41:31.

https://doi.org/10.1145/3487055

Roesler, D. (2020). A Computer Science Academic Vocabulary List. Dissertations and

Theses. https://doi.org/10.15760/etd.7414

Rogers, E., M. (1995). Diffusion of Innovation (4th ed.). The Free Press.

Ryan, R. M., & Deci, E. L. (2000). Self-Determination Theory and the Facilitation of

Intrinsic Motivation, Social Development, and Well-Being. American Psychologist,

55 (1), 67. https://doi.org/10.1037/0003-066X.55.1.68

Salehi, S., Wang, K. D., Toorawa, R., & Wieman, C. (2020). Can Majoring in Computer

Science Improve General Problem-solving Skills? Proceedings of the 51st ACM

Technical Symposium on Computer Science Education, 156–161.

https://doi.org/10.1145/3387940.3392230
https://doi.org/10.1145/3328778.3366951
https://doi.org/10.1016/j.cose.2011.12.001
https://doi.org/10.1177/1052562917703679
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1145/3487055
https://doi.org/10.15760/etd.7414
https://doi.org/10.1037/0003-066X.55.1.68

282

https://doi.org/10.1145/3328778.3366808

Salman, I., Turhan, B., & Vegas, S. (2019). A controlled experiment on time pressure and

confirmation bias in functional software testing. Empirical Software Engineering,

24 (4), 1727–1761. https://doi.org/10.1007/s10664-018-9668-8

Samuels, R., Stich, S., & Bishop, M. (2012). Ending the Rationality Wars; How to Make

Disputes About Human Rationality Disappear. In S. Stich (Ed.), Collected Papers,

Volume 2: Knowledge, Rationality, and Morality, 1978-2010 (Vol. 11). OUP USA.

Sarabipour, S., Debat, H. J., Emmott, E., Burgess, S. J., Schwessinger, B., & Hensel, Z.

(2019). On the value of preprints: An early career researcher perspective. PLOS

Biology, 17 (2), e3000151. https://doi.org/10.1371/journal.pbio.3000151

Sarkar, M., Overton, T., Thompson, C., & Rayner, G. (2016). Graduate Employability:

Views of Recent Science Graduates and Employers. International Journal of

Innovation in Science and Mathematics Education, 24 (3).

Sasse, M. A., Brostoff, S., & Weirich, D. (2001). Transforming the “Weakest Link” — a

Human/Computer Interaction Approach to Usable and Effective Security. BT

Technology Journal, 19 (3), 122–131. https://doi.org/10.1023/A:1011902718709

Satchell, C., & Dourish, P. (2009). Beyond the user: Use and non-use in HCI. Proceedings

of the 21st Annual Conference of the Australian Computer-Human Interaction Special

Interest Group: Design: Open 24/7, 9–16. https://doi.org/10.1145/1738826.1738829

Sawyer, T., White, M., Zaveri, P., Chang, T., Ades, A., French, H., Anderson, J.,

Auerbach, M., Johnston, L., & Kessler, D. (2015). Learn, See, Practice, Prove, Do,

Maintain: An Evidence-Based Pedagogical Framework for Procedural Skill Training in

Medicine. Academic Medicine, 90 (8), 1025.

https://doi.org/10.1097/ACM.0000000000000734

Scaffidi, C. (2018). Employers’ Needs for Computer Science, Information Technology and

Software Engineering Skills Among New Graduates. International Journal of

Computer Science, Engineering and Information Technology, 8 (1), 01–12.

https://doi.org/10.5121/ijcseit.2018.8101

https://doi.org/10.1145/3328778.3366808
https://doi.org/10.1007/s10664-018-9668-8
https://doi.org/10.1371/journal.pbio.3000151
https://doi.org/10.1023/A:1011902718709
https://doi.org/10.1145/1738826.1738829
https://doi.org/10.1097/ACM.0000000000000734
https://doi.org/10.5121/ijcseit.2018.8101

283

Scheffler, I. (1965). Conditions of Knowledge. Scott, Foresman.

Schieferdecker, I. (2020). Responsible Software Engineering. In S. Goericke (Ed.), The

Future of Software Quality Assurance (pp. 137–146). Springer International

Publishing. https://doi.org/10.1007/978-3-030-29509-7

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky,

C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020).

Robustness of linear mixed-effects models to violations of distributional assumptions.

Methods in Ecology and Evolution, 11 (9), 1141–1152.

https://doi.org/10.1111/2041-210X.13434

Schneier, B. (2008). The Psychology of Security. In S. Vaudenay (Ed.), Progress in

Cryptology – AFRICACRYPT 2008 (pp. 50–79). Springer.

https://doi.org/10.1007/978-3-540-68164-9_5

Scott, C. R. (2007a). Communication and Social Identity Theory: Existing and Potential

Connections in Organizational Identification Research. Communication Studies, 58 (2),

123–138. https://doi.org/10.1080/10510970701341063

Scott, C. R., Corman, S. R., & Cheney, G. (1998). Development of a Structurational

Model of Identification in the Organization. Communication Theory, 8 (3), 298–336.

https://doi.org/10.1111/j.1468-2885.1998.tb00223.x

Scott, D. (2007b). Resolving the quantitative–qualitative dilemma: a critical realist

approach. International Journal of Research & Method in Education, 30 (1), 3–17.

https://doi.org/10.1080/17437270701207694

Scott, S. G., & Bruce, R. A. (1995). Decision-Making Style: The Development and

Assessment of a New Measure. Educational and Psychological Measurement, 55 (5),

818–831. https://doi.org/10.1177/0013164495055005017

Sedano, T., Ralph, P., & Péraire, C. (2017). Software Development Waste. 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE), 130–140.

https://doi.org/10.1109/ICSE.2017.20

Sergeyuk, A., Titov, S., Golubev, Y., & Bryksin, T. (2023). Overcoming the Mental Set

https://doi.org/10.1007/978-3-030-29509-7
https://doi.org/10.1111/2041-210X.13434
https://doi.org/10.1007/978-3-540-68164-9_5
https://doi.org/10.1080/10510970701341063
https://doi.org/10.1111/j.1468-2885.1998.tb00223.x
https://doi.org/10.1080/17437270701207694
https://doi.org/10.1177/0013164495055005017
https://doi.org/10.1109/ICSE.2017.20

284

Effect in Programming Problem Solving.

Sharot, T. (2011). The optimism bias. Current Biology, 21 (23), R941–R945.

https://doi.org/10.1016/j.cub.2011.10.030

Sharp, H., Robinson, H., & Woodman, M. (2000). Software engineering: Community and

culture. IEEE Software, 17 (1), 40–47. https://doi.org/10.1109/52.819967

Shepperd, J. A., Waters, E., Weinstein, N. D., & Klein, W. M. P. (2015). A Primer on

Unrealistic Optimism. Current Directions in Psychological Science, 24 (3), 232–237.

https://doi.org/10.1177/0963721414568341

Shreeve, B., Gralha, C., Rashid, A., Araujo, J., & Goulão, M. (2022). Making sense of

the unknown: How managers make cyber security decisions. ACM Transactions on

Software Engineering and Methodology. https://doi.org/10.1145/3548682

Shreeve, B., Hallett, J., Edwards, M., Anthonysamy, P., Frey, S., & Rashid, A. (2020).

"So if Mr Blue Head here clicks the link.." Risk Thinking in Cyber Security Decision

Making. ACM Transactions on Privacy and Security, 24 (1), 5:1–5:29.

https://doi.org/10.1145/3419101

Siegel, H. (2013). Educating Reason. Routledge.

Siegrist, M., Gutscher, H., & Earle, T. C. (2005). Perception of risk: the influence of

general trust, and general confidence. Journal of Risk Research, 8 (2), 145–156.

https://doi.org/10.1080/1366987032000105315

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological

Review, 63 (2), 129–138. https://doi.org/10.1037/h0042769

Simon, H. A. (1990). Bounded Rationality. In J. Eatwell, M. Milgate, & P. Newman

(Eds.), Utility and Probability (pp. 15–18). Palgrave Macmillan UK.

https://doi.org/10.1007/978-1-349-20568-4_5

Sinayev, A., & Peters, E. (2015). Cognitive reflection vs. calculation in decision making.

Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00532

Singleton, R., & Straits, B. (1988). Approaches to social research (6th ed.). Oxford

University Press. https://cir.nii.ac.jp/crid/1130282271402220160

https://doi.org/10.1016/j.cub.2011.10.030
https://doi.org/10.1109/52.819967
https://doi.org/10.1177/0963721414568341
https://doi.org/10.1145/3548682
https://doi.org/10.1145/3419101
https://doi.org/10.1080/1366987032000105315
https://doi.org/10.1037/h0042769
https://doi.org/10.1007/978-1-349-20568-4_5
https://doi.org/10.3389/fpsyg.2015.00532
https://cir.nii.ac.jp/crid/1130282271402220160

285

Slembrouck, S. (2015). The Role of the Researcher in Interview Narratives. In The

Handbook of Narrative Analysis (pp. 239–254). John Wiley & Sons, Ltd.

https://doi.org/10.1002/9781118458204.ch12

Smart, W. (2018). Lessons learned review of the WannaCry Ransomware Cyber Attack

(pp. 1–42). National Health Service.

Smith, S. W. (2003). Humans in the loop: Human-computer interaction and security.

IEEE Security & Privacy, 1 (3), 75–79. https://doi.org/10.1109/MSECP.2003.1203228

Spadini, D., Çalikli, G., & Bacchelli, A. (2020). Primers or Reminders? The Effects of

Existing Review Comments on Code Review. 2020 IEEE/ACM 42nd International

Conference on Software Engineering (ICSE), 1171–1182.

Speirs, J. C., Stetzer, M. R., Lindsey, B. A., & Kryjevskaia, M. (2021). Exploring and

supporting student reasoning in physics by leveraging dual-process theories of

reasoning and decision making. Physical Review Physics Education Research, 17 (2),

020137. https://doi.org/10.1103/PhysRevPhysEducRes.17.020137

Stacy, W., & MacMillan, J. (1995). Cognitive bias in software engineering.

Communications of the ACM, 38 (6), 57–63. https://doi.org/10.1145/203241.203256

Stagnaro, M., Pennycook, G., & Rand, D. G. (2018). Performance on the Cognitive

Reflection Test is stable across time. Stagnaro, MN, Pennycook, G., & Rand, DG

(2018) Performance on the Cognitive Reflection Test Is Stable Across Time. Judgment

and Decision Making, 13, 260–267.

Stamms, K., Lin, L., & Christidis, P. (2016). Datapoint: What do people do with their

psychology degrees? Monitor on Psychology, 47 (6), 12.

https://www.apa.org/monitor/2016/06/datapoint

Stanovich, K. E., & West, R. F. (2014). The Assessment of Rational Thinking: IQ ̸= RQ.

Teaching of Psychology, 41 (3), 265–271. https://doi.org/10.1177/0098628314537988

Stelzer, D., & Mellis, W. (1998). Success factors of organizational change in software

process improvement. Software Process: Improvement and Practice, 4 (4), 227–250.

https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-

https://doi.org/10.1002/9781118458204.ch12
https://doi.org/10.1109/MSECP.2003.1203228
https://doi.org/10.1103/PhysRevPhysEducRes.17.020137
https://doi.org/10.1145/203241.203256
https://www.apa.org/monitor/2016/06/datapoint
https://doi.org/10.1177/0098628314537988
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1

286

SPIP106%3E3.0.CO;2-1

Sternberg, R. J. (1986a). Critical Thinking: Its Nature, Measurement, and Improvement.

https://eric.ed.gov/?id=ED272882

Sternberg, R. J. (1986b). Intelligence applied : understanding and increasing your

intellectual skills / [Ressource physique]. Harcourt Brace Jovanovich,.

https://eduq.info/xmlui/handle/11515/16423

Stevens, M., & Norman, R. (2016). Industry expectations of soft skills in IT graduates: A

regional survey. Proceedings of the Australasian Computer Science Week

Multiconference, 1–9. https://doi.org/10.1145/2843043.2843068

Succi, C., & Canovi, M. (2020). Soft skills to enhance graduate employability: Comparing

students and employers’ perceptions. Studies in Higher Education, 45 (9), 1834–1847.

https://doi.org/10.1080/03075079.2019.1585420

Sukamolson, S. (2007). Fundamentals of quantitative research. Language Institute

Chulalongkorn University, 1 (3), 1–20.

https://www.researchgate.net/profile/Vihan-Moodi/post/What_are_the_characterist

ics_of_quantitative_research/attachment/5f3091d0ed60840001c62a27/AS%3A922776

944787456%401597018576221/download/SuphatSukamolson.pdf

Sussman, L. L. (2021). Exploring the Value of Non-Technical Knowledge, Skills, and

Abilities (KSAs) to Cybersecurity Hiring Managers. Journal of Higher Education

Theory and Practice, 21 (6), 99–117.

Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive

Architecture and Instructional Design. Educational Psychology Review, 10 (3),

251–296. https://doi.org/10.1023/A:1022193728205

Tahaei, M., Jenkins, A., Vaniea, K., & Wolters, M. (2020a). “I Don’t Know Too Much

About It”: On the Security Mindsets of Computer Science Students. International

Workshop on Socio-Technical Aspects in Security and Trust, 20.

https://doi.org/10.1007/978-3-030-55958-8

Tahaei, M., & Vaniea, K. (2019). A Survey on Developer-Centred Security. 2019 IEEE

https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C227::AID-SPIP106%3E3.0.CO;2-1
https://eric.ed.gov/?id=ED272882
https://eduq.info/xmlui/handle/11515/16423
https://doi.org/10.1145/2843043.2843068
https://doi.org/10.1080/03075079.2019.1585420
https://www.researchgate.net/profile/Vihan-Moodi/post/What_are_the_characteristics_of_quantitative_research/attachment/5f3091d0ed60840001c62a27/AS%3A922776944787456%401597018576221/download/SuphatSukamolson.pdf
https://www.researchgate.net/profile/Vihan-Moodi/post/What_are_the_characteristics_of_quantitative_research/attachment/5f3091d0ed60840001c62a27/AS%3A922776944787456%401597018576221/download/SuphatSukamolson.pdf
https://www.researchgate.net/profile/Vihan-Moodi/post/What_are_the_characteristics_of_quantitative_research/attachment/5f3091d0ed60840001c62a27/AS%3A922776944787456%401597018576221/download/SuphatSukamolson.pdf
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1007/978-3-030-55958-8

287

European Symposium on Security and Privacy Workshops (EuroS&PW), 129–138.

https://doi.org/10.1109/EuroSPW.2019.00021

Tahaei, M., Vaniea, K., & Saphra, N. (2020b). Understanding Privacy-Related Questions

on Stack Overflow. Proceedings of the 2020 CHI Conference on Human Factors in

Computing Systems, 1–14. https://doi.org/10.1145/3313831.3376768

Taherdoost, H. (2022). How to Conduct an Effective Interview; A Guide to Interview

Design in Research Study. https://papers.ssrn.com/abstract=4178687

Tajfel, H., & Turner, J. C. (2010). An integrative theory of intergroup conflict. In T.

Postmes & N. Branscombe (Eds.), Rediscovering Social Identity (1st ed., pp. 56–65).

Routledge.

Tang, A. (2011). Software designers, are you biased? Proceedings of the 6th International

Workshop on SHAring and Reusing Architectural Knowledge, 1–8.

https://doi.org/10.1145/1988676.1988678

Tanis, M., & Postmes, T. (2005). A social identity approach to trust: Interpersonal

perception, group membership and trusting behaviour. European Journal of Social

Psychology, 35 (3), 413–424. https://doi.org/10.1002/ejsp.256

Tasneem, S. (2012). Critical thinking in an introductory programming course. Journal of

Computing Sciences in Colleges, 27 (6), 81–83.

Tavares de Souza, A. L. O., & Costa Pinto, V. H. S. (2020). Toward a Definition of

Cognitive-Driven Development. 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 776–778.

https://doi.org/10.1109/ICSME46990.2020.00087

Taylor-Jackson, J., McAlaney, J., Foster, J. L., Bello, A., Maurushat, A., & Dale, J.

(2020). Incorporating Psychology into Cyber Security Education: A Pedagogical

Approach. In M. Bernhard, A. Bracciali, L. J. Camp, S. Matsuo, A. Maurushat, P. B.

Rønne, & M. Sala (Eds.), Financial Cryptography and Data Security (pp. 207–217).

Springer International Publishing. https://doi.org/10.1007/978-3-030-54455-3_15

Teh, A., Baniassad, E., van Rooy, D., & Boughton, C. (2012). Social Psychology and

https://doi.org/10.1109/EuroSPW.2019.00021
https://doi.org/10.1145/3313831.3376768
https://papers.ssrn.com/abstract=4178687
https://doi.org/10.1145/1988676.1988678
https://doi.org/10.1002/ejsp.256
https://doi.org/10.1109/ICSME46990.2020.00087
https://doi.org/10.1007/978-3-030-54455-3_15

288

Software Teams: Establishing Task-Effective Group Norms. IEEE Software, 29 (4),

53–58. https://doi.org/10.1109/MS.2011.157

Tetlock, P. E., & Kim, J. I. (1987). Accountability and judgment processes in a

personality prediction task. Journal of Personality and Social Psychology, 52, 700–709.

https://doi.org/10.1037/0022-3514.52.4.700

Theofanidis, D., & Fountouki, A. (2018). Limitations and Delimitations in the Research

Process. Perioperative Nursing - Quarterly Scientific, Online Official Journal of

G.O.R.N.A., Volume 7 (2018)(Issue 3 September-December 2018), 155–163. https:

//www.spnj.gr/en/limitations-and-delimitations-in-the-research-process-p160.html

Thissen, D., & Steinberg, L. (2009). Item Response Theory. In The SAGE Handbook of

Quantitative Methods in Psychology (pp. 148–177). SAGE Publications Ltd.

https://doi.org/10.4135/9780857020994

Thomson, K. S., & Oppenheimer, D. M. (2016). Investigating an alternate form of the

cognitive reflection test. Judgment and Decision Making, 11 (1), 99.

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt. Journal of

Systems and Software, 86 (6), 1498–1516. https://doi.org/10.1016/j.jss.2012.12.052

Tomlinson, M. (2017). Student perceptions of themselves as “consumers” of higher

education. British Journal of Sociology of Education, 38 (4), 450–467.

https://doi.org/10.1080/01425692.2015.1113856

Toplak, M. E., West, R. F., & Stanovich, K. E. (2011). The Cognitive Reflection Test as

a predictor of performance on heuristics-and-biases tasks. Mem Cognit, 39 (7),

1275–1289. https://doi.org/10.3758/s13421-011-0104-1

Towse, A., Ellis, D. A., & Towse, J. (2021a). Making data meaningful: Guidelines for

good quality open data. The Journal of Social Psychology, 161 (4), 395–402.

https://doi.org/10.1080/00224545.2021.1938811

Towse, J., Ellis, D. A., & Towse, A. (2021b). Opening Pandora’s Box: Peeking inside

Psychology’s data sharing practices, and seven recommendations for change. Behavior

Research Methods, 53 (4), 1455–1468. https://doi.org/10.3758/s13428-020-01486-1

https://doi.org/10.1109/MS.2011.157
https://doi.org/10.1037/0022-3514.52.4.700
https://www.spnj.gr/en/limitations-and-delimitations-in-the-research-process-p160.html
https://www.spnj.gr/en/limitations-and-delimitations-in-the-research-process-p160.html
https://doi.org/10.4135/9780857020994
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1080/01425692.2015.1113856
https://doi.org/10.3758/s13421-011-0104-1
https://doi.org/10.1080/00224545.2021.1938811
https://doi.org/10.3758/s13428-020-01486-1

289

Towse, J., Levine, M., Petre, M., Bandara, A., Lopez, T., Rashid, A., Rauf, I., Sharp, H.,

Tun, T., van der Linden, D., & Nuseibeh, B. (2020 (in press)). The Case for

Understanding Secure Coding as a Psychological Enterprise. Cyberpsychology,

Behavior, and Social Networking.

Turner, J. C., Brown, R., & Tajfel, H. (1979). Social comparison and group interest in

ingroup favouritism. European Journal of Social Psychology, 9 (2), 187–204.

https://doi.org/10.1002/ejsp.2420090207

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

https://doi.org/10.1037/0033-295X.84.4.327

Valstar, S., Krause-Levy, S., Macedo, A., Griswold, W. G., & Porter, L. (2020a). Faculty

Views on the Goals of an Undergraduate CS Education and the Academia-Industry

Gap. Proceedings of the 51st ACM Technical Symposium on Computer Science

Education, 577–583. https://doi.org/10.1145/3328778.3366834

Valstar, S., Sih, C., Krause-Levy, S., Porter, L., & Griswold, W. G. (2020b). A

Quantitative Study of Faculty Views on the Goals of an Undergraduate CS Program

and Preparing Students for Industry. Proceedings of the 2020 ACM Conference on

International Computing Education Research, 113–123.

https://doi.org/10.1145/3372782.3406277

van der Linden, D., Anthonysamy, P., Nuseibeh, B., Tun, T., Petre, M., Levine, M.,

Towse, J., & Rashid, A. (2020a). Schrödinger’s security: opening the box on app

developers’ security rationale. 149–160. https://doi.org/10.1145/3377811.3380394

van der Linden, D., Williams, E., Hallett, J., & Rashid, A. (2020b). The impact of

surface features on choice of (in)secure answers by Stackoverflow readers. IEEE

Transactions on Software Engineering, 1–1. https://doi.org/10.1109/tse.2020.2981317

Van Rookhuijzen, M., De Vet, E., & Adriaanse, M. A. (2021). The Effects of Nudges:

One-Shot Only? Exploring the Temporal Spillover Effects of a Default Nudge.

Frontiers in Psychology, 12.

Veracode. (2020). State of Software Security (No. 11). Veracode.

https://doi.org/10.1002/ejsp.2420090207
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1145/3328778.3366834
https://doi.org/10.1145/3372782.3406277
https://doi.org/10.1145/3377811.3380394
https://doi.org/10.1109/tse.2020.2981317

290

Veracode. (2023). State of Software Security. Veracode.

https://info.veracode.com/rs/790-ZKW-

291/images/Veracode_State_of_Software_Security_2023.pdf

Wason, P. (1960). On the Failure to Eliminate Hypotheses in a Conceptual Task.

Quarterly Journal of Experimental Psychology, 12 (3), 129–140.

https://doi.org/10.1080/17470216008416717

Wason, P., & Evans, J. St. B. T. (1974). Dual processes in reasoning? Cognition, 3 (2),

141–154. https://doi.org/10.1016/0010-0277(74)90017-1

Watson, C., & Blincoe, K. (2017). Attitudes Towards Software Engineering Education in

the New Zealand Industry.

Weinberg, G. M. (1971). The psychology of computer programming (Vol. 29). Van

Nostrand Reinhold New York.

Weinstein, N. D. (1980). Unrealistic optimism about future life events. Journal of

Personality and Social Psychology, 39 (5), 806–820.

https://doi.org/10.1037/0022-3514.39.5.806

Weir, C., Becker, I., & Blair, L. (2021). A Passion for Security: Intervening to Help

Software Developers. International Conference on Software Engineering: Software

Engineering in Practice, 21–30. https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M. A., & Rashid, A. (2020a).

Interventions for long-term software security: Creating a lightweight program of

assurance techniques for developers. Software: Practice and Experience, 50 (3),

275–298. https://doi.org/10.1002/spe.2774

Weir, C., Hermann, B., & Fahl, S. (2020b). From Needs to Actions to Secure Apps? The

Effect of Requirements and Developer Practices on App Security.

Weir, C., Rashid, A., & Noble, J. (2016). How to Improve the Security Skills of Mobile

App Developers? Comparing and Contrasting Expert Views.

https://www.usenix.org/conference/soups2016/workshop-

program/wsiw16/presentation/weir

https://info.veracode.com/rs/790-ZKW-291/images/Veracode_State_of_Software_Security_2023.pdf
https://info.veracode.com/rs/790-ZKW-291/images/Veracode_State_of_Software_Security_2023.pdf
https://doi.org/10.1080/17470216008416717
https://doi.org/10.1016/0010-0277(74)90017-1
https://doi.org/10.1037/0022-3514.39.5.806
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011
https://doi.org/10.1002/spe.2774
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/weir
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/weir

291

Welsh, M. B., Burns, N. R., & Delfabbro, P. H. (2013). The Cognitive Reflection Test:

how much more than Numerical Ability? 7.

West, R. F. (2008). The Psychology of Security. THE PSYCHOLOGY OF SECURITY,

51 (4), 34.

Whittle, J., Ferrario, M. A., Simm, W., & Hussain, W. (2021). A Case for Human Values

in Software Engineering. IEEE Software, 38 (1), 106–113.

https://doi.org/10.1109/MS.2019.2956701

Wiederhold, B. K. (2014). The Role of Psychology in Enhancing Cybersecurity.

Cyberpsychology, Behavior, and Social Networking, 17 (3), 131–132.

https://doi.org/10.1089/cyber.2014.1502

Wijayarathna, C., & Arachchilage, N. A. G. (2019). Why Johnny can’t develop a secure

application? A usability analysis of Java Secure Socket Extension API. Computers &

Security, 80, 54–73. https://doi.org/10.1016/j.cose.2018.09.007

Winter, E., Forshaw, S., Hunt, L., & Ferrario, M. A. (2019). Advancing the Study of

Human Values in Software Engineering. 2019 IEEE/ACM 12th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),

19–26. https://doi.org/10.1109/CHASE.2019.00012

Winter, S., Timperley, C. S., Hermann, B., Cito, J., Bell, J., Hilton, M., & Beyer, D.

(2022). A retrospective study of one decade of artifact evaluations. Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 145–156.

https://doi.org/10.1145/3540250.3549172

Witschey, J., Xiao, S., & Murphy-Hill, E. (2014). Technical and Personal Factors

Influencing Developers’ Adoption of Security Tools. Proceedings of the 2014 ACM

Workshop on Security Information Workers, 23–26.

https://doi.org/10.1145/2663887.2663898

Witschey, J., Zielinska, O., Welk, A., Murphy-Hill, E., Mayhorn, C., & Zimmermann, T.

(2015). Quantifying developers’ adoption of security tools. 260–271.

https://doi.org/10.1109/MS.2019.2956701
https://doi.org/10.1089/cyber.2014.1502
https://doi.org/10.1016/j.cose.2018.09.007
https://doi.org/10.1109/CHASE.2019.00012
https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1145/2663887.2663898

292

https://doi.org/10.1145/2786805.2786816

Wood, R., & Bandura, A. (1989). Social Cognitive Theory of Organizational

Management. Academy of Management Review, 14 (3), 361–384.

https://doi.org/10.5465/amr.1989.4279067

Wu, J.-H., Chen, Y.-C., & Chang, J. (2007). Critical IS professional activities and

skills/knowledge: A perspective of IS managers. Computers in Human Behavior,

23 (6), 2945–2965. https://doi.org/10.1016/j.chb.2006.08.008

Wurster, G., & van Oorschot, P. (2008). The developer is the enemy. Proceedings of the

2008 New Security Paradigms Workshop, 89–97.

https://doi.org/10.1145/1595676.1595691

Wyrich, M., Preikschat, A., Graziotin, D., & Wagner, S. (2021). The Mind Is a Powerful

Place: How Showing Code Comprehensibility Metrics Influences Code Understanding.

arXiv:2012.09590 [Cs]. https://arxiv.org/abs/2012.09590

Xiao, S., Witschey, J., & Murphy-Hill, E. (2014). Social Influences on Secure

Development Tool Adoption: Why Security Tools Spread. Proceedings of the 17th

ACM Conference on Computer Supported Cooperative Work & Social Computing,

1095–1106. https://doi.org/10.1145/2531602.2531722

Xie, J., Lipford, H. R., & Chu, B. (2011). Why do programmers make security errors?

2011 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 161–164. https://doi.org/10.1109/VLHCC.2011.6070393

Zayour, I., Moukadem, I., & Moghrabi, I. (2013). Complexity is in the Brain of the

Beholder: A Psychological Perspective on Software Engineering’s Ultimate Challenge.

Journal of Software, 8 (5), 1079–1085. https://doi.org/10.4304/jsw.8.5.1079-1085

Zheng, G., Zhang, C., & Li, L. (2015). Practicing and Evaluating Soft Skills in IT

Capstone Projects. Proceedings of the 16th Annual Conference on Information

Technology Education, 109–113. https://doi.org/10.1145/2808006.2808041

Zhu, J., Xie, J., Lipford, H. R., & Chu, B. (2014). Supporting secure programming in web

applications through interactive static analysis. Journal of Advanced Research, 5 (4),

https://doi.org/10.1145/2786805.2786816
https://doi.org/10.5465/amr.1989.4279067
https://doi.org/10.1016/j.chb.2006.08.008
https://doi.org/10.1145/1595676.1595691
https://arxiv.org/abs/2012.09590
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1109/VLHCC.2011.6070393
https://doi.org/10.4304/jsw.8.5.1079-1085
https://doi.org/10.1145/2808006.2808041

293

449–462. https://doi.org/10.1016/j.jare.2013.11.006

https://doi.org/10.1016/j.jare.2013.11.006

	Declaration
	Acknowledgments
	Abstract
	Statement of Authorship
	List of Tables
	List of Figures
	Introduction
	Research Questions
	Thesis Construction
	Thesis Creation
	Rationale for Multi-Part Format
	Personal Contributions

	Literature Review
	Current Landscape
	Software Security
	Tooling
	Artifacts

	Applications of Psychology
	Cognition
	Social

	Soft Skills
	Other Psychological Perspectives
	Summary
	Methodological Motivations
	Overarching Methodological Commitments
	Research Designs
	Analytical Methods

	Open Science
	Preregistrations
	Data Sharing
	Computing Environments
	Preprints
	Open access
	Summary

	The Soft Skills of Software Learning Development: The Psychological Dimensions of Computing and Security Behaviours
	Statement of Continuous Thesis Summary

	What's in an undergraduate Computer Science Degree; Alumni perceptions about soft skills in careers
	Statement of Continuous Thesis Summary
	Contribution to Thesis Argument and Forward Trajectory

	Everything but Programming; Investigating Academics' Perceptions of Embedded Soft Skills in Computer Science Undergraduate Education
	Statement of Continuous Thesis Summary
	Synthesising Phase 1
	Communication and Teamwork
	Problem Solving and Critical Thinking
	Contribution to Thesis Argument and Forward Trajectory

	Recognising The Known Unknowns; the interaction between reflective thinking and optimism for uncertainty among software developer's security perceptions
	Statement of Continuous Thesis Summary
	Contribution to Thesis Argument and Forward Trajectory

	Can You Hear The ROAR of Software Security? How Responsibility, Optimism and Risk shape developers' security perceptions
	Statement of Continuous Thesis Summary
	Contribution to Thesis Argument and Forward Trajectory

	Software Vulnerabilities as Cognitive Blindspots; assessing the suitability of a dual processing theory of decision making for secure coding
	Statement of Continuous Thesis Summary
	Contribution to Thesis Argument

	General Discussion
	Summary of Results
	Answering Research Questions
	Theoretical Implications
	Soft Skills and Pedagogy
	Cognitive Psychology Applications
	Social Psychology Applications

	Practical Implications
	Curriculum Design
	Closing the Temporal Gap
	Rewards for Secure Coding
	Increasing accountability
	Educating engineers on decision making styles

	Final Thesis Structure
	Reflections on Methodological Coherence and Theoretical Integration
	Limitations
	Further Work
	Conclusion

	Consolidated Bibliography

