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Abstract

This thesis develops the Functional Online Cumulative Sum (FOCuS) anomaly detection

method for detecting collective anomalies in streaming data under conditions of computational

constraint. FOCuS performs a sequential likelihood ratio test for the presence of an anomaly in

all intervals within a data stream, while only requiring a small constant cost per update. The

FOCuS method is adapted from its original Gaussian form to work with Poisson-distributed

count data, and extended to the wider one-parameter Exponential family model setting.

Further extensions to FOCuS to find collective anomalies in multivariate streaming data are

also examined. This thesis contains real applications with different kinds of computational

constraints. These include handheld radiation monitoring devices with a limited battery life,

and cube satellites detecting gamma ray bursts with limited processing power on board.
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Chapter 1

Introduction

Why do anomalies matter? This is a fundamental question that extends beyond al-

gorithms or statistical distributions. Anomaly detection is, at its core, the pursuit of

understanding the unusual. Its importance can be viewed as a reflection of how we

strive to comprehend the unexpected in life to adapt to the challenges it brings. In ev-

ery system — whether it be a computer system, a physical measurement of the world,

or even our own consciousness — anomalies represent moments of disruption, signaling

that something significant is occurring.

Much has been written about the topic of anomaly detection over the past hundred

years. With the rise in available computers, there has been a large increase in the

amount of data being collected. This, in turn, has created the need for algorithms able

to process and work with such data. In many areas of monitoring, the aim is to ensure

a steady state of operations, and any deviations from that state are of interest to inform

a decision. This may be tackling an emerging issue, or finding something novel.

This thesis is about anomaly detection in the streaming setting, with a particular

focus on methods that scale well to large volumes of data. It is also about the practical

realities of the situations in which anomaly detection methods are implemented, and

contains a number of industrial applications.
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1.1 The central tradeoff in anomaly detection

The anomaly detection methods in this thesis are for use on high-frequency time series

data. These applications deal with a central three-way tradeoff, as in Figure 1.1.1:

1. We must find as many true anomalies as we can, as quickly and accurately as

possible.

2. We must have low rates of false detections when anomalies are not present.

3. The method must be able to run fast: on a lot of data, using limited computational

resources, taking a short amount of time.

Figure 1.1.1: The central three-way tradeoff of anomaly detection considered in this thesis.

Designing a fast anomaly detection method mainly requires the method to perform

fast in the presence of no anomalies (which, due to the rare nature of anomalies, is

likely to be the vast majority of the time). It does not require the method to perform

fast when an anomaly is present, only to identify that anomaly accurately as soon as

possible after it occurs.

Similarly, because anomalies are so rare, even a small increase in the probability of

detecting an anomaly when one is not actually present can have a large decrease on the

likelihood of a detection representing a true anomaly.

2
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1.2 What makes up an anomaly detection method?

An anomaly is an observation in a dataset that is sufficiently surprising that it gives

good reason to suspect it was generated using a different process than was used to

generate the rest of the data (Atkinson and Hawkins 1981). In order to find these

unusual observations, practitioners can employ any one of a large variety of anomaly

detection methods.

Any anomaly detection method answers four distinct questions:

1. How do we conceptualise an anomaly?

2. How can we represent this general concept with a specific mathematical definition?

3. What is the algorithmic procedure we use to process the data in order to compute

this definition, and what is the computational complexity of that algorithm?

4. What parameters does the general method have, and how does varying them

produce different specific methods?

Computational complexity is often represented in terms of overall dataset size. In

a time series, computational complexity can instead be recorded for the computation

required at each timestep. We may also care about the memory cost of an algorithm in

terms of the amount of space required in working memory, although this is often less

important than computational complexity.

1.3 What anomaly detection method is this thesis about?

This thesis is primarily about the Functional Online Cumulative Sum (FOCuS) method

(Romano, Eckley, Fearnhead, and Rigaill 2023), and its extensions to different settings.

These include the count data setting with varying background rates (Ward, Dilillo, et al.

2023), the general one-parameter exponential family model setting (Ward, Romano, et

al. 2024), the specific multivariate setting of spectral radiation counts for the detection

of specific isotopes, and the general multivariate setting to address scaling challenges. A
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description of the prior methods from which FOCuS is derived can be found in section

2.3.8, and the algorithm itself is defined in Chapter 5.

We place FOCuS in its wider context by answering the questions given above.

1. The concept: An anomaly is an interval in a time series signal where the signal is

higher than you would expect. We want to find these intervals as soon as we can.

2. The mathematical definition: An anomaly is an interval Xτ , ..., XT where the

generalised log-likelihood ratio test statistic for the data generating process shows

that we have a significant increase of the mean of the signal over the background

mean. For more explanation on this, see Section 2.3.5. While FOCuS is often

used with data that can be assumed to follow a Normal distribution, other likeli-

hood functions are possible to implement with the method. We work with Poisson

likelihoods for count data in Chapter 3 and Chapter 4, a general one-parameter

exponential family likelihood in Chapter 5, and multidimensional Normal likeli-

hoods in Chapter 6.

3. The algorithm: Using ideas of functional pruning, we avoid ever iterating over

most of the signal intervals even though we are computing a statistic maximised

over them. For more explanation, see Section 3.3 or Section 5.5. In particular, the

expected computational and memory costs for FOCuS are O(1) at each timestep,

and low. This allows FOCuS and methods based on it to address settings where

we are computationally constrained, and more computation-heavy methods would

not be viable.

4. The parameters: we have a statistical threshold parameter k detailing what sig-

nificance we should use for our likelihood ratio test. We relate k to the concept of

a k-sigma event: if the interval was of length one, then it would be a point roughly

k standard deviations from the mean. Longer intervals can be less intense while

still being detectable at this statistical threshold, as shown in Figure 1.3.2.

We have an (optional) minimum anomaly intensity parameter µmin > µ0, which is

4



CHAPTER 1. INTRODUCTION

Figure 1.3.2: Graph showing the tradeoff between the length h and mean µ of an anomaly in
a Normally distributed time series needed to be detectable at different statistical thresholds.

used to restrict our algorithm to only considering anomalies of intensity µ ≥ µmin

that are statistically detectable in intervals under a chosen length. This helps

our method be robust to the artefacts caused by estimating a moving background

rate, which is a common problem with many practical applications. Raising µmin

looks for anomalies that are detectable over shorter intervals. This is discussed in

Chapters 3 and 6.

We have an (optional) clearing parameter hclear, which we use to reset the algo-

rithm after passing over large anomalies. If there is no evidence for an anomaly

beginning or continuing over the last hclear time steps, then we stop considering

any intervals beginning further in the past. By default we have hclear = ∞ if we

are not resetting at all, which can cause passing over large anomalies to over-

shadow intervals a long time into the future. Smaller values of hclear reset the

algorithm more often, and should be used if we are interested in telling apart

separate anomalies that occur near each other, whereas larger values of hclear will

cause them to be regarded as two parts of the same anomaly and therefore more

overall statistically detectable. This parameter is discussed in Chapter 4.

We also have suggestions for other parameters specific to the general multivariate

setting. We have a local thresholding parameter a that determines how often

different signals communicate and how dense or sparse an anomaly would look
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like across signals. We also have a backscan parameter W that determines how

closely in time anomalies in different signals should be expected to start. These

are discussed in more detail in Chapter 6.

1.4 The structure of this thesis

Anomaly detection is a very practical area. This thesis is structured in a way where

theory and methods chapters are interspersed with chapters about specific applications.

Chapter 2 is a literature review of the current state of anomaly detection, with a

focus on methods that scale and that could be applied to time series data. It provides

precise definitions of concepts around anomalies, which are often defined vaguely in the

wider literature. It explains the various challenges that can make an anomaly detection

problem difficult. These include the computational challenges that come when designing

an anomaly detection method, such as searching over intervals and working with data

in more than one dimension. It also includes the need to account for the changing

background context of your data, and the data artefacts that can arise even when you

try to account for it. The literature review surveys the standard, well-used approaches

that tackle these problems, as well as some more complex modern methods that can

be useful when simpler approaches fail. Finally, the review covers ways to assess an

anomaly detection method, and looks at some application domains where specific types

of anomaly detection problems may arise.

Chapter 3 is based on work done with the HERMES Scientific Pathfinder team

about finding gamma-ray bursts using a scintillation detector on a cube satellite. The

main challenge for this application is the high velocity of the data and the resulting

challenges around computational cost when working with intervals. We adapt the FO-

CuS algorithm for Normally distributed data in order to work in a Poisson count data

setting. We show how this can smooth out the ability to detect anomalies of different

shapes and sizes compared to using a grid of windows running over the data. This

application contains a varying background rate and we show how to ensure that collec-
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tive anomaly detection methods are robust to the data artefacts caused by background

rate estimation. This chapter was published in the Journal of the American Statistical

Association (Ward, Dilillo, et al. 2023), and received an Editor’s Choice award. It was

selected for discussion for the American Statistical Association’s ‘Applications and Case

Studies’ session at the Joint Statistical Meetings 2024.

Chapter 5 introduces more general theoretical improvements to the FOCuS algo-

rithm. We adapt the algorithm more broadly to work with data drawn from a one-

parameter exponential family distribution, and prove that in many cases the internal

computations of the algorithm are identical across different assumed data forms. We

also show how to reduce the computational cost of running FOCuS to a constant cost

per iteration. This chapter has been published in the Journal of Statistics and Com-

puting (Ward, Romano, et al. 2024).

Chapter 4 works with radiation data from the NuSec Sigma Data Challenge. Here,

we look to build on FOCuS to develop an algorithm that can use small amounts of

battery on a handheld device, and can tell different isotope radiation sources apart

from each other using the specific multidimensionality of this data source. We ensure

that our algorithm is robust to the changing radiation patterns in differing weather

conditions. We also develop a methodology for correctly resetting FOCuS after it

passes over an anomaly.

Chapter 6, is a theoretical exploration of ways to extend FOCuS to the more general

multidimensional setting. We begin by providing further refinements on the constant

memory cost bound for different minimum anomaly intensities, which is of particular

relevance to the overall total memory cost of a multidimensional setting. We then look

at the various ways that the multidimensional problem is hard, including the fact that

we must balance scaling well with time and scaling well with dimension, and the fact

that methods optimised for one are often not good for the other. We also need to find

ways to combine information across data streams about where a collective anomaly

starts, given that this estimated location may be different in different data streams.

Our approaches point to ways to improve on modern methods by showing how and

7



CHAPTER 1. INTRODUCTION

why they work and improving their scaling.

We conclude with Chapter 7, which summarises the novel theoretical contributions

and impact made in specific applications, and points to possible future work in this

area.
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Chapter 2

Anomaly detection literature review

2.1 Introduction

A lot has been written about anomaly detection over the past century, because of its

wide usefulness in many domains of application. The topic is quite broad, and even

with an extensive discussion, it would be difficult to cover every aspect in detail. This

literature review focuses on the conceptual underpinnings of different anomaly detec-

tion methods, aiming to identify similarities across a wide variety of anomaly detection

problems. It aims to be most of use to a person designing an anomaly detection method,

by providing a framework against which they can evaluate the method design for differ-

ent aspects of anomaly detection. The history of specific methods related to anomaly

detection in computationally constrained streaming data are also developed in more

detail.

2.2 Anomaly detection concepts

There are lots of different types of anomalies and anomaly detection methods we could

care about. They are referred to by different names in the anomaly detection literature,

with the exact language often depending on the domain.

We begin by defining an anomaly.
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Definition 2.2.1 (Anomaly). Given a dataset {X1, ..., Xn}, a subset of this dataset is

an anomaly if it is both relatively small as a proportion of the dataset and unusual

with respect to the other points in the dataset.

Definition 2.2.1 is vague. Exact definitions of what an anomaly is vary. For example,

Atkinson and Hawkins (1981) call anomalies “observations which deviate so much from

the other observations as to arouse suspicions that they were generated by a different

mechanism than the rest of the data”. Chandola, Banerjee, and Kumar (2009) call

anomalies “patterns in data that do not conform to a well-defined notion of normal

behaviour”. However, these definitions have the following in common:

Firstly, something is either an anomaly or it is not. We may also have interest in

qualifying different types of non-anomalous data, or different types of anomalies, or

providing a quantitative estimate of how anomalous an anomaly is. However, this is

not the core purpose of an anomaly detection method as opposed to other methods that

operate on a dataset. Anomaly detection problems are examples of binary classification

problems: they sort data into exactly two categories.

Secondly, anomalies should be relatively rare in the dataset. It would be impossible

for a substantial proportion of the dataset to be an anomaly. It is this characteristic of

class imbalance (He and Garcia 2009) that separates anomaly detection problems from

other binary classification problems.

Anomalies should also be different from the non-anomalous parts of the dataset in

a way that is identifiable only from processing the dataset. If a part of the dataset

really is generated by a different mechanism, but this cannot be made apparent from

processing the data in any way, then it’s not an anomaly. We separate an anomaly (a

signature in the data) from the presumed cause of the anomaly (a process occurring in

the real world).

Often we will refer to anomalies as precisely what is found by the specific anomaly

detection method we are using. However, this can become unclear when we are trying

to evaluate an anomaly detection method’s performance or to compare more than one

anomaly detection method against one another on the same dataset. In these cases, we

10
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would refer to detections by a specific method.

2.2.1 Point anomalies

Atkinson and Hawkins (1981) refers to anomalies as individual observations, rather

than as subsets of data. We will refer to individual observations that are anomalies as

point anomalies, see Definition 2.2.2.

Definition 2.2.2 (Point anomaly). Given a dataset {X1, ..., Xn}, a point Xk is a point

anomaly if it is unusual with respect to the other points in the dataset.

This thesis distinguishes between point anomalies and other kinds of anomalies.

Many anomaly detection methods are set up to detect point anomalies. Much of this

thesis is designed around methods for detecting collective anomalies (see Definition

2.2.8), but methods used for point anomalies are also relevant to the topic, particularly

when they occur in multivariate data (see Definition 2.2.6) or are used to make a

collective anomaly detection method more robust (see Definition 2.2.5).

Outliers and inliers

Definition 2.2.3 (Outlier). Given a dataset {X1, ..., Xn}, a point Xk is an outlier

if it lies unusually far outside the convex hull created by the non-outlier points in the

dataset.

Definition 2.2.3 is circular and is often of little practical use in classifying points as

outliers or not. In practice, outliers are often defined by a specific method as being

greater than some multiple of data spread from the center of the data (see Section 2.3.1

for a discussion). For the simple one-dimensional scenario where the convex hull is an

interval, there exist tests based on removing a set of outliers and then checking that they

do lie unusually far outside the interval containing non-outlier points (Grubbs 1950),

and these formed part of the early basis of outlier detection. However, we primarily use

this definition of an outlier in order to consider the challenges of detecting other kinds

of anomalies that are not outliers.

11
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Definition 2.2.4 (Inlier). Given a dataset {X1, ..., Xn}, a point Xk is an inlier if it

is a point anomaly, but not an outlier.

Some definitions will refer to all anomalies as outliers (Atkinson and Hawkins 1981;

Breunig et al. 2000), and some will differentiate between the two concepts (Li, Zhao,

et al. 2020). We differentiate in this thesis because we are often specifically looking for

inliers: if the anomalies we were searching for were sufficiently extreme as to be (or

contain) outliers in the whole dataset, the problem of detecting them would not require

the methods we use.

Inliers can be particularly relevant in the case of more complex data structures such

as multivariate (see Figure 2.2.2) or time series (see Figure 2.2.3) data. In the case

of one-dimensional data that is not a time series, the conceptual difference between

outliers and inliers is that if data is multimodal, outliers must be above or below all

modes, whereas inliers could be between the modes, as shown in Figure 2.2.1.

Often, an anomaly detection method of finding inliers consists of two parts: first, a

transformation is applied that turns the inliers into outliers in the transformed dataset;

then, an outlier detection method is used on the transformed data.

Outliers can cause their own problems. For example, the presence of one extreme

outlier can make it hard to detect inliers or other, less extreme outliers. This is because

outliers present in the raw data can warp the effects of transformations applied to that

data. It’s often best to identify and remove outliers before applying such transforma-

tions, or to make sure that the transformations applied are robust.

Definition 2.2.5 (Robust method). Given a mathematical method operating on a

dataset {X1, ..., Xn}, that method is robust if a small number of the Xi being arbi-

trarily large outliers does not cause the method to perform badly on the rest of the data.

The field of robust statistics was developed in the 1960s (Huber 1964) to address

the problem of statistical estimation in the presence of outliers. For a simple statis-

tical method such as estimating the mean of the data, Definition 2.2.5 can be taken
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Figure 2.2.1: An example of an outlier and an inlier in a one-dimensional bimodal dataset.
The outlier lies outside the modes whereas the inlier is between the modes. Jitter has been
added on the y axis for means of easier display.

to mean a bounded influence function (Huber 1964) if “small” means one, or a high

breakdown point (Hampel 1971) if more than one. As we focus on methods that may

be used in anomaly detection, there is a conceptual difference between Definition 2.2.5

and other definitions within the literature: we are interested not in ignoring outliers

but in highlighting them, so we permit the method to give unbounded results on the

outliers themselves and still be called robust. Often such methods contain within them

robust methods with bounded influence functions or high breakdown points to fit a

statistical model and then report the resulting residual. We address one such use of

robust statistics for anomaly detection in Section 2.3.4. Chapter 4 also contains the

development of a robust method for use with the anomaly detection method developed

in this thesis.
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Multivariate data

Definition 2.2.6 (Multivariate data). A dataset {X⃗1, ..., X⃗n} is multivariate, multidi-

mensional, p-dimensional, or of dimension p if each X⃗i := (X1
i , ..., X

p
i ) is a vector of

finite dimension p (that does not vary with i).

A multivariate dataset is one where each point in the dataset has multiple coordinate

dimensions, which may or may not have an associated structure to them. This structure

may be linear, such as a spectrum of electromagnetic energy bands for radiation data. It

might be spatial or network-based, such as sensor data of the same kind of measurement

from different sensors at different locations. Or it might be qualitatively different kinds

of measurement such as rainfall and wind speed being taken by the same sensor.

Multivariate data may contain different types of anomalies, as illustrated in Fig-

ure 2.2.2. In particular, we will concern ourselves with three different types of point

anomaly:

1. A point anomaly which is an outlier in at least one of the coordinates alone.

2. An outlier in some subset of the coordinates, that is not an outlier in any one

coordinate.

3. An inlier, that only looks anomalous when considering the interaction of those

coordinates together. This can happen when the structure of the dataset is irreg-

ular.

To find outliers in one coordinate only, it is sufficient to treat that coordinate individ-

ually, and use a method that is sufficiently fast that it can be easily repeated for every

coordinate.

To find outliers in some subset of coordinates, you first need to select the coordi-

nates that you think contribute to the outlier. This is important for reducing noise in

your detection method, which impacts the tradeoff between detection power and false

positive rate. You then need to combine information about the outlier across these

coordinates. This is often done by calculating an anomaly score for each coordinate,
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Figure 2.2.2: Three different types of point anomalies in a two-dimensional dataset.

and then comparing the sum of the scores to a threshold. It can also be done by con-

structing a new coordinate in the direction most useful for identifying the anomaly, and

considering the score along this coordinate. For an anomaly score equal to the squared

distance between a point and the source of the direction vector, by Pythagoras’ theorem

these methods give equivalent results.

To find inliers, there are a variety of possible methods in the literature, which are

surveyed in Section 2.5. While the precise definition of an anomaly varies between

method, generally inlier points are considered anomalous if they lie in some sparse part

of the dataset, or are easy to separate out from the rest of the data using a computational

procedure.

2.2.2 Time series concepts

Definition 2.2.7 (Ordered data). A dataset (X1, ..., XT ) is considered ordered, or a

sequence, if it relevantly contains the two strict total order relations

• Xti before Xtj , defined as ti < tj, and

• Xti after Xtj , defined as ti > tj.

A time series dataset is an ordered dataset indexed by time. Many ordered data

sequences are time series, and we will work with time series in this thesis. Other kinds

of ordered data include the DNA of a chromosome or natural language.
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When finding an anomaly in a time series dataset, there are various problems that

arise specific to this setting. These are roughly divided into the presence of temporal

structure in the non-anomalous data, the anomalies themselves possibly being collective

anomalies rather than point anomalies, and the data being a data stream where the

anomaly detection algorithm must run online.

Collective anomalies

Definition 2.2.8 (Collective anomaly). Given a time series dataset (X1, ..., XT ), a

collective anomaly is an anomalous interval (Xs, ..., Xe). An interval may be a collective

anomaly even if none of the points Xs, ..., Xe are point anomalies.

In the univariate setting, collective anomalies are often characterised by a change

in the parameter or distributional family used to generate the data. That is, different

points within a collective anomaly share similarities with each other, not just differences

with the non-anomalous data.

More generally, collective anomalies represent anomalous batches of data. If these

data are all anomalous in the same way, they will not be detected by any algorithm

looking for multivariate inliers, as each point is a normal part of the anomalous batch.

Collective anomalies can also mask themselves by skewing the results of outlier detection

(see Figure 2.3.8). Therefore it can be very important to choose a method specifically

looking for collective anomalies rather than relying on point anomaly detection methods.

Temporal structure and contextual anomalies

Definition 2.2.9 (Temporal Structure). Given a time series dataset (X1, ..., XT ) with-

out anomalies, we say that X does not have temporal structure if we can consider the Xi

independent and identically distributed realisations of the same random variable. We

may also call this white noise. Otherwise, we say that (X1, ..., XT ) has some temporal

structure.

Most time series datasets have some temporal structure. Often, this takes the form
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of autocorrelation, a trend, or a seasonal pattern. More complicated kinds of temporal

structure, for example a cyclic pattern that doesn’t have a constant seasonal period,

are also possible.

Definition 2.2.10 (Contextual Anomaly). Given a time series dataset (X1, ..., XT ),

a point Xt is a contextual anomaly if it is unusual with respect to the other points

in the dataset and their ordering. Xt might not be considered a point anomaly in the

dataset {X1, ..., XT} without the additional context of this ordering.

There are broadly two types of contextual anomalies we care about which are de-

tected in different ways. The first is an anomaly Xt which is an outlier with respect

to its neighbourhood (Xt−i, ..., Xt, ..., Xt+j). Usually, these anomalies are identified by

calculating and removing some estimate of trend for the time series.

The second is an anomaly Xt which is an outlier only with respect to its time

context t, and not in its neighbourhood. For example, sales figures for December

looking similar to those for November and January may indicate an anomalous lack of

Christmas bump. These kinds of contextual anomalies are found by calculating and

removing some estimate of seasonality or cyclic pattern from the time series.

Trend and seasonality are often both present in a time series. For this reason,

they are often calculated together using algorithms that can intelligently separate one

from the other. You have to be careful that the presence of outliers doesn’t skew this

calculation.

This thesis will concentrate on dealing with trend as the most important context

for the anomaly detection applications it contains.

Streaming anomaly detection

Definition 2.2.11 (Data stream). A data stream is a time series dataset (X1, ...),

where at time T only the dataset (X1, ...XT ) has been observed. T is often called the

present time.

Anomaly detection methods for data streams have additional considerations beyond
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Figure 2.2.3: Two kinds of anomalies in a time series dataset. Neither of these anomalies are
outliers in the non-ordered data, and so methods specific to time series must be employed in
order to detect them.

those relevant to other time series datasets. For example, we may be interested in at

what time an anomaly became detectable, which is different from the estimated time

of the anomaly. These are addressed in Section 2.6.4.

Multivariate time series

Definition 2.2.12 (Multivariate time series). A dataset (X⃗1, ..., X⃗T ) is a multivariate

time series if the dataset {X⃗1, ..., X⃗T} is multivariate, and for each coordinate i the

dataset (X i
1, ..., X

i
T ) is a time series.

With a multivariate time series, the definition of things we might wish to consider

an anomaly expands further. For example, an anomaly could refer to:

1. One time point in one time series.

2. The same time point across multiple time series.

3. One interval in one time series.

4. The same time interval in multiple time series.

5. One time series, with respect to the others.

If we are hunting for anomalies that represent the same time interval in multiple time

series, then the beginning and end of that interval may or may not line up exactly in

18



CHAPTER 2. ANOMALY DETECTION LITERATURE REVIEW

the different series.

The anomaly detection method developed in this thesis can be applied to multi-

variate time series data. The anomalies it detects represent the same time interval in

multiple time series. Further exploration of ways to do this well are in Chapter 6.

2.3 The evidence-gathering problem

In order to assess whether or not something is anomalous, you first have to gather

evidence from your dataset about what normal data looks like, and then decide how

far away from normal should make something anomalous. Here, we look at some ways

to do this for a time series.

2.3.1 The three-sigma paradigm

One of the most standard and well-known ways of detecting anomalies in a noisy signal

is to calculate an estimate for the mean µ and standard deviation σ of the signal, and

label a point as anomalous if it lies more than n standard deviations from the mean.

Often n = 3 is chosen, and such anomaly detectors are sometimes called three-sigma

anomaly detectors.

If the signal is already known to be stationary, and the mean and standard deviation

are known in advance, then they can be given as fixed bounds and the same test

is applied to every point. For example, if our signal is assumed to have mean µ =

0 and variance σ2 = 1, then any points outside the interval [−3, 3] will be marked

anomalous. For example, Figure 2.3.4 shows a signal of size T = 50 drawn from a

N(0, 1) distribution compared to these bounds.

Three-sigma anomaly detectors are quick to implement, easy to understand, and

give good results on a wide variety of practical applications.

However, often the mean and variance of the data are not known in advance, and

need to be estimated. In the offline setting it’s possible to use the entire dataset to

estimate a constant mean and variance. For example, Figure 2.3.5 shows the three
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Figure 2.3.4: The flat bounds of a three-sigma anomaly detector

sigma bounds given by the sample mean and sample variance, as well as extended

bounds given by using the upper point of 95% confidence intervals for both estimators.

Figure 2.3.5: Three-sigma bounds estimated from the data, with 95% confidence intervals
shown with dashed lines.
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2.3.2 Burn-in periods

In the online setting when working with a data stream, only the data from time t ≤ T

is available to estimate the mean and variance at time T . Because we are checking if

point xT is anomalous, we would only want to use t < T to construct our estimators.

This means our estimates will start out with uncertainty that resolves itself as we scan

through more of the dataset. If we do not correct for this, points labelled anomalous in

the beginning of the algorithm’s run may not actually be so, having been mislabelled

due to imprecise estimates with small sample sizes.

For example, Figure 2.3.6 shows the same sample mean and sample variance esti-

mates for the three sigma bounds as in Figure 2.3.5, but this time only calculated using

the sample t < T at time T . Here, the signal point at time T = 7 would be incorrectly

marked as anomalous if using only the estimators, but this point is well within the

bounds given by using the confidence intervals.

Figure 2.3.6: Three-sigma bounds estimated online using only data t < T at time T . The
signal point T = 7 lies outside the estimated three-sigma limit.

An online anomaly detection method may need to have a burn-in period to construct

a good belief about what normality looks like. If we want to try to detect anomalies

during this burn-in period, it makes sense to use a wider threshold to take into account
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estimate uncertainty.

In practice, if anomalies are assumed to be rare, it is often the case that the anomaly

detection method discounts the burn-in period entirely and only begins to look for

anomalies after sufficient data is available to estimate parameters well.

2.3.3 Expanding thresholds to control false positives

The three-sigma paradigm essentially considers each point independently, which means

that under the null hypothesis of no anomalies present in the dataset, the number of

anomalies found by the method will be proportional to the size of the dataset. In a

dataset of a million points, a one-in-a-million event would not be that unusual, and

whether it should be classified as “anomalous” will depend on why you are looking for

anomalies. This question is related to family-wise or experiment-wise error rate (Ryan

1959), the idea that you should control the overall probability of a false positive across

a family of hypothesis tests. Therefore, you may wish to choose your thresholds for

anomaly detection in a way that is dependent on your sample size.

We might consider the distribution of the most extreme point in the sample. For

example, in a sample of size T where the Xt are independent and identically distributed,

we have that

P
[
max
t≤T

Xt < B

]
= P [X1 < B]T .

We can therefore adjust our threshold accordingly (Šidák 1967) and use a higher thresh-

old for a larger sample size, although this threshold would still be flat. However, in the

online setting we do not know the total number of hypothesis tests we will be perform-

ing, and if we send T → ∞ then we would use an infinite threshold everywhere and

never detect anomalies.

One way to deal with this is to have a threshold that expands as you scan over the

sample. For example, instead of considering the distribution of the most extreme point

in the whole sample, we may consider the distribution of the most extreme point in the
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sample so far. In the case of known mean and variance, we can use this to generate a

set of thresholds as in Figure 2.3.7.

Figure 2.3.7: The threshold for an anomaly expanding with our sample size.

For the case where the mean and variance are unknown and must be estimated, we

may instead use Grubbs’ test (Grubbs 1950) for a single anomaly, and its generalisation

the Extreme Studentised Deviate (ESD) test (Rosner 1983) for multiple anomalies,

as the anomalies themselves can bias our estimates. Grubbs’ test removes the most

extreme point from the sample and then uses the rest of the sample to test whether

the point was anomalous by comparing it to a Normally distributed sample with its

most extreme point removed. The ESD test does similar for up to the k most extreme

points. These methods were developed for the offline setting, but can be adapted for

the online setting with fast sequential updates (Ryan, Parnell, and Mahoney 2019).

Online algorithms making on-the-spot decisions using ESD methods will, by design,

have thresholds that expand as the sample size grows. This may well be an undesirable

quality to have in a detection algorithm that is running on an online time series. How-

ever, methods using expanding thresholds have been developed for real applications

working with large amounts of data, for example by Twitter (Hochenbaum, Vallis, and

Kejariwal 2017). They have the advantage of needing fewer user-set parameters when
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working online as a user can aim to control the probability of a false positive but does

not need to set the assumed sample size.

Most time series applications get around this by specifying a different metric to

choose the thresholds rather than the probability of a false positive (see Section 2.6.2

for a discussion). This means the threshold choices for the anomaly detection method

are less sensitive to the amount of data collected.

2.3.4 Robust three-sigma

We expect that our signal will contain outliers. These outliers can contaminate our

estimators for µ and σ2. Specifically, µ will be biased in the direction of the outliers,

and σ2 will be artificially inflated. These distortions can affect our anomaly detection

method in two ways:

1. A large anomaly may obscure the presence of smaller anomalies.

2. Multiple anomalies in the same direction (e.g., a collective anomaly) may com-

pletely mask themselves.

Figure 2.3.8: Point anomalies masking each other, and a collective anomaly masking itself,
when bounds are estimated in a non-robust way.

Figure 2.3.8 displays graphs of an N(0,1) white noise signal of length 50 containing

outliers. The dashed lines illustrate the application of the three-sigma rule using non-

robust estimates, which are inflated by the presence of outliers in the signal. While one

24



CHAPTER 2. ANOMALY DETECTION LITERATURE REVIEW

point outlier extreme enough to skew the estimates will usually be detected, that outlier

may mask the presence of other, less extreme point outliers. A collective anomaly may

inflate estimates by so much as to mask itself. To address this issue, we need robust

estimates for µ and σ2 that are less affected by outliers.

We define the breakdown point of an estimator θ̂ to be the smallest fraction of

anomalies in the dataset is it possible to have before the difference |θ̂anom−θ̂| between an

anomaly-free estimate and the anomaly-contaminated estimate can become arbitrarily

large (Huber 2004).

The breakdown point of the sample mean is 0. To see why this is, let’s say that

observation k is an anomaly.

1

T

T∑
t=1

xt =
1

T

∑
t̸=k

xt +
xk

T

Since the anomalous observation xk could be anything, even arbitrarily large, the

estimator itself could also become arbitrarily large. In a similar way, our sample variance

estimator also has a breakdown point of 0. In general, any estimator which has
∑T

t=1Xt

as a part of its minimal sufficient statistic will have a breakdown point of 0, as one

anomalous data point can arbitrarily skew the entire sum.

Breakdown points are not the only way to quantify the robustness of an estimator.

Other ways of quantifying and examining robustness also exist in the literature, includ-

ing notions of influence function (how sensitive the estimate is to finite changes in any

one data point), and bias curves (a visual plot of how the estimator begins to break

down as more and more anomalous points are added to the dataset). (Rousseeuw and

Hubert 2018)

For our purposes of anomaly detection, an estimator’s breakdown point gives us

a useful summary of its robust nature. This is because when working with streaming

data we often apply estimators to small parts of a data signal, and we may expect point

anomalies, where present, to be one or more of the points we are attempting to process.

One such possible set of robust estimators is the median m, and the median absolute
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deviation (MAD), defined as the median of the values |xt −m| (Hampel 1974). Both

of these estimators have a breakdown point of 50%, as up to half the sample can be

anomalous. We can estimate the mean by the median, and the standard deviation by

about 1.5 times the MAD (Leys et al. 2013).

Figure 2.3.9: Graph showing three-sigma bounds given by the median plus or minus about
4.5 times the MAD. Point anomalies and collective anomalies are detected when bounds are
estimated robustly.

Figure 2.3.9 shows the impact of using these robust estimates for mean and standard

deviation on our anomaly detection method. Here, the same anomalies as in Figure

2.3.8 are now detectable at a three-sigma level, because the anomalies themselves do

not greatly inflate the thresholds used to detect them.

A collective anomaly can consist of many points. Even when a robust method is

used as in Figure 2.3.9, and the size of the collective anomaly is below the method’s

breakdown point, the presence of so many outlying points can cause misestimations.

This means that in order to detect collective anomalies well, we should be considering

them as intervals rather than individual points.

2.3.5 Detecting collective anomalies with three-sigma

An interval may certainly be said to be a collective anomaly if all of the points in that

interval are themselves point anomalies. However, we are often interested in detecting

anomalous intervals where not all of the points in the interval are point anomalies, or
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even where no points in the interval are point anomalies.

Detecting collective anomalies requires methods different from detecting point anoma-

lies, but these methods can sometimes coincide if you consider a point anomaly to be

a collective anomaly of length one.

Consider the generalisation of the three-sigma framework above. We have an inde-

pendent and identically distributed Normal signal with known mean µ = 0 and variance

σ2 = 1, and we wish to label as anomalous not just any point outside the three-sigma

boundaries, but any interval whose mean is outside the three-sigma boundaries when

performing the appropriately scaled statistical test.

If the Xt are i.i.d. N(0, 1), we would expect the mean X̄t+1:t+h of an interval of

length h to be distributed as N(0, 1/h). Therefore, the appropriately scaled test is to

check if x̄t+1:t+h

√
h is within the three-sigma boundaries. When h = 1, this reduces to

the point anomaly test. Figure 2.3.10 shows a visualisation of how this length-intensity

tradeoff looks.

Figure 2.3.10: The tradeoff between intensity µ and length h of an anomaly.

2.3.6 Interval search

When we search for collective anomalies, we end up with a natural increase in the

computational complexity of our problem that particularly works against us in the

online setting. This arises because the natural units of collective anomalies are intervals,

not points themselves. Intervals have start points and end points, and in a signal of
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length T there are
(
T
2

)
= O(T 2) intervals. Checking all these intervals can require very

large amounts of computation when working with high volumes of data.

This also contrasts with our requirement for an algorithm to be able to run in the

online setting: its computational complexity must be O(1) at each timestep so that it

does not slow down as the data stream lengthens. The last point XT to arrive in a data

stream of current length T creates a set {[X1, XT ], [X2, XT ], ..., [XT−1, XT ], [XT , XT ]} of

new intervals. Doing anything that loops over each element in this set will by necessity

result in an algorithm with computational complexity at least O(T ) at each timestep.

This will cause the method to slow down on long signals.

When finding collective anomalies, we are often only interested in intervals up to

a maximum anomaly length hmax. If hmax is not too large, this can be reasonable.

However when working on real-time signals and checking all intervals up to a fixed

maximum time interval, the computation required per second becomes proportional to

the square of the signal velocity (how many points the data signal contains per second),

which can become infeasible on high-velocity signals.

Consider an example where we must choose the processing velocity of a signal, and

we are interested in collective anomalies up to 5 minutes (300s) long. If we process the

signal once a second, we then have 300 intervals to check each second. If we process

the signal twice a second, we have 600 intervals to check each half-second, for a total

of 1200 intervals processed each second. If we are interested in a minimum anomaly

length of approximately 100ms, we may wish to process the signal every 20ms to ensure

a good resolution, which would require checking 750,000 intervals each second.

We have presented three formulations: O(T 2) intervals in total, O(T ) intervals at

each timestep, and O(v2) intervals per second for a signal velocity v even if intervals are

bounded above in length. We will refer to these interchangeably as the interval search

problem.

Many collective anomaly detection methods (see for examples Austin et al. (2023),

Ding and Fei (2013), Ryan, Parnell, and Mahoney (2019), and Yang, Eckley, and

Fearnhead (2024)) overcome the interval search problem by using a sliding window. As
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Figure 2.3.11: Use of one or more sliding windows to detect anomalies.

shown in Figure 2.3.11, this will cause a loss of detection power for collective anomalies

that occur over shorter or longer lengths than the sliding window. To compensate for

this, some anomaly detection methods use a grid of windows, often logarithmically

spaced of size 1, 2, 4, 8, 16, ... or near-logarithmic at 1, 2, 5, 10, 20, ... in order to give

round numbers.

2.3.7 Changepoints

Definition 2.3.1 (Changepoint). Given an ordered dataset (X1, ..., XT ), a point τ is a

changepoint if the distributional properties of the two parts of the signal (X1, ..., Xτ−1)

and (Xτ , ..., XT ) are different from each other in a statistically significant way.

A distributional property of interest might be the mean, variance, or slope of the

signal. Alternatively, the two parts may be drawn from the same distributional family

using different parameters. A signal may have multiple changepoints 1 = τ0 < τ1 <

... < τk = T that divide the signal into k different parts.

Some definitions of changepoints (see for example Killick, Fearnhead, and Eckley

(2012)) will define a changepoint as the last point of the prior signal part, rather than

the first point of the latter signal part as we have done. This essentially shifts all τ

backwards by 1 relative to the way they are presented in this thesis. For the purposes

of anomaly detection it makes sense to have the τ included in the anomaly we detect,

so we adopt this convention throughout the thesis.
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If we are passing over a signal containing a collective anomaly (Xs, ..., Xe) and we are

at the present time T = e when the collective anomaly ends, then changepoint methods

that detect a start time τ = s should be well-placed to pick up our collective anomaly.

Although we don’t know e in advance, if we are running the method online and testing

all present times T , this is not a problem for us. However, there are a number of

differences between the anomaly detection and changepoint detection setttings.

The biggest difference between a changepoint and a collective anomaly is the return

to baseline assumption. Collective anomalies have an end, after which the signal is

assumed to return to its normal behaviour. Changepoints, however, represent an un-

derlying shift to a new type of signal. There may be another changepoint later on, but

no assumption that this causes a return to the original signal pattern.

Changepoint models are usually interested in capturing good information about

what a signal has moved to after a change has been made. This is because, in fitting

multiple changepoints, it needs to be able to use information gained about the new

state to help decide whether it should then fit more changepoints after that state move.

In contrast, anomaly detection methods are really only interested in the fact that an

anomaly has occurred, and not exactly what that anomaly looks like.

This conceptual difference is reflected in how changepoint fitting models are set up.

One common model (Jackson et al. 2005), fits changepoints by minimising the following

penalised cost function:

min
0=τ0<τ1<...<τk=T

[
k−1∑
i=0

Cost(Xτi , ..., Xτi+1−1) + β(k)

]
.

Here, β(k) is a penalty parameter for fitting more changepoints. For computational

reasons it is often linear, i.e. β(k) = βk for some constant penalty β for fitting an

additional changepoint (Killick, Fearnhead, and Eckley 2012), that becomes a tuneable

parameter of the algorithm.

Contrast this with how the Collective And Point Anomalies (CAPA) method (Fisch,

Eckley, and Fearnhead 2022) sets up its model, with a known baseline from which
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Framework Point anomalies Collective anomalies Changepoints

Length of anomalous segment 1 2...hmax 2+
Naive computational complexity O(T ) O(T 2) O(2T )
Requirement to estimate background? Yes Yes No
Multiple could occur nearby in a signal? Yes No Yes
Magnitude of change detected Large (outlier) Medium (bounded >0) Small (no limit)
Time to detect change online Immediate Prompt Eventual

Table 2.3.1: Summary of comparisons between frameworks for detecting point anomalies,
collective anomalies, and changepoints in a time series signal.

anomalies deviate away:

min
0<τ1<...<τk−1<T

[
k−1∑
i=1

Cost(Xτi , ..., Xτi+hi
) + Cost(Non-anomalous points) + β(k)

]
.

Here, the τi represent anomaly start times and the hi represent anomaly lengths. This

increases the method’s statistical power, as it is fitting one anomaly rather than two

changepoints (start and end).

Changepoint models are also set up so that they gain statistical power as the distance

h between changepoints becomes larger, tending to infinity. They are just as interested

in detecting very small changes that happen over very long timescales as they are in

detecting shorter, sharper changes. In contrast, when detecting collective anomalies

we often have a maximum length hmax of anomaly that we are interested in detecting.

This is because when working in anomaly detection, the slow background evolution

of our signal over time is not something we want to cause our algorithm to report as

anomalous. We are often interested in specifically removing or compensating for this

background. Therefore, changepoint methods methods designed to perform well on

very large values of h may perform poorly in anomaly detection tasks as they end up

measuring background shifts rather than anomalies (see Chapter 3 for a discussion on

this).

Finally, there is often a substantial difference between the naive computational com-

plexity of a multiple changepoint detection model and a collective anomaly detection

model which only looks for the presence of two changepoints (the start and end of the

collective anomaly). When fitting multiple changepoints on a signal of length T there
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are 2T possible combinations - any point could be a changepoint. In contrast, when

fitting a collective anomaly there are T 2/2 locations for the start and end.

In order to take advantage of this on real data which may contain multiple col-

lective anomalies, careful considerations must be given to using the return to baseline

assumption to reset the anomaly detection algorithm between passing over anomalies,

something which is impossible when using a changepoint model. These are discussed

more in Chapter 4.

These comparisons between point anomaly detection, collective anomaly detection,

and changepoint detection are summed up in Table 2.3.1.

2.3.8 Collective anomaly detection methods

The most basic collective anomaly detection method is the window method, as described

in Figure 2.3.11, which relies on knowing the length of the collective anomaly in advance

but is able to detect all possible intensities of anomaly. One other way to detect

collective anomalies is the CUSUM control chart (Aue and Kirch 2024), based upon the

use of the Page-CUSUM statistic (Page 1954). Here, we assume we know the intensity

of the anomaly in advance, and are therefore able to detect all possible lengths of

anomaly.

The Page-CUSUM statistic is calculated as

S0 = [aX0]
+, ST+1 = [ST + aXT+1 − b]+

for some positive constants a and b, where we denote by []+ the greater of the term

within the brackets and zero. The choice of a and b determines the statistical model

we are fitting to the data. For example, a = 1/σ and b = µ/σ performs a likelihood

ratio test of N(0, σ2) against N(µ, σ2) (Page 1955). The choice of a = µ log(µ) and

b = λ(µ− 1) performs a likelihood ratio test of Poisson(λ) against Poisson(µλ) (Lucas

1985). Due to rescaling, only the ratio a/b affects the way data is stored and collected

by this statistic.
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Figure 2.3.12: Equivalences between anomaly length and anomaly intensity for Poisson dis-
tributed data.

For a given statistical significance threshold, there is a one-to-one equivalence be-

tween window tests optimised for detecting a specific length of anomaly and Page-

CUSUM tests optimised for detecting a specific intensity of anomaly. Specifically, a

length pairs with the intensity at which it would be exactly detectable at the given

significance threshold. Page-CUSUM tests at this intensity will detect all anomalies

that the specific window would detect, while not detecting any anomalies that some

window length would not. An example for Poisson distributed data is given by Figure

2.3.12, showing the output of a log-likelihood ratio test using Wilks’ Theorem (Wilks

1938).

For Normally distributed data, our likelihood ratio statistic can be computed exactly

as µ2h for an anomaly of mean µ and length h, by treating the mean over the interval

as a N(0, 1/h) random variable. In both these cases our statistical threshold is k2

for a k-sigma event: a statistical significance of a single point at least k standard

deviations from its mean. Our three-sigma paradigm would choose k = 3. This means

that a Page-CUSUM statistic optimised to detect anomalies of length h in Normally

distributed data should choose µ = k√
h
. For data that is not Normally distributed, a

numerical root finder can be required to compute the equivalence.

Page-CUSUM statistics have three main advantages over window methods:

1. If the anomaly is of a sufficient intensity where it provides evidence in favour of
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the likelihood ratio test (for example, of mean greater than µ/2 in the Normally

distributed example above), then this evidence will continue to collect over a time

horizon for as long as the anomaly lasts, and it will eventually become detectable

at any given significance threshold.

2. A Page-CUSUM test requires much less memory usage than a window test. This

is because all data points in the window must be stored individually in the window

algorithm’s memory, as a point must be removed from the window each time the

window advances. Page-CUSUM tests never remove any points and therefore do

not need to store points individually in memory.

3. A Page-CUSUM test does not require expensive computations (such as computing

logarithms) in order to perform its likelihood ratio test approximation. The values

of a and b are fixed and can be stored in memory, so the only computations required

are sums and products.

The Functional Online Cumulative Sum (FOCuS) method (Romano, Eckley, Fearn-

head, and Rigaill 2023), which this thesis is primarily about, is a generalisation of

the Page-CUSUM test to all possible values for the ratio a/b simultaneously. Section

5.2.2 provides a detailed description of how FOCuS works for Gaussian data, before

generalising to a variety of one-parameter exponential family models.

The main disadvantage of Page-CUSUM tests over window tests with a maximum

window size is that Page-CUSUM tests are not robust to passing over large collective

anomalies in the signal. Such anomalies cause an overshadowing effect, where the most

statistically significant interval ending at the present time will contain this anomaly

for a very long time afterwards. To avoid highlighting this weakness they are often

considered as methods that stop and return a detection when a significance threshold

is passed (Aue and Kirch 2024). However, in practice anomaly detection methods are

often run with infinite significance thresholds to generate a significance trace for further

inspection (e.g. plotting on a graph). Here, the presence of a large earlier anomaly can

hinder the detection of smaller, later anomalies. In contrast to this, window methods
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have a greater degree of robustness to passing over large collective anomalies. Once a

collective anomaly is far enough in the past as to not be contained in the window, it

no longer affects any computations from the points in that window. Chapter 4 explores

and addresses this weakness in the Page-CUSUM test and therefore in the FOCuS

algorithm through the lens of a nuclear security monitoring application.

We have used the term ”Page-CUSUM” in order to avoid confusion between the

CUSUM control chart (which uses the Page-CUSUM statistic as defined above) and a

different CUSUM statistic which is used to compute a likelihood ratio test while simul-

taneously estimating a fixed unknown pre-change parameter (see for example Yu et al.

(2023)). We address the way in which FOCuS can be used to sequentially calculate

this alternative CUSUM statistic in Chapter 5. In contrast, the Page-CUSUM statistic

assumes a known pre-change parameter and measures deviations from that parame-

ter. This is often more useful in practical anomaly detection applications because the

baseline signal is itself evolving.

2.4 Dealing with data shapes and evolving baselines

When a new anomaly detection method is designed or developed, it is often tested

assuming the background signal is distributed independently and identically, when in

real-world applications this is usually not the case. The structure in a signal can take

many different forms, but is roughly divisible into global effects such as an overall

trend, and local effects such as autocorrelation between nearby signal points, anomalies

themselves, and random noise:

signal = global effects + local effects + anomalies + noise.

The above equation implies that these structural factors are additive and can be handled

somewhat independently of each other, but in practice they often influence each other

in non-additive ways. Methods to estimate and account for this additional structure in

a signal will mean that an anomaly detection method can be tuned to pick up actual
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anomalies, rather than false positives which represent known signal structure.

2.4.1 Autocorrelation

Autocorrelation in a signal is when neighbouring points of the signal are correlated,

usually with a positive correlation. This means that when a signal is high by chance,

nearby points are also more likely to be high without this indicating the presence of an

underlying anomaly in the signal.

Autocorrelation is common in signals that consist of discrete measurements Xt of an

underlying continuous process X(t) where there isn’t much noise associated with taking

a measurement. In this case, the shorter the time interval between measurements, the

higher the autocorrelation is expected to be, as the underlying signal does not change

much in the meantime.

In contrast to this, autocorrelation is less of a problem in signals where Xt represents

successive measurements of a count data process X(t), representing the number of

counts in small intervals of time. If the underlying data process is not self-exciting,

then no autocorrelation will be present.

To model autocorrelation, we can use autoregressive and moving average models.

An autoregressive model of length p is a linear model where the forecast Xt+1 is based

on a linear combination of the previous p values, plus a constant c chosen to achieve

the desired mean, plus a Gaussian white noise error term:

XT+1 =
T∑

i=T−h

aiXi + c+ ϵT+1.

A simple example is the autoregressive model of length 1, also called the AR(1) model:

X0 = ϵ0, XT+1 = aXT +
√

(1− a2)ϵT+1.

Here, 0 ≤ a < 1 is a parameter that determines how much the series depends on its

previous values. a = 0 gives an entirely uncorrelated series that is suitable to model as

independently identically distributed data.If the ϵt are all independently N(0, 1), We
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have that each Xt ∼ N(0, 1) individually.

Autocorrelation and collective anomalies

If a is close to 1, then nearby points in the series are likely to be close to each other.

This means that the mean of the series on intervals, particularly on short intervals, is

going to have higher variance than it would be for independent data. For independent

N(0, 1) data we should expect the variance of an interval of size h to be 1/h, but in the

presence of autocorrelation this is elevated.

We often define a collective anomaly to be an interval when the mean of the series is

significantly above (or below) its usual value. The statistical significance of an interval

will depend on the distribution of the interval means under the null hypothesis. Au-

tocorrelation will affect these distributions, generally requiring the anomaly detection

thresholds to be elevated in order to achieve the same false positive rate. For instance,

the CAPA algorithm (Fisch, Eckley, and Fearnhead 2022) recommends inflating the

penalty for fitting an anomaly by 1+ρ
1−ρ

in order to work with first-order autocorrelation

ρ.

2.4.2 Trend

If the signal exhibits a time-evolving trend, this must be accounted for when detecting

anomalies. There are two main methods for doing this: signal differencing, which is

appropriate for more obvious point anomalies, and trend estimation, which is necessary

for less obvious or collective anomalies.

Signal differencing

When searching for point anomalies in a signal Xt, an easy method to remove the trend

is to work with the differenced signal X
′
t := Xt − Xt−1. This approach can make the

time series stationary, particularly when observations are frequent, and the incremental

change due to the trend is minimal.
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A point anomaly X of size ∆ = X − µ in a noisy signal with mean µ and standard

deviation σ has a signal-to-noise ratio of ∆/σ. This ratio is critical for distinguishing

anomalies from the background noise, essentially reflecting the three-sigma rule.

In a signal with independently distributed noise of standard deviation σ and a point

anomaly of size ∆, differencing once increases the noise to
√
2σ while maintaining the

anomaly size ∆. This reduces the signal-to-noise ratio to
√

1
2
∆
σ
, thereby diminishing

the ability to detect anomalies. However, in a differenced signal, a point anomaly

appears as a jump of ∆ followed by a return to baseline −∆. By double-differencing

the signal, X
′′
t := X

′
t −X

′
t+1 = −Xt+1 + 2Xt −Xt−2, we regain some statistical power.

Here, the noise becomes
√
6σ and the anomaly size becomes 2∆, leading to a signal-to-

noise ratio of
√

2
3
∆
σ
. Point anomalies will also introduce artefacts in the surrounding

double-differenced points.

Signal differencing is an effective preprocessing technique for detecting contextual

anomalies, where only the immediate neighboring points are relevant. Signal differ-

encing plus an autoregressive and moving average model is the basis of the popular

ARIMA method for forecasting time series. However, collective anomalies will not be

detectable in a differenced signal, because only the beginning and end of the anomaly

will show in the differenced signal.

Signal differencing is appropriate under the following conditions:

1. There are no seasonal effects, so it is valid to assume that non-anomalous neigh-

boring points should be approximately equal apart from noise.

2. The focus is on contextual outliers that can be clearly separated from noise, so a

reduction in detection ability by a factor of
√
3/2 is acceptable.

3. You are looking for point anomalies rather than collective anomalies.

Trend estimation

Trend estimation is a statistical method that we can use to identify and measure pat-

terns or directions in data over time. It helps us distinguish long-term movements
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from short-term fluctuations, and it’s necessary for finding collective anomalies and less

obvious point anomalies.

We often use two methods for trend estimation: a moving average and exponential

smoothing. Although we frequently use linear regression in other contexts, it is less

suitable for time series data. This is because linear regression is highly sensitive to

outliers, especially near the beginning or end of the data series. These outliers can have

a strong influence on the results.

The simple moving average calculates the mean of a rolling window with a fixed

number of consecutive data points. We can use a more robust version, which takes

the median of the points in the window instead of the mean. If we want to balance

these two approaches, we can use a trimmed mean. In this method, we remove a

fixed percentage of the largest and smallest values before calculating the mean of the

remainder. For instance, if our data contains well-spaced point anomalies, we might

remove the maximum and minimum values before calculating the mean. However, if we

encounter collective anomalies, this method may not be suitable, and we would need to

trim additional points. All these methods treat the data points in the window equally,

without considering their order.

Exponential smoothing (Brown and Meyer 1961) is another method that estimates

trends by applying decreasing weights to older data points. We give more importance

to recent observations. This method uses a smoothing factor α, which is similar to

a window size parameter. The smoothing factor α ranges between 0 and 1, and is

usually close to 0. A higher α gives more weight to recent data, allowing the estimate

to respond quickly to changes. A lower α smooths the data more heavily. We update

the evolving estimate ET for the trend at time T using the formula

ET+1 = αxT+1 + (1− α)ET .

Exponential smoothing requires less memory than moving average methods. We

only need to keep one value at each time step. In contrast, moving average methods
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require us to store all points in the window so we can remove the oldest point as the

window advances.

However, exponential smoothing is a biased method. Since we only use data up

to time T to estimate the trend at time T , the estimates will lag behind the actual

signal. To remove this bias, we can use double exponential smoothing, where we once

again use exponential smoothing to estimate this lag and then correct for it. While this

appropriate for trends that are roughly linear, it can cause additional problems when

the signal is turning.

Once we’ve estimated the trend of a signal, we usually subtract the trend from the

signal to leave a residual that we hope contains our anomalies. We can then run other

anomaly detection methods on the residual.

2.4.3 Artefacts in data

Whenever estimates of trend are removed from a signal, they can cause artefacts to

appear in the data residual. These can take various forms. We will concentrate on

three types of artefact: negative autocorrelation, noise pulses, and artefacts around an

anomaly.

Negative autocorrelation

Removing trend from a signal can introduce negative autocorrelation in the signal

residual. This happens both with signal differencing, and also with trend estimation

and subtraction. For the differenced signal this is easy to show, as we have that if the

XT are independent then XT+1 −XT is negatively correlated with XT −XT−1 due to

the differing signs of the XT .

Rolling trend estimation methods using a window will introduce negative autocor-

relation at all lags up to half the window size used for the estimation, as this is the

spacing at which two points are used for the same trend estimate. This can be seen

in Figure 2.4.13. In this figure we see that increasing the window size decreases the

magnitude of the negative autocorrelation introduced to the signal, by comparing the
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Figure 2.4.13: Autocorrelation plots showing the negative autocorrelation in the signal resid-
ual introduced by rolling trend estimation, and how it is affected by choice of estimation
method or different window sizes.

first row to the second. However, looking at the third row we see that using a robust

estimation method (as described in Section 2.3.4) does not reduce the autocorrelation

introduced.

This is particularly important for anomaly detection as many statistical methods
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for detecting anomalies require a threshold adjustment to account for autocorrelation,

particularly for collective anomalies (see Section 2.4.1 for a discussion).

Noise pulses

Often, there is more noise in data taking higher values, so subtracting off a trend will

lead to a constant signal containing noise pulses. For instance, daily noise fluctuations

in the value of a stock may be expected to be proportional to the value of that stock.

Another example is data that represents a background arrival process, where noise is

associated to randomness in the number of arrivals within any given time period. This

could be modelled as a Poisson process with varying rate parameter λ(t). If the model

is correct the standard deviation of the arrivals should be
√
λ(t), so subtracting off the

trend could lead to a signal where the variability is no longer accurately represented

(see Figure 2.4.14).

In order to process these noise pulses, you could calculate a rolling estimate of the

standard deviation of the de-trended statistic and then divide by it. However, this then

introduces more estimation error.

In the Poisson case, you might wish to apply the variance-stabilising transformation

x →
√
x to your raw data before estimating and subtracting your trend. This can

be improved on by using the Anscombe transform x → 2
√
x+ 3/8 (Anscombe 1948),

which further stabilises the variance for small count sizes. The effects of doing this can

be seen in Figure 2.4.14. In the proportional to value case, you may wish to divide by

your trend estimate rather than subtract it. These methods will avoid noise pulses in

the residual if those data models are correctly specified.

Artefacts around anomalies

A point anomaly in a singly differenced signal will show up as two points - one unusually

high, the other unusually low, as shown in Figure 2.4.15. In a doubly differenced signal,

the main anomaly will be surrounded by two smaller anomalies of opposite signs.

When using non-robust trend estimation, large point outliers can also skew the
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Figure 2.4.14: Poisson random variables with λT distributed as a log-sine wave, which is then
estimated well using a centred moving mean. When subtracting off the estimate from the
signal, we are left with clear noise pulses in our signal residual. When using an Anscombe
transform we are not left with noise pulses.

trend estimate. For example, Figure 2.4.15 shows how the use of a rolling mean causes

a negative lag in the signal residual. This may be important for avoiding false detections

of non-anomalous points that lie nearby large anomalies.

The use of robust methods for calculating trend, such as those given in Section 2.3.4,

can be applied to reduce the effect of artefacts around anomalies. In cases where we

expect large point ouliers to be present, these methods may be preferred. However, in

some cases this must be balanced against the additional computational complexity of

computing a rolling robust statistic (for example median) versus a rolling mean (Juhola,

Katajainen, and Raita 1991).
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Figure 2.4.15: A signal with a rising trend and a large point outlier (top left). The use
of signal differencing (top right) or non-robust trend estimation (bottom left) can lead to
artefacts present in the data residual around an anomaly. Robust trend estimation (bottom
right) avoids these artefacts.

2.5 Multivariate anomaly detection

There are a large number of methods used to find anomalies in multivariate data. Here,

we survey some of those methods, with a particular focus on how well they scale and

the methods they use to do so.

2.5.1 Stationary anomaly detectors

The simplest way of scaling an anomaly detector to use on a large dataset is by con-

structing a stationary anomaly detector from a sufficiently small sample.

Definition 2.5.1 (Stationary Anomaly Detector). Given a training dataset {X1, ..., Xn}

and a live, or test, dataset {Y1, ..., Ym}, a stationary anomaly detector is a function F
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constructed from only the training set, such that F (Yk) ∈ {0, 1} tells us whether or not

Yk is, or contains, an anomaly.

The problem of constructing a stationary anomaly detector is essentially the same

as constructing a binary classifier, and has been well studied in the machine learning

literature.

The points Xk could be labelled with whether they are anomalous or not, making

this a supervised problem if enough anomalous points are included in the training set.

More likely it is the case that the training set does not contain enough labelled examples

of every type of anomaly we would want F to detect, and we would instead approach

the problem from a semi-supervised or unsupervised perspective. In a semi-supervised

paradigm, we would have a training set of only non-anomalous points, and construct F

by learning only the definition of “normal”, treating everything that doesn’t fit this as

an anomaly. In an unsupervised paradigm, our training set may itself be contaminated

by unlabelled anomalies, and our construction of F must be robust to this.

Stationary anomaly detectors are used a lot in online anomaly detection problems.

This is because it doesn’t matter how much time is taken to construct F (which happens

offline), only the time taken to calculate each F (Yt) as it arrives. However, stationary

anomaly detectors do not handle data with a temporal structure well. This is referred

to as concept drift, where the behaviour of the live dataset changes over time until it

no longer resembles the training data that was used to construct F , causing increasing

numbers of false positives. Sometimes this problem is dealt with by reconstructing F

on a block of new data once concept drift has been detected. While this requires the

construction of F to be sufficiently fast that it can take place online, if the concept drift

is slow then reconstructing F only once per block rather than once per point can give

significant computational savings.

Examples of methods used as a stationary anomaly detector include support vector

machines, clustering, isolation forest, neural networks, as well as simpler methods such

as the three sigma method.
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2.5.2 Dimension reduction

For datasets that are very high-dimensional, dimension reduction techniques can be

used to pre-process the dataset before applying anomaly detection methods. This is

because many multivariate inlier detection methods do not scale well with dimension,

and are only suitable for using on datasets with a small number of dimensions.

If we already have a set of labelled anomalies, then we can use dimension reduction

techniques such as discriminant analysis. This is a supervised method aiming to find

a small set of dimensions that maximise the differences between two classes of data

points. Linear discriminant analysis (Fisher 1936; Mardia 2024) works by finding the

eigenvectors of a matrix designed to maximise the ratio of between-group scatter to

within group scatter. However, its linear form assumes that both anomalous and non-

anomalous data are normally distributed, and that there are a large enough number of

anomalous data samples compared to the number of input dimensions. Generalisations

of this paradigm include various kinds of kernel discriminant analysis for nonlinear

data patterns (Roth and Steinhage 1999; Baudat and Anouar 2000; Mika et al. 1999),

and regularised discriminant analysis useful for small samples with high dimensions

(Friedman 1989). Discriminant analysis computations can usually be performed quite

efficiently even in high dimensions (Cai, He, and Han 2011).

If we do not have any labelled anomalous data, we can instead use principle compo-

nent analysis (Jolliffe and Cadima 2016). This calculates the eigenvalues and eigenvec-

tors of the covariance matrix for the whole dataset rather than dividing it into classes.

The eigenvectors determine the principal components, and the eigenvalues determine

their magnitude, indicating the amount of variance captured by each principal compo-

nent. The first few principle components capture most of the variability in the dataset

and we can choose them as our dimensions of interest. However, since anomalies are

rare, we have no guarantee that they capture the variability relevant to separating the

anomalies, and we may need to use more components than we would want to for a

classification problem with more equally balanced classes.
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When using dimension reduction techniques such as discriminant analysis or prin-

ciple component analysis, the output coordinates can be difficult to interpret, as they

are linear or even nonlinear combinations of the original features. This can obscure the

underlying meaning of the data. Additionally, both kind of methods are sensitive to the

scaling of the data, requiring coordinate normalization or standardization beforehand

to avoid coordinates with large ranges with no underlying meaning to them biasing the

method.

2.5.3 Types of anomaly detection methods for multivariate data

When working with multivariate data, any anomaly that is an outlier in at least one

coordinate can be found by simply running a univariate anomaly detection method over

each coordinate individually. It is also possible to simply combine information across

coordinates, for example by adding up anomaly scores from each coordinate to give a

total anomaly score for that point. This may help identify outliers that occur in several

coordinates.

However, anomalies in multivariate data may not be outliers. While detecting out-

liers is fairly easy, detecting inliers requires careful consideration of the dynamics of

the whole of the dataset. The challenge of anomaly detection becomes a challenge of

learning the normal structure of the data, where anomalies are classed as points that

do not follow this structure.

Many different methods of detecting multivariate inliers exist within the literature, a

few of which are covered in this section. These methods often face the primary challenge

of maintaining a good computational complexity on large datasets.

When considering the computational complexity of a multivariate anomaly detection

method, its scaling is measured with both

1. the number of points n in the dataset, and

2. the number of dimensions, or coordinates, p of each point.

An anomaly detection method is usually considered too slow for practical use on a large
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sample if it is O(n2), representing a need to compare each point in the dataset to every

other point in the dataset. Methods that aim to be faster than this often suffer a curse

of dimensionality problem, leading to algorithms that are O(αp) for some α > 1 and

therefore infeasible for use on high-dimensionality datasets.

We will consider two main ways to constrain the computational cost of an algorithm

to below O(n2): neighbour-based methods, and ensemble methods.

Neighbourhood-based methods

Neighbourhood-based methods consider whether a point X is anomalous by operating

only on the points nearby to X. The two main ways of defining a neighbourhood are:

1. The neighbourhood of X is X and its k nearest neighbours.

2. Draw a fixed ball of radius ϵ around X. The neighbourhood of X is the points

within that ball.

These both have the advantage of being relatively easy to calculate, using data struc-

tures such as kd-trees (Bentley 1975) for lower-dimensional spaces or ball trees (Omo-

hundro 1989) for high-dimensional ones, to compute neighbourhoods for all points in

the dataset more efficiently than computing each neighbourhood individually.

Often, the anomaly score forX directly represents some estimate of sparsity: number

of points per area, or average distance between points, in the neighbourhood of X. The

basic method is useful for detecting anomalies whose anomalous nature meets a globally

set threshold: they lie in some sparse bit of the dataset for a uniform concept of sparsity.

Two-pass methods can capture more complex concepts of an anomaly by first com-

puting some intermediate variable for all points, and then calculate an anomaly score

for X as a function of the variables in the neighbourhood of X. These methods include:

1. The Local Outlier Factor (Breunig et al. 2000) method, a k-nearest neighbours

method whose anomaly score for X represents whether the neighbourhood of X

is sparser than the neighbourhoods of its neighbours. This allows LOF to identify

anomalies in the presence of different clusters of various densities.
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2. The Density-Based Noise (DBSCAN) method (Ester et al. 1996), an ϵ-neighbour

method where points are designated core points if their neighbourhood has more

than a minimum threshold of points, and then designated outliers if their neigh-

bourhood contains no core points. DBSCAN is suitable for finding irregularly-

shaped clusters, and can be formulated as a linear-time method (Gan and Tao

2015).

3. The k-NNN Nearest Neighbours of Neighbours (Nizan and Tal 2024) method,

where the first pass computes a set of eigenvalues and eigenvectors for each point

based on its k-nearest neighbours. Eigenvectors with small eigenvalues are as-

sumed to be anomalous directions because the data does not spread out in those

directions. A point’s anomaly score is based upon how anomalous the direction

pointing to it from each of its k neighbours is. k-NNN is suitable for working

with datasets where non-anomalous data is roughly following a lower-dimensional

manifold.

Neighbourhood methods don’t use any information from points far enough away

from X. This means they are good at handling irregular structure in data, but if the

data structure is regular then they have less detection power than other methods.

Neighbourhood methods are independent of the coordinate system used to describe

the data. Rotating our coordinates makes no difference to a point’s neighbourhood.

This means they are useful for applications where the choice of coordinate system

is arbitrary - for example, spatial data using latitude and longitude. However, the

computational methods used to calculate a point’s neighbourhood often do not scale

well with very large dimensions p (Liu, Moore, and Gray 2006).

Ensemble and isolation methods

Rather than comparing a point to the points in its neighbourhoods, isolation-based

methods consider anomalies as the points that are easy to separate out from the other

points in the dataset.
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The first such method developed, iForest (Liu, Ting, and Zhou 2008) uses repeated

axis-parallel subdivisions to isolate a point at the end of decision trees called isolation

trees. Anomalous points are considered to be those points that are easier to isolate away

from the other points of the dataset, and have a small average length of isolation tree.

This leads to an execution time that is linear in the number of points in the dataset,

which is very attractive computationally. However, its definition of an anomaly is a

global definition, so it fails to find local anomalies.

Isolation-based Nearest Neighbour Ensemble (iNNE) (Bandaragoda et al. 2014)

builds on this by using nearest neighbour ideas in order to construct an algorithm

able to identify local anomalies, as well as having other advantages such as finding

anomalies where the number of anomalous dimensions is low.

Both iForest and iNNE are examples of ensemble methods. Ensemble methods are

based on drawing subsets from a large data sample to force an O(n) complexity with

respect to the size of the dataset. They use the idea that it is possible to construct

multiple models by running the same anomaly detection method on different subsets

of the data, and that different models make different errors of judgment which can be

reduced by averaging their results.

For instance, if a method in its usual instance is O(n2) (a complexity that is unsuit-

able for large datasets), an ensemble version can be constructed as follows:

1. Draw a data subset of size m << n.

2. Run the method on this subset, requiring O(m2) operations, and constructing an

approximate anomaly score.

3. Improve on this approximation by repeating this draw approximately n/m times

and taking the average of the anomaly scores for each draw.

4. This constructs an O(mn) method, which can be regarded as linear if m << n

and m doesn’t need to grow with dataset size.

The extent to which this can produce a good method depends on how much of a drop-off
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there is in approximation quality when you’re only using m points rather than n, and

whether this approximation quality is sufficiently restored by repeating the procedure

m/n times.

High-dimensional outlier detection methods

In very high-dimensional datasets, standard multivariate anomaly detection methods

can run into problems. Anomaly detection methods often have a complexity that

scales poorly with the number of dimensions. High-dimensional datasets require more

computational resources and time, making many traditional methods infeasible. In

high-dimensional spaces, the Euclidean distance between all points becomes increasingly

similar. This makes it difficult to distinguish between anomalies and non-anomalous

data because the notion of proximity loses its meaning. High-dimensional data also

tends to be sparse, making it hard to identify meaningful patterns. The density of

points drops, leading to difficulties in density-based outlier detection methods.

Angle-based outlier detection (ABOD) (Kriegel, Schubert, and Zimek 2008) ad-

dresses the problems with distance and density by considering a point’s anomaly score

as a function of the angle at the point to a set of pairs of other points in the dataset.

Outlier points to non-anomalous points will always give rise to small angles, whereas

angles at non-anomalous points will be much more varied. ABOD as a method uses

k-nearest neighbours as choices for other points, so scales with dataset size as any al-

gorithm based on k-nearest neighbours. However, it scales linearly with dimension and

is suitable for 100 or more dimensions.

Copula-based outlier detection (COPOD) (Li, Zhao, et al. 2020) is a fast method

that involves estimating the multidimensional cumulative distribution function and then

calculating a point’s anomaly score as the probability of observing a point as or more

extreme than the observation. This is done by constructing one-dimensional empirical

cumulative distributions, as well as an empirical copula that captures the distributional

dependency between the different dimensions. COPOD scales linearly with number

of points n and number of dimensions d, and is suitable for very high numbers of
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dimensions (1000 or more).

2.5.4 Multivariate collective anomaly detection

Working with data that is both multivariate and a time series can very quickly intro-

duce large amounts of complexity to the anomaly detection problem. This is because

multivariate methods tend to scale in complexity with the number of coordinates, and

time series methods tend to scale with dataset size. These complexity scalings both

multiply with each other directly, and can also further interact. In cases where either

the time series or the multivariate aspect is not relevant - the data could be considered

as either a multivariate dataset that happens to occur in time order or a collection of

unrelated univariate time series - it is usually best to choose anomaly detection methods

that consider only the relevant aspects of the problem in order to minimise complexity.

One common example class of multivariate time series detection problems is finding

collective anomalies that are present in some number of coordinates at once and start

and end at approximately the same time in all coordinates in which they appear. These

are presumed to represent some underlying real-world process that is being picked up

by one or more sensors. Here, the time series and multivariate aspects of the problem

are inseparable.

A number of different methods can be employed to tackle this scenario. Mei (2010)

contains details of simple and scalable monitoring methods for large numbers of data

streams. Here, statistics such as the Page-CUSUM statistic (see Section 2.3.8) are

calculated for each data stream and then either the sum or the maximum of all such

statistics is used as a global monitor depending on if one is more interested in anomalies

occurring in fewer or more data streams. Chen, Wang, and Samworth (2022) and Yang,

Eckley, and Fearnhead (2024) both utilise local thresholding to attempt to identify

changes present in more than one data stream while reducing the noise introduced

by monitoring a large number of data streams. All these methods are approximate

methods but they avoid iterating over the intervals in the signal. Fisch, Eckley, and

Fearnhead (2021) also uses local thresholding for its penalties to tackle multivariate
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aspects of the problem but is slower than other methods listed here due to the need

to iterate over all possible anomaly lengths (see Section 2.3.6 for a description of the

underlying computational issue in the univariate setting).

Tackling all these challenges simultaneously remains an open area of research. Chap-

ter 6 gives contributions to this problem by adapting the FOCuS algorithm from a

univariate to a multivariate setting and considering the problems that arise when this

is done.

2.5.5 Summary

Multivariate anomaly detection methods vary widely in their approach and suitability

for different types of data. The choice of method depends on factors such as data

dimensionality, data structure, computational constraints, and the nature of anomalies.

The best choice of anomaly detection method to use very much depends on your specific

problem.

2.6 Assessing anomaly detection methods

Assessing an anomaly detection method can be challenging due to several inherent

issues. First of all, you must have data to test it on where you already know something

about the anomalies present in the data. Second, you must choose a scoring method that

makes sense in the context of anomaly detection rather than other kinds of classification

problems where your classes are more balanced. Finally, there are also specific scoring

issues that arise in the context of working with time series such as how to score collective

anomaly detections that contain overlap, and how to penalise for delayed detections in

the online setting.

2.6.1 Dataset problems

Anomaly detection methods must be chosen with knowledge of your specific use case,

because the concept of what should be classed as anomalous or not varies wildly between
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different applications. Therefore, ideally in order to assess an anomaly detection method

on your use case, you would want to have a test dataset where real anomalies are present

and labelled. Doing this by hand on your own data can be time-consuming, because

anomalies are sufficiently rare that identifying even a small number of them requires

looking through a large amount of data. In addition to this, the person doing the

labelling may need to have quite a lot of domain expertise in order to understand what

features of the data are and aren’t anomalous. This makes the labelling process very

expensive.

An alternative is to use a publicly available benchmark dataset that comes with

anomalies pre-labelled, such as the Numenta Anomaly Benchmark (Lavin and Ahmad

2015), the UCR Time Series Anomaly Datasets (Wu and Keogh 2023) or ADBench (Han

et al. 2022). These have the advantage of a wide variety of different datasets and data

characteristics, some of which are likely to provide a reasonable match for your problem.

They have also pre-run and assessed large numbers of anomaly detection methods so

you have a good starting point to identify what methods are best for your use case. For

example, ADBench tested 30 different algorithms on 57 benchmark datasets. Problems

with the benchmark approach include that with so many algorithms tested on so many

datasets, algorithms are usually tested using default parameters (Soenen et al. 2021),

and not enough care has been taken tailoring each algorithm to each dataset to generate

the best performance. You might need to repeat the analysis yourself more carefully

for the particular dataset best aligned to your use case. You also need to choose the

detection threshold you are using and any other parameters of your method, which in a

practical setting often involves such things as trend and seasonality estimation as well as

the anomaly detection method itself. In addition to this, the scoring methodology used

by various benchmarks has been criticised for overly favouring the anomaly detection

methods developed by the researchers who created those benchmarks (Wu and Keogh

2023).

Lastly, you could simulate a dataset to test your anomaly detection methods on.

Often, this consists of your own real-world dataset to which known simulated anomalies
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Actual positive Actual negative

Predicted positive True Positive False Positive
Predicted negative False Negative True Negative

Table 2.6.2: Definitions of the confusion matrix: the four basic metrics from a binary classi-
fication problem. Blue represents correct classifications, and red incorrect ones.

are added, avoiding the labelling problems. These simulated anomalies can be of various

different forms: point anomalies could be contextual or global, and collective anomalies

could be trend, seasonal, or shape-based (Lai et al. 2021). This has the advantage of

being able to generate data points to be exactly what you think an anomaly should

look like, in order to score methods in detecting them. However, lack of real-world

anomalies can limit your certainty that your method will perform well in practice.

2.6.2 Scoring metrics tailored to the rarity of anomalies

The confusion matrix

Anomaly detection methods can be regarded as binary classification algorithms that

classify data as either anomalous or non-anomalous. Tharwat (2021) provides a general

review of metrics for binary classification problems. The four basic metrics that can

be collected from running a binary classification algorithm on a non-temporal dataset

are the numbers of true positives TP , false positives FP , false negatives FN , and true

negatives TN , defined as in Table 2.6.2. This matrix is called the confusion matrix

(Stehman 1997). From these base metrics, different ways of evaluating and scoring an

algorithm exist, some of which are more useful in anomaly detection than others.

We will first consider the problems with standard scoring methods when applied to

anomaly detection. One way of evaluating classification in the machine learning sphere

is to look at the proportion of data classified correctly:

proportion correctly classified =
TP + TN

TP + FP + TN + FN
.

However, if anomalies are assumed to be < 0.1% of the data, a classifier that scores

nothing anomalous would have a > 99.9% correct proportion of classification. A method
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which found all n anomalies but had 2n false positives would score worse on the pro-

portion correctly classified measure, despite clearly being a far more useful method.

Problems with anomaly rarity

Anomaly detection problems have a class imbalance where non-anomalous data mas-

sively outnumbers anomalous instances. The number of true negatives (non-anomalous

points not classified as anomalous) TN cannot be compared well with any of the other

three metrics because it is always very large due to the rare nature of anomalies. This

means that any evaluation metric using TN in a sum tends to be skewed and not a

good measure. For example, the standard diagnostic plot of the receiver operator char-

acteristic curve (true positive rate versus false positive rate as you raise the detection

threshold) for classifiers is not a good visual plot for anomaly detection problems. True

positive rate and false positive rate are defined as follows:

true positive rate =
TP

TP + FN
,

false positive rate =
FP

FP + TN
.

This is because true positive rate and false positive rate cannot be compared to each

other very meaningfully due to the use of true negatives in calculating the false positive

rate. A difference between an 0.1% and an 0.2% false positive rate has huge implications

for the viability of an anomaly detection method. This is very hard to see visually, and is

not captured well by metrics such as the area under the receiver operator characteristic

(ROC) curve, that is mostly contributed to by very low threshold levels where the false

positive rate is high, as is shown in Figure 2.6.16. Therefore, standard metrics such as

the area under the ROC curve do not capture the important information for anomaly

detection problems.

True positive rate alone is not sufficient as a single metric, as a method classifying

everything as an anomaly would have perfect true positive rate.
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Figure 2.6.16: A comparison of the ROC curve and precision-recall curve for an anomaly
detection method run on a dataset consisting of 2% anomalous data. Most of the important
information happens on the extreme left-hand side of the ROC curve.

Precision, recall, and F-scores

Instead, we use the concepts of precision and recall as useful measurements of an

anomaly detection method’s performance.

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

Precision is the proportion of detections that correspond to anomalies, whereas recall

is the proportion of anomalies detected (and is the same as the true positive rate). We

may wish to combine them into a single global measure, in which case a popular choice

would be the F1-score, the harmonic mean of precision and recall.

F1 score =
2

precision−1 + recall−1 =
2TP

2TP + FP + FN
.

For different applications, precision or recall may be more valuable. In this case,

if we weight precision as β times as important as recall, we would use the Fβ score

(Van Rijsbergen 1979). Methods implemented in code often use a general F-score, with
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the default settings as F1 score but with β able to be specified if desired.

Fβ score =
1 + β2

precision−1 + β2recall−1 =
(1− β)2TP

(1 + β)2TP + FP + β2FN
.

To see our results visually, and for a range of different thresholds for classifying

data as anomalous, we would use a diagnostic plot called a precision-recall curve (see

Figure 2.6.16). The area under the precision-recall curve is classification threshold

invariant. It considers all possible weightings of precision versus recall. This makes it a

good measure for a researcher wanting to report the overall performance of an anomaly

detection method. However, it’s less useful for a practitioner, who is interested in the

method’s performance for a particular problem, and often wants to choose thresholds

caring about either a specific ratio of precision to recall, or seeks to maximise recall for

a fixed precision (or vice versa). (Garg et al. 2022)

2.6.3 Scoring metrics tailored to time series

Metrics like precision, recall, and F-score do not capture the temporal aspects of anoma-

lies. There are additional aspects of scoring both point and collective anomaly detection

methods that must be taken into account to properly evaluate a method, such as how

close to the actual anomaly the detection estimated the anomaly to be. Additionally,

when working in the online setting it is important to consider delay to detection as a

separate matter from estimation error.

Scoring point anomalies

Anomalies found by an algorithm in a time series dataset may not exactly overlap

with true anomaly locations, but instead be close by. Therefore, when evaluating an

anomaly detection algorithm, it is required to determine how close a match will be

recorded as a true positive. Rather than having sharp thresholds, most time series

anomly detection scoring algorithms will weight points as true positives smoothly into

false positives depending on distance. Once the weighted constructions of TP, FP, FN
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have been created, modified versions of precision, recall and F-score are derived from

these in order to score the algorithm.

Often there is a scoring function that operates on a sliding scale, with detections

further away from the true anomaly being scored worse. This opens up the problem

of what to do when multiple detections happen near a single true anomaly. Should

additional detections be scored as true, disregarded, or scored as false?

Figure 2.6.17 shows the approach used by the Numenta Anomaly Benchmark (Lavin

and Ahmad 2015), where a scoring window and sigmoid drop-off is proposed for each

anomaly based on the ground truth. Detections near the beginning of the scoring

window are given nearly full credit as a true positive, additional detections after this

within the window are ignored, and detections only near the end of the window are still

counted as true positive but they are penalised. For false detections, those slightly after

the window are scored as false positives but not as strongly, whereas those a long time

after the window are scored fully as false positives. Missing a window entirely records

as a false negative.

Figure 2.6.17: The scoring window for anomalies used by the Numenta Anomaly Benchmark
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Here, the size of the scoring window affects the performance of a method, with wider

scoring windows being more lenient to late detections. The scoring window can be a

user-specified parameter. The Numenta Anomaly Benchmark sets the length of the

scoring window as equal in length for each anomaly, and inversely proportional to the

number of real anomalies in the dataset.

Scoring collective anomalies

Collective anomalies have many of the same problems as point anomalies, but also

require evaluation methods that account for duration and sequence. Here, a detected

interval may not exactly overlap with the true anomalous interval. Should the area of

overlap be scored, or should each anomalous interval be given a separate score that is

not in proportion to its area? If this is the case, how will the scoring handle where a

detector flags a lot of short intervals, but the true anomaly is a large interval containing

them all? A variety of different methods have been proposed.

One method for scoring collective anomaly detections, used by Hundman et al.

(2018), is the eventwise F-score. Here, we only care about overlap and do not adjust

for distance: a detection is recorded as a true positive if it overlaps at all with one or

more anomalies, a false positive if not, and additional detections of the same anomaly

are disregarded. Anomalies that do not overlap with any detections are recorded as

false negatives. However, it incentivises methods that detect very large intervals as

anomalous, as it is likely they overlap some real anomaly somewhere: a method flagging

the whole dataset as one very long detection would have a maximum eventwise F-score.

A different method, known as the pointwise-adjusted F-score (Xu et al. 2018), mit-

igates this by scoring points individually rather than events. However, an adjustment

is made: points within an anomaly that overlaps with a detection are all scored as

true positives, regardless of whether they were within the overlap. This mitigates the

issue of collective anomalies often containing small sections that look non-anomalous

in isolation. However, it has the opposite problem to the eventwise F score: especially

on datasets where anomalies are quite long, it favours anomaly detection methods that
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detect very short intervals, as long detections can be heavily penalised. (Audibert et al.

2020)

The composite F-score (Garg et al. 2022) uses the harmonic mean of the (non-

adjusted) pointwise precision and the eventwise recall. By using pointwise precision,

the method penalises long false positives and avoids problems with the eventwise F-

score. By using eventwise recall, it avoids the need for an adjustment to deal with

collective anomalies containing sections that appear non-anomalous in isolation.

Each of these three methods has the advantage of being relatively simple, and not

requiring weighting on distance-based drop-off parameters as is used for point anomalies.

In addition to this, no difference in scoring is made based on anomaly intensity: we

may care more about detecting some anomalies than others.

2.6.4 Scoring metrics for online data streams

When working with streaming data, it is necessary to detect anomalies as soon as

possible after they occur. We may also care about how much of a collective anomaly

is needed to be observed before a detection was made, which is different from the

estimated startpoint of the anomaly.

A different approach to scoring a collective anomaly detection method is by reporting

its average run length and detection delay, similar to the in-control average run length

and out-of-control average run length initially proposed by Page (1954).

Average run length

The run length is the time until returning a false positive when a detection method

is run on a signal containing no anomalies. The average run length is an average of

this over many different runs, often the mean, but median average run lengths and

distributional boxplots (see Figure 2.6.18) can also be used as the distribution of run

lengths tends to be positively skewed. (Lee and Khoo 2006)

Average run length is a replacement for precision, and can roughly be related to the

false positive rate as follows:
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Figure 2.6.18: Boxplots for a method’s run length over different sigma thresholds. Run lengths
are plotted on a log scale for sensible comparison, showing that the distribution of run lengths
is positively skewed.

average run length ≈ 1

false positive rate
≈ TN

FP
.

However, false positives will often occur nearby each other in temporal data where

the method is building an anomaly score contributed to by nearby points. For this

reason, when measuring runs the algorithm’s memory is cleared out between runs,

and some time may be built in for the method to reset after a false detection before

starting another run. This makes the average run length more lenient than just the

false positive rate, and more useful for the live online setting. For example, if a signal

returns a detection and a human checks in on it, they may watch it for some time to see

how it develops regardless of what it then does. Lots of false positives clustered near

each other are less costly than evenly spaced false positives in the currency of human

attention.

For data of a given distribution, it may be possible to calculate the average run length

exactly as a function only of the threshold used by the anomaly detection method, either

exactly by using integral equations (Petcharat, Sukparungsee, and Areepong 2015) or
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by simulating data to give an empirical estimate. If anomaly scores are available rather

than over/under threshold, plots of the average run length over many different threshold

levels can be easily generated without having to re-run the algorithm for each threshold

level, as in Figure 2.6.19.

Mean average run length is a generally well-accepted metric, and for data of a fixed

distribution its existence is well-defined and unique (Areepong and Peerajit 2022). Some

criticisms of mean average run length include the existence of schemes with expanding

thresholds where the mean average run length is infinite but that return a false detection

with probability 1 (Mei 2008), in which case median average run length can be used for

comparisons.

Figure 2.6.19: Average run length with run lengths over different σ threshold levels for two
methods, used to calculate a threshold adjustment between methods of about 0.1σ in order
to equalise the average run lengths.

Detection delay

The detection delay is the time until returning a true positive when a detection method

is run over an anomaly. Detection delay is a replacement for recall, however it accounts

for how long an anomaly took to detect rather than just if it was detected or not.
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This means that detection delay is useful for evaluating an algorithm’s performance on

longer less intense anomalies, or on anomalies that start less intense but become more

intense over time.

Detection delay will vary by the kind of anomaly as well as by the threshold level.

Broadly, larger anomalies and lower thresholds will have less detection delay, as shown

in Figure 2.6.20. Lower thresholds will also lead to lower average run lengths, giving a

tradeoff between average run length and detection delay.

Figure 2.6.20: Graph showing detection delays for various anomaly intensities µ at three
different sigma thresholds using a likelihood ratio test method over all intervals.

Detection delay does not always equal the out-of-control average run length, and

cannot always be measured simply by starting an algorithm off running over an anomaly.

For example, anomaly detection methods that accumulate evidence against an anomaly

when run over non-anomalous data that must be overcome will have very high detection

delays but perform well when started on an anomaly (Lorden 1971).

Detection delay can also be contributed to by the part of the anomaly detection

method that is estimating or tracking the background rate. Many anomaly detection

methods will use centred estimates, such as an estimation of the background mean µT

at time T by using the mean over a sliding window centred on T :
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µT =
1

2w + 1

t=T+w∑
t=T−w

xt

This means that the estimate µT is only available at time T + w, introducing an ad-

ditional detection delay w proportional to the length of the sliding window. For long

windows that are used to generate precise estimates, this can be a substantial addition

to the detection delay.

For these two reasons, measuring detection delay should ideally take place in a

setting containing both anomalous and non-anomalous data.

Unlike the F-score that combines precision and recall, there are no accepted metrics

for combining average run length and detection delays into a single score. For evaluating

a specific application a fixed average run length is chosen based on the specifics of the

application, and thresholds are adjusted across methods to equalise the average run

length, as shown in Figure 2.6.19. Given that constraint the detection delays on various

kinds of anomalies can be compared against each other.

2.6.5 Summary

Assessing an anomaly detection method presents a range of challenges due to the need

for appropriately labeled datasets, suitable scoring methods, and the specific nuances

involved in time series data. The scoring of an anomaly detection method must be

informed by the application, as the definition of anomalies can vary significantly across

different domains. Public benchmark datasets offer valuable resources but require fur-

ther fine-tuning to match your use case.

Scoring metrics tailored to the rarity of anomalies, such as precision, recall, and F-

scores, are more appropriate to anomaly detection than traditional binary classification

metrics, because anomalies are rare. These can be adapted for the time series setting,

where they must also account for the proximity and overlap between detected anomalies

and true anomalies. However in online time series settings, average run length and

detection delay provide important information that are not captured by other metrics.
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Ultimately, the choice of how to score a method will depend on your application. In

the next section, we look at some application domains for anomaly detection that are

relevant to the methods developed in this thesis.

2.7 Some Applications of Anomaly Detection Methods

Here, we review some possible application areas for real-time high-frequency time series

collective anomaly detection methods.

2.7.1 Astrostatistics

Astrostatistics is an application field involving the use of mathematical or statistical

techniques to extract information from observations of the sky. These observations can

come from satellites or ground-based telescopes. They are usually based on the elec-

tromagnetic spectrum (light), though other signals such as gravitational waves (Bailes

2021) and neutrinos (Guépin, Kotera, and Oikonomou 2022) are possible. A light

curve is a time series of light intensities, and a short-lived astronomical event that may

produce a collective anomaly in this light curve is called a transient. Transients can

brighten the light curve, such as a gamma-ray burst (see Chapter 3), or they can dim

the light curve, such as an exoplanet crossing in front of a star (Borucki et al. 2010).

Measuring high-energy light such as X-rays and gamma rays often involves counting

each photon, whereas measuring low-energy light such as radio and infrared involves

taking exposure photographs of a region of the sky over a few seconds or minutes. A

light curve may also be multivariate consisting of different spectral intensity bands, and

a transient may be expected to show up in more than one band at once.

There is a huge volume of data produced by modern astronomical instruments, and

analysing it all for transients can be computationally intensive. Even classifying the

transients that have been found can take a lot of computing power. For example, the

Rubin Observatory Legacy Survey of Space and Time observes millions of transient

alerts each night (LSST: From Science Drivers to Reference Design and Anticipated
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Data Products 2014), and must classify them in order to identify interesting ones suit-

able for visual inspection by a human (Muthukrishna et al. 2022).

Time series anomaly detection methods that have been employed in astrostatistics

applications include CAPA for detecting exoplanets (Fisch, Eckley, and Fearnhead

2022), and FOCuS for detecting gamma-ray bursts (see Chapter 3).

2.7.2 Radiation detection

Radioactive decay is the process by which unstable atoms break down into stable ones,

emitting various kinds of particles. Of these, gamma particles (high-energy photons)

are the most suitable for detecting radiation sources in the environment, because they

travel a few metres through air before decaying and can pass through many solid objects,

being stopped only by large masses like lead and concrete.

Radiation detection is used to detect the presence of radioactive material in the

environment near the sensor. Radioactive material can occur naturally or due to hu-

man activity, which happens for many reasons mostly related to mining, extracting or

burning oil or gas (al-Nabhani, Khan, and Yang 2016), nuclear power, and specifically

created radioactive sources used for sterilisation or in medical applications (Interna-

tional Atomic Energy Agency 2024). Very high levels of radiation are hazardous to

health.

The spectral signature of a material is the electromagnetic wavelength/energy bands

at which it emits gamma particles. The signature of the decays from an individual

longer-lived radioactive isotope can be expected to occur together with the signatures

of its shorter-lived decay products, giving an overall signature for the presence of that

longer-lived isotope in a material. In equilibrium, each successive isotope in the de-

cay chain is present in direct proportion to its half-life. Since its activity is inversely

proportional to its half-life, each isotope in the decay chain contributes the same rate

of decay. Only some of these decays will be measurable as gamma radiation, defining

the gamma radioactive detection signature of the longer-lived isotope fairly precisely

(Bateman 1910).
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Borehole monitoring is one possible area for radiation time series anomaly detection

(Eĺısio et al. 2023). Here, a radiation detector is lowered slowly down a deep, narrow

hole in the ground. The radiation signatures found by the detector provide a map of

the radioactive material at different depths within the borehole. This is then combined

with other data taken from the borehole such as groundwater samples, and can be used

to estimate the percentages of different mineral types within the bedrock.

Handheld monitoring is another area. Here, an anomaly detection method must

pick up and classify sources as the detector is moved around. This may be used for

scanning shipping containers at border ports (Connolly, Connor, and Martin 2023).

Computationally scaleable methods are particularly preferred in handheld applications

because they lead to longer battery lives for handheld units and the amount of data

collected this way is large (Russell-Pavier et al. 2023).

2.7.3 Telecommunications monitoring

Anomaly detection may be used to identify unusual patterns in the traffic flows through

a telecommunications network. Data in internet telecommunications networks consists

of individual internet packets (IP), which are routed through the network based on

their source and destination IP addresses. Packets that discretise a live video or audio

signal do so very frequently in order to reduce delays. For example, the time interval in

live audio data that is assigned to each internet packet varies from 5-20ms depending

on the standard used (Zurawski 2004b). This means there is a high velocity of packets

passing through a router, so sensors usually monitor summaries of them rather than

working on the raw data of each individual packet.

Anomaly detection and resolution plays an important part of quality of service

monitoring. Often, a telecommunications provider will have service-level agreements

that specify what service they must provide, and have to pay fines if these agreements

are not met. There are several metrics of quality that might feature in a service-level

agreement (Zurawski 2004a). These include:

1. Latency: the average packet travel time. If latency is high this will cause delay in
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real-time communication.

2. Jitter: the variance in packet travel times. If jitter is high packets will arrive out

of order and this reduces the smoothness of video or audio.

3. Packet loss: the proportion of packets that do not arrive at their destination and

must be resent, causing delays.

4. Overall availability of the network. Availability is often expressed in terms of

“nines” (Merzbacher and Patterson 2003). A four nine system is expected to be

available 99.99% of the time whereas a five nine system is expected to be available

99.999% of the time, equating to only a few minutes of downtime per year.

Anomaly detection methods are used to identify developing problems within the net-

work before they reach a point where they impact the quality of the service the network

provides. In particular, identifying periods of potential downtime before they happen

means that action can be taken quickly to resolve the issue, preserving the availability of

the system (Chumash 2006). Collective anomaly detection methods are helpful because

they can identify an anomaly before any individual signal point becomes unusual.

Telecommunications data is very seasonal, with clear daily and weekly patterns of

how people like to use the internet. Anomalies within a telecommunications network

may indicate changes in human behaviour rather than network problems. For example,

a breaking news story or sports match may cause a surge in internet usage (Wang and

Kim 2019). However, problems that can cause an anomaly in a telecommunications

network that may need detecting immediately include:

1. A network intrusion, security threat or cyberattack.

2. A hardware fault that needs a engineer to be called out to fix it.

3. Excess congestion on the network, which may be caused by hardware faults in

other areas causing traffic to be rerouted through this line.

In Internet of Things (IoT) applications, lots of small sensors monitor data in real-

time. Each sensor decides when to transmit data to be processed centrally. Rather than
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transmitting all data or updates at regular intervals, we may decide to only send data

that looks anomalous in order to reduce transmission cost. This means we must use

anomaly detection methods locally on the small sensor. The sensor may have restricted

computing power or battery life, and a high velocity of data being collected.

2.8 Summary

In this review, we have defined the specific concepts related to anomaly detection that

we will be using throughout the rest of the thesis. We have looked at several areas of

the relevant anomaly detection literature, including working with time series, both as

context and as a computational interval search problem. We have looked at various

point anomaly detection methods for multivariate data. We have also explored how

to assess an anomaly detection method using metrics such as precision and recall, and

how these can be adapted to work with time series both online and offline. Finally,

we have briefly explored three key application areas: astrostatistics, nuclear radiation

monitoring, and telecommunications. These application areas form the basis of the

collaborations behind the work done within this thesis.
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Chapter 3

Poisson-FOCuS for detecting

gamma ray bursts

This chapter is a reproduction of the Ward, Dilillo, et al. (2023) paper published in

the Journal of the American Statistical Association. It details novel work to adapt the

FOCuS algorithm (Romano, Eckley, Fearnhead, and Rigaill 2023), originally developed

for the Gaussian setting, to the Poisson setting in order to handle count data. Minor

edits have been made to render the paper suitable for a thesis chapter.

3.1 Introduction

This work is motivated by the challenge of designing an efficient algorithm for detecting

gamma ray bursts (GRBs) for cube satellites, such as the HERMES scientific pathfinder

mission (Fiore et al. 2020). GRBs are short-lived bursts of gamma ray light caused by

the catastrophic accretion of matter into newly formed black holes. Long GRBs are

associated with the formation of black holes in the collapse of massive, rapidly rotating

stars, whereas short GRBs are associated with coalescence events in neutron star binary

systems. These bursts were first detected by satellites in the late 1960s (Klebesadel,

Strong, et al. 1973). At the time of writing there is considerable interest in detecting

gamma ray bursts due to their association with gravitational wave events (Luongo
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and Muccino 2021). For example, during 17 August 2017, the combined detection of

the short gamma ray burst GRB170817 and the gravitational wave event GW170817

constrained the source’s location to a region of about 1100 deg2, roughly the size of the

Ursa Major constellation in the night sky (Abbott, Abbott, et al. 2017). This limited

the number of candidate host galaxies to a pool small enough to identify an optical

counterpart. A large broadband observation campaign started soon after, leading to

insights into many aspects of gravity and astrophysics (Miller 2017).

Instruments detecting GRBs must operate in space, as gamma light wavelengths are

absorbed by nitrogen and oxygen in the upper layers of the atmosphere. Because of

this, multiple cube satellite missions are being deployed to study them in the coming

years (Bloser et al. 2022). Cube satellites are compact and therefore relatively cheap

to launch into space, but have limited computational power on-board. One of these

missions is HERMES (High Energy Rapid Modular Ensemble of Satellites), a mission

whose first six units will be launched in near-equatorial orbits during 2023, aiming to

build an all-sky monitor for GRBs and other high-energy astronomical transients (Fiore,

Burderi, et al. 2020). The HERMES main scientific goal is to monitor the whole sky

for GRBs and locate their source directions.

Raw data from a satellite consists of a data stream of photons impacting a detec-

tor. The time of a photon impact is recorded in units of microseconds since satellite

launch. New photon impacts are recorded on the order of approximately one every

500 microseconds (Campana et al. 2020). A GRB is indicated by a short period of

time with an unusually high incidence of photons impacting the detector. Ideally the

satellite would detect each GRB, and for each burst it detects it then transmits the

associated data to earth.

There are a number of statistical challenges associated with detecting GRBs. First,

bursts can come from close or far away sources with different intrinsic luminosities, and

can therefore be either very bright and obvious to observe or very dim and hard to pick

out from other background sources. They can also impact the detector over a variety of

timescales. Figure 3.1.1 shows two GRBs, one short and intense lasting a fraction of a
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(a) a short, intense burst (b) a long, less intense burst

Figure 3.1.1: Plots of two recorded gamma ray bursts from the FERMI catalogue, with photon
counts binned into 0.2s and 2s intervals.

second, one longer and less intense lasting about ten seconds. These bursts were taken

from the FERMI catalogue (Axelsson, Bissaldi, Omodei, et al. 2019). Bursts ranging

from a fraction of a second to a few minutes are possible (Kumar and Zhang 2015).

Secondly, less than one GRB is recorded per 24 hours on average (Von Kienlin, Meegan,

Paciesas, Bhat, et al. 2020), which is relatively rare in comparison to the velocity of the

signal. The background rate at which the satellite detects photons also varies over time.

This is due to both rotations of the spacecraft and features of the near-Earth radiation

environment at different points in orbit, which leads to irregularly cyclic patterns. This

variation is on timescales much larger (many minutes to days) than those on which

bursts occur (milliseconds to seconds), and thus is able to be estimated separately from

the bursts. Figure 3.1.2 gives an example of a background signal.

Finally, there are also computational challenges. For example, there is limited com-

putational hardware on board the satellite, and additional constraints arise on the use

of these due to battery life and lack of heat dissipation (Fenimore et al. 2003). There is

also a substantial computational and energy cost to transmitting data to earth, so only

promising data should be sent. This means we require any detection system to have a

very low false positive rate.

At a fundamental level, algorithmic techniques for detecting GRBs have gone un-

changed through different generations of space-born GRB monitor experiments (Mee-
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Figure 3.1.2: Example 4 hours of background data from one detector, grouped into 10 second
bins to show background rate fluctuations.

gan, Lichti, et al. 2009; Fenimore et al. 2003; Paciesas, Meegan, et al. 1999; Feroci,

Frontera, et al. 1997). As they reach a detector, high-energy photons are counted over

a fundamental time interval and in different energy bands. Count rates are then com-

pared against a background estimate over a number of pre-defined timescales (Li and

Ma 1983). To minimize the chance of missing a burst due to a mismatch between the

event activity and the length of the tested timescales, multiple different timescales are

simultaneously evaluated. Whenever the significance of the excess count is found to

exceed a threshold value for that timescale, a trigger is issued.

Figure 3.1.3 gives a simplified overview of such a detection system. As data arrives

we need to both detect whether a gamma ray burst is happening, and update our

estimates of the background photon arrival rate. Because of the high computational

cost of transmitting data to earth after a detection, if an algorithm detects a potential

gamma ray burst there is an additional quality assurance step to determine whether it

should be transmitted. This step often includes checking that a gamma ray burst has

been detected at two or more detectors on the satellite. The detection algorithm needs

to be run at a resolution at which all gamma ray bursts are detectable. By comparison

background re-estimation is only required once every second, and the quality assurance

algorithm is only needed every time a potential gamma ray burst is detected. Thus
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Figure 3.1.3: A schematic of the detection system, with the arrow thickness corresponding
to the relative velocities of data flows. Most of the computing requirements of the trigger
algorithm are within the detection loop, highlighted in green.

the majority of the computational effort is for the detection algorithm – and how to

construct a statistically efficient detection algorithm with low computation is the focus

of this paper.

As mentioned, current practice for detecting a GRB is to compare observed photon

counts with expected counts across a given bin width (Paciesas et al. 2012). However,

the choice of bin width affects the ease of discovery of different sizes of burst. Figure

3.1.1 shows an example. The short burst in Figure 3.1.1a is easily detectable with a bin

width of 0.2s, but lost to smoothing at a 2s bin width. In contrast, the burst in Figure

3.1.1b has a signal too small relative to the noise to be detectable at a 0.2s bin width,

with the largest observation on the plot being part of the noise rather than the gamma

ray burst. Only when smoothed to a bin width of 2s does the burst become visually

apparent. Therefore, the bin width is first chosen small enough to pick up short bursts,

and geometrically spaced windows of size 1, 2, 4, 8, ... times the bin width, up to a

maximum window size, are run over the data in order to pick up longer bursts.

This paper develops an improved approach to detecting GRBs. First we show that

using the Page-CUSUM statistic (Page 1954; Page 1955), and its extension to count

data (Lucas 1985) is uniformly better than using a window-based procedure. These

schemes require specifying both the pre-change and post-change behaviour of the data

- in our case, this equates to specifying the background rate of photon arrivals and the
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rate during the gamma ray burst. While it is reasonable to assume, for our application,

that good estimates of the background photon arrival rate are available, specifying the

photon arrival rate for the gamma ray burst is difficult due to their heterogeneity in

terms of intensity. For detecting changes in mean in Gaussian data, Romano, Eckley,

Fearnhead, and Rigaill (2023) show how one can implement the sequential scheme of

Page (1955) simultaneously for all possible post-change means, and call the resulting

algorithm FOCuS. Our detection algorithm involves the non-trivial extension of this

approach to the setting of detecting changes in the rate of events for count data. It is

based on modelling the arrival of photons on the detector as a Poisson process, and we

thus call our detection algorithm Poisson-FOCuS.

Our algorithm is equivalent to checking windows of any length, with a modified ver-

sion equivalent to checking windows of any length up to a maximum size. This makes

it advantageous for detecting bursts near the chosen statistical threshold whose length

is not well described by a geometrically spaced window. In addition, the algorithm we

develop has a computational cost lower than the geometric spacing approach, resulting

in a uniform improvement on the methods already used for this application with no

required trade-off. These advantages mean that the Poisson-FOCuS algorithm is cur-

rently planned to be used as part of the trigger algorithm of the HERMES satellites.

Our improvement of existing window based methods addresses the aspect of trigger

algorithms that has been shown to be most important for increasing power of detecting

GRBs. As the computational resource on-board a satellite have increased, trigger al-

gorithms have grown to support an increasing number of criteria, and it has been seen

that the most important aspect of any detection procedure is the timescale over which

the data is analyzed (McLean et al. 2004). This is in contrast to other possible aspects

such as testing data accumulated over multiple, fine-grained energy bands outside the

standard 50-300 keV energy band. This did not result in more GRBs being detected

by Fermi-GBM, and was eventually turned off to ease the computational burden on the

on-board computer (Paciesas et al. 2012).

While early software, such as Compton-BATSE (Gehrels et al. 1993), operated only
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a few different trigger criteria, a total of 120 are available to the Fermi-GBM (Meegan,

Lichti, et al. 2009) and more than 800 to the Swift-BAT (McLean et al. 2004) flight

software. Whilst in many cases, this growth in algorithm complexity did not result in

additional GRB detection, better coverage of different timescales for GRBs did (Paciesas

et al. 2012). During the first four years of Fermi-GBM operations, 135 out of 953 GRBs

were detected only over timescales not represented by BATSE algorithms, most of which

were over timescales larger than the maximum value tested by BATSE (1.024 s) (Von

Kienlin, Meegan, Paciesas, Bhat, et al. 2014).

In Section 3.2 we define the mathematical setup of the problem. Section 3.3 in-

troduces the functional pruning approach, leading to an algorithm and computational

implementation specified in Section 3.4. In Section 3.5 we give an evaluation of our

method on various simulated data, and real data taken from the FERMI catalogue.

3.2 Modelling framework

The data we consider take the form of a time-series of arrival times of photons. We

can model the generating process for these points as a Poisson process with background

parameter λ(t), defining anomalies as periods of time which see an increase in the arrival

rate over background level. By identifying anomalies, we hope to detect the GRBs that

may cause them.

Changes in the background rate, λ(t), over time may be due to rotation of the

spacecraft or its orbit around the earth. They exist on a greater timescale (minutes to

days) than the region of time over which a GRB could occur (seconds). We assume

that a good estimate of the current background rate λ(t) is available. To ease expo-

sition we will first assume this rate is known and constant, and denote it as λ, before

generalising to the non-constant background rate in Section 3.4.1. We discuss account-

ing for error in estimating the background rate in Section 3.5.2. No autocorrelation is

present in our data when this change in background rate has been accounted for, see

the Supplementary Material.
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The standard approach to analysing our data is to choose a small time interval, w,

which is smaller than the shortest GRB that we want to detect. Then the data can

be summarised by the number of photon arrivals in time bins of length w. We denote

the data by x1, x2, . . . , with xi denoting the number of arrivals in the ith time window.

We use the notation xt+1:t+h = (xt+1, . . . , xt+h) to denote the vector of observations

between the (t+ 1)th and (t+ h)th time window, and

x̄t+1:t+h =
1

h

t+h∑
i=t+1

xi,

the mean of these observations. Under our model, if there is no gamma ray burst then

each xi is a realisation of Xi, an independent Poisson random variable with parameter

λ. If there is a gamma ray burst then the number of photon arrivals will be Poisson

distributed with a rate larger than λ. We make the assumption that a gamma ray burst

can be characterised by a width, h, and an intensity µ > 1 such that if the gamma ray

burst starts at time t + 1 then xt+1, . . . , xt+h are realisations of independent Poisson

random variables Xt+1, . . . , Xt+h with mean µλ. See Figure 3.2.4 for a visualisation of

an anomaly simulated directly from this model.

Our algorithm is primarily interested in reducing the computational requirements

of constant signal monitoring. Therefore our model considers a gamma ray burst as

a uniform increase in intensity over its length, which does not take into account the

unknown shape of a gamma ray burst. If a possible burst is found, an additional round

of shape-based sanity checking requiring more computational resources can easily be

performed prior to transmission back to Earth.

3.2.1 Window-based methods and detectability

If we assumed we knew the width of the gamma ray burst, h, then detecting it would

correspond to testing, for each start time t, between the following two hypotheses:

• H0: Xt+1, . . . , Xt+h ∼ Poisson(λ).
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Figure 3.2.4: A simulated example anomaly with intensity multiplier µ = 3 and duration
h = 20 against a background λ = 2.

• H1: Xt+1, . . . , Xt+h ∼ Poisson(µλ), for some µ > 1.

We can perform a likelihood ratio test for this hypothesis. Let ℓ(xt+1:t+h;µ) denote the

log-likelihood for the data xt+1:t+h under our Poisson model with rate µλ. Then the

standard (log) likelihood ratio statistic is

LR = 2

{
max
µ>1

ℓ(xt+1:t+h;µ)− ℓ(xt+1:t+h; 1)

}
.

This is 0 if x̄t+1:t+h ≤ λ, otherwise

LR = 2hλ
{ x̄t+1:t+h

λ
log
( x̄t+1:t+h

λ

)
−
( x̄t+1:t+h

λ
− 1
)}

.

The LR statistic is a function only of the expected count hλ and the fitted intensity

µ̂t+1:t+h := x̄t+1:t+h/λ of the interval [t+ 1, t+ h]. Alternatively, it can be written as a

function only of the expected count hλ and the actual count hx̄t+1:t+h, which forms the

fundamental basis for our algorithm.

In our application, thresholds for gamma ray burst detection are often set based on

k-sigma events: values that are as extreme as observing a Gaussian observation that is

k standard deviations above its mean. For our one-sided test, the distribution of the

likelihood ratio statistic under the null is approximately a mixture of a point mass at 0

and a χ2
1 distribution, each with probability 1/2 (Wilks 1938). We will call a k-sigma
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Figure 3.2.5: Detectability of GRBs at different k-sigma levels. Shaded regions show values
of hλ and µ̂t+1:t+h where the likelihood ratio exceeds k-sigma event thresholds for k = 3 (blue
region), k = 5 (orange region) and k = 7 (green region) for a test that uses the correct value
of h.

event one where the likelihood-ratio statistic exceeds a threshold of k2.

The definition of a k-sigma event is based on a test for a single anomaly with a

specific start and end point. In practice, detection of gamma ray bursts is achieved

through performing multiple tests, allowing for different start and end points of the

anomalies. Furthermore, different detection methods may perform more or fewer tests

– which can make their statistical performance for the same k-sigma level different.

We return to this in Section 3.5 where we present results that relate the k-sigma level

for different methods to average run length, a common measure of type-I error rate in

sequential testing.

Gamma ray burst detection and anomaly detection for other astrophysical events

often works with a threshold of k ≈ 5, a significantly higher statistical threshold than

the k = 3 used in other areas of anomaly detection or the k ≈ 2 used to reject a null

hypothesis at the 5% level. This elevation of statistical threshold is required due to the

multiple hypothesis testing problem outlined above. Where a specific threshold choice

is required, we have presented the graphs and method assuming k = 5 in order to show

impacts on our algorithm that may occur when working with a statistical threshold

appropriate to the domain.

Gamma ray bursts with a combination of high intensity µ̂t+1:t+h := x̄t+1:t+h

λ
and long

length, as quantified by the expected count hλ, will have higher associated likelihood
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Figure 3.2.6: Detectability of GRBs by the window method, for one window (left) or a grid of
three windows (right). The orange shaded area shows the values of hλ and µ̂t+1:t+h where the
likelihood ratio exceeds a 5-sigma threshold, and the blue shaded area shows the detectability
region form Figure 3.2.5. Dashed lines show expected count hλ over the window.

ratio statistics and thus be easier to detect. Figure 3.2.5 shows regions in this two-

dimensional space that correspond to detectable GRBs at different k-sigma levels.

Checking every interval is not computationally possible in this setting due to the

high signal velocity. For example, most GRBs last between 0.1s and 5 minutes (Kou-

veliotou et al. 1993). In order to find GRBs of 0.1s in length we may wish to use a

fundamental bin width of 20ms, giving 15,000 intervals to check each time the signal

updates and 750,000 intervals to check each second. This also means that more complex

anomaly detection methods than that presented here that also iterate over all intervals

up to a certain length, such as CAPA (Fisch, Bardwell, and Eckley 2022), are also

computationally impossible in this setting.

Figure 3.2.6 shows what happens when we set a fixed threshold and for computa-

tional reasons only check intervals of certain lengths. We rely on the fact that a slightly

brighter burst will also trigger detection on a longer or shorter interval than optimal.

This is the type of approach that current window-based methods take (Paciesas et al.

2012). We can see that, even with a grid of window sizes, we lose detectability if the

true width of the GRB does not match one of the window sizes.
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Figure 3.2.7: Detectability of GRBs by Page-CUSUM for a single µ value (left) and a grid
of three µ values (right). Orange shaded area shows the values of hλ and µ̂t+1:t+h where the
likelihood ratio exceeds a 5-sigma threshold; the green shaded area shows the detectability
region for the corresponding window test as defined by Proposition 3.2.2 (left-hand plot); and
the blue shaded area shows the detectability region from Figure 3.2.5.

3.2.2 Page-CUSUM for Poisson data

As a foundation for our detection algorithm, consider the CUSUM (cumulative sum)

approach of Page (1955) that was adapted for the Poisson setting by Lucas (1985).

These methods can search for gamma ray bursts of unknown width but known size µ,

differing from a window method that searches for gamma ray bursts of known width

h and unknown size. To run our methods online it is useful to characterise a possible

anomaly by its start point τ . We have our hypotheses for the signal at time T :

• H0: There have been no anomalies, i.e. X1, ..., XT ∼ Poisson(λ).

• H1: There has been one anomaly, beginning at some unknown time τ , with

known intensity multiplier µ > 1, i.e. X1, ..., Xτ−1 ∼ Poisson(λ) and Xτ , ..., XT ∼

Poisson(µλ).

Our LR statistic for this test is 0 if x̄τ :T ≤ λ µ−1
log(µ)

for all τ , otherwise

LR = max
1≤τ≤T

[
2(T − τ + 1)λ

{ x̄τ :T

λ
log (µ)− (µ− 1)

}]
.

We work with a test statistic, ST , that is half the likelihood ratio statistic for this

test, and compare to a k-sigma threshold of k2/2. ST can be rewritten in the following
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form:

ST =

[
max
1≤τ≤T

T∑
t=τ

(xt log(µ)− λ(µ− 1))

]+
,

where we use the notation [·]+ to denote the maximum of the term · and 0. As shown

in Lucas (1985), ST can be updated recursively as

S0 = 0, ST+1 = [ST + xT+1 log µ− λ(µ− 1)]+.

It is helpful to compare the detectability of GRBs using ST with their detectability

using a window method. To this end, we introduce the following propositions (see

related results for Normally distributed data in Basseville and Nikiforov 1993; Romano,

Eckley, Fearnhead, and Rigaill 2023).

Proposition 3.2.1. For some choice of µ against a background rate of λ, let ST be

significant at the k-sigma level. Then there exists some interval [τ, T ] with associated

likelihood ratio statistic that is significant at the k-sigma level.

Proposition 3.2.2. For any k, λ and h there exists a µ and corresponding test statistic,

ST , that relates directly to a window test of length h, and background rate λ as follows:

if, for any t, the data xt+1:t+h is significant at the k-sigma level then St+h will also be

significant at the k-sigma level.

Proofs can be found in Appendix A.2.

Together these results show that Page’s method is at least as powerful as the window

method for detecting a GRB at a fixed k-sigma level. Rather than implementing the

window method with a given window size, we can implement Page’s method with the

appropriate µ value (as defined by Proposition 3.2.2) such that any GRB detected by

the window method would be detected by Page’s method. However Page’s method

may detect additional GRBs and these would be detected by the window method with

some window size (by Proposition 3.2.1). In practice, as shown in Figure 3.2.7, Page’s

method provides better coverage of the search space.

Whilst the Page-CUSUM approach is more powerful than a window-based approach,
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to cover the space completely it still requires specifying a grid of values for the intensity

of the gamma ray burst. If the actual intensity lies far from our grid values we will lose

power at detecting the burst.

3.3 Functional pruning

To look for an anomalous excess of count of any intensity and width without having to

pick a parameter grid, we consider computing the Page-CUSUM statistic simultaneously

for all µ ∈ [1,∞). This can be achieved by considering the test statistic as a function

of µ, ST (µ). That is, for each T , ST (µ) is defined for µ ∈ [1,∞), and for a given µ is

equal to the value of the Page-CUSUM statistic for that µ.

By definition, ST (µ) is a pointwise maximum of curves representing all possible

anomaly start points τ :

ST (µ) :=

[
max
1≤τ≤T

T∑
t=τ

[xt log(µ)− λ(µ− 1)]

]+

We can view this as ST (µ) = [max1≤τ≤T C
(T )
τ (µ)]+, where each curve, C

(T )
τ (µ), corre-

sponds to half the likelihood ratio statistic for a gamma ray burst of intensity µ starting

at τ ,

C(T )
τ (µ) :=

T∑
t=τ

[xt log(µ)− λ(µ− 1)].

Each curve is parameterised by two quantities, as

C(T )
τ (µ) := a(T )

τ log(µ)− b(T )
τ (µ− 1),

where a
(T )
τ =

∑T
t=τ xt is the actual observed count and b

(T )
τ =

∑T
t=τ λ = λ(T − τ +1) is

the expected count on the interval [τ, T ]. As we move from time T to time T + 1 there

is a simple recursion to update these coefficients: a
(T+1)
τ = a

(T )
τ +xT+1, b

(T+1)
τ = b

(T )
τ +λ.

These are linear and do not depend on τ , so the differences between any two curves are

preserved with time updates.
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Figure 3.3.8: Three example logarithmic curves. The statistic ST (µ) is defined as the maxi-
mum of all logarithmic curves and the 0 line.

We call C
(T )
τ (µ) a logarithmic curve. Figure 3.3.8 shows examples of these loga-

rithmic curves. The maximum of C
(T )
τ is located at µ = a

(T )
τ /b

(T )
τ , representing the

likelihood ratio for a post-change mean µλ = x̄τ :T . If and only if a
(T )
τ > b

(T )
τ then the

logarithmic curve will be positive for some µ > 1. In this case we will define the root

of the curve to be the unique µ∗ > 1 such that C
(T )
τ (µ∗) = 0.

3.3.1 Adding and pruning curves

For any two curves C
(T )
τi and C

(T )
τj at a given present time T , we will say that C

(T )
τi

dominates C
(T )
τj if

[C(T )
τi

(µ)]+ ≥ [C(T )
τj

(µ)]+, ∀µ ∈ [1,∞).

This is equivalent to saying that there is no value of µ such that the interval [τj, T ]

provides better evidence for an anomaly with intensity µ than [τi, T ]. As the difference

between curves is unchanged as we observe more data, this in turn means that for

any future point TF ≥ T , the interval [τj, TF ] will not provide better evidence than

[τi, TF ]. Therefore, the curve associated with τj can be pruned, i.e., removed from our

computational characterisation of ST (µ).

The following gives necessary and sufficient conditions for one curve to be dominated

by another.

Proposition 3.3.1. Let C
(T )
τi and C

(T )
τj be curves that are positive somewhere on µ ∈
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[1,∞), where τi < τj and C
(τj−1)
τi is also positive somewhere on µ ∈ [1,∞). Then

C
(T )
τi dominates C

(T )
τj if and only if a

(T )
τj /b

(T )
τj ≤ a

(τj−1)
τi /b

(τj−1)
τi or equivalently a

(T )
τj /b

(T )
τj ≤

a
(T )
τi /b

(T )
τi . Additionally, it cannot be the case that C

(T )
τj dominates C

(T )
τi .

A formal proof is given in Appendix A.2.2, but we see why this result holds by

looking at Figure 3.3.8. There we see that C
(T )
τi dominates C

(T )
τj precisely when C

(T )
τi

has both a greater slope at µ = 1 (which occurs when C
(τj−1)
τi is positive) and a greater

root than C
(T )
τj , where (as shown in the proof) the root of a curve C

(T )
τ is an increasing

function of a
(T )
τ /b

(T )
τ .

3.4 Algorithm and theoretical evaluation

Using Proposition 3.3.1 we obtain the Poisson-FOCuS algorithm, described in Algo-

rithm 1. This algorithm stores a list of curves in time order by storing their associated

a and b parameters, as well as their times of creation τ , which for the constant λ case

can be computed as T + 1− b/λ.

On receiving a new observation at time T , these parameters are updated. If the

observed count exceeds the expected count predicted by the most recent curve we also

add a new curve which corresponds to a GRB that starts at time T . Otherwise we

check to see if we can prune the most recent curve. This pruning step uses Proposition

3.3.1, which shows that if any currently stored curve can be pruned, the most recently

stored curve will be able to be pruned. (Our pruning check does not does not need to

be repeated for additional curves, as on average less than one curve is pruned at each

timestep.)

The final part of the algorithm is to find the maximum of each curve, and check

if the maximum of these is greater than the threshold. If it is, then we have detected

a GRB. The start of the detected GRB is given by the time that the curve with the

largest maximum value was added.
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Algorithm 1: Poisson-FOCuS for constant λ

Result: Startpoint, endpoint and test-statistic value for anomaly detected at a
k-sigma threshold.

1 set threshold k2/2;
2 initialise empty curve list;
3 while anomaly not yet found do
4 T ← T + 1;
5 get actual count XT ;
6 get expected count λ;

// update curves:

7 for curve C
(T−1)
τi in curve list [C

(T−1)
τ1 , ..., C

(T−1)
τn ] do

8 a
(T )
τi ← a

(T−1)
τi +XT ; b

(T )
τi ← b

(T−1)
τi + λ;

9 end
// add or prune curve:

10 if XT /λ > max[a
(T )
τn /b

(T )
τn , 1] then

11 add C
(T )
T : a

(T )
T = XT , b

(T )
T = λ, τ = T to curve list;

12 else if a
(T )
τn /b

(T )
τn < max[a

(T )
τn−1/b

(T )
τn−1 , 1] then

13 remove C
(T )
τn from curve list;

14 end
// calculate maximum M:

15 for curve C
(T )
τi in curve list do

16 if max(C
(T )
τi ) > M then

17 M ← max(C
(T )
τi );

18 τ∗ ← τi
19 end

20 end
21 if M > k2/2 then

22 anomaly found on interval [τ∗, T ] with
√
2M > k;

23 end

24 end
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3.4.1 Dealing with varying background rate

Algorithm 1 deals with the constant λ case. If λ = λ(t) is not constant, but an estimate

λT of λ(T ) is available at each timestep T , we can apply the same principle but with a

change in the definition of b
(T )
τ . We now have b

(T )
τ :=

∑T
t=τ λt, the total expected count

over the interval [τ, T ]. For the algorithm, this only impacts how the coefficients are

updated, with the new updates being: a
(T+1)
τ ← a

(T )
τ +XT+1, b

(T+1)
τ ← b

(T )
τ + λT+1. If

we work with a non-homogeneous Poisson process in this way, it is impossible to recover

τ from the coefficients a
(T )
τ and b

(T )
τ , so C

(T )
τ must be stored as the triplet (τ, a

(T )
τ , b

(T )
τ ).

The Poisson-FOCuS algorithm gives us an estimate of the start point of a GRB by

reporting the interval [τ ∗, T ] over which an anomaly is identified. In our application,

if the additional sanity checking indicates a GRB is present, the whole signal starting

some time before τ ∗ to some time after T is then transmitted from the satellite to

Earth. After this has occurred, Poisson-FOCuS can restart immediately provided that

a good background rate estimate is available.

3.4.2 Minimum anomaly intensity

For our application there is an upper limit on the length of a gamma ray burst, and it

makes sense to ensure we do not detect gamma ray bursts that are longer than this. To

do so, we set an appropriate µmin, and additionally prune curves which only contribute

to ST (µ) on 1 < µ < µmin, by removing, or not adding, curves C
(T )
τ to the list if

C
(T )
τ (µmin) ≤ 0, i.e.

a
(T )
τ

b
(T )
τ

≤ µmin − 1

log µmin

.

We can choose µmin according to our threshold and the maximum expected time period

we are interested in searching for bursts over, using the proof of Proposition 3.2.2 about

detectability for the window-based method, as follows:

(hλ)max =
k2

2[µmin log(µmin)− (µmin − 1)]
.
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For a 5-sigma threshold, assuming a background rate of one photon every 500µs, a

maximum length of 1 minute for a GRB would correspond to µmin = 1.015.

3.4.3 Using time-to-arrival data

Rather than taking as data the number of photons observed in each time window,

we can take as our data the time between each observation. In this case our data

is U1, U2, . . . where Ui is the time between the (i + 1)th and ith photons. Under the

assumption the data follows a Poisson process, we have that the Ui are independently

Exponentially distributed.

The Poisson-FOCuS algorithm still works in the Exponential case, with the only

difference being how we update the coefficients of the curves.

a(T+1)
τ = a(T )

τ + 1, b(T+1)
τ = b(T )

τ + λT+1UT+1,

where λT is the estimate of the background rate at the time of the T th photon arrival.

In our application there is a high velocity of photon arrivals, and a GRB will consist

of a large (> 50) number of photons. The additional computation required to process

individual photons and the false positive rate introduced by considering very short

time intervals render this method not as computationally or statistically as effective

as binning the data. However, it may be useful in applications where anomalies can

consist of smaller numbers of counts.

3.4.4 Computational cost comparisons

Using a window method, the computational cost per window consists of: adding xT

and λT to the window; removing xT−h and λt−h from the window; calculating the test

statistic and comparing to the threshold. Using Poisson-FOCuS, our computational cost

per curve consists of: adding xT to a
(T )
τ ; adding λT to b

(T )
τ ; calculating the maximum

of the curve and comparing to the threshold. The computational cost per curve is

therefore roughly equal to the computational cost per window. Thus when evaluating
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Figure 3.4.9: Comparisons of the number of windows and expected number of curves (average
over 1000 runs) kept by FOCuS running over a signal with base rate λ = 100 using a 5-sigma
threshold, with on constraint on length of GRB (left) and with hmax = 1024, corresponding
to µmin = 1.02 (right).

the relative computational cost of Poisson-FOCuS versus a window method we need

only calculate the expected number of curves kept by the algorithm at each timestep,

and compare against the number of windows used. We now give mathematical bounds

on this quantity, as follows:

Proposition 3.4.1. The expected number of curves kept by Poisson-FOCuS without

µmin at each timestep T is ∈
[
log(T )

2
, log(T )+1

2

]
.

Proposition 3.4.2. The expected number of curves kept by Poisson-FOCuS using some

µmin > 1 at each timestep is bounded.

Proofs for both propositions are in Appendix A.2.4. Chapter 6 Section 6.2.1 also

contains further work beyond the scope of this chapter to compute the bound given by

Proposition 3.4.2 at both each timestep and overall.

For geometrically spaced windows, over an infinite horizon the number of windows

used at each timestep T is ∈ [log2(T ), log2(T )+1], and if a hmax is implemented then this

will be bounded after a certain point. Figure 3.4.9 gives a comparison of the number

of windows and expected number of curves, showing that although the bound from

Proposition 3.4.2 is difficult to calculate, it is substantially below the corresponding

bound on the number of windows. Therefore, Poisson-FOCuS provides the statistical
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advantages of an exhaustive window search at under half the computational cost of a

geometrically spaced one.

3.5 Empirical evaluation

3.5.1 Simulations of GRBs and average run length comparison

We have previously worked under the assumption that a threshold level of 5 sigma will

be used. In practice, the threshold is a tuneable parameter and will be chosen to give

a trade-off between detection sensitivity and number of false detections. We can make

a direct comparison between the sigma threshold and average run length, a standard

metric in anomaly detection literature. The average run length is the expected time

until we have a false detection if we simulate data under the null hypothesis. This can

be calculated for both FOCuS and logarithmically spaced windows, letting us make

comparisons between the two by choosing a slightly different sigma threshold based on

equal average run lengths. The average run length for each algorithm does not easily

translate into an average run length for detecting GRBs, as it does not account for

the sanity checking step of the detection algorithm, which can require a GRB to be

detected by multiple detectors; nor do the results we present account for any error in

estimating the background rate.

The results are shown in Figure 3.5.10. The run length is given in terms of number

of observations, so would need to be multiplied by the choice of fundamental bin width,

w, to be converted to time. The main message from these results is that for the same

average run length we would need to have a threshold that is 0.1σ higher for FOCuS

than for the methods that uses logarithmically spaced windows.

We now compare Poisson-FOCuS with a window based method on synthetic data

that has been simulated to mimic known GRBs, but allowing for different intensities

of burst. To simulate the data for a chosen known GRB at a range of different bright-

nesses, the photon stream of the GRB was converted into a random variable via density

estimation. One draw from this random variable would give a photon impact time, and
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Figure 3.5.10: Comparison between FOCuS and logarithmic window method showing the
average run length at different sigma levels.

n independent draws sorted into time order would give a stream of photon impact times

that well approximate the shape of the burst. These were then overlaid on a background

photon stream to form a signal that was binned into fundamental time widths of 50ms,

which was fed into either Poisson-FOCuS or a geometrically spaced window search.

The maximum sigma-level that was recorded when passing over the signal with each

method is then plotted for various different brightnesses n. To stabilise any randomness

introduced by the use of a random variable for GRB shape, this was repeated 10 times

with different random seeds common to both methods and the average sigma-level is

plotted.

The extent to which Poisson-FOCuS provides an improvement in detection power

depends on the size and shape of the burst, and in particular whether the most promising

interval in the burst lines up well with the geometrically spaced window grid. For

example, the burst illustrated in Figure 3.5.11c does not line up with this grid, and

Figure 3.5.11d shows how Poisson-FOCuS provides an improvement in detection power

of approximately 0.5σ for this shape of burst at various different brightnesses, far higher

than the approximately 0.1σ increase in threshold required to give a similar average

run length (see Figure 3.5.10). However, the shorter burst in Figure 3.5.11e clearly has

a most promising interval of size 1 for this binning choice, which is covered exactly by

the logarithmic window grid. Therefore, Poisson-FOCuS provides no improvement over
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the window grid.

3.5.2 Bias from estimating background rate

When using Poisson-FOCuS on a dataset requiring background rate estimation, par-

ticular care needs to be taken with the choice of the estimator for the background

rate. Small, consistent under-estimation of the background rate will be recorded as

an anomaly over a long timescale. The ability of any online algorithm to give im-

mediate detections requires a background estimate for time T to be available using

only data from t ≤ T , and this can cause challenges with avoiding underestimating

the background rate in periods where it is increasing. Furthermore, the presence of

a GRB within the data being used to estimate background rate could destabilise the

estimation, so robust methods are needed.

To show this effect, Figure 3.5.12 shows a portion of the same data as Figure 3.1.2

at a higher resolution. This hour of data was chosen because it contains a smooth rise

in background rate, which can give rise to anomalies when using a biased background

rate estimation method.

Figure 3.5.13 shows the sigma thresholds recorded by Poisson-FOCuS running over

this hour’s worth of higher-resolution data using a background estimate of 3 minute

centered moving-average window (Figure 3.5.13a), and a 3 minute uncentered moving-

average window such that background estimates at time T use only data from t ≤ T

(Figure 3.5.13b). The uncentered method has a large peak in the recorded statistical

threshold as it passes over the signal. This is caused by the upward change in back-

ground rate, which results in a consistent underestimation of the background rate at

time T when using data from just the period prior to T . This bias in background

estimation is then interpreted as a very small anomaly over a very long time period.

While the effect of a biased background estimation method can be somewhat coun-

tered by setting a value for µmin > 1 as in Figure 3.5.13c, careful consideration should

be given to de-biasing the background estimation method in order to avoid false de-

tections when the background rate is rising (see e.g. Crupi, Ward, et al. 2023). For
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5.11: Plots of runs of FOCuS over simulated GRB copies of different brightnesses
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Figure 3.5.12: An hour’s portion of the same data from Figure 3.1.2 at higher resolution
of 50ms (blue). In black is the data at 10s resolution identical to that from Figure 3.1.2
but rescaled by 0.005x to fit the graph. In orange is a centered 3 minute moving-average
background estimate (linewidth increased for visual clarity).

(a) (b) (c)

Figure 3.5.13: Plots of a run of FOCuS over the data using various background estimation
methods and parameters.

example, we show in the next section that reliable detection of GRBs can be obtained

using an exponential smoother to estimate the background rate.

3.5.3 Application to FERMI data

In the context of HERMES, Poisson-FOCuS is currently being employed for two differ-

ent purposes. First, a trigger algorithm built using Poisson-FOCuS is being developed

for on-board, online GRB detection. To date, a dummy implementation has been de-

veloped and preliminary testings performed on the HERMES payload data handling

unit computer. Second, Poisson-FOCuS is being employed in a software framework in-

tended to serve as the foundation for the HERMES offline data analysis pipeline (Crupi,

Ward, et al. 2023). In this framework, background reference estimates are provided by
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a neural network as a function of the satellite’s current location and orientation.

Since no HERMES cube satellites have been launched yet, testing has taken place

over Fermi gamma ray burst monitor (GBM) archival data, looking for events which

may have evaded the on-board trigger algorithm. The data used for the analysis were

drawn from the Fermi GBM daily data, Fermi GBM trigger catalogue, and Fermi

GBM untriggered burst candidates catalogue, all of which are publically available at

NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC 2022a;

HEASARC 2022b; Bhat 2021).

The algorithm was run over eight days of data, from 00:00:00 2017/10/02 to 23:59:59

2017/10/09 UTC time. This particular time frame was selected because, according to

the untriggered GBM Short GRB candidates catalog, it hosts two highly reliable short

GRB candidates which defied the Fermi-GBM online trigger algorithm. During this

week the Fermi GBM algorithm was triggered by 11 different events. Six of these

were classified as GRBs, three as terrestrial gamma ray flashes, one as a local particle

event and one as an uncertain event. The Poisson-FOCuS algorithm was run over

data streams from 12 sodium iodide GBM detectors in the energy range of 50 − 300

kiloelectron volts, which is most relevant to GRB detection but excludes the bismuth

germanate detectors and higher energy ranges designed to find terrestrial gamma ray

flashes.

The data was binned at 100ms. Background count-rates were assessed by expo-

nential smoothing of past observations, excluding the most recent 4s, and any curves

corresponding to start points older than 4s were automatically removed from the curve

lists. The returning condition used was the same used by Fermi-GBM: a trigger is

issued whenever at least two detectors are simultaneously above threshold. After a

trigger, the algorithm was kept idle for five minutes and then restarted.

At a 5-sigma threshold, Poisson-FOCuS was able to identify all the six GRBs which

also triggered the Fermi-GBM algorithm, one of which is shown in Figures 3.5.14a and

3.5.14b. We also observed a trigger compatible with an event in the untriggered GBM

Short GRB candidates catalog (Bhat 2021), which is shown in Figures 3.5.14c and
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3.5.14d. An uncertain event not in either catalogue is shown in Figures 3.5.14e and

3.5.14f, which may indicate a GRB that had been missed by earlier searches or may be

a false positive.
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(a) known GRB from Fermi catalogue (b) significance from Poisson-FOCuS

(c) GRB in short candidates catalogue (d) significance from Poisson-FOCuS

(e) possible GRB not in either catalogue (f) significance from Poisson-FOCuS

Figure 3.5.14: Three of the triggers found in the FERMI daily data. Left-hand column
shows data from the two detectors that give a trigger, and the right-hand column shows the
corresponding output from the Poisson-FOCuS algorithm.
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3.6 Discussion

The main purpose of this paper was to present a GRB detection algorithm that is

mathematically equivalent to searching all possible window lengths, while requiring less

computational power than the grid of windows approach. This algorithm is suitable for

use on the HERMES satellites, where it has lead to a reduction of required computations

in a very computationally constrained setting, as well as a simplification of parameter

choices by practitioners as values for window lengths in a grid no longer need to be

specified.

There is increasing interest in detecting anomalies in other low-compute settings,

for example Internet of Things sensors which must continuously monitor a signal (Dey

et al. 2018). These may have a limited battery life or limited electricity generation from

sensor-mounted solar panels. Therefore, the algorithm we have developed may be of

use more widely.

Much of the mathematical work presented in this paper is also applicable to the

µ ∈ [0, 1] case that searches for an anomalous lack of count in a signal. When adapting

Poisson-FOCuS to this setting, it is important to make sure the algorithm functions

well in situations where the counts are small, as these are precisely the locations of

anomalies. Combining these two cases would give a general algorithm for detection of

anomalies on µ ∈ [0,∞).

Code for Poisson-FOCuS and the analysis for this paper is available at the GitHub

repository https://github.com/kesward/FOCuS

3.7 Impact from this research

After six years of development and qualification, the six HERMES scientific pathfinder

nanosatellites launched into low-Earth orbit in February 2025. Poisson-FOCuS was

not the on-board algorithm, but will be the centrepiece of the HERMES offline data

pipeline for burst search. This software, developed jointly by the Italian Space Agency-

Space Science Data Center and the Italian National Astrophysics Institute, will search
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for gamma ray bursts and other astrophysical transients as data are downlinked from

spacecrafts to ground stations. The pipeline is based on the Poisson-FOCuS implemen-

tation described in Dilillo, Ward, et al. (2024), adapted to the HERMES instrument

design. We hope the successful application of this pipeline will demonstrate the ca-

pabilities of Poisson-FOCuS and open a path for its implementation onboard future

iterations of the HERMES constellation and other high-energy astrophysical transient

detection instruments.
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Chapter 4

Poisson-FOCuS for nuclear

radiation monitoring

This chapter is a reproduction of a technical report developed for the Nuclear Security

Science Network. In this report, we describe the use of Poisson-FOCuS for detecting

changes in radiation counts in the SIGMA dataset. The report is written for the point

of view of a practitioner interested in use of the FOCuS algorithm. It is presented

in this thesis as an example of industrial engagement and the impact it is possible to

achieve by adapting existing methodological research to novel application settings.

4.1 Introduction

The Poisson Functional Online Cumulative Sum (Poisson-FOCuS) method is a

method for solving the likelihood ratio test of Poisson(λ) null against Poisson(µλ) al-

ternative where µ > 1, i.e. searching for an increase in count. This can be thought of as

equivalent to testing all possible anomaly start points τ ≤ T at each timestep T , giving

a computationally efficient way to analyse count anomalies that occur over intervals of

time. We run the Poisson-FOCuS method on SIGMA data used for nuclear radiation

monitoring, with an additional adjustment to remove anomaly tail traces, and report

the results.
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4.2 Data description

The SIGMA data consists of gamma radiation (high energy photon impacts) on radi-

ation detectors placed at different locations around London, UK. We want to design a

system to monitor this data in real-time and search for threat profiles, for example a

person smuggling a backpack of material with a Uranium-235 signature. At the same

time, we want to be able to identify and discount anomalies in the data that are not

threat profiles, such as a patient leaving a hospital after a radionuclide thyroid scan

with an iodine-123 signature. The SIGMA data is from multiple different sensors, how-

ever as they are located far from each other it is assumed that any radiation threat

profile would only show up in one sensor at a time.

The data exists in 4096 energy band bins. The file containing each day’s worth of

data is separated into approximately 55800 time bins, giving a sample rate of 1 bin per

second. There are approximately four months’ worth of data, from 2018-08-06 until

2018-12-18 (135 days). This gives a total of approximately 31 billion total data bins

(time by energy band) per sensor. In our analysis we will primarily consider data from

one sensor. All data plots are taken from the 6th and 14th August, 2018.

4.3 Problem setup

Our data signal (x⃗1, x⃗2, ..., x⃗T , ...) is a multivariate signal evolving through time. Each

x⃗t := (x1
t , ..., x

p
t ) is a p-dimensional object, which represents the energy spectrum (for

our data p = 4096).

We denote by T the present time, such that at time T only the signal x⃗t : t ≤ T

has been observed. We are interested in algorithms that perform well when T → ∞,

i.e. we have been observing a signal for a long time, or the signal is high-velocity. In

the data we have, we assume batch processing each day’s worth of data independently

with T → 86400 and this computation repeated up to 135 times to process the whole

available dataset.

An anomaly with start time τ affecting some subset P ⊂ {1, ..., p} of coordinates
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is such that for t > τ, i ∈ P there has been a change in the underlying process used

to produce the measurements. We want to identify τ and P at the soonest possible

point T > τ we are able to observe sufficient evidence. We are also only interested

in anomalies where their length h := T − τ + 1 is relatively short, e.g. h ≤ 300 (up

to five minutes). We are only interested in anomalous increases in count, rather than

decreases.

We will consider each xi
t to be the realisation of a random variable X i

t . As radiation

counts can be modelled well as a Poisson process, we will say that under our null

hypothesis of no anomaly each X i
t ∼ Poisson(λi). We can estimate the λi

t well using

previous data, noting that in the absence of anomalies our data stream does not change

much over time.

By additivity of Poisson processes, we have that

∑
i∈P

X i
t ∼ Poisson

(∑
i∈P

λi

)
.

Initially we will work with P := {1, ..., 4096} the whole signal trace and define

xt :=
∑4096

i=1 xi
t and λ :=

∑4096
i=1 λi, noting that we can estimate λ ≈ 28 although there

are a few mild fluctuations in the data. In section 4.8, we will outline ways of defining

subsets that may be useful for detecting the radiation signatures of different isotopes.

4.4 Theory and method

4.4.1 Likelihood ratio testing

In general our significance (how surprised we are) is a function only of what we expect

to see, and what we actually see.

significance = f (expected count, actual count)

When working with count data, we use Poisson random variables. Denoting the

actual count xt and the expected count λ, we have
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significance p-value = P(Poisson(λ) ≥ xt)

However, this can be computationally inefficient. Therefore we use Wilks theorem

(Wilks 1938) to approximate twice the Poisson log-likelihood ratio by a χ2
1 random

variable. This is a very accurate approximation for any appreciable value of λ, certainly

so for our problem. We have that

(significance sigma-value)2

2
= xt log

(xt

λ

)
+ λ

(xt

λ
− 1
)

We use thresholds of 4.5 for a 3-sigma event, 12.5 for a 5-sigma event, etc. In general,

a k-sigma event needs a threshold of k2/2.

To find expected and actual counts for an interval [τ, T ], you just add up the actual

counts
∑T

t=τ xt and expected counts λ(T − τ + 1) for each time point in the interval,

and use these in the above method to calculate your significance statistic. However, a

signal of length T generates T +1 new intervals when a new point is added. Even if we

only check the final h intervals, this can be computationally costly.

4.4.2 Page and FOCuS

The Functional Online Cumulative Sum (FOCuS) method (Ward, Dilillo, et al. 2023) is

a quick method for solving the likelihood ratio test of Poisson(λ) null against Poisson(µλ)

alternative where µ > 1, i.e. searching for an increase in count. This can be thought

of as equivalent to testing all possible anomaly start points τ ≤ T at each timestep T .

Imposing a constraint of maximum length hmax of anomaly is equivalent to imposing

a constraint on minimum intensity µmin, as less intense anomalies are only detectable

over longer timescales. This is linked to the sigma significance k and the background

rate λ as follows:

µmin log(µmin)− (µmin − 1) =
k2

2hmaxλ
.
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For a statistical threshold of k = 5 (a “five-sigma event”), a background rate λ ≈ 28

and hmax = 300 (five minutes) this solves to give µmin ≈ 1.055, i.e. an anomaly of

average magnitude less than 5.5% of the background level is statistically undetectable

on this timescale. Anomalies that only occur over shorter timescales will have to be

of greater magnitude in order to be detectable: for a rough estimate see Table 4.4.1.

In particular, an anomaly present in just one time bin would have to more than equal

(108.4%) the background radiation rate in order to be statistically detectable. By

considering intervals rather than points, we are able to substantially improve on this

power and detect the presence of less intense anomalies.

maximum time hmax µmin relative magnitude absolute magnitude

5 minutes 300 1.055 5.5% 1.54 counts/sec
1 minute 60 1.124 12.4% 3.48 counts/sec
10 seconds 10 1.313 31.3% 8.77 counts/sec
1 second 1 2.084 108.4% 30.36 counts/sec

Table 4.4.1: How large an anomaly needs to be, as a relative proportion of the background
signal and as an absolute size assuming λ = 28, to be detected over different timescales at a
5-sigma threshold.

In order to search for anomalies with a length exactly hmax, we could use an iterated

form of the Page-CUSUM statistic (Page 1955; Lucas 1985) for Poisson data ST (µmin),

defined as follows:

S0(µmin) = 0, ST (µmin) = [ST−1(µmin) + xT log(µmin)− λ(µmin − 1)]+

Here, the notation []+ is used to denote the maximum of the term in brackets and

zero. The last time τ ≤ T that Sτ−1(µmin) was zero is the estimated start point for

any anomaly. When ST (µmin) resets to zero, this indicates that it is more likely that

no anomaly is present than an anomaly of intensity µmin is. Under a null hypothesis of

no anomaly present, this should occur frequently, moreso the larger µmin is. Values of

ST (µmin) ≥ k2/2 indicate a sigma significance k over the interval [τ, T ].

All anomalies that would be picked up by running a window of size hmax over the

data will be picked up by using ST (µmin). One advantage of using ST (µmin) over the use
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Figure 4.4.1: The first hour of data on the 14th August 2018, as raw data and as siginifance
trace.

of a window of size hmax is that the method is one-scan: it does not need the separate

storage of points inside the window that is required to remove the T − hmaxth point

at time T . This makes it fast. One disadvantage of this algorithm is that it is not

well-targeted for the detection of anomalies of µ > µmin, i.e. shorter, more intense

anomalies.

The FOCuS method calculates maxµ ST (µ) : µ ≥ µmin in a similar timescale and is

therefore able to efficiently detect anomalies of all sizes h ≤ hmax.

For both Page’s method and FOCuS, anomalous intervals [τ, T ] in the raw signal

correspond to anomalous points in the significance trace ST (µ). This means that it’s a

lot easier to identify interesting intervals in the significance trace than in the raw signal.

For an example see Figure 4.4.1.

Because FOCuS can be thought of as an expanded form of Page’s method, a similar

set of intuitions apply, for example:

1. For a given µmin, the FOCuS trace for that signal must be at least the Page trace

for that signal.

2. The FOCuS trace tends to be fuzzier at low significance levels as it captures

the normal fluctuations associated with individual time bins h = 1 and smaller

intervals h << hmax.
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3. Reading from the signature traces, the estimated start point for an anomaly giving

a FOCuS trace at a high significance is approximately where the FOCuS trace

started climbing out of this fuzzy state. (The actual start point is available within

the algorithm).

4.5 Dealing with background fluctuations

Figure 4.5.2: Comparing two different values of µmin for their ability to filter out small, long
background fluctuations.

The first six hours of data of 14th August, 2018 contain a slight deviation above

baseline background rate, but not enough to be considered anomalous. This is probably

caused by a larger level of radon release from rock in rainy weather conditions. This

demonstrates the necessity of choosing an appropriate µmin > 1. Too small, and the

background fluctuation is captured in the signature trace, as in Figure 4.5.2. Here, a

choice of µmin = 1.015 means that the slight deviation above baseline is recorded as a

six hour long anomaly.

Even with µmin = 1.05 we can see that the signature we receive differs from what

we would expect from a simulation of independent Poisson random variables (shown

in the right of Figure 4.5.3). There are periods of up to half an hour where there is a

slight deviation above baseline. However because it no longer builds over long stretches

of time, the statistical significance of this is not strong enough to trouble us.

It should be noted that an alternate way to handle this problem would be assuming
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Figure 4.5.3: The difference between the data containing a small upwards fluctuation and
independent Poisson random variables.

a nonconstant λ and performing a rolling estimate of the background rate λt, using e.g.

a sliding window or exponential smoothing. This may be needed if we were interested

in detecting longer anomalies and distinguishing them from background. However bias

in the background rate estimate can be difficult to remove and in either case a choice

of µmin > 1 will help to mitigate this bias.

4.6 Resetting after large anomalies

From 11:10 to 11:15 on 14th August 2018, there is a large radiation anomaly clearly

visible in the raw signal, as shown in Figure 4.6.4.

Figure 4.6.4: Two half-hours of data from 14th August 2018.
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Large anomalies can leave traces in our significance trace long after they have ended.

See Figure 4.6.5 for the effect of this large anomaly on our significance traces. Page’s

method tends to drop linearly and FOCuS quadratically (from a higher starting point),

but both leave the same length of tail, which is in this case approximately five hours.

Figure 4.6.5: The signature of the large anomaly shown in Figure 4.6.4.

In order to get around the tail trailing behaviour, we institute a parameter hclear that

will remove any start points further in the past than hclear if in the interval [T−hclear, T ]

contains no possible start points for an anomaly of size at least µmin. This says that

whatever anomaly is present is deemed to have ended, and should no longer be recorded

in the current signal.

There is no positive evidence for an anomaly of intensity µmin beginning anywhere

in the interval [T − hclear, T ] and ending at T precisely when

ST (µmin) = min
t∈[T−hclear,T ]

St(µmin)

This can be calculated quickly using the ascending minima algorithm (Harter 2009)

with computational cost not dependent on hclear.

Because we know that positive evidence for an anomaly of size µ > µmin on an

interval necessitates positive evidence for an anomaly of size µ = µmin on that interval,

we can calculate Page’s statistic and use it to reset FOCuS using the same condition.

However, it can be more advantageous to reset FOCuS using the signal output from
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FOCuS directly, that is if

max
µ>µmin

ST (µ) = min
t∈[T−hclear,T ]

max
µ>µmin

St(µ).

In most cases this will be very similar to resetting using Page’s statistic. Where it

differs is when passing over a large anomaly, the FOCuS statistic will drop more quickly

and will continue to drop even if a small anomaly continues to be present. However,

because the FOCuS algorithm would either way not store the start point corresponding

to the small anomaly, resetting this way can be preferable.

Figure 4.6.6: By using a clearing parameter hclear, we can reset our method after large anoma-
lies have ended.

Figure 4.6.6 shows the effect of this resetting strategy. Arbitrarily choosing hclear =

60, we find that after passing over a large anomaly the algorithm resets within about

a minute. Page takes a little longer than FOCuS as it takes a little longer to be sure

of no evidence at all within the last minute, but even Page resets quickly compared to

the five-hour tail of without a clearing parameter (see Figure 4.6.6).

4.7 Finding a threat

Figure 4.7.7 gives an artificially generated example of the kind of threat profile we would

like our algorithm to be able to detect. A threat source approaches the detector, stops,

and then leaves, over the total course of three minutes. With a radiation count mean of
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Figure 4.7.7: An example threat with intensity µ ≈ 1.1.

up to 3 counts/sec compared to a background count mean of 28 counts/sec, this means

it is barely visible to the naked eye when added to the SIGMA data (see Figure 4.7.8).

Here our threat is about 10% of the size of the background signal, giving µ ≈ 1.1.

Figure 4.7.8: The example three minute threat incorporated into the SIGMA data at 01:15
to 01:18, barely visible to the naked eye.

The threat is detectable by FOCuS as shown in Figure 4.7.9 and is clearly visible

in the significance trace. It crosses the 7-sigma significance line. The advantage over

Page’s method is also apparent: as FOCuS correctly targets the intensity of the anomaly

it records a higher significance. The location of the anomalous interval can be easily
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Figure 4.7.9: The signature trace of the threat with dashed lines showing 3σ, 5σ and 7σ
significance levels.

read from the graph as from wherever FOCuS began to increase to where it attained

its maximum value: here from 01:15 to 01:18.

4.8 Future work

Future work should incorporate the 4096 energy bands. Here, the average radiation

count varies greatly by energy band. The raw energy band counts for one hour’s worth

of data on the 6th August 2018 are shown in Figure 4.8.10. The 4096 bands are

represented individually on the left, and are grouped into logarithmic multiples of 21/8

on the right to give a spectral graph that’s easier to read. Most of the background

radiation count occurs in energy band 100 to 1000.

The idea is that each of these energy bands may provide a different utility for iden-

tifying a threat, depending on the relative mix of background and anomalous radiation

held by the band. The bands with the most utility for finding anomalies would have

low background radiation, but a high amount of anomalous radiation if an anomaly

was present. For an example of this, see Figure 4.8.11 of the log energy spectrum of a
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Figure 4.8.10: Energy band counts for one hour’s worth of data

large anomaly on the 6th August 2018 plotted against nearby background traces. Note

that although the anomaly is numerically greatest in the centre, it has a greater ratio

of anomaly to background rate in the spike off to the right.

Figure 4.8.11: Graph showing the time and spectral structure of a large anomaly present in
the SIGMA data on 6th August 2018.

Previously we have been using all the bands and combining them into one (by

summing up counts) before calculating significance. Other options include:

1. Only use one subset of the bands with the most utility and combine before calcu-

lating significance.

2. Use multiple distinct subsets of bands, adding significances across bands.

3. Use multiple increasing subsets of bands that contain each other, taking the max-
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imum significance across bands.

4.8.1 Utility criteria for subset selection

Suppose that we have a subset of the signal included in our anomaly detection algorithm

and we are looking into whether it would make sense to expand it.

Already included elements have in total anomaly amount A and background amount

B. We are looking to see if it increases overall significance to add an energy band with

anomaly amount a and background amount b. Working on the assumption that a and

b are small compared to A and B, it can be shown that this binary yes/no question is a

function only of the ratio a/b. For example, consider the alternate question of whether

to add a category with anomaly amount 2a and background amount 2b. If we assume

the amounts are sufficiently small to be able to discount second-order effects, then the

answer to both questions should be the same.

A good ranking measure of utility of a spectral band should be the ratio between

the (normalised) rate a of the threat profile in that band and the background rate b in

that band. We want to include all and only spectral bands with utilities above a set

threshold.

Exactly how this utility threshold should be chosen for different threat profiles is

not clear and may vary according to our desired false positive rate, so we may wish to

track multiple increasing subsets. However, it is possible to both reliably estimate the

background profile of the signal at that time using previous signal points, and also the

radiation signature of the threats we are hoping to find. This is because, for example,

a sample of Uranium-235 will contain both the signature of U-235 and the signature

of the decay products of U-235, where the rate of decays of each isotope present are

constant in equilibrium (Bateman 1910). Therefore we cannot use just one isotope’s

decays when calculating a threat profile, but we can construct a threat profile specific

to that isotope.
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4.9 Summary

4.9.1 What we have done

We have constructed a fast algorithm to run on the SIGMA data and report possi-

ble anomalies for further consideration. To summarize, the detection procedure with

specified parameters µmin, hclear, k is as follows:

1. Set a sensible µmin based on your upper time limit for an anomaly that removes

long fluctuations from the data (we suggest µmin = 1.05 here but higher values of

µmin may be sensible if the data contains more fluctuations)

2. Run FOCuS with the clearing parameter hclear in order to easily reset after passing

over large anomalies. The algorithm is not particularly sensitive to exactly what

hclear is, but in this report we have arbitrarily chosen hclear = 60 in order to reset

the algorithm after a minute.

3. Alert all instances of intervals giving a significance trace greater than k2/2 (which

indicates a k-sigma significance level) for further checking as a possible threat.

4.9.2 What we could do next

In order to specifically look for a particular threat profile, we could compute what

the threat profile should be based on an isotope mix, and then include only a subset

of energy band categories based on the utility ratio, choosing a utility threshold as

appropriate. This would likely improve the accuracy of detection of specific known

threat profiles.

We could also pair FOCuS as a preliminary method with a more accurate but more

computationally expensive method, as follows:

We deliberately choose a low sigma significance level k and therefore high false

positive rate in order to ensure that FOCuS when run as preliminary accurately picks

up all anomalies of interest. For example, if our overall desired false positive rate is

one in eight hours requiring human input checking, we run FOCuS with a false positive
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rate of one in every ten minutes (600 seconds) and only feed positives highlighted

by FOCuS into our more computationally expensive algorithm. This cuts down the

amount of computation needed for the more expensive algorithm by at least 600 times,

if not more as FOCuS can accurately estimate the start point of anomalies so each

positive only requires the checking of one interval. This approach is summarised in

Figure 4.9.12.

Figure 4.9.12: Flowcharts showing the computational processing comparison for with and
without FOCuS as a preliminary method.

Data access statement

The SIGMA Data supporting this chapter are not open-access for security reasons.

Please contact the Nuclear Security Science Network SIGMA Data Challenge team at

info@nusec.uk if you want more information or to request access.
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Chapter 5

Linear in time FOCuS for

Exponential family models

5.1 Introduction

Detecting changes in data streams is an important statistical and machine learning

challenge that arises in applications as diverse as climate records (Beaulieu and Killick

2018), financial time-series (Andreou and Ghysels 2002), monitoring performance of

virtual machines (Barrett et al. 2017) and detecting concept drift of inputs to classi-

fiers (Sakamoto et al. 2015). In many contemporary applications there is a need to

detect changes online. In such settings we sequentially monitor a data stream over

time, seeking to flag that a change has occurred as soon as possible. Often online

change algorithms need to run under limited computational resource. For example,

Ward, Dilillo, et al. (2023) detect gamma ray bursts using the local computing resource

onboard small cube satellites, and Varghese et al. (2016) work with sensor networks

where computations need to be performed locally by the sensors. Alternatively algo-

rithms may need to be run for ultra high-frequency data (Iwata et al. 2018), or need

to be run concurrently across a large number of separate data streams. These settings

share a common theme of tight constraints on the computational complexity of viable

algorithms.
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There have been a number of procedures that have been suggested for online de-

tection of changes, each involving different trade-offs between statistical efficiency and

computational cost. For example, Yu et al. (2023) proposed a likelihood-ratio test with

excellent statistical properties, but the natural implementation of this method has a

computational cost per iteration that increases linearly with time. However, for online

applications we need the computational cost to be constant. There exist algorithms

with a constant computational cost per iteration, but they need one to only test for

changes that are a pre-specified time in the past (e.g. Eichinger and Kirch 2018; Ross,

Tasoulis, and Adams 2011; Ross and Adams 2012; Chen and Tian 2010), or specify the

distribution of the data after a change (e.g. Page 1955; Lucas 1985). If the choices made

in implementing these algorithms are inappropriate for the actual change one wishes to

detect, this can lead to a substantial loss of power.

Recently Romano, Eckley, Fearnhead, and Rigaill (2023) proposed a new algorithm

called Functional Online Cumulative Sum (FOCuS). This algorithm is able to perform

the likelihood-ratio test with a computational cost that only increases logarithmically

with time. FOCuS was developed for detecting a change in mean in Gaussian data

and has been extended to Poisson (Ward, Dilillo, et al. 2023) and Binomial (Romano,

Eckley, and Fearnhead 2024) data. FOCuS has two components: one that does pruning

of past changepoint times that need not be considered in the future, and a maximisation

step that considers all past changepoint times that have not been pruned. Interestingly,

the pruning step for Poisson and Binomial data is identical to that for Gaussian data,

and it is only the maximisation step that changes.

In this paper we show that this correspondence extends to other one-parameter ex-

ponential family models. Furthermore, we show how to substantially speed up FOCuS.

In previous implementations the pruning step has a fixed average cost per iteration, and

the computational bottleneck is the maximisation step that, at time T , needs to consider

on average O(log T ) possible changepoint locations. We show how previous calculations

can be stored so that the maximisation step can consider fewer past changepoint loca-

tions. Empirically this leads to a maximisation step whose per iteration computational
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cost is O(1). To our knowledge this is the first algorithm that exactly performs the

likelihood-ratio test for detecting a change with an average constant-per-iteration cost.

5.2 Background

5.2.1 Problem statement

Assume we observe a univariate time series signal x1, x2, ..., and wish to analyse the

data online and detect any change in the distribution of the data as quickly as possible.

We will let T denote the current time point.

A natural approach to this problem is to model that data as being independent

realisations from some parametric family with density f(x | θ). Let θ0 be the parameter

of the density before any change. If there is a change, denote the time of the change

as τ and the parameter after the change as θ1. We can then base testing for a change

using the likelihood-ratio test statistic.

There are two scenarios for such a test. First we can assume the pre-change distri-

bution, and hence θ0 is known (Eichinger and Kirch 2018). This simplifying assumption

is commonly made when we have substantial training data from the pre-change distri-

bution with which to estimate θ0. Alternatively we can let θ0 be unknown. We will

initially focus on the pre-change distribution known case, and explain how to extend

ideas to the pre-change distribution unknown case in Section 5.4.

The log-likelihood for the data x1:T = (x1, . . . , xT ), which depends on the pre-change

parameter, θ0, the post-change parameter, θ1, and the location of a change, τ , is

ℓ(x1:T |θ0, θ1, τ) :=
τ∑

t=1

log f(xt|θ0) +
T∑

t=τ+1

log f(xt|θ1).

The log-likelihood ratio test statistic for a change prior to T is thus

LRT := 2

{
max
θ1,τ

ℓ(x1:xT |θ0, θ1, τ)− ℓ(x1:xT |θ0, ·, T )
}
.

Naively calculating the log-likelihood ratio statistic involves maximising over a set of
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T terms at time T . This makes it computationally prohibitive to calculate in an online

setting when T is large. There are two simple pre-existing approaches to overcome this,

and make the computational cost per iteration constant. First, MOSUM approaches

Chu, Hornik, and Kaun (e.g. 1995) and Eichinger and Kirch (2018) fix the number K of

changepoint times tested, with these being of the form τ = T − hi for a suitable choice

of h1, . . . , hK . Alternatively one can use Page’s recursion (Page 1954; Page 1955) that

calculates the likelihood-ratio test statistic for a pre-specified post-change parameter.

Again we can use a grid of K possible post-change parameters. Both these approaches

lose statistical power if the choice of either changepoint location (i.e. the hi values for

MOSUM) or the post-change parameter are inappropriate for the actual change in the

data we are analysing.

5.2.2 FOCuS for Gaussian data

As an alternative to the MOSUM or Page’s recursion , Romano, Eckley, Fearnhead,

and Rigaill (2023) introduce the FOCuS algorithm that can efficiently calculate the

log-likelihood ratio statistic for univariate Gaussian data where θ denotes the data

mean.

In this setting. it is simple to see that

ℓ(x1:xT |θ0, θ1, τ)− ℓ(x1:xT |θ0, ·, T ) =
T∑

t=τ+1

{log f(xt|θ1)− log f(xt|θ0)} .

We can then introduce a function

QT (θ1) = max
τ

{
T∑

t=τ+1

(
log f(xt|θ1)− log f(xt|θ0)

)}
,

which is the log-likelihood ratio statistic if the post-change parameter, θ1, is known.

Obviously, LRT = maxθ1 2QT (θ1).

For Gaussian data with known mean, θ0, and variance, σ2, we can standardise the
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data so that the pre-change mean is 0 and and the variance is 1. In this case, each term

in the sum of the log-likelihood ratio statistic simplifies to θ1(xt − θ1/2), and

QT (θ1) = max
τ

{
T∑

t=τ+1

θ1(xt − θ1/2)

}
.

This is the point-wise maximum of T − 1 quadratics. We can thus store Qt(θ1) by

storing the coefficients of the quadratics.

The idea of FOCuS is to recursively calculateQT (θ1). Whilst we have writtenQT (θ1)

as the maximum of T − 1 quadratics in θ1, each corresponding to a different location

of the putative change, in practice there are only ≈ log T quadratics that contribute to

QT (Romano, Eckley, Fearnhead, and Rigaill 2023). This means that, if we can identify

this set of quadratics, we can maximise QT , and hence calculate the test statistic, in

O(log T ) operations. Furthermore Romano, Eckley, Fearnhead, and Rigaill (2023) show

that we can recursively calculate QT , and the minimal set of quadratics we need, with

a cost that is O(1) per iteration on average.

The FOCuS recursion is easiest described for the case where we want a positive

change, i.e. θ1 > θ0. An identical recursion can then be applied for θ1 < θ0 and the

results combined to get QT . This approach to calculating QT uses the recursion of Page

(1955),

QT (θ1) = max {QT−1(θ1), 0}+ θ1(xT − θ1/2).

To explain how to efficiently solve this recursion, it is helpful to introduce some notation.

For τi < τj define

C(τj)τi
(θ1) =

τj∑
t=τi+1

θ1(xt − θ1/2).

At time T − 1 let the quadratics that contribute to QT−1, for θ1 > θ0, correspond to

changes at times τ ∈ IT−1. Then

QT−1(θ1) = max
τ∈IT−1

{
C(T−1)
τ (θ1)

}
.
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Substituting into Page’s recursion we obtain

QT (θ1) = max

{
max

τ∈IT−1

{
C(T )
τ (θ1)

}
, CTT−1(θ1)

}
,

from which we have that IT ⊆ IT−1 ∪ {T − 1}.

The key step now is deciding which changepoint locations in IT−1∪{T−1} no longer

contribute to QT . To be consistent with ideas we present in Section 5.3 we will present

the FOCuS algorithm in a slightly different way to Romano, Eckley, Fearnhead, and

Rigaill (2023). Assume that IT−1 = {τ1, . . . , τn}, with the candidate locations ordered

so that τ1 < τ2 < . . . < τn. We can now define the difference between successive

quadratics as

C(T )
τi

(θ1)− C(T )
τi+1

(θ1) = C(T−1)
τi

(θ1)− C(T−1)
τi+1

(θ1)

= C(τi+1)
τi

(θ1).

These differences do not change from time T − 1 to time T .

For the difference between quadratics associated with changes at τi and τi+1, let

li ≥ 0 denote the largest value of θ1 such C(τi+1)
τi (θ1) ≥ 0. By definition C(τi+1)

τi (θ0) = 0.

Hence it is readily shown that

C(T )
τi

(θ1) ≥ C(T )
τi+1

(θ1),

on θ ∈ [θ0, li]. For θ1 ≥ li compare C(T )
τi+1(θ1) with C

(T )
T−1(θ1). If C

(T )
τi+1(θ1) ≤ C

(T )
T−1(θ1) then

C(T )
τi+1

(θ1)− C(T )
T−1(θ1) ≤ 0

⇔ C(T−1)
τi+1

(θ1) ≤ 0.

A sufficient condition for C(T−1)
τi+1 (θ1) ≤ 0 for all θ1 > li is for the largest root of C(T−1)

τi+1 (θ1)

to be smaller than li. In this case we have that C(T )
τi+1(θ1) does not contribute to QT (·)

and thus can be pruned.
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This suggests Algorithm 2. Note that this algorithm is presented differently from

that in Romano, Eckley, Fearnhead, and Rigaill (2023), as the way the quadratics are

stored is different. Specifically, here we store the difference in the quadratics, rather

than use summary statistics. The input is just the difference of the quadratics that

contribute to QT−1. The main loop of the algorithm just checks whether the root of

C(T−1)
τj is smaller than that of C(τj)τj−1 , which is our condition for pruning the quadratic

associated with τj. If not, we stop any further pruning and return the set of quadratic

differences plus the quadratic C(T )
T−1. If it is, then the quadratic associated with τj is

removed and the quadratic difference associated with τj−1 is updated – by adding on

the quadratic difference associated with τj. We then loop to consider removing the next

quadratic (if there is one).

Algorithm 2: FOCuS update at time T for θ1 > θ0 and θ0 = 0. Algorithm based
on storing quadratic differences.

Input: A set of n quadratic differences, C(τi+1)
τi (θ1), for i = 1, . . . , n, with τi < τi+1

and τn+1 = T − 1 such that

QT−1(θ1) = max
i
{C(τi+1)

τi }.

The set of largest roots, li, such that C(τi+1)
τi (li) = 0, for i = 1, . . . , n.

Data: xT

1 Set j = n;
2 Set l0 = θ0;
3 while j > 0 do
4 if lj ≤ lj−1 then

5 Update C
(T−1)
τj−1 (θ1) = C

τj
τj−1(θ1) + C

(T−1)
τj (θ1);

6 Recalculate lj−1, largest root of C
(T−1)
τj−1 (θ1) = 0;

7 Update τj = T − 1;
8 Update j = j − 1;

9 end
10 Break;

11 end

12 Set C(T )
T−1(θ1) = θ1(xT − θ1/2);

13 Set τj+1 = T − 1 and τj+2 = T ;
14 Set lj+1 = 2xT ;
15 Set n = j + 1;

16 return The set of n quadratic differences, C(τi+1)
τi (θ1) and roots li for i = 1, . . . , n.
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Figure 5.2.1: Example of one iteration of FOCuS. The top row shows the action of FOCuS on
the quadratics themselves, whereas the bottom row operates on the corresponding quadratic
differences. This form of the algorithm adds the zero line and prunes, before adding the
quadratic representing the current point to all quadratics.

A pictorial description of the algorithm is shown in Figure 5.2.1. It is simple to see

that this algorithm has an average cost per iteration that is O(1). This is because, at

each iteration, the number of steps of the while loop is one more than the number of

quadratics that are pruned. As only one quadratic is added at each iteration, and a

quadratic can only be removed once, the overall number of steps of the while loop by

time T will be less than 2T .

5.3 FOCuS for exponential family models

Different parametric families will have different likelihoods, and likelihood ratio statis-

tics. However the idea behind FOCuS can still be applied in these cases provided we

are considering a change in a univariate parameter, with different forms for the curves

(described in Equation 5.2.2) and hence different values for the roots of the curves.

Whilst one would guess that the different values of the roots would lead to different

pruning of curves when implementing Algorithm 2, Ward, Dilillo, et al. (2023) and
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Romano, Eckley, and Fearnhead (2024) noted that the pruning, i.e. the changepoints

associated with the functions that contribute to QT , are the same for a Poisson model

or a Binomial model as for the Gaussian model; it is only the shape of the functions

that changes. Here we show that this is a general property for many one-parameter

exponential family models.

A one-parameter exponential family distribution can be written as

f(x | θ) = exp
[
α(θ) · γ(x)− β(θ) + δ(x)

]
,

for some one-parameter functions α(θ), β(θ), γ(x), δ(x) which are dependent on the spe-

cific distribution. Examples of one-parameter exponential family distributions given in

Table 5.3.1 include Gaussian change in mean (with known variance), Gaussian change

in variance (with known mean), Poisson, Gamma change in scale, and Binomial distri-

butions, for which α(θ) and β(θ) are increasing functions. γ(x) is the sufficient statistic

for the model, and is often the identity function. We do not need to consider δ(x) as it

cancels out in all likelihood ratios.

There are various simple transformations that can be done to shift data points

from one assumed exponential family form to another before applying change detection

methods, for example binning Exponentially distributed data into time bins to give

rise to Poisson data, approximating Binomal(n, θ) data as Poisson(nθ) for large n and

small θ, or utilising the fact that x ∼ N(0, 1) then x2 ∼ Gamma(1/2, 1/2) to turn

a Gaussian change in variance problem into a Gamma change in parameter problem

(refer to Section 5.6 for an illustration of this). Nevertheless, the ability to work flexibly

in all possible exponential family settings without requiring data pre-processing can be

helpful.

The ideas from Section 5.2.2 can be applied to detecting a change in the param-

eter of a one-parameter exponential family. The main change is to the form of the

log-likelihood. For Algorithm 2 we need to store the differences C
(τj)
τi (θ1) in the log-
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Distribution α(θ) β(θ) γ(x)

Gaussian (change in mean) θ θ2 x
Gaussian (change in variance) −1/θ2 log(θ) x2

Poisson log(θ) θ x
Binomial log(θ)− log(1−θ) −n log(1−θ) x
Gamma −1/θ k log(θ) x

Table 5.3.1: Examples of one-parameter exponential families and the corresponding forms of
α(θ), β(θ) and γ(x). The Gaussian change in mean model is for a variance of 1, the Gaussian
change in variance model is for a mean of 0; the Binomial models assumes the number of
trials is n; and the Gamma model is for a change in scale parameter with shape parameter k.

likelihood for different choices of the changepoint location. This becomes

ℓ(x1:xT |θ0, θ1, τi)− ℓ(x1:xT |θ0, θ1, τj) =

[α(θ1)− α(θ0)]

τj∑
t=τi+1

γ(xt)− [β(θ1)− β(θ0)](τj − τi).

These curves can summarised in terms of the coefficients of α(θ1)− α(θ0) and β(θ1)−

β(θ0), that is
∑τj

t=τi+1 γ(xt) and τj − τi.

The pruning of Algorithm 2 is based on comparing roots of curves. One challenge

with implementing the algorithm for general exponential family models is that the roots

are often not available analytically, unlike for the Gaussian model, and thus require

numerical root finders. However, pruning just depends on the ordering of the roots.

The following proposition shows that we can often determine which of two curves has

the larger root without having to calculate the value of the root.

Define

γ̄τi:τj =
1

τj − τi

τj∑
t=τi+1

γ(xt),

to be the average value of γ(xt) for t = τi+1, . . . , τj, and define θτ1( ̸= θ0) to be the root

of

ℓ(x1:xT |θ0, θτ1 , τ)− ℓ(x1:xT |θ0, ·, T ) = 0.

Then the following proposition shows that the ordering of the roots is determined by

the ordering of γ̄ values.
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Proposition 5.3.1. Suppose that for our choice of θ0 the function

θ1 :→
β(θ1)− β(θ0)

α(θ1)− α(θ0)

is strictly increasing. Then the sign of γ̄τi:τj−γ̄τj :T is the same as the sign of θτi1 −θ
τj
1 .

Proof: See Appendix.

The assumption captures the idea that for the one-parameter exponential family

model, higher values of γ(xt) correspond to evidence for an up change θ1 > θ0 whereas

lower values of γ(xt) correspond to evidence for a down-change θ1 < θ0. Exponential

family models with a defined direction of change can relabel their θ parameter so that

this direction applies (for example, Gamma change in rate where a higher mean implies

a lower rate can be relabelled as Gamma change in scale). All the exponential family

models in this paper have been stated in such a way as for this assumption to hold.

In other words, θτi1 > θ
τj
1 if and only if γ̄τi:τj > γ̄τj :T . Thus we can change the

condition in Algorithm 2 that compares the roots of two curves with a condition that

compares their γ̄ values. Or equivalently we can implement Algorithm 2 but with

li = γ̄τi:τi+1
rather than the root of Cτi+1

τi = 0.

An immediate consequence of this result is that one-parameter exponential family

models that satisfy the condition of Proposition 5.3.1 and that have the same value for

γ(x) will prune exactly the same set of curves. This leads to the following corollary

based on a set of exponential family models with γ(x) = x, the same as the Gaussian

change in mean model of the original FOCuS algorithm.

Corollary 5.3.2. The Gaussian (change in mean), Poisson, Binomial, and Gamma

variations of the FOCuS algorithm have the same pruning.

An example of this corollary is shown in Figure 5.3.2

More generally we have the following.

Corollary 5.3.3. If an exponential family model satisfies the condition of Proposition

5.3.1, then the pruning under this model will be identical to the pruning of FOCuS for

the Gaussian change in mean model analysing data γ(xt).
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Figure 5.3.2: Comparison of three different cost functions computed from the same realizations
y1, . . . , y500 ∼ Poi(1). The leftmost, center, and rightmost figures show the cost functionQn(θ)
should we assume respectively a Gaussian, Poisson, or Gamma loss. The floating number
refers to the timestep at which each curve was introduced. In gray, the curves that are no
longer optimal and hence were pruned.

So, for example, the pruning for the Gaussian change in variance model will be the

same as for the Gaussian change in mean model run on data x2
1, x

2
2, . . . .

One consequence of this corollary is that the strong guarantees on the number

of curves that are kept at time T for the original FOCuS algorithm (Romano, Eckley,

Fearnhead, and Rigaill 2023) applies to these equivalent exponential family models. The

results on the expected number of curves kept by FOCuS makes minimal assumptions

for the data, namely that the observations are exchangeable. These results imply that

on average the number of curves kept at iteration T is O(log T ).

5.4 Unknown pre-change parameter

We next turn to consider how to extend the methodology to the case where both

pre-change and post-change parameters are unknown. When θ0 is unknown, the log

likelihood-ratio statistic, LRT , satisfies

LRT

2
= max

θ0,θ1,τ

{
τ∑

t=1

log f(xt|θ0) +
T∑

t=τ+1

log f(xt|θ1)

}

−max
θ0

T∑
t=1

log f(xt|θ0).
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The challenge with calculating this is the first term. Define

Q∗
T (θ0, θ1) = max

τ

{
τ∑

t=1

log f(xt|θ0) +
T∑

t=τ+1

log f(xt|θ1)

}
.

If we can calculate this function of θ0 and θ1, it will be straightforward to calculate the

likelihood-ratio statistic. If we fix θ0 and consider Q∗
T as a function of only θ1 then this

is just the function QT (θ1) we considered in the known pre-change parameter.

As before, we can write Q∗
T (θ0, θ1) as the maximum of a set of curves, now of two

variables θ0 and θ1, with each function relating to a specific value of τ . As before if we

can easily determine the curves for which values of τ contribute to the maximum, we

can remove the other functions and greatly speed-up the calculation of Q∗
T .

To do this, consider Q∗
T (θ0, θ1) as a function of θ1 only, and write this as QT,θ0(θ1).

Algorithm 2 gives us the curves that contribute to this function for θ1 > θ0. This

set of curves is determined by the ordering of the roots of the curves, i.e. the li for

i ≥ 1 in Algorithm 2. If we now change θ0, the roots of the curves will change, but by

Proposition 5.3.1 the orderings will not. The only difference will be with the definition

of l0. That is as we reduce θ0 we may have additional curves that contribute to the

maximum, due to allowing a larger range of values for θ1, but as we increase θ0 we can

only ever remove curves. I.e. we never swap the curves that need to be kept. Thus

if we run Algorithm 2 for θ0 = −∞, then the set of curves we keep will be the set of

curves that contribute to Q∗
T (θ0, θ1) for θ1 > θ0.

In practice, this means that to implement the pruning of FOCuS with pre-change

parameter unknown, we proceed as in Algorithm 2 but set l0 = −∞ when considering

changes θ1 > θ0, and l0 = ∞ when considering changes θ1 < θ0. The equivalence

of Algorithm 2 across different exponential family models, that we demonstrated with

Corollary 5.3.3, also immediately follows.
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5.5 Adaptive maxima checking

The main computational cost of the FOCuS algorithm comes from maximising the

curves at each iteration. This is particularly the case for non-Gaussian models, as max-

imising a curve requires evaluating maxθ0,θ1 ℓ(x1:T |θ0, θ1, τ), which involves computing

at least one logarithm (as in the cases of Poisson, Binomial, Gamma data). As the

number of curves kept by time T is of order log(T ), calculating all maxima represents

a (slowly) scaling cost. However we can reduce this cost by using information from

previous iterations so that we need only maximise over fewer curves in order to detect

whether QT is above or below our threshold. This is possible by obtaining an upper

bound on QT that is easy to evaluate, as if this upper bound is less than our threshold

we need not calculate QT .

The following proposition gives such an upper bound on the maximum of all, or a

subset, of curves. First for τi < τj, we define the likelihood ratio statistic for a change

at τi with the signal ending at τj. Define this likelihood ratio statistic as

mτi,τj =

max
θ0∈H0,

θ1

ℓ(x1:τj |θ0, θ1, τi)− max
θ0∈H0

ℓ(x1:τj |θ0, ·, τj),

where H0 denotes the set of possible values of θ0. H0 will contain a single value in the

pre-change parameter known case, or be R for the pre-change parameter unknown case.

Proposition 5.5.1. For any τ1 < τ2 < ... < τn < T , we have

max
i=1,...,n

mτi,T ≤
n−1∑
i=1

mτi,τi+1
+mτn,T .

Proof: See Appendix. A pictorial explanation of the result is also shown in Figure

5.5.3

We can use this result as follows. The sum Mτk :=
∑k−1

i=1 mτi,τi+1
can be stored as

part of the likelihood curve for τk, and the maxima checking step can proceed as in
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Figure 5.5.3: Example of the bound of Proposition 5.3.1 for the pre-change mean known case.
Left-hand plot shows the differences between the three curves that contribute to QT (θ1). The
mτi:τj values correspond to the maximum of these curves (vertical lines). Right-hand plot
shows QT (θ), the three curves that define it, and the maximum difference between the curves
(vertical bars). The bound is the sum of the maximum differences (right-most stacked line).

Algorithm 3. The idea is that we can bound QT above by mτk,T + Mτk . So, starting

with the curve with largest τk value we check if mτk,T +Mτk is below the threshold. If

it is, we know QT is below the threshold and we can output that no change is detected

without considering any further curves. If not, we see if mτk,T , the likelihood-ratio test

statistic for a change at τk is above the threshold. If it is we output that a change

has been detected. If not then we proceed to curve with the next largest τk value and

repeat.

Empirical results suggest that for τ1...τn ∈ IT when searching only for an up-change

(or analogously only for a down-change), the upper bound in Proposition 5.5.1 is quite

tight under the underlying data scenario of no change because most of the mτi,τi+1
are

very small. Furthermore, as we show in Section 5.6, at the majority of time-steps only

one curve needs to be checked before we know that QT is less than our threshold.
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Algorithm 3: FOCuS maxima check at time T for θ1 ≥ θ0.

Input: A set of n likelihood curves and associated (τk,Mτk) values.

1 Set k = n;
2 while k > 0 do
3 Calculate mτk,T ;
4 if mτk,T +Mτk < Threshold then
5 return no change
6 else if mτk,T ≥ Threshold then
7 return change on [τk, T ]
8 end
9 k −= 1;

10 end
11 return no change

5.6 Numerical examples

We run some examples to empirically evaluate the computational complexity of the

FOCuS procedure, comparing the various implementations presented in this paper with

those already present in the literature (Romano, Eckley, Fearnhead, and Rigaill 2023).

In Figure 5.6.4 we show the number of floating point operations as a function of

time. The Figure was obtained by averaging results from 50 different sequences of length

1×106. Results were obtained under the Bernoulli likelihood. Under this likelihood, the

cost for an update is negligible, given that this involves integer operations alone, and

this allows for a better comparison of the costs of pruning and checking the maxima.

We compare three different FOCuS implementations: (i) FOCuS with pruning based

on the ordered roots l1, . . . , ln, where such roots are found numerically through the

Newton-Raphson procedure, (ii) FOCuS with the average value pruning of Section

5.3 and lastly (iii) FOCuS with the average value pruning and the adaptive maxima

checking of Section 5.5.

We note that avoiding explicitly calculating the roots leads to a lower computational

overhead when compared to Newton-Raphson. The best performances are, however,

achieved with the addition of the adaptive maxima checking procedure, where we find

a constant per iteration computational cost under the null centered around 15 flops
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per iteration. Without the adaptive maxima checking, the maximisation step is the

most computationally demanding step of the FOCuS procedure, as we need to evaluate

O(log(T )) curves per iteration.

Figure 5.6.4: Flops per iteration in function of time for three FOCuS implementations. In
green, the flops for FOCuS with pruning based on calculating the roots l1, . . . , ln numerically.
In light blue, FOCuS with the average value pruning. In blue, finally, FOCuS with the average
value pruning and the adaptive maxima checking. Log-scale on both axes.

In Figure 5.6.5 we place a change at time 1 × 105 and we focus on the number of

curves stored by FOCuS, and the number of curves that need to be evaluated with the

adaptive maxima checking. Furthermore, for comparison, we add a line for the naive

cost of direct computation of the CUSUM likelihood-ratio test. We can see how, before

we encounter a change, with the adaptive maxima checking routine we only need to

maximise on average 1 curve per iteration, as compared to about 7.4 for the standard

FOCuS implementation. After we encounter a change, then, the number of curves that

need evaluation increases, as the likelihood ratio statistics increases and it is more likely

to meet the condition of Proposition 5.5.1. As it can be seen from the short spike after
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the change, this is only occurs for a short period of time preceding a detection. This

empirically shows that FOCuS is O(1) computational complexity per iteration while

being O(log T ) in memory, as we still need to store in memory on average O(log T )

curves.

Figure 5.6.5: Number of curves to store and evaluations per iteration as a function of time
for FOCuS running over a long non-anomalous signal followed by a short anomaly. The grey
dotted line is the naive cost of computing the CUSUM likelihood ratio test. The dashed
lines are the number of curves stored by FOCuS over some Gaussian (light-green), Poisson
(dark-green), Bernoulli (light-blue) and Gamma (dark-blue) realizations. The solid lines at
the bottom are the number of curves that need to be evaluated at each iteration with the
adaptive maxima checking: in all three cases always 1 while the signal is non-anomalous.
Log-scale on both axes.

To illustrate the advantages of shifting data points from one assumed exponential

family to another, we evaluate the performances of FOCuS for a Gaussian change-in-

variance by casting the problem into a Gamma change-in-scale (as mentioned in Section

5.3). Let xt ∼ N(0, θ0), then, by the simple transformation of the data yt = x2
t , we
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notice that:

log f(xt, θ0) = log g(yt, θ0) =
1

2
log

(
1

θ0

)
− y

2θ0
.

We can see that yt is Gamma distributed with scale parameter θ0/2 and shape parameter

k = 1/2. For comparison, we add to the evaluation the naive solution of testing for a

Gaussian change-in-mean to the square data (equivalent to the simple CUSUM test).

In addition, for both costs we compare the cases for pre-change parameter known and

unknown.

For a process distributed under the null as a normal centred on 0 with variance

θ0 = 1, we present 5 simulations scenarios for θ1 = 0.75, 1.25, 1.5, 1.75 and 2. Each ex-

periment consists of 100 replicates. Thresholds were tuned via a Monte Carlo approach

to achieve an average run length of 1× 105 under the null in the same fashion of Chen,

Wang, and Samworth (2022). We then introduce a a change at time 1000 and measure

performances in terms of detection delay (the difference between the detection time and

the real change).

In Figure 5.6.6 we illustrate the scenarios and present results in terms of the propor-

tion of detections within t observations following the change. We note how for a positive

change large enough, e.g. for θ1 = 2, there is no evident advantage in employing the

Gamma cost over the Gaussian cost for detecting a change in variance. Arguably, a

simple thresholding procedure could perform as well as our statistics in such scenarios.

As we however lower the signal-to-noise ratio and shift towards more subtle changes,

we can see how the Gamma cost improves significantly on the detection delay. In case

of θ1 = 1.25, we can clearly see that the best performances are achieved by the gamma

cost in case of pre-change known and unknown (with little difference between the two).

Similarly, for a reduction in variance, we see the Gaussian cost showing significantly

slower delays.
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Figure 5.6.6: Empirical evaluation of FOCuS for Gaussian change-in-variance. Top row: ex-
ample sequences for our simulation scenarios, with labels indicating the post-change parameter
θ1, whilst vertical dotted line refers to the changepoint location τ . Bottom row: proportion of
detections in the function of the detection delay for Gamma change-in-scale with pre-change
parameter known (light blue), unknown (dark blue), and Gaussian change-in-mean for pre-
change parameter known (light green) and unknown (dark green). The vertical dotted line
this time indicates the start of the change: the faster we get to 1 following the change, the
better. Prior to the vertical line, we are essentially counting false positives.

5.7 Discussion

We have presented an algorithm for online changepoint detection for one-parameter

exponential family models that (i) exactly performs the likelihood-ratio test at each

iteration; and (ii) empirically has a constant cost per-iteration. To the best of our

knowledge, it is the first algorithm that achieves both of these.

The algorithm can only detect changes in a single parameter, and thus can only

analyse univariate data. However this can provide the building block for analysing

multivariate data. For example Mei (2010) propose online monitoring multiple data

streams by calculating statistics for a change for each individual data stream and then

combining this information. There is an extensive literature on how one can combine

such information in an efficient way (for example Cho and Fryzlewicz 2015; Enikeeva

and Harchaoui 2019; Tickle, Eckley, and Fearnhead 2021).

We do not cover the case where the distribution contains two or more unknown
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parameters which may both change, such as Gaussian change in mean and variance

simultaneously. We note that testing for two parameters in one data stream can be

thought of as a multivariate problem running on multiple copies of the same data

stream, as is done in Pishchagina, Romano, Fearnhead, et al. (2023). Similarly, we do

not cover the problem of testing only changes in one parameter while another parameter

is unchanging but unknown. In practice, if a parameter is assumed not to change, then

it is possible to estimate it well enough using previous data to be able to treat it

as known, while keeping in mind the robustness of the algorithm to small errors in

parameter estimation.

The method we present is robust to these kinds of parameter estimation errors. For

example, a test for Gaussian change in mean assuming variance 1 which has been slightly

misestimated will slightly raise (if under-estimated) or lower (if over-estimated) the

threshold required to detect anomalies at a given significance level, but will not change

the most promising intervals found by the algorithm. Because thresholds are usually set

in practice by considering factors such as desired false positive rate rather than using

a defined significance level, this misestimation turns out to have little practical effect.

A further challenge would be to extend the algorithm to deal with time-dependent

data. Often methods that assume independence work well even in the presence of au-

tocorrelation in the data, providing one inflates the threshold for detecting a change

(Lavielle and Moulines 2000). If the autocorrelation is strong, such a simple approach

can lose some power, and either applying a filter to the data to remove the autocor-

relation (Chakar et al. 2017) or adapting FOCuS to model it Romano, Rigaill, et al.

(building on ideas in 2022), Cho and Fryzlewicz (2020), and Hallgren, Heard, and

Adams (2021) may be better.
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Scaling and multivariate FOCuS

6.1 Introduction

In this chapter, we discuss ways to apply the FOCuS algorithm in a general multivariate

setting, with high numbers of coordinates. Specifically, we look at how the framework

provided by FOCuS can help us deal with computational complexity issues that arise

as the number of data coordinates expands, and the tradeoff of loss of statistical power

that occurs when operating only on the output of FOCuS versus the entire data stream.

We look at ways of increasing the practicalities of FOCuS in this setting, including:

1. Deriving a tight theoretical bound on the memory cost of FOCuS running on a

data stream with a minimum anomaly intensity µmin. This is particularly useful

for multivariate algorithm development as it directly informs required memory

allocation to each variate in order to handle signals of any length.

2. Dealing with the additional noise present in a multivariate dataset by local thresh-

olds and sparsity constraints on which data streams can contain anomalies.

3. Combining information from different data streams about where a multivariate

anomaly starts.

Our main comparator is the Online Changepoint Detection (OCD) algorithm (Chen,

Wang, and Samworth 2022), and to this end our methods are presented mostly in the

138



CHAPTER 6. SCALING AND MULTIVARIATE FOCUS

Gaussian change in mean setting.

6.2 Proving a good constant bound for FOCuS with a mini-

mum parameter value

Previous work has proved that the number of curves stored by FOCuS without a mini-

mum parameter µmin is on the order of log(T )/2 as T →∞, and that with a minimum

parameter the number of curves stored is bounded (see Chapter 3). However, the proof

available did not provide a good bound, only proving finiteness, when empirically there

seems to be a bound (dependent on the size of µmin) that is quite small, for example

less than ten for any reasonable value of µmin. We provide such a computable bound

in the Gaussian and Poisson cases using recent results about random walk behaviour,

and show it matches well with observed data. This has applications in knowing how

much memory storage to allocate for practical use of FOCuS methods.

Definition 6.2.1 (Convex minorant). Given a time series St, the convex minorant is

the greatest convex time series ≤ St for all t. Its segments are the intervals between the

time points t where St is equal to its convex minorant.

Letting St :=
∑t

s=1Xs, 1 ≤ t ≤ T , we have that for any two points (t1, St1), (t2, St2),

the gradient of the line connecting those points is X̄t1:t2 the mean of Xt over the interval

(t1, t2]. Because the startpoints in FOCuS maximally divide the signal into intervals of

increasing mean (see for example Chapter 5 Proposition 5.3.1), they maximally divide

the random walk sum St into intervals of increasing gradient. This means these intervals

form exactly the segments of the convex minorant of the random walk St, as a function

with increasing gradient is a convex function. This fact was utilised in Chapter 3

Proposition 3.4.1 to relate the expected number of startpoints kept by FOCuS to the

expected number of segments on the convex minorant of a random walk.

We further expand on this by considering the number of segments on a convex

minorant of a random walk with gradient above a defined nonzero threshold value,

µmin. We use the following theoretical result:
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Theorem 6.2.2 (Convex minorant construction). Let Xt, 1 ≤ t ≤ T be independent

identically distributed continuous random variables, and let St :=
∑t

s=1Xs, 1 ≤ t ≤ T

be the corresponding random walk. Let

k, [(L1, U1), (L2, U2), ...(Lk, Uk)]

be the number of segments k on the convex minorant, the Li the (horizontal) length of

each segment starting from the left, and Ui the vertical fall or rise of each segment. It

is possible to distributionally construct (k, (L1, ..., Lk), (U1, ..., Uk)) using the following

process:

1. Generate a random permutation σ of the numbers 1, ..., t, i.e. a random member

of the Symmetric group Sym(t).

2. Let k be the number of cycle lengths in σ, and l1, ..., lk the corresponding cycle

lengths when written in canonical cycle notation.

3. Construct u1, ..., uk by letting each ui ∼
∑li

j=1Xj independently of each other, i.e.

progress the random walk for li time.

4. Sort the pairs (li, ui) by gradient ui/li in ascending order to give the sorted list

(Li, Ui).

Proof. See Abramson et al. (2011)

Theorem 6.2.3 (Standard result from abstract algebra). In a randomly chosen per-

mutation σ of l or more elements, the expected number of cycles of length l in σ is

1/l.

6.2.1 Bounds for Gaussian-FOCuS

In order for a curve to contribute to FOCuS, it must correspond to an edge on the convex

minorant with gradient Ui/Li > µmin. This is only those edges on the right hand side

of the convex minorant. However, we don’t require the sorting step in order to count
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curves, and can work with the li and ui from the cycle random walk construction of

Theorem 6.2.2 instead.

Lemma 6.2.4 (Normal rescaling). Let Xi be standard Normally distributed independent

random variables and l ∈ N, µ ≥ 0. Define u :=
∑l

i=1Xi.

P(u/l > µ) = P(Z >
√
lµ),

where Z is a standard Normal random variable.

Proof is by sums and rescaling of Normals.

Given that we only want to count the i where ui/li > µ, due to independence we can

simply add up the expected number of faces of each length multiplied by the probability

that a face of that length has our desired gradient.

Lemma 6.2.5. Let Xt, 1 ≤ t ≤ T be standard Normally distributed, and let St :=∑t
s=1Xs, 1 ≤ t ≤ T be the corresponding random walk. The expected number of faces

on the random walk with gradient at least µ is:

T∑
l=1

1

l
· P(Z >

√
lµ),

where Z is a standard Normal random variable.

Proof. We use the construction of Theorem 6.2.2. By Theorem 6.2.3 the expected

number of faces on the convex minorant of a random walk of size T ≥ l that have

length l is 1/l, and by Lemma 6.2.4 the probability of a face of length l having the

required gradient is P(Z >
√
lµ).

This gives us the expected values in Figure 6.2.1. We can use these to construct a

bound on the number of quadratics as T → ∞ and therefore on the required memory

allocation to univariate FOCuS, or to each variate in a multivariate FOCuS, that will

be appropriate for signals of any size while still being small enough to not crowd our

algorithm’s workspace.
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Figure 6.2.1: Mean number of curves in Gaussian-FOCuS using a sample size of 100 signals
against the theoretical expected number of curves.

Theorem 6.2.6 (Bound on quadratics as T →∞).

E[# quadratics in Gaussian FOCuS] ≤
∞∑
l=1

1

l
· P

(
Z >

√
lµmin

2

)
,

Proof. We have a simple bound for the Normal distribution

P (Z ≥ z) ≤ e−z2/2

z
√
2π

, z > 0

showing that the series from Lemma 6.2.5 converges as l → ∞ (e.g. due to being

sub-geometric).

The extra factor of 2 is because in order to have no evidence for a change at intensity

µmin, the estimated mean of the segment must be less than µmin/2 (and therefore closer

to 0 than to µmin).

This bound is just a function of µmin. It is not too hard to empirically compute

with some code. For sanity checking, if we set µmin = 0 (i.e. no minimum jump size)

we have that P(Z > 0) = 1/2 and we recover the harmonic series logarithmic bound.
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Corollary 6.2.7 (Memory storage bounds as hmax →∞). For a fixed sigma threshold,

the expected memory storage required by Gaussian FOCuS to accurately assess anoma-

lies in all intervals up to size hmax is O (log(hmax)).

Proof. Consider the effect on Theorem 6.2.6 of dividing µmin by 2. We have that for

any decreasing sequence Al where the series convergence occurs,

∞∑
l=1

Al

l
= A1 +

A2

2
+

A3

3
+

3∑
i=0

∞∑
l=1

A4l+i

4l + i

≤ A1 +
A2

2
+

A3

3
+

3∑
i=0

∞∑
l=1

A4l

4l

= A1 +
A2

2
+

A3

3
+

∞∑
l=1

A4l

l
.

Now, letAl = P
(
Z >

√
lµmin

4

)
such thatA4l = P

(
Z >

√
lµmin

2

)
. We have thatA1, A2, A3 ≤

1/2 so the first three terms sum to < 1, giving us that

E[# quadratics with µmin/2] < 1 + E[# quadratics with µmin]

That is to say, halving µmin adds at most one expected quadratic.

This means the expected number of quadratics is logarithmic in 1/µmin or alterna-

tively logarithmic in hmax for a fixed k-sigma threshold µ2
minhmax = k2/2.

Each quadratic is stored in memory as a pair of numbers: an integer T − τ + 1

and a float
∑T

t=τ xt, the size of both of which are probabilistically bounded at well

below the limits for single-precision numbers (32 bits memory) for any possible practical

application. Therefore the memory allocation required to store one quadratic does not

grow with hmax.

Putting these together gives that the total expected memory storage for Gaussian

FOCuS is logarithmic in hmax.

This compares favourably with a window method, where just running one window
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of size h over the data requires O(h) memory allocation. This is because you must

represent each point in the window individually, because advancing the window means

removing the point furthest in the past.

6.2.2 Bounds for Poisson-FOCuS

Lemma 6.2.8. Let Xi be standard Poisson(λ) distributed independent random variables

and l ∈ N, µ ≥ 1. Define u :=
∑l

i=1(Xi − λ).

P [u/l ≥ λ(µ− 1)] = P

[
l∑

i=1

Xi ≥ µlλ

]
,

= P [Poisson(lλ) ≥ µlλ]

This means there is also a strict correspondence between the gradients of the unbi-

ased random walk and the increasing means condition.

Theorem 6.2.9. Let µmin be the minimum parameter at which we are interested in the

likelihood ratio test working. Define µ∗ := µmin−1
log µmin

i.e. the minimal estimated interval

mean we must keep.

E[# curves in Poisson-FOCuS] ≤
∞∑
l=1

1

l
· P (Poisson(lλ) ≥ µ∗lλ)

We get good agreement with this when we look at empirical estimations of expected

numbers of curves over time T for different values of µmin, see Figure 6.2.2:

6.3 Multivariate problem setup

We now turn our attention to FOCuS in the multivariate setting.

6.3.1 Data

Our data signal (x⃗1, x⃗2, ..., x⃗T , ...) is a multivariate signal evolving through time. Each

x⃗t := (x1
t , ..., x

p
t ) is a p-dimensional object, which may represent e.g. measurements
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Figure 6.2.2: Mean number of curves in Poisson-FOCuS using a sample size of 100 signals
against the theoretical expected number of curves.

from p different sensors at the same point t in time.

We denote by T the present time, such that at time T only the signal x⃗t : t ≤ T

has been observed. We are interested in algorithms that perform well when T → ∞:

we have been observing a signal for a long time, or the signal is high-velocity. We are

also interested in algorithms that perform well when p is large: we have a high number

of coordinates. In particular, we are very interested in the setting where both T and p

are large simultaneously.

A startpoint τ affecting some subset P ⊂ {1, ..., p} of coordinates is such that for

t ≥ τ, i ∈ P there has been a change in the underlying process used to produce the

measurements which is now anomalous. We want to identify τ and P at the soonest

possible point T ≥ τ we are able to observe sufficient evidence. Defining h := T − τ +1

the current length of the anomaly at time T , for most practical applications we are

interested in the case h << T , however as T is large h could also be large with this still

being the case.

We will consider each xi
t to be the realisation of a random variableX i

t . Working in the

Gaussian change in mean setting, we will model these random variables as independent
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Normal random variables, that is

X⃗t ∼ MVN(0, I), t ≤ τ

X⃗t ∼ MVN(µ⃗, I), t > τ

where µ⃗ := (µ1, ..., µp) and µi = 0 for i ̸= P . We do not require the µi to be equal

across coordinates; a change could affect one coordinate to a much greater extent than

another, for example a sensor positioned much closer to the source of the observed

anomaly. However, for some applications we may wish to impose a constraint that the

µi all have the same sign (without loss of generality µ⃗ ≥ 0).

While a pre-change mean of 0 and pre-change variance of 1 can be easily obtained by

normalising each data stream in a pre-processing step (see Chapter 5 section 5.2.1 for

some discussion of this), this assumption of an identity matrix I for the variance also

contains the assumption that data streams are independent across variates. In practice

there is often a positive correlation between different data streams, for example if they

represent different sensor measurements of the same underlying process. For a known

variance matrix Σ, one could reparameterise your dimensions by premultiplication by

the matrix Σ−1/2 to find a set of uncorrelated data streams. This will cause the signa-

tures of anomalies in one data stream to spread out into all other data streams that

it is correlated with, something which is in practice undesirable for locating anomalies.

Tveten, Eckley, and Fearnhead (2022) describes a more complex way of handling de-

pendence between data streams when the dependence must be estimated even in the

possible presence of anomalies.

6.3.2 Test when τ and P are known

If τ and P are known, then we can perform a likelihood ratio test of the null hypothesis

µ⃗ = 0 against the alternate hypothesis that µi ̸= 0, i ∈ P . This test has precisely |P |

degrees of freedom. Our test statistic, twice the log-likelhood ratio, has the following
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form under the null hypothesis:

∑
i∈P

1

T − τ + 1

(
T∑

t=τ

X i
t

)2

∼ χ2
|P |.

We would reject the null hypothesis for values of this statistic over some threshold,

which we would choose according to our desired probability of a false positive.

Both τ and P are unknown, which is the problem we wish to tackle.

6.4 Previous work

6.4.1 Testing all τ when |P | = 1: univariate FOCuS

We will define the statistical significance for one coordinate i and one start time τ as

Si
τ :T :=

1

T − τ + 1

(
T∑

t=τ

xi
t

)2

.

Under the null hypothesis, we have that each Si
τ :T ∼ χ2

1, and the Si
τ :T are independent

across different coordinates i. If we only consider one coordinate, we are interested in

finding the τ that maximises Si
τ :T .

The Functional Online Cumulative Sum (FOCuS) method (Romano, Eckley, Fearn-

head, and Rigaill 2023) is a variant of the Page-CUSUM test that guarantees coverage

of all possible µ via likelihood ratio test of N(0, 1) against N(µ, 1), µ > 0 . This can be

thought of as equivalent to testing all possible startpoints τ ≤ T at each timestep T .

FOCuS reports a set of promising startpoints (τ1, ..., τn) and associated statistical signif-

icances, which is guaranteed to contain the startpoint τ ≤ T with maximum statistical

significance among all possible startpoints. The memory complexity is n ∼ O(log(T ))

and the FOCuS method has been shown to be O(1) in computational cost per iteration

in order to evaluate the best possible startpoint. The case µ < 0 can be handled by

running FOCuS on the negation of the signal.

For practical applications the number of promising startpoints found by FOCuS can

be restricted in two main ways:
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1. Implementing a minimum intensity µmin > 0 for the likelihood ratio test to ensure

the removal of startpoints far in the past associated with a relatively constant,

nonzero but very small statistical significance. We remove all startpoints τ that

do not have intensity at least µmin on [τ, T ].

2. Implementing a clearing parameter hclear to ensure the removal of startpoints

where there is clear evidence that the signal has since returned to baseline and the

anomaly, while previously present, has been passed over. We remove all startpoints

τ < T − hclear that do not have intensity at least µmin (which we may set at 0) for

at least one [t, T ], t ≥ T − hclear.

These two strategies are related to each other, in that they both discourage the

retention of startpoints very far in the past. A lower bound on the intensity µmin means

a linear increase in the amount of total statistical significance required for a startpoint

to be maintained over time, requiring high total significance for retention over long

periods. A clearing parameter hclear means that as T advances further from τ , the

startpoint τ must repeatedly clear independent significance checks over intervals of size

hclear (as well as all the intervals that overlap with these). The end result for both

strategies is that under the null hypothesis of no change, the mean amount of retained

startpoints becomes bounded, rather than rising logarithmically with signal length. For

µmin > 0, hclear =∞ bound is given in Section 6.2.1, but is empirically fairly low (e.g.

less than 10) for reasonable choices of µmin and hclear.

6.4.2 Choosing P using local thresholds and anchoring: OCD

The Online Changepoint Detection (OCD) method (Chen, Wang, and Samworth 2022)

is intended as a fast algorithm for the detection of both dense (|P | ≥ √p) and sparse

(|P | < √p) changes in multivariate data. It uses Page-CUSUM on a grid to identify

promising τ in each coordinate (diagonal statistic), and then uses that τ to test other

coordinates on the interval [τ, T ] (dense and sparse off-diagonal statistics). OCD uses

diagonal to mean the coordinate that has generated sufficient evidence for an anomaly
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on some interval, and off-diagonal to refer to testing other coordinates in the same

interval to look for further evidence of this anomaly. The coordinate used to find

the interval is known as the anchor coordinate. OCD does not incorporate anchor

coordinates into the offdiagonal statistic, which may lead to a loss of statistical power

when detecting anomalies affecting small numbers of coordinates.

OCD handles sparsity by setting a lower bound a on the univariate statistical signif-

icance of [τ, T ] needed for a coordinate to be considered to belong to P . Where a = 0,

the regime searches for dense changes. Setting a ∼ log(p) searches for sparse changes.

The OCD algorithm searching for dense changes has a computational cost of O(p2)

in the number of coordinates p. This compares favourably with the number of possible

subsets 2p.

Choosing P when τ is known

Imagine we have a given interval [τ, T ] and we would like to perform a statistical test

on all subsets P ⊂ {1, ..., p} of coordinates for this given interval. There are 2p − 1

nonempty subsets to check, and scanning them all individually would be computation-

ally infeasible as p gets large.

One quick method to compute the best subset of size i, Pi is to sort each coordinate’s

significance over [τ, T ] into descending order. Then P1 is the coodinate with the greatest

significance, P2 is the two top coordinates, and so on until Pp is all coordinates. Sorting

algorithms are only O(p log p) which makes this an attractive procedure.

OCD uses the strategy of using only one subset P>a, which is all coordinates with

significance over a on the interval [τ, T ], where a is a user-defined local threshold pa-

rameter. We must have P>a = Pi for some i, so this is clearly sensible. Using P>a is

advantageous if we do not know the size of the anomaly, as if an anomaly is present we

would expect to coordinates it affects to collect individual statistical significances, and

therefore eventually become included in P>a. It also has a computational advantage,

as we are not required to sort the significances.

However, OCD has an issue of not varying its global threshold according to the
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Figure 6.4.3: Three possible ways of applying a local threshold to one coordinate of a data
stream.

current size of P>a. This means that anomalies affecting small numbers of coordinates

will be compared against a global threshold designed to account for the noise in large

numbers of coordinates, and results in a loss of statistical power for detection of these

anomalies.

Figure 6.4.3 gives an illustration of ways to address this by changing what is passed

on after a local threshold is crossed. Subtracting the local threshold from the passed-on

significance (orange line) or only starting to collect global significance once over the

threshold (green line) are both ways to balance the significance of anomalies occurring

in different numbers of data streams while using a constant global threshold.

The choice of a is important, with higher values of a favouring anomalies affecting

fewer coordinates.

Local thresholds are particularly important because they limit the amount of trans-

mission of data required between data streams. Often, a multivariate anomaly detection

problem represents multiple sensors that are spread out across a physical monitoring

network, connected to a central computer, and the cost of one sensor communicating

with another is greater than the cost of computations being performed on one sensor

because it must first transmit everything required to perform the computation to the

central computer. Yang, Eckley, and Fearnhead (2024) gives a more in-depth discussion

of this problem.
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Choosing a local threshold

Choosing a local threshold a is essentially a coordinate selection procedure as we select

those coordinates who have significance statistic above a to contribute to our global

sum. We would (trivially) like the following to be true:

1. When the ith coordinate does not contain any anomaly, as often as possible we

do not select it. This avoids the introduction of unwanted noise into our detection

system.

2. When the ith coordinate does contain an anomaly, as often as possible we do

select it.

To motivate some choices of a local threshold a, consider the fact that under the null

the likelihood ratio statistic associated with any choice of interval [τ, T ] is chi-squared

distributed on one degree of freedom (i.e. the square of a standard normal distribution),

as it is the case that

∑T
t=τ xt√

T − τ + 1
∼ N(0, 1).

The chi-squared distribution on one degree of freedom has mean exactly 1 and median

approximately 0.5. Therefore a likelihood ratio statistic with value < 0.5 is showing

negative evidence for an anomaly. It makes sense to exclude any coordinates showing

negative evidence from our offdiagonal sum, so we can set a ≥ 0.5.

Our offdiagonal sum across coordinates will look chi-squared on p degrees of freedom

under the null hypothesis. The global significance threshold for a small p-value will rise

by at least 1 when moving from p− 1 to p degrees of freedom. Therefore setting a ≥ 1

means that no coordinates will be included that don’t give justification for the global

threshold increase.

More generally, we can describe the behaviour of any fixed value of a in terms of

quantiles of the χ2
1 statistic, or alternatively sigma-thresholds. For example, setting a

equal to the 98th percentile (approximately 5.41) means that under the null hypothesis
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only 2% of coordinates will be included in the sum. This is a useful way of bound-

ing the amount of transmission and centralised computation we do according to given

constraints. Chen, Wang, and Samworth (2022) proved that setting a ∼ log(p) would

ensure that under the null, the expected amount of transmission would remain bounded

even as p→∞, while also remaining suitable for detecting changes affecting up to
√
p

many coordinates.

Estimating P using a combination of local threshold and minimum parameter

Chen, Wang, and Samworth (2023) take the approach of estimating P by choosing a

minimum µmin value and then (for up-changes) running the FOCuS procedure on the

signal with µmin subtracted off, plus a local sparsity constraint (which they call d1)

for this subtracted run that plays the same role as a above. They provide theoretical

guarantees that with high probability this estimate of P contains no noise coordinates,

while coordinates containing anomalies of size µ > µmin of sufficient duration will be

contained in the estimate.

We can compare this with a method that includes coordinates in P if they are both

have significance above the local threshold a and have mean x̄ > µmin. Rearranging the

significance calculations from the OCD-CI subtraction procedure means that we would

place a coordinate in P under

• Our method if x̄ > max
[

a1√
h
, µmin

]
• OCD-CI method if x̄ > a2√

h
+ µmin

for appropriately chosen a1 or a2 that are dependent on our desired amount of trans-

mission. For a given desired level of transmission you would expect a1 > a2.

Our method has advantages for the correct detection of anomalies of intensities very

close to µmin as soon as statistically possible. The OCD-CI method has a smoother

transition between the significance-based threshold and the mean-based threshold. Both

of them work very similarly in practice, as the main advance gained by implementing
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them is to treat intervals with small x̄ and large h as noise coordinates. Also, if we

send µmin → 0 the methods become identical.

Choosing this method over the OCD-CI method would give the advantage of being

able to pick a slightly higher µmin parameter without delaying the detection of anomalies

of size above but close to µmin. This higher µmin parameter would then reduce the

number of startpoints kept in our algorithm, although not by very much (for example,

doubling µmin removes less than one startpoint in expectation, as shown in Section

6.2.1).

6.4.3 Constructing comparators

We will use a method designated OCD*, a slightly modified variant of OCD to the

one the creators propose incorporating the above ideas. Specifically, we do the three

following things:

1. Instead of the Page-on-a-grid method to find startpoints, we implement FOCuS

with a minimum µmin parameter equal to the smallest point on this grid, essen-

tially constructing an infinitely fine grid with no maximum value rather than one

multiplicatively increasing by
√
2 at each grid step to a maximum value. This

may find some extra startpoints that were missed by the grid approach. It also

allows us to send µmin → 0 if we want to without needing to use an ‘infinite grid’,

which was previously computationally impossible.

2. We incorporate our anchor coordinate into its corresponding offdiagonal sum as

is implicitly done in the support estimation for the OCD-CI paper rather than

leaving it out as the original OCD paper does. This helps us find anomalies that

affect more than one but only a few coordinates.

3. We use the maximum instead of the sum boundary in order to reduce detection

delays for anomalies with means close to µmin .

This allows us to bring the OCD algorithm in line with the conventions made by FOCuS-

derived algorithms, such that the difference under investigation - how multivariate
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coordinates are combined - stands as the only major difference between the algorithms.

We now have three comparator algorithms which are detecting as close as possible

the same concept of an anomaly, but are using very different methodologies to combine

coordinates.

1. Naive FOCuS: we run univariate FOCuS on each data stream and sum the results

across streams.

2. OCD*, as defined above.

3. Geometric FOCuS (Pishchagina, Romano, Fearnhead, et al. 2023), a more com-

plete generalisation of FOCuS intended for lower-dimensional multivariate settings

such as for detection of changes in mean and variance.

These algorithms are organised in increasing order of computational complexity with

respect to the number of coordinates p. Naive FOCuS is a simple O(p) method. OCD*,

the same as OCD itself, is an O(p2) method. Geometric FOCuS is an O(αp) method

where α ≥ 2 due to the complexity of the algorithm for its convex hull computation, and

is presented here for completeness rather than practicality in the higher-dimensional

setting.

6.5 Multivariate FOCuS

We are now able to formulate our question. Can we construct an O(p) method that

improves on Naive FOCuS by drawing on insights gained from other methods, while

still retaining a low computational cost?

6.5.1 Startpoint selection across coordinates

If we are interested in testing intervals [τ, T ] in a multivariate signal at the present

time T , we first have to pick the τ . The best way to do this is not immediately clear,

because different start times may be promising in different coordinates. If we label the

best startpoint τi for each coordinate i, then for different coordinates i and j we may
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have τi very far from τj. We would hope that in the presence of an actual anomaly

affecting both i and j at the same time, we would have the τi “close to” τj. Therefore,

checking both [τi, T ] and [τj, T ] for anomalies should be a good proxy for checking the

best time [τ, T ].

The OCD* algorithm uses offdiagonal tail coordinates. That is, we choose the best

τi using Page’s method (Page 1955) for one coordinate i, and then test [τi, T ] for the

other coordinates as well. This forces the startpoints to line up exactly, but the loop it

requires is the source of why OCD* is an O(p2) method.

When deriving support estimates and confidence intervals for the startpoints for

OCD, Chen, Wang, and Samworth (2023) show that, for a sharp change of intensity µ,

the length of a good confidence interval for when that change started is O(1/µ2). That

is, for τ showing evidence for small changes, it is quite hard to tell from the noisy data

exactly where the true change started, and we don’t get any more evidence about good

start points from observing the signal for longer (although we collect more certainty

that a change is actually present).

Naive FOCuS would, when given a coordinate subset P , calculate the best τi for

each i in P and then add up the significances for all the [τi, T ] in P . That is, we allow

anomalies to start at entirely different times in different coordinates, with no constraint

whatsoever. If P really does contain an anomaly that starts in the same time across

coordinates, this should appear in our test. However, the rise in the number of tests

we are performing means that our false positive rate will be higher than we would like.

6.5.2 Testing for anomalies using summaries of data streams

Consider the following scenario: we have run FOCuS individually on each univariate

data stream, giving us lists of promising start points and associated significances. We

would like to construct a good test of the hypothesis that there is an anomaly that

affects some subset P of coordinates but that starts at (roughly) the same time in each

coordinate. To what extent is it possible to do this using not the whole dataset but

only the outputs from FOCuS?
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For a univariate signal with present T and some past time t, let us define the nearest

prior startpoint τ(≤t) to t as the greatest τ ≤ t recorded as a startpoint by FOCuS at

time T . That is, we are not interested in any startpoints τ > t as any such anomaly

[τ, T ] would not contain t. We can rephrase univariate FOCuS at time T as a backscan

for all t ≤ T of the significances of the intervals S[τ(≤t), T ], where if no such τ≤t exists

(if t is before the first startpoint) we define the significance to be zero.

This gains us nothing in the univariate case. However, it illustrates one way to

proceed in the multivariate case, as follows:

For a multivariate signal with present T and some past time t, let us define the

nearest prior startpoint τ i(≤t) for coordinate i similarly, as the greatest τ ≤ t recorded

as a startpoint by univariate FOCuS run on coordinate i at time T . We can then do a

global backscan for all t ≤ T of the sum of the significances of the intervals Si[τ
i
(≤t), T ].

If we are trying to select some subset P>a, then we only sum the significances that are

over our local threshold a.

There exists an algorithm to compute this backscan in only O(p) complexity. This

is a significant improvement for large p on the O(p2) complexity for the offdiagonal

statistics approach. The algorithm requires us to have a tuple list L of the startpoints in

all coordinates that are globally sorted in reverse time order and labelled by coordinate,

that we use as our iterator. L consists of tuples (τ, i) containing startpoints and the

coordinates that generated them, sorted by τ in descending order. We know that for

one coordinate detecting anomalies up to a maximum window size h, the expected

number of startpoints kept at each iteration is bounded at all times by O(log h), and if

we have no maximum window size then it is bounded at time T by O(log T ). Therefore

the expected size of this list L is O(p log h) in the maximum window size h case (as is

the appropriate comparator for OCD*) and O(p log T ) if there is no maximum window

size.

The algorithm is as follows:

1. Construct the sum of the significances
∑

i Si[τ
i
≤T , T ] using the final startpoint in

all coordinates. Test against threshold.
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2. Starting with t = T , we now construct
∑

i Si[τ
i
≤t−1, T ] by replacing Si[τ

i
≤t, T ] by

Si[τ
i
≤t−1, T ] only in the coordinates i where they differ. These i are precisely the

coordinates that appear in the elements (t, i) of L. Test against threshold.

3. Decrement t to the next τ < t that appears in the first elements of the tuples of

L.

4. Repeat steps until we are through L.

Constructing L in the first place could be a challenge. However, sorting a list of

size n is an O(n log n) operation, giving us at worst O(p log p) complexity in p for this

algorithm if we were to recreate L from scratch every time. We do not need to do this,

as univariate FOCuS never moves its start points, only ever deleting them or adding a

startpoint at T . Therefore, as T → T +1 the elements of L can disappear entirely, but

not switch their ordering. We only need to add the relevant (T, i) to the front of L and

delete elements while iterating through if they are no longer needed. This means that

updating L is only an O(p) operation in p.

This method enforces a notion of nearness between the startpoints tested in different

coordinates. In the case of a real anomaly beginning at the same time in all coordinates

it affects, this nearness will be satisfied for those coordinates. However in the absence

of an anomaly we won’t test the most significant startpoints unless they are near each

other, cutting down on the noise (see Figure 6.5.4). Here, by using a backscan to

constrain where anomalies begin in different data streams, we can still pick up the

anomaly well, gaining some statistical power.

In practice, the τ i≤T can still be very far apart in each datastream. This means that

our anomaly detection method still contains a large amount of additional noise. We

offer two possible means of addressing this: enforcing a hard limit on how far apart

the τ i≤T can be in order to contribute to the same anomaly, and computing a distance

discount for τ i≤T that are far apart.
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Figure 6.5.4: An anomaly beginning at time 150 is estimated in the coordinates it affects by
the vertical purple lines. Estimates for coordinates it does not affect are given in grey.

6.5.3 Enforcing a hard limit on nearness

We may wish to set a hard limit on how far apart we test different startpoints for

anomalies. That is, given a fixed overlap W , we only wish to test the startpoint τ(≤t)

during the backscan at point t if τ(≤t) > t − W . This requires that as we iterate

through L we separate out adding the significances Si[τ
i
≤t−1, T ] from the removal of the

significances Si[τ
i
≤t, T ] by constructing a separate list of startpoints to be added on a

time delay.

One advantage of this way of working is that our parameter W is easily interpretable

as the maximum lag between anomaly start times across different coordinates. We can

therefore construct a reasonable estimate of a good W based on the kind of anomaly

we are looking to search for (size, number of coordinates affected), using Chen, Wang,

and Samworth (2023)’s work on global confidence intervals.

Consider the case of an anomaly beginning in the same time point τ across all

coordinates. The estimated anomaly startpoint in each coordinate will be somewhere

close to τ , but may be slightly before or slightly after. Therefore, if our real data

conforms to our model, and we decide to implement a reasonable µmin in the jump

size of the anomalies we are searching for, use of a constant W will pick up on all real

anomalies with high probability.
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An alternate method is to linearly increase the length of W as we backscan through

the data stream. This is based on the idea that in order for an anomaly of mean µ

and length h to be distinguishable from statistical noise at any given significance level,

it must have µ2h above a threshold related to the significance level. Therefore the

error estimation in the startpoint of an anomaly, of order O(1/µ2) for a µ currently

detectable, is also of order O(h).

We would not want to use a W if we had reason to suspect that anomalies could

legitimately begin at different time points in different data streams. This is the case

in many real world applications, such as errors that cascade through a network if not

fixed promptly.

6.5.4 Distance discounting

If we have some τk < τ < τk+1, where τk and τk+1 are adjacent startpoints stored in

FOCuS (i.e. τ is not one of these), what is it possible to say about the significance of

the interval [τ, T ] given that we only have the summary statistics stored by FOCuS?

We are interested in this in the multivariate setting because we may have evidence

from other coordinates that τ is a more correct starting place for an anomaly.

We know that we must have µτk:τ ≥ µτ :τk+1
, or else τ would be a startpoint in FOCuS

by the ascending means criterion. Therefore we must also have µτk:τk+1
≥ µτ :τk+1

, where

µτk:τk+1
is a known quantity as both τk and τk+1 are stored in FOCuS. We can use this

to create an upper bound on the value of µτ,T , namely

µτ,T ≤
1

T − τ

[
(T − τk+1)µτk+1:T

+ (τk+1 − τ)µτk:τk+1

]
.

This then can be used to create an upper bound Supper
τ :T on the significance Sτ :T =

(T − τ)µ2
τ,T . This upper bound is shown as the orange line in Figure 6.5.5. Previously

we only had the upper bound Sτ :T ≤ max(Sτk:T , Sτk+1:T ), which is shown in red on

Figure 6.5.5. We also have the following proposition:

Proposition 6.5.1 (Linear upper bound). Supper is piecewise convex between start-
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points, meaning in particular that it is sublinear, and the simpler linear upper bound

Sτ :T ≤
(τ − τk)Sτk:T + (τk+1 − τ)Sτk+1:T

τk+1 − τk

also applies.

Proof. We define the continuous function s(τ) on the domain τ ≤ τk+1 < T as

s(τ) =

[
(T − τk+1)µ̂τk+1:T

+ (τk+1 − τ)µ̂τk:τk+1

]2
T − τ

At each of the integer time points τ ∈ {τk, τk + 1, ..., τk+1}, this is the significance Sτ :T

at that point. We can represent this as (a − bτ)2/(T − τ) for the appropriate a, b.

Differentiating with respect to τ we have that

s′′(τ) =
2b2

T − τ
+
−4b(a− bτ)

(T − τ)2
+

2(a− bτ)2

(T − τ)3

=
2[(a− bτ)− b(T − τ)]2

(T − τ)3
> 0

Therefore s(τ) is a convex function as its second derivative is non-negative for all

relevant τ .

The case τ > τn more recently than the final quadratic is not covered by this

reasoning and must be handled separately, but here we have that Supper
τ :T is exactly the

linear function (T − τ)µ2
τn,T

.

Figure 6.5.5 shows the actual interval significances, and various upper bounds on

them, from a selection of runs of univariate FOCuS on a randomly generated signal of

size 500 without anomalies. In blue, we see the actual interval significance that would

be reported by a method such as OCD* that kept and tested all relevant data, whereas

the purple line refers to the Naive FOCuS method of considering the most significant

startpoint to be relevant for all start times in that coordinate.
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Figure 6.5.5: Significances and significance bounds for four runs of univariate FOCuS on a
signal of size 500.
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By performing a multivariate backscan as in section 6.5.2, we are able to improve

from the purple bound to the red one by only considering the significance of nearby

startpoints. Note that our backscan method of considering the τ i(≤t) in each coordinate

i is not aiming to test the significance of [t, T ], just to ensure that the τ i(≤t) are all close

to each other, and therefore there is some t∗ ≤ t where we are testing the significance

of [t∗, T ].

If we are prepared to accept a higher computational cost to discount by distance, for

example if we have already performed appropriate coordinate selection using a backscan

or a hard limit W , then the best possible upper bound on the significance would be

given by the orange line Supper. We could also use the linear upper bound in green if

this became the computational bottleneck in our algorithm.

However, utilising either of these methods on the full data stream would require

a loop that would make our overall computational cost O(p2), for the same reasons

as OCD*: we are updating something about the significances of all other coordinates

when we change τ in one. It may still be that this is a useful idea, for instance if we

are working in a distributed setting where the limiting cost is communication between

coordinates and the central processor (see Yang, Eckley, and Fearnhead (2024) for an

example).

6.6 Summary

There are a variety of ways to search for collective anomalies in a multivariate data

stream. These methods can have upsides and downsides, both statistically and compu-

tationally. If we knew a priori where our anomalies were, then the significance test for

them is fairly simple: we sum the univariate significances, and compare to the quantile

of a χ2 statistic with the degrees of freedom equal to the number of coordinates being

tested. However, when moving from the univariate to the multivariate setting, two

main problems arise. These are coordinate selection, and selection of startpoints across

coordinates. If these problems are not handled well, they introduce more noise into our
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significance statistics and reduce the power of our detection method.

Both coordinate selection and selection of startpoints are made easier to handle by

the introduction of a lower bound µmin of the absolute mean of the anomaly, over all

coordinates it affects, even if µmin is small. For a given significance threshold, this is

equivalent to introducing a maximum anomaly length hmax which is allowed to be quite

large, and is therefore a feasible constraint for many real-world problems. However,

there may be problems where we do not wish to have this constraint.

Coordinate selection is best handled by a choice of local significance threshold a,

which can also be combined with the lower bound µmin on anomaly length in either

a sum or a max way. In order to bound our false positive rate under the null as our

number of coordinates p → ∞, we must choose a ∼ log(p). In the absence of such a

µmin, coordinate selection can also be done by considering if estimated startpoints in

different data streams are close enough to each other in time to be referring to the same

anomaly with high probability. This would only be valid on real data streams where

we actually expect anomalies to begin at the same time in every coordinate.

Selection of startpoints across coordinates can be handled by testing all startpoints

derived from each univariate data stream, in all other data streams that have passed

coordinate selection. This is an O(p2) method, which may cause problems for large

p. We have outlined various methods to instead combine startpoint information across

coordinates to give an O(p) method. The choice of methods is informed by statistical

bounds on the distance between the true startpoint and its estimation if an anomaly is

present, as well as the expected density of startpoints found under the null at different

times in the past.

We can also implement distance discounting: a mathematical penalty on the sig-

nificance of a coordinate if we assume we have estimated the startpoint incorrectly.

This can cause computational problems when working with large numbers of start-

points so may be best combined with coordinate selection methods to first reduce the

number of startpoints under consideration. This would also only be valid on real data

streams where we actually expect anomalies to begin at roughly the same time in every
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coordinate.

Our methods provide ways forward for a person wanting to apply multivariate

anomaly detection methods on signals with both a long length and with a large number

of coordinates p, where an assumed minimum anomaly size µmin may not exist, and

where a more naive anomaly detection method is liable to being overwhelmed by the

large amount of noise present in the signal.
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Conclusion

Schmidl, Wenig, and Papenbrock (2022)’s recent review of 158 methods for time series

anomaly detection came to the conclusion that no method seems uniformly better

than others, the performance of most methods is extremely sensitive to many of their

parameters, and issues of robustness and scalability continue to dominate the concerns

of the methods’ users. This is in line with what has previously been said on the topic

of classification more generally (Hand 2006), where neglecting important aspects of

individual real-world problems in pursuit of an overall best method creates an illusion

of progress in the field.

Finding the right anomaly detection method to solve your problem starts with pick-

ing the right definition of an anomaly for your problem. Choosing a method designed

to find anomalies that are different from the anomalies you are looking for will always

result in bad performance, even if the method is good. If you have a clear idea of

what an anomaly is supposed to look like, translating this into a precise mathematical

definition can often be fairly simple and also interpretable.

The methods developed in this thesis have been implemented in Python 3 and are

intended to integrate with the rest of the scientific Python ecosystem. They form the

basis of the open-source package changepoint online which can be found on PyPI. They

are scaleable, work well with many different types of pre-processing that can address

robustness, and are good at detecting the types of anomalies they have been developed
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to detect.

7.1 Summary of novel theoretical work

Here, we briefly recap and highlight three novel contributions to the academic literature

provided by the work done within this thesis. We also describe the stages of research

that led up to these novel theoretical developments, and the implications they may have

elsewhere.

7.1.1 Extension to Poisson data form

The main challenge in developing a Poisson form of the FOCuS algorithm came in the

definitions of the pre-change and post-change parameters, which were initially unclear.

In the Gaussian form, if the pre-change mean and variance are known, then without

loss of generality the signal can be rescaled to a standard Gaussian pre-change.

This is impossible with a Poisson pre-change parameter λ which influences the shape

of the distribution and cannot be rescaled - there is no standard Poisson distribution.

Adding on an additional µ for the anomaly creating a post-change parameter λ+µ, as in

a direct mimic of the Gaussian case, created challenges in the fact that the log-likelihood

for different µ depended on λ in quite a complicated way:

ℓ(xT |λ+ µ)− ℓ(xT |λ) = xT log

(
λ+ µ

λ

)
+ µ

If you specify your expected
∑T

t=τ λt and actual
∑T

t=τ xt counts as your fundamental

data of interest, and attempt to construct your anomaly out of them, an additive

definition for estimated anomaly size (actual minus expected count) has a fluctuating

range [−
∑T

t=τ λt,∞) whereas the multiplicative definition (actual divided by expected

count) has a constant range [0,∞). We also have that the log-likelihood when summed

over all points in an interval divides neatly into the sum of an actual count xT and

an expected count λ times their appropriate transformations of µ, if and only if µ is a

multiplicative rather than an additive parameter. These factors motivated the switch
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to a multiplicative log-likelihood form for this problem:

ℓ(xT |λ · µ)− ℓ(xT |λ) = xT log µ+ λ(µ− 1)

It was also very difficult to plot a significance graph of the anomaly height µ > 0

versus the interval size h, because while in the Gaussian case we have the significance

µ2h, in the Poisson case the significance additionally depends on the background rate

λ, which may even change in the interval under consideration, and so there is no such

standard two-dimensional graph. Anomalies of the same amount stand out more when

the background rate is lower.

When using a algorithm such as Page’s method for Poisson data (Lucas 1985) to

search for fixed sizes of anomaly, a multiplicative µ parameter is a problem. This

is because if your background rate λ is changing, then the size of anomaly you are

optimised to detect changes as well. However, we noted that when generalising Page’s

method to the functional space, this problem disappears. Searching for all λµ where

µ > 1 is the same domain as searching for all λ+µ where µ > 0, that is, all up-changes

to something > λ. Even if we are implementing a minimum parameter µmin, we simply

choose this low enough that any fluctuations in background would not take its additive

interpretation above the smallest anomaly size we wish to consider.

7.1.2 Algorithm improvements giving a constant cost per iteration

The FOCuS method covered in this thesis was originally proposed and developed by

Romano, Eckley, Fearnhead, and Rigaill (2023) as an extension of the FPOP change-

point method (Maidstone et al. 2017) to the anomaly detection setting. When I began

work on this PhD, the computational state of FOCuS could be summed up as:

“FOCuS is not an online algorithm, as the number of quadratics to maximise per

iteration can fluctuate and is unbounded.” (Romano, Eckley, Fearnhead, and Rigaill

2023)

Here, the maximisation step is being referred to as the bottleneck, which is certainly
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the case in non-Gaussian data forms where it requires computing logarithms. Addi-

tionally to this, the pruning step of FOCuS was based on computing the intervals in

µ over which each quadratic contributed to the significance statistic, a computation

which was also dependent on the number of quadratics. Changing FOCuS into a truly

online algorithm required making both the pruning step and the maximisation step into

constant computational costs that were not dependent on the number of quadratics.

This was because, in the version of FOCuS with unknown pre-change mean, the

quadratics had three varying coefficients rather than two so it was unclear if they could

be sorted.

Both of these required considering the time-series nature of the problem, by looking

at the smaller intervals the startpoints associated with each quadratic subdivide the

signal into, only one of which alters as the signal advances. Because only the final

subinterval [τn, T ] is modified as T advances, by rephrasing the algorithm as iterating

over sums of subintervals we could give it a constant, low cost.

The trick of fitting an expanded model with more parameters that’s easier to com-

pute and comparing this inequality to a threshold is somewhat conceptually similar

to the inequality-based pruning used for changepoint methods, for example the PELT

changepoint algorithm (Killick, Fearnhead, and Eckley 2012), which also relies on the

assumption that placing more changepoints always increases the overall model fit. How-

ever, there is a clear difference: while PELT’s inequalities prune the set of changepoints

under consideration, FOCuS does not remove startpoints by fitting the expanded model,

using it instead to avoid iterating over them. It is possible that the trick presented here

could be of use more widely to reduce the computational cost (but not the memory

cost) of other changepoint methods.

7.1.3 Bound on expected number of startpoints present in FOCuS with

µmin

The bound on the expected number of startpoints printed at the beginning of Chapter

6 was derived quite late in the PhD. The appendix for Chapter 3 contains a proof that
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there is a finite bound, based on the idea that resetting FOCuS’s memory entirely due

to µmin takes a finite amount of time, but this is a very loose bound.

This bound also serves as an upper bound on the number of distinct startpoints kept

when implementing a Page-on-a-grid scheme. As all such schemes have a finite number

of grid values, they have a smallest positive grid value, and setting this value as µmin

ensures that all grid values are therefore in the range [µmin,∞). All startpoints from

this grid would be kept by FOCuS (although FOCuS may keep additional startpoints

not on this grid). Assuming the grid is sufficiently fine that only a negligible amount

of startpoints are lost between the grid values, the bound will be fairly tight.

One example of such an algorithm is Online Changepoint Detection (OCD) (Chen,

Wang, and Samworth 2022), whose author states about the difference between the

number of points on its multivariate grid B and the number of distinct interval sizes

giving rise to its set of startpoints T :

“In fact, the computational complexity of ocd can often be reduced, because typically

T := {tjb : j ∈ [p], b ∈ B} has cardinality much less than pB. ... It appears to be

difficult to provide theoretical guarantees on |T |. Nevertheless, we have implemented the

algorithm in this form in the R package ocd, and have found it to provide substantial

computational savings in practice.” Chen, Wang, and Samworth (2022)

This theoretical guarantee will also apply to all other algorithms that use Page-on-

a-grid schemes.

7.2 Summary of applications and collaborations

Here, I highlight three collaborations that developed over the course of this PhD and

contributed to this thesis in the application areas of telecommunications, astrophysics,

and nuclear radiation monitoring.
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7.2.1 British Telecom (BT)’s collaboration with STOR-i

This PhD was jointly funded by BT and EPSRC and was at the project outset provision-

ally titled “Novel Anomaly Detection Methods for Telecommunication Data Streams”.

Previous collaborations between BT and STOR-i had led to the development of

other collective anomaly detection methods, notably Collective And Point Anomalies

(CAPA) developed by Fisch, Eckley, and Fearnhead (2022) and its sequential form,

SCAPA (Fisch, Bardwell, and Eckley 2022) and multivariate extensions (Fisch, Eckley,

and Fearnhead 2021; Tveten, Eckley, and Fearnhead 2022). CAPA was determined to

be a useful tool that flexibly met BT’s anomaly detection requirements. At the outset

of this project, the main issue with CAPA was that:

“CAPA infers collective and point anomalies by solving a set of dynamic programme

recursions. However both the computational cost of each recursion, and the storage cost,

increase linearly in the total number of observations. This is unsuitable for the online

setting in which both storage and computational resources are finite. In practice, this

problem can be surmounted by imposing a maximum length m for collective anomalies.

... As one might anticipate, within this setting long anomalous segments with low signal

strength would not be detectable any more as a result of the approximation.” (Fisch,

Bardwell, and Eckley 2022)

As stated above, CAPA suffers from what this thesis has referred to as the interval

search problem. That is, it takes an O(m) computational and memory cost per iteration

when looking for anomalies up to size m. The main aim of this PhD was working with

BT to develop a method able to bypass this limitation and therefore handle processing

larger volumes of data using fewer resources in situations where this is necessary.

The main weakness FOCuS has when compared to CAPA is that CAPA’s dynamic

programming recursions can fit multiple anomalous intervals to the past signal. This

means that it can accurately detect when anomalies have ended, and start searching

for new anomalies immediately afterwards. In contrast, FOCuS in its basic form takes

a long time to reset when passing over a large anomaly, and loses detection power
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during that shadow period. It was the addressing of this weakness that provided the

main motivation for the clearing parameter hclear which is described in Chapter 4.

However, it should be noted that CAPA’s ability to fit multiple anomalous segments

simultaneously does make it more effective when we are interested in the exact nature

of what anomalies do and how they end, rather than only wanting to know if they have

ended so we can reset our algorithm.

BT’s data is often either well-approximated by a Gaussian distribution (after appro-

priate pre-processing has been done), or it is sufficiently non-parametric as to be not

well-approximated by any distribution. The generalisation of FOCuS to the Exponen-

tial family in Chapter 5 was used in particular to allow use of FOCuS applied to data

following a Binomial distribution. This allowed it to be combined with the use of the

quantile-based binomial likelihood Non-Parametric UNbounded Changepoint (NUNC)

method developed by Austin et al. (2023). NUNC operates on a sliding window but is

able to detect changes in the empirical distribution function of the data. The combi-

nation of these two approaches produced NP-FOCuS (Romano, Eckley, and Fearnhead

2024), which is able to find changes in the empirical distribution function of the data

on all window sizes.

7.2.2 Gamma-ray bursts and the HERMES group

Approximately two months into my PhD, I was contacted via my supervisors by

Giuseppe Dilillo, then an astrophysics PhD student with the HERMES (High Energy

Rapid Modular Ensemble of Satellites) group (Fiore et al. 2020). The group were look-

ing for a way to more efficiently allocate their resources on-board the satellite to test

incoming photon signals for the presence of gamma-ray bursts. They were already aware

that what they referred to as ‘diagonal methods’ (based on Page’s method) could be a

better use of limited computational resources than a sliding window grid, and wanted

help with the mathematics of this. The collaboration involved the use of FOCuS in

a Poisson setting, which could be thought of as an optimal diagonal method, and is

applied to this context in Chapter 3.
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Much of the work done by the HERMES team involved finding an appropriate

way to estimate the background rate. We realised that, as FOCuS is essentially a

changepoint-derived method that is explicitly designed to pick up significance into the

infinite horizon, it is particularly non-robust to small biases in background rate esti-

mation that occur over long periods of time. The choice of a biased moving window in

the background estimation part of the paper forming Chapter 3 is a choice specifically

made to exacerbate this bias problem, so we can explore how it manifests and justify

the ways in which use of a µmin parameter within FOCuS can render the algorithm

more robust to it.

In reality, the HERMES team ended up searching around a large number of possible

background estimation methods to attempt to eliminate this bias to the greatest degree

possible. The least complex method that worked well turned out to be using double

exponential smoothing (Dilillo, Ward, et al. 2024), which is a method of online trend

estimation designed to track linear trends by using a bias correction parameter. Double

exponential smoothing has a problem where it does not track curvature in the signal

very well, although this can be mitigated somewhat by updating the estimated bias

correction parameter more intensely than you would if you were expecting to only

estimate linear trends. Therefore in addition to this, a more complex method based

on training a neural network on various satellite and signal data in order to estimate

the current background rate was developed to support the HERMES mission (Crupi,

Ward, et al. 2023).

7.2.3 The NuSec Sigma Data Challenge

In the middle of the PhD, someone in the audience of one of my presentations pointed

out that work on a signal of gamma-ray photons was directly translatable from the

space setting to the ground radiation setting, and that the computational constraints

of a satellite were similar to the constraints on battery life of a small, handheld radiation

detector. This led to an application to the Nuclear Security Science Network (NuSec)

for a three-month project under the NuSec Sigma Data Challenge (NuSec 2022). I
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was particularly interested in how to ensure that large anomalies in this dataset, which

represented events known to not be of interest, did not overshadow the ability to detect

smaller ones. This led to the technical report that forms Chapter 4, which has cleared

NuSec’s permission to publish process for a research audience.

7.3 Future Work

To conclude, I highlight three possible areas of future work that draw on the research

presented in this thesis.

First, the application of FOCuS to a general multivariate setting very much lies

unfinished. In some ways, there is no ‘general’ multivariate setting: how the variates

interact with each other varies widely by specific application. Cross-correlations be-

tween different data streams have yet to be addressed, especially in the setting where

we wish to minimise the communication cost of sending data between streams. A more

detailed study of the best computational outcomes when working on a real dataset can

inform the best choice of what methods to use to combine data across different streams.

Second, the count data work may have wider applications in other subfields beyond

the ones I have directly worked on. The work on handheld ground detectors may have

use in the field of gamma-ray borehole monitoring, and the work on satellites may be

useful for the advance detection of space weather. Some of these generalisations may

require an adapting of the algorithm to handle temporal dependence in count data,

using models such as a Hawkes process (Hawkes 1971).

Finally, I believe that methods such as FOCuS may have their part to play within

the wider streaming data processing setting in applications such as computer vision.

FOCuS works well as a component of a wider anomaly detection system. It essentially

turns intervals into points. Methods such as neural networks operate on (multivariate)

points, and do not process intervals in a time-intelligent way. Adapting FOCuS to fit

within a more complex computing architecture such as a neural network may allow the

generalisation of computer vision algorithms developed for still images to be able to
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scalably handle video.

On a wider note, the rise of large language models and their subsequent use in many

different settings has given rise to a new category of streaming data: AI-generated text.

Previously, the amount of text in use for any application was limited to what could be

written by a human, but this is no longer the case, creating large AI-generated text

repositories and new possible anomaly categories based on natural language.

Large language models currently require far larger amounts of processing power than

methods such as FOCuS, as they need a number of floating-point operations propor-

tional to the total number of parameter weights in the model to generate one output

token, where a query response can be hundreds of tokens. The number of parameter

weights in most large language models currently runs into the hundreds of billions,

and the consequent amount of processing power needed requires specialist computa-

tional architecture setups with computations performed on central servers (Vries 2023).

This makes large language models not a viable competitor to FOCuS and other similar

anomaly detection methods in any application where computational resources are con-

strained, such as those discussed in this thesis. Recent advances in large language model

architecture lean increasingly towards chain of thought reasoning and other forms of

increased per-query computation, compounding this problem.

In parallel to the rise of large language models, the amount of computational re-

sources devoted to streaming data processing has now become very large, and this is

opening another active area of research in computational cost reduction. Anomaly de-

tection methods that can handle streamed natural language may have a part to play

in this new area, particularly methods that are able to flexibly integrate with large

language model processing to reduce its computational cost.
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Appendix A

A.1 Derivations of the LR statistic for Chapter 3

A.1.1 Window method

Let ℓ(xt+1:t+h;µ) denote the log-likelihood for the data xt+1:t+h under our Poisson model

with rate µλ. Then the standard (log) likelihood ratio statistic is

LR = 2

{
max
µ>1

ℓ(xt+1:t+h;µ)− ℓ(xt+1:t+h; 1)

}
.

This is 0 if x̄t+1:t+h ≤ λ, otherwise

LR = 2hλ
{ x̄t+1:t+h

λ
log
( x̄t+1:t+h

λ

)
−
( x̄t+1:t+h

λ
− 1
)}

.

Proof. On an interval xt+1:t+h, we have expected count hλ and actual count hx̄t+1:t+h.

We utilise the Poisson likelihood

L(λ;xt+1:t+h) =
e−hλ(hλ)hx̄t+1:t+h

(hx̄t+1:t+h)!
,

and log-likelihood

ℓ(λ;xt+1:t+h) = −hλ+ hx̄t+1:t+h log(hλ) + c.

Our likelihood ratio statistic then becomes
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LR = −2 {ℓ(λ;xt+1:t+h)− ℓ(x̄t+1:t+h;xt+1:t+h)}

= −2 {−hλ+ hx̄t+1:t+h log(hλ)− (−hx̄t+1:t+h + hx̄t+1:t+h log(hx̄t+1:t+h))}

= 2hλ
{ x̄t+1:t+h

λ
log
( x̄t+1:t+h

λ

)
−
( x̄t+1:t+h

λ
− 1
)}

.

A.1.2 Page-CUSUM method

We have our hypotheses for the signal at time T :

• H0: There have been no anomalies, i.e. X1, ..., XT ∼ Poisson(λ).

• H1: There has been one anomaly, beginning at some unknown time τ , with

known intensity multiplier µ > 1, i.e. X1, ..., Xτ−1 ∼ Poisson(λ) and Xτ , ..., XT ∼

Poisson(µλ).

Our LR statistic for this test is 0 if x̄τ :T ≤ λ µ−1
log(µ)

for all τ , otherwise

LR = max
1≤τ≤T

[
2(T − τ + 1)λ

{ x̄τ :T

λ
log (µ)− (µ− 1)

}]
.

Proof. Our Poisson likelihood and log-likelihood is as follows:

L(λ;x1:T ) =
e−Tλ(Tλ)

∑T
t=1 xt

(
∑T

t=1 xt)!
,

l(λ;x1:T ) = −Tλ+
T∑
t=1

xt log(λ) + c.

Under the null hypothesis of no anomaly, and the alternative of one anomaly at τ ,

we have as our log-likelihoods the following:
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l(H0;x1:T ) =
T∑
t=1

[xt log(λ)− λ] + c

l(H1;x1:T ) = max
1≤τ≤T

(
τ−1∑
t=1

[xt log(λ)− λ] +
T∑

t=τ

[xt log(µλ)− µλ]

)
+ c

Here, the maximum is because we have no idea where our start point τ actually

is, so we look at them all and pick the one with largest likelihood. This gives our

log-likelihood ratio statistic as

LR = 2 max
1≤τ≤T

T∑
t=τ

(xt log(µ)− λ(µ− 1))

= max
1≤τ≤T

[
2(T − τ + 1)λ

{ x̄τ :T

λ
log (µ)− (µ− 1)

}]
.

A.1.3 Exponentially distributed data

The Poisson-FOCuS algorithm still works in the Exponential case, with the only dif-

ference being how we update the coefficients of the curves.

a(T+1)
τ = a(T )

τ + 1, b(T+1)
τ = b(T )

τ + λT+1UT+1,

where λT is the estimate of the background rate at the time of the T th photon arrival.

Proof. Making the assumption that we can consider the background rate constant be-

tween successive photon arrivals, our hypotheses for an individual logarithmic curve

C
(T )
τ are as follows:

• H0: Uτ , . . . , UT has Ut ∼ Exp(λt).

• H1: Uτ , . . . , UT has Ut ∼ Exp(µλt), for some µ > 1.

The exponential likelihood and log-likelihood are as follows:
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L(λτ :T ;uτ :T ) =
T∏

t=τ

(λt)e
−

∑T
t=τ λtut ,

l(λτ :T ;uτ :T ) =
T∑

t=τ

log(λt)−
T∑

t=τ

λtut.

This gives our log-likelihood ratio for the curve as

C(T )
τ := l(µλτ :T ;uτ :T )− l(λτ :T ;uτ :T ) =

T∑
t=τ

[log(µ)− λtut(µ− 1)]

This gives the update coefficients for curves as stated.

A.2 Proofs for Chapter 3

A.2.1 Equivalences between Page-CUSUM and window methods

Proposition A.2.1. For some choice of µ against a background rate of λ, let ST be

significant at the k-sigma level. Then there exists some interval [τ, T ] with associated

likelihood ratio statistic that is significant at the k-sigma level.

Proof. Consider the last time τ where Page’s statistic last became non-zero. On [τ, T ]

the likelihood ratio with our choice of µ > 1 exceeds a k-sigma threshold, therefore the

maximised likelihood ratio over an unconstrained µ > 1 (which occurs at µ = x̄τ :T

λ
) also

exceeds a k-sigma threshold.

Proposition A.2.2. For any k, λ and h there exists a µ and corresponding test statis-

tic, ST , that relates directly to a window test of length h, and background rate λ as

follows: if, for any t, the data xt+1:t+h is significant at the k-sigma level then St+h will

also be significant at the k-sigma level.

Proof. We choose the value of µ solving the equation

2hλ [µ log (µ)− (µ− 1)] = k2,

191



APPENDIX A.

i.e. the ideal intensity choice for the expected count hλ used in this likelihood ratio

test. Since xt+1:t+h is significant at the k-sigma level, we have that

2hλ
[ x̄t+1:t+h

λ
log
( x̄t+1:t+h

λ

)
−
( x̄t+1:t+h

λ
− 1
)]
≥ k2.

As the function f(x) = x log x − (x − 1) is an increasing function, this shows that

x̄t+1:t+h/λ ≥ µ.

We then have that

St+h(µ) =

[
max

1≤τ≤t+h

t+h∑
s=τ

(xs log(µ)− λ(µ− 1))

]+

≥
t+h∑

s=t+1

(xs log(µ)− λ(µ− 1))

= hλ
[ x̄t+1:t+h

λ
log(µ)− (µ− 1)

]
≥ hλ [µ log (µ)− (µ− 1)]

=
k2

2
.

Therefore St+h(µ) is significant at a k-sigma level.

A.2.2 Conditions for pruning

Proposition A.2.3. Let C
(T )
τi and C

(T )
τj be curves that are positive somewhere on µ ∈

[1,∞), where τi < τj and C
(τj−1)
τi is also positive somewhere on µ ∈ [1,∞).

Then C
(T )
τi dominates C

(T )
τj if and only if a

(T )
τj /b

(T )
τj ≤ a

(τj−1)
τi /b

(τj−1)
τi or equivalently

a
(T )
τj /b

(T )
τj ≤ a

(T )
τi /b

(T )
τi . Additionally, it cannot be the case that C

(T )
τj dominates C

(T )
τi .

Proof. Let µij be the non-unit intersection point of C
(T )
τi and C

(T )
τj , i.e. the root of

C
(τj−1)
τi . Then by rearrangement we have that

a(τj−1)
τi

log(µij)− b(τj−1)
τi

(µij − 1) = 0,
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a
(τj−1)
τi

b
(τj−1)
τi

=
µij − 1

log(µij)
.

Because C
(τj−1)
τi is non-negative on µ ∈ [1, µij), we cannot have C

(T )
τj dominating

C
(T )
τi . For C

(T )
τi to dominate C

(T )
τj , we must have that C

(T )
τj ≤ 0 on µ ∈ [µij,∞), i.e.

C
(T )
τj (µij) ≤ 0. Rearranging, we have

a(T )
τj

log(µij)− b(T )
τj

(µij − 1) ≤ 0,

a
(T )
τj

b
(T )
τj

≤ µij − 1

log(µij)
.

Putting these together gives us the condition a
(T )
τj /b

(T )
τj ≤ a

(τj−1)
τi /b

(τj−1)
τi . For the

other form, we can rearrange the inequality:

a(T )
τj

b(τj−1)
τi

≤ a(τj−1)
τi

b(T )
τj

,

a(T )
τj

b(τj−1)
τi

+ a(T )
τj

b(T )
τj
≤ a(τj−1)

τi
b(T )
τj

+ a(T )
τj

b(T )
τj

,

a(T )
τj

b(T )
τi
≤ a(T )

τi
b(T )
τj

.

A.2.3 Logarithmic curve bound

Proposition A.2.4. The expected number of curves kept by Poisson-FOCuS without

µmin at each timestep T is ∈
[
log(T )

2
, log(T )+1

2

]
.

Proof. Recalling that a logarithmic curve C
(T )
τ (µ) is defined as

C(T )
τ (µ) :=

T∑
t=τ

[Xt log(µ)− λ(µ− 1)],
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we define the set of candidate start points IT at time T to be the set of all τ directly

contributing to ST (µ), i.e.

IT := {τ : ∃µ,∀τ ′ ̸= τ, [C(T )
τ (µ)]+ > [C

(T )

τ ′
(µ)]+}.

The number of curves kept by Poisson-FOCuS at time T is, barring computational

implementations that occasionally keep extra curves to avoid repeated pruning checks,

exactly |IT |.

Lemma A.2.5. Suppose τ
′ ∈ IT . This is equivalent to the following two conditions:

• for any τ
′
< τ

′′ ≤ T , we have that

λ < X̄τ ′ :τ ′′ .

• for any 1 ≤ τ < τ
′
< τ

′′ ≤ T , we have that

X̄τ,τ ′−1 < X̄τ ′ ,τ ′′ .

Proof. Suppose ∃τ, τ ′′
such that we have

X̄τ :τ ′−1 ≥ X̄τ ′ :τ ′′ .

Consider the two curves C
(τ

′′
)

τ (µ) and C
(τ

′′
)

τ ′
(µ):
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C(τ
′′
)

τ (µ) =
τ
′′∑

t=τ

[Xt log(µ)− λ(µ− 1)]

= [(τ
′ − τ)X̄τ :τ ′−1 + (τ

′′ − τ
′
+ 1)X̄τ ′ :τ ′′ ] log(µ)− [τ

′′ − τ + 1]λ(µ− 1)

≥ [(τ
′′ − τ + 1)X̄τ :τ ′′ ] log(µ)− [τ

′′ − τ + 1]λ(µ− 1)

=
τ

′′ − τ + 1

τ ′′ − τ ′ + 1
C

(τ
′′
)

τ ′
(µ)

≥ C
(τ

′′
)

τ ′
(µ).

So τ
′ ̸∈ IT .

What this is saying is that if X̄τ,τ ′−1 < X̄τ ′ ,τ ′′ , then the interval [τ, τ
′′
] has both

greater intensity and greater duration than the interval [τ
′
, τ

′′
], so τ

′
cannot be a can-

didate start point.

To prove the reverse, we note that the non-unit point of intersection between

C
(τ

′′
)

τ ′
(µ) and 0 is a monotone increasing function of X̄τ ′ :τ ′′ . Therefore, if for all

τ < τ
′
< τ

′′ ≤ T ,

X̄τ :τ ′′ < X̄τ ′ :τ ′′ , λ < X̄τ ′ :τ ′′ ,

we must have that ∃µ > 1 such that [C
(τ ′′)

τ ′
(µ)]+ > [C

(τ ′′)
τ (µ)]+. This gives τ

′ ∈ IT .

Lemma A.2.6. Define the sequence Z0 := 0, ZT :=
∑T

t=1Xt.

If τ in IT , then:

• τ − 1 is an extreme point of the largest convex minorant of the sequence {Zt− tλ :

t ≤ T}.

• ∀T ≥ t > τ − 1, we additionally have that Zt − tλ > Zτ−1 − (τ − 1)λ, i.e. τ − 1

is on the ”right-hand side” of the convex minorant.

Proof. Let τ in IT .
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As above, we have that for any 1 ≤ τ < τ
′
< τ

′′ ≤ T :

X̄τ,τ ′−1 < X̄τ ′ ,τ ′′ .

This can be equivalently written as

Zτ ′−1 − Zτ

(τ ′ − 1)− τ
<

Zτ ′′ − Zτ ′−1

τ ′′ − (τ ′ − 1)
,

which shows that τ − 1 is in the largest convex minorant of Zt, and therefore of

Zt − tλ.

To show we are on the right-hand side of this convex minorant, we assume hoping

for a contradiction that ∃τ ′ ≥ τ such that Zτ ′ − τ
′
λ < Zτ−1 − (τ − 1)λ. We then have

that

C(τ
′
)

τ (µ) =
τ
′∑

t=τ

[Xt log(µ)− λ(µ− 1)]

= [Zτ ′ − Zτ−1] log(µ)− [τ
′ − (τ − 1)]λ(µ− 1)

< [τ
′ − (τ − 1)]λ[log(µ)− (µ− 1)]

< 0.

So for τ
′
= τ we have that Xτ < λ, and for τ

′
> τ we have that C

(T )
τ (µ) < C

(T )

τ ′
(µ)

pointwise. Either way, τ ̸∈ IT .

To prove the reverse, note that the argument for being on the convex minorant is

entirely reversible, and that Zt − tλ < Zτ−1 − (τ − 1)λ is equivalent to X̄τ,t < λ.

Figure A.2.1 shows what this looks like. For a signal Xt that Poisson-FOCuS is run

over, the random walk Zt − tλ is plotted. Values of τ − 1 for each candidate anomaly
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Figure A.2.1: Plots of τ − 1 for each anomaly start point τ compared to the random walk
Zt − tλ.

start point τ are highlighted in orange, with the intensity of the highlight corresponding

to how long they were kept, or highlighted in red if they were still kept by the time

T = 100.

For each candidate point τ with τ − 1 highlighted in red, we have that:

• Convex minorant: The gradient drawn through Zτ−1 − (τ − 1)λ from any point

before τ − 1 must be less than the gradient drawn through Zτ−1− (τ − 1)λ by any

point after τ − 1.

• Right side: It is possible to draw a straight horizontal line from Zτ−1 − (τ − 1)λ

to the right side of the graph without crossing any other Zt − tλ.

This is approximately half the points in the convex minorant of Zt − tλ (the other

half being the left-hand side, with one point - the minimum - being in both).

Theorem A.2.7. Let Xt, 1 ≤ t ≤ T be independent identically distributed continuous

random variables, and let St :=
∑t

s=1 Xs be the corresponding random walk. Then the

number of points H(T ) on the convex minorant of the sequence (0, S1, S2, ..., ST ) (not

including endpoints) has the distribution

H(T ) ∼
T−1∑
t=1

Yt,
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Yt ∼ Bernoulli

(
1

t+ 1

)
,

where the Yt are independent of each other and the distribution of the Xt.

Proof. See Andersen 1954

Under the null hypothesis, we have Xt ∼ Poisson(λ) independent and identically

distributed.

By Lemma A.2.6, the |IT | is the number of points on the right-hand side of the

convex minorant of {Zt − tλ : t ≤ T}.

By Therorem A.2.7, the expected number of points on the convex minorant of

{Zt − tλ : t ≤ T} not including endpoints is

E[points on convex minorant] =
T∑
t=2

1

t
.

By symmetry, the expected number of points on the right-hand side of the convex

minorant (including the minimum point, which is on both sides), is

E[|IT |] =
1

2

T∑
t=1

1

t
.

Because τ ∈ IT is related to τ − 1 (rather than τ) being on the right-hand side

of the convex minorant of {Zt − tλ : t ≤ T}, it is impossible to be on the rightmost

endpoint. However, it could be that τ − 1 = 0 could be both the leftmost endpoint and

on the right-hand side of the convex minorant, which would give an additional curve

beyond those given by Theorem A.2.7. This would require min{Zt − tλ : t ≤ T} ≥ 0,

which has a probability that → 0 as T →∞, and can therefore be discounted for large

values of T as it falls within the harmonic upper bound given below.

We have by standard results for harmonic sums that

T∑
t=1

1

t
∈ [log(T ), log(T ) + 1],
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Giving us that

E[|IT |] ∈
[
log(T )

2
,
log(T ) + 1

2

]
.

A.2.4 Bounded number of curves in the µmin > 1 case

Proposition A.2.8. The expected number of curves kept by Poisson-FOCuS using

some µmin > 1 at each timestep is bounded.

Proof. Let λ > 0, µmin > 1 be fixed, and XT ∼ Poisson(λ). Define S0 = 0, and for each

T ∈ N recursively define

ST+1 = ST +XT+1 log(µmin)− λ(µmin − 1).

This gives essentially Page’s statistic without resetting negative values to zero. We

further define:

H(X) := inf
T>1
{T : ST ≤ 0}

i.e. H(X) is the time elapsed between resets to zero of Page’s statistic.

In order to prove positive recurrence of Page’s statistic, we now show that E[H(X)]

is finite.

We have that

E[ST ] = λT [log(µmin)− (µmin − 1)] < 0,

Var[ST ] = λT (log(µmin))
2 <∞.

This gives that H(X) <∞ almost surely.

By the central limit theorem, we have that as T →∞,
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ST − λT [log(µmin)− (µmin − 1)]√
λT log(µmin)

≈ N(0, 1).

Using this approximation we can then calculate

ST ≈ N(0, 1)
√
λT log(µmin) + λT [log(µmin)− (µmin − 1)].

P(ST < 0) ≈ Φ

(√
λT

[
1− (µmin − 1)

log(µmin)

])
This gives us the following bound:

E[H(X)] =
∞∑

T=1

P[H(X) ≤ T ]

≤
∞∑

T=1

P(ST < 0)

≈
∞∑

T=1

Φ

(√
λT

[
1− (µmin − 1)

log(µmin)

])
<∞.

The last step is because the Gaussian distribution has tails that drop as the square

of an exponential, and geometric series have finite sum.

Therefore, the expected number of curves in the FOCuS algorithm running using

a µmin is bounded, because all curves in the algorithm are removed each time Page’s

statistic using µmin resets to 0, and the expected time between resets is finite.
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A.3 Plots for Chapter 3

A.3.1 Detectability regions

Here we provide the derivations of the detectability regions. For ease of reference, we

reproduce these regions in Figure A.3.2.

Assume we are running a window of length h over a signal containing a burst xt+1:t+h∗

of length h∗. Our background rate λ is assumed fixed. We want to figure out what is

the smallest intensity µ∗ we are able to detect, assuming that µ is the faintest intensity

at which a burst of length h is detectable.

Bursts of duration h∗ > h will only be detected at the k-sigma level if some subinter-

val of size h is detected at the k-sigma level. No additional benefit can be provided by

the presence of the part of the burst currently outside the window, so µ∗ = µ. Therefore

the green line on Figure A.3.2 has been drawn as a straight vertical.

Bursts of a duration h∗ < h can be found if they have a higher µ∗. Splitting the

window h into anomalous and non-anomalous parts, we have that

µhλ = µ∗hλ∗ + λ(h− h∗).

This rearranges to

(µ− 1)h = (µ∗ − 1)h∗,

which gives the other green line shown in Figure A.3.2.

Assume we are using Page’s method with parameter µ over a signal containing a

burst of intensity µ∗. Our background rate λ is assumed fixed. We want to figure out

what is the shortest duration h∗ required to detect the burst at a k-sigma threshold.

Using our likelihood ratio, we have that:

h∗λ [µ∗ log (µ)− (µ− 1)] =
k2

2
,
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Figure A.3.2: Detectability of Page-CUSUM and Window methods.

Figure A.3.3: Left: one hour’s worth of FERMI data binned into 10ms intervals. Right:
autocorrelation plot from the data put through a variance-stabilising transformation (square
root) and then rolling mean of window size 500 subtracted off to account for changes in
background rate. Negligible autocorrelation is present.

µ∗ =
1

log(µ)

[
k2

2h∗λ
+ (µ− 1)

]
.

This gives the orange line in Figure A.3.2.

A.3.2 Autocorrelation

Figure A.3.3 shows one hour’s worth of FERMI data. To detect if any autocorrelation

is present after accounting for the varying background rate, we first use a square root

transform to stabilise the variance of the Poisson distribution, and then subtract off an

estimate of the background rate calculated as the rolling mean using a window of size
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500 observations. The empirical autocorrelation of this transformed data is shown in

the right-hand plot of figure A.3.3, and shows negligible autocorrelation at all (non-zero)

lags.

A.4 Proofs for Chapter 5

A.4.1 Deriving the Exponential family likelihood ratio

For an exponential family model of the form

f(x | θ) = exp
[
α(θ) · γ(x)− β(θ) + δ(x)

]
,

Our differences in likelihood are of the form

ℓ(x1:xT |θ0, θ1, τi)− ℓ(x1:xT |θ0, θ1, τj) =

[α(θ1)− α(θ0)]

τj∑
t=τi+1

γ(xt)− [β(θ1)− β(θ0)](τj − τi).

Proof. We have that

ℓ(x1:T |θ0, θ1, τ) :=
τ∑

t=1

log f(xt|θ0) +
T∑

t=τ+1

log f(xt|θ1).

Therefore, we have

ℓ(x1:T |θ0, θ1, τi)− ℓ(x1:xT |θ0, θ1, τj) =
τj∑

t=τi+1

{log f(xt|θ1)− log f(xt|θ0)}.

Substituting in
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log f(xt|θ1)− log f(xt|θ0) = [α(θ1) · γ(xt)− β(θ1) + δ(xt)]− [α(θ0) · γ(xt)− β(θ0) + δ(xt)]

= [α(θ1)− α(θ0)]γ(xt)− [β(θ1)− β(θ0)]

gives the required result.

A.4.2 Ordering of roots determined by γ̄ values

Define

γ̄τi:τj =
1

τj − τi

τj∑
t=τi+1

γ(xt)

to be the average value of γ(xt) for t = τi+1, . . . , τj, and define θτ1( ̸= θ0) to be the root

of

ℓ(x1:xT |θ0, θτ1 , τ)− ℓ(x1:xT |θ0, ·, T ) = 0.

Proposition A.4.1. Suppose that for our choice of θ0 the function

θ1 :→
β(θ1)− β(θ0)

α(θ1)− α(θ0)

is strictly increasing. Then the sign of γ̄τi:τj−γ̄τj :T is the same as the sign of θτi1 −θ
τj
1 .

Proof. We have that

[α(θτ1)− α(θ0)]
T∑

t=τ+1

γ(xt)− [β(θτ1)− β(θ0)](T − τ) = 0.

Rearrange this to form

β(θτ1)− β(θ0)

α(θτ1)− α(θ0)
= γ̄τ :T .

By monotonicity, we have that θτ1 is an increasing function of γ̄τ :T . For τi < τj < T

we also have that
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γ̄τi:T =
T − τj
T − τi

γ̄τj :T +
τj − τi
T − τi

γ̄τi:τj ,

so the sign of γ̄τi:τj − γ̄τj :T is the same as the sign of γ̄τi:T − γ̄τj :T because γ̄τi:T is a

convex combination of γ̄τi:τj and γ̄τj :T . Putting this together gives the result.

A.4.3 Maxima checking bound

Define

mτi,τj = max
θ0∈H0,

θ1

ℓ(x1:τj |θ0, θ1, τi)− max
θ0∈H0

ℓ(x1:τj |θ0, ·, τj),

where H0 denotes the set of possible values of θ0. H0 will contain a single value in the

pre-change parameter known case, or be R for the pre-change parameter unknown case.

Proposition A.4.2. For any τ1 < τ2 < ... < τn < T , we have

max
i=1,...,n

mτi,T ≤
n−1∑
i=1

mτi,τi+1
+mτn,T .

Proof. Denote by θ̂τi0 the argmax of
∑τi

t=1 log f(xt|θ0) for θ ∈ H0. (Note that in the

pre-change mean known case, we always have θ̂τi0 = θ0.)

Now, consider the form of

mτi,τj =

τi∑
t=1

log f(xt|θ̂τi0 ) + max
θ1

τj∑
t=τi+1

log f(xt|θ1)−
τj∑
t=1

log f(xt|θ̂
τj
0 ).

Note the similarity of the first and third terms that will allow telescopic cancellations

when summing the mτi,τi+1
. Setting τn+1 := T for convenience, we have that for any

1 ≤ k ≤ n,
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n−1∑
i=1

mτi,τi+1
+mτn,T =

[
τ1∑
t=1

log f(xt|θ̂τ10 ) +
k−1∑
i=1

max
θ1

τi+1∑
t=τi+1

log f(xt|θ1)

]

+

[
n∑

i=k

max
θ1

τi+1∑
t=τi+1

log f(xt|θ1)

]

−
T∑
t=1

log f(xt|θ̂T0 ).

We can compare this against

mτk,T =

τk∑
t=1

log f(xt|θ̂τ10 ) + max
θ1

T∑
t=τk+1

log f(xt|θ1)−
T∑
t=1

log f(xt|θ̂T0 ),

noting that we have inequalities on the first two terms due to maximising the same

likelihood over an expansion of the hypothesis set, and equality in the final term. This

proves the result.

The construction
∑n−1

i=1 mτi,τi+1
+ mτn,T is essentially fitting changepoints at every

single one of the τi. This compares against the construction maxi=1,...,n mτi,T , which fits

only one changepoint at the most promising τi.

Where {τ1, ..., τn} ∈ IT and are therefore ordered in increasing/decreasing γ̄τi:τi+1

all representing up-changes/down-changes, it is the case that you don’t gain much by

fitting all of the τi as changepoints rather than just the best one. In the underlying

data scenario of no change, the earlier mτi,τi+1
will be very small, and it is mτn,T that

will contribute the most as it captures the fluctuations of recent events in the signal.
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