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Distributed Consensus-Based Control of
Multi-Quadcopter Systems for Formation Producing

Under Cloud Access
Nargess Sadeghzadeh-Nokhodberiz, Allahyar Montazeri*

Abstract— Large-scale cooperative environmental monitoring
has introduced various challenges, such as intermittent links,
power and bandwidth constraints, and interdicted inter-agent
communication to the robotics community. Mobile cloud comput-
ing (MCC) has recently been introduced to tackle these problems,
especially in the context of the formation control problem. There-
fore, in this paper, the problem of formation producing control
of multi-quadcopter systems under asynchronous access to the
cloud is investigated. Here, it is assumed that the quadcopters
exchange the information fully through the cloud storage service
while the calculation for motion control is carried out on the
edge. The scheduling rule is also designed to make cloud access
more efficient without the need for constant communication.
The formation producing is achieved by designing consensus-
based control laws for the altitude and the translational sub-
systems while guaranteeing the asymptotic convergence of the
quadcopters’ positions to the biased average of the initial values.
The results show that the modified controller after being applied
through cloud access guarantees practical consensus with a
calculated bounded error. The access to the could is achieved
by designing a Zeno behavior-free scheduling rule.

Formation control, Multi-quadcopter system, Mobile cloud
computing, Consensus

I. INTRODUCTION

Autonomously operated quadcopters (quads) are vital for
environmental monitoring due to their access to hazardous
or unreachable areas [1], [2]. Given their resource limits
(e.g., energy, computation, payload), cooperative multi-quad
systems offer more efficient and reliable coverage of large
areas [3]. However, cooperative control poses challenges due
to intermittent wireless communication, especially over vast
areas, leading to connectivity and power issues. Unlike tradi-
tional self-triggered methods, our approach reduces the need
for constant inter-agent communication.

To reduce communication in multi-agent systems, event-
triggered and protocol-based control strategies have been
developed [4]–[6]. For instance, [7] introduces a finite-time,
Zeno-free behavior event-triggered control scheme. However,
when quadrotors disperse over wide areas, peer-to-peer com-
munication may become infeasible, limiting the applicability of
such methods. Recent works address this by relaxing connec-
tivity constraints in sampled-data consensus [8] and formation
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control under limited-range communication [9]. Despite oper-
ating in a virtual communication layer, these methods increase
onboard computational demands. Leveraging cloud services
offers a more efficient trade-off between communication load
and power consumption.

Mobile Cloud Computing (MCC), integrating mobile edge
and cloud computing, addresses inter-agent communication
limitations by enabling IoT devices—quadrotors in this
study—to offload data to cloud servers for processing and
storage [10], [11]. However, in our study to retain the dis-
tributed nature of the solution, the cloud is used only for
storage and as a pool of information shared by various
agents. The computational capacity of the agents is used to
calculate the control laws and the scheduling times to access
the cloud. This architecture makes the system robust to a
possible communication failure to the cloud by relying on local
control laws.

Formation control enables coordinated multi-quad opera-
tions in environmental monitoring, with distributed consensus-
based methods favored for their scalability and effectiveness
[12], [13]. Previous work like [14] addressed leaderless con-
sensus for multi-quads using linearized models to manage
nonlinear dynamics and under-actuation. In contrast, we use
full 6-DOF nonlinear dynamics from [1], ensuring formation
via a bias-augmented consensus algorithm. A hierarchical
control approach handles under-actuation, as in [15].

In this framework, each quadrotor performs local processing
at the edge while accessing shared data via a cloud service
based on an individual connection schedule. This eliminates
the need for continuous cloud communication and inter-agent
messaging (for cases where inter-agent communication is
impossible), enhancing scalability and reliability through a
decentralized control strategy. The key challenge lies in main-
taining formation control under asynchronous cloud access.

Previous studies, such as [16], investigated cloud-based
formation control using asynchronous consensus for second-
order systems via shared cloud storage. However, convergence
to the average position only holds under zero initial velocities;
otherwise, the system exhibits ramp behavior [17]. Similar
limitations exist in [18], which extends to nonlinear systems
but relies on first-order dynamics for analysis. Our recent work
[19] advanced this framework to nonlinear 6-DOF underactu-
ated quads, achieving practical consensus toward biased initial
conditions. Nonetheless, the extended consensus filter still led
to ramping under nonzero initial velocities. This work resolves
that challenge effectively.
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This study addresses formation control in multi-quad sys-
tems with asynchronous cloud-based communication, where
the cloud serves solely as shared storage and all processing
occurs locally on each quad. A decentralized scheme is
employed, with each agent using its own data and that of
predefined neighbors to compute control laws. By distributing
computation, the approach enhances scalability and reduces
both cloud dependency and onboard computational load.

Elaborating further, The proposed approach first designs
consensus-based formation control for the altitude subsystem,
followed by translational control using virtual inputs. These
controllers ensure asymptotic convergence to a biased average
of initial positions. Adapted for cloud-based communication
with scheduled access, the system achieves practical consensus
with bounded error. Additionally, Zeno behavior is analyzed
and shown to be avoided under the proposed scheduling
scheme. The main novelties of the paper are specified in the
following:
(1) A minor contribution is the design of consensus-based
formation that produces control laws for altitude and trans-
lational subsystems using a hierarchical architecture and
ensures convergence of the quad position to the biased average
of initial values with asymptotic consensus.
(2) The major contribution is modifying controllers with cloud
access, in which the practical consensus of the quad positions
to the biased average of initial values is guaranteed through
the design of a Zeno behavior-free scheduling rule.

This work advances prior cloud-based formation control
studies [16], [19] by addressing key limitations. While [16]
introduced the concept, it excludes nonlinear underactuated
quadrotor dynamics. Although extended to 6-DOF quads in
[19], that approach retains limitations due to the consensus
filter employed. In contrast, this paper employs a different,
modified consensus filter adapted to ensure convergence to
the biased average of initial positions. Beyond that, new ap-
proximations and derivations are introduced across controller
design, scheduling, and Zeno behavior analysis. As shown in
later sections, these enhancements simplify implementation,
reduce computational load, and maintain strong performance.

The paper is organized as follows. In Section II preliminar-
ies are introduced. Consensus-based formation producing con-
trol for multi-quad systems is presented in Section III. Section
IV extends the results to the formation producing control of
multi-quad systems under cloud access. The simulation results
are provided in Section V. Finally, Section VI concludes the
paper.

II. PRELIMINARIES

A. Multi-Quadcopter Architecture under Cloud Access
We consider a group of quadrotors communicating asyn-

chronously via a cloud storage service, where each agent
connects based on a predefined schedule and its data are only
available during those intervals. As shown in Figure 1, this
architecture eliminates the need for continuous cloud access
and inter-agent communication, enabling efficient and scalable
coordination.

The inter-agent communication is modeled as a prede-
fined connectivity graph, where each quadrotor represents a

node and edges denote communication links. This graph is
stored in the cloud, enabling a publish/subscribe protocol:
quads upload their data and download only that of des-
ignated neighbors. This cloud-mediated strategy eliminates
peer-to-peer communication, reduces computational load, and
supports a distributed control framework. While the fixed
virtual graph ensures reliable operation even under intermittent
cloud access, it limits adaptability in dynamically changing
environments.

B. Graph Theory

Let G = (V, E) be an undirected graph, representing the
communication topology of the multi-quad system. V =
{ν1, . . . , νN} specifies the set of nodes and E ⊆ V ×V is the
set of edges. Each edge is denoted by eij = (νi, νj) ∈ E where
νi is known as the tail and νj as the head of the edge eij . The
adjacency matrix A = [aij ] of an undirected graphs is a matrix
with non-zero elements such that aij = 1 if (νi, νj) ∈ E and
aij = 0 otherwise. It is assumed that the size of E is M , that
is E = {E1, . . . , EM} where El = eij , l = 1, . . .M . Besides,
let Ni = {νj ∈ V : aij ̸= 0} denote the set of neighbors of the
node i. Let L ∈ RN×N be the Laplacian matrix of the graph
G which satisfies the L = BBT with B ∈ RN×M is defined
as the incidence matrix. This property holds regardless how
the orientation of the graph G is chosen [20].
For a graph containing a spanning tree, the edge set is T ⊆
E = {E1, . . . , EN−1} and G = GT ∪ GC where GT is a given
spanning tree and GC is the co-spanning tree. In this case,
BT is a full column rank minor of B, made up of the first
N−1 columns of B. In other words, B = [BT BC ] where BT
and BC are incidence matrices corresponding to GT and GC .
For such graphs, as BT is full column rank, there exists an
(N−1)×M matrix T such that the incidence matrix B can be
written as B = BT T which results in T = (BT

T BT )
−1BT

T B.
Therefore, L = BBT = BT TT

TBT
T [16], [21].

It is also worth mentioning that the graph G is connected if
and only if rank(L) = N − 1. In other words, a graph is
called connected if a path between any two distinct nodes of
the graph can be found. Moreover, in L sums of all the rows
are zero and thus 1N = [1, 1, . . . , 1]T ∈ RN is an eigenvector
of L associated with the eigenvalue λ = 0. [22], [23].

C. Consensus Control for Agents with Double-Integrator Dy-
namics

Given a graph G, let q1i(t) ∈ R and q2i(t) ∈ R denote
the states of node νi at time instant t ∈ R+. Besides, each
node i of the graph is a dynamic agent with the following
double-integrator dynamics:

q̇1i(t) = q2i(t), q̇2i(t) = ui(t), (1)

where ui(t) is the control input of the i-th agent
and the collective initial condition vectors are defined
as q1(0) = [q11(0), q12(0), . . . , q1N (0)]T, q2(0) =
[q21(0), q22(0), . . . , q2N (0)]T.
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Fig. 1: A multi-quadcopter system communicating through a cloud access.

The control input ui(t) is designed by considering the follow-
ing consensus control protocol for each agent:

ui(t) =
∑
j∈Ni

(q1j(t)− q1i(t)) + kq2i(t), (2)

where k < 0 is a negative feedback gain.
As proven in [24], for a network of dynamic agents with
the dynamics presented in (1) and a connected fixed graph
topology G, under the control protocol (2), q1i(t) and q2i(t)
for i = 1, . . . , N globally asymptotically converge to the
following values:

lim
t→∞

q1i(t) =
1

N

N∑
j=1

(
q1j(0)−

q2j(0)

k

)
, lim
t→∞

q2i(t) = 0.

(3)

It is obvious that the presented distributed control protocol (2)
solves average consensus problem if q2i(0) = 0, i = 1, . . . N
[24].

D. State Space Model of Multi-Quadcopter System

According to Figure 1, consider N quadcopters communi-
cating with each other through cloud access in which each
quadcopter uploads its own information and downloads the
information from some other quads in the neighborhood at
each time instant. In this way, it is assumed that the group
of quadcopters constructs a connected undirected connectivity
graph. For consistency in the paper, the index i is used to refer
to the parameters of the i-th quadcopter. Therefore, the state
space model of a multi-quadcopter system can be presented
as follows [25]. It is worth mentioning that for the sake of
brevity and to avoid similarity, the readers are referenced to
[25] for the exact non-linear 6-DOF model of the quadcopter.

1) Altitude Subsystem: The altitude subsystem (position in
z-axis) can be written in the form of continuous-time state
space model for the i-th agent as follows:

ẋ1i(t) = x2i(t), ẋ2i(t) = −g + γ2i(t)u1i(t), (4)

where g is the gravitational constant, x1i(t) = zi(t)
and x2i(t) = żi(t) are the i-th quadcopter’s altitude and
speed in the inertial frame, respectively. In (4), γ2i(t) =
cos(ϕi(t)) cos(θi(t))

mi
with ϕi(t) and θi(t) are defined as the roll

and pitch angles of the quad. Besides, u1i(t) defines the main
thrust created by the combined forces of the rotors. Now,
assuming that X1(t) = [x11(t) . . . x1N (t)]T , X2(t) =
[x21(t) . . . x2N (t)]T , and U1(t) = [u11(t) . . . u1N (t)]T ,

the following collective state space model for the altitude
subsystem can be written :

Ẋ1(t) = X2(t), Ẋ2(t) = −G+ Γ2(t)U1(t), (5)

where G = g1N , and Γ2(t) = diag[γ21(t) . . . γ2N (t)].
2) Translational Subsystem: Due to the under-actuated

nature of the position subsystem in the quadcopter’s
dynamics, we define two virtual inputs as uxi(t) =
cos(ψi(t)) sin(θi(t)) cos(ϕi(t)) + sin(ψi(t)) sin(ϕi(t))
and uyi(t) = sin(ψi(t)) sin(θi(t)) cos(ϕi(t)) −
cos(ψi(t)) sin(ϕi(t)) where ψi(t) is the yaw angle. The
state space model of the translational subsystem for the i-th
subsystem can be formulated as:

ẋ3i(t) = x4i(t), ẋ4i(t) = γ4i(t)uvi(t), (6)

where x3i(t) = [xi(t) yi(t)]
T and x4i(t) = [ẋi(t) ẏi(t)]

T

are the position and velocity vectors of the i-th quadcopter
in 2D (x-y plane) in the inertial frame. In (6), uvi(t) =

[uxi(t) uyi(t)]
T and γ4i(t) = u1i(t)

mi
. Therefore, the collec-

tive state-space model of the translational subsystem can be
formulated as:

Ẋ3(t) = X4(t), Ẋ4(t) =
(
Γ4(t)⊗ I2

)
Uv(t), (7)

where ⊗ refers to the Krnonecker product, X3(t) =
[xT

31(t), . . . , x
T
3N (t)]T, X4 = [xT

41(t), . . . , x
T
4N (t)]T, Uv(t) =

[uT
v1(t), . . . , u

T
vN (t)]T, and Γ4(t) = diag[γ41(t) . . . γ4N (t)].

Remark 1: Since during the maneuver the rotors never turn
off and at least a thrust should be generated for hovering, one
can conclude that u1i(t) ̸= 0,∀t ≥ 0.

III. CONSENSUS BASED FORMATION PRODUCING
CONTROL FOR MULTI-QUADCOPTER SYSTEM

In this section, a formation producing control policy is
designed for the multi-quadcopter system formulated in the
previous section. For this, we use the state space model of the
position subsystem presented in II-D and the consensus control
policy defined for agents with double-integrator dynamics in
II-C.

A. Assumptions

To design consensus-based control and ensure convergence
under cloud access, the following assumptions are adopted as
part of the modeling and control development process.
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Assumption 1: (Zero Initial Velocities) all quadcopters start
with zero velocity in each degree of freedom, i.e., ẋi(t) =
ẏi(t) = żi(t) = 0,∀i = 1, . . . N .

Assumption 2: (Cloud Storage Model) the cloud server
acts as a shared storage repository, and each quadcopter
uploads its own state and downloads the latest available data
from its predefined neighbors. There is no direct peer-to-peer
communication.

Assumption 3: (Fixed Communication Graph) the inter-
agent communication topology is modeled as a connected
undirected graph stored in the cloud. The set of neighbors
is predefined and does not change dynamically.

Assumption 4: (Containing Spanning Tree) The multi-
quadcopter system network graph G contains a spanning tree.

Assumption 5: (Nonzero Thrust) the thrust input u1i(t) ̸= 0
at all times t ≥ 0.

Remark 2: while some assumptions simplify the analysis,
they reflect realistic constraints for quadcopters operating in
structured missions (e.g., aerial surveying or environmental
monitoring). The assumptions are integrated into the control
procedure and are clearly referenced where required.

B. Consensus Based Control Law

The control objective is to shape a formation for the
agents defined by the bias vectors b1, . . . , bN where bi =
[bzi bxi byi]

T for i = 1, . . . , N . Here it is assumed that the
biases are stored in the cloud and can be downloaded at the
scheduling time to the quad for control law calculations.

For the multi-quadcopter system with the agent-wise dy-
namics presented in (4) and (6) consider the following
consensus-type control protocols:

u1i(t) = γ−1
2i (t)

(
g−

∑
j∈Ni

(x1i(t)−bzi−x1j(t)+bzj)−x2i(t)
)
,

(8)
and

uvi(t) = −γ−1
4i (t)

( ∑
j∈Ni

(x3i(t)−b3i−x3j(t)+b3j)−x4i(t)
)
,

(9)
with b3i = [bxi byi]

T and assuming that the initial speed of
each quadcopter is zero, i.e. ẋi(0) = ẏi(0) = żi(0) = 0, i =
1 . . . N .

Remark 3: The control of quadcopter’s altitude in the
singular orientation of cos(ϕi(t)) cos(θi(t)) = 0 is not
possible and this is avoided in practice. Otherwise, ac-
cording to (8), u1i(t) → ∞ and since γ4i(t) =
u1i(t)
mi

and according to (9), uvi(t) → 0 which gives
uxi(t) → 0 and uyi(t) → 0. Therefore, according to
[25], sin(ϕi(t)) = uxi(t) sin(ψi(t)) − uyi(t) cos(ψi(t)) and

sin(θi(t)) =
uxi(t) sin(ψi(t))+uyi(t) sin(ψi(t))

cos(ϕi(t)
, one can con-

clude sin(ϕi(t)) = 0 and sin(θi(t)) = 0 which contradicts
cos(ϕi(t)) cos(θi(t)) = 0.
Besides, let x′1i(t) := x1i(t)− bzi and therefore first equation
in (4) changes to ẋ′1i(t) = x2i(t). Now, rewrite (8) as u1i(t) =
γ−1
2i (t)

(
g + u′1i(t)

)
where

u′1i(t) =
∑
j∈Ni

(x′1j(t)− x′1i(t))− x2i(t). (10)

By replacing u1i(t) in (4) we will have:

ẋ′1i(t) = x2i(t), ẋ2i(t) = u′1i(t). (11)

Comparing (11) and (10) with (1) and (2) and using (3),
one can conclude that lim

t→∞
x′1i(t) = x̄′1(0) − x̄2(0) and

lim
t→∞

x2i(t) = 0 where .̄ refers to averaging on N agents.
Considering x̄2(0) = 0, the global asymptotic convergence of
x1i(t) to average of the initial positions with the biased term
of b′zi = bzi − b̄zi is guaranteed.
Now, by defining x′3i(t) := x3i(t)− b3i(t) and substituting in
(6), the first equation changes to ẋ′3i(t) = x4i(t). Now, let

u′vi(t) =
∑
j∈Ni

(x′3j(t)− x′3i(t))− x4i(t). (12)

According to (9) uvi = γ−1
4i (t)u

′
vi(t), and by replacing this

form of uvi in (6) one can conclude:

ẋ′3i(t) = x4i(t), ẋ4i(t) = u′vi(t). (13)

Now by element-wise comparison of (13) and (12) with (1)
and (2), it can be concluded from (3) that lim

t→∞
x′3i(t) =

x̄′3(0) − x̄4(0) and lim
t→∞

x4i(t) = 02. Since x̄4(0) = 02, the
global asymptotic convergence of x3i(t) to the average of its
initial values with biased term of [b′xib

′
yi]

T with b′xi = bxi−b̄xi,
b′yi = byi − b̄yi can be concluded.

IV. CONSENSUS BASED FORMATION PRODUCING
CONTROL FOR MULTI-QUADCOPTER SYSTEM UNDER

CLOUD ACCESS

In this section, the data transmission scenario between the
agents under the cloud access is explained first. Then, the
proposed controllers in (8) and (9) are modified, such that the
formation producing is guaranteed under some bounds on the
input errors. A cloud access scheduling rule is then designed
to guarantee boundedness of the input error. Then, it is shown
that the sequence of cloud access times does not present a
Zeno behavior.

A. Cloud Access Data Transmission Scenario

As mentioned previously, in Subsection II-A, the agents are
communicating with each other through the cloud repository.
For this purpose, they upload their information containing
their altitude and translational states, as well as their control
laws and simultaneously download the latest information of
their neighboring agents. Let ti,k be the k-th time instant that
the i-th agent accesses the cloud. Then, the latest access of
the neighboring agent j ∈ Ni is shown by tj,fj(ti,k). In other
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words, according to [16], fj(t) = max{l ∈ N : tj,l ≤ t} .
When i-th agent is connected to the cloud the set Dti,k ={
x1i(ti,k), x2i(ti,k), x3i(ti,k), x4i(ti,k), u1i(ti,k), uvi(ti,k)

}
is uploaded and the set Dtj,fj(ti,k)

={
x1j(tj,fj(ti,k)), x2j(tj,fj(ti,k)), x3j(tj,fj(ti,k)), x4j(tj,fj(ti,k)),
u1j(tj,fj(ti,k)), uvj(tj,fj(ti,k)), bj , bi

}
, j ∈ Ni, is downloaded

Remark 4: To save the energy and computational burden
on the quad, it is possible to read the values sensed by the
GPS only at the scheduling times when the quad is connected
to the cloud. In other words, the synthesis of the control law
requires only access to x1i(ti,k), x2i(ti,k), x3i(ti,k), x4i(ti,k)
during the time interval [ti,k ti,k+1). However, the quad should
rely on continuous reading of GPS and other on-board data
when it is not connected to the cloud due to lack of internet
or disruption.

B. The Controller Under Cloud Access

By following the cloud access scenario presented just now,
since the value of x′1j(ti,k) is not available at time instant ti,k,
the controller in (8) is replaced by the following controller for
t ∈ [ti,k ti,k+1):

u1i,k(t) =γ
−1
2i (t)

(
g −

∑
j∈Ni

(x̂′1j(ti,k)− x′1i(ti,k))− x2i(ti,k)
)
,

(14)

where x̂′1j(ti,k) is an estimate of x′1j(ti,k) using the system
dynamics in (11) as follows:

x̂′1j(ti,k) = x′1j(tj,fj(ti,k)) + (ti,k − tj,fj(ti,k))x2j(tj,fj(ti,k)).
(15)

Similarly, the controller in (9) is replaced with the following
one for t ∈ [ti,k ti,k+1):

uvi,k(t) = −γ−1
4i (t)

( ∑
j∈Ni

(x̂′3j(ti,k)− x′3i(ti,k))− x4i(ti,k)
)
,

(16)
where x̂′3j(ti,k) is estimated using (13) as follows:

x̂′3j(ti,k) = x′3j(tj,fj(ti,k)) + (ti,k − tj,fj(ti,k))x4j(tj,fj(ti,k)).
(17)

Remark 5: When u1i,k(t) is applied to the system instead
of u1i(t), γ4i(t) =

u1i(t)
mi

should be replaced with γ4i,k(t) =
u1i,k(t)
mi

. However, to reduce the complexity γ4i,k(t) is approx-
imated with γ4i(t) in the rest of this paper.

Now, let us define the difference between the desired
controllers u1i(t) and uvi(t) and the ones proposed under
cloud access u1i,k(t) and uvi,k(t), respectively, as follows:

ũ1i(t) = u1i,k(t)− u1i(t), ũvi(t) = uvi,k(t)− uvi(t). (18)

Now, assuming that U1,k(t) = [u11,k, . . . , u1N,k]
T and

Uv,k(t) = [uTv1,k, . . . , u
T
vN,k]

T, we can write U1,k(t) =

Ũ1,k(t)+U1(t) and Uv,k(t) = Ũv,k(t)+Uv(t), where Ũ1(t) =
[ũ11(t), . . . , ũ1N (t)]T and Ũv(t) = [ũTv1(t), . . . , ũ

T
vN (t)]T.

Now according to (10), it can be concluded that U1(t) =
Γ−1
2 (t)

(
G − LX ′

1(t) −X2(t)
)
, where X ′

1 = [x′11, . . . , x
′
1N ]T

and X2 = [x21, . . . , x2N ]T. Replacing U1,k(t) = Ũ1,k(t) +
Γ−1
2 (t)

(
G−LX ′

1(t)−X2(t)
)

in (5), the following is obtained:

Ẋ ′
1(t) = X2(t),

Ẋ2(t) = −LX ′
1(t)−X2(t) + Γ2(t)Ũ1,k(t).

(19)

In addition, following (12), Uv(t) = −Γ−1
4

((
L ⊗ I2

)
X ′

3(t)−
X4(t)

)
, where X ′

3 = [x′T31, . . . , x
′T
3N ]T, X4 = [xT41, . . . , x

T
4N ]T.

Thus, if Uv,k(t) = Uv(t) + Ũv,k(t) is replaced in (7), the
following expression is achieved:

Ẋ ′
3(t) = X4(t),

Ẋ4(t) = −
(
L ⊗ I2

)
X ′

1(t)−X4(t) +
(
Γ4(t)⊗ I2

)
Ũv,k(t).

(20)

Now, define the collective edge states [16] of the multi-
quadcopter system as X ′′

1 := BTTX
′
1, X ′′

2 := BTTX2, X ′′
3 :=

(BTT ⊗ I2)X
′
3, and X ′′

4 := (BTT ⊗ I2)X4.
From Section III, it can be proven that lim

t→∞
∥ξ1∥ = 0

and lim
t→∞

∥ξ3∥ = 0, where ξ1 = [X ′′T
1 X ′′T

2 ]T and ξ3 =

[X ′′T
3 X ′′T

4 ]T. In this case, the system with the states ξ1 and
ξ3 can reach an asymptotic consensus over the graph G.

Remark 6: It is worth mentioning that during this paper ∥.∥
refers to norm 2 of the matrix or vector.

Definition 1: The multi-quadcopter system achieves practi-
cal consensus [16] on G if there exist X1 ≥ 0 and X3 ≥ 0
such that lim

t→∞
∥ξ1∥ ≤ X1 and lim

t→∞
∥ξ3∥ ≤ X3.

Theorem 1: (Practical Consensus under Cloud Access)
The multi-quadcopter system with the state space model pre-
sented in (5) and (7) under the cloud access data transmission
scenario presented in subsection IV-A and with the controllers
proposed in (14) and (16) achieves the practical consensus
with X1 and X3 defined according to (21) and (22), if |ũ1i| <
ζ1 and ∥ũvi∥ < ζ3 for i = 1, . . . , N .

X1 = ζ1
√
N

∥BT ∥
λmax1mmin

, (21)

where λmax1 = −max{ℜ(λF1) : λF1 ∈ eig(F1)} (where

F1 =

[
0(N−1)×(N−1) IN−1

−BT
T BT

T −IN−1

]
and F1 is Hurwitz (see

Appendix I for the proof) and mmin is the minimum weight
of the quadcopters. Besides

X3 = ζ3
√
N∥BT ∥

u1max
λmax3mmin

, (22)

where λmax3 = −max{ℜ(λF3
) : λF3

∈ eig(F3)} (where

F3 =

[
0(2N−2)×(2N−2) I2N−2

−
(
BT

T BT
T ⊗ I2

)
−I2N−2

]
and F3 is Hurwitz (see

Appendix II for the proof) and u1i(t) ≤ u1max (see Appendix
III for the proof).
Proof: We consider the altitude subsystem with the collective
dynamical model presented in (19). Multiplying the model by
BT

T from left hand side, the state space model of the system
can be written in terms of the edge states X ′′

1 (t) and X ′′
2 (t):

Ẋ ′′
1 (t) = X ′′

2 (t),

Ẋ ′′
2 (t) = −BT

T BT
TX ′′

1 (t)−X ′′
2 (t) +BT

T Γ2(t)Ũ1(t).
(23)

Therefore,
ξ̇1(t) = F1ξ1(t) +H1(t)Ũ1(t), (24)
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where H1(t) = [0T
N Γ2(t)BT ]

T. The solution of (24) is

ξ1(t) = eF1tξ1(0) +

t∫
0

eF1(t−τ)H1(τ)Ũ1(τ)dτ. (25)

Applying the triangular inequality to (25) and knowing that
∥eF1(t−τ)∥ ≤ e−λmax1(t−τ) [26], ∥H1∥ = ∥Γ2(t)∥∥BT ∥ ≤
∥BT ∥
mmin

, and ∥ξ1(0)∥ ≤ ξ10 it can be concluded:

∥ξ1(t)∥ ≤ e−λmax1tξ10 + ζ1
√
N

∥BT ∥
mmin

t∫
0

e−λmax1(t−τ)dτ.

(26)
Therefore, lim

t→∞
∥ξ1∥ ≤ X1 with X1 presented in (21).

For the translational subsystem we consider the collective
dynamical model presented in (20).

Remark 7: If A, B, C and D are matrices of such size
that one can form the matrix products AC and BD then (A⊗
B)(C⊗D) = (AC)⊗(BD). This property is called the mixed
product property [27].
Multiplying the model by BT

T ⊗ I2 from left side and using
Remark 7, the state space model below in terms of the edge
states X ′′

3 (t) and X ′′
4 (t) can be achieved:

Ẋ ′′
3 (t) =X

′′
4 (t),

Ẋ ′′
4 (t) =−

(
BT

T BT
T ⊗ I2

)
X ′′

3 (t)−X ′′
4 (t)

+
(
BT

T Γ4(t)⊗ I2
)
Ũv(t).

(27)

In deriving (27), this equality
(
BT

T ⊗I2
)(
L⊗I2

)
=

(
BT

T L⊗I2
)

is used, following Remark 7. Now, by substituting L =
BBT = BTTBT

T and using Remark 7 it can be readily con-
cluded that

(
BT

T L⊗I2
)
=

(
BT

T BT
TBT

T ⊗I2
)
=

(
BT

T BT
T⊗

I2
)(
BT

T ⊗ I2
)
.

As such
ξ̇3(t) = F3ξ3(t) +H3(t)Ũv(t), (28)

where H3(t) = [0T
2N

(
BT

T Γ4(t)⊗I2
)T

]T. The solution of (28)
can be written as:

ξ3(t) = eF3tξ3(0) +

t∫
0

eF3(t−τ)H3(τ)Ũv(τ)dτ. (29)

Applying the triangular inequality to (29) and knowing that
∥eF3(t−τ)∥ ≤ e−λmax3(t−τ) [26], ∥H3∥ = ∥Γ4(t)∥∥BT ∥ ≤
u1max∥BT ∥

mmin
, and ∥ξ3(0)∥ ≤ ξ30 the following inequality can

be achieved:

∥ξ3(t)∥ ≤ e−λmax3tξ30+ζ3
√
N∥BT ∥

u1max
mmin

t∫
0

e−λmax3(t−τ)dτ.

(30)
As such lim

t→∞
∥ξ3∥ ≤ X3 with X3 presented in (22). ■

Remark 8: Parameters ζ1 and ζ3 can be selected with
purpose. Toward this, according to Definition 1, some desired
upper bounds (X1 and X3) can be selected approximately
for the norms of the edge states because ∥ξ1∥ ≤ X1 and
∥ξ3∥ ≤ X3). Therefore, according to (21) and (22), the values
of ζ1 and ζ3 can be determined approximately.

C. The Scheduling Rule For The Cloud Access

As mentioned in Theorem 1, if |ũ1i| < ζ1 and ∥ũvi∥ <
ζ3 for i = 1, . . . , N , the controllers proposed in (14) and
(16) solve the practical consensus. In this subsection, the main
goal is to find a scheduling rule under which |ũ1i| < ζ1 and
∥ũvi∥ < ζ3 hold for i = 1, . . . , N . In addition, it is also
concluded that the sequence of cloud access update times does
not show Zeno behavior.

Theorem 2: (Zeno-Free Cloud Scheduling) Consider the
multi-quadcopter system with the state space model presented
in (5) and (7), the cloud access data transmission scenario
presented in Subsection IV-A, the control laws (14) and (16),
and the scheduling rule in (31), it is guaranteed that |ũ1i| < ζ1
and ∥ũvi∥ < ζ3 for i = 1, . . . , N .

ti,k+1 = min{ζ1 + |A1i|ti,k
|A1i|

,
ζ3 + ∥A3i∥ti,k

∥A3i∥
}, k ∈ N (31)

where

A1i = γ−1
2i (ti,k)

(
(Ni − 1)x2i(ti,k)−Nix

′
1i(ti,k)+∑

j∈Ni

(x̂′1j(tk,i)− x̂2j(tk,i))
)
, (32)

and

A3i = γ−1
4i (ti,k)

(
(Ni − 1)x4i(ti,k)−Nix

′
3i(ti,k)+∑

j∈Ni

(x̂′3j(tk,i)− x̂4j(tk,i))
)
, (33)

where Ni = |Ni|, x̂′1j(tk,i) and x̂′3j(tk,i) are presented in (15)
and (17), and

x̂2j(tk,i) = −g(ti,k − tj,fj(ti,k))

+ γ2j(tj,fj(ti,k))u1j(tj,fj(ti,k))(ti,k − tj,fj(ti,k)) + x2j(tj,fj(ti,k)),
(34)

x̂4j(tk,i) =γ4j(tj,fj(ti,k))uvj(tj,fj(ti,k))(ti,k − tj,fj(ti,k))

+ x4j(tj,fj(ti,k)).
(35)

Proof: According to (10), one can rewrite u1i(t) as:

u1i(t) = γ−1
2i (t)

(
g +

∑
j∈Ni

(x′1j(t)− x′1i(t))− x2i(t)
)
, (36)

where x′1j(t), x
′
1i(t), and x2i(t) for t ∈ [ti,k ti,k+1) are

approximated according to (37), (38), and (39) and following
the controlled i-th altitude subsystem model presented in (11)
as follows:

x′1j(t) = x′1j(ti,k) +
t∫

ti,k

x2j(τ)dτ ≈ x̂′1j(ti,k) + (t− ti,k)x̂2j(ti,k),

(37)
where x̂′1j is obtained in (15). Besides:

x′1i(t) = x′1i(ti,k) +
t∫

ti,k

x2i(τ)dτ ≈ x′1i(ti,k) + (t− ti,k)x2i(ti,k).

(38)
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And due to (10) and (11):

x2i(t) = x2i(ti,k)

−
∑
j∈Ni

( t∫
ti,k

(
x′1i(τ)− x′1j(τ)

)
dτ

)
−

t∫
ti,k

x2i(τ)dτ

≈x2i(ti,k)− (t− ti,k)
(
Nix

′
1i(ti,k) + x2i(ti,k)−

∑
j∈Ni

x̂′1j(ti,k)
)
.

(39)

Now, substituting (37) to (39) into (36) and then using (14)
and (18), ũ1i(t) = (t− ti,k)A1i is obtained. Now, in order to
have |ũ1i| < ζ1, the following inequality should hold:

t <
ζ1 + |A1i|ti,k

|A1i|
. (40)

In a similar way, the scheduling rule is obtained for the
translational subsystem. Therefore, according to (13), uvi can
be rewritten as follows:

uvi(t) = γ−1
4i (t)

( ∑
j∈Ni

(x′3j(t)− x′3i(t))− x4i(t)
)
, (41)

where x′3j(t), x
′
3i(t), and x4i(t) for t ∈ [ti,k ti,k+1) are

approximated by (42) to (44) for the controlled i-th altitude
subsystem model presented in (13) and (11):

x′3j(t) = x′3j(ti,k) +
t∫

ti,k

x4j(τ)dτ ≈ x̂′3j(ti,k) + (t− ti,k)x̂4j(ti,k),

(42)
where x̂′3j is obtained in (17). In addition:

x′3i(t) = x′3i(ti,k) +
t∫

ti,k

x4i(τ)dτ ≈ x′3i(ti,k) + (t− ti,k)x4i(ti,k).

(43)
And due to (12) and (13):

x4i(t) = x4i(ti,k)

−
∑
j∈Ni

( t∫
ti,k

(
x′3i(τ)− x′3j(τ)

)
dτ

)
−

t∫
ti,k

x4i(τ)dτ

≈x4i(ti,k)− (t− ti,k)
(
Nix

′
3i(ti,k) + x4i(ti,k)−

∑
j∈Ni

x̂′3j(ti,k)
)
.

(44)

Now, substituting (42) to (44) into (41) and then using (16)
and (18), ũvi(t) = (t− ti,k)A3i is obtained. In order to have
∥ũvi∥ < ζ3, the following inequality should hold:

t <
ζ3 + ∥A3i∥ti,k

∥A3i∥
. (45)

Combining the two scheduling rules (41) and (45), the schedul-
ing rule (31) is concluded. This completes the proof ■.

Remark 9: It is worth noting that approximations in the
computations of u1i(t) and uvi(t) in the proof of Theorem 2
can affect ũ1i(t) and ũvi(t), respectively. This approximation
is affected by the choice of the scheduling time calculated
according to (31) and this, in turn, is influenced by the values
of |A1i| and ∥A3i∥, which can lead to formation producing
errors. However, this error can be mitigated by the appropriate
selection of the design parameters ζ1 and ζ3. For example, by

selecting ζ1 → 0 and ζ3 → 0, ti,k+1 → ti,k according to (31)
and this improves the approximation error.

Remark 10: It is worth mentioning that the design param-
eters ζ1 and ζ3 can be selected time varying or any function
of time.

Remark 11: Considering the approximations in (15), (17),
(37) to (39) and (42) to (44) and comparing with the ap-
proximation methods of [19], it is obvious that our method
is different in that we do not consider the access of the
neighboring agents to the cloud in [ti,k ti,k+1) and only the
last access before ti,k is considered and the approximations
are made accordingly. Although this may seem to reduce the
accuracy, it leads to a less computational burden. Besides,
our formulations especially in computation of scheduling rule,
which is more straightforward. Later, in the simulation part,
it can be seen that these approximations do not affect the
performance of the method.

Corollary 1: (Non-Zeno Behavior of Scheduling Rule)
Consider the scheduling rule in (31) for the multi-quadcopter
system described in Subsection II-D with the control laws (14)
and (16), then the sequence of the cloud access update times
does not show Zeno behavior.
Proof:. The proof needs to show that there exists a lower
bound for the time interval ti,k+1 − ti,k. This is equivalent to
showing that the time intervals T1i =

ζ1+|A1i|ti,k
|A1i| −ti,k = ζ1

|A1i|

and T3i =
ζ3+∥A3i∥ti,k

∥A3i∥ − ti,k = ζ3
∥A3i∥ are lower bounded.

Since |x′1i(t)| and |x′2i(t)| are bounded, it can be shown that
|A1i| < A1max and ∥A3i∥ < A3max, therefore

T1i ≥
ζ1

A1max
, T3i ≥

ζ3
A3max

. (46)

This completes the proof. ■

Remark 12: It is worth mentioning that the attitude con-
troller is designed for the attitude subsystem of each agent
separately, and there is no need for data transmission over the
graph for this controller. For this purpose a similar method to
that presented in [25] can be employed. Toward this, the virtual
inputs uxi(t) and uyi(t) are used to generate the reference
values for θi(t) and ϕi(t), i.e. θid(t) and ϕid(t) whereUsing
these values and a predefined ψid(t), an attitude controller can
be designed for the attitude subsystem by properly designing
the input signals u2i(t), u3i(t) and u4i(t) as the torques
applied to the body frame in roll, pitch, and yaw directions.

V. SIMULATION RESULTS

In this section, the efficiency of the proposed controllers is
demonstrated through numerical simulations. For this purpose,
it is assumed that three quadcopters (with the mass of mi =
1.47kg, i = 1, 2, 3) communicate with each other through the
cloud service in which the 2nd agent sends its information
to (and receives the information from) the 1st and the 3rd
agents through the cloud as illustrated in Figure 2. The virtual
connection graph between agents is also illustrated in Figure
2. The other physical parameters such as the moment of
inertia for the quads are chosen similar to the simulation study
conducted in [25] (AR Drone Parrot 2.0). The initial conditions
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Fig. 2: Example of multi-quad system under cloud access showing the cloud time access and data transmission scenario and the virtual
graph between the agents.

chosen for the simulation study are x11(0) = x12(0) =
x13(0) = 0, x21(0) = x22(0) = x23(0) = 0, x31(0) = [0 0]T,
x32(0) = [0.2 0.2]T, x33(0) = [0.4 0.4]T, x41(0) = x42(0) =
x43(0) = [0 0]T, ϕ1(0) = ϕ2(0) = ϕ3(0) = 0, θ1(0) =
θ2(0) = θ3(0) = 0, ψ1(0) = ψ2(0) = ψ3(0) = 0. Moreover,
b1 = [0 0 0]T, b2 = [0 0 − 0.5]T, b3 = [0 0 0.5]T.

A. Evaluation of the Proposed Method

Firstly, we choose ζ1 = 0.03 and ζ3 = 0.001. These
values are selected according to Remark 8 on selections of
ζ1 and ζ3 by choosing X1 ≈ 0.12 and X3 ≈ 0.062. Figure
3 shows the positions of agents on the x, y and z axes.
It is obvious from the figures that the agents reach average
consensus ( or practical consensus) plus the bias terms, and
therefore the speeds of all agents converge to zero according
to Figure 4. The times that the agents are connected to the
cloud are presented in Figure 5. Figure 6 depicts the force
input signals u1i, i = 1, 2, 3 as control input signals and are
chosen as piecewise continuous due to discrete connections to
the cloud. The torque signals u2i and u3i, i = 1, 2, 3 show
undesirable fluctuations due to the triggering of the cloud.
Such fluctuations are unavoidable. To show that the multi-
quadcopter system achieves practical consensus, ∥ξ1(t)∥ and
∥ξ3(t)∥ are represented against X1 and X3, respectively, in
Figure 7. This proves that Definition 1 and Theorem 1 are
satisfied.

Different values of ζ1 and ζ3 (from (21), (22), and (31))
affect cloud access frequency and performance. Table I com-
pares the steady state values of ∥ξ1(t)∥ and ∥ξ3(t)∥ after 25
seconds of simulation. As ζ1 and ζ3 increase, these values
increase, as expected from X1 and X3 in (21) and (22),

0 5 10 15 20 25
sec

-1

-0.5

0

0.5

z(
m

)

agent 1
agent 2
agent 3

0 5 10 15 20 25
sec

0

0.2

0.4

x(
m

)

0 5 10 15 20 25
sec

0

0.2

0.4

y(
m

)

Fig. 3: Position of the agents (ζ1 = 0.03, ζ3 = 0.001).

respectively. The average value for the cloud access time
interval is another parameter. To compute this value, the time
intervals between two successive connections to the cloud
are computed for all agents, and the average value of all
elements for all agents is computed. This value also increases,
reducing the number of cloud accesses—an expected and
desired outcome. The settling time, calculated from the plots
of ∥ξ1(t)∥ and ∥ξ3(t)∥, also increases with higher ζ1 and ζ3.
Furthermore, the time averages of the torques and thrust forces
increase with increasing ζ1 and ζ3
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TABLE I: Comparison of different control values as ζ1 and ζ3 change and with the extended method of [16].

∥ξ1(25)∥ ∥ξ3(25)∥ Average cloud
access time
interval (sec)

Settling time
5%(sec)

Average torque
(N.m)

Average thrust
force (N)

Average number
of access to the
cloud

ζ1 = 0, ζ3 = 0 0 0 0 3.58 0.0264 14.4895 ∞
ζ1 = 0.03,
ζ3 = 0.001

0.02391 0.0047 0.1665 8.3 0.0476 14.4893 167

ζ1 = 0.1, ζ3 =
0.003

0.06358 0.0467 (os-
cillatory)

0.3298 10.01 0.0768 14.4893 87.66

proposed in
[19]

– – 0.1679 4.18 0.0390 14.49 149.6667

0 5 10 15 20 25
sec

0

0.02

0.04
agent 1
agent 2
agent 3
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-0.04

-0.02

0
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-1

0

1

2
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Fig. 4: Translational velocity of the agents (ζ1 = 0.03, ζ3 = 0.001).
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0

1
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Fig. 5: Access times to the cloud (ζ1 = 0.03, ζ3 = 0.001).

B. Comparison with [19] (the Extended Method of [16] for
Multi-Quadcopter System)

In [19], the method from [16] for multi-agent formation
control with cloud access was extended to multi-quadcopter
systems. A comparison of both methods is shown in Table I.
Despite different approximations, the access time in this paper
should differ significantly, but the performance in terms of
cloud access frequency and time intervals is nearly identical.
The key difference is that the method in this paper achieves
settling times twice as fast. To compute the computational
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Fig. 6: Control input signals (ζ1 = 0.03, ζ3 = 0.001).

complexity of an algorithm implemented in MATLAB (or any
language), we can generally determine the time complexity
(how the runtime scales with input size). Since the input sizes
of the agents (functions in the MATLAB code) do not change,
one can measure the mean value of the actual runtime of all
functions (related to the different agents). The results were
obtained on an Intel(R) Core(TM) i7-6500U processor, with
the method proposed here computing control laws roughly
7 times faster than the one in [19], which is advantageous
for large quadcopters groups. The improved computational
efficiency is explained in Remark 11. Therefore, the proposed
method can be implemented in real time. However, the main
issue with [16] and [19] is the consensus filter used. As
noted in the Introduction, the consensus-based controller only
ensures convergence if the initial velocities of the agents are
zero; otherwise, it causes ramp behavior due to changing initial
speeds with each cloud connection.

VI. CONCLUSION

In this paper, the formation producing problem in multi-
quadcopter systems under cloud access was studied. For this
purpose, first consensus-based formation producing control
laws were presented for the altitude subsystem and the trans-
lational subsystem with virtual inputs in which the employed
consensus control laws guarantee the convergence of the
quadcopters’ position to the biased average of initial values
(asymptotic consensus). Then, the controllers were modified
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Fig. 7: ∥ξ1(t)∥ and ∥ξ3(t)∥ against X1 and X3 (ζ1 = 0.03, ζ3 =
0.001).

to be employed under cloud access where a scheduling rule
to communicate with the cloud was designed guaranteeing the
practical consensus convergence with a bounded error. The
scheduling rule was shown to not exhibit Zeno behavior.
In the simulation results, the performance of the proposed
formation producing control laws was evaluated. Toward
this, different situations including the continuous inter-agent
communication and two different scenarios of cloud access
frequency were studied. In addition, the proposed method of
this paper was compared with [19].
Although formation control through cloud access results in
reducing many communication constraint issues, it can still
suffer from some communication constraints, such as packet
dropout, cyber attacks and switching connection graphs. In
future work, it is suggested to consider communication con-
straints and cyber attacks under cloud access. Besides, the
robustness of the method to parameter uncertainties and dis-
turbances can be considered as the future work.

APPENDIX I
PROOF THAT F1 IS HURWITZ

Following Assumption 4 assume that the multi-agent system
with the connectivity graph G contains a spanning tree GT . In
this case, BT is a full column rank N × (N − 1) matrix. Let:

λI− F1 =

[
λIN−1 −IN−1

BT
T BT

T (λ+ 1)IN−1

]
. (47)

Remark 13: For a block matrix with the same size square

matrix blocks A, B, C and D, det

[
A B

C D

]
= det(AD−BC)

if C and D commute [28].
To prove that F1 is Hurwitz, first we show λ = 0

is not an eigenvalue of F1. For λ = 0 and following
Remark 13, (47) can be simplified to det(−F1) =
det(BT

T BT
T) = det

(
BT

T BB
TBT (B

T
T BT )

−1
)

≥
det(BT

T BT ) + det
(
BT

T BCB
T
C BT

)
det

(
(BT

T BT )
−1

)
,

where T and B = [BT BC ] are defined in subsection
II-B. Since BT is full column rank det(BT

T BT ) > 0 and

(
BT

T BCB
T
C BT

)
≥ 0. This proves that λ = 0 is not an

eigenvalue of F1. Moreover, using (47) and Remark 13, the
characteristic equation of F1 can be written as:

det(λI− F1) = det
(
(λ2 + λ)IN−1 +BT

T BT
T
)
. (48)

Remark 14: For any invertible Xm×m, det(X + AB) =
det(X) det(In +BX−1A) with Am×n and Bn×m [29].

Following Remark 14, the characteristic equation in (48)
can be reformulated as det(λI−F1) = (λ2+λ)−1 det

(
(λ2+

λ)IN + L
)

where L = BTTBT
T . Therefore, it can be

concluded that λ′ = λ2 + λ are eigenvalues of −L and can
be sorted in a set {−λ′N , . . . ,−λ′1, 0} so that −λ′N < · · · <
−λ′1 < 0. Thus the values of λ have negative real part and
this proves that F1 is Hurwitz.

APPENDIX II
PROOF THAT F3 IS HURWITZ

We assume

λI− F3 =

[
λI(2N−2)×(2N−2) −I2N−2(
BT

T BT
T ⊗ I2

)
(λ+ 1)I2N−2

]
. (49)

Remark 15: Let An×n and Bm×m, then det(A ⊗ B) =
det(A)m det(B)n [30].
Similar to Appendix I, first we prove that λ = 0 is not an
eigenvalue of F3. By setting λ = 0 and applying Remarks
13 and 15 we have: det(λI − F3)|λ=0 = det(−F3) =

det
((
BT

T BT
T ⊗ I2

))
= det(BT

T BT
T)N−1. As shown in

Appendix I det(BT
T BT

T) > 0, and hence λ = 0 is not an
eigenvalue of F3. Moreover, using (49) and Remarks 13 and
14, the characteristic equation of F3 can be written as:

det(λI− F3)

= det
(
(λ2 + λ)I2N−2 +BT

T BT
T ⊗ I2

)
= det

(
(λ2 + λ)I2N−2 + (BT

T ⊗ I2)(BT
T ⊗ I2)

)
= (λ2 + λ)−2 det

(
(λ2 + λ)IN + (BTT ⊗ I2)(B

T
T ⊗ I2)

)
= (λ2 + λ)−2 det

(
(λ2 + λ)IN + (BTTBT

T )⊗ I2
)

= (λ2 + λ)−2 det
(
(λ2 + λ)IN + L ⊗ I2

)
.

(50)

Therefore, it can be concluded that λ′ = λ2 + λ are
the eigenvalues of L ⊗ I2 and can be sorted in a set
{−λ′N ,−λ′N , . . . ,−λ′1,−λ′1, 0, 0} so that −λ′N < · · · <
−λ′1 < 0. Thus, the values of λ have negative real part and
this proves that F3 is Hurwitz.

Remark 16: If An×n and Bm×m with eigenvalues
λ1, . . . , λn and µ1, . . . , µm, respectively, then the eigenvalues
of A⊗B are λiµj , i = 1, . . . , n, j = 1, . . . ,m [30].

APPENDIX III
BOUNDNESS OF u1i(t)

We can write (8) as U1(t) = Γ−1
(
G − LX1′(t) −

X ′
2(t)

)
and by multiplying both sides by BT

T Γ2 and replac-
ing L by BTTBT

T , we arrive at BT
T Γ2U1(t) = BT

TG −
BT

T BT
TBT

TX1′(t) − BT
TX2(t) = BT

TG − [BT
T BT

T I]ξ3(t).
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Using the definition of vector/matrix norm and apply-
ing the triangular inequality yields ∥U1(t)∥ ≤ ∥G∥ +
∥[BT

T BT
T I]∥

∥BT
T ∥ ∥ξ1(t)∥, where ∥ξ1(t)∥ is bounded. As a result, it

can be concluded that ∥U1(t)∥, and hence u1i(t), i = 1 . . . N
are bounded.
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