
Anomaly Detection in the

Internet of Things

Ziyang Yang, B.Sc.(Hons.), M.Sc.(Hons.),

M.Res

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

September 2025

Abstract

The first part of this thesis addresses the challenge of efficiently detecting changes within

a network of sensors, where minimizing communication between sensors and the cloud.

We proposed two online, communication-efficient methods to detect such changes. We

provide an asymptotic theory for the first method, disMOSUM, concerning consistency

and the asymptotic distribution if there are no changes. Simulation results suggest

that our method can achieve similar performance to the idealised setting, where we

have no constraints on communication between sensors, but substantially reduce the

transmission costs. The second approach, mixFOCuS, addresses the scenario where

post-change parameters are unknown and the data belong to the exponential family,

while still maintaining computational efficiency. A simulation study is conducted to

evaluate the performance of our method with state-of-the-art approaches.

In the second part, we consider Bayesian approaches to online changepoint detection

in linear regression models. Such methods are less common than frequentist methods

due to their perceived higher computational cost, but they have advantages in terms of

more naturally quantifying uncertainty and the ability to incorporate prior information

about the type of change. We proposed a fast online Bayesian changepoint algorithm

that can be applied to a wide range of problems, including detecting changes in mean or

slope, and detecting changes in the presence of seasonal effects. Simulation suggests that

the algorithm has a similar speed but higher accuracy compared to a benchmark pruning

approach, which only prunes the candidate with the lowest posterior probability.

I

Acknowledgements

In the summer of 2019, I was sitting alone at the airport, waiting for my flight to the

UK. It was my first time travelling and studying abroad by myself. I cried, and I did

not know that moment was the changepoint of my life. Now, in 2025, I am at the end

of my PhD. This thesis summarises the work I have done over the past few years, but

what I gained goes far beyond these words.

A big thanks to my supervisors, Idris Eckley and Paul Fearnhead. I guess I am

the biggest challenge in your supervision careers, and I truly appreciate your support,

guidance, patience, and your continuous efforts in correcting my grammar. Idris, thanks

for your support and for sharing your life experiences with me when I was lost. Paul,

it has been a wonderful experience working with you. Thanks for your effort in reading

and commenting on draft after draft. I can imagine how much time and energy it took

to work through my horrible writing. Working with both of you has been the best part

of my PhD journey. You have shown me what a good researcher is: staying humble,

down-to-earth, and working hard. I have learned a lot from you, and I will carry these

with me throughout my life.

I also want to thank BT for sponsoring my PhD. Special thanks to Dave and Rika

for your support throughout these years. Travelling to Ipswich was exhausting, but our

conversations have always been a source of inspiration.

Jon, thanks a lot for interviewing me and offering me a position at STOR-i. Joining

the STOR-i programme has been the best opportunity and decision I have ever made.

II

III

During the interview, you asked me what would happen if I could not solve the problem

during the PhD, and my answer was that I did not care. But the truth was, I struggled

and doubted myself almost every single day. Thank you for the conversations and the

support along the way. Now, I think I finally understand what that question really

meant, and I believe I have gained the resilience to face whatever comes next.

To all my lecturers, I would not consider doing a PhD without you. Thanks to my

lecturers during my undergraduate, Xue and Qi, for sparking my interest in statistics

and inspiring me to pursue a PhD. At the University of Southampton, I was lucky to

be taught and supported by incredible mentors. Olga, you were the first person who

told me to be proud of myself. Jessie, you are an amazing supervisor and thanks for all

your support.

To all my STOR-i cohorts and colleagues, I could not have done this without you.

Thank you all for making STOR-i feel like a second home to me when everything

around me was new and unfamiliar. Owen, the conversation we had after my first

terrible presentation still stays with me. Jacob, I truly enjoyed our time in the reading

group. Dan, Robyn, Maddie, Ĺıdia, Katie and Rebecca, thank you for bringing me joy

and lighting up my everyday life. I feel so lucky to have shared this journey with all of

you.

Thanks to my family for your love and support throughout this journey. Without

you, I would not have had the courage to board that flight. I hope I have made you

proud. I also want to thank my Jellycats for keeping me company each night and

listening patiently to all my rants, worries, and late-night thoughts. And, to my cat,

Cube, thank you for always being there for me.

Finally, to my husband and best friend, Francis, thank you for your unconditional

love and support. You were with me every single day, from the very beginning until

now. You saw all my failures, my mistakes, and all my sad moments, and you were

always with me. This journey was ours as much as it was mine.

IV

Again, thank you all for walking with me.

Declaration

I declare that the work in this thesis has been done by myself and has not been sub-

mitted elsewhere for the award of any other degree. The word count of the main text

is approximately 22,409 words. Chapters 3 and 4 are based on work that has been

submitted for publication, as listed below.

Ziyang Yang

Chapter 3 has been accepted for publication as Yang, Z., Eckley, I.A. and Fearnhead,

P., 2024. A communication-efficient, online changepoint detection method for monitor-

ing distributed sensor networks. Statistics and Computing, 34(3), pp.1-16. The authors

are grateful to Lawrence Bardwell who played a key role in inspiring this work.

Chapter 4 has been accepted by the Journal of Time Series Analysis for publication as

Yang, Z., Eckley, I.A. and Fearnhead, P., to appear. mixFOCuS: A Communication-

Efficient Online Changepoint Detection Method in Distributed System for Mixed-Type

Data.

We gratefully acknowledge the financial support of the EPSRC via the STOR-i Centre

for Doctoral Training (EP/S022252/1), EPSRC grant EP/R004935/1 (Eckley) and BT

Research (Eckley, Fearnhead, Yang). We are also grateful to Dave Yearling (BT) for

several helpful conversations that helped shape these researches.

V

Contents

Abstract I

Acknowledgements II

Declaration V

Contents IX

List of Figures XV

List of Tables XIX

1 Introduction 1

2 Literature review 3

2.1 Univariate offline changepoint detection 5

2.1.1 Loglikelihood ratio test and offline CUSUM 6

2.1.2 Binary Segmentation, constrained and penalized

approaches . 7

2.1.3 Bayesian offline changepoint detection 19

2.2 Online changepoint detection . 24

2.2.1 Frequentist approaches . 24

2.2.2 Bayesian online changepoint detection 34

VI

CONTENTS VII

3 A communication-efficient, online changepoint detection method for

monitoring distributed sensor networks 38

3.1 Introduction . 38

3.2 Problem setting . 42

3.3 Distributed change point detection method 46

3.3.1 Local monitoring . 47

3.3.2 Message passing . 49

3.3.3 Global monitoring . 50

3.4 Theoretical properties for distributed MOSUM 52

3.4.1 Asymptotics under the null . 53

3.4.2 Obtaining critical values . 55

3.4.3 Asymptotics under the alternative 57

3.5 Simulations . 58

3.5.1 The numerical dependency on local thresholds 59

3.5.2 The numerical dependency on parameters 61

3.5.3 The violation of the independence assumption 64

3.6 Conclusion . 67

4 mixFOCuS: A Communication-Efficient Online Changepoint Detec-

tion Method in Distributed System for Mixed-Type Data 68

4.1 Introduction . 68

4.2 Background: From Page (1954) to expFOCuS 72

4.3 Problem setting and our proposed method 75

4.3.1 Problem setting . 75

4.3.2 The mixFOCuS approach . 76

4.3.3 The choice of the local threshold 78

4.3.4 The choice of the global threshold 79

4.4 Simulation results . 81

CONTENTS VIII

4.4.1 Detection power of mixFOCuS 82

4.4.2 Assessing detection power with true distribution versus Gaussian

approximation . 86

4.4.3 Comparing with the current state of the art 87

4.4.4 Detection power of mix-FOCuS on time series data 89

4.5 Skoltech anomaly benchmark . 90

4.6 Conclusions . 92

5 Bagel: A Fast Bayesian Online Changepoint Detection Algorithm for

Linear Models 94

5.1 Introduction . 94

5.2 Univariate real-time Bayesian changepoint detection 96

5.2.1 The changepoint problem . 96

5.2.2 Sequential Updating . 103

5.2.3 Reducing the computational complexity by merging 107

5.3 Simulation Results . 113

5.4 Real data example - Machine Temperature Failure 115

5.5 Discussion . 117

6 Conclusions And Future Work 118

A Appendix for disMOSUM 120

A.1 Proof of Theorem 3.4.3 . 120

A.2 Proof of Theorem 3.4.6 . 121

B Appendix for mixFOCUS 123

B.1 Quantile-Quantile plots of the time to detection 123

B.2 Detection power of mixFOCuS when τ = 1000 124

B.3 The effect of a Gaussian approximation 124

CONTENTS IX

B.4 Model details . 125

C Appendix for Bagel 127

C.1 Properties of the Prior for Examples 1 and 2. 127

C.2 Proof of the sequential updating . 129

C.3 The total variation between two univariate Gaussian with known variance133

C.4 Simulation results under different priors 134

C.4.1 Priors . 134

C.4.2 Detection power . 135

C.4.3 Speed . 135

Bibliography 140

List of Figures

2.1 Examples of Different Changes. Figure (a) demonstrates a change-in-

mean example in cleaned well-log data, where a shift in average values

indicates transitions between geological layers. Figure (b) illustrates a

change-in-slope example observed in Nvidia’s closing stock price, reflect-

ing an upward trend after 2023, followed by a decline in 2025. Figure (c)

highlights a change in variance in the log returns of Nvidia’s stock price.

Increased variance suggests higher market volatility and risk. 4

2.2 Example intervals in seeded binary segmentation at each recursion (α =

0.5). 10

2.3 The relationships among offline algorithms. 14

2.4 The diagram illustrates the process of functional pruning from time t = 4

to 5. The dashed lines are the costQτ
m,t, the red curve is theQ∗

m,t, the red

star is the Cm,t, the coloured line at the bottom is the mean interval Iτm,t

that contributes to the optimal partition as described in Algorithm 4,

and the red cross represents the candidate we want to prune out. We

can see from time 4 to 5, the cost of Q4
m,5 is larger than any other costs

for any µ, therefore we can prune out candidate 4 from the searching space. 17

X

LIST OF FIGURES XI

2.5 Graphical explanation of the false alarm rate and average run length

under the null. The black lines represent the monitoring time for a fixed

threshold until the first alarm in each replicate, where the first alarm

occurs when the local test statistic exceeds the threshold. In the left

Figure, for a monitoring period of n, the threshold results in a false

alarm rate of 2/6. On the right hand side, the average of these five

stopping times gives the average run length of n. 26

2.6 The diagram illustrates the process of FOCuS from time t = 4 to t = 5.

The dashed lines are the zero line, the red curve is the Q∗
t , the red

star is test statistic maxδQ∗
t , the coloured line at the bottom is the set

Iτt which contributes to the optimal partition, 2xt and 2St−S3

5−3
are the

starting points of the partition where zero line is the optimal, and the

red cross represents the candidate we want to prune out. We can see

from time 4 to 5, the cost of Q4
t and Q5

t is smaller than other costs or

zero line for any δ, therefore we can prune out candidate 4 and 5 from

the searching space. 32

3.1 Schematic representation of a sensor network made up of d sensors, where

Si is the index for sensor i, Xi,t is the data observed at sensor i, and Mi,t

is the message transmitted from sensor i to centre at time t. 40

3.2 Example time series with no change (a) and a single change (b) in the

top row. The bottom row shows the weighted MOSUM statistic with a

historic period of length m = 100 and a window size of h = 50. 49

3.3 Example of the weighted global MOSUM statistic for the distributed (red

dashed line) and centralized (black line) regime. The result is obtained

with T = 1000, d = 100,m = 100, h = 50, δ = 0.5 and the number

of affected sensors p = 50. A value of cLocal = 3.44 was used in the

distributed regime. 52

LIST OF FIGURES XII

3.4 The average number of messages transmitted to the centre (top) and

average detection delay across varying mean shifts (bottom). Results

are obtained when m = 200, h = 100, T = 10000, τ = 5000, α = 0.05.

Each line corresponds to a different local threshold, which is labelled

on the top right. The colour changes from blue to orange as the local

thresholds increase from 0 to 5.2. When the local threshold is 5.2, the

global threshold will be 0. So all possible combinations of thresholds are

covered. 60

3.5 The influence of window size. Results are obtained over 1000 replications

and take m = 200, d = 100, T = 10000, τ = 5000, α = 0.05, cLocal = 3.44. 61

3.6 An graphic explanation of our proposed idea. Black line is the ADD for

centralized MOSUM with window size h. Yellow dashed line is the ADD

for distributed MOSUM with window size h; while blue dashed is the

ADD for distributed MOSUM with window size h∗. 62

3.7 An simple example showing that distributed MOSUM could approxi-

mate the detection power of centralized MOSUM by inflating window

size. Results are obtained over 500 replications and take m = 200, d =

100, T = 1000, τ = 600, α = 0.05, and cLocal ∈ [0, 4.4]. When cLocal = 4.4,

cGlobal = 0. So all possible local thresholds are covered. For centralized

setting, window size h0 = 50. 63

3.8 D̄ versus δ when varing the size of training dataset. Result averaged over

500 replications with α = 0.05, cLocal = 3.44, T = 6000, τ = 3000 and

h = 50. The corresponding global thresholds are shown in Table 3.4. . . 64

4.1 Schematic representation of a sensor network made up of d sensors, where

Si is the index for sensor i, Xi,t is the data observed at sensor i,Mi,t is

the message transmitted from sensor i to centre at time t, and τ̂ is the

time the algorithm stops or alarms. 70

LIST OF FIGURES XIII

4.2 The numerical transmission frequency of local test statistic for simulated

standard Gaussian distribution based on 1000 replications with γ = 10000. 79

4.3 An example diagram illustrating the procedure for determining global

thresholds to achieve a target ARL of γ. We begin by simulating R

n × d datasets under the null, where n ≫ γ. For each dataset, we

compute and store global test statistics at every time point. We first

isolate the SUM procedure and tune its global threshold cSUM
Global such that

the ARL satisfies E∞(κSUM) = γ/p. We then tune the threshold of

MAX procedure cMAX
Global based on the combined test statistics, so that

E∞ (min{κSUM, κMAX}
)
= γ. The order of the two steps can be swapped. 81

4.4 The proportions of experiments where a change was detected by time

step t − τ . Data are generated with pber = 0.4, λpois = 5, λexp = 1
3
, β =

2, n = 10000 and τ = 3000. Results are obtained over 1000 repetitions.

In cases where the pre-change distribution is known, data streams are

normalized based on their theoretical mean and variance of the true

distribution. When the pre-change distribution is unknown, the mean

and variance are estimated from the training dataset. 86

4.5 The x−axis represents the detection delay (τ̂ − τ), and the y−axis rep-

resents the cumulative percentage across 1000 repetitions. The grey line

represents a detection delay of 0, with lines to the left indicating false

alarm rates. A faster convergence of the lines to the right of the grey

line towards 1, indicates a quicker detection. 88

4.6 The x−axis represents the detection delay (τ̂ − τ), and the y−axis rep-

resents the cumulative percentage across 1000 repetitions. The grey line

represents a detection delay of 0, with lines to the left indicating false

alarm rates. A faster convergence of the lines to the right of the grey

line towards 1, indicates a quicker detection. 91

LIST OF FIGURES XIV

4.7 Detection results for identifying the start (left) and the end (right) of the

change under 100% and 5% transmission constraints are presented. Black

dots indicate the time points when the sensor transmits test statistics

for 5% transmission model. The monitored global test statistics are

displayed in the 9th and 10th rows for the 100% transmission model and

in the 11th and 12th rows for the 5% transmission model. The true

change time is represented by the light red line, while the dark red line

in the bottom four rows indicates the detected change time identified by

mixFOCuS with the two levels of transmission. 93

5.1 An example of continuous change (left) and discontinuous change (right)

in linear trend model. 101

5.2 Figure (a) presents the simulated data with a change at 1500. Figures (b)

and (c) show the posterior distribution obtained from the exact approach

without pruning (gray line). The black dots represent the candidates not

pruned by the benchmark approach withM = 50 at time steps 1600 and

2000, respectively. The red star indicates a candidate that was pruned

at step 1600, but subsequently has the highest posterior probability after

collecting more data. 107

5.3 The CDFs of the exact approach (grey), Bagelwith recovered posterior

distribution (blue) and benchmark (black) when M = 50. 113

5.4 Machine temperature data with true anomalous period, MAP estimators

of changepoints obtained from our proposed method, and the anomalous

segment detected by SCAPA . 116

B.1 QQ plot of standardized κmax, κsum and κcomb for different thresholds

against exponential (1) distribution when ∆ = 1%. 123

LIST OF FIGURES XV

B.2 The proportions of experiments where a change was detected by time

step t. Data are generated with pber = 0.4, λpois = 5, λexp =
1
3
, β = 2, n =

10000 and τ = 3000. Results are obtained under 1000 replications. . . 126

C.1 Average running speed per time step for exact, Bagel, and benchmark

approaches against different values of M on data n = 1000. 136

List of Tables

2.1 Summary of online changepoint detection algorithms. The computa-

tional cost is measured at tth time step. 37

3.1 Critical values for the centralized procedures, results averaged over five

thousand replications. 55

3.2 Critical values for the distributed procedure with different values for

cLocal, results averaged over five thousand replications. 56

3.3 Empirical size, results averaged over one thousand replications with α =

0.05, T̃ = 10, and β = 1/2. 56

3.4 Empirical size, and MSE for estimated mean and standard deviation,

results averaged over one thousand replications with cLocal = 3.44, h =

50, T = 6000 and α = 0.05. 63

3.5 Results are obtained over 1000 replications with T = 10000, m = 200,

h = 100, τ = 5000, d = 100, cLocal = 3.44, and α = 0.05 for all three

methods. The blue colours are labelled when both the false positive rates

and average detection delay are small. 66

XVI

LIST OF TABLES XVII

4.1 Examples of one-parameter exponential families as natural parameter

form. We are interested in detecting the change in the mean with fixed

variance σ2 and the change in variance with fixed mean 0, for Gaussian

distributions, the change in probability for Bernoulli distributions, the

change in rate for Poisson distributions, the change in rate for Exponen-

tial distribution, and the change in rate for Gamma distributions with

fixed shape parameter α. 73

4.2 Set-up of simulated data. 82

4.3 Results on the homogeneous Gaussian data are averaged over 1000 repli-

cations. The smallest ADD in each scenario is given in bold. The per-

centage within the bracket represents the proportion of missed alarms. . 84

4.4 Average detection delay on mixed-type data against the levels of spar-

sity and the strengths of the signal. Results are averaged over 1000

replications. The smallest ADD in each scenario is given in bold. The

percentage within the bracket represents the proportion of missed alarms. 85

5.1 Simulation results for the Example 1 change-in-mean case with 500 repli-

cates. The simulated data follows N(0, 1) before τ = 1000 and N(0.25, 1)

after the change. 114

5.2 Simulation results for Example 2 change-in-slope scenario with known

variance with 500 replicates. The simulated data follow a normal distri-

bution N(0, 1) before time t = 1000, and follow −1.75+0.002t+N(0, 1)

after the change for continuous change and follow −2.2+0.002t+N(0, 1)

after the change for discontinuous change. 115

5.3 Labelled anomalies along with the detection time of two approaches. . . 116

LIST OF TABLES XVIII

B.1 Results on Gaussian data are averaged over 1000 repetitions. Data are

simulated with parameters n = 10000 and d = 100 and follow Gaussian

distribution. The smallest ADD in each scenario is given in bold. The

percentage represents the proportion of missed alarms. 124

B.2 Average detection delay on the mixed-type data against the levels of

sparsity and the strengths of the signal. Results are averaged over 1000

repetitions. Data are simulated with parameters n = 10000 and d = 100.

The smallest ADD in each scenario is given in bold. The percentage

within the bracket is the proportion of missed alarms. 125

C.1 Simulation results for Example 1 (change-in-mean scenario with known

variance) are based on 500 replicates when we vary the value of the

variance. The simulated data follow a normal distribution N(0, 1) before

time t = 1000, and then follow N(0.25, 1) after the change. The priors

are specified as p(τ ≥ 2000) = 0.9 and p = 0.1. The prior column in the

tables specifies that the distribution of pre-change and post-change, as

they are independently and identically distributed. 136

C.2 Simulation results for Example 1 (change-in-mean scenario with un-

known variance) are based on 500 replicates when we vary the value

of the scaled covariance matrix and the prior on the variance. The sim-

ulated data follow a normal distribution N(0, 1) before time t = 1000,

and then follow N(0.25, 1) after the change. The priors are specified as

p(τ ≥ 2000) = 0.9 and p = 0.1. The prior column in the tables spec-

ifies that the distribution of pre-change and post-change, as they are

independently and identically distributed. 137

LIST OF TABLES XIX

C.3 Simulation results for Example 2 (continuous change-in-slope scenario

with known variance) are based on 500 replicates when we vary the

value of the scaled covariance matrix. The simulated data follow a normal

distribution N(0, 1) before time t = 1000, and then undergo a continuous

change, gradually shifting to follow 0.002× t+N(0, 1) after the change.

For the known variance setting, the priors are specified as p(τ ≥ 2000) =

0.8, pdis = 0.1, pconti = 0.1, σ2 = 1 and µβ = (0, 0)⊤. 138

C.4 Simulation results for Example 2 (discontinuous change-in-slope scenario

with known variance) are based on 500 replicates when we vary the value

of the scaled covariance matrix. The simulated data follow a normal

distribution N(0, 1) before time t = 1000, and then undergo a continuous

change, gradually shifting to follow −1.75 + 0.002 × t + N(0, 1) after

the change. For the known variance setting, the priors are specified as

p(τ ≥ 2000) = 0.8, pdis = 0.1, pconti = 0.1, σ2 = 1 and µβ = (0, 0)⊤. . . . 139

Chapter 1

Introduction

Dr. Sheldon Cooper, a fictional character in The Big Bang Theory, once said “the

inevitability of change might be a universal constant”. This is a changing world, where

even small shifts can lead to significant consequences if left unnoticed. The challenge lies

not only in preventing change but also in recognizing the moment it occurs. How can

we detect these shifts as soon as they happen, allowing us to react before their impacts?

This is the motivation behind anomaly detection, which focuses on identifying unusual

or unexpected patterns in data. Extensive research has been conducted on this task, and

existing methods can be broadly classified based on learning paradigms (e.g. supervised

or unsupervised), methodological strategies (such as statistical methods, clustering-

based techniques, classification models, and reconstruction-based approaches), and the

types of data they are applied to, including time series, images, and graph-structured

data.

Within the broader scope of anomaly detection, our work focuses on changepoint de-

tection, a statistical approach aimed at identifying points in time where the underlying

properties of a process change. While not all changepoints are anomalous, anomalous

changepoints can be identified by comparing current behaviour against a model of ex-

pected change. When we have training data, a changepoint in the deviations (e.g., large

1

CHAPTER 1. INTRODUCTION 2

residuals between observed and expected values) signals an anomaly.

Since Page (1954) first introduced changepoint detection algorithms for quality con-

trol, research in this area has expanded significantly. Early work focused primarily

on offline methods, which analyse entire datasets to efficiently and accurately identify

changepoints. More recently, attention has shifted toward developing online (real-time)

algorithms, which aim to detect shifts quickly as data streams in. A detailed overview

of these methods will be presented in Chapter 2.

Nowadays, with the advent of the Internet of Things (IoT), it is increasingly common

to have large networks of sensors, where each sensor may collect different types of data,

has limited local computing resources and the ability to transmit data to a central

cloud. Detecting events that trigger changes in sensor data properties is a key concern.

However, minimizing sensor-to-cloud communication might be necessary due either

to privacy constraints or limited battery resources. Whilst there has been extensive

research on both the univariate changepoint and multivariate changepoint, few methods

explicitly account for communication constraints. In Chapters 3 and 4, we propose

two real-time communication-efficient methods, disMOSUM and mixFOCuS, to detect

changepoints in such a system.

Although disMOSUM and mixFOCuS can efficiently and quickly detect changes,

they lack a natural way to quantify uncertainty or incorporate prior information about

the change. To address these limitations, in Chapter 5 we propose an online Bayesian

changepoint detection method named Bagel. This approach can effectively detect the

changes for linear models with constant time complexity per time step.

Chapter 2

Literature review

Changepoint detection, or breakpoint detection, is the process of identifying points in

time where the statistical properties of a dataset undergo significant shifts. These shifts

can take various forms, including changes in mean, variance, slope, or more complex

structural transformations. Detecting such changes is important in numerous domains,

as they often signal critical transitions with practical implications. For instance, as

illustrated in Figure 2.1, abrupt changes in financial time series can indicate shifts in

investor sentiment, economic events, or structural breaks in asset pricing, often leading

to changes in market volatility and risk. In geophysics, changepoint detection helps

identify subsurface layer boundaries in well-log data, aiding in resource exploration and

geological analysis.

Over the past decade, extensive research has been conducted on changepoint detec-

tion, leading to a diverse set of methodologies tailored to different applications and data

characteristics. These techniques can be categorized along several dimensions, includ-

ing online versus offline detection, univariate versus multivariate analysis, frequentist

versus Bayesian frameworks, and exact versus approximate solutions. The choice of

method depends on multiple considerations, such as computational efficiency, the need

for real-time processing, the robustness to noise and underlying statistical properties.

3

CHAPTER 2. LITERATURE REVIEW 4

0 1000 2000 3000 4000

10
00

00
11

00
00

12
00

00
13

00
00

14
00

00

Time

M
ea

su
re

m
en

t

(a)

2021 2022 2023 2024 2025

20
40

60
80

10
0

12
0

14
0

Date
P

ric
e

(b)

2021 2022 2023 2024 2025

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Date

Lo
g

R
et

ur
n

(c)

Figure 2.1: Examples of Different Changes. Figure (a) demonstrates a change-in-mean
example in cleaned well-log data, where a shift in average values indicates transitions
between geological layers. Figure (b) illustrates a change-in-slope example observed in
Nvidia’s closing stock price, reflecting an upward trend after 2023, followed by a decline
in 2025. Figure (c) highlights a change in variance in the log returns of Nvidia’s stock
price. Increased variance suggests higher market volatility and risk.

For instance, online methods are ideal for real-time applications where immediate de-

tection is crucial, while offline methods conduct analysis of historical data. Likewise,

Bayesian approaches provide a probabilistic framework for handling uncertainty and in-

corporating prior knowledge, whereas frequentist methods offer deterministic solutions

based purely on observed data.

In this chapter, we focus on univariate changepoint detection methods aimed at

detecting changes in the mean. We consider both frequentist and Bayesian methodolo-

gies that are particularly foundational to the techniques introduced in the subsequent

chapters. The chapter begins with a review of offline changepoint detection, followed

by an introduction to online detection approaches.

CHAPTER 2. LITERATURE REVIEW 5

2.1 Univariate offline changepoint detection

In the offline problem, we can access the entire data of size n, X1, . . . , Xn. The objective

is to determine the number of changepoints and identify their locations. For simplicity,

we assume that the data points are independent and identically distributed following

a standard Gaussian distribution. While we omit discussions of changepoint detection

in other contexts—such as autoregressive models, nonparametric approaches, or robust

methodologies—we refer the reader to comprehensive reviews, such as Truong et al.

(2020); Cho and Kirch (2024).

In the at most one change (AMOC) scenario, there is a single changepoint at an

unknown time τ . The observations follow

X1, . . . , Xτ
iid∼ f(·|θ) and Xτ+1, . . . , Xn

iid∼ f(·|θ + δ),

where θ represents the mean before the changepoint, δ is the magnitude of the change

in the mean after the changepoint, and f(·|µ) is the density for an observation with

mean µ. The goal of changepoint detection in this setting is to determine whether a

significant change in mean has occurred and, if so, to estimate τ . In Section 2.1.1, we

introduce common solutions to this problem.

If there arem changepoints, τ1:m, such that 0 = τ0 < τ1 < τ2 < . . . < τm < τm+1 = n,

the observations can be partitioned into m+1 segments, each following a distinct mean

level. Specifically, we can denote that

Xτi+1, . . . , Xτi+1

iid∼ f(θi), for i = 0, 1, ...,m.

Here, θi(∀i, θi ̸= θi+1) denotes the mean specific to its corresponding segment. In this

more general multiple changepoint detection setting, the challenge extends to estimat-

ing both the number of changepoints and their locations. This often requires heavy

CHAPTER 2. LITERATURE REVIEW 6

computing, so it is crucial to ensure that the model effectively captures significant

shifts. In Sections 2.1.2 and 2.1.3, we introduce algorithms that have been specifically

developed to tackle this problem efficiently.

2.1.1 Loglikelihood ratio test and offline CUSUM

We first consider the case where there is at most one changepoint in the sequence.

When there is at most one changepoint, a straightforward approach to detection is

to perform a hypothesis test. The null hypothesis assumes no change in the data,

while the alternative hypothesis assumes the presence of a changepoint. At a candidate

changepoint location 1 ≤ j < n, the log-likelihood ratio is given by

LRj = −2 log
maxθ

∏n
i=1 f(x|θ)

maxθ,δ
∏j

i=1 f(x|θ)
∏n

i=j+1 f(x|θ + δ)
.

Substituting the maximum likelihood estimators of the segment parameters, this can

be simplified as:

LRj = −

{
n∑

i=1

(xi − x̄1:n)2 −
j∑

i=1

(xi − x̄1:j)2 −
n∑

i=j+1

(xi − x̄j+1:n)
2

}
, (2.1)

where x1:t is the set of observations from time 1 to t, and x̄1:t =
∑t

i=1 xi

t
is the sample

mean. Alternatively, equation 2.1 can be rewritten as

√
LRj = Cj =

∣∣∣∣∣
√
n− j
nj

j∑
i=1

xi −

√
j

n(n− j)

n∑
i=j+1

xi

∣∣∣∣∣ .
This formula gives the offline version of CUSUM (online CUSUM is discussed in Section

2.2.1), which is equivalent to the square root of the log-likelihood ratio test statistic.

Both test statistics measure the deviations in the sample mean before and after a

potential changepoint at j. A larger value indicates stronger evidence of a change

CHAPTER 2. LITERATURE REVIEW 7

occurring at j.

As the changepoint location, j, is unknown, we need to maximise the test statistic

over the possible values of j:

U = max
1≤j<n

√
LRj = max

1≤j<n
Cj.

If U < c, there is no change. Otherwise, the estimated changepoint location is given by

τ̂ = argmax
1≤j<n

Cj.

The constant c is a predefined threshold that controls the significance level of the

test. While theoretical bounds for c exist, they are often loose in practice (Fearnhead

and Fryzlewicz, 2022). A practical approach to determining the threshold is through

Monte Carlo simulation, which simulates the behaviour of U under the null hypothesis

(Fearnhead and Fryzlewicz, 2022). The procedure involves the following steps:

1. Generate R independent data of fixed size of n under the null;

2. Calculate the test statistic U r for rth replicate;

3. The threshold c is the empirical quantile of {U r}Rr=1 corresponding to the desired

significance level.

2.1.2 Binary Segmentation, constrained and penalized

approaches

When multiple changepoints are present, we must estimate both their number and

locations simultaneously. How can we extend the AMOC approaches mentioned in

Section 2.1.1 to handle the multiple changepoints case? An intuitive solution follows

the “divide and conquer” principle, which leads to one of the most widely used methods:

Binary Segmentation.

CHAPTER 2. LITERATURE REVIEW 8

Binary segmentation

Binary Segmentation (BS) can extend single change detection algorithms, such as

CUSUM or likelihood ratio test, to detect multiple changes. This approach was first

introduced by Scott and Knott (1974) in the context of clustering. In BS, the test

for a single changepoint is repeatedly applied. If evidence for a changepoint is found,

the data is split at the estimated location, and the procedure is recursively applied to

each interval until no further changepoints are identified. The algorithm is shown in

Algorithm 1.

Algorithm 1: Binary Segmentation

1 Initialize: threshold c, changepoint cp← {}, interval sets I ← {[0, n]}.
2 while I ̸= ∅ do
3 for i in |I| do
4 Set the start and the end of the segment:
5 s = min{t : t ∈ Ii}, e = max{t : t ∈ Ii}.
6 Stop if segment is too small:
7 if e− s < 2 then
8 I ← I \ Ii
9 end

10 else

11 Calculate U = maxs≤j≤eCj.
12 if U > c then
13 τ̂ = argmaxj∈[s,e]Cj ,

14 cp← cp ∪ {τ̂},
15 Split the interval into two parts:
16 I ← I \ Ii ∪ [s, τ̂] ∪ [τ̂ + 1, t].

17 end
18 else
19 I ← I \ Ii
20 end

21 end

22 end

23 end
24 return cp.

BS is computationally efficient with a time complexity of O(n log(n)) on univariate

data. It has also been extended into multivariate, and high-dimensional changepoint

CHAPTER 2. LITERATURE REVIEW 9

detection, see Cho and Fryzlewicz (2014). However, it struggles to detect changes within

short intervals. As demonstrated by Fryzlewicz (2014), when the sample size increases,

n→∞, BS asymptotically fails to detect changepoints if the segment length is shorter

than O(n3/4).

To overcome the drawbacks of the BS, one solution is Circular Binary Segmentation

(CBS), which was introduced by Olshen et al. (2004). CBS assumes that the mean

before the first changepoint equals the mean after the last changepoint, so the data

is treated as circular. CBS has been widely used in detecting the variations in DNA

copy numbers, such as in Venkatraman and Olshen (2007); Hsu et al. (2011); Olshen

et al. (2011); Mouliere et al. (2017); Hoadley et al. (2018). However, it has expensive

computational complexity.

Another solution is Wild Binary Segmentation (WBS), introduced by Fryzlewicz

(2014). Unlike BS, which partitions the data based on the decision rule, WBS im-

proves detection power by scanning a set of h randomly selected subintervals. On each

subinterval, we perform a statistical test for the presence of a single change, recording

both the test statistic value and the estimated location of the change. Subintervals

with test statistics below a predefined threshold are discarded. Among the remaining

subintervals, the one with the largest test statistic is selected, its estimated changepoint

is added to the list of detected changes, and all subintervals overlapping this location

are removed. This process is repeated iteratively until all subintervals have been ei-

ther processed or eliminated. However, the computational efficiency and accuracy of

WBS depends on the number of sub-intervals chosen. More intervals lead to improved

detection at the cost of increased computational cost.

There are some major extensions after WBS. Narrowest-Over-Threshold (Bara-

nowski et al., 2019, NOT) selects the shortest interval whose test statistic exceeds the

threshold, instead of choosing the interval with the highest test statistic. To improve

the computational efficiency, WBS2 (Fryzlewicz, 2020) extends WBS by recursively se-

CHAPTER 2. LITERATURE REVIEW 10

lecting informative intervals. More recently, Seeded Binary Segmentation (SBS) was

introduced by Kovács et al. (2023) to improve both the computational efficiency and

reproducibility of WBS. Compared to WBS, SBS employs deterministic intervals, ensur-

ing consistent results while maintaining computational efficiency. The selection process

for deterministic intervals is outlined below:

• The first layer interval is [0, n].

• For the rest of the layers k for k = 2, · · · , ⌈log1/a n⌉, we have nk = 2⌈(1/a)k−1⌉−1

intervals. The kth layer and ith intervals are

Ik =

nk⋃
i=1

{(⌊(i− 1)sk⌋, ⌈(i− 1)sk + lk⌉)} , i = 1, 2, . . . , nk.

Here lk = nak−1 is the interval lengths, sk = n−lk
nk−1

is the shift and a is a decay

parameter. I =
⋃⌈log1/a n⌉

k=1 Ik is the collection of the seeded intervals for kth layer.

By strategically selecting intervals, SBS achieves the time complexity of O(n log n) while

maintaining the same accuracy as the WBS. The whole SBS algorithm is presented in

Algorithm 2 and the graphical explanation is shown in Figure 2.2.

1 n/4 n/2 3n/4 n

1

2

3

... · · ·

Figure 2.2: Example intervals in seeded binary segmentation at each recursion (α =
0.5).

Constrained and penalised cost approaches

Another idea for detecting multiple changes is classification, where the data sequence is

partitioned into different segments. That is, given data X1, X2, · · · , Xn, the partition

CHAPTER 2. LITERATURE REVIEW 11

Algorithm 2: Seeded Binary Segmentation

1 Initialize: threshold c, changepoints cp← {}, the intervals Ik for

k = 1, · · · , ⌈log1/a n⌉ layers, and I =
⋃⌈log1/a n⌉

k=1 Ik.

2 k = 1
3 while I ̸= ∅ or k ≤ ⌈log1/a n⌉ do
4 for i = 1, · · · , nk do
5 Calculate Ui for each interval in Ik.
6 end
7 U = maxi Ui,
8 if U > c then
9 τ̂ = {t : argmaxU > c} ,

10 cp← cp ∪ {τ̂},
11 Remove all the intervals containing τ̂
12 Ik′ ← Ik′ \

{(⌊(i− 1)sk′⌋, ⌈(i− 1)sk′ + lk′⌉) | τ̂ ∈ (⌊(i− 1)sk′⌋, ⌈(i− 1)sk′ + lk′⌉)},
13 ∀k′ > k, i = 1, . . . , nk′ .

14 end
15 k = k + 1

16 end
17 return cp.

rule aims to maximize the gain or minimize the cost

m∑
i=0

C(x(τi+1):τi+1
).

where m is the number of changepoints, (τi + 1) : τi+1 is the partition, and C(·) is the

cost function. The cost function is often defined as twice the negative log-likelihood

(with additive constants ignored). For example, in the case of Gaussian data with

known standard deviation σ, the cost for m segment is given by:

m∑
i=0

C(x(τi+1):τi+1
) =

m∑
i=0

τi+1∑
k=τi+1

{
1

σ2
(xk − x̄(τi+1):τi+1

)2
}
.

However, a key issue with this objective function is that it inherently favours m = n−1,

as modelling each data point alone incurs no additional cost or achieves maximum gain,

resulting in over-fitting. To address this, one can either restrictm explicitly or introduce

CHAPTER 2. LITERATURE REVIEW 12

a regularization term. This leads to two key approaches that we will introduce below:

the constrained cost approach and the penalized cost approach.

The Segmentation Neighbourhood Search approach (Auger and Lawrence, 1989)

takes the idea of the constrained cost approach in that the number of the changepoints

is fixed and the goal is to determine the optimal segmentation. Let Cm,t denote the

minimum segmentation cost with mth changepoint is at time t, τ0 = 0 and τm+1 = n.

At time t, the cost of Cm,t can be calculated recursively as:

Cm,t = min
τ1:τm−1

[
m−2∑
i=0

C(xτi+1:τi+1
) + C(xτm−1+1:t)

]

= min
τm−1

[
min

τ1:τm−2

m−2∑
i=0

C(xτi+1:τi+1
) + C(xτm−1+1:t)

]

= min
τm−1

[
Cm−1,τm−1 + C(xτm−1+1:t)

]
= min

τ∈{m,··· ,t−1}
[Cm−1,τ + C(xτ+1:t)] .

In practical scenarios where the number of changepoints m is unknown, we have to

evaluate a range of values from 1 to M . This results in a total time complexity of

O(Mn2), making it computationally expensive.

The optimal partition method (Jackson et al., 2005) follows the idea of the penalized

cost approach, which introduces a regularization term β into the objective function to

avoid over-fitting. The objective function is given by

min
τ1:τm,m

m∑
i=0

C(xτi+1:τi+1
) +mβ.

Let Ft denotes the minimum penalized cost at time t. Then this function can be

CHAPTER 2. LITERATURE REVIEW 13

rewritten as:

Ft = min
τ1:τm,m

[
m−1∑
i=0

[
C(xτi+1:τi+1

) + β
]
+ C(xτm+1:t)

]

= min
τ1:τm,m

{
m−1∑
i=0

[
C(xτi+1:τi+1

) + β
]
− β + C(xτm+1:t) + β

}

= min
τm

{
min

τ1:τm−1,m−1

m−1∑
i=0

[
C(xτi+1:τi+1

) + β
]
− β + C(xτm+1:t) + β

}

= min
τm
{Fτm + C(xτm+1:t) + β} .

Thus, this optimization problem can be solved recursively as:

Ft = min
0≤τ<t

{Fτ + C(xτ+1:t) + β} ,

with O(n2) computation. The penalty term β plays a crucial role in determining the

balance between model complexity and fit. Two common choices are Akaike’s Informa-

tion Criterion (Akaike, 1974, AIC), where β = 2 and Bayesian Information Criterion

(Schwarz, 1978, BIC), where β = log n. The theoretical properties of BIC for inde-

pendently and identically distributed Gaussian data are examined in Yao (1988), while

Ninomiya (2015) explores the application of AIC across different data types. However,

AIC tends to favor more complex models and may lead to overfitting, BIC is more

conservative and can result in underfitting.

To address the issue introduced by the choice of penalty, Haynes et al. (2017) intro-

duced Changepoints for a Range of Penalties (CROPS) that efficiently identifies change-

points across a continuum of penalty values. Instead of relying on a single, predefined

penalty, CROPS explores a range of penalties to construct a penalty-segmentation pro-

file, illustrating how the number of detected changepoints varies with different penalty

values. By avoiding redundant computations and leveraging previously identified seg-

mentations, CROPS provides a more comprehensive view of potential changepoint

CHAPTER 2. LITERATURE REVIEW 14

structures, helping to mitigate the risks of both overfitting and underfitting.

However, both Segmentation Neighbourhood Search and Optimal Partitioning suffer

from expensive computing costs, making them impractical for analysing large datasets.

To improve the efficiency, four major works have been proposed: the pruned Dynamic

Programming Algorithm (Rigaill, 2015, pDPA), Segment Neighbourhood with Inequal-

ity Pruning (Maidstone et al., 2017, SNIP), Pruned Exact Linear Time Algorithm

(Killick et al., 2012, PELT), and Functional Pruning Optimal Partitioning (Maidstone

et al., 2017, FPOP). As Figure 2.3 shows, these four methods are based on either func-

tional pruning or inequality rule to reduce the computational burden. In the following,

we will briefly introduce the key ideas behind these two pruning techniques and refer

readers to the respective papers for further details.

Segmentation
Neighbourhood

Objective Function

pDPA

Optimal Partitioning

SNIP

FPOP

PELT

Fix t
he number

of c
hangepoints

Add a penalty

Inequality

Inequality

Functional

pruning

Functional

pruning

Figure 2.3: The relationships among offline algorithms.

An efficient pruning mechanism allows us to discard candidate changepoints when

certain conditions are met, say, if the cost function satisfies

C(xr:s) + C(xs+1:t) > C(xr:t)

CHAPTER 2. LITERATURE REVIEW 15

for all r < s < t. Inequality-based pruning checks the condition

Fs + C(xs+1:t) + β > Ft

at every iteration. Here the Fs represents the minimum cost of segmentation up to

time s, C(xs+1:t) is the cost of modelling data from s + 1 to t as one segment. If this

inequality condition holds, s can never be part of an optimal segmentation for any

future time n ≥ T > t, as partitioning with the most recent change at s would always

incur a higher cost than partitioning with the most recent change at t. Algorithm 3

presents the PELT algorithm, which applies the inequality rule after each iteration. By

systematically discarding suboptimal changepoints, PELT improves the efficiency of the

Optimal Partitioning approach, ensuring that its computational complexity remains at

most O(n2). In practice, PELT often achieves an expected runtime that scales linearly,

i.e., O(n), making it highly efficient for large datasets.

Algorithm 3: PELT

1 Initialize: changepoint cp← {}, candidates set R = {0}, F0=0.

2 for t = 1, · · · , n do
3 Calculate Ft = minτ∈R {Fτ + C(xτ+1 : t) + β},
4 τ̂ = {τ ∈ R : argminFt} ,
5 cp← cp ∪ {τ̂},
6 Prune out the candidates that satisfy the inequality condition.
7 R← t ∪ {τ ∈ R : Fτ + C(xτ+1:t) + β ≤ Ft}.
8 end
9 return cp.

Unlike inequality-based pruning, functional pruning considers the cost C(·) as a

function of its parameter of the last segment. For example, in the Gaussian mean

change case, the cost function can be rewritten in terms of the mean µ:

C(xs+1:t) = min
µ

t∑
i=s+1

q(xi|µ)

CHAPTER 2. LITERATURE REVIEW 16

where q(·) is the negative log-likelihood function, which is a quadratic in µ. Con-

sequently, minimizing the segmentation cost over potential changepoints at each time

step is equivalent to minimizing this quadratic function with respect to µ. For example,

recall the recursion in Segmentation Neighbourhood Search, we have

Cm,t = min
τ

[Cm−1,τ + C(xτ+1:t)]

= min
τ

[
Cm−1,τ +min

µ

t∑
i=τ+1

q(xi|µ)

]

= min
τ

min
µ

[
Cm−1,τ +

t∑
i=τ+1

q(xi|µ)

]
.

Denote Qτ
m,t(µ) as the segmentation cost when partitioning data from τ to t, and

Q∗
m,t(µ) as the optimal segmentation cost up to time t with parameter µ. These are

defined as

Qτ
m,t(µ) = Cm−1,τ +

t∑
i=τ+1

q(xi|µ), Q∗
m,t(µ) = min

τ
Qτ

m,t(µ).

So that

Cm,t = min
µ

min
τ
Qτ

m,t(µ) = min
µ
Q∗

m,t(µ).

Q∗
m,t(µ) can be calculated recursively depending on whether a changepoint occurs before

t:

Q∗
m,t(µ) = min

min
τ
Qτ

m,t−1(µ) + q(xt|µ)︸ ︷︷ ︸
change happens before time t

, Cm−1,t︸ ︷︷ ︸
change happens at time t


Thus, at time t, we can track m quadratics corresponding to different segmentations.

At this step, the time complexity remains quadratic. The idea behind pDPA is that if

for all µ,

Qτ
m,t(µ) > Q∗

m,t(µ),

CHAPTER 2. LITERATURE REVIEW 17

the candidate τ will not contribute to the optimal partition and thus we can prune it

out. Figure 2.4 illustrates the denotation and the process of functional pruning, and

Algorithm 4 is the pseudocode for the pDPA.

C
os
t

C
os
t

Figure 2.4: The diagram illustrates the process of functional pruning from time t = 4 to
5. The dashed lines are the cost Qτ

m,t, the red curve is the Q∗
m,t, the red star is the Cm,t,

the coloured line at the bottom is the mean interval Iτm,t that contributes to the optimal
partition as described in Algorithm 4, and the red cross represents the candidate we
want to prune out. We can see from time 4 to 5, the cost of Q4

m,5 is larger than any
other costs for any µ, therefore we can prune out candidate 4 from the searching space.

Although functional pruning reduces computational cost, the worst-case complex-

ity remains bounded by O(Mn2). Empirical results (Rigaill, 2015) suggest that it can

achieve an improved complexity of O(Mn log n). FPOP applies the same pruning idea

to the Optimal Partitioning problem. In the best-case scenario, it can reach a com-

plexity of O(n log n). Compared to PELT, FPOP is more efficient, pruning more or

at least as many candidate changepoints. However, functional pruning requires mini-

mizing a function, which is efficient when dealing with one-dimensional convex curves.

For problems involving two or more dimensions, determining what to prune becomes

infeasible.

Several extensions have been developed based on PELT and FPOP to address more

complex scenarios. NP-PELT (Haynes et al., 2017) adapts the algorithm for non-

parametric settings where the cost function is based on the empirical cumulative distri-

CHAPTER 2. LITERATURE REVIEW 18

Algorithm 4: pDPA

1 Initialize: changepoint cpm ← {}, candidates set Rm = {}, Q0=0, the
maximum number of changepoints M , and the mean invertal Iτm,t

2 for m = 1, · · · ,M do

3 Calculate Qm
m,1:(m+1)(µ) = Cm−1,1:m +

∑t
i=τ+1 q(xi|µ)

4 Rm ← {m}
5 for t = m+ 1, · · · , n do
6 Calculate Iτm,t+1 = {µ : Qτ

m,t ≤ Cm−1,τ} for τ ∈ Rm

7 Calculate I tm,t+1 = ∩τ<t{µ : Qτ
m,t > Cm−1,τ}

8 Prune out the candidate which is not contributing to the optimal
partition

9 The changepoint candidate sets Rm ← {τ ∈ (Rm ∪ t) : Iτm,t ̸= ∅}
10 Update Qτ

m,t+1(µ) = Qτ
m,t(µ) + q(xi|µ), for τ ∈ Rm

11 The recent changepoint location
cpm ← cpm ∪ {τ ∈ Rm : argminQ∗

m,t(µ)}
12 end

13 end
14 return {cpm}.

bution. Extensions have also been made to detect changes in the slope of linear models

(Fearnhead et al., 2019; Runge et al., 2020), to incorporate autoregressive noise (Chakar

et al., 2017; Romano et al., 2022), to enhance robustness to outliers (Fearnhead and

Rigaill, 2019), and to improve the computational speed via parallelisation (Tickle et al.,

2020).

A more recent and particularly interesting development might be the application

in anomaly detection, with a notable approach called CAPA (Fisch et al., 2022b).

The key difference between anomaly detection and changepoint detection lies in the

definition of the baseline. In changepoint detection, the baseline is dynamic—it is

always the previous segment, with the focus on identifying shifts between consecutive

data segments. In contrast, anomaly detection assumes a constant baseline, typically

representing a normal or expected period of behaviour. The goal is to identify deviations

from this fixed baseline, whether as isolated point anomalies or as collective anomalies

spanning multiple data points. CAPA extends the concept of optimal partitioning

CHAPTER 2. LITERATURE REVIEW 19

while introducing a fixed baseline. Assuming there are m anomalous segments, each

characterized by its own mean µm, and there is a known baseline segment with mean

µ0. The objective function is to minimize the following costs:

∑
t/∈∪[si:ei]

C(xt|µ0)︸ ︷︷ ︸
Cost of modelling a normal segment

+
m∑
i=1

[
min
µi

C(xsi:ei |µi) + β

]
︸ ︷︷ ︸

Cost of modelling an anomalous segment.

,

where si and ei are the start and the end of the segment with si+1 = ei+1. This objective

function can be efficiently solved using dynamic programming, with computational

speed significantly improved by applying the PELT rule.

2.1.3 Bayesian offline changepoint detection

In addition to the frequentist approach introduced earlier, Bayesian methods are at-

tractive because they incorporate expert knowledge via prior distributions and quantify

the uncertainty in both the number and locations of changepoints. The first work of

Bayesian changepoint analysis can be traced to Chernoff’s work (Chernoff and Zacks,

1964), where the posterior mean is estimated for a single change. Later studies ex-

panded this framework, applying Bayesian methods to different contexts, i.e., linear

models, time series models, and the Poisson process (Chin Choy and Broemeling, 1980;

Salazar, 1982; Akman and Raftery, 1986; Carlin et al., 1992; Broemeling, 2017).

In this section, we consider the general framework of the Bayesian changepoint

algorithm, where both the number and locations of changepoints are random rather

than fixed. To model this, we specify priors for the parameters including the number

of changepoints m, denoted as f(m). m changepoints will separate the sequence into

m + 1 segments, where we set τ0 = 1 and τm+1 = n. Each segment is associated

with segment-specific parameters θi for i = 1, · · · ,m + 1, where θi are the segment-

specific parameters. Assume the observations x are conditionally independent given

CHAPTER 2. LITERATURE REVIEW 20

the parameters θ, the joint posterior distribution of interest is given by

f(m, τ1:m, θ1:m+1|x1:n) ∝ f(x1:n|θ1:m+1,m, τ1:m)f(θ1:m+1|τ1:m,m)f(τ1:m|m)f(m).

In the following sections, we review two approaches: Markov Chain Monte Carlo and

the direct simulation.

Markov Chain Monte Carlo

When m is known, the distribution of the number and the location of changepoints can

be estimated via Gibbs sampling, as demonstrated in Carlin et al. (1992), Stephens

(1994), and Chib (1996). However, when m is unknown, the problem becomes more

complex. Because the distribution contains multiple subspaces with different numbers

of changepoints. One solution is the Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm, introduced by Green (1995). In this algorithm, each model

incorporates different numbers of changepoints, and the RJMCMC can jump between

models with different numbers of changepoints. Specifically, at each iteration we have a

state (mi, θ
i
1:mi+1), the general procedure of jumping to a random new state (mj, θ

j
1:mj+1)

is given by:

• Propose a new move to mj with probability qm(mi → mj),

• Generate a random vector u from the proposal distribution q(u),

• A bijective function g : (θi1:mi+1, u) → (θj1:mj+1, u
′) is introduced to map the

dimension.

• We will accept this move with an acceptance probability

min

{
1,
f(mj, θ

j
1:mj+1)qm(mj → mi)q(u

′)

f(mi, θi1:mi+1)qm(mi → mj)q(u)

∣∣∣∣∂g(θi1:mi+1, u)

∂(θi1:mi+1, u)

∣∣∣∣
}
,

otherwise stay at the current state.

CHAPTER 2. LITERATURE REVIEW 21

In this procedure, if mj > mi, changepoints are introduced; otherwise, if mj < mi,

changepoints are eliminated. This process is referred to as the birth-death procedure

in the Green (1995). The empirical marginal probability of having i changepoints then

can be estimated by

P (m = i) =
1

r

r∑
j=1

I(mj = i)

where r is the total number of samples from the posterior distribution,mj is the number

of changepoints in the j-th sample. The marginal probability of the location of a

changepoint can be estimated conditional on the number of changepoints. However,

RJMCMC faces challenges, particularly in designing proposal distributions that mix

well across models. Chib (1998) proposed an alternative approach using approximate

Bayes factors derived from MCMC output to compare models. However, these methods

can be computationally expensive. More recently, Benson and Friel (2018) developed an

adaptive RJMCMC algorithm that learns from previous states, improving efficiency for

large datasets while maintaining ergodicity. Nevertheless, all MCMC-based approaches

suffer from issues related to computational efficiency and convergence.

Direct Simulation

Different from the MCMC-based approaches, direct simulation approaches directly sim-

ulate the true posterior without approximating it. The ideas for direct simulation are

based on exact methods for calculating posterior means which originated in Barry and

Hartigan (1993) and extended in Fearnhead (2006). The assumption of these approaches

is to model the data as contiguous blocks, where being in the same block, conditional

on the most recent changepoint, indicates no change has occurred. Therefore, the

probability that the data points xt:s belong to the same segment is given by:

p(t, s) =

∫ s∏
i=t

f(xi | θ) π(θ) dθ,

CHAPTER 2. LITERATURE REVIEW 22

where π(θ) is the prior distribution for the segment parameter of interest. If we use

conjugate priors, then this integral can be calculated analytically. We denote by g(·) and

g0(·) the probability mass functions of the segment length after a changepoint and the

length until the first changepoint, respectively. Common choices for these priors include

the geometric and negative binomial distributions. Similarly, G(·) and G0(·) represent

the corresponding cumulative distribution functions of the segment lengths. Fearnhead

(2006) proposes a recursive method for computing the probability of observed data

following a changepoint, given its location. Denote Q(t) as the probability of observed

data from t to n, given the changepoint occurs at t− 1, where t = 2, · · · , n. The Q(t)

can be expressed as:

Q(t) =p(xt:n)

=
n−1∑
s=t

p(xt:n|next change at s)p(next change at s)

+ p(xt:n|next change at n)p(next change at n) (2.2)

The first term represents the probability of introducing a changepoint within the range

[t, n− 1] after a change at t− 1, it can be calculated as:

n−1∑
s=t

p(xt:n|next change at s)p(next change at s)

=
n−1∑
s=t

p(next change at s)p(xt:s in the same segment)

p(xs+1:n| changepoint at s)

=
n−1∑
s=t

g(s+ 1− t)p(t, s)Q(s+ 1).

CHAPTER 2. LITERATURE REVIEW 23

The second term in Equation 2.2 accounts for the probability of having no further

changepoints after t− 1, which is given by:

p(xt:n|next change at n)p(next change at n) = p(t, n)(1−G(n− t)).

Thus, Q(t) can be calculated recursively, with the initial condition:

Q(1) =
n−1∑
s=1

g0(s)p(1, s)Q(s+ 1) + p(1, n)(1−G(n− 1)).

With a computed list of Q(t),∀t = 1, · · · , n, one can infer the maximum-a-posteriori

estimates of the changepoint locations. This recursive method directly provides the

probability distribution of changepoint locations while allowing the number of change-

points to vary. Additionally, Fearnhead (2006) presents a version of this method that

conditions a fixed number of changepoints.

Further work has extended this approach to various settings, including its adaptation

to linear regression models with dependence across segments (Fearnhead and Liu, 2011),

its extension to online detection frameworks (Fearnhead and Liu, 2007; Adams and

MacKay, 2007), and its extension to the multivariate case with dependent structures

(Xuan and Murphy, 2007). This approach has also been applied in diverse fields such

as financial markets, epidemiology, climate studies and finance (Thies and Molnár,

2018; Verma et al., 2020; Thomson et al., 2010; Thies and Molnár, 2018; Held et al.,

2006). A recent extension (Bardwell and Fearnhead, 2017) introduced a framework

for anomaly detection by additionally introducing two states: normal segment and

abnormal segment.

However, Bayesian changepoint detection approaches can be computationally de-

manding. Although the Bayesian approach has the same order of computational cost

as penalized approaches, its constant factor is typically larger. Furthermore, these

methods often impose stronger model assumptions, which can limit their flexibility.

CHAPTER 2. LITERATURE REVIEW 24

However, as we will see later, research in offline changepoint detection has laid a crucial

foundation for the development of online changepoint detection.

2.2 Online changepoint detection

As sampling the data becomes faster and cheaper, the need for quick decisions grows.

Nowadays, most tasks not only require identifying the changepoints, but also require

real-time change-point detection as each new observation arrives. Specifically, the ob-

servations X1, X2, ... arrive sequentially over time. We will monitor the data stream

and stop the algorithm immediately when the change is detected. Therefore, we only

consider at most one change that happened at an unknown time τ .

Effective algorithms should have the ability to quickly identify the change and also

be cheap to train and run. Online changepoint detection addresses these challenges by

applying sequential statistical tests, or Bayesian inference to determine whether a new

point is a changepoint. Furthermore, unlike most deep learning approaches, changepoint

algorithms are lightweight. In this section, we will explore the key methodologies and

advancements in this popular and growing area.

2.2.1 Frequentist approaches

We begin by specifying the model. Assume the observations follow

Xi
iid∼ f(X|θ), for i = 1, · · · , τ ,

before the changepoint, and follow

Xi
iid∼ f(X|θ + δ), for i = τ + 1, · · · , n,

CHAPTER 2. LITERATURE REVIEW 25

after the change occurs at an unknown time τ . Here θ represents the pre-change param-

eter, δ denotes the magnitude of the change in the parameter after the changepoint,

and n is the pre-specified monitoring period. In the following subsections, without

being explicitly stated, we assume the pre-change data follows a standard Gaussian

distribution, with the change occurring in the mean.

Detection criteria

The rationale behind frequentist approaches is fundamentally the same: at each time

step, a hypothesis test is performed, where the null hypothesis assumes no change

and the alternative hypothesis assumes a change has occurred. The algorithm stops

and alarms a changepoint when the test statistic reaches the threshold c. A crucial

question, therefore, is how to determine this threshold? We answer this question before

introducing online changepoint detection algorithms.

Average run length (ARL) is a commonly used criterion. It measures the expected

number of observations between false alarms when no changepoints are present. It is

defined as:

ARL = E∞[τ̂],

where τ̂ denotes the first time a change is detected, and the expectation is under the

null hypothesis of no change (τ = ∞). A higher ARL indicates less sensitivity to

false positives. In practice, ARL is user-specified and defines the threshold when all

other model parameters are held constant. This relationship guides us in choosing the

threshold based on a desired ARL value, which is often larger than the user-specified

monitoring time.

Another criterion is to control the false alarm rate (FAR)

FARn = pn(τ̂ <∞|τ =∞),

CHAPTER 2. LITERATURE REVIEW 26

defined as the probability of triggering an alarm when no change has occurred within the

monitoring period n. A lower FAR improves precision but it also means the algorithm

may take longer to signal a true change. Similarly, FAR is typically user-specified,

reflecting the level of risk the user is willing to tolerate. In many cases, n is taken to

be ∞, so the monitoring period is unbounded. Under this setting, a fixed detection

threshold would result in τ̂ <∞ with probability 1, leading to a false alarm. To control

FAR properly, the detection threshold must increase with time t in the long run. Various

methods exist for selecting time-varying thresholds, or equivalently, weighting the test

statistics with a function w(·) < 1 to control the false alarm rate (Leisch et al., 2000;

Zeileis et al., 2005; Horváth et al., 2008; Aue et al., 2012; Kirch and Kamgaing, 2015;

Weber, 2017; Kengne and Ngongo, 2022).

Figure 2.5 provides a graphical illustration of the two criteria. Neither criterion is

inherently superior; the choice depends on the specific requirements of the task.

Time 1 Time n

FAR=2/6

Time 1 Time n

ARL=n

Figure 2.5: Graphical explanation of the false alarm rate and average run length under
the null. The black lines represent the monitoring time for a fixed threshold until the
first alarm in each replicate, where the first alarm occurs when the local test statistic
exceeds the threshold. In the left Figure, for a monitoring period of n, the threshold
results in a false alarm rate of 2/6. On the right hand side, the average of these five
stopping times gives the average run length of n.

After answering the question of determining the threshold, we now introduce differ-

ent test statistics.

CHAPTER 2. LITERATURE REVIEW 27

Sequential probability ratio test

One of the most significant contributions to sequential testing, the Sequential Probabil-

ity Ratio Test (SPRT), was introduced by Wald (1945). In the Wald test, the likelihood

ratio

Wt =
f(x1:t|θ + δ)

f(x1:t|θ)
= Wt−1

f(xt|θ + δ)

f(xt|θ)

is the test statistic and can be updated sequentially. The decision is to:

• stop and reject H0 when Wt ≥ B,

• stop and not reject H0 when Wt ≤ A,

• continue to observe the new data when A < Wt < B,

where

B ≈ 1− β
α

, A ≈ β

1− α
,

and α and β are the desired Type I and Type II errors. The SPRT is easy to apply

and is optimal in terms of minimizing the expected sample size under both hypotheses

Wald (1945). However it needs both the pre-change parameter and the size of change

to be known.

Online CUSUM

Another important development in sequential analysis is the Cumulative Sum (CUSUM)

procedure. The original online CUSUM procedure, introduced by Page (1954), is de-

signed to detect the positive changes in parameters of interest within quality control

contexts, such as the mean, range, or number of defectives. Define the cumulative score

as St =
∑t

i=1Xi, the change is declared as

St − min
0≤i<t

Si ≥ c1.

CHAPTER 2. LITERATURE REVIEW 28

The above formula indicates that if St increases significantly compared to its past

minimum, it suggests a positive shift in the mean of the process. To avoid storing a list

of Si,∀i ≤ t, this formula can be rewritten as a recursive defined process:

Zt = St − min
0≤i<t

Si = max{Zt−1 +Xt, 0},

with Z0 = 0. The algorithm alarms when Zt ≥ c1.

It is worth noting that this CUSUM only detects the increase in the mean. To detect

changes in both directions (positive and negative), the doubled CUSUM procedure is

introduced (Waldmann, 1996). In the doubled CUSUM procedure, two test statistics

Z+
t = max{Z+

t−1 +Xt, 0}, Z−
n = max{Z−

t−1 − tn, 0}, Z+
0 = Z−

0 = 0

are used to detect positive changes and negative changes respectively, and the stopping

rule is defined as raising an alarm if

Z+
t ∨ Z−

t ≥ c2.

In the original paper, Page uses the cumulative sum as the score function in Page

(1954), but he also noted that the score function can also be other statistics, i.e., the

likelihood ratio test statistics if the parameter of pre-change and post-change is known.

If we use the log-likelihood ratio test statistic as the score function, the one side test

statistic will be

Zt = max

{
Zt−1 + log

f(x|θ + δ)

f(x|θ)
, 0

}
, (2.3)

with Z0 = 0, so the previous observations can be discarded. The algorithm alarms the

change when Zt > c3. We can see that the online CUSUM procedure is similar to SPRT

tests as Zt is actually the logarithm of the Wald likelihood ratio bounded by 0 and c3.

CHAPTER 2. LITERATURE REVIEW 29

Built upon the ideas of Page and Wald, the cumulative sum of log-likelihood ra-

tios has become a cornerstone in sequential testing. This approach is computationally

efficient, with a cost of O(1) per observation, and it has strong optimality properties

as discussed in Lorden (1971); Moustakides (1986); Ritov (1990); Lai (1998). Recent

work has extended the CUSUM procedure into various areas, including regression mod-

els (Chu et al., 1996; Horváth et al., 2004; Hušková and Kirch, 2012; Horváth et al.,

2022), time series (Gombay and Serban, 2009; Gösmann et al., 2021; Kurozumi, 2020,

2021, 2023), multivariate or high dimensional case (Mei, 2010; Weber, 2017; Chen et al.,

2022, 2024) and so on. We refer readers to the review by Aue and Kirch (2024) and

the book by Basseville and Nikiforov (1993) for further details on CUSUM statistics

and its recent advances. In this thesis, we will introduce some of the above approaches,

such as the works of Mei (2010) in Chapters 3 and 4.

However, CUSUM, perhaps the most popular online changepoint algorithm, faces

the issue of requiring the knowledge of pre-change and post-change distributions. A

poor specification can lead to reduced power or failure in detection. Several methods

have been proposed to relax the assumption of known pre-change and post-change

parameters while aiming to speed up the algorithm, such as Bell et al. (1994); Pollak

and Siegmund (1991); Gordon and Pollak (1997); Krieger et al. (2003); Gordon and

Pollak (1995); however, many of these methods are computationally intensive.

A possible efficient solution, the recursive register approach, was introduced by

Lorden and Pollak (2008). This approach approximates the post-change parameter

under the assumption that the pre-change parameter is known. The idea is to estimate

the post-change mean after the candidate changepoint. Denote υ as the candidate

changepoint location, Tυ = t− υ as the total number between candidates υ and t− 1,

and Sυ =
∑t

i=υXi as the sum of observations in this interval, the algorithm is described

as in Algorithm 5. This algorithm only considers positive changes. A later work Liu

et al. (2019) accounts for changes in both directions (positive and negative) which shares

CHAPTER 2. LITERATURE REVIEW 30

the same idea of doubled CUSUM. Although the recursive register algorithm can detect

Algorithm 5: Recursive Register Algorithm (Lorden and Pollak, 2008; Liu
et al., 2019)

1 Initialize: Set registers Z0 = S0 = T0 = X0 = 0, prior knowledge of s and t, and
pre-specified smallest post-change mean ρ.

2 for t = 1, 2, . . . , n do
3 Update the registers:
4 if Zt = 0 then
5 St = Tt = 0.
6 end
7 else
8 St = St−1 +Xt and Tt = Tt−1 + 1.
9 end

10 Estimate post-change mean: δ̂ = max
(
ρ, s+St

t+Tt

)
,

11 Calculate Zt

12 Substitute the estimated post-change mean δ̂ into Formula 2.3.
13 Check the stopping rule:
14 if Zt exceeds the threshold or t = n then
15 Terminate the procedure.
16 end

17 end

the changes with unknown post-change parameters efficiently, it requires accurate prior

information about the change. This makes it less efficient when the prior guesses are

poorly specified.

Generalized likelihood ratio procedure and FOCuS

Another efficient solution, FOCuS, is based on the Generalized Likelihood Ratio test

procedure (GLR). At time t, assuming the pre-change parameter θ is known, the GLR

test statistic is given by:

GLRt = max
0≤τ<t

sup
δ∈∆

log
f(x1:τ |θ)f(xτ+1:t|θ + δ)

f(x1:t|θ)
= max

0≤τ<t
sup
δ∈∆

t∑
i=τ+1

log
f(xi|θ + δ)

f(xi|θ)
.

For example, in standard Gaussian cases, the summation of the log-likelihood ratio test

statistic for having the changepoint at τ is Qτ
t = δ(

∑t
i=τ+1 xi− (t− τ) δ

2
) at time t, and

the GLR test statistic is max0≤τ<t supδ∈∆Q
τ
t .

CHAPTER 2. LITERATURE REVIEW 31

GLR procedure searches the post-change parameter through the region ∆, and can

be extended to pre-change unknown variance. Its asymptotic optimality is proved in

Lorden (1971). While the GLR statistic can be calculated in O(1) cost per iteration if

θ and δ are both known via Page’s recursion, this no longer works when one or both

are unknown. Since this requires solving a separate optimization problem at every

iteration, the computational complexity of nth iteration is O(n).

To improve the efficiency, functional pruning is used in the FOCuS algorithm (Ro-

mano et al., 2023b). We introduce the scenario where the pre-change distribution is

known, but the post-change parameter is unknown, with a particular focus on cases

where the mean undergoes a positive shift. The same approach can be applied to de-

tect negative shifts. In the standard Gaussian case, at time t, the cost of introducing

a change after the time τ (where τ = 0 indicating no change), can be written as a

function of unknown parameter δ:

Qτ
t (δ) = max

{
Qτ

t−1(δ) + δ(xt −
δ

2
), 0

}
.

As a result, at any given time t, there exist t quadratic functions. Define Q∗
t as the

supremum of these t quadratic and the zero line, the test statistic at each time t is

given by maxδQ∗
t .

So far this procedure costs O(t) for tth iteration. To improve efficiency, similar to

the FPOP algorithm, the core idea in Romano et al. (2023b) is to prune quadratics

that do not contribute to Q∗
t for any δ. Figure 2.6 illustrates the pruning idea. Define

the optimal region I it as the set of intervals over the possible values of δ at time t where

the ith quadratic function Qi
t is greater than all other quadratic functions. We can then

find the optimal intervals I0t , where the zero line dominates. I0t is given by:

[2max
τ

St − Sτ

t− τ
,∞)

CHAPTER 2. LITERATURE REVIEW 32

where the infimum is the the value that one quadratic can maximize its intersection

with 0, and St =
∑t

i=1 xt is the cumulative sum. This follows from the fact that the

cost function at time t for a change at τ is given by:

δ(
t∑

i=τ

xi − (t− τ)δ
2
) = δ(St − Sτ − (t− τ)δ

2
),

which has roots at 0 and 2maxτ
St−Sτ

t−τ
. Then we can prune out the quadratics that

do not contribute to the Q∗
t . Specifically any candidates that its optimal interval I it is

either entirely enclosed by the other quadratics (I it =∞) or partially enclosed with the

remaining portion below 0, is pruned out (min I it > min I0t). By doing so, FOCuS is

exact and the average cost is O(log t). The whole procedure is outlined in Algorithm

6.

teststatistic

C
os

t

C
os

t

teststatistic

Figure 2.6: The diagram illustrates the process of FOCuS from time t = 4 to t = 5.
The dashed lines are the zero line, the red curve is the Q∗

t , the red star is test statistic
maxδQ∗

t , the coloured line at the bottom is the set Iτt which contributes to the optimal
partition, 2xt and 2St−S3

5−3
are the starting points of the partition where zero line is the

optimal, and the red cross represents the candidate we want to prune out. We can see
from time 4 to 5, the cost of Q4

t and Q5
t is smaller than other costs or zero line for any

δ, therefore we can prune out candidate 4 and 5 from the searching space.

In Romano et al. (2023b), FOCuS has also been extended to the unknown pre-

change mean case; for details, we refer readers to Romano et al. (2023b). Ward et al.

(2024) further reduced the computational cost to constant by recycling the calculations

CHAPTER 2. LITERATURE REVIEW 33

Algorithm 6: FOCuS

1 Initialize: candidates set R← {}, Q0
0 = 0, threshold c, monitoring time

n, borderline B, the cumulative sum S and the optimal interval I

2 for t = 1, · · · , n do
3 Update the candidate set R← {t− 1}
4 Calculate Qτ

t (δ) = Qτ
t−1(δ) + δ

(
xt − δ

2

)
for τ ∈ R

5 Calculate Bt(δ) = supτ∈RQτ
t

6 for τ ∈ R do
7 Calculate the optimal region for each candidate Iτt = {δ : Bt(δ) = Qτ

t }
for τ ∈ R

8 Calculate the optimal region for zero line I0t = {δ : δ ≥ 2maxτ
St−Sτ

t−τ
} for

τ ∈ R
9 Prune out the candidate which does not contribute to the optimal

partition
10 The changepoint candidate sets

R← R \ {τ ∈ R : Iτt = ∅} \ {τ ∈ R : min Iτt > min I0t }
11 end
12 if maxδ Bt(δ) > c then
13 Alarm
14 end

15 end

from previous steps. The subsequent developments of FOCuS focus on its applications

to different distributions, such as Possion distribution (Ward et al., 2023), exponential

family model (Ward et al., 2024), and nonparametric density (Romano et al., 2023a).

MOSUM

An alternative approach to CUSUM is the Moving Sum (MOSUM) procedure, which

employs a sliding window to scan the data and test for changes. Since specific details

and formulas are shown in Chapter 3, we provide a brief overview now. The basic idea

is to estimate the pre-change mean θ̂ from training data where no change is assumed

to occur. Then, the MOSUM procedure calculates the mean of the absolute differences

between the average within the sliding window h and the estimated mean,

Mt =

∣∣∣∣∣1h
t+h−1∑
i=t

Xi − θ̂

∣∣∣∣∣ ,

CHAPTER 2. LITERATURE REVIEW 34

as the evidence of a change. A large Mt indicates a potential changepoint. Compared

with CUSUM, MOSUM does not need to know the post-change distribution. However,

the performance of MOSUM highly depends on the choice of window size h. A large

window may delay the detection of big changes, while a small window may struggle to

identify subtle shifts. To reduce the bias caused by window size, one can simultaneously

evaluate multiple window sizes.

Theoretical results on the asymptotic behaviour of MOSUM statistics under the null

hypothesis can be found in Eichinger and Kirch (2018) and Aue et al. (2012). Recent

developments on MOSUM include bootstrap methods for constructing confidence in-

tervals for locations (Cho and Kirch, 2022), detecting changes under piecewise linearity

(Kim et al., 2024), and under high dimensional factor model (Barigozzi et al., 2024).

2.2.2 Bayesian online changepoint detection

In Section 2.1.3, we introduced Bayesian offline changepoint detection approaches.

These methods are computationally expensive because they have to infer the joint

distribution of the number of changepoints and their locations. In contrast, the online

setting focuses solely on estimating the location of the change, so the task becomes

easier and computationally efficient. The online Bayesian approach is particularly ap-

pealing as it not only incorporates prior knowledge but also provides the posterior

distribution to quantify the uncertainty of the detected change.

Fearnhead and Liu (2007) proposed an online Bayesian changepoint detection method.

Under the assumption that the parameters before the change and after the change are

conditionally independent, the exact posterior distribution can be calculated efficiently.

Specifically, denote Ct as the index of the last changepoint, the probability of having

CHAPTER 2. LITERATURE REVIEW 35

change at j, j > Ct given observations x1:t+1 can be calculated recursively as

p(Ct+1 = j|x1:t+1) ∝ p(xt+1|Ct+1 = j, x1:t)︸ ︷︷ ︸
predictive distribution

p(Ct+1 = j|x1:t),

where p(Ct+1 = j|x1:t) =
t−1∑
i=0

p(Ct+1 = j|Ct = i)︸ ︷︷ ︸
transition probability

p(Ct = i|x1:t).

p(Ct+1 = j|Ct = i) is the transition probability of having a changepoint at j since the

last changepoint i, while p(xt+1|Ct+1 = j, x1:t) is the predictive distribution:

p(xt+1|Ct+1 = j, x1:t) =

∫
p(xt+1|θ)p(θ|Ct+1 = j, x1:t)dθ,

where p(θ|Ct+1 = j, y1:t) ∝ p(yt|θ)p(θ|Ct+1 = j, y1:t−1).

If we use conjugate priors then this predictive distribution can be calculated analytically.

The p(Ct+1 = j|Ct = i) term reflects the prior knowledge about the potential

locations of changepoints. A common choice for this prior is:

p(Ct+1 = j|Ct = i) =



1−G(t−i)
1−G(t−i−1)

if no change since i, so j = i,

G(t−i)−G(t−i−1)
1−G(t−i−1)

if a new change at t, so j = t,

0 otherwise.

where G(·) =
∑
g(·) is the cumulative distribution function between two changepoint

candidates, and g(·) represents the probability mass function. If g(·) is modelled as a

geometric distribution, this assumes that the probability of a changepoint occurring at

each time step is constant and independent of previous observations.

By running the algorithm, at time n, we will have n probabilities P (Cn = i|x1:n)

for i = 0, 1, 2, .., n− 1. So we can simulate the joint posterior distribution of locations

backwards, see Fearnhead (2006); Fearnhead and Liu (2007).

Another work from the same year (Adams and MacKay, 2007), named OBCPD,

CHAPTER 2. LITERATURE REVIEW 36

builds on the same idea but models the run length r, the time elapsed since the last

changepoint, instead of using a Markov process Ct. The connection between the two

approaches is the run length rt is equivalent to t− Ct.

Subsequent works have extended these approaches to various settings, including dif-

ferent fidelity (Gundersen et al., 2021), more robust to outliers (Altamirano et al., 2023),

detecting the changes in distributions of rewards in bandit problem (Alami, 2023), Ap-

plications to Hawkes processes and neural networks (Detommaso et al., 2019). However,

these methods often involve a higher-order quadratic cost, making them computation-

ally expensive.

Not only these extensions, but both algorithms introduced in 2007, have a linearly

increasing computational cost per iteration, which limits their scalability for long-term

or real-time monitoring applications. To address this limitation, existing approaches

have explored pruning out changepoint candidates with the least probability of change

(Adams and MacKay, 2007) or using a stratified rejection control algorithm during

the resampling step (Fearnhead and Liu, 2007). While these techniques can reduce

computational complexity to a constant cost, they do so at the sacrifice of accuracy.

So far, we have introduced key works in the field of online changepoint detection,

which has gained increasing attention in recent years. Table 2.1 summarises the algo-

rithm we introduced. While frequentist approaches have seen significant advancements,

Bayesian methods have received comparatively less attention. In the following chap-

ters, we will apply frequentist approaches in a new setting - a distributed system, and

propose strategies to reduce the time complexity of the online Bayesian algorithm.

CHAPTER 2. LITERATURE REVIEW 37

Algorithm Unknown pre-change Unknown post-change Computational cost
SPRT N N O(1)

Page-CUSUM N N O(1)
GLR N/Y Y ≥ O(t)

FOCuS N/Y Y ≤ O(log t)
MOSUM N Y O(1)
BOCPD need a prior need a prior ≤ O(t)

Table 2.1: Summary of online changepoint detection algorithms. The computational
cost is measured at tth time step.

Chapter 3

A communication-efficient, online

changepoint detection method for

monitoring distributed sensor

networks

3.1 Introduction

During the last decade, there has been a significant focus on the important challenge

of efficient and accurate detection of changes in both univariate and multivariate data

sequences (Cho and Fryzlewicz, 2014; Fisch et al., 2022b; Kovács et al., 2023; Truong

et al., 2020; Tveten et al., 2022; Wang and Samworth, 2018). More recently, focus has

turned to translating the efficiency of such approaches to the online setting, typically

motivated by an applied challenge such as how to deal with limited computational power

(e.g. Ward et al., 2023). Recent major contributions to the online setting include Adams

and MacKay (2007), Tartakovsky et al. (2014), Yu et al. (2020), Chen et al. (2022), and

Romano et al. (2023b). In this paper we consider a less studied scenario, monitoring

38

CHAPTER 3. DISMOSUM 39

edge-behaviour within distributed sensor networks, which are common architectures

within the Internet of Things framework (IoT). The importance of efficiently detecting

changes at the edge efficiently, whilst minimising communication between sensors and

the cloud is perhaps best appreciated by considering two key applications: detecting

cyber-attacks on smart cities (Alrashdi et al., 2019) and optimising the performance of

base stations (Wu et al., 2019).

Consider, by way of example, Figure 3.1 which shows a schematic representation

of real-time monitoring within a distributed network. Here we assume that d data

streams are monitored, each by its own sensor. Communication between the sensors

and the centre is possible as shown by the dashed lines. An unusual event happens at

time τ , and we want to detect this event as quickly as possible. However, in modern

sensor networks that deploy IoT devices the computational resources of the sensors can

be substantial. Moreover, communication between the sensors and the cloud can be

problematic due to the heavy energy usage involved with transmitting data (Varghese

et al., 2016; Pinto and Castor, 2017). As such, we need algorithms that can identify the

time when it is important for information to be shared with the cloud. More specifically,

in this article, we seek to develop a new method to detect changes within such a network

in real time with high statistical power and as little communication and computation

as possible.

Changepoint methods which can be applied in the fully centralised problem, when

the data from the sensors is processed and transmitted to the centre (cloud) at every

time step, are well studied. Approaches typically seek to calculate the maximum or the

sum of all the test statistics (see, e.g., Mei, 2010; Xie and Siegmund, 2013a; Chan, 2017;

Chen et al., 2022; Gösmann et al., 2022). The rationale behind these methods is to set

thresholds and raise the alarm if the aggregated test statistics from multiple streams

exceed pre-defined thresholds. Numerical experiments (Mei, 2010) indicate that taking

the maximum is the optimal method when there are only a few affected data streams -

CHAPTER 3. DISMOSUM 40

Centre

S1

X1,t

S2

X2,t

Sd−1

Xd−1,t

Sd

Xd,t

. . .

M1,t M2,t Md−1,t
Md,t

τ

Figure 3.1: Schematic representation of a sensor network made up of d sensors, where
Si is the index for sensor i, Xi,t is the data observed at sensor i, andMi,t is the message
transmitted from sensor i to centre at time t.

what we will term a sparse change. Conversely, taking the sum is optimal when most

data streams are affected, also known as a dense change.

Recent contributions to this distributed problem include (Rago et al., 1996; Veer-

avalli, 2001; Appadwedula et al., 2005; Mei, 2005, 2011; Tartakovsky and Kim, 2006;

Banerjee and Veeravalli, 2015). Among them, two recent papers of particular interest

develop communication efficient schemes for monitoring a large number of data streams

(Zhang and Mei, 2018; Liu et al., 2019). The key idea is that each sensor computes

a local monitoring statistic and then employs a thresholding step, only sending the

statistic to the centre if there is some evidence of a change. The information from

multiple sensors is then combined at the centre. This approach reduces unnecessary

transmission by ignoring streams with little evidence for a change, while only focusing

on data streams that show signs of change.

Although computationally feasible, existing works assume that the pre- and post-

change mean are known. In practice, the pre-change mean can be estimated based on

historical data. However assuming a known post-change mean is typically unrealistic

CHAPTER 3. DISMOSUM 41

in practice, with an incorrect value potentially leading to a failure to detect, or poor

detection power. Liu et al. (2019) approximate the post-change mean recursively but,

as a consequence, somewhat sacrifice statistical power of the algorithm.

Our approach builds on recent work developing the moving sum (MOSUM) as a

window-based changepoint methods (see, e.g., Aue et al., 2012; Kirch and Kamgaing,

2015; Kirch and Weber, 2018). Specifically, we propose an online communication-

efficient changepoint detection algorithm (distributed MOSUM) to detect changes in

real-time within the distributed network setting. A local threshold is chosen to filter

out unimportant information and only transmit the statistically important test statistic

to the centre. The change will be alarmed when the aggregated test statistic exceeds

the pre-defined global threshold in the central cloud. The low time complexity and

communication efficient scheme of our proposed method makes it suitable for online

monitoring. We also establish that the proposed method can achieve similar statistical

power as the idealistic setting, where there is no communication constraint, at detecting

large changes whilst substantially reducing the transmission cost. Moreover, we also

show how to make the detection performance of distributed MOSUM close to that of

the idealised setting by increasing the window size, which will only sacrifice the storage

cost and a little transmission cost.

The key differences between our work and previous distributed changepoint detec-

tion contributions (e.g., Liu et al., 2019) are: Firstly, a moving window-based test

statistic MOSUM is chosen to avoid the requirement of knowledge of the post-change

mean. Secondly, earlier works have been based on the framework that controls the av-

erage run length (ARL) - the average amount of time until incorrectly detect a change.

However, such a metric gives a somewhat limited amount of information since the dis-

tribution of run length is usually unknown. For instance, if multiple procedures end

quickly while a few replications stop significantly longer, the ARL would be the same

if all the replications terminated around the same time. Conversely, in this work, we

CHAPTER 3. DISMOSUM 42

present methods in terms of controlling the error rate under the null at a specific level,

and with asymptotic power 1 under alternatives. Furthermore, our ideas generalise

trivially to methods controlling the average run length.

The structure of this paper is as follows. In Section 3.2, the problem setting is out-

lined, before introducing the distributed MOSUM methodology in Section 3.3. Several

theoretical results for this new approach are given in Section 3.4. Simulation studies

are carried out in Section 3.5, before ending with some concluding remarks (Section

3.6).

3.2 Problem setting

We begin by assuming that we have d sensors, each of which is observed as follows:

Xt = (X1,t, X2,t, X3,t..., Xd,t) at every time point t ∈ N. Here Xt could be raw data

or the residuals after pre-processing the data. These observations are assumed to be

identically distributed and independent across series. Such assumptions are common in

the problem of detecting changes within a distributed system setting (Mei, 2010; Xie

and Siegmund, 2013a; Liu et al., 2019). We do not strictly assume time independence

here, but our method is optimal when this assumption holds. Moreover, the impact of

time dependence will be numerically studied in Section 3.5.3.

We begin by assuming that at some unknown time, τ , the distribution of some

unknown subsets of d sensors will change. For simplicity, we only consider change in

mean, but the ideas below are easily extended to other changepoint settings. Therefore,

in this illustrative change in mean setting, the model for the data is expressed as follows:

Xi,t = µi + δi1{t>τ} + ϵi,t, t ∈ N, 1 ≤ i ≤ d, (3.1)

where µi is the known pre-change mean, δi is the mean shift, and {ϵi,t : t ∈ N} are

strictly stationary error sequences. After time τ , the mean of the i-th data stream

CHAPTER 3. DISMOSUM 43

changes immediately from µi to µi + δi. Here it is useful to note that our setting also

permits some δi = 0, which means that only a subset of data streams are affected by

the change. Without loss of generality, we assume µi = 0. Under the null hypothesis,

the model for the data can be rewritten as

Xi,t = ϵi,t, t ∈ N, 1 ≤ i ≤ d. (3.2)

Moreover under the alternative hypothesis, the model is Xi,t = δi+ϵi,t, t ∈ N, 1 ≤ i ≤ d.

Our aim is to monitor such a system and raise the alarm as soon as possible following the

event at time τ . One way of achieving this is to perform hypothesis testing sequentially,

i.e., evaluate the null hypothesis of no change in mean at each time point t ∈ N. The

algorithm will stop and declare a change when we can reject the null hypothesis.

In the classical sequential changepoint detection problem, we evaluate the perfor-

mance of an algorithm subject to a constraint on its false alarm rate. First, consider

an open-ended stopping rule where we have an infinite time-window of measurements

and the algorithm never halts until it detects a change. The false alarm rate can be

evaluated in two ways. Assume there is no change, and let τ̂ be the time at which we

detect a change, with the convention that τ̂ =∞ if we detect no change. One approach

is to control the average run length, E∞(τ̂), the expected time of to a false alarm. This

makes sense for procedures with a constant threshold for detection, for which we are

certain to detect a change under the Null if we monitor for an infinite time period. Al-

ternatively, one can control the false alarm rate, P∞(τ̂ <∞), the probability of a false

alarm. To control this over an infinite time horizon requires increasing the threshold for

detecting a change over time. Equivalently, this can be achieved by multiplying the test

statistic with a weight function w(·) < 1. See Leisch et al. (2000); Zeileis et al. (2005);

Horváth et al. (2008); Aue et al. (2012); Kirch and Kamgaing (2015); Weber (2017);

Yau et al. (2017); Kirch and Weber (2018); Kengne and Ngongo (2022) for examples of

how to choose an appropriate weight function.

CHAPTER 3. DISMOSUM 44

In our paper, we focus on controlling the false alarm rate. However Aue et al.

(2012) states that “applying open-ended procedures built from the asymptotic critical

values have a tendency to be too conservative in finite samples”. Therefore, our paper

considers a close-ended stopping rule. In this approach, the algorithm will stop either

upon detecting a change or upon reaching the predefined monitoring time T . We thus

control the false alarm rate over a time window of length T . However, the ideas we

present can easily be adapted to the open-ended setting, and also to methods which

control the average run length.

Under the context of distributed changepoint detection problem, we additionally

evaluate the index - the average transmission cost ∆̄. This is the average number of

transmissions at each time step for d sensors, and should be smaller than the pre-

specified transmission cost ∆.

Before introducing our proposed method, we first review relevant work. At time t,

the local monitoring statistic, Ti is calculated for the ith stream. Then all the local

statistics Ti can be combined into a global monitoring statistic T at the fusion centre.

There are two common choices of message combinations for monitoring changes within

the distributed system. One of these two types, the SUM scheme (Mei, 2010), declares

a change when the sum of all the local monitoring statistics exceeds a pre-defined

threshold, that is:

τ̂sum(cGlobal) = inf {t ≥ 1 : T ≥ cGlobal} = inf

{
t ≥ 1 :

d∑
i=1

Ti ≥ cGlobal

}
,

where cGlobal is global threshold. This way of combining statistics across streams is

known to be good if the series are independent and the changes are dense. However,

implementing this method on the distributed system requires sending every Ti to the

fusion centre, which is expensive. A sum-shrinkage method (Liu et al., 2019) is proposed

to reduce the communication cost by thresholding the test statistics before summing

CHAPTER 3. DISMOSUM 45

them:

τ̂sum(cLocal, cGlobal) = inf {t ≥ 1 : T ≥ cGlobal} = inf

{
t ≥ 1 :

d∑
i=1

TiI(Ti ≥ cLocal) ≥ cGlobal

}
.

Empirically the sum-shrinkage method could achieve similar performance as the SUM

scheme in the dense case and surprisingly performs better in the sparse case. When

the change is sparse, it has been shown both theoretically and empirically (Mei, 2010;

Liu et al., 2019; Chen et al., 2022) that monitoring the maximum of the test-statistics

across series is best. In such a setting, the MAX procedure (Tartakovsky and Veeravalli,

2002) monitors the maximum of test statistics and raises the alarm when the maximum

of the local test statistics exceeds the thresholds, that is:

τ̂max(cGlobal) = inf {t ≥ 1 : T ≥ cGlobal} = inf

{
t ≥ 1 : max

1≤i≤d
Ti ≥ cGlobal

}
.

The best choice of different schemes depends on the sparsity of changes which is based

on the number of affected data streams p. This can be made precise if we consider

an asymptotic setting where p → ∞ (Enikeeva and Harchaoui, 2019), and define a

change to be sparse if the number of affected streams is p = o(
√
d), and it to be

a dense change otherwise. A recent paper (Chen et al., 2022) combines both SUM

procedure and MAX procedure to achieve good performance regardless of the sparsity.

In the context of distributed monitoring, the MAX procedure is trivially implemented

without any communication. Specifically, each sensor has the threshold for the max-

statistic and flags a change if their local statistic is above this threshold. Therefore,

within this paper, we only focus on developing a communication-efficient version of the

SUM scheme. Our aim is a method that performs well for dense changes, but limits

the communication cost. We will use the SUM scheme as the ideal method to compare

against since it has no restrictions on communication.

CHAPTER 3. DISMOSUM 46

3.3 Distributed change point detection method

Our proposed methodology is summarized in Algorithm 7, and described in detail

below; the associated notations are defined in a later section. The method essentially

comprises of three steps. The first step involves the parallel local monitoring of each

data stream by the sensors. As the monitoring unfolds, messages are occasionally sent

from the sensors to the centre to indicate the presence of a potential change. Finally, at

the centre, these messages are aggregated to find changes that occur across a number

of data streams.

Algorithm 7: Centralized and distributed MOSUM
input : historic data xi,t for i = 1, 2, ..., d, and 1 ≤ t ≤ m

1 Estimating the baseline parameters // can be done offline

2 for i = 1 to d do
3 estimate µ̂i and σ̂i

4 end

Data: xi,t for i = 1, 2, ..., d at time t

5 while change is detected or reached the maximum monitoring time T do
6 Local monitoring // parallel computing

7 for i = 1 to d do

8 Ti(m, k, h) = 1
σ̂i

∣∣∣∑m+k
t=m+k−h+1 (Xi,t − µ̂i)

∣∣∣ .
9 end

10 Message passing
11 if w(k, h)Ti(m, k, h) > cLocal then
12 Mi,t = Ti(m, k, h) // centralized scheme:set cLocal = 0
13 else Mi,t = 0;

14 end
15 Global monitoring

16 if w(k, h)
√∑d

i Mi,t > cGlobal then

17 stop the algorithm
output: τ̂ = t

18 end
19 t←− t+ 1

20 end

CHAPTER 3. DISMOSUM 47

3.3.1 Local monitoring

Estimating the baseline parameters

Our sequential testing approach requires a historic data set of length m to estimate the

baseline parameters. Theoretical results are obtained later in the paper when m→∞.

The parameters of interest are the mean of each data stream µi and the variance of the

errors σ2
i . For the ith data stream these estimates are,

µ̂i =
1

m

m∑
t=1

Xi,t,

σ̂2
i =

1

m

m∑
t=1

(Xi,t − µ̂i)
2 .

(3.3)

If the errors cannot be assumed to be independent we can estimate the long run variance.

This requires specifying a kernel function K(·):

σ̂2
i =

1

m

m∑
t=1

(Xi,t − µ̂i)
2 + 2

m−1∑
j=1

K

(
j

l

)
γ̂
(i)
j , (3.4)

where γ̂
(i)
j =

1

m− j

m−j∑
t=1

(Xi,t − µ̂i) (Xi,t+j − µ̂i) .

In this setting, the Kernel function can be seen as a weighting function for sample co-

variance γ̂
(i)
j . The kernel function must be symmetric and such that K(0) = 1. Various

kernel functions are proposed. Standard kernel functions include Truncated (White

and Domowitz, 1984), Bartlett (Newey and West, 1986) and Parzen (Gallant, 2009)

amongst others. Among them, the Bartlett kernel is frequently used in Econometrics.

This kernel takes the form:

KBartlett

(
j

l

)
=


1− j

l
, for 0 ≤ j ≤ l − 1,

0, otherwise.

CHAPTER 3. DISMOSUM 48

For more details, see Horváth and Hušková (2012); Kiefer and Vogelsang (2002a); Kiefer

and Vogelsang (2002b).

Starting local monitoring

Once the baseline parameters have been estimated, beginning at time m + 1 data

Xi,m+1, Xi,m+2, . . . are observed sequentially and monitored for a change. This is achieved

using a MOSUM statistic which at monitoring time, k, takes a window containing the

most recent h observations. Therefore, at time t = m+ k:

Ti(m, k, h) =
1

σ̂i

∣∣∣∣∣
m+k∑

t=m+k−h+1

(Xi,t − µ̂i)

∣∣∣∣∣ . (3.5)

Following Aue et al. (2012), the MOSUM statistic will declare a change at time k when

the weighted local MOSUM statistic w(k, h)Ti(m, k, h) exceeds a pre-defined threshold.

A weight function w(·, ·) is introduced to control the asymptotic size of the detection

procedure. Typically w(·, ·) depends on the monitoring time k, and the window size h,

w(k, h) =
1√
h
ρ

(
k

h

)
, (3.6)

for some appropriate ρ(·). The choice of the weight function controls the sensitivity of

the test. A wide range of weight functions can be used as long as they are continuous

functions that satisfy inf0≤t≤T ρ(t) > 0. In this paper, we use the weight function

proposed in Leisch et al. (2000) and Zeileis et al. (2005):

ρ(t) = max(1, log (1 + t))−1/2.

Intuitively, if there is no change the weighted MOSUM will remain small, but it will be

large if there is a change. Figure 3.2 gives the behavior of weighted MOSUM statistic

under the null and the alternative assumptions for one data stream.

CHAPTER 3. DISMOSUM 49

−
4

−
2

0
2

4
6

Data

t

0 200 400 600 800 1000

µ̂ = 0.023

0
2

4
6

8
10

Weighted MOSUM

k

0 100 300 500 700 900

(a)

−
4

−
2

0
2

4
6

Data

t

0 200 400 600 800 1000

µ̂ = 0.023

0
2

4
6

8
10

Weighted MOSUM

k

0 100 300 500 700 900

(b)

Figure 3.2: Example time series with no change (a) and a single change (b) in the top
row. The bottom row shows the weighted MOSUM statistic with a historic period of
length m = 100 and a window size of h = 50.

3.3.2 Message passing

The local monitoring described in the previous section is applied to each sensor inde-

pendently. In order to make global decisions about the state of the system, messages

from the sensors must be passed to the central hub (see Figure 3.1). However, since

there are constraints on communication in the system, the message passing process

must be carefully designed.

At time t = m + k , where m is the historic period of length m, and k is the

monitoring time, each sensor makes a decision as to whether or not to transmit a

message to the centre. This message vector is denoted as Mt = (M1,t,M2,t, . . . ,Md,t).

We consider two different messaging regimes:

CHAPTER 3. DISMOSUM 50

• Centralized messaging regime: Mt = Ti(m, k, h), for 1 ≤ i ≤ d.

• Distributed messaging regime:

Mi,t =


Ti(m, k, h) if w(k, h)Ti(m, k, h) > cLocal,

NULL otherwise.

(3.7)

The centralized massaging regime is one where there is no constraint on the communi-

cation between the sensors and the centre, so all sensors send a message to the centre at

each time instant. This is similar to the “SUM” scheme changepoint detection method

proposed by Mei (2010). However, when communication is expensive, a “distributed”

messaging regime can be used where each of the sensors only send local monitoring

statistics that exceed a chosen threshold. The NULL means no message is sent. The

threshold cLocal can be chosen to control the fraction of transmitting sensors when there

is no change. It is worth noting that when cLocal = 0, the “distributed” messaging

regime is equivalent to “centralized” messaging regime.

3.3.3 Global monitoring

In our paper, we assume that there is no communication delay between sensors and

the central hub, so the message could be immediately received by the centre at time t.

Based on the messages received, the centre will make the decision as to whether or not

to flag a change.

Combining messages

Depending on different messaging regimes, the global MOSUM statistics are constructed

as follows:

CHAPTER 3. DISMOSUM 51

• Centralized global MOSUM statistic:

T (m, k, h) =

√√√√ d∑
i=1

M2
i,t, (3.8)

This is similar to the SUM scheme mentioned in Section 3.2. By using such a

scheme, Formula 3.8 is the idealistic scheme under dense change.

• Distributed global MOSUM statistic:

T (m, k, h) =

√√√√ d∑
i=1

M2
i,t1Ti(m,k,h)>cLocal

, (3.9)

where NULL values in Formula 3.7 are taken to be zeros in the sum. The form

of Equation 3.9 is taken from the multivariate MOSUM (Kirch and Kamgaing,

2015; Weber, 2017; Kirch and Weber, 2018).

Declaring the change

Similar to the local monitoring procedure, a change is declared as soon as the weighted

global MOSUM exceeds a threshold. A closed-end stopping rule can be used when the

aim is to monitor changes within a fixed time. This can be formalised as

τm,T̃ = min
{
1 ≤ k ≤ ⌊mT̃ ⌋ : w(k, h)T (m, k, h) > cGlobal

}
, (3.10)

where min{∅} =∞ and the total length of the data T = mT̃ . If no change is detected

by this stopping rule prior to ⌊mT̃ ⌋, the monitoring procedure is terminated. The

parameter T̃ > 0 governing the length of the monitoring period is chosen in advance

(Horváth et al., 2008; Aue et al., 2012). Figure 3.3 shows the weighted global MOSUM

statistic for the distributed and centralized messaging regimes on the same dataset.

Whenever the weighted global MOSUM of distributed regime hits zero, there is no

CHAPTER 3. DISMOSUM 52

0
5

10
15

20

k

G
lo

ba
l t

es
t s

ta
tis

tic

0 100 300 500 700 900

Centralized regime
Distributed regime

Figure 3.3: Example of the weighted global MOSUM statistic for the distributed (red
dashed line) and centralized (black line) regime. The result is obtained with T =
1000, d = 100,m = 100, h = 50, δ = 0.5 and the number of affected sensors p = 50. A
value of cLocal = 3.44 was used in the distributed regime.

communication between the edges and the centre at that time. In the next section, we

will show the theoretical properties of our proposed method under H0 and HA.

3.4 Theoretical properties for distributed MOSUM

This section considers the theoretical properties of the closed-end stopping rule, τm,T̃

defined in Equation 3.10 as m → ∞. Firstly, in Section 3.4.1 we find the limiting

distribution under the null hypothesis for the different procedures. Then, appropriate

choices for the thresholds, cLocal and cGlobal are given in Section 3.4.2 using these results.

Finally, in Section 3.4.3 we prove that the detection procedures we have studied are

consistent under alternatives.

Three key assumptions are made in order to derive asymptotic results, which are

the same in Horváth et al. (2008), Aue et al. (2012), and Weber (2017):

CHAPTER 3. DISMOSUM 53

Assumption 1 (Clean historic data). h → ∞ as m → ∞ and the location of the

changepoint τ > m for 1 ≤ i ≤ d.

This assumption is to guarantee we can get good estimators based on the training

dataset, and it can be easily achieved in real applications.

Assumption 2 (Asymptotic regime). h→∞ as m→∞ and

lim
m→∞

h

m
→ β ∈ (0, 1].

This assumption quantifies the long run connection between the length of the his-

torical period m and the window size h := h(m).

Assumption 3 (FCLT on errors).

lim
m→∞

1√
m
Si(mt)

D−→ σiWi(t)

where σi > 0, {Wi(t), 0 ≤ t < ∞} is a standard Brownian motion when h → ∞, and

Si(x) =
∑⌊x⌋

t=1 ϵi,t. σi can be estimated by σ̂i. Furthermore, σ̂i satisfying σ̂i
P−→ σi as

m→∞.

This assumption is a functional central limit theorem on the errors, ϵ, in the model

for the data 3.1.

3.4.1 Asymptotics under the null

In this part, the asymptotic theories of our proposed method will be given, which can

help guide the choice of thresholds.

The local monitoring process of our proposed method within each sensor is the same

as univariate MOSUM detection process. Thus, Theorem 3.4.1 and Corollary 3.4.2 of

the local MOSUM can be directly cited from Horváth et al. (2008), Aue et al. (2012)

CHAPTER 3. DISMOSUM 54

and Weber (2017). For simplicity, we denote

Zi(t) =

∣∣∣∣Wi

(
1

β
+ t

)
−Wi

(
1

β
+ t− 1

)
− βWi

(
1

β

)∣∣∣∣ , 1 ≤ i ≤ d (3.11)

where {Wi(t), 0 ≤ t <∞} are independent standard Brownian motions.

Theorem 3.4.1 (Local MOSUM). If assumption 1-3, and model 3.2 holds, then under

H0, let k = ht for any t > 0

lim
m→∞

w(k, h)Ti(m, k, h)
D−→ ρ(t)Zi(t).

Corollary 3.4.2 (Local MOSUM - asymptotic type-I error). Under H0, for any T̃ > 0

and ith data stream,

lim
m→∞

P
(
τ
(i)

m,T̃
<∞

)
= P

(
sup

0≤t≤T̃ /β

ρ(t)Zi(t) > cLocal

)
.

Thus, the false alarm rate for one data stream is asymptotically equal to a pre-specified

type-I-error ∈ (0, 1).

Following the results of local MOSUM, similar results for global MOSUM follow

readily. These can be used to choose thresholds given the pre-defined Type-I-error.

Below we obtain two limiting distributions, for the centralized and distributed regime

settings of Section 3.3 respectively.

Theorem 3.4.3 (Global MOSUM). Let k = ht for any t > 0, then under H0,

lim
m→∞

w(k, h)T (m, k, h) D−→ ρ(t)


√∑d

i=1 Zi(t)2 centralized case,√∑d
i=1 Zi(t)21ρ(t)Zi(t)>cLocal distributed case.

Proof. See Appendix A.1.

CHAPTER 3. DISMOSUM 55

Thus, their limiting distribution will be a function of Gaussian process. Using the

Theorem 3.4.3, the following may be obtained:

Corollary 3.4.4 (Global MOSUM - asymptotic type-I error). Under H0, for any T̃ > 0,

lim
m→∞

P
(
τm,T̃ <∞

)

=


P

(
sup0≤t≤T̃ /β ρ(t)

√∑d
i=1 Zi(t)2 > cGlobal

)
centralized case,

P

(
sup0≤t≤T̃ /β ρ(t)

√∑d
i=1 Zi(t)21ρ(t)Zi(t)>cLocal > cGlobal

)
distributed case.

This result can lead us to find the local and global thresholds which can obtain the

pre-defined type-I-error.

3.4.2 Obtaining critical values

Using the results of the previous section, appropriate critical values can be found such

that the asymptotic type-I error is controlled for the different procedures. To achieve

this the stochastic processes {Zi(t), 0 ≤ t ≤ T̃ /β, 1 ≤ i ≤ d} need to be approximated

on a fine grid. This is done in the same way as Aue et al. (2012), simulating the com-

ponent standard Brownian motions using ten thousand i.i.d. standard normal random

variables. The parameters used were β = 1/2 and T̃ = 10. Tables 3.1 and 3.2 give

critical values for α ∈ {0.10, 0.05, 0.01}.

α cLocal cCentralized
Global (α)

0.10 0 14.1
0.05 0 14.4
0.01 0 15.0

Table 3.1: Critical values for the centralized procedures, results averaged over five
thousand replications.

Since the critical values obtained above are valid asymptotically (in m), an impor-

tant question to consider is how they perform in finite samples. Numerical results of

CHAPTER 3. DISMOSUM 56

α cLocal cDistributed
Global (α)

0.10
3.15 7.48
3.44 6.70
4.05 5.20

0.05
3.15 7.89
3.44 7.16
4.05 6.02

0.01
3.15 8.74
3.44 8.01
4.05 6.59

Table 3.2: Critical values for the distributed procedure with different values for cLocal,
results averaged over five thousand replications.

empirical size in the finite sample are shown in Table 3.3. These indicate that the im-

plementation in the finite sample setting can be conservative, as per Aue et al. (2012).

However, approximately, the type-I error is controlled at the correct level for both of

the global procedures in finite samples.

Method cLocal cGlobal
Proportion of false alarms

m = 200 m = 400 m = 500

Distributed
3.15 7.89 5.14% 5.18% 5.5%
3.44 7.16 5.3% 5.38% 5.12%
4.05 6.02 5.5% 5.64% 5.16%

Centralized - 14.4 5.92% 5.28% 5.3%

Table 3.3: Empirical size, results averaged over one thousand replications with α =
0.05, T̃ = 10, and β = 1/2.

The choice of local threshold cLocal

The values for cLocal used in Table 3.2 are somewhat arbitrary. The main influence

of the value of local threshold is that it controls the proportion of messages that the

system can pass (on average) per iteration. For d streams, the number of sensors passing

message at each time step is:

Corollary 3.4.5 (Transmission cost). For any t > 0 and k = ht, the expected fraction

CHAPTER 3. DISMOSUM 57

of transmitting sensors at each time step is

∆̄t = dP (ρ(t)|Z| > cLocal) .

where Z is the standard normal distribution.

Therefore, the local threshold can be chosen based on the restriction of the trans-

mission cost. Combined with pre-defined type-I-error, the global threshold will be given

based on Theorem 3.4.3.

3.4.3 Asymptotics under the alternative

Under the alternative it is assumed that there is a changepoint at monitoring time k∗

and a subset S of the data streams have an altered mean

HA : τ = m+ k∗ & ∃S ⊂ {1, 2, . . . , d} : δi ̸= 0 for i ∈ S.

Deriving sharp asymptotic results on the detection delay of the proposed method is

challenging, and thus we focus only on giving consistency results. A procedure is

consistent if it stops in finite time with probability approaching one as m → ∞. In

other words, the test statistic should tend to infinity as m → ∞. In the asymptotic

regime of interest, we additionally assume that the changepoint k∗ grows at the same

order as h, that is k∗

h
→ γ ≥ 0, and the size of change δi,t satisfies

√
h|δi,t| → ∞ as

m→∞ and h→∞. These assumptions are the same in Aue et al. (2012).

Theorem 3.4.6 (Global MOSUM: Consistency). If the assumption above holds, under

HA,

(i) the changepoint k∗ ≤ ⌊hν⌋ for some 0 < ν < T̃ m
h
,

(ii) there exists a constant c > 0 such that ρ(x+ 1) ≥ c for all x ∈ (ν, T̃ m
h
− 1).

CHAPTER 3. DISMOSUM 58

Then, as m→∞ and h→∞

max
1≤k≤⌊mT̃ ⌋

w(k, h)T (m, k, h) P−→∞.

Proof. See Appendix A.2.

Thus, our proposed method is consistent.

3.5 Simulations

In this section, we will present the numeric performance of our algorithm. Since the

SUM procedure that is optimal when the change is dense, we will evaluate the perfor-

mance in the dense case, specifically when the affected data streams p = d. Firstly, the

different practical choices of thresholds at fixed type-I-error will be investigated. Here

the performance of our proposed method was also compared against the idealistic set-

ting. Finally, the effect of parameters and the violation of the independence assumption

are investigated.

The set-up of the simulations is as follows. For simplicity, the data generating

process under the null is that Xi,t ∼ N(0, 1) for 1 ≤ i ≤ d and 1 ≤ t ≤ T . To compare

fairly, the type-I-error of all procedures is controlled to be 0.05 under the null.

The family of alternatives considered is that

Xi,t ∼ N(0, 1) for 1 ≤ i ≤ d, 1 ≤ t < τ and

Xi,t ∼ N(δi, 1) for 1 ≤ i ≤ d, τ ≤ t ≤ T.

We assume the change will affect all the sensors instantaneously. But the size of the

change is unknown. We consider two scenarios of mean shift: 1) Same size: δi = δ =

some constant values for 1 ≤ i ≤ d; 2) Random size: δi = ηN(0, 1), where η is the scale

factor controlling the magnitude of size. The average detection delay (ADD) D̄ and

CHAPTER 3. DISMOSUM 59

average communication cost ∆̄ are then measured:

D̄ = E(τ̂ − τ |τ̂ > τ)

∆̄ =
τ̂∑

t=1

∑d
i=1 l(w(k, h)Ti(m, k, h) > cLocal)

τ̂ −m+ 1
,

3.5.1 The numerical dependency on local thresholds

Our proposed method requires specifying two thresholds. Usually, cGlobal can be given

based on the Theorem 3.4.4 once α and cLocal are confirmed. Therefore, it is crucial to

pick an appropriate local threshold. This section gives numeric results with different

values of local thresholds, which may provide some guidance in choosing the local

threshold.

Figure 3.4 gives the average detection delay and transmission cost for different values

of local thresholds. There is a trade-off between communication savings and detection

performance when choosing the local threshold. Larger local thresholds can reduce the

transmission cost but will also lead to longer delays, especially when the change is small.

However, with the increase in the mean shift, the detecting power of larger thresholds

will close to that of small thresholds.

A centralized framework can be seen as an idealistic setting, which is equivalent to

distributed setting when clocal = 0. Compared with the idealistic setting, the distributed

MOSUM can achieve similar performance when the size of the change is not small but

also reduces massive transmission costs. But we will lose power in detecting small

changes. We show the result below that distributed MOSUM can approximate the

performance of idealistic setting overall by increasing the window size.

CHAPTER 3. DISMOSUM 60

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1 2 3 4 5

0
20

40
60

80
10

0

Local threhsolds

∆

Local threshold

0

2.6

5.2

(a) Transmission cost for d = 100 data
streams.

0.0 0.5 1.0 1.5

0
10

00
20

00
30

00
40

00
50

00

δ

D

10
20

30
40

50
60

70

(b) average detection delay versus fixed δ.

1.0 1.5 2.0 2.5 3.0

0
10

20
30

40
50

η

D

(c) average detection delay versus η.

Figure 3.4: The average number of messages transmitted to the centre (top) and average
detection delay across varying mean shifts (bottom). Results are obtained when m =
200, h = 100, T = 10000, τ = 5000, α = 0.05. Each line corresponds to a different local
threshold, which is labelled on the top right. The colour changes from blue to orange as
the local thresholds increase from 0 to 5.2. When the local threshold is 5.2, the global
threshold will be 0. So all possible combinations of thresholds are covered.

CHAPTER 3. DISMOSUM 61

3.5.2 The numerical dependency on parameters

One advantage of using MOSUM statistics is that we do not need to specify the post-

change mean. Instead, our proposed method requires specifying the window size h and

the training size m. In this section, we will investigate the impact of bandwidth and

training size.

The impact of bandwidth

As shown in Figure 3.5a, increasing the window size can increase the power of detect-

ing small changes while leading to a slight delay in detecting large changes. Although

increasing window size will increase the storage cost, it will not significantly increase

the transmission cost as shown in Figure 3.5b. This drive us to think about whether we

can improve the ability of distributed MOSUM with a large threshold to detect small

changes by increasing the window size. Ideally, we would expect distributed MOSUM

with increased window size can achieve similar performance as the idealistic setting.

Recovering detectability

0.0 0.2 0.4 0.6 0.8

0
10

00
20

00
30

00
40

00
50

00

δ

D

h=20
h=50
h=100

10
15

20
25

30
35

40

(a) D̄ versus δ for h = 20, 50, 100.

20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

h

∆

● ● ●

●

●

●

h=20
h=50
h=100

(b) ∆̄ versus h.

Figure 3.5: The influence of window size. Results are obtained over 1000 replications
and take m = 200, d = 100, T = 10000, τ = 5000, α = 0.05, cLocal = 3.44.

CHAPTER 3. DISMOSUM 62

0.0 0.2 0.4 0.6 0.8 1.0

δ

D
δ0

D0

↔
↔

D0(h0)
Dc(h0)
Dc(h*)
Dc(h0) − D0(h0)
Dc(h*) − D0(h0)

Figure 3.6: An graphic explanation of our proposed idea. Black line is the ADD for
centralized MOSUM with window size h. Yellow dashed line is the ADD for distributed
MOSUM with window size h; while blue dashed is the ADD for distributed MOSUM
with window size h∗.

For simplicity, we denote that the default window size for centralized MOSUM is h0,

and h∗ is the smallest window size that would allow distributed MOSUM to have similar

performance as the idealistic setting. It is difficult to develop a neat theoretical formula

between h∗ and h0. But we can approximately find h∗ under alternatives by simulation.

Our idea can be summarized as follows, and Figure 3.6 is the graphic explanation:

• The behaviour of D̄ will decrease dramatically when the mean shift is within a

certain range (gray area). Therefore, we can find the median or mean δ of this

certain range, denoted by δ0. Also, the corresponding ADD D̄0 can be calculated.

• Fix δ0, calculate D̄cLocal(h) iteratively for distributed MOSUM, where h ∈ [h0,m].

• The optimal window size h∗ = argmin
{
D̄cLocal(h)− D̄0(h0)

}
. See blue arrow (h∗)

is shorter than yellow arrow (h).

Figure 3.7 displays the simulation results that, for distributed regime, we can recover

the same detectability of the centralized statistic by inflating h.

CHAPTER 3. DISMOSUM 63

● ● ● ●
●

●

●

●

●

●

●

●

0 1 2 3 4

Local thresholds

h*

50
70

90
11

0
13

0 Local threshold

0

2

4.4

(a) h∗ found by our idea

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

δ

D

(b) average detection delay for distributed
MOSUM (fixed h = 50, gray line) and dis-
tributed MOSUM (h = h∗, colored line). Dif-
ferent lines corresponds to different cLocal

Figure 3.7: An simple example showing that distributed MOSUM could approximate
the detection power of centralized MOSUM by inflating window size. Results are ob-
tained over 500 replications and take m = 200, d = 100, T = 1000, τ = 600, α = 0.05,
and cLocal ∈ [0, 4.4]. When cLocal = 4.4, cGlobal = 0. So all possible local thresholds are
covered. For centralized setting, window size h0 = 50.

m = 80 m = 100 m = 500 m = 1000
cGlobal 9.039 8.159 6.014 5.708

Empirical size 0.007 0.007 0.009 0.006
MSE for mean 0.0125 0.01 0.002 0.001
MSE for sd 0.006 0.005 0.0001 0.0001

Table 3.4: Empirical size, and MSE for estimated mean and standard deviation, results
averaged over one thousand replications with cLocal = 3.44, h = 50, T = 6000 and
α = 0.05.

CHAPTER 3. DISMOSUM 64

0.0 0.2 0.4 0.6 0.8
0

50
0

10
00

15
00

20
00

25
00

30
00

δ

D

m=80
m=100
m=500
m=1000

Figure 3.8: D̄ versus δ when varing the size of training dataset. Result averaged over
500 replications with α = 0.05, cLocal = 3.44, T = 6000, τ = 3000 and h = 50. The
corresponding global thresholds are shown in Table 3.4.

The impact of the training dataset

Fix the bandwidth h, the impact of the size of the training dataset can be investigated.

Table 3.4 gives the thresholds, empirical size, and mean square errors (MSE) of esti-

mated baseline parameters in our simulation. As we expected, the larger the training

size is, the more accurate estimators are. Figure 3.8 indicates that overall the detection

powers of four different sizes of training datasets are similar. A larger training size could

slightly increase the detection power when detecting small changes, which is attributed

to more accurate estimators. Thus, in the real application, it is beneficial to choose a

large-size training dataset because it is not expensive that can be done offline.

3.5.3 The violation of the independence assumption

Before, we assume that there is temporal independence among observations. However,

it may not always hold in the real application. This section will investigate the perfor-

mance when this assumption is violated. Here we measure our algorithm under AR(1)

CHAPTER 3. DISMOSUM 65

noise process, that is

Xi,t = δi,t1{t>τ} + ϵi,t,

where ϵi,t = ϕϵi,t−1 + vt with vt ∼ N(0, 1). |ϕ| < 1 is used to measure the strength of

the auto-correlation.

Auto-correlation will inflate the variance of data. There are two possible ways to

handle this problem. The first one is to estimate the long-run variance as shown in

Section 3.4. And one can also inflate the thresholds. We measure the false positives,

average detection delay and the number of transmitted messages with fixed type-I-error

of these two solutions under different scenarios. For better comparison, we also show

the result of MOSUM without any adjustment. This will give us hints that to what

extent our method fails to detect the change if we ignore the auto-correlation.

As Table 3.5 shows, our proposed method without adjustment can lose the ability to

detect changes when introducing auto-correlation, that it fails to detect the change and

always alarms. The performances of MOSUM with inflating thresholds are generally

better than MOSUM with LRV since the former can detect the change in most scenarios.

However, for those scenarios that the MOSUM with LRV can detect (usually δ is not

small and ϕ is not large), it always has the lowest transmission cost and reasonable

detection power. For example, when p = 100, δ = 1, and ϕ = 0.25, both solutions

have similar false positive rates and average detection delay, while MOSUM with LRV

has lower transmission cost. It is surprising that estimating LRV has the lowest false

positive rates and average detection delay when ϕ = 0 and p = 100/50. This may be

because it underestimates the variance.

However, when the auto-correlation is serious, it is not appropriate to apply our

method to the raw data. Instead, it is more reasonable to apply our method after

pre-processing the data, such as the residuals of AR models.

CHAPTER 3. DISMOSUM 66

ϕ
M
et
h
o
d
s

p
=

10
0

p
=

50
p
=

10
δ
=

0.
5

δ
=

1
δ
=

0.
5

δ
=

1
δ
=

0.
5

δ
=

1
F
P

D
T
ra
n
s

D
T
ra
n
s

F
P

D
T
ra
n
s

D
T
ra
n
s

F
P

D
T
ra
n
s

D
T
ra
n
s

0
co
n
st
an

t
0.
30

90
.6
7

0.
03

45
.7
5

0.
02

0.
29

11
6.
68

0.
03

50
.0
7

0.
03

0.
23

37
67
.6
9

0.
18

63
.0
9

0.
03

in
fl
at
in
g

0.
30

90
.6
7

0.
03

45
.7
5

0.
02

0.
29

11
6.
68

0.
03

50
.0
7

0.
03

0.
23

37
67
.6
9

0.
18

63
.0
9

0.
03

L
R
V

0.
19

85
.8
5

0.
05

43
.4
1

0.
05

0.
28

10
5.
74

0.
06

48
.4
2

0.
05

0.
32

41
98
.5
9

0.
34

64
.3
2

0.
05

0.
25

co
n
st
an

t
63
.4
9

79
.8
2

0.
19

40
.3
6

0.
18

62
.0
4

92
.6
2

0.
19

45
.9
0

0.
18

61
.9
5

20
59
.0
6

0.
20

62
.8
5

0.
18

in
fl
at
in
g

0.
33

10
4.
78

0.
22

49
.0
4

0.
20

0.
21

14
13
.0
9

0.
76

55
.9
8

0.
20

0.
40

50
00
.0
0

0.
48

81
.9
0

0.
21

L
R
V

0.
30

12
94
.6
4

0.
21

57
.2
1

0.
05

0.
21

42
28
.8
0

0.
30

63
.9
5

0.
05

0.
22

49
95
.2
6

0.
09

85
.2
3

0.
05

0.
5

co
n
st
an

t
49
9.
42

64
.1
7

1.
20

33
.0
7

1.
20

50
7.
02

78
.9
4

1.
21

40
.4
7

1.
21

50
3.
93

76
4.
67

1.
14

64
.7
4

1.
20

in
fl
at
in
g

0.
57

46
63
.8
7

5.
15

60
.5
1

1.
26

0.
34

50
00
.0
0

3.
06

73
.6
6

1.
28

0.
59

50
00
.0
0

1.
10

50
00
.0
0

4.
28

L
R
V

0.
43

49
96
.6
8

0.
09

83
.5
7

0.
05

0.
38

50
00
.0
0

0.
06

97
.1
8

0.
06

0.
59

50
00
.0
0

0.
03

38
78
.0
4

0.
35

0.
75

co
n
st
an

t
42
19
.4
2

5.
74

8.
35

3.
99

8.
35

42
25
.6
7

7.
56

8.
35

5.
35

8.
35

42
28
.5
6

8.
25

8.
37

6.
94

8.
37

in
fl
at
in
g

0.
76

50
00
.0
0

10
.1
9

49
8.
83

10
.4
3

0.
85

50
00
.0
0

7.
84

50
00
.0
0

15
.6
3

0.
69

50
00
.0
0

6.
02

50
00
.0
0

7.
59

L
R
V

0.
64

50
00
.0
0

0.
05

49
80
.2
8

0.
25

0.
59

50
00
.0
0

0.
04

50
00
.0
0

0.
14

0.
78

50
00
.0
0

0.
04

50
00
.0
0

0.
06

T
ab

le
3.
5:

R
es
u
lt
s
ar
e
ob

ta
in
ed

ov
er

10
00

re
p
li
ca
ti
on

s
w
it
h
T
=

10
00
0,
m

=
20
0,
h
=

10
0,
τ
=

50
00
,
d
=

10
0,
c L

o
ca

l
=

3.
44
,
an

d
α
=

0.
05

fo
r
al
l
th
re
e
m
et
h
o
d
s.

T
h
e
b
lu
e
co
lo
u
rs

ar
e
la
b
el
le
d
w
h
en

b
ot
h
th
e
fa
ls
e
p
os
it
iv
e
ra
te
s
an

d
av
er
ag
e
d
et
ec
ti
on

d
el
ay

ar
e

sm
al
l.

CHAPTER 3. DISMOSUM 67

3.6 Conclusion

Within this paper, we proposed an online communication-efficient distributed change-

point detection method, and it can achieve similar performance as an idealistic setting

but save many transmission costs. Numerically, we show that the local threshold and

window size have an impact on the performance of our algorithm, and there is a trade-off

in choosing a local threshold and window size. In application, we recommend choosing

a large local threshold in general cases. But when the change is extremely small, the

choice of the local threshold depends on the communication and storage budgets. If the

communication budget is much more limited, choosing a large threshold with a large

window size is sensible. If the storage cost is much more expensive, choosing a small

threshold with small window size will approximately achieve the idealistic performance.

The violation of independent assumptions will negatively affect the power of our

proposed method. We tried to solve this problem by inflating thresholds or estimating

the long-run variance. Both ways can, to some extent, improve our algorithm when the

auto-correlation problem is not severe. However, both approaches fail to detect changes

in highly auto-correlated data. Therefore, one of the future research directions is how

to detect change within highly auto-correlated data in real-time.

Chapter 4

mixFOCuS: A

Communication-Efficient Online

Changepoint Detection Method in

Distributed System for Mixed-Type

Data

4.1 Introduction

This article considers a novel changepoint problem arising from a contemporary, In-

ternet of Things (IoT) setting. Within the IoT, modern technology allows industry

to deploy numerous sensors to collect data at a relatively low cost. The detection of

changes in such a setting is increasingly of interest. For example, detecting cyber at-

tacks in smart cities (Alrashdi et al., 2019), attacks on network traffic (Lung-Yut-Fong

et al., 2012), or abnormal cryptocurrency transactions for data trading (Zhao et al.,

2023), amongst many others.

68

CHAPTER 4. MIXFOCUS 69

To have the power to detect changes that affect multiple sensors, we need to share

information. For some sensor networks this can be done by allowing sensors (edge de-

vices) to communicate with a central cloud. Such a sensor-to-cloud communication is

usually described as a “distributed system”. However limitations on, e.g., battery life,

transmission budget, or privacy concerns require limiting the frequency with which a

sensor can transmit information to the cloud (Alrashdi et al., 2019; Varghese et al.,

2016). For example, satellite data may be physically stored at different geographical

locations, and thus transferring all the data over the network could incur substantial

bandwidth and time costs (Bhaduri et al., 2010). Another concern is that edge devices

can observe a large amount of streaming data, much of which may be private. Fre-

quently sending raw data or even an “anonymized” dataset can still put user privacy

at risk (McMahan et al., 2017).

When sensors collect data in real time, the task of identifying changepoints fre-

quently moves to an online setting. Here, one ideally seeks to raise an alarm when

there is a change in the distribution of the data. One, straightforward approach, to

achieve this is to run a simple, efficient online changepoint algorithm at each edge de-

vice and then combine the results in the cloud. See Figure 4.1 for an example. The

problem of detecting changes that affect multiple data streams, but without any con-

straints on sensor-to-cloud transmission frequency, has been studied extensively, and

has led to a number of proposals of how to combine the statistics from different streams

(e.g. Tartakovsky et al., 2006; Tartakovsky and Polunchenko, 2008; Mei, 2010; Xie and

Siegmund, 2013b). Different methods of combining statistics have different properties.

For example, detecting a change based on the maximum statistic across streams per-

forms well if one, or only a small proportion, of data streams undergo a change. By

comparison, detecting a change based on the sum of the statistics performs well if the

change affects most or all of the streams (Mei, 2010; Enikeeva and Harchaoui, 2019).

To limit the transmission of data Liu et al. (2019) and Yang et al. (2024) suggest

CHAPTER 4. MIXFOCUS 70

edge sensors

Centre (node)

S1

X1,t

S2

X2,t

Sd−1

Xd−1,t

Sd

Xd,t

. . .

M1,t M2,t Md−1,t
Md,t

τ̂

online univariate change-
point detection algo-

rithm and filtering step

aggregation regime

Figure 4.1: Schematic representation of a sensor network made up of d sensors, where
Si is the index for sensor i, Xi,t is the data observed at sensor i, Mi,t is the message
transmitted from sensor i to centre at time t, and τ̂ is the time the algorithm stops or
alarms.

thresholding the local monitoring statistics, that is a sensor only sends information to

the cloud when there is sufficient evidence (i.e., the value is above a threshold). The

threshold can be chosen, for example, based on the frequency with which we are able

to transmit information. Depending on the threshold value selected, the approaches

proposed by Liu et al. (2019) and Yang et al. (2024) can work well for changes impacting

either a small number of streams (high threshold) or many streams (low threshold). In

the case of Liu et al. (2019) the CUSUM statistic for Gaussian data is used for each

data stream and then the sum is taken at the fusion centre. Conversely,Yang et al.

(2024) adopts the MOSUM statistic (Aue et al., 2012; Kirch and Weber, 2018). Both

the CUSUM and MOSUM procedures have limitations. For example: 1) at each edge,

both approaches suffer from the need to specify the pre-change distribution, and either

the post-change distribution (for CUSUM) or a window size (for MOSUM). If any

of these are poorly specified we may lose power to detect a change, or, in the case

of a misspecified pre-change distribution, have an inflated false-positive rate; 2) both

methods assume collected data are independent and identically Gaussian distributed,

which may not be realistic in practice; 3) at the centre, taking the sum of the statistics

CHAPTER 4. MIXFOCUS 71

can lead to a longer detection delay when only one or a few sensors have changed.

Motivated by the above challenges, we propose a novel approach for the efficient

detection and communication of changes within a distributed system, mixFOCuS. This

work builds upon the recent development of the FOCuS algorithm (Romano et al.,

2023b) and its extensions (Ward et al., 2023, 2024), recent contributions to the liter-

ature built on Page’s recursion (Page, 1954, 1955). Whereas Page’s recursion assumes

we know precisely both the pre-change and post-change distribution of the data; the

FOCuS algorithms only assume we know the family of these distributions, and that

they are from the one-parameter exponential family. When calculating the test statis-

tic for a change, FOCuS then maximises over both the pre-change and post-change

parameter. Consequently, the approach that we introduce in this article, mixFOCuS,

can be seen as a further development of the seminal work of Page (1954) to the setting

of monitoring data streams from distributed networks.

As we will later demonstrate, our contribution differs from previous works in two

key respects:

1. Flexible local monitoring. mixFOCuS allows data streams to follow the expo-

nential family. It also does not require prior knowledge of the pre-change or post-

change distribution. Instead, mixFOCuS uses the expFOCuS algorithm (Ward

et al., 2024) to analyse the streams. This algorithm can be applied if the data is

modelled as coming from any one-parameter exponential family with an unknown

post-change parameter, or even an unknown pre-change parameter. Helpfully,

expFOCuS has a small per-iteration computational cost that increases logarith-

mically with data size. Thus, for Gaussian data, at time T , its cost is roughly

that of maximising a log T quadratic. Furthermore, there are approaches to re-

duce this cost to a constant, either using a simple approximation (Romano et al.,

2023b), by using bounds on the statistics (Ward et al., 2024) or fixing a minimum

size of change we wish to detect (Ward et al., 2023).

CHAPTER 4. MIXFOCUS 72

2. Robust global monitoring. mixFOCuS monitors both the maximum and the

sum of the test statistics. In so doing, it is able to detect the location of both

sparse changes, i.e. where few streams are affected, and dense changes, i.e. where

many streams are affected. Further, for the distributed network setting, there is

no additional cost for monitoring the maximum of the test statistic.

The outline of the paper is as follows. In Section 4.2 we briefly summarise the link

between the FOCuS algorithms we build on and the algorithm of Page (1954). Then,

in Section 4.3 we introduce the problem setting and our proposed method - mixFOCuS.

In Section 5.3, we evaluate the trade-off between transmission constraints and detection

power under various scenarios, considering both homogenous and mixed data types. We

also show the improved detection power of mixFOCuS for handling mixed-type data,

rather than assuming and approximating data with Gaussian distributions and compare

the proposed algorithm compared to those of Liu et al. (2019) and Yang et al. (2024).

In Section 4.5 we apply the method to an anomaly benchmark dataset and evaluate the

impact of reducing data transmission on the speed at which we detect changes. The

paper ends with a discussion.

4.2 Background: From Page (1954) to expFOCuS

Consider a data stream at a single sensor. Denote this by X1, X2, We assume the

data are independent and drawn from a single parameter exponential family distribu-

tion. We wish to detect if and when the parameter of this distribution changes, and

will perform a test for a change sequentially at each time t = 2, 3,

Let f(x; θ) denote the density function of our one-parameter exponential family

distribution with parameter value θ. Then f(x; θ) = h(x) exp[η(θ)T (x)−A(θ)], for some

appropriate scalar functions h(·), η(·), T (·) and A(·). Table 4.1 provides examples of

these one-parameter exponential family distributions and the corresponding functions

CHAPTER 4. MIXFOCUS 73

Distribution η(θ) T (x) A(θ)

Gaussian (fixed variance σ2) θ
σ2 x θ2

2σ2

Gaussian (fixed mean 0) - 1
2θ2

x2 log θ
Bernoulli log θ

1−θ
x − log(1− θ)

Poisson log θ x θ
Exponential −θ x − log θ

Gamma (fixed shape α) −θ x −α log(θ)

Table 4.1: Examples of one-parameter exponential families as natural parameter form.
We are interested in detecting the change in the mean with fixed variance σ2 and
the change in variance with fixed mean 0, for Gaussian distributions, the change in
probability for Bernoulli distributions, the change in rate for Poisson distributions,
the change in rate for Exponential distribution, and the change in rate for Gamma
distributions with fixed shape parameter α.

(with h(x) being disregarded as it cancels out during the subsequent calculations).

Formally we can model our problem at time t as testing between two models for the

data. If there is no change then

X1, . . . , Xt ∼ f(x; θ),

whereas if there is a change, then for some τ ∈ {1, . . . , t− 1},

X1, . . . , Xτ ∼ f(·; θ), Xτ+1, . . . , Xt ∼ f(·; θ + δ),

for some δ ̸= 0, that corresponds to the change in parameter. Ideally we would base a

test for a change on the likelihood-ratio test statistic

Tt(δ) = 2

{
max
θ,δ,τ

{
τ∑

j=1

log f(xj|θ) +
t∑

j=τ+1

log f(xj|θ + δ)

}
−max

θ

{
t∑

j=1

log f(xj|θ)

}}
.

The computational challenge is that calculating Tt(δ) from scratch is an O(t) calcula-

tion, due to the maximisation over τ . This is computationally prohibitive in a streaming

setting. Page (1954) proposed a computationally efficient algorithm for calculating Tt

recursively, if θ and δ are known.

CHAPTER 4. MIXFOCUS 74

In some settings it is natural to assume θ is known or can be well estimated due

to sufficient pre-change data. If we consider this setting, and denote Tt(δ) to be the

likelihood-ratio test-statistic at time t for a specified change δ, then Page (1954) showed

that for t = 1, . . . , with T0(δ) = 0,

Tt(δ) = max{0, Tt−1(δ)}+ 2 [{η(θ + δ)− η(θ)}T (xt)− {A(θ + δ)− A(θ)}] . (4.1)

This can be interpreted as replacing the previous statistic by 0 if it was negative, and

then adding the contribution to the likelihood ratio-test statistic of the tth observation.

Importantly this recursion can be calculated with fixed computational cost after each

observation is received.

The disadvantage of Page’s recursion is that the test will have lower power if we

mis-specify the size of change δ. The idea of the FOCuS algorithm (Romano et al.,

2023b) was to solve Formula 4.1 simultaneously for all δ. This was initially done for

a Gaussian model, and then extended to Poisson data (Ward et al., 2023) and to the

exponential-family model (Ward et al., 2024). In all cases, the solution to Formula

4.1 can be written as a function of δ in terms of the maximum of curves of the form

aη(θ+δ)+bA(θ+δ) for scalar coefficients a and b that depend on the data. Each curve

corresponds to a different possible value of τ . Importantly there are only a small number

of possible values of τ that contribute curves to the definition of Tt(δ). The values of

τ that contribute curves correspond to vertices on the convex hull of the convex hull

of the random walk with points (s,
∑s

i=1 T (xi)) – and the expected number of vertices

is known to increase like O(log T). Moreover the computational cost of updating the

solution of Tt−1(δ) to that of Tt(δ) is O(1). To perform our test we then need to find

maxδ Tt(δ), which needs a sum over all curves and has an O(log T) cost: though if we

simply want to detect whether the test statistic is above a threshold we can re-cycle

calculations to have a cost that is empirically O(1) (see Ward et al., 2024).

Finally, because the link between the values of τ that contribute a curve to Tt(δ)

CHAPTER 4. MIXFOCUS 75

and the vertices of the convex hull of the random walk of T (Xi) holds for all θ – it is

possible to extend this idea to give a similarly efficient algorithm for calculating Tt(δ)

simultaneously for θ. By maximising Tt(δ) over both θ and δ we can calculate our

test statistics Tt recursively in an efficient manner. The resulting algorithm is given in

Ward et al. (2024) and is called expFOCuS. Finally we remark that the link between

the FOCuS algorithm and the convex hull is a specific example of a link between online

change-point algorithms and computational geometry that is discussed in more detail

in Pishchagina et al. (2023).

4.3 Problem setting and our proposed method

4.3.1 Problem setting

By way of introduction to the problem, let us assume that there are d sensors deployed in

a system, each producing a single stream of data through time. At a given time t ∈ N,

observations or pre-processed data, Xi,t, are observed by the sensor i ∈ {1, . . . , d}.

The data streams are assumed to be independent and follow the exponential family of

distributions.

At an unknown time, τ , some unknown subset of data streams undergo a change.

Therefore, the i-th stream with change can be modelled as follows:

Xi,1, Xi,2, ..., Xi,τ ∼ fi(·; θi), Xi,τ+1, Xi,τ+2, ... ∼ fi(·; θi + δi).

Here fi(x; θi) = hi(x) exp[ηi(θi)Ti(x)−Ai(θi)] is the density function or mass function of

a one-parameter exponential family for the i-th sensor; θi is the pre-change parameter,

δi is the magnitude of change, and we assume that the distribution is known while its

parameters are assumed unknown. This assumption is reasonable in many practical

settings, since users may typically know the type of data collected by each sensor. For

CHAPTER 4. MIXFOCUS 76

example, counting sensors collect data following a Poisson distribution, etc. Alterna-

tively, the distributions can also be estimated through training data. Finally we will

focus on the more general situation, where both θi and δi are unknown. This is in

contrast to, e.g. Liu et al. (2019) and Yang et al. (2024), where the θi are assumed

known (or readily estimable).

Within the context of our distributed changepoint detection problem, the task is to

monitor sensors with the pre-specified transmission constraint in real-time and report

changes τ̂ as soon as possible. The transmission constraint concerns the average fre-

quency that each sensor is allowed to transmit a message to the cloud. The detection

ability will be evaluated by the false alarm rate (that is the algorithm raises alarms

and stops before a true change), and the detection delay (this refers to the difference

between a true change and an estimated stopping time). Ideally, we seek an approach

with low false alarm rates and small detection delays within the transmission constraint.

We first focus on the computation at each edge node, where we employ the online

univariate changepoint detection method, expFOCuS, introduced in Section 4.2. For

one data stream, i, the log-likelihood ratio test statistic at time t can be written as:

Ti,t = 2

{
max
θi,δi,τ

{
t∑

j=1

log fi(xi,j|δi, θi, τ)

}
−max

θi

{
t∑

j=1

log fi(xi,j|θi)

}}
, (4.2)

where
∑t

j=1 log fi(xi,j|δi, θi, τ) =
∑τ

j=1 log fi(xi,j|θi) +
∑t

j=τ+1 log fi(xi,j|θi + δi). If this

test statistic is larger than a pre-specified threshold, we reject the null hypothesis. Cal-

culating Ti,t can be done efficiently at each edge device using the expFOCuS algorithm.

4.3.2 The mixFOCuS approach

We now introduce mixFOCuS, the proposed monitoring approach that will be used

within the thresholding step to reduce the transmission and monitor the maximum and

sum of the test statistics. The approach consists of three key parts: local monitoring,

CHAPTER 4. MIXFOCUS 77

local screening, and global monitoring.

Local monitoring. The local test statistics Ti,t for i-th data stream at time t can

be calculated via equation 4.2.

Local screening. Subsequently, a local screening procedure is deployed at each

sensor to filter out unimportant messages through thresholding. We introduce a vari-

able,Mi,t, representing the message passed from the local sensor to the cloud:

Mi,t =

 Ti,t if Ti,t > cLocal,

0 otherwise

Here, ”0” indicates that no transmission occurs. Therefore, cLocal controls the frequency

of transmission. We illustrate the transmission regime with hard thresholding of the

contribution of each test statistic to the SUM statistic we define below. However, we

should highlight that other regimes, such as soft thresholding, could also be employed.

Our experience suggests that the form of thresholding has little impact on the properties

of the method.

Global monitoring. Once the message is sent to the global centre, we monitor

both the sum and maximum of the received test statistics, T SUM and T MAX. At time

t, these are defined as:

T SUM
t =

d∑
i=1

Mi,t, and T MAX
t = max

1≤i≤d
Mi,t.

The decision rule at the global level is defined to be 1
{
T SUM
t > cSUM

Global

}
∨1
{
T MAX
t > cMAX

Global

}
,

where cSUM
Global and c

MAX
Global are chosen to control the average run length (ARL), i.e., the av-

erage stopping time when there is no change. The MAX procedure can also be applied

at the edge instead of the centrally. The whole algorithm is described in Algorithm 9,

whilst guidance on the choice of thresholds is provided in Sections 4.3.3 and 4.3.4.

CHAPTER 4. MIXFOCUS 78

Algorithm 8: mixFOCuS
input : historic data xi,t for i = 1, 2, ..., d, and 1 ≤ t ≤ m

1 while the algorithm is not stopped do
2 Local monitoring
3 for i = 1 to d do
4 Calculate the local likelihood ratio test statistic Ti,t for i-th data stream at time t as

Formula 4.2
5 end

6 Message passing
7 if Ti,t > cLocal then
8 hard-thresholding: Mi,t = Ti,t // centralized scheme:set cLocal = 0
9 elseMi,t = 0 // No message sent;

10 end
11 if Mi,t > 0 then
12 send message to the central cloud
13 end

14 Global monitoring

15 if
∑d

i=1Mi,t > cSUM
Global or max1≤i≤dMi,t > cMAX

Global then
16 alarm and stop
17 else
18 t←− t+ 1
19 end

20 end

21 end

4.3.3 The choice of the local threshold

Let us assume that d data streams are observed, and denote the average fraction of

sensors sending messages as ∆ ∈ [0, 1] at each time step. Ideally, d∆ should be smaller

than ω, where ω is the pre-specified average number of transmissions allowed at any

time instance. ∆ represents the probability that a test statistic exceeds the pre-specified

threshold. Local test statistics are often modeled as asymptotically following a Gumbel

distribution (Yao and Davis, 1986). However, the rate convergence to the Gumbel

distribution can be slow in practice (Fearnhead and Fryzlewicz, 2022).

In practice, one straightforward approach to choosing the local threshold is to ap-

proximate the average transmitted fraction ∆̂ using Monte Carlo simulations under the

null hypothesis, assuming a fixed monitoring time, γ. Specifically, for a given distri-

bution f(x|θ), we generate r sequences and record the test statistics. The threshold

that gives ∆̂ is approximately the (1 − ∆)-th quantile of ascending-ordered sequence

CHAPTER 4. MIXFOCUS 79

0 5 10 15
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Local Threshold

∆̂

Monte Carlo
Gumbel Dist.

Figure 4.2: The numerical transmission frequency of local test statistic for simulated
standard Gaussian distribution based on 1000 replications with γ = 10000.

(T 1
i,1:γ, T 2

i,1:γ, ..., T r
i,1:γ), where T r

i,1:γ is the local test statistics for the r-th replication with

data length γ. Figure 4.2 displays the approximated empirical ∆̂ values and their cor-

responding local thresholds obtained through Monte Carlo simulation and theory. We

note that the thresholds suggested by the theory are too conservative.

4.3.4 The choice of the global threshold

We next turn to consider the question of how to choose the global threshold. Our

approach is based on the average run length criteria, i.e., the expected time until the

first false alarm approximately equal to the predetermined average run length (ARL) γ,

under the null hypothesis of no change. To this end let κSUM = inf{t : T SUM
t > cSUM

Global},

κMAX = inf{t : T MAX
t > cMAX

Global}, and κcomb = min
{
κSUM, κMAX

}
be the time to

detection under the null hypothesis. In an adaptive procedure, two global thresholds

need to be chosen such that E∞(κcomb) = γ, where E∞(·) is the expectation when there

is no change.

To avoid the computational cost tuning both the thresholds, cSUM
Global and c

MAX
Global, si-

multaneously we suggest tuning each in turn. Previous empirical results (Chen et al.,

2022) suggest that the time to detection for online changepoint is approximately ge-

CHAPTER 4. MIXFOCUS 80

ometrically distributed. Empirically we see this is approximately true for our setting

(see Appendix B.1) for both the MAX and SUM tests. If we have two independent

geometrically distributed random variables with mean (1/p)γ and (1/(1− p))γ respec-

tively, for some γ > 0 and probability 0 < p < 1, then distribution of the minimum has

mean γ and the probability that the minimum is attained by the first is ≈ p.

Whilst the time to detection for our two test statistics is not independent, we can

use this result to guide our choice of threshold. That is we can choose our require ARL,

γ, and the preference we have for the SUM test, specified by a probability p. We then

tune cSUM
Global so that the SUM test has ARL (1/p)γ. We then tune cMAX

Global so that the

overall procedure has ARL γ. In most applications we would give equal weight to the

two tests, so p = 1/2. Our final procedure would have the correct the ARL of γ due

to how we tune the second threshold - and the approximation of the time to detection

of the tests by independent geometric distributions will only affect the relative priority

given to the two tests. This procedure is described pictorially in Figure 4.3.

To tune each of the thresholds we use Monte Carlo. Our approach is to simulate

R replicates of data sets of length n, each simulated with no change. Let Tr, for

r = 1, . . . , R, denote the time at which a change is detected, with Tr = n if no change

is detected. Further let Ir indicate whether a change is detected in the rth data set, so

Ir = 1 if a change is detected and Ir = 0 otherwise. Then the we can estimate the ARL

as the MLE under a geometric distribution of the the time to detection, this gives an

estimate that is
∑R

r=1 Tr/
∑R

r=1 Ir. We can then tune the threshold until this estimate

the smallest value greater than the required value. If we choose n to be much larger

than the required ARL then in all or almost all data-sets for the chosen threshold we

will have detected a change – making our estimate of the ARL robust to the assumption

of a geometric distribution for the time to detection. Furthermore, we can make the

search for the threshold efficient by running the algorithm on each data-set once and

storing the test statistic values at each time. We can the easily post-process these values

CHAPTER 4. MIXFOCUS 81

T SUM
1 , T SUM

2 , · · · , T SUM
n

T MAX
1 , T MAX

2 , · · · , T MAX
n

T SUM
1 , T SUM

2 , · · · , T SUM
n

T MAX
1 , T MAX

2 , · · · , T MAX
n

· · ·

R replicates

Step 1

Step 2

SUM procedure

MAX procedure

Tune cSUM
Global so that E∞ (κSUM

)
= (1/p)γ

Tune cMAX
Global so that E∞ (min{κSUM, κMAX}

)
= γ

Figure 4.3: An example diagram illustrating the procedure for determining global
thresholds to achieve a target ARL of γ. We begin by simulating R n × d datasets
under the null, where n ≫ γ. For each dataset, we compute and store global test
statistics at every time point. We first isolate the SUM procedure and tune its global
threshold cSUM

Global such that the ARL satisfies E∞(κSUM) = γ/p. We then tune the
threshold of MAX procedure cMAX

Global based on the combined test statistics, so that
E∞ (min{κSUM, κMAX}

)
= γ. The order of the two steps can be swapped.

to evaluate Tr and Ir, for r = 1, . . . , R, as we vary the threshold.

The MAX procedure can also be applied locally where each data stream has different

thresholds. This can be useful when data streams are of different qualities. For instance,

one might need a larger threshold for a sensor with higher auto-correlation. In such

cases, different MAX thresholds can be selected for individual sequences. The tuning

procedure remains the same as described earlier. For simplicity, we consider the same

MAX threshold case in the following simulation study.

4.4 Simulation results

In this section, we begin by evaluating the performance of our proposed approach under

restricted transmission frequencies, on both homogeneous and mixed-type data. We

also show the loss of detection power and inflation in false alarms that can arise from

CHAPTER 4. MIXFOCUS 82

Setting Index of data streams Pre-change distribution Post-change distribution

Homogeneous data 1-100 N(0, 1) N(δ, 1)

Mixed-type data

1-20 N(0, 1) N(δ, 1)

21-40 Ber(0.4) Ber(δ
√
0.4(1− 0.4) + 0.4)

41-60 Pois(5) Pois(δ
√
5 + 5)

61-80 Exp(1/3) Exp(1
3δ+3)

81-100 Gamma(2,3) Gamma(2, 2

δ
√

2/32+2/3
)

Table 4.2: Set-up of simulated data.

approximating mixed-type data using a Gaussian distribution, a common assumption

in previous studies. This highlights the benefit of using a mixed distribution approach.

Finally, we present a comparison between our proposed mixed method and existing

approaches on Gaussian data.

4.4.1 Detection power of mixFOCuS

To evaluate the performance of mixFOCuS with different transmission constraints, we

consider simulating data with scenarios S1/S2: pre-change known/unknown, the spar-

sity level p = 1, 0.5, 0.1, 0.01, the fixed magnitude of change δi = δ = 0.1, 0.25, 0.5, 1,

and the change happened at the same time τ = 1000 or 3000 for affected p × d sen-

sors. The parameters of homogeneous and mixed-type data are listed in Table 4.2.

Under the alternative, to make sure each distribution in the mixed-type data can have

the same size of change, we keep the ratio of the change in mean (post-change mean

minus pre-change mean) to the standard deviation constant for all distributions. For

normal/gamma distribution, the standard deviation/shape remains constant, and the

change solely occurs in its mean/scale.

Both local and global thresholds are chosen based on 1000 Monte Carlo experiments.

Local thresholds {0, 4.18, 4.94, 6.77} and {0, 4.85, 5.62, 7.37} are selected to limit the

frequency at levels ∆̂ = {100%, 10%, 5%, 1%} in the pre-change known and unknown

case respectively, and global thresholds are chosen to achieve E∞ (κMAX
)
= 20000 and

CHAPTER 4. MIXFOCUS 83

E∞ (κcomb
)
= 10000. To evaluate the impact of limiting transmission, we will measure

the false alarm rate (FAR), average detection delay (ADD) and proportion of missed

alarms (the percentage of times the algorithm failed to raise an alarm when there was a

change) with the benchmark being the case without any transmission constraints (100%

transmission) under the alternative.

Table 4.3 and 4.4 present a summary of the detection power of mixFOCuS under

different transmission constraints when the change is located at 3000. Notably, our

proposed method exhibits slightly better detection power when the change is not located

at the beginning of the data set when the change is small. Specifically, at location of

3000, there is a significantly reduced detection delay compared to the results obtained

when the change is located at 1000, especially in the pre-change unknown case (The

result of τ = 1000 is shown in the Appendix B.2). This is because FOCuS algorithms

estimate unknown parameters as more data comes in, more data can lead to more

accurate estimators.

Generally speaking, compared with the benchmark, imposing restrictions on trans-

mission frequency leads to a slightly longer detection delay in the dense case but a

smaller delay in the sparse case. Limiting transmission can lead to increasing false

alarms, but most time will still give a similar detection delay as the benchmark. When

encountering a large mean shift (δ ≥ σ), all the methods may demonstrate similar

detection power as the benchmark.

Compared with pre-change known cases, there will be a decrease in detection power

in the unknown case. This is because the process of estimating the pre-change parameter

could introduce bias.

CHAPTER 4. MIXFOCUS 84

Scenarios pre-change known(S1) pre-change unknown(S2)

Transmission

Constraint
100% 10% 5% 1% 100% 10% 5% 1%

FAR(%) 10.8 12.4 12.7 16.5 13.1 16.8 20.4 23.3

p δ ADD ADD

1

0.1 118 119 127 157 144 143 154 197

0.25 24 25 27 33 28 29 31 38

0.5 7 8 9 11 8 9 10 12

1 3 3 3 4 3 3 3 4

0.5

0.1 213 204 210 242 259 244 251 301

0.25 43 43 43 50 49 47 48 55

0.5 13 13 13 15 14 14 15 16

1 4 4 4 5 4 5 5 5

0.1

0.1 741 655 618 608 994 841 805 808

0.25 152 138 129 122 160 145 137 129

0.5 43 41 38 35 44 40 38 36

1 12 12 11 10 12 12 11 10

0.01

0.1 2295 2199 2151 2006
3194

(20.2%)

2925

(17.1%)

2818

(17.2%)

2867

(12.3%)

0.25 420 416 413 405 501 487 485 469

0.5 110 110 110 110 114 114 113 112

1 29 29 29 29 29 29 29 29

Table 4.3: Results on the homogeneous Gaussian data are averaged over 1000 replica-
tions. The smallest ADD in each scenario is given in bold. The percentage within the
bracket represents the proportion of missed alarms.

CHAPTER 4. MIXFOCUS 85

Scenarios pre-change known(S1) pre-change unknown(S2)
Transmission
Constraint

100% 10% 5% 1% 100% 10% 5% 1%

FAR(%) 12 13.1 14.7 19.6 12.6 17.8 16.9 27
p δ ADD ADD

1

0.1 125 126 132 157 154 154 167 204
0.25 26 27 28 34 30 31 33 40
0.5 8 9 9 11 9 10 11 12
1 3 3 4 4 3 4 4 5

0.5

0.1 218 210 215 246 278 261 275 310
0.25 46 45 46 51 53 51 53 59
0.5 14 14 14 16 16 16 16 18
1 5 5 5 6 5 5 6 6

0.1

0.05 763 677 637 622 1070 900 889 856
0.25 164 150 140 130 179 161 154 145
0.5 47 44 41 38 48 45 43 40
1 14 14 13 12 14 14 13 12

0.01

0.1 2330 2231 2135 1985
3255

(16.9%)
2900

(14.2%)
2905

(16.9%)
2769
(8.9%)

0.25 421 417 415 405 497 489 486 466
0.5 109 108 108 107 112 112 112 110
1 29 29 29 28 29 29 29 29

Table 4.4: Average detection delay on mixed-type data against the levels of sparsity and
the strengths of the signal. Results are averaged over 1000 replications. The smallest
ADD in each scenario is given in bold. The percentage within the bracket represents
the proportion of missed alarms.

CHAPTER 4. MIXFOCUS 86

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(a) δ = 0.25, p = 0.01 pre-change known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(b) δ = 0.25, p = 0.01 pre-change un-
known

Figure 4.4: The proportions of experiments where a change was detected by time step
t − τ . Data are generated with pber = 0.4, λpois = 5, λexp = 1

3
, β = 2, n = 10000 and

τ = 3000. Results are obtained over 1000 repetitions. In cases where the pre-change
distribution is known, data streams are normalized based on their theoretical mean and
variance of the true distribution. When the pre-change distribution is unknown, the
mean and variance are estimated from the training dataset.

4.4.2 Assessing detection power with true distribution versus

Gaussian approximation

As previously mentioned in Section 1, existing methods typically assume that the data

follows Gaussian distribution, which may not be realistic in the real world. One possible

(näıve) solution of addressing this might be to approximate data using a Gaussian

distribution. We next explore if our proposed method, which uses the true distributions,

significantly improves detection power compared with this approximation approach. As

we shall see, in dense cases both methods show similar detection delays, but mixFOCuS

has fewer false alarms (see Appendix B.3). The improvement is more noticeable in

sparse cases (Figure 4.4). When the pre-change distribution is known, both approaches

may have similar false alarm rates, but the Gaussian-approximation approach leads to

longer detection delays. In cases with unknown pre-change parameters, our proposed

method can result in lower false alarms and smaller detection delays, while the Gaussian

approximation approach can fail to detect the change.

CHAPTER 4. MIXFOCUS 87

4.4.3 Comparing with the current state of the art

We next turn to compare our proposed method, mixFOCuS, with two recently proposed

communication efficient changepoint algorithms: disCUSUM (Liu et al., 2019) and

disMOSUM (Yang et al., 2024). Within the simulations we consider Gaussian data

with parameters n = 10000, d = 100, τ = 3000, δ = 0.25. Both competitor approaches,

disCUSUM and disMOSUM, are similar in spirit to mixFOCuS, but they run CUSUM

(with the recursive register approach of Lorden and Pollak (2008) to approximate the

post-change mean) or MOSUM on each data stream. For each data stream, both

methods are assumed to follow a Gaussian assumption. In the centre, both methods

only monitor the sum of test statistics.

To compare fairly, thresholds in each method are chosen to achieve similar average

run length γ = 10070 based on Monte Carlo simulation. The detailed tuning procedure

is explained in the Appendix B.4. In the pre-change unknown case, disCUSUM and

disMOSUM will use the first m observations to estimate the mean and variance. To

keep the result simple, we only consider the case when the transmission constraint is

1%. Under the alternative, the stopping time for each replication is recorded and we

will measure the distribution of the detection delay (τ̂ − τ). A negative detection delay

indicates a false alarm, while a positive detection delay shows a delay in raising the

alarm. In general, a method with smaller false alarms and lower detection delay will

be preferred. For simplicity, we only show the case when the transmission constraint is

1%.

Figure 4.5 illustrates that mixFOCuS exhibits robustness across various scenarios

and consistently demonstrates good performance. In dense cases, disMOSUM and dis-

CUSUM may have similar detection delay as mixFOCuS when an appropriate window

size or possible changes ρ is chosen, but they have high false alarms. Notably, mixFO-

CuS outperforms the other methods, particularly in sparse change scenarios or when

the pre-change mean is unknown. It is worth noting that disCUSUM can lose power to

CHAPTER 4. MIXFOCUS 88

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(a) p = 1, θ known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(b) p = 0.1,θ known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(c) p = 0.01,θ known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(d) m = 500, p = 1, θ unknown

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(e) m = 500, p = 0.1, θ un-
known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(f) m = 500, p = 0.01, θ un-
known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(g) m = 100, p = 1, θ unknown

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(h) m = 100, p = 0.1, θ un-
known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
disMOSUM
disCUSUM − rho = 0.1
disCUSUM − rho = 0.5
disCUSUM − rho = 1

(i) m = 100, p = 0.01, θ un-
known

Figure 4.5: The x−axis represents the detection delay (τ̂−τ), and the y−axis represents
the cumulative percentage across 1000 repetitions. The grey line represents a detection
delay of 0, with lines to the left indicating false alarm rates. A faster convergence of
the lines to the right of the grey line towards 1, indicates a quicker detection.

CHAPTER 4. MIXFOCUS 89

detect changes in the pre-change unknown case when ρ is misspecified. This is because

ρ estimates the possible change. A larger estimator or smaller estimator can lead to an

underestimated global threshold under the null, resulting in more false alarms under

the alternative.

4.4.4 Detection power of mix-FOCuS on time series data

We now investigate the detection capability of mix-FOCuS when the data streams are

auto-correlated. There are two general approaches for applying mix-FOCuS in such a

setting. The first is to inflate the thresholds, or equivalently normalise the test statistics,

to take account of the the auto-correlation. The alternative is to pre-process the data

to remove the auto-correlation.

We will take the second approach, and consider an AR(1) noise process, defined as

follows:

Xi,t = δi1[t>τ] + ϵi,t,

where δi is the change size for ith data, ϵi,t is the noise term modelled as an AR(1)

process:

ϵi,t = ϕϵi,t−1 + vt,

with ϕ (|ϕ| < 1) being the autoregressive coefficient that determines the strength of the

temporal correlation, and vt ∼ N(0, 1) representing a Gaussian white noise process. If

we consider data X̃i,t = Xi,t − ϕXi,t1 , then

X̃i,t =


vt if t ≤ τ ,

δi + vt if t = τ + 1,

(1− ϕ)δivt if t > τ + 1

,

where the noise vt is uncorrelated. We can see that using mixFOCuS is this transformed

data is an approximation as the post-change mean is different at t = τ + 1 than at

CHAPTER 4. MIXFOCUS 90

t > τ + 1, where as mixFOCuS assumes a constant post-change parameter. Also, we

see the affect that the level of autocorrelation, as determined by ϕ, will have on the

evidence for a change – to maintain roughtly similar power we would require δi to

increase as ϕ gets closer to 1 so that δi(1− ϕ) remains constant.

Figure 4.6 measures the performance of mixFOCuS while maintaining an average

run length γ = 10000, with the change occurring at 3000, transmission constraints set

at 1%. We compare across different values of ϕ, and we set a change magnitude of

δ = 0.25
1−ϕ

, so there is similar evidence for a change across different scenarios. We con-

sider two cases: (i) the pre-change parameter and the autocorrelation coefficient are

assumed to be known; and (ii) these are unknown with the autocorrelation coefficient

estimated from m training data. The results are shown in Figure 4.6. When the au-

tocorrelation coefficient is known, detection power remains comparable across all levels

of autocorrelation. However, in the unknown case, bias in the estimated autocorre-

lation coefficient leads to an increased false alarm rate, and this is more pronounced

as ϕ increases. Therefore, in practice, having a large training dataset for accurate

autocorrelation estimation is crucial for maintaining detection power.

4.5 Skoltech anomaly benchmark

The Skoltech anomaly benchmark (Katser and Kozitsin, 2020) is designed to evaluate

outlier detection and changepoint detection algorithms. This dataset includes mea-

surements of two vibration accelerations, electric motor current, water pump pressure,

engine temperature, fluid thermocouple readings, electric motor voltage, and fluid cir-

culation rate. We present results for the first dataset from the valve2 file, which

captures an experiment where there is an anomalous region that relates to the closure

of a pump valve. From this we extract two segments of data that contain a change:

one corresponding to the start and one to the end of the anomalous region. Data from

CHAPTER 4. MIXFOCUS 91

−3000 −2000 −1000 0 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

φ

0
0.25
0.5
0.75

(a) p = 1, (ϕ, θ) known

0.0

0.2

0.4

0.6

0.8

1.0

φ known

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

−3000 −1500 0 1500

φ unknown

−3000 −1500 0 1500

φ

0
0.25
0.5
0.75

Estimated Detection Delay

(b) m = 500, p = 1, θ unknown

−3000 −2000 −1000 0 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

φ

0
0.25
0.5
0.75

(c) p = 0.1,(ϕ, θ) known

0.0

0.2

0.4

0.6

0.8

1.0

φ known

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

−3000 −1500 0 1500

φ unknown

−3000 −1500 0 1500

φ

0
0.25
0.5
0.75

Estimated Detection Delay

(d) m = 500, p = 0.1, θ unknown

−3000 −2000 −1000 0 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

φ

0
0.25
0.5
0.75

(e) p = 0.01,(ϕ, θ) known

0.0

0.2

0.4

0.6

0.8

1.0

φ known

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

−3000 −1500 0 1500

φ unknown

−3000 −1500 0 1500

φ

0
0.25
0.5
0.75

Estimated Detection Delay

(f) m = 500, p = 0.01, θ unknown

Figure 4.6: The x−axis represents the detection delay (τ̂−τ), and the y−axis represents
the cumulative percentage across 1000 repetitions. The grey line represents a detection
delay of 0, with lines to the left indicating false alarm rates. A faster convergence of
the lines to the right of the grey line towards 1, indicates a quicker detection.

these two segments for the eight sensors are shown in Figure 4.7.

Before applying mixFOCuS we preprocess the data. Pump pressure and electric

CHAPTER 4. MIXFOCUS 92

motor voltage have values concentrated around three distinct states, we categorize them

into three groups: low, middle, and high. For both series we then create three series of

binary indicators, indicating whether, or not, the series is in each of the three groups

respectively. We standardize the remaining continuous variables, take differences to

reduce the impact of the autocorrelation and model them as Gaussian. To account for

any remaining auto-correlation we inflate the local penalties for each series based on an

estimate of the autocorrelation, as suggested in Fisch et al. (2022b). Finally, the global

thresholds are selected to ensure that the average run length exceeds the monitoring

time of the test dataset.

We train the model on the initial 300 data points from the normal segment to estab-

lish a baseline before the onset of anomalies. Upon detecting a change, we retrain the

model on the 100 data points from the anomalous segment to learn the new behaviour

and monitor the end of this anomalous segment. Figure 4.7 shows the detection pro-

cedure of the algorithm. At the start of the anomalous segment, the signal is strongly

reflected on Sensor 1 (vibration acceleration sensor). Algorithms with 100% and 5%

transmission alarm simultaneously at the true change time. At the end of the change,

the flow rate returns to a high level, while the pressure remains stable. Models with

100% and 5% transmission experience a delay of 4 and 6 time steps (4 and 6 seconds).

Overall, both approaches achieve the similar detection performance; however, the latter

significantly reduces transmission costs.

4.6 Conclusions

In this article we have proposed a flexible, computational-feasible and communication-

efficient online changepoint detection method that can be used to detect changes in a

distributed system for data from the exponential family. In practice, data may show

cross-correlation, which violates the independent assumptions. Future research could

CHAPTER 4. MIXFOCUS 93

Index

S
1

Index

S
2

Index

S
3

Index

S
4

Index

S
5

Index

S
6

Index

S
7

Index

S
8

10
40

70

S
U

M

0
20M
A

X

0
20

S
U

M

0
20

M
A

X

Index

S
1

Index

S
2

Index

S
3

Index

S
4

Index

S
5

Index

S
6

Index

S
7

Index

S
8

0
15

30

S
U

M

0
5

15

M
A

X

0
15

S
U

M

0
5

15

M
A

X

Figure 4.7: Detection results for identifying the start (left) and the end (right) of the
change under 100% and 5% transmission constraints are presented. Black dots indicate
the time points when the sensor transmits test statistics for 5% transmission model.
The monitored global test statistics are displayed in the 9th and 10th rows for the 100%
transmission model and in the 11th and 12th rows for the 5% transmission model. The
true change time is represented by the light red line, while the dark red line in the
bottom four rows indicates the detected change time identified by mixFOCuS with the
two levels of transmission.

explore the consequences of such violations and potentially consider relaxing the as-

sumptions.

Chapter 5

Bagel: A Fast Bayesian Online

Changepoint Detection Algorithm

for Linear Models

5.1 Introduction

Detecting changes in real time is a common problem. This has been well studied in

the frequentist world, see for example (Page, 1954, 1955; Aue et al., 2012; Kirch and

Weber, 2018; Romano et al., 2023b; Ward et al., 2023, 2024; Yu et al., 2020). Whilst

these approaches often work well, they do not quantify uncertainty or allow the inclusion

of prior information about the type of change. To provide extra information about the

change, it is intuitive to consider a Bayesian framework as it can incorporate prior

knowledge and produces the posterior distribution which quantifies the uncertainty of

the change.

Most Bayesian approaches to the changepoint detection problem consider the offline

setting, where we have the whole data and have to infer the location of changepoints

or the joint distribution of the number of changepoints and their locations. Existing

94

CHAPTER 5. BAGEL 95

approaches are either based on the Markov Chain Monte Carlo (Stephens, 1994; Green,

1995; Chib, 1998; Benson and Friel, 2018), or based on the direction simulation (Barry

and Hartigan, 1993; Fearnhead, 2006; Fearnhead and Liu, 2011). These approaches

have been used for modelling disease outbreak (Verma et al., 2020), financial volatility

(Ross, 2013; Thies and Molnár, 2018), environmental data (Kim and Cheon, 2010)

amongst many other applications.

There has also been work on online formulations in models that allow multiple

changes. In this case, under the assumption that the parameters specifying the model

for data in one segment do not depend on the parameters for other segments, there

are efficient algorithms for exactly calculating the posterior. These have a computa-

tional cost that increases linearly with time – so processing the observation at time T

has an O(T) cost. This cost can be reduced to O(1) by introducing an appropriate

approximation (Fearnhead and Liu, 2007).

In this paper, we consider the case of online detection of a single changepoint. We

derive efficient algorithms for calculating the posterior distribution in this case under

a wider range of models than previous works – for example, including the problem of

detecting a change in slope, when the post-change parameters of the model depend on

the pre-change parameters. Our general framework encompasses any model that can

be written as a change in regression: which allows for detecting changes in mean, slope,

slope with seasonality, or splines amongst many others.

The exact algorithm we have has a linear-increasing cost, which makes it unsuitable

for long-term or real-time monitoring. To reduce the time complexity, existing ap-

proaches include pruning the least probable changepoints (Adams and MacKay, 2007)

or using resampling to prune the set of potential changepoints that are being consid-

ered (Fearnhead and Liu, 2007). Instead, we proposed approximations based on the

merging idea of Shamp et al. (2021) to reduce the cost per-iteration to constant. Our

merging procedure takes account of the difference in the conditional distribution of the

CHAPTER 5. BAGEL 96

parameters given the change location into account, and is amenable to the wider range

of changepoint models we consider.

The outline of the paper is as follows. In Section 2 we define the Bayesian real-

time changepoint detection problem and introduce our proposed algorithm with two

examples. Section 3 and Section 4 show the performance of our algorithm on simulated

data and a real dataset. More examples, and all proofs, can be found in the Appendix.

Throughout this paper, all vectors are assumed to be column vectors unless explicitly

stated otherwise. We denote by 1 : t the column vector (1, · · · , t)⊤, 11:t and 01:t are

column vectors of length t of ones and zeros respectively, and y1:t represents the column

vector (y1, · · · , yt)⊤. The probability density function (pdf) of the normal distribution

with mean µ and variance σ2 is denoted by N(x;µ, σ2), the pdf of the Student-t dis-

tribution with ν degrees of freedom, location l, and scale e is denoted by tν(x; l, e),

and the pdf of the Inverse-Gamma distribution with shape ν and scale ι is denoted by

IG(x; ν, ι). For a matrix A, we use Ai:j×k:l to denote the sub-matrix formed by rows i

to j and columns k to l.

5.2 Univariate real-time Bayesian changepoint de-

tection

5.2.1 The changepoint problem

The model

Assume an independent data stream y1, y2, . . . , yt is observed in real-time, we wish to

detect the presence, or not, of a changepoint at each time step. More precisely, at a given

time t, we wish to detect whether there has been a change prior to t under an appropriate

model for the data. We will consider a class of linear models that encompasses the

standard change-in-mean and change-in-slope problem, as well as more complex models

CHAPTER 5. BAGEL 97

that allow for incorporating seasonality or autocorrelation as in Robbins et al. (2016).

Let τ be the unknown time of the changepoint, where τ = ∞ denotes no change.

The observed data yt at any time t is modeled as:

yt = a⊤t β + b⊤t,τγ + σϵt.

Here at and bt,τ are known d1 and d2 dimensional vectors, while β and γ are unknown

d1 and d2 dimensional parameters. The term a⊤t β gives the mean of the model if there

has been no change prior to time t, while b⊤t,τγ specifies the change in this mean due

to a changepoint. To be consistent with this we have b⊤t,τ = 01:d2 if τ ≥ t. Finally, ϵt,

is the realisation of a standard Gaussian random variable, and σ > 0 is the standard

deviation of the noise in the model.

Consequently, at any time t, the model for the data up to time t, y1:t, can be written

as:

y1:t = A1:tβ +B1:t,τγ + σϵ1:t,

where ϵ1:t is a column vector of i.i.d Gaussian N(0, 1) realisations, and the tth rows

of matrices A1:t and B1:t,τ are a⊤t and b⊤t,τ respectively. If τ ≥ t then B1:t,τ is the

zero matrix. Since τ is unknown, at each time t we consider t potential models: one

corresponding to no change and others where change occurs at τ = 1, 2, ..., t − 1. Our

task is to determine whether there is significant evidence supporting the presence of a

change and to infer the posterior distribution of the location of any change.

The prior for the model parameters

The likelihood of the observation depends on the parameters (β, γ), if the variance of

the observations is known, or (β, γ, σ) otherwise. We take a Bayesian approach and

assume a prior for these parameters. Furthermore, to enable efficient calculation of the

posterior for the presence and location of a changepoint we will use conjugate priors.

CHAPTER 5. BAGEL 98

For our model, the conjugate priors are Gaussian for (β, γ) conditional on σ, with,

if it is unknown, an independent inverse gamma prior for σ. We will have fixed priors

for β (and if unknown, σ), but we will allow the conditional prior for γ to potentially

depend on both τ and β. Specifically, the joint prior for (β, γ) given σ and τ is

β, γ|σ2, τ ∼ N(µτ , σ2Στ)

where mean µτ ∈ Rd1+d2 and scaled covariance matrix Στ ∈ R(d1+d2)×(d1+d2). If σ is

unknown, the prior is given by:

σ2 ∼ IG(ν, ι).

The constraint on the having a fixed prior for β given σ means that µτ
1:d1

and Στ
1:d1×1:d1

,

that is the marginal prior mean and variance of β, are constant as we vary τ .

While it is often possible to use improper priors for β and σ - the conditional prior

for γ must be proper in order to have a well-defined posterior probability for whether

there is a changepoint prior to any given time t. The choice of the prior for γ will affect

the power of detecting different sizes and types of change.

Here we give two examples to illustrate our model framework:

Example 1. Change-in-mean model.

We first consider the change-in-mean model where d1 = d2 = 1. The model can be

written as :

A1:t = 11:t, B1:t,τ =

 01:τ

1τ+1:t

 .
Here β is the mean before the change, γ represents the shift in the mean after the

changepoint. There are two natural choices for the prior distribution in this setting:

one where the pre-change mean and the change in mean are independent, and another

where the pre-change and post-change means are independent.

CHAPTER 5. BAGEL 99

For the former case we have µ =

 µ1

0

 and Σ =

 δ1 0

0 δ2

. For the latter case

we have the same prior mean, but the covariance structure changes to

Σ =

 δ1 −δ1

−δ1 2δ1

 .
See Appendix C.1 for the derivation. This framework can also be extended to the

unknown variance case by incorporating an inverse Gamma prior to the variance.

Example 2. Change-in-slope models.

Next, we consider the change-in-slope with a known variance case where d1 = d2 = 2.

The model can be written as:

A1:t = [11:t 1 : t], B1:t,τ =

 01:τ 01:τ

1(τ+1):t (τ + 1) : t


Here β defines the linear trend before the change, and γ specifies the shift in the

intercept or slope at the changepoint.

There are two natural types of change we can allow in this model, depending on

whether or not we require continuity of the trend line at the changepoint, as illustrated

in Figure 5.1. If we wish to detect a continuous chance, also known as a change-in-slope

(Fearnhead et al., 2019), then a natural model is that the change-in-slope, γ2, has mean

0 and is independent of the pre-change trend. The distribution of γ1 conditional on

γ2 is then deterministic due to the continuity constraint. This constraint implies for a

change at τ that the trend is continuous at τ : γ1+ τγ2 = 0. This gives a prior for (β, γ)

CHAPTER 5. BAGEL 100

that has mean and covariance defined by the parameters:

µτ = (µ1, µ2, 0, 0)
⊤, and Στ =



δ1 0 0 0

0 δ2 0 0

0 0 τ 2δ3 −τδ3

0 0 −τδ3 δ3


.

For a discontinuous change there are two natural models for the type of change. One

is that the change in the intercept and the slope are both mean 0 and independent of

the pre-change model, in which case µτ =



µ1

µ2

0

0


and

Σ =



δ1 0 0 0

0 δ2 0 0

0 0 δ3
1
2τ
(δ1 − δ3 − τ 2δ4)

0 0 1
2τ
(δ1 − δ3 − τ 2δ4) δ4


.

The other would be to assume that the distribution of the trend line starting at time

0 is independent of and has the same distribution of the trend line starting at time τ .

This requires the value of the mean function at τ , β1 + γ1 + τ(β2 + γ2) has the same

distribution as β1, and the new slope (β2 + γ2) has the same distribution as β2. This

implies a prior with

µτ = (µ1, µ2,−µ2τ, 0)
⊤, and Στ =



δ1 0 −δ1 0

0 δ2 0 −δ2

−δ1 0 2δ1 + τ 2δ2 −τδ2

0 −δ2 −τδ2 2δ2


.

CHAPTER 5. BAGEL 101

Figure 5.1: An example of continuous change (left) and discontinuous change (right) in
linear trend model.

For fuller details see Appendix C.1. Again, this framework can also be extended to the

unknown variance case by incorporating an inverse Gamma prior to the variance.

Prior for the changepoint

In order to calculate the posterior distribution of τ at any time t we will need a prior

distribution. Denote the prior probabilities by Prt(τ = i), for i = 1, . . . , t − 1 and

Prt(τ ≥ t). The latter probability will encompass the event that a change has not

occurred by time t.

One approach to defining the prior at time t is to construct a prior for τ taking

values in 1, . . . and τ = ∞ (i.e. no change), and then define Prt(τ) to be consistent

with this. However, this is not necessarily appropriate in an online setting where we are

monitoring a data stream and will intervene if we detect a change. In this case, there

is information in the fact that we are still monitoring the data stream at time t that

should affect our prior for τ . Intuitively, this information would mean that it is less

likely for τ to take smaller values, for which there would be more power for detecting a

change by t.

Thus we suggest the following approach. First let us define the Bayes factor for a

change at τ = i against no change τ > t as

BFt(i) =
p(y1:t|τ = i)

p(y1:t|τ ≥ t)
,

CHAPTER 5. BAGEL 102

where

p(y1:t|τ) =
∫ ∫

p(y1:t|τ, β, γ, σ)p(β, γ|τ, σ)dβdγ,

in the case where σ is known, and where we would further integrate out with respect to

the prior for σ if it were unknown. The Bayes factor for a change prior to t is obtained

by averaging these Bayes factors with respect to the conditional prior for τ assuming a

change by time t,

BFt =
t−1∑
i=1

BFt(i) Pr
t
(τ = i|τ < t).

So the posterior probability of a change before time t is

pt(τ < t|y1:t) =
(1− Prt(τ ≥ t)BFt

Prt(τ ≥ t) + (1− Prt(τ ≥ t))BFt

.

If we use a monitoring scheme which detects a change if pt(τ < t|y1:t) ≥ ct for some

constant ct, this will be equivalent to detecting a change based on the Bayes Factor

being greater than a constant, i.e.

BFt ≥
ct Prt(τ ≥ t)

(1− ct)(1− Prt(τ ≥ t))
.

In the absence of specific prior information, it would be natural to detect a change

based on the Bayes Factor being above a threshold that is constant over time. This

is easiest to implement with ct and Prt(τ ≥ t) both being constant. Furthermore, if

we take these to be constant, and tune the threshold for detecting a change based on

properties of the test under data where there is no change, then this would make our

test invariant to the choice of prior probability Prt(τ ≥ t): as choosing a different prior

probability would lead to tuning a different threshold such that we were implementing

exactly the same test. We take this approach in our simulation study.

The test does depend on our prior for τ conditional on τ < t. It is natural to define

CHAPTER 5. BAGEL 103

this prior as

Pr
t
(τ = t− k|τ < t) ∝ pk, for k = 1, . . . , t− 1.

This is a (truncated geometric) prior for the time since the change. This prior is

time dependent, and is updated sequentially as new observations arrive, ensuring that

Prt(τ < t) remains constant while the probabilities of having a change at each location

are adjusted. A specific case, which we use in our simulations, is when p = 1 and we

have a uniform distribution for this conditional distribution of the change location. In

this case the Bayes Factor is similar to the Shiryaev-Roberts test statistics which is

known to have good properties (Polunchenko and Tartakovsky, 2010).

5.2.2 Sequential Updating

Recall that we wish to calculate the posterior probability of a change, its location and

the parameters of the model at each time t. To do this in a computationally efficient

way, we need to update these posterior probabilities and distributions sequentially from

time t− 1 to time t given yt.

The posterior probability for τ at time t satisfies

Pr
t
(τ |y1:t) ∝ Pr

t
(τ)p(y1:t|τ).

We will derive a recursion for the right-hand side, and define a set of weights wi,t =

Prt(τ = i)p(y1:t|τ = i), for i = 1, . . . , t−1. To simplify notation we have w0,t = Prt(τ ≥

t)p(y1:t|τ ≥ t). The following result gives the update for these weights in terms of the

predictive density for yt given y1:t−1.

CHAPTER 5. BAGEL 104

Theorem 5.2.1. For t > 1,

wi,t = wi,t−1
Prt(τ = i)

Prt−1(τ = i)
p(yt|y1:t−1, τ = i) for i = 1, . . . , t− 2, and t > 2

w0,t = w0,t−1p(yt|y1:t−1, τ ≥ t), and

wt−1,t = w0,t−1
Prt(τ = t− 1)

Prt−1(τ ≥ t− 1)
p(yt|y1:t−1, τ = t− 1).

With the weights initialised at t = 1 by

w0,t = Prt(τ ≥ t)p(y1:t|τ ≥ t).

Proof. See Appendix C.2.

We can implement these recursions by recursively calculating the posterior of the

model parameters, and hence the predictive distribution, for each possible value of τ .

The following result gives updates for the posterior for the parameters in the case σ is

unknown, but these can be applied in the case σ is known by ignoring the update for

the posterior of σ.

As the prior for the post-change parameter can depend on the time of change, in the

case of no changepoint we will update only the marginal posterior for β. To introduce

notation, at time t− 1 let the posterior for β and σ given there is no change be

p(β|y1:t−1, σ, τ ≥ t−1) ∼ N
(
µt−1,0, σ2Σt−1,0

)
, and p(σ2|τ ≥ t−1) ∼ IG(νt−1,0, ιt−1,0),

where µt−1,0 is a d1 dimensional vector and Σt−1,0 is a d1 × d1 matrix. Similarly, we

denote the posterior given a change at i = 1, . . . , t− 2 as

p(β, γ|y1:t−1, σ, τ = i) ∼ N
(
µt−1,i, σ2Σt−1,i

)
, and p(σ2|τ = i) ∼ IG(νt−1,i, ιt−1,i),

where now µt−1,i is a d1 + d2 dimensional vector and Σt−1,i is a (d1 + d2) × (d1 + d2)

CHAPTER 5. BAGEL 105

matrix. Finally, we will need the posterior distribution for (β, γ) and σ assuming a

change at time t− 1. Using the same notation as above, this can be obtained from the

posterior for β and σ given no change prior to t− 1.

Theorem 5.2.2. Let the prior mean for a change at t− 1 be µt−1 = [µ⊤
β , µ

⊤
γ]

⊤, and the

prior covariance be

σ2Σt−1 = σ2

Σβ,β Σβ,γ

Σγ,β Σγ,γ

 ,
so that µβ denotes the prior mean of β, Σβ,β the prior variance of β, Σβ,γ the prior

covariance between β and γ, and so on. Then the distribution of (β, γ, σ) given y1:t−1

and a change at τ = t− 1 has parameters

µt−1,t−1 =

 µt−1,0

µγ + Σγ,βΣ
−1
β,β(µ

t−1,0 − µβ)

 ,

Σt−1,t−1 =

 Σt−1,0 Σγ,βΣ
−1
β,βΣ

t−1,0

Σt−1,0Σ−1
β,βΣβ,γ Σγ,γ + Σγ,βΣ

−1
β,β(Σ

t−1,0 − Σβ,β)Σ
−1
β,βΣβ,γ


with νt−1,t−1 = νt−1,0 and ιt−1,t−1 = ιt−1,0.

Proof. See Appendix C.2.

We can update these parameters as follows.

Theorem 5.2.3. Fix iteration t− 1, define hi as the following feature vector:

hi =


[a⊤t−1, b

⊤
t−1,i]

⊤ 0 < i ≤ t− 2,

at−1 i = 0,

For i = 0, 1, . . . , t − 2, define ei = yt−1 − hiµt−1,i,Q = h⊤i Σ
t−1,ihi + 1, A = Σt−1,ihi/Q,

CHAPTER 5. BAGEL 106

The parameter updates for existing changepoint models after observing yt−1 follow:

Σt,i = Σt−1,i − A⊤AQ, µt,i = µt−1,i + Ae,

νt,i = νt−1,i +
1

2
, ιt,i = ιt−1,i +

1

2
e2i /Q.

Finally, given the posterior for the parameters at time t− 1, which is also the prior

for the models at time t, we have the following calculations for the predictive density.

Theorem 5.2.4. Using the same notation for the parameters of the posteriors as in

Theorem 5.2.3, the predictive density can be calculated as

P (yt|y1:t−1, τ = i) = N
(
yt;hiµ

t,i, σ2(1 + h⊤i Σ
t,ihi)

)
if σ is known, and

P (yt|y1:t−1, τ = i) = t2νt,i

(
yt;hiµ

t,i,
ιt,i

νt,i
(
1 + h⊤i Σ

t,ihi
))

if σ is unknown, where tν(yt; l, e) is the location-scale t distribution with ν degrees of

freedom, location l and scale parameter e.

In practice, we can sometimes simplify the updates by considering a suitable reparametri-

sation of the model to (β, θ) for some θ that is a linear function of β and γ. This can

simplify the application of Theorem 5.2.2 if the prior for θ is independence of β – for

example if we choose θ = γ + β in the chance-in-mean example with the independent

mean prior. Moreover, if we choose a reparametrisation such that observations after the

change depend on θ but not β, then we can simplify the updates for the changepoint

cases by only updating the distribution of θ. Examples of such linear transformations

are provided in Appendix C.1.

CHAPTER 5. BAGEL 107

5.2.3 Reducing the computational complexity by merging

Implementing the univariate Bayesian changepoint detection methods gives a cost per

iteration that increases with iteration t, so that the overall cost of analysing T data

points is quadratic in T . To prevent this, we need to approximate the posterior dis-

tribution with fewer support points. A common and straightforward approach is to

prune out the changepoint candidate with the posterior probability less than ϵ or the

most M probable candidates (Adams and MacKay, 2007; Saatçi et al., 2010), then

the computational complexity can be reduced to O(T
ϵ
) or O(TM). However, such a

method does not always work well. First, they reduce the support of the posterior

for the change, which can be important if we wish to calculate credible intervals. If

different changepoint values have substantially different posteriors for the post-change

model then their relative probabilities can change substantially as we observe new data,

as shown in Figure 5.2.

0 500 1500 2500

−
4

−
2

0
2

4

time step

ob
se

rv
at

io
ns

(a) Simulated data

0e
+

00
2e

−
04

4e
−

04

changepoint candidates

po
st

er
io

r
pr

ob
ab

ili
ty

1 500 1000 1500

(b) At step 1600

0.
00

0
0.

00
4

0.
00

8

changepoint candidates

po
st

er
io

r
pr

ob
ab

ili
ty

1 500 1000 1500 2000

(c) At step 2000

Figure 5.2: Figure (a) presents the simulated data with a change at 1500. Figures
(b) and (c) show the posterior distribution obtained from the exact approach without
pruning (gray line). The black dots represent the candidates not pruned by the bench-
mark approach with M = 50 at time steps 1600 and 2000, respectively. The red star
indicates a candidate that was pruned at step 1600, but subsequently has the highest
posterior probability after collecting more data.

CHAPTER 5. BAGEL 108

Merging criteria

To overcome these issues, we first use the idea of merging the posterior distribution for

the parameters for different change locations as a way to reduce the computational cost

whilst keeping the full support of the posterior. Second, we take account of the similarity

of the posterior distributions of the parameters when deciding which distributions to

merge. This is similar to the approach in Shamp et al. (2021). We will look at the

similarity of the posteriors in terms of the parameters, or the function of parameters,

that affect the distribution of the data after the change. Denote such parameters as

θ = g(β, γ), where g(·) is a linear transformation that maps the pre-change parameters

(β, γ) to the post-change parameters θ as Examples in Appendix C.1.

To explain our approach, it is simplest to first consider what happens when we first

merge posteriors. Fix the time, t, when this happens, and denote the posterior density

function for the post-change parameter as fi(θ) when change occurs at i. We have t−1

possible values for the location of a change, assuming a change has occurred, and these

will have weight and posterior distribution denoted by the pair {wi,t, fi(θ)}, 1 ≤ i ≤ t−1.

Our merge procedure will replace fi(θ) with fi+1(θ) for some appropriately chosen

i. We will choose i ∈ {1, . . . , t − 2} to be the value for which the total variation

distance between the posterior for θ and the resulting approximation is minimised. Let

TV (h1(θ), h2(θ)) = 1
2

∫
|h1(θ) − h2(θ)|dθ be the total variation distance between two

densities, h1(θ) and h2(θ). Then if the true posterior is h1(θ) =
∑t−1

i=1 wi,tfi(θ), then the

approximation after we replace fi(θ) with fi+1(θ) is h2(θ) = h1(θ)−wi,t(fi(θ)−fi+1(θ)),

and

TV (h1(θ), h2(θ)) =
1

2

∫
|h1(θ)− (h1(θ)− wi,t(fi(θ)− fi+1(θ)))| dθ

=
1

2

∫
|wi,t(fi(θ)− fi+1(θ))| dθ

= wi,tTV (fi(θ), fi+1(θ)).

CHAPTER 5. BAGEL 109

Thus we will choose to merge component i which minimises

wi,tTV (fi(θ), fi+1(θ)). (5.1)

This will maintain the same support for the changepoint locations, but will reduce

the computational cost. At any time, if we have M distinct posterior densities for θ,

then we only need to update these posteriors when we get a new observation. To update

the weights associated with a given posterior, we store these as the sum of the weights

for that posterior and the relative weight for each change location. The latter will not

change, so we only need to update the former weight.

So at any iteration t, after applying merging, we will have consecutive runs of

changepoint locations that will have the same posterior for θ. At the current iteration,

denote the largest value of such runs by an ordered set T = {j1, j2, . . . , jM}. Let wi,t

for i = 0, . . . ,M denote the set of weights such that for i ∈ {1, . . . ,M}, wi,t is the sum

of the weights associated with change locations {ji−1 + 1, . . . , ji}, with j0 = 0. Also

we store a set of M ratio vectors R = {r(1), . . . , r(M)} which denote the proportion of

the weight wi associated with each changepoint location in the run from ji−1 + 1 to ji.

That the vector of weights associated with these candidate locations will be wir
(i), or

equivalently the vector of posterior probabilities for change locations would be

(w0, w1r
(1), . . . , wMr

(M)),

with, after normalisation, the first component being the probability of no change, and

the remaining components being the probability of a change at 1, . . . , t = 1.

The idea is that we can update this representation by just updating the weights, and

the parameters associated with each distinct posterior – which has a computational cost

proportional to M . At each iteration we will also add a new candidate location for a

change, and to keep the number of distinct posteriors asM we will need to merge a pair

CHAPTER 5. BAGEL 110

of distinct posteriors for θ if t > M . As before let fi(θ) denote the posterior associated

with the ith run of changepoint locations. Using the same criteria on minimising the

approximation based on the Total Variation distance, we will replace fi(θ) with fi+1(θ)

for the value i ≥ 1 which minimises wiTV (fi(θ), fi+1(θ). Algorithm 9 describes one

iteration of the algorithm. Storing the relative ratios allows us to recover the pointwise

mass distribution, but this leads to a linear increase in storage cost over time. If the

exact posterior distribution is not required, this can be ignored, resulting in constant

computational and storage costs.

Algorithm 9: one iteration of Bagel

1 Input: existing candidates set T = {0, i1, . . . , iN}, set of ratio vectors {r(1), . . . , r(N)}∗,
weights {wi,t−1} and parameters for the posterior distributions Θi for i ∈ {0, . . . , N}.

Data: Observe yt at time t

2 Introducing new changepoint candidate
3 Calculate ΘN+1, the parameters of the posterior distribution given τ = t− 1 using Theorem

5.2.2.
4 T ←− T ∪ {t− 1}
5 Updating weights and posterior distributions
6 for i ∈ {0, . . . , N + 1} do
7 Calculate wi,t based on Theorems 5.2.1 and 5.2.4.
8 end
9 Update parameters of posterior distribution, Θ0, . . . ,ΘN+1 using Theorem 5.2.3.

10 Normalize wi,t for i ∈ {0, . . . , N + 1}.
11 Decide if there is a changepoint
12 if 1− w0,t > c then

output: Change detected; T , {r(1), . . . , r(N+1)}∗, {Θ0, . . . ,ΘN+1}, w0:N+1,t

13 end
14 Merging step
15 if N = M then
16 Search the index i that gives the minimum error (5.1) for i ∈ {1, . . . , N}.
17 *Update the ratio vector {r(i+1)} ←− (wi,t + wi+1,t)

−1(wi,tr
(i), wi+1,tr

(i+1)).
18 Combine wi+1,t ←− wi,t + wi+1,t.

19 Remove candidate i, Θi, r
(i) and wi,t.

20 N ←− N − 1

21 end

output: T , {r(1), . . . , r(N+1)}∗, {Θ0, . . . ,ΘN+1}, w0:N+1,t

Note: The set marked with * can be omitted, resulting in constant memory complexity.

CHAPTER 5. BAGEL 111

Calculating the total variation distance

Now we will show how to calculate the total variation, which is needed for our merging

step. This can be calculated exactly if θ is 1-dimensional, but we need to resort to an

approximation in higher dimensions.

One dimensional parameter

Calculating the total variation between two univariate distributions, such as in the

change-in-mean case with known variance, is straightforward. In this case, θ will have

a univariate Gaussian distribution, and we use the following result for the total variation

distance between two univariate Gaussians.

Proposition 5.2.5. The total variation between two univariate Gaussian distributions

with means µi and µi+1, and variances σ2Σi and σ
2Σi+1 respectively is:

2
[
Φ(a

√
σ2Σ2

i + b
√
σ2Σ2

i+1)− Φ(a
√
σ2Σ2

i − b
√
σ2Σ2

i+1)

+ Φ(a
√
σ2Σ2

i+1 − b
√
σ2Σ2

i)− Φ(a
√
σ2Σ2

i+1 + b
√
σ2Σ2

i)
]
.

where a = µi−µi+1

σ2Σ2
i+1−σ2Σ2

i
and b =

√
(µi−µi+1)2+(σ2Σ2

i+1−σ2Σ2
i) log

σ2Σ2
i+1

σ2Σ2
i

σ2Σ2
i+1−σ2Σ2

i
.

Proof. See proof in Appendix C.3.

Multi-dimensional parameters

In higher dimensions, it is often intractable to find the exact closed form for the total

variation between two distributions. Instead, we use the following tractable bounds as

approximations to the total variation distance.

For any pair of distributions for distributions θ over Rd with densities fi(·) and

fi+1(·), Pinsker’s inequality (Pinsker, 1964) states that

TV (fi(θ), fi+1(θ)) ≤
1√
2

√
KL(fi(θ) ∥ fi+1(θ)) =

1√
2

√∫
fi(θ) log

fi(θ)

fi+1(θ)
dθ,

CHAPTER 5. BAGEL 112

where KL denotes the Kullback–Leibler divergence. The KL distance for our posteriors,

which will be either multivariate Gaussian or Normal Inverse Gamma, is given by the

following results.

Theorem 5.2.6. (Williams and Rasmussen, 2006) The KL between two multivariate

Gaussian distributions with means µi and µi+1, and variances σ2Σi and σ
2Σi+1 respec-

tively, is:

DKL(N(µi, σ
2Σi)||N(µi+1, σ

2Σi+1)) =

1

2

(
tr(Σ−1

i+1Σi − I) +
1

σ2
(µi+1 − µi)

⊤Σ−1
i+1(µi+1 − µi) + log det(Σ−1

i Σi+1)

)

Theorem 5.2.7. (Soch and Allefeld, 2016) The KL distance between two normal in-

verse gamma distributions with means µi and µi+1, scaling variance Σi and Σi+1, shape

νi and νi+1, scale ιi and ιi+1 respectively is

DKL[NIG(µi,Σi, νi, ιi)||NIG(µi+1,Σi+1, νi+1, ιi+1)] =

1

2

[
(µi+1 − µi)

⊤Σ−1
j (µi+1 − µi)

νi
ιi

+ tr(Σ−1
i+1Σi − I)− log

det(Σi)

det(Σi+1)

]
+ νi+1 log

ιi
ιi+1

− log
Γ(νi)

Γ(νi+1)
+ (νi − νi+1)ψ(νi)− (ιi − ιi+1)

νi
ιi
,

where Γ(·) is the gamma function and ψ(·) is the digamma function.

Using the KL bounds, we revisit the example in Figure 5.2. Figure 5.3 presents

the cumulative density function (CDF) of the exact approach, our recovered posterior,

and the benchmark. It demonstrates that the recovered posterior from Bagelclosely

matches the exact distribution.

CHAPTER 5. BAGEL 113

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

changepoint candidates
C

D
F

1 500 1000 1500

(a) At step 1600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

changepoint candidates

C
D

F

1 500 1000 1500 2000

(b) At step 2000

Figure 5.3: The CDFs of the exact approach (grey), Bagelwith recovered posterior
distribution (blue) and benchmark (black) when M = 50.

5.3 Simulation Results

We conduct a simulation study to evaluate the performance of different pruning meth-

ods, focusing on detection power and computational efficiency on the above exam-

ples. For simplicity, we assume the changepoint locations are uniformly distributed for

changepoint models. For the change-in-mean case, we reparametrize the model in terms

of the pre-change parameter (β) and post-change parameters (θ = β + γ), and place

independent priors on them. A Normal prior is used when the variance is known, and a

Normal-Inverse-Gamma prior when it is unknown. For detecting changes in slope, we

allow for both continuous and discontinuous changes, assigning equal prior probabilities

to the two types of change. Therefore we consider three possible models: no-change,

continuous change, and discontinuous change, with bivariate normal prior on (β, γ) as

specified in Section 5.2.1. We can then implement the recursion and pruning rules

of Section 2 for the two change models separately, and get an approximation to the

posterior distribution. The estimated model is selected as the one with the highest

marginal posterior probability. Further prior details are provided in Appendix C.4.1.

Once the parameters are set, we simulate 2000 data points without change. The detec-

tion thresholds are chosen to control the false alarm rate, defined as the probability of

falsely detecting a change, at 5%.

To evaluate the detection power of algorithms, we measure the following indices:

CHAPTER 5. BAGEL 114

M Algorithm
Known variance Unknown variance

Coverage Error Delay MAP Coverage Error Delay MAP
Exact 0.95 0.05 281±174 1008±110 0.95 0.06 295 ± 189 1025 ± 106

50
Bagel 0.95 0.04 283±176 1010±108 0.95 0.06 299 ± 192 1022 ± 105

Benchmark 0.38 0.08 308±198 1009±116 0.36 0.09 326 ± 213 1025 ± 106

100
Bagel 0.95 0.05 282±175 1009±107 0.95 0.06 296 ± 190 1024 ± 106

Benchmark 0.56 0.06 300±195 1012±102 0.56 0.08 317 ± 207 1023 ± 104

200
Bagel 0.95 0.05 281±175 1009±109 0.94 0.06 295 ± 190 1024 ± 106

Benchmark 0.74 0.05 294±186 1011±109 0.74 0.07 306 ± 202 1026 ± 111

Table 5.1: Simulation results for the Example 1 change-in-mean case with 500 replicates.
The simulated data follows N(0, 1) before τ = 1000 and N(0.25, 1) after the change.

• Coverage rate: the proportion in which the true changepoint falls within the

estimated 95% highest posterior density intervals.

• Error rate of the algorithm: calculated as missed alarms + false alarms
replications

.

• Average detection delay and its standard deviation: the detection delay measures

the difference between the estimated true positive stopping time and the true

changepoint location.

• MAP estimator and its standard deviation: the maximum a posteriori estima-

tion gives the estimation of the changepoint location with the largest posterior

probability.

• Speed: the average running time at each time step.

Table 5.1 and Table 5.2 present the simulation results for the two examples, using KL

bounds when total variation needs to be approximated. In Example 1, the detection

power of Bagel is close to that of the exact approach, while the benchmark consistently

shows the lowest coverage rate, highest error rate, and longest detection delay. In Ex-

ample 2, Bagel performs close to the exact approach. The benchmark algorithm again

performs the worst and fails to identify the type of change. In terms of computational

speed, Bagel and the benchmark are comparable and significantly faster than the ex-

act approach, as shown in Appendix C.4.3. Results with different prior settings and

different bounds approximation are provided in Appendix C.4.2.

CHAPTER 5. BAGEL 115

M Algorithm
Example 2 with continuous change Example 2 with discontinuous change

Coverage Error Delay MAP Coverage Error Delay MAP
Exact 0.87 0.05 329± 73 1037± 190 0.93 0.05 198± 68 959± 145

50
Bagel 0.86 0.05 336± 76 1038± 152 0.93 0.05 205± 70 949± 137

Benchmark 0.00 0.05 399± 96 1199± 101 0.05 0.05 253± 89 1062± 75

100
Bagel 0.88 0.05 331± 74 1042± 150 0.92 0.05 199± 69 954± 106

Benchmark 0.00 0.05 373± 90 1140± 106 0.22 0.05 231± 80 1017± 83

200
Bagel 0.87 0.05 329± 74 1036± 159 0.92 0.05 198± 68 949± 116

Benchmark 0.05 0.05 353± 83 1082± 136 0.55 0.05 214± 75 978± 105

Table 5.2: Simulation results for Example 2 change-in-slope scenario with known vari-
ance with 500 replicates. The simulated data follow a normal distribution N(0, 1) before
time t = 1000, and follow−1.75+0.002t+N(0, 1) after the change for continuous change
and follow −2.2 + 0.002t+N(0, 1) after the change for discontinuous change.

5.4 Real data example - Machine Temperature Fail-

ure

The Numenta Anomaly Benchmark (NAB) contains a collection of datasets for evalu-

ating real-time anomaly detection algorithms (Ahmad et al., 2017). We evaluate our

proposed approaches on one of the datasets - machine temperature failure dataset. This

dataset records temperature readings from a heat sensor, and has been used in several

algorithm evaluations, such as those in Fisch et al. (2022a); Ahmad and Purdy (2016);

Ahmad et al. (2017); Jesmeen et al. (2021), among others. It contains 22695 observa-

tions from 02/12/2013 to 19/02/2014, with data sampled every 5 minutes. Following

the data preparation procedure in Lavin and Ahmad (2015); Fisch et al. (2022a), we use

the first 15% to be training data. We preprocess the data by removing autocorrelation

components and normalising with the median and the median absolute deviation esti-

mated from the training set. To reduce the impact of extreme values, we remove outliers

with modified Z-scores exceeding an absolute value of 3.5, as suggested in Iglewicz and

Hoaglin (1993). The threshold for detection is empirically determined on simulated

pseudo time series by resampling the block of observations (Politis and Romano, 1994).

We perform 200 Monte Carlo replications to ensure that the false alarm rate remains

5% on 5000 observations.

CHAPTER 5. BAGEL 116

0

40

80

Dec Dec Jan Jan Jan Feb Feb
Time

Te
m

pe
ra

tu
re

True anomalous period Bagel (M=100) SCAPA

Figure 5.4: Machine temperature data with true anomalous period, MAP estimators of
changepoints obtained from our proposed method, and the anomalous segment detected
by SCAPA

Year Start time End time SCAPA Bagel(M=100)
2013 17:50 15/12 17:00 17/12 16:50 16/12 03:00 16/12
2014 14:20 27/01 13:30 29/01 21:25 28/01 07:15 28/01
2014 14:55 07/02 14:05 09/02 03:15 08/02 00:45 08/02

Table 5.3: Labelled anomalies along with the detection time of two approaches.

We use the change-in-slope models with known variance, which allow us to monitor

both mean shifts and slope shifts. When Bagel detects a change, the algorithm restarts

and is initialised using the MAP estimators from the posterior of the previous segment

as its new prior. Figure 5.4 and Table 5.3 present the detection results of Bagel with

M = 100, alongside the results of SCAPA as reported in their original paper Fisch

et al. (2022a). Although SCAPA is proposed to detect the anomalous segment, we

can treat the start and the end of the segment as two changepoints for comparison.

Two algorithms give similar changepoint estimates, while Bagel is faster in detection.

Moreover, the estimators from both methods outperform most of the results reported

in Ahmad and Purdy (2016); Jesmeen et al. (2021), where changepoints were either

missed or falsely triggered.

CHAPTER 5. BAGEL 117

5.5 Discussion

We proposed a fast online Bayesian changepoint detection algorithm for identifying

changes in linear models. The resulting method provides uncertainty estimates for

both the change and its location through the recovered posterior distribution. More-

over, the algorithm maintains constant time complexity per time step, empirically at

a millisecond level, making it suitable for real-time applications. Future work includes

extending the method to multivariate settings, where the dependencies exist across the

dimensions, and changes may propagate across dimensions.

Chapter 6

Conclusions And Future Work

Three novel online changepoint detection methods have been introduced in this thesis.

The first two, disMOSUM and mixFOCuS, are designed to detect changes in distributed

systems under constraints of limited computational and communication resources. Both

approaches have their respective strengths and limitations. mixFOCuS outperforms dis-

MOSUM in that it does not require selecting a window size and can accommodate data

from the exponential family, rather than being restricted to Gaussian assumptions. On

the other hand, disMOSUM benefits from a known limiting distribution, which provides

theoretical guidance for threshold selection. Moreover, it is flexible enough to incor-

porate more complex modelling components, such as autocorrelation structures. One

limitation for both approaches, as demonstrated through simulations, is the presence

of autocorrelation in the data. While one solution is to inflate the threshold, we show

the performance of the algorithms can be significantly affected when the autocorrela-

tion is strong. Developing robust methods that explicitly handle autocorrelated inputs

remains a direction for future research.

Another direction that could be considered in the future is to extend the current

framework to decentralised systems, where sensors are allowed to communicate with

neighbouring nodes according to a predefined network topology. In such settings, a key

118

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 119

question is whether changes can still be detected rapidly and reliably, with restricted

communication bandwidth. Furthermore, if the change does not occur simultaneously

across nodes, can the system still infer the path of change propagation through the

network? A practical example of such a scenario is fault detection in power grids,

where local sensors may detect anomalies at different times, and inferring the cascade

of failures through limited communication can be critical. Another relevant application

is a surveillance network using edge devices, where bandwidth is limited, but needs

quick detection and localisation of unusual events.

In Section 5, we derived a fast online Bayesian changepoint detection algorithm.

An extension is to generalise this framework to the multivariate case, where multiple

data streams are monitored simultaneously. In so doing, several interesting research

challenges arise. First, the model must be able to capture correlations across streams,

which may reflect underlying structural or functional relationships in the system. Sec-

ond, when changes occur at different times in different streams, a key question is whether

we can infer the transmission or propagation of the change across the streams. Another

possible application is to integrate the Bayesian changepoint detection framework with

real-time decision-making systems, such as autonomous systems, adaptive control, or

intelligent monitoring. The posterior distribution over changepoint locations and model

parameters provides a quantifiable measure of uncertainty, which can be used in control

policies or feedback loops.

Appendix A

Appendix for disMOSUM

A.1 Proof of Theorem 3.4.3

Squaring and expanding the weighted global MOSUM statistic in Equation (3.9) for

the two different cases gives

(w(k, h)T (m, k, h))2 =


∑d

i=1 (w(k, h)Ti(m, k, h))
2 dense case,∑d

i=1

(
w(k, h)Ti(m, k, h)1{w(k,h)Ti(m,k,h)>cLocal}

)2
sparse case.

(A.1)

From Theorem 3.4.1 with k = ht, the weighted local MOSUM and its hard-thresholded

counterpart have limit

lim
m→∞

(w(k, h)Ti(m, k, h))2
D−→ ρ(t)2Zi(t)

2,

lim
m→∞

(
w(k, h)Ti(m, k, h)1{w(k,h)Ti(m,k,h)>cLocal}

)2 D−→ ρ(t)2Zi(t)
2
1{ρ(t)Zi(t)>cLocal},

(A.2)

where Zi(t) is defined in Equation 3.11. Taking the limit of (A.1) as m→∞ gives the

result.

120

APPENDIX A. APPENDIX FOR DISMOSUM 121

A.2 Proof of Theorem 3.4.6

It is enough to show that

(
w(k̃, h)T (m, k̃, h)

)2 P−→∞,

for a time k̃ later than the change point k∗ but before the end of the monitoring time

⌊mT̃ ⌋.

Since k∗ ≤ ⌊hν⌋, we can choose k̃ = ⌊x0h⌋ + h where ν < x0 < T̃ m
h
− 1 so that

k∗ ≤ k̃ − h.

If data stream i is affected by the change, so that i ∈ S and δi ̸= 0 then

1

h
Ti(m, k̃, h) =

1

hσ̂i

∣∣∣∣∣∣
m+⌊x0h⌋+h∑

t=m+⌊x0h⌋+1

(Xi,t − µ̂i)

∣∣∣∣∣∣
=

1

hσ̂i

∣∣∣∣∣∣
m+⌊x0h⌋+h∑

t=m+⌊x0h⌋+1

(µi + δi + ϵi,t − µ̂i)

∣∣∣∣∣∣
=

1

hσ̂i

∣∣∣∣∣∣h(µi − µ̂i) + hδi +

m+⌊x0h⌋+h∑
t=m+⌊x0h⌋+1

ϵi,t

∣∣∣∣∣∣
=

1

σ̂i

∣∣∣∣∣∣µi − µ̂i + δi +
1

h

m+⌊x0h⌋+h∑
t=m+⌊x0h⌋+1

ϵi,t

∣∣∣∣∣∣
=

1

σ̂i
|δi + oP (1)| .

On the other hand if i /∈ S,

1

h
Ti(m, k̃, h) =

1

σ̂i
|oP (1)| .

APPENDIX A. APPENDIX FOR DISMOSUM 122

For the global dense procedure

(
w(k̃, h)T (m, k̃, h)

)2
= w(k̃, h)2

d∑
i=1

Ti(m, k̃, h)2

=

(
1√
h
ρ

(
k̃

h

))2

× h2 ×
d∑

i=1

(
1

h
Ti(m, k̃, h)

)2

= hρ

(
k̃

h

)2 d∑
i=1

(
1

h
Ti(m, k̃, h)

)2

= hρ (x0 + 1 + o(1))2
∑
i∈S

(
δi
σ̂i

)2

+ oP (1)
P−→∞,

as m,h→∞.

For the global sparse procedure the local MOSUM’s w(k̃, h)T (m, k̃, h) are hard

thresholded. Since these diverge to infinity individually then the same argument used

for the dense procedure applies.

Appendix B

Appendix for mixFOCUS

B.1 Quantile-Quantile plots of the time to detection

We simulated 1000 Gaussian data sets with n = 200000 and d = 100 when there is

no change and determined a local threshold that restricts the transmission frequency

to 1%. Figure B.1 presents the QQ plot comparing the time to detection against

an exponential (1) distribution. These sub-figures suggest the time to detection is

approximately geometrically distributed under two large global thresholds.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Expected Quantiles

S
or

te
d

D
at

a

κmax

κsum(∆=1%)
κcomb(∆=1%)

(a) cMAX
Global = 16, cSUM

Global = 28

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Expected Quantiles

S
or

te
d

D
at

a

κmax

κsum(∆=1%)
κcomb(∆=1%)

(b) cMAX
Global = 17, cSUM

Global = 26

Figure B.1: QQ plot of standardized κmax, κsum and κcomb for different thresholds against
exponential (1) distribution when ∆ = 1%.

123

APPENDIX B. APPENDIX FOR MIXFOCUS 124

B.2 Detection power of mixFOCuS when τ = 1000

Table B.1 and Table B.2 present the detection power of the mixFOCuS on the Gaussian

data and mixed-type data when the change occurs at 1000. The detection power is

slightly weaker compared to the cases where the change occurs later (e.g. at 3000, see

Table 4.3 and Table 4.4). The trade-off between transmission constraints and detection

efficiency, as well as the comparable performance of mixFOCuS on both mixed-type

and homogeneous data, remains consistent.

Scenarios pre-change known(S1) pre-change unknown(S2)

Transmission

Constraint
100% 10% 5% 1% 100% 10% 5% 1%

FAR(%) 4.4 4.5 4.7 5.2 5.0 5.6 5.9 6.8

p δ ADD ADD

1

0.1 144 133 137 166 206 185 188 226

0.25 28 28 29 34 35 33 34 40

0.5 9 9 9 11 10 10 10 12

1 3 3 3 4 3 3 4 4

0.5

0.1 262 233 231 256 414 341 334 391

0.25 51 47 46 51 63 55 54 59

0.5 15 14 14 15 17 16 16 17

1 5 5 5 5 5 5 5 5

0.1

0.1 887 753 689 637
2457

0.3%

1802

0.2%

1623

0.4%

1579

0.5%

0.25 172 153 139 126 216 181 163 147

0.5 49 45 40 36 52 46 42 38

1 14 13 12 11 14 13 12 11

0.01

0.1 2420 2353 2268 2094
4690

(33%)

4064

(28.9%)

4789

(28.2%)

4575

(28%)

0.25 418 417 415 407 855
807

(0.1%)

780

(0.1%)
722

0.5 108 108 108 107 124 124 123 122

1 29 29 29 29 30 30 30 30

Table B.1: Results on Gaussian data are averaged over 1000 repetitions. Data are
simulated with parameters n = 10000 and d = 100 and follow Gaussian distribution.
The smallest ADD in each scenario is given in bold. The percentage represents the
proportion of missed alarms.

B.3 The effect of a Gaussian approximation

Figure B.2 compares the detection power of mixFOCuS with a common approach that

approximates the data as Gaussian, considering scenarios where all or 10% data streams

APPENDIX B. APPENDIX FOR MIXFOCUS 125

undergo the change. While the common approach shows improved performance com-

pared to it under sparse change (Figure 4.4), it has higher false alarm rates compared

to mixFOCuS, particularly when the pre-change distribution is unknown.

Scenarios pre-change known(S1) pre-change unknown(S2)

Transmission

Constraint
100% 10% 5% 1% 100% 10% 5% 1%

FAR(%) 4.2 4.2 4.5 5.9 4.6 5.1 5.1 7.4

p δ ADD ADD

1

0.1 149 137 140 163 216 188 202 231

0.25 30 29 30 35 38 35 36 41

0.5 10 9 10 11 11 11 11 13

1 3 4 4 4 4 4 4 5

0.5

0.1 268 238 237 253 433 351 362 391

0.25 54 49 48 52 67 57 57 61

0.5 17 15 15 16 19 17 17 18

1 5 5 5 6 6 6 6 6

0.1

0.05 899 768 709 650
2563

98.2%

1889

0.1%

1746

0.5%

1529

98.1%

0.25 183 161 147 130 237 195 182 154

0.5 52 48 44 39 56 50 47 41

1 16 15 13 12 16 15 14 12

0.01

0.1 2378 2280 2226 2031
4502

(32.6%)

3809

(24.9%)

3745

(28.7%)

3324

(22.9%)

0.25 419 416 414 408
896

0.2%

843

(0.1%)

836

(0.1%)
734

0.5 107 107 107 106 123 122 123 120

1 29 29 29 29 30 30 30 29

Table B.2: Average detection delay on the mixed-type data against the levels of sparsity
and the strengths of the signal. Results are averaged over 1000 repetitions. Data are
simulated with parameters n = 10000 and d = 100. The smallest ADD in each scenario
is given in bold. The percentage within the bracket is the proportion of missed alarms.

B.4 Model details

The performance of MOSUM depends on the choice of window size h. Here we run

multiple window sizes at the same time, the one with the highest likelihood ratio statis-

tics is selected. For training size 500, we evaluate window sizes h = 20, 100, 250, 400; as

for training size 100, we pick window sizes h = 20, 50, 80, 100. Additionally, we set the

weight function in disMOSUM to be 1, allowing us to control the average run length

instead of the type-I error.

As for disCUSUM, we set parameters with s = 1 and t = 4 as in Lorden and Pollak

APPENDIX B. APPENDIX FOR MIXFOCUS 126

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(a) δ = 0.25, p = 1 pre-change known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(b) δ = 0.25, p = 1 pre-change un-
known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(c) δ = 0.25, p = 0.1 pre-change known

−2000 0 2000 4000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated detection delay

P
ro

po
rt

io
n

of
 d

et
ec

tio
n

mixFOCuS
approx_Gaussian

(d) δ = 0.25, p = 0.1 pre-change un-
known

Figure B.2: The proportions of experiments where a change was detected by time step t.
Data are generated with pber = 0.4, λpois = 5, λexp =

1
3
, β = 2, n = 10000 and τ = 3000.

Results are obtained under 1000 replications.

(2008) and Liu et al. (2019) and use soft-thresholding as in Liu et al. (2019). We

consider different values for the possible change sizes of ρ = 0.1, 0.5 and 1.

Appendix C

Appendix for Bagel

C.1 Properties of the Prior for Examples 1 and 2.

Example 1

To see that the second prior for Example 1 gives the same distribution for the

pre-change and post-change mean, and these are independent, we apply a change of

variable. We have (β, γ)⊤ has a Gaussian distribution with mean

 µ1

0

 and variance

σ2

 δ1 −δ1

−δ1 2δ1

 .
Let the pre-change and post-change means be (β, θ)⊤ then

 β

θ

 =

1 0

1 1


 β

γ

 .
This is a linear transformation, so (β, θ)⊤ will also have a Gaussian distributions with

mean 1 0

1 1


 µ1

0

 =

 µ1

µ1

 ,

127

APPENDIX C. APPENDIX FOR BAGEL 128

and variance

σ2

1 0

1 1


 δ1 −δ1

−δ1 2δ1


1 0

1 1


⊤

= σ2

δ1 0

0 δ1

 ,
as required.

Example 2

In the change-in-slope case, for a discontinuous change, denote the pre-change and

post-change means of intercept and slope as (β1, β2, θ1, θ2)
⊤, we have



β1

β2

θ1

θ2


=



1 0 0 0

0 1 0 0

1 τ 1 τ

0 1 0 1





β1

β2

γ1

γ2


.

With this linear transformation, we have



1 0 0 0

0 1 0 0

1 τ 1 τ

0 1 0 1





µ1

µ2

−µ2τ

0


=



µ1

µ2

µ1

µ2


,

and variance

σ2



1 0 0 0

0 1 0 0

1 τ 1 τ

0 1 0 1





δ1 0 −δ1 0

0 δ2 0 −δ2

−δ1 0 2δ1 + τ 2δ2 −τδ2

0 −δ2 −τδ2 2δ2





1 0 0 0

0 1 0 0

1 τ 1 τ

0 1 0 1



⊤

= σ2



δ1 0 0 0

0 δ2 0 0

0 0 δ1 0

0 0 0 δ2


,

as required. So the pre-change and post-change parameters are independent and follow

the same distribution.

APPENDIX C. APPENDIX FOR BAGEL 129

As for the continuous change, we have



β1

β2

θ1

θ2


=



1 0 0 0

0 1 0 0

0 0 1 τ

0 1 0 1





β1

β2

γ1

γ2


.

So the (θ1, θ2, θ3, θ4)
⊤ follows the multivariate Gaussian distribution with mean



1 0 0 0

0 1 0 0

0 0 1 τ

0 1 0 1





µ1

µ2

0

0


=



µ1

µ2

0

µ2


and variance

σ2



1 0 0 0

0 1 0 0

0 0 1 τ

0 1 0 1





δ1 0 0 0

0 δ2 0 0

0 0 τ 2δ3 −τδ3

0 0 −τδ3 δ3





1 0 0 0

0 1 0 0

0 0 1 τ

0 1 0 1



⊤

= σ2



δ1 0 0 0

0 δ2 0 δ2

0 0 0 0

0 δ2 0 δ2 + δ3


,

where the new intercept has mean 0 and variance 0, and the post-change slope is

dependent on the pre-change slope.

C.2 Proof of the sequential updating

Proof of Theorem 5.2.1

APPENDIX C. APPENDIX FOR BAGEL 130

For i = 1, . . . , t− 2 the recursion comes from the definition of the weights.

wi,t = Pr
t
(τ = i)p(y1:t|τ = i)

= Pr
t−1

(τ = i)p(y1:t−1|τ = i)
Prt(τ = i)

Prt−1(τ = i)
p(yt|y1:t−1, τ = i)

= wi,t−1
Prt(τ = i)

Prt−1(τ = i)
)p(yt|y1:t−1, τ = i).

A similar simple argument applies for i = 0. Finally for i = t− 1 we have

wt−1,t = Pr
t
(τ = t− 1)p(y1:t|τ = t− 1)

= Pr
t−1

(τ ≥ t− 1)p(y1:t−1|τ ≥ t− 1)
Prt(τ = i)

Prt−1(τ ≥ t− 1)
p(yt|y1:t−1, τ = t− 1)

= w0,t−1
Prt(τ = i)

Prt−1(τ ≥ t− 1)
)p(yt|y1:t−1, τ = t− 1).

Proof of Theorem 5.2.2

If we have a change at t − 1 then the prior for (β, γ) has mean µt−1 and variance

σ2Σt−1. Our assumption is that the marginal prior for β is the same as that assuming

no change, but the conditional prior for γ given β can depend on the change location

t− 1.

The posterior distribution given y1:t−1, conditional on a change at t− 1 is

p(β, γ, σ|y1:t−1, τ = t− 1)

∝ p(σ)p(β|σ)p(γ|β, σ, τ = t− 1)p(y1:t−1|β, γ, σ, τ = t− 1)

= p(σ)p(β|σ)p(γ|β, σ, τ = t− 1)p(y1:t−1|β, σ, τ = t− 1)

∝ p(β, σ|y1:t−1, τ = t− 1)p(γ|β, σ, τ = t− 1)

= p(β, σ|y1:t−1, τ ≥ t− 1)p(γ|β, σ, τ = t− 1).

Here we have used the fact that the observations prior to the change do not depend

on γ, and that as the prior for β and σ and the likelihood for y1:t−1 are the same for

APPENDIX C. APPENDIX FOR BAGEL 131

τ = t− 1 and τ ≥ t− 1 so are the posteriors.

The posterior for (β, σ) given y1:t−1 and τ ≥ t− 1 is calculated at time t− 1 for the

case of no change by t − 1 and conditional on σ the posterior for β is Gaussian with

mean µt−1,0 and variance Σt−1,0.

As p(β, γ|σ, τ = t − 1) is multivariate Gaussian, the conditional prior p(γ|β, σ, τ =

t− 1) is also Gaussian, with a mean that is linear in β. Using standard results for the

multivariate Gaussian gives that this conditional distribution is of the form

γ|β, σ, τ = t− 1 ∼ N(µγ + Σγ,βΣ
−1
β,β(β − µβ), σ

2(Σγ,γ − Σγ,βΣ
−1
β,βΣβ,γ)),

Therefore, the marginal mean of γ after updating β is given by

E(γ) = E (E(γ | β)) = µγ + Σγ,βΣ
−1
β,β(µ

t−1,0 − µβ).

The marginal scaled variance is

Var(γ) = E (Var(γ | β)) + Var (E(γ | β))

= σ2
(
Σγ,γ − Σγ,βΣ

−1
β,βΣβ,γ + Σγ,βΣ

−1
β,βΣ

t−1,0Σ−1
β,βΣβ,γ

)
= σ2

(
Σγ,γ + Σγ,βΣ

−1
β,β(Σ

t−1,0 − Σβ,β)Σ
−1
β,βΣβ,γ

)
.

The covariance can be calculated as

Cov(β, γ) = Cov
(
β,Σγ,βΣ

−1
β,ββ

)
= Σγ,βΣ

−1
β,βΣ

t−1,0.

Thus, the full updated joint distribution of (β, γ) is

N


 µt−1,0

µγ + Σγ,βΣ
−1
β,β(µ

t−1,0 − µβ)

 ,
 Σt−1,0 Σγ,βΣ

−1
β,βΣ

t−1,0

Σt−1,0Σ−1
β,βΣβ,γ Σγ,γ + Σγ,βΣ

−1
β,β(Σ

t−1,0 − Σβ,β)Σ
−1
β,βΣβ,γ


 .

APPENDIX C. APPENDIX FOR BAGEL 132

as required.

Proof of Theorems 5.2.3 and 5.2.4

The results in Theorems 5.2.3 and 5.2.4 follow from standard results. One way to see

this is to view our model as a dynamic linear model (West and Harrison (2006)), where

the hidden state is the parameter, but we define the dynamics such that the hidden

state does not change over time.

For the case of no change, the dynamic linear model is

βt = βt−1

yt = hT0 βt + σϵt,

where ϵt ∼ N (0, 1), and h0 is the known regression vector. At time t − 1, given

observations y1:t−1, the posterior distribution is:

βt−1 | σ2, y1:t−1, τ ≥ t− 1 ∼ N (µt−1,0, σ2Σt−1,0),

σ2 | y1:t−1, τ ≥ t− 1 ∼ IG(νt−1,0, ιt−1,0).

After observing yt, the posterior distribution of (β, σ2) is updated using the following

formulas as show in West and Harrison (2006); Fearnhead and Liu (2011):

Σt,0 = Σt−1,0 − A⊤AQ,

µt,0 = µt−1,0 + Ae0,

νt,0 = νt−1,0 +
1

2
,

ιt,0 = ιt−1,0 +
e20
2Q

,

where e0 = yt−h⊤0 µt−1,0 is the one-step-ahead forecast error, Q = h⊤0 Σ
t−1,0h0+1 is the

forecast error variance and A = Σt−1,0h0/Q is the adaptive gain. Then the one-step-

APPENDIX C. APPENDIX FOR BAGEL 133

ahead predictive distribution of yt given y1:t−1 is:

yt | y1:t−1, τ ≥ t− 1 ∼ t2νt−1,0

(
h⊤0 µ

t−1,0,
ιt−1,0

νt−1,0

(
h⊤0 Σ

t−1,0h0 + 1
))

,

where t2νt−1,0 denotes the Student-t distribution with 2νt−1,0 degrees of freedom.

A similar derivation works for the case where there is a change at time i, but now

the dynamic linear model is

(β⊤
t , γ

⊤
t)

⊤ = (β⊤
t−1, γ

⊤
t−1)

⊤

yt = hTi (β
⊤
t , γ

⊤
t)

⊤ + σϵt.

The model follows the same dynamic linear structures, but with an augmented pa-

rameter vector. As such, the posterior and predictive quantities follow immediately by

applying the standard DLM update formulas introduced earlier.

C.3 The total variation between two univariate Gaus-

sian with known variance

Corollary C.3.1. The posterior distributions for neighbouring fi(µ, σ
2Σ2) and fj(µ, σ

2Σ2)

always intersects at two points as σ2Σ2
i > σ2Σ2

j . Two points of intersection are:

(c1, c2) =
µjσ

2Σ2
i − µiσ

2Σ2
j ∓

√
σ2Σ2

iσ
2Σ2

j

√
(µi − µj)2 − (σ2Σ2

i − σ2Σ2
j) log

σ2Σ2
j

σ2Σ2
i

σ2Σ2
i − σ2Σ2

j

.

Proposition C.3.2. The total variation between two normal distributions fi(µ, σ
2Σ2)

APPENDIX C. APPENDIX FOR BAGEL 134

and fj(µ, σ
2Σ2) is

2

Φ(c2 − µi√
σ2Σ2

i

)− Φ(
c1 − µi√
σ2Σ2

i

) + Φ(
c1 − µj√
σ2Σ2

j

)− Φ(
c2 − µj√
σ2Σ2

j

)

 . (C.1)

Let a =
µi−µj

σ2Σ2
j−σ2Σ2

i
and b =

√
(µi−µj)2+(σ2Σ2

j−σ2Σ2
i) log

σ2Σ2
j

σ2Σ2
i

σ2Σ2
j−σ2Σ2

i
, Formula C.1 could be rewrit-

ten as:

2

[
Φ(a

√
σ2Σ2

i + b
√
σ2Σ2

j)− Φ(a
√
σ2Σ2

i − b
√
σ2Σ2

j) + Φ(a
√
σ2Σ2

j − b
√
σ2Σ2

i)− Φ(a
√
σ2Σ2

j + b
√
σ2Σ2

i)

]
.

C.4 Simulation results under different priors

C.4.1 Priors

For the change-in-mean case, we assume the probability of no change Pr(τ ≥ 2000) =

0.9, and the distribution of the changepoint location follows a uniform distribution

Pr(τ = i|τ < 2000) ∝ 1 for i = 1, · · · , 1999. To simplify the updating procedure,

we consider a model where the pre-change and post-change means are independent,

through reparametrization. Specifically, we model the pre-change parameter (β) and

post-change parameters (θ = β + γ). If σ2 = 1 is know, we have normal prior with

parameters (µ, σ2Σ); or normal-inverse-gamma prior with parameters (µ,Σ, ν, ι) if it

is unknown. Table C.1 and Table C.2 in the Appendix present the detection power

under different priors. In the main text, Table 5.1 shows the results under a Normal

prior with parameters (µ = 0, σ2Σ = 0.252) when the variance is known, and under a

Normal-Inverse-Gamma prior with parameters (µ = 0,Σ = 10, ν = 30, ι = 30) when

the variance is unknown.

For the change-in-slope case with known variance, we allow the model to detect the

type of change, either continuous or discontinuous, assigning equal prior probabilities

APPENDIX C. APPENDIX FOR BAGEL 135

Prconti(τ < 2000) = Prdis(τ < 2000) = 0.1. The parameters before and after the change,

(β, γ), are jointly modelled with bivariate normal priors with hyper-parameters (µ1, µ2)

and (δ1, δ2, δ3, δ4) as specified in Section 5.2.1. Different prior settings are considered

as shown in Table C.4 and C.3. In the main text, Table 5.2 reports the results for

µ1 = µ2 = 0 and δ1 = δ2 = δ3 = δ4 = 1.

The detection thresholds for each algorithm are chosen to control the false alarm

rate at 5%, defined as the probability of detecting a change before time 2000 when no

change.

C.4.2 Detection power

Table C.1, Table C.2, Table C.4 and Table C.3 present the simulation results for each

example under different prior choices. Overall, the results are consistent with those

reported in Section 5.3.

C.4.3 Speed

Here, we calculate the average computational speed at each step of each approach

shown in Section 5.3. The main code is written in R, while the merging part is written

in C++. The code was executed in a virtualised environment using VMware with

full virtualisation, on a machine powered by an Intel(R) Xeon(R) Gold 6248R CPU,

featuring 4 physical cores operating at 3.00 GHz. The time is recorded through the

R package “microbenchmark” (Mersmann, 2024) which can accurately measure and

compare the execution time of R expressions. From Figure C.1, we can see that the

exact approach is more expensive than the pruned approaches. The running time of

our proposed approach is close to that of the benchmark approach at each time step.

APPENDIX C. APPENDIX FOR BAGEL 136

Prior M Algorithm Coverage Error Delay Map

N(0, 0.252)

Exact 0.95 0.05 281±174 1008±110

50
Bagel 0.95 0.04 283±176 1010±108

Benchmark 0.38 0.08 308±198 1009±116

100
Bagel 0.95 0.05 282±175 1009±107

Benchmark 0.56 0.06 300±195 1012±102

200
Bagel 0.95 0.05 281±175 1009±109

Benchmark 0.74 0.05 294±186 1011±109

N(0, 0.52)

Exact 0.90 0.08 311±194 1023±106

50
Bagel 0.91 0.08 314±196 1024±109

Benchmark 0.41 0.10 332±209 1027±94

100
Bagel 0.91 0.08 312±194 1023±105

Benchmark 0.57 0.09 327±208 1029±109

200
Bagel 0.91 0.08 311±194 1023±106

Benchmark 0.74 0.09 319±200 1028±116

N(0, 12)

Exact 0.88 0.09 347±215 1033±114

50
Bagel 0.89 0.10 348±216 1034±113

Benchmark 0.40 0.14 358±219 1031±97

100
Bagel 0.89 0.10 347±214 1034±113

Benchmark 0.58 0.13 346±210 1031±96

200
Bagel 0.88 0.09 347±215 1033±114

Benchmark 0.72 0.11 349±215 1031±101

Table C.1: Simulation results for Example 1 (change-in-mean scenario with known
variance) are based on 500 replicates when we vary the value of the variance. The
simulated data follow a normal distribution N(0, 1) before time t = 1000, and then
follow N(0.25, 1) after the change. The priors are specified as p(τ ≥ 2000) = 0.9 and
p = 0.1. The prior column in the tables specifies that the distribution of pre-change
and post-change, as they are independently and identically distributed.

1

2

3

4

50 100 150 200
M

M
ea

n
R

un
tim

e
(m

s)

Exact
Bagel
Benchmark

Figure C.1: Average running speed per time step for exact, Bagel, and benchmark
approaches against different values of M on data n = 1000.

APPENDIX C. APPENDIX FOR BAGEL 137

Prior M Algorithm Coverage Error Delay MAP

NIG(0, 0.1, 30, 30)

Exact 0.95 0.06 295 ± 189 1025 ±106

50
Bagel 0.95 0.06 299 ± 192 1022 ± 105

Benchmark 0.36 0.09 326 ± 213 1025 ± 106

100
Bagel 0.95 0.06 296 ± 190 1024 ± 106

Benchmark 0.56 0.08 317 ± 207 1023 ± 104

200
Bagel 0.94 0.06 295 ± 190 1024 ± 106

Benchmark 0.74 0.07 306 ± 202 1026 ± 111

NIG(0, 10, 5, 5)

Exact 0.87 0.19 409 ± 232 1036 ± 102

50
Bagel 0.87 0.19 411 ± 232 1037 ± 105

Benchmark 0.32 0.24 441 ± 250 1040 ± 102

100
Bagel 0.88 0.18 410 ± 232 1036 ± 103

Benchmark 0.57 0.22 420 ± 238 1038 ± 105

200
Bagel 0.88 0.18 411 ± 234 1035 ± 102

Benchmark 0.75 0.20 413 ± 236 1040 ± 114

NIG(0, 100, 2.1, 2.1)

Exact 0.87 0.23 465 ± 246 1040 ± 119

50
Bagel 0.88 0.24 463 ± 245 1041 ± 119

Benchmark 0.30 0.32 469 ± 244 1047 ± 121

100
Bagel 0.87 0.23 466 ± 246 1040 ± 119

Benchmark 0.54 0.28 465 ± 243 1038 ± 108

200
Bagel 0.87 0.23 467 ± 247 1040 ± 119

Benchmark 0.75 0.25 466 ± 247 1040 ± 118

Table C.2: Simulation results for Example 1 (change-in-mean scenario with unknown
variance) are based on 500 replicates when we vary the value of the scaled covariance
matrix and the prior on the variance. The simulated data follow a normal distribution
N(0, 1) before time t = 1000, and then follow N(0.25, 1) after the change. The priors
are specified as p(τ ≥ 2000) = 0.9 and p = 0.1. The prior column in the tables specifies
that the distribution of pre-change and post-change, as they are independently and
identically distributed.

APPENDIX C. APPENDIX FOR BAGEL 138

Prior M Algorithm Coverage Error Delay MAP

δ1 = δ2 = δ3 = δ4 = 0.1252

Exact 0.86 0.05 304± 71 1045± 156

50
Bagel 0.88 0.05 307± 73 1048± 139

Benchmark 0.00 0.05 392± 104 1216± 111

100
Bagel 0.87 0.05 305± 72 1047± 145

Benchmark 0.01 0.05 350± 89 1146± 96

200
Bagel 0.87 0.05 304± 71 1045± 144

Benchmark 0.05 0.05 325± 79 1088± 121

δ1 = δ2 = δ3 = δ4 = 0.252

Exact 0.86 0.05 318± 73 1033± 187

50
Bagel 0.87 0.05 323± 73 1040± 155

Benchmark 0.00 0.05 401± 105 1206± 114

100
Bagel 0.86 0.05 319± 73 1039± 153

Benchmark 0.01 0.05 364± 91 1139± 110

200
Bagel 0.86 0.05 318± 73 1031± 163

Benchmark 0.05 0.05 341± 82 1079± 131

δ1 = δ2 = δ3 = δ4 = 0.52

Exact 0.87 0.05 329± 73 1037± 190

50
Bagel 0.86 0.05 336± 76 1038± 152

Benchmark 0.00 0.05 399± 96 1199± 101

100
Bagel 0.88 0.05 331± 74 1042± 150

Benchmark 0.00 0.05 373± 90 1140± 106

200
Bagel 0.87 0.05 329± 74 1036± 159

Benchmark 0.05 0.05 353± 83 1082± 136

δ1 = δ2 = δ3 = δ4 = 1

Exact 0.86 0.05 341± 75 1039± 167

50
Bagel 0.75 0.05 350± 78 1042± 149

Benchmark 0.00 0.05 414± 90 1203± 95

100
Bagel 0.88 0.05 344± 75 1039± 140

Benchmark 0.00 0.05 389± 89 1144± 106

200
Bagel 0.88 0.05 342± 75 1039± 139

Benchmark 0.05 0.05 367± 86 1080± 134

Table C.3: Simulation results for Example 2 (continuous change-in-slope scenario with
known variance) are based on 500 replicates when we vary the value of the scaled
covariance matrix. The simulated data follow a normal distribution N(0, 1) before
time t = 1000, and then undergo a continuous change, gradually shifting to follow
0.002 × t + N(0, 1) after the change. For the known variance setting, the priors are
specified as p(τ ≥ 2000) = 0.8, pdis = 0.1, pconti = 0.1, σ2 = 1 and µβ = (0, 0)⊤.

APPENDIX C. APPENDIX FOR BAGEL 139

Prior M Algorithm Coverage Error Delay MAP

δ1 = δ2 = δ3 = δ4 = 0.1252

Exact 0.93 0.05 171± 63 965± 128

50
Bagel 0.94 0.05 174± 64 964± 111

Benchmark 0.07 0.05 246± 98 1076± 85

100
Bagel 0.94 0.05 172± 64 967± 104

Benchmark 0.29 0.05 206± 81 1022± 74

200
Bagel 0.93 0.05 172± 63 962± 125

Benchmark 0.63 0.05 186± 71 984± 92

δ1 = δ2 = δ3 = δ4 = 0.252

Exact 0.94 0.05 186± 66 953± 144

50
Bagel 0.95 0.05 191± 68 958± 109

Benchmark 0.08 0.05 254± 99 1071± 89

100
Bagel 0.94 0.05 188± 67 958± 109

Benchmark 0.26 0.05 223± 80 1016± 79

200
Bagel 0.94 0.05 187± 66 952± 123

Benchmark 0.61 0.05 202± 75 971± 108

δ1 = δ2 = δ3 = δ4 = 0.52

Exact 0.93 0.05 198± 68 959± 145

50
Bagel 0.93 0.05 205± 70 949± 137

Benchmark 0.05 0.05 253± 89 1062± 75

100
Bagel 0.92 0.05 199± 69 954± 106

Benchmark 0.22 0.05 231± 80 1017± 83

200
Bagel 0.92 0.05 198± 68 949± 116

Benchmark 0.55 0.05 214± 75 978± 105

δ1 = δ2 = δ3 = δ4 = 1

Exact 0.92 0.05 211± 69 959± 129

50
Bagel 0.91 0.05 223± 75 953± 164

Benchmark 0.04 0.05 267± 89 1065± 72

100
Bagel 0.91 0.05 212± 70 952± 107

Benchmark 0.21 0.05 247± 82 1021± 78

200
Bagel 0.90 0.05 211± 69 952± 104

Benchmark 0.52 0.05 228± 77 978± 103

Table C.4: Simulation results for Example 2 (discontinuous change-in-slope scenario
with known variance) are based on 500 replicates when we vary the value of the scaled
covariance matrix. The simulated data follow a normal distribution N(0, 1) before
time t = 1000, and then undergo a continuous change, gradually shifting to follow
−1.75+0.002× t+N(0, 1) after the change. For the known variance setting, the priors
are specified as p(τ ≥ 2000) = 0.8, pdis = 0.1, pconti = 0.1, σ2 = 1 and µβ = (0, 0)⊤.

Bibliography

Adams, R. P. and MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv

preprint arXiv:0710.3742.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly

detection for streaming data. Neurocomputing, 262:134–147.

Ahmad, S. and Purdy, S. (2016). Real-time anomaly detection for streaming analytics.

arXiv preprint arXiv:1607.02480.

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions

on automatic control, 19(6):716–723.

Akman, V. E. and Raftery, A. E. (1986). Bayes factors for non-homogeneous poisson

processes with vague prior information. Journal of the Royal Statistical Society Series

B: Statistical Methodology, 48(3):322–329.

Alami, R. (2023). Bayesian changepoint detection for bandit feedback in non-stationary

environments. In Khan, E. and Gonen, M., editors, Proceedings of The 14th Asian

Conference on Machine Learning, volume 189 of Proceedings of Machine Learning

Research, pages 17–31. PMLR.

Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., and Ming, H. (2019).

Ad-IoT: Anomaly detection of IoT cyberattacks in smart city using machine learning.

140

BIBLIOGRAPHY 141

In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference

(CCWC), pages 0305–0310. IEEE.

Altamirano, M., Briol, F.-X., and Knoblauch, J. (2023). Robust and scalable Bayesian

online changepoint detection. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,

Sabato, S., and Scarlett, J., editors, Proceedings of the 40th International Conference

on Machine Learning, volume 202 of Proceedings of Machine Learning Research,

pages 642–663. PMLR.

Appadwedula, S., Veeravalli, V. V., and Jones, D. L. (2005). Energy-efficient detection

in sensor networks. IEEE Journal on Selected Areas in Communications, 23(4):693–

702.

Aue, A., Horváth, L., Kühn, M., and Steinebach, J. (2012). On the reaction time of

moving sum detectors. Journal of Statistical Planning and Inference, 142(8):2271–

2288.

Aue, A. and Kirch, C. (2024). The state of cumulative sum sequential changepoint

testing 70 years after page. Biometrika, 111(2):367–391.

Auger, I. E. and Lawrence, C. E. (1989). Algorithms for the optimal identification of

segment neighborhoods. Bulletin of Mathematical Biology, 51(1):39–54.

Banerjee, T. and Veeravalli, V. V. (2015). Data-efficient quickest change detection in

sensor networks. IEEE Transactions on Signal Processing, 63(14):3727–3735.

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019). Narrowest-over-threshold detec-

tion of multiple changepoints and changepoint-like features. Journal of the Royal

Statistical Society Series B: Statistical Methodology, 81(3):649–672.

Bardwell, L. and Fearnhead, P. (2017). Bayesian Detection of Abnormal Segments in

Multiple Time Series. Bayesian Analysis, 12(1):193 – 218.

BIBLIOGRAPHY 142

Barigozzi, M., Cho, H., and Trapani, L. (2024). Moving sum procedure for multiple

change point detection in large factor models. arXiv preprint arXiv:2410.02918.

Barry, D. and Hartigan, J. A. (1993). A Bayesian analysis for change point problems.

Journal of the American Statistical Association, 88(421):309–319.

Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and

Application. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Bell, C., Gordon, L., and Pollak, M. (1994). An efficient nonparametric detection

scheme and its application to surveillance of a bernoulli process with unknown base-

line. Lecture Notes-Monograph Series, pages 7–27.

Benson, A. and Friel, N. (2018). Adaptive MCMC for multiple changepoint analysis

with applications to large datasets. Electronic Journal of Statistics, 12(2):3365 –

3396.

Bhaduri, K., Das, K., and Votava, P. (2010). Distributed anomaly detection using

satellite data from multiple modalitie. In CIDU, pages 109–123. Citeseer.

Broemeling, L. D. (2017). Bayesian analysis of linear models. CRC Press.

Carlin, B. P., Gelfand, A. E., and Smith, A. F. (1992). Hierarchical Bayesian analysis

of changepoint problems. Journal of the royal statistical society: series C (applied

statistics), 41(2):389–405.

Chakar, S., Lebarbier, E., Lévy-Leduc, C., and Robin, S. (2017). A robust approach

for estimating changepoints in the mean of an AR(1) process. Bernoulli, 23(2):1408

– 1447.

Chan, H. P. (2017). Optimal sequential detection in multi-stream data. The Annals of

Statistics, 45(6):2736–2763.

BIBLIOGRAPHY 143

Chen, Y., Wang, T., and Samworth, R. J. (2022). High-dimensional, multiscale online

changepoint detection. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 84(1):234–266.

Chen, Y., Wang, T., and Samworth, R. J. (2024). Inference in high-dimensional

online changepoint detection. Journal of the American Statistical Association,

119(546):1461–1472.

Chernoff, H. and Zacks, S. (1964). Estimating the current mean of a normal distribu-

tion which is subjected to changes in time. The Annals of Mathematical Statistics,

35(3):999–1018.

Chib, S. (1996). Calculating posterior distributions and modal estimates in markov

mixture models. Journal of Econometrics, 75(1):79–97.

Chib, S. (1998). Estimation and comparison of multiple changepoint models. Journal

of Econometrics, 86(2):221–241.

Chin Choy, J. and Broemeling, L. (1980). Some Bayesian inferences for a changing

linear model. Technometrics, 22(1):71–78.

Cho, H. and Fryzlewicz, P. (2014). Multiple changepoint detection for high dimensional

time series via sparsified Binary Segmentation. Journal of the Royal Statistical Society

Series B: Statistical Methodology, 77:475–507.

Cho, H. and Kirch, C. (2022). Bootstrap confidence intervals for multiple change-

points based on moving sum procedures. Computational Statistics & Data Analysis,

175:107552.

Cho, H. and Kirch, C. (2024). Data segmentation algorithms: univariate mean change

and beyond. Econometrics and Statistics, 30:76–95.

BIBLIOGRAPHY 144

Chu, C.-S. J., Stinchcombe, M., and White, H. (1996). Monitoring structural change.

Econometrica: Journal of the Econometric Society, pages 1045–1065.

Detommaso, G., Hoitzing, H., Cui, T., and Alamir, A. (2019). Stein variational online

changepoint detection with applications to hawkes processes and neural networks.

arXiv preprint arXiv:1901.07987.

Eichinger, B. and Kirch, C. (2018). A MOSUM procedure for the estimation of multiple

random changepoints. Bernoulli, 24(1):526–564.

Enikeeva, F. and Harchaoui, Z. (2019). High-dimensional changepoint detection under

sparse alternatives. The Annals of Statistics, 47(4):2051–2079.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple changepoint

problems. Statistics and Computing, 16:203–213.

Fearnhead, P. and Fryzlewicz, P. (2022). Detecting a single changepoint. arXiv preprint

arXiv:2210.07066.

Fearnhead, P. and Liu, Z. (2007). Online inference for multiple changepoint problems.

Journal of the Royal Statistical Society Series B: Statistical Methodology, 69(4):589–

605.

Fearnhead, P. and Liu, Z. (2011). Efficient Bayesian analysis of multiple changepoint

models with dependence across segments. Statistics and Computing, 21:217–229.

Fearnhead, P., Maidstone, R., and Letchford, A. (2019). Detecting changes in slope with

an l 0 penalty. Journal of Computational and Graphical Statistics, 28(2):265–275.

Fearnhead, P. and Rigaill, G. (2019). Changepoint detection in the presence of outliers.

Journal of the American Statistical Association, 114(525):169–183.

Fisch, A. T., Bardwell, L., and Eckley, I. A. (2022a). Real time anomaly detection and

categorisation. Statistics and Computing, 32(4):55.

BIBLIOGRAPHY 145

Fisch, A. T. M., Eckley, I. A., and Fearnhead, P. (2022b). A linear time method for the

detection of collective and point anomalies. Statistical Analysis and Data Mining:

The ASA Data Science Journal, 15(4):494–508.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple changepoint detection.

The Annals of Statistics, 6:2243 – 2281.

Fryzlewicz, P. (2020). Detecting possibly frequent changepoints: Wild Binary Segmen-

tation 2 and steepest-drop model selection. Journal of the Korean Statistical Society,

49(4):1027–1070.

Gallant, A. R. (2009). Nonlinear statistical models. John Wiley & Sons.

Gombay, E. and Serban, D. (2009). Monitoring parameter change in AR (p) time series

models. Journal of Multivariate Analysis, 100(4):715–725.

Gordon, L. and Pollak, M. (1995). A robust surveillance scheme for stochastically

ordered alternatives. The Annals of Statistics, pages 1350–1375.

Gordon, L. and Pollak, M. (1997). Average run length to false alarm for surveillance

schemes designed with partially specified pre-change distribution. The Annals of

Statistics, 25(3):1284–1310.

Gösmann, J., Kley, T., and Dette, H. (2021). A new approach for open-end sequential

changepoint monitoring. Journal of Time Series Analysis, 42(1):63–84.

Gösmann, J., Stoehr, C., Heiny, J., and Dette, H. (2022). Sequential change point

detection in high dimensional time series. Electronic Journal of Statistics, 16(1):3608–

3671.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711–732.

BIBLIOGRAPHY 146

Gundersen, G. W., Cai, D., Zhou, C., Engelhardt, B. E., and Adams, R. P. (2021). Ac-

tive multi-fidelity Bayesian online changepoint detection. In Uncertainty in Artificial

Intelligence, pages 1916–1926. PMLR.

Haynes, K., Fearnhead, P., and Eckley, I. A. (2017). A computationally efficient non-

parametric approach for changepoint detection. Statistics and computing, 27:1293–

1305.

Held, L., Hofmann, M., Höhle, M., and Schmid, V. (2006). A two-component model

for counts of infectious diseases. Biostatistics, 7(3):422–437.

Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., Shen, R.,

Taylor, A. M., Cherniack, A. D., Thorsson, V., et al. (2018). Cell-of-origin patterns

dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell,

173(2):291–304.

Horváth, L. and Hušková, M. (2012). Changepoint detection in panel data. Journal of

Time Series Analysis, 33(4):631–648.

Horváth, L., Hušková, M., Kokoszka, P., and Steinebach, J. (2004). Monitoring changes

in linear models. Journal of statistical Planning and Inference, 126(1):225–251.

Horváth, L., Kühn, M., and Steinebach, J. (2008). On the performance of the fluctua-

tion test for structural change. Sequential Analysis, 27(2):126–140.

Horváth, L., Liu, Z., and Lu, S. (2022). Sequential monitoring of changes in dynamic

linear models, applied to the US housing market. Econometric Theory, 38(2):209–272.

Hsu, F.-H., Chen, H.-I. H., Tsai, M.-H., Lai, L.-C., Huang, C.-C., Tu, S.-H., Chuang,

E. Y., and Chen, Y. (2011). A model-based circular binary segmentation algorithm

for the analysis of array cgh data. BMC Research Notes, 4:1–12.

BIBLIOGRAPHY 147

Hušková, M. and Kirch, C. (2012). Bootstrapping sequential changepoint tests for linear

regression. Metrika, 75(5):673–708.

Iglewicz, B. and Hoaglin, D. C. (1993). Volume 16: how to detect and handle outliers.

Quality Press.

Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E.,

Sangtrakulcharoen, P., Tan, L., and Tsai, T. T. (2005). An algorithm for optimal

partitioning of data on an interval. IEEE Signal Processing Letters, 12(2):105–108.

Jesmeen, M., Hossen, J., and Aziz, A. B. A. (2021). Unsupervised anomaly detection

for energy consumption in time series using clustering approach. Emerging Science

Journal, 5(6):840–854.

Katser, I. D. and Kozitsin, V. O. (2020). Skoltech anomaly benchmark (skab). https:

//www.kaggle.com/dsv/1693952.

Kengne, W. and Ngongo, I. S. (2022). Inference for nonstationary time series of counts

with application to changepoint problems. Annals of the Institute of Statistical Math-

ematics, 74(4):801–835.

Kiefer, N. M. and Vogelsang, T. J. (2002a). Heteroskedasticity-autocorrelation ro-

bust standard errors using the Bartlett kernel without truncation. Econometrica,

70(5):2093–2095.

Kiefer, N. M. and Vogelsang, T. J. (2002b). Heteroskedasticity-autocorrelation robust

testing using bandwidth equal to sample size. Econometric Theory, 18(6):1350–1366.

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints

with a linear computational cost. Journal of the American Statistical Association,

107(500):1590–1598.

https://www.kaggle.com/dsv/1693952
https://www.kaggle.com/dsv/1693952

BIBLIOGRAPHY 148

Kim, J. and Cheon, S. (2010). Bayesian multiple changepoint estimation with annealing

stochastic approximation monte carlo. Computational Statistics, 25(2):215–239.

Kim, J., Oh, H.-S., and Cho, H. (2024). Moving sum procedure for change point

detection under piecewise linearity. Technometrics, pages 1–10.

Kirch, C. and Kamgaing, J. T. (2015). On the use of estimating functions in monitoring

time series for changepoints. Journal of Statistical Planning and Inference, 161:25–49.

Kirch, C. and Weber, S. (2018). Modified sequential change point procedures based on

estimating functions. Electronic Journal of Statistics, 12(1):1579–1613.

Kovács, S., Bühlmann, P., Li, H., and Munk, A. (2023). Seeded binary segmenta-

tion: a general methodology for fast and optimal changepoint detection. Biometrika,

110(1):249–256.

Krieger, A. M., Pollak, M., and Yakir, B. (2003). Surveillance of a simple linear regres-

sion. Journal of the American Statistical Association, 98(462):456–469.

Kurozumi, E. (2020). Asymptotic properties of bubble monitoring tests. Econometric

Reviews, 39(5):510–538.

Kurozumi, E. (2021). Asymptotic behavior of delay times of bubble monitoring tests.

Journal of Time Series Analysis, 42(3):314–337.

Kurozumi, E. (2023). Fluctuation-type monitoring test for explosive behavior. Econo-

metrics and Statistics.

Lai, T. L. (1998). Information bounds and quick detection of parameter changes in

stochastic systems. IEEE Transactions on Information theory, 44(7):2917–2929.

Lavin, A. and Ahmad, S. (2015). Evaluating real-time anomaly detection algorithms–

the numenta anomaly benchmark. In 2015 IEEE 14th international conference on

machine learning and applications (ICMLA), pages 38–44. IEEE.

BIBLIOGRAPHY 149

Leisch, F., Hornik, K., and Kuan, C.-M. (2000). Monitoring structural changes with

the generalized fluctuation test. Econometric Theory, 16(6):835–854.

Liu, K., Zhang, R., and Mei, Y. (2019). Scalable SUM-shrinkage schemes for distributed

monitoring large-scale data streams. Statistica Sinica, 29:1–22.

Lorden, G. (1971). Procedures for reacting to a change in distribution. The Annals of

Mathematical Statistics, pages 1897–1908.

Lorden, G. and Pollak, M. (2008). Sequential changepoint detection procedures that

are nearly optimal and computationally simple. Sequential Analysis, 27(4):476–512.

Lung-Yut-Fong, A., Lévy-Leduc, C., and Cappé, O. (2012). Distributed detec-

tion/localization of changepoints in high-dimensional network traffic data. Statistics

and Computing, 22(2):485–496.

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. (2017). On optimal multiple

changepoint algorithms for large data. Statistics and Computing, 27:519–533.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017).

Communication-efficient learning of deep networks from decentralized data. In Arti-

ficial Intelligence and Statistics, pages 1273–1282. PMLR.

Mei, Y. (2005). Information bounds and quickest change detection in decentralized

decision systems. IEEE Transactions on Information Theory, 51(7):2669–2681.

Mei, Y. (2010). Efficient scalable schemes for monitoring a large number of data streams.

Biometrika, 97(2):419–433.

Mei, Y. (2011). Quickest detection in censoring sensor networks. In 2011 IEEE Inter-

national Symposium on Information Theory Proceedings, pages 2148–2152.

Mersmann, O. (2024). microbenchmark: Accurate Timing Functions. R package version

1.4.10.

BIBLIOGRAPHY 150

Mouliere, F., Piskorz, A. M., Chandrananda, D., Moore, E., Morris, J., Smith, C. G.,

Goranova, T., Heider, K., Mair, R., Supernat, A., et al. (2017). Selecting short dna

fragments in plasma improves detection of circulating tumour dna. BioRxiv, page

134437.

Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distribu-

tions. The Annals of Statistics, 14(4):1379–1387.

Newey, W. K. and West, K. D. (1986). A simple, positive semi-definite, heteroskedas-

ticity and autocorrelationconsistent covariance matrix. National Bureau of Economic

Research Cambridge, Mass., USA.

Ninomiya, Y. (2015). Changepoint model selection via aic. Annals of the Institute of

Statistical Mathematics, 67:943–961.

Olshen, A. B., Bengtsson, H., Neuvial, P., Spellman, P. T., Olshen, R. A., and Seshan,

V. E. (2011). Parent-specific copy number in paired tumor–normal studies using

circular binary segmentation. Bioinformatics, 27(15):2038–2046.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary

segmentation for the analysis of array-based dna copy number data. Biostatistics,

5(4):557–572.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115.

Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point.

Biometrika, 42(3/4):523–527.

Pinsker, M. S. (1964). Information and information stability of random variables and

processes. Holden-Day.

Pinto, G. and Castor, F. (2017). Energy efficiency: A new concern for application

software developers. Communications of the ACM, 60(12):68–75.

BIBLIOGRAPHY 151

Pishchagina, L., Romano, G., Fearnhead, P., Runge, V., and Rigaill, G. (2023). Online

multivariate changepoint detection: Leveraging links with computational geometry.

arXiv:2311.01174.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the

American Statistical association, 89(428):1303–1313.

Pollak, M. and Siegmund, D. (1991). Sequential detection of a change in a normal mean

when the initial value is unknown. The Annals of Statistics, 19(1):394–416.

Polunchenko, A. S. and Tartakovsky, A. G. (2010). On optimality of the shiryaev–

roberts procedure for detecting a change in distribution. The Annals of Statistics,

38:3445–3457.

Rago, C., Willett, P., and Bar-Shalom, Y. (1996). Censoring sensors: a low-

communication-rate scheme for distributed detection. IEEE Transactions on

Aerospace and Electronic Systems, 32(2):554–568.

Rigaill, G. (2015). A pruned dynamic programming algorithm to recover the best

segmentations with 1 to k {max} changepoints. Journal de la Société Française de

Statistique, 156(4):180–205.

Ritov, Y. (1990). Decision theoretic optimality of the CUSUM procedure. The Annals

of Statistics, pages 1464–1469.

Robbins, M. W., Gallagher, C. M., and Lund, R. B. (2016). A general regression

changepoint test for time series data. Journal of the American Statistical Association,

111(514):670–683.

Romano, G., Eckley, I. A., and Fearnhead, P. (2023a). A log-linear non-parametric

online changepoint detection algorithm based on functional pruning. IEEE Transac-

tions on Signal Processing.

BIBLIOGRAPHY 152

Romano, G., Eckley, I. A., Fearnhead, P., and Rigaill, G. (2023b). Fast online change-

point detection via functional pruning cusum statistics. Journal of Machine Learning

Research, 24:1–36.

Romano, G., Rigaill, G., Runge, V., and Fearnhead, P. (2022). Detecting abrupt

changes in the presence of local fluctuations and autocorrelated noise. Journal of the

American Statistical Association, 117(540):2147–2162.

Ross, G. J. (2013). Modelling financial volatility in the presence of abrupt changes.

Physica A: Statistical Mechanics and its Applications, 392(2):350–360.

Runge, V., Pascucci, M., and de Boishebert, N. D. (2020). Change-in-slope optimal par-

titioning algorithm in a finite-size parameter space. arXiv preprint arXiv:2012.11573.

Saatçi, Y., Turner, R. D., and Rasmussen, C. E. (2010). Gaussian process changepoint

models. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pages 927–934.

Salazar, D. (1982). Structural changes in time series models. Journal of Econometrics,

19(1):147–163.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

pages 461–464.

Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping means in

the analysis of variance. Biometrics, pages 507–512.

Shamp, W., Varbanov, R., Chicken, E., Linero, A., and Yang, Y. (2021). Computation-

ally efficient Bayesian sequential function monitoring. Journal of Quality Technology,

54(1):1–19.

Soch, J. and Allefeld, C. (2016). Kullback-leibler divergence for the normal-gamma

distribution. arXiv preprint arXiv:1611.01437.

BIBLIOGRAPHY 153

Stephens, D. A. (1994). Bayesian retrospective multiple-changepoint identification.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 43(1):159–178.

Tartakovsky, A., Nikiforov, I., and Basseville, M. (2014). Sequential analysis: Hypoth-

esis testing and changepoint detection. CRC press.

Tartakovsky, A. G. and Kim, H. (2006). Performance of certain decentralized dis-

tributed change detection procedures. In 2006 9th International Conference on In-

formation Fusion, pages 1–8. IEEE.

Tartakovsky, A. G. and Polunchenko, A. S. (2008). Quickest changepoint detection in

distributed multisensor systems under unknown parameters. In 2008 11th Interna-

tional Conference on Information Fusion, pages 1–8. IEEE.

Tartakovsky, A. G., Rozovskii, B. L., Blažek, R. B., and Kim, H. (2006). Detection

of intrusions in information systems by sequential changepoint methods. Statistical

methodology, 3(3):252–293.

Tartakovsky, A. G. and Veeravalli, V. V. (2002). An efficient sequential procedure

for detecting changes in multichannel and distributed systems. In Proceedings of

the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE

Cat.No.02EX5997), volume 1, pages 41–48 vol.1.

Thies, S. and Molnár, P. (2018). Bayesian change point analysis of bitcoin returns.

Finance Research Letters, 27:223–227.

Thomson, J. R., Kimmerer, W. J., Brown, L. R., Newman, K. B., Nally, R. M., Bennett,

W. A., Feyrer, F., and Fleishman, E. (2010). Bayesian change point analysis of

abundance trends for pelagic fishes in the upper san francisco estuary. Ecological

Applications, 20(5):1431–1448.

BIBLIOGRAPHY 154

Tickle, S. O., Eckley, I., Fearnhead, P., and Haynes, K. (2020). Parallelization of a

common changepoint detection method. Journal of Computational and Graphical

Statistics, 29(1):149–161.

Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point

detection methods. Signal Processing, 167:107299.

Tveten, M., Eckley, I. A., and Fearnhead, P. (2022). Scalable changepoint and anomaly

detection in cross-correlated data with an application to condition monitoring. The

Annals of Applied Statistics, 16(2):721–743.

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., and Nikolopoulos, D. S. (2016).

Challenges and opportunities in edge computing. In 2016 IEEE International Con-

ference on Smart Cloud (SmartCloud), pages 20–26.

Veeravalli, V. V. (2001). Decentralized quickest change detection. IEEE Transactions

on Information Theory, 47(4):1657–1665.

Venkatraman, E. and Olshen, A. B. (2007). A faster circular binary segmentation

algorithm for the analysis of array cgh data. Bioinformatics, 23(6):657–663.

Verma, B. K., Verma, M., Verma, V. K., Abdullah, R. B., Nath, D. C., Khan, H. T.,

Verma, A., Vishwakarma, R. K., and Verma, V. (2020). Global lockdown: An effective

safeguard in responding to the threat of covid-19. Journal of Evaluation in Clinical

Practice, 26(6):1592–1598.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical

Statistics, 16(2):117–186.

Waldmann, K.-H. (1996). Design of double CUSUM quality control schemes. European

Journal of Operational Research, 95(3):641–648.

BIBLIOGRAPHY 155

Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation

via sparse projection. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 80(1):57–83.

Ward, K., Dilillo, G., Eckley, I., and Fearnhead, P. (2023). Poisson-focus: An effi-

cient online method for detecting count bursts with application to gamma ray burst

detection. Journal of the American Statistical Association, pages 1–13.

Ward, K., Romano, G., Eckley, I., and Fearnhead, P. (2024). A constant-per-iteration

likelihood ratio test for online changepoint detection for exponential family models.

Statistics and Computing, 34(3):1–11.

Weber, S. M. (2017). ChangePoint Procedures for Multivariate Dependent Data. PhD

thesis, Karlsruher Institut für Technologie (KIT).

West, M. and Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer

Science & Business Media.

White, H. and Domowitz, I. (1984). Nonlinear regression with dependent observations.

Econometrica: Journal of the Econometric Society, pages 143–161.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,

volume 2. MIT press Cambridge, MA.

Wu, H., Hu, J., Sun, J., and Sun, D. (2019). Edge computing in an IoT base station sys-

tem: Reprogramming and real-time tasks. Complexity, 2019:4027638:1–4027638:10.

Xie, Y. and Siegmund, D. (2013a). Sequential multi-sensor changepoint detection. The

Annals of Statistics, 41(2):670–692.

Xie, Y. and Siegmund, D. (2013b). Sequential multi-sensor changepoint detection. In

2013 Information Theory and Applications Workshop (ITA), pages 1–20. IEEE.

BIBLIOGRAPHY 156

Xuan, X. and Murphy, K. (2007). Modeling changing dependency structure in multi-

variate time series. In Proceedings of the 24th international conference on Machine

learning, pages 1055–1062.

Yang, Z., Eckley, I. A., and Fearnhead, P. (2024). A communication-efficient, online

changepoint detection method for monitoring distributed sensor networks. Statistics

and Computing, 34(3):1–16.

Yao, Y.-C. (1988). Estimating the number of changepoints via schwarz’criterion. Statis-

tics & Probability Letters, 6(3):181–189.

Yao, Y.-C. and Davis, R. A. (1986). The asymptotic behavior of the likelihood ratio

statistic for testing a shift in mean in a sequence of independent normal variates.

Sankhyā: The Indian Journal of Statistics, Series A, pages 339–353.

Yau, C. Y., Sze Him Isaac, L., and Ng, W. L. (2017). Sequential changepoint detection

in time series models based on pairwise likelihood. Statistica Sinica, 27.

Yu, Y., Padilla, O. H. M., Wang, D., and Rinaldo, A. (2020). A note on online change

point detection. arXiv preprint arXiv:2006.03283.

Zeileis, A., Leisch, F., Kleiber, C., and Hornik, K. (2005). Monitoring structural change

in dynamic econometric models. Journal of Applied Econometrics, 20(1):99–121.

Zhang, R. and Mei, Y. (2018). Asymptotic statistical properties of communication-

efficient quickest detection schemes in sensor networks. Sequential Analysis,

37(3):375–396.

Zhao, L., Guo, D., Xie, J., Luo, L., and Shen, Y. (2023). A closed-loop hybrid su-

pervision framework of cryptocurrency transactions for data trading in iot. ACM

Transactions on Internet of Things, 4(1):1–26.

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	Introduction
	Literature review
	Univariate offline changepoint detection
	Loglikelihood ratio test and offline CUSUM
	Binary Segmentation, constrained and penalized approaches
	Bayesian offline changepoint detection

	Online changepoint detection
	Frequentist approaches
	Bayesian online changepoint detection

	A communication-efficient, online changepoint detection method for monitoring distributed sensor networks
	Introduction
	Problem setting
	Distributed change point detection method
	Local monitoring
	Message passing
	Global monitoring

	Theoretical properties for distributed MOSUM
	Asymptotics under the null
	Obtaining critical values
	Asymptotics under the alternative

	Simulations
	The numerical dependency on local thresholds
	The numerical dependency on parameters
	The violation of the independence assumption

	Conclusion

	mixFOCuS: A Communication-Efficient Online Changepoint Detection Method in Distributed System for Mixed-Type Data
	Introduction
	Background: From Page (1954) to expFOCuS
	Problem setting and our proposed method
	Problem setting
	The mixFOCuS approach
	The choice of the local threshold
	The choice of the global threshold

	Simulation results
	Detection power of mixFOCuS
	Assessing detection power with true distribution versus Gaussian approximation
	Comparing with the current state of the art
	Detection power of mix-FOCuS on time series data

	Skoltech anomaly benchmark
	Conclusions

	Bagel: A Fast Bayesian Online Changepoint Detection Algorithm for Linear Models
	Introduction
	Univariate real-time Bayesian changepoint detection
	The changepoint problem
	Sequential Updating
	Reducing the computational complexity by merging

	Simulation Results
	Real data example - Machine Temperature Failure
	Discussion

	Conclusions And Future Work
	Appendix for disMOSUM
	Proof of Theorem 3.4.3
	Proof of Theorem 3.4.6

	Appendix for mixFOCUS
	Quantile-Quantile plots of the time to detection
	Detection power of mixFOCuS when tau = 1000
	The effect of a Gaussian approximation
	Model details

	Appendix for Bagel
	Properties of the Prior for Examples 1 and 2.
	Proof of the sequential updating
	The total variation between two univariate Gaussian with known variance
	Simulation results under different priors
	Priors
	Detection power
	Speed

	Bibliography

