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Summary 21 

Environmental noise can severely impair acoustic communication thereby affecting key 22 

behaviors, such as predator avoidance1,2, territory defense3,4, and reproduction5-7. Persistent 23 

noise in some habitats is thought to have favored the emergence of multimodal communication 24 

systems8-10. Multimodal signals, which integrate information across several sensory channels, 25 

can enhance signal detection, and improve message clarity in challenging environments11. The 26 

capacity to flexibly adjust signaling strategies in response to noise is considered critical to the 27 

resilience and evolutionary success of communication systems12,13. However, direct evidence 28 

for noise-induced shifts between sensory modalities—termed multimodal shift—remains 29 

scarce11. Although river noise has been linked to the evolution of multimodal displays14,15 and 30 

shifts16 in torrent frogs, examples from other taxa are lacking. Here, we investigate how the 31 

white-throated dipper (Cinclus cinclus), a riverine songbird, modulates both acoustic and visual 32 

signaling along noisy rivers. We find that the dippers adjust their songs to the ambient noise 33 

level. In addition, they use, conspicuous blinking with white-feathered eyelids to compensate 34 

for acoustic masking in high-noise environments. Blinking rate was linked to local river noise, 35 

aggressive behaviour, and conspecific presence. Calibrated field measurements revealed a 36 

negative correlation between song amplitude and blinking rate, consistent with a noise-driven 37 

multimodal shift. This indicates that song plasticity operates in tandem with visual signaling, 38 

showing that animals can dynamically reallocate investment across modalities in response to 39 

fluctuating environmental pressures. The fine-tuning of both signal performance and modality 40 

underscores the critical role of noise interference and signal flexibility in the evolution of 41 

complex communication systems. 42 

  43 
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Results and discussion 44 

We studied white-throated dippers (Cinclus cinclus) because they are fast-flowing river specialists17 45 

living in naturally noisy environments. Their song is surprisingly low in amplitude compared to other 46 

birds and relative to their noisy habitat18,19. Like other dipper species20, white-throated dippers have 47 

distinctive snow-white eyelids that contrast sharply with their brown plumage when they blink, making 48 

this behaviour an ideal candidate for a visual component in a multimodal signal. In a color-banded 49 

population of dippers21, systematic observation and acoustic measurements allowed us to relate their 50 

blinking rate to the river noise level and the presence of conspecifics. Using calibrated microphones, 51 

we measured the birds’ song source amplitudes to carefully investigate noise-induced song plasticity in 52 

naturally noisy conditions, and to determine the presence and context of multimodal shifts.  53 

 54 

Dipper blinks as a signal 55 

On average, dippers blinked 54.9 ± 9.7 times per minute (mean ± SD, N = 403 observations of 22 birds), 56 

which is similar to the blinking rate reported for American dippers (Cinclus mexicanus)20 and more than 57 

three times higher than that of the similar-sized European blackbird (Figure S1). Dippers’ snow-white 58 

feathered eyelids, which contrast sharply with the dark-brown plumage on their heads (Figure 1A), make 59 

their blinks highly conspicuous, even to the naked eye of human observers22. Dippers are territorial 60 

birds; when presented with simulated intruders in a playback experiment, the birds that defended their 61 

territory most aggressively (approaching the loudspeaker faster and closer, flying more, singing more 62 

during playback, and resuming singing after playback) also had a higher blinking rate (Figure 1B, Table 63 

S1). Overall, blink rate varied by about 30% between the least and most aggressive birds. Taken 64 

together, these findings suggest that dippers may use each other's blinking to determine the 65 

aggressiveness of an opponent during territorial disputes. Since bird song serves as an aggressive 66 

signal in territorial defense, there is at least partial redundancy in the information provided by blink rate 67 

and song, which is a prerequisite for a signal to be used as part of a multimodal system11. Although 68 

birds’ eyes and eyelids have a small surface area, some species use blinks and eyelid color for 69 

communication, e.g., to establish hierarchies23 or to indicate attentional state24. Similarly, iris displays 70 

are used during sexual displays in bowerbirds25. Exposing contrasting plumage colors is also common 71 

in avian sexual displays26-28, along with various strategies to increase the contrast between the signal 72 

color and the background26,29. 73 
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 74 

Blink rate as a function of river noise and social context 75 

We analyzed whether dippers use their blinking to increase communication efficiency in noisy 76 

environments; hence, we tested statistically if the birds increased blink rate when the river was louder, 77 

and in the presence of conspecifics. We found a strong interaction between river noise and the presence 78 

of a conspecific, such that birds increased their blink rate by an average of 2.3 blinks per minute when 79 

the river noise increased by 6 dB(A) in the presence of a conspecific within 25 m (Figure 1C, Table S2). 80 

In other words, the predicted change in blink rate across the entire range of river noise levels (50-85 81 

dB(A)) is 16 blinks per minute, approximately 30% of the average rate. However, solitary birds did not 82 

adjust their blink rate to the river noise (Figure 1C, Table S2). One important requirement for the dipper 83 

blinks to be used as a signal to rescue acoustic communication is that its salience over the background 84 

noise is sufficient. Torrents not only produce acoustic noise, but also visual noise (e.g., splashes, foam, 85 

moving water) in which a visual signal could be masked. Supporting the role of blinking in multimodal 86 

communication, we observed that the birds only adjusted their blink rate to river noise when the targeted 87 

receiver was in close proximity (Figure 1C). Songbirds can perceive polarized light30, and reflections 88 

from water surfaces are polarized31, which may increase the saliency of the white feathers against the 89 

polarized river. In addition, the temporal regularity of blinks contrasts with the random nature of water 90 

movements, which could further increase signal salience. Adaptations to visual noise that increase 91 

signal detectability have been demonstrated in lizards, which use abrupt movements to contrast with 92 

slow, wind-induced vegetation movements, and they increase their movements as visual noise 93 

increases32.  94 

 95 

Blink rate and song amplitude integration into a multimodal signal 96 

In multimodal signals, the same information can be encoded in different communication channels. 97 

Redundant information in one channel can enhance the perception of the information in the other 98 

channel (multimodal enhancement)11. In this case, we expect the signal intensity in both channels to 99 

increase in parallel. In a multimodal shift, however, we expect the signal intensity in one channel to be 100 

inversely proportional to that in the other channel11. To investigate the presence of multimodal 101 

enhancement or multimodal shifts in dippers, we recorded the birds’ song with a calibrated microphone 102 

while measuring blink rate and ambient noise.  103 
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The dippers increased song amplitude at noisier song posts (Figure 2B, Table S3). This noise-104 

dependent regulation of vocal amplitude is known as the Lombard effect33, seen widely across birds 105 

and mammals34. In the dippers, the Lombard effect was independent of the presence of conspecifics 106 

(GLMM, effect of doubling river noise acoustic energy (6 dB(A)) on song amplitude [95% credible 107 

interval] = 1.2 [0.6, 1.7] dB, Table S3, Figure 2B). The strength of the response was in the range of the 108 

observed magnitude of the Lombard effect in other bird species19. In line with the multimodal-shift 109 

hypothesis, the birds traded-off blinking for song amplitude. When a conspecific was present, dippers 110 

switched from loud songs with low blink rate to fainter songs with high blink rate (Figure 1C, d, Table 111 

1), suggesting that the proportion of visual and acoustic signaling is plastically adjusted to the external 112 

conditions. To our knowledge, there is only one other documented instance of a noise-induced 113 

multimodal shift in birds: white crowned sparrows (Zonotrichia leucophrys) may increase the frequency 114 

of wing fluttering during agonistic interactions in urban, but not rural areas35 Our findings provide one 115 

of the clearest demonstrations to date of context-dependent reallocation between sensory channels in 116 

a wild vertebrate. This behavioral flexibility highlights how animals can fine-tune multimodal signals in 117 

real time to overcome environmental constraints, expanding our understanding of communication 118 

plasticity in natural systems. 119 

 120 

Song plasticity in noise and its role in multimodal signaling 121 

Our calibrated field recordings also revealed how dippers adjust the spectral and temporal structure of 122 

their songs in response to fluctuating natural noise levels. Such plasticity is common in birds exposed 123 

to anthropogenic noise36, but our study shows that even species adapted to chronically noisy 124 

environments—such as fast-flowing rivers—modulate their acoustic signals to mitigate increased 125 

masking. Dippers are likely open-ended learners and have a complex song with a repertoire of several 126 

hundred syllables37 (Figure 2A). We classified syllables according to four complexity criteria (Figure 127 

2C): syllables with rapid frequency modulations, with trills (i.e. more than three rapid frequency 128 

modulations in opposite directions), with several temporally separated elements separated by short 129 

pauses, and with several temporally overlapping elements indicating simultaneous use of both sides of 130 

the syrinx (two-voiced syllables). Each syllable was visually scored according to these criteria and 131 

assigned to one or more categories. At noisier locations, dippers increased the proportion of syllables 132 

with rapid frequency modulations and trills (that typically have a narrow frequency range of 0.9 ± 0.3 133 
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kHz) while decreasing the proportion of long, temporally complex syllables (Figure 2D, Table 2). These 134 

variations in song syllable use along a noise gradient were mostly due to behavioral plasticity, as 135 

opposed to individual differences, that is, individual birds chose different syllables in noise (Table 2, 136 

Table S4).  137 

In terms of signal perception, long, constant-frequency sounds are easier to perceive in noise because 138 

of the temporal summation of signal energy in the vertebrate inner ear38. Our results show that the 139 

dippers adjusted their songs by (1) decreasing the bandwidth and (2) decreasing the use of complex 140 

elements and short syllables in noisy conditions, which in turn may have increased perception in noise. 141 

Increased signal duration, and in some cases also increased frequencies, are a common phenomenon 142 

observed in parallel with the Lombard effect34. In addition, syllable selection for increased signal 143 

perception in noise has been suggested in blackbirds and is thought to be adaptive in noise-polluted 144 

urban areas39. Yet, even with such plasticity, acoustic communication remains constrained in high-noise 145 

conditions1,40. Crucially, we observed that—in the presence of conspecifics—dippers did not rely solely 146 

on vocal compensation. Instead, they simultaneously reduced song amplitude and increased blink rate, 147 

consistent with a noise-driven multimodal shift. This finding complements the observed Lombard effect 148 

by indicating that in social contexts, dippers may trade off acoustic intensity for enhanced visual 149 

signaling. Rather than simply amplifying or modifying song structure, the birds flexibly shifted investment 150 

across sensory channels. This dual flexibility—in both acoustic characteristics and channel 151 

prioritization—supports the view that multimodal communication systems may evolve not just through 152 

redundancy, but through dynamic reallocation in response to environmental constraints. Together, 153 

these findings offer a comprehensive picture of how song plasticity functions not in isolation, but as part 154 

of a broader multimodal communication strategy shaped by real-time ecological pressures. A test of the 155 

dippers’ response to the blinks would be necessary to establish that they are indeed being used as 156 

signals. Our playback experiment tested blink rate in the context of territorial defense, which is only one 157 

of the various functions of bird song. However, our findings and the presence of contrasting feathered 158 

eyelids in all five dipper species suggest an important evolutionary function of the contrasting white 159 

flash of dipper blinks, especially as fully-feathered eyelids are rare in songbirds20.  160 

Another conspicuous visual behavior of dippers is their frequent curtsy movements, or dipping.¹⁷ 161 

However, in a pilot study using an unmarked population in Germany, we found that dippers did not dip 162 

while singing. Instead, they markedly increased dipping before flying off or diving. Thus, we speculate 163 
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that this behavior is not a visual signal but is rather related to the birds’ three-dimensional visual 164 

perception. Therefore, we decided not to record dipping in this study. 165 

 166 

Our study provides compelling evidence that white-throated dippers adjust their communication 167 

strategies in response to ambient river noise by reallocating investment between acoustic and visual 168 

signals. The observed trade-off between song amplitude and blink rate represents a rare example of a 169 

noise-induced multimodal shift in a wild animal. This flexible integration of signals across modalities 170 

demonstrates how animals can dynamically optimize information transfer in challenging environments. 171 

Beyond documenting an underappreciated signaling behavior — the conspicuous blinking of feathered 172 

eyelids — our findings underscore the role of behavioral plasticity in maintaining communication efficacy 173 

under environmental constraints. Given the prevalence of anthropogenic and natural noise in animal 174 

habitats, such plastic multimodal strategies may be more widespread than currently recognized, offering 175 

important insights into the adaptive evolution of complex signaling systems. 176 

 177 
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Figure legends 211 

 212 

Figure 1. White-throated dippers shift from loud songs to increased blinking frequency when 213 

river noise increases and conspecifics are present. 214 

(A) A white-throated dipper with its eyes open (top) and closed, exposing the white eyelid (bottom). 215 

Photographs by K. Duclos. (B) Number of blinks in relation to the aggression score before (green) and 216 

after (blue) simulated territorial intrusion and in relation to (C) river noise, both with and without a 217 

conspecific within 25 m. (D) Blink rate as a function of maximum song amplitude, with and without a 218 

conspecific within 25 m. River noise is colour-coded. (B–D) Raw data are shown together with the model 219 

posterior mean (line) and 95% credible interval (ribbon). See also Figure S1 and Tables S1 and S2. 220 

 221 

Figure 2. Dippers adjust song amplitude and syllable type in response to river noise. 222 

(A) An example of a five-second spectrogram of dipper song (Hanning window, 512 samples, overlap 223 

99%, dB range: -50 to -25 dB). (B) Dipper song source level in relation to river noise (model estimate 224 

and 95% credible interval in purple, raw data points in black). (C) Spectrograms of exemplary syllables 225 

illustrating the complexity criteria (each spectrogram is 250 ms long). (D) Proportion of syllables in each 226 

complexity category as a function of river noise amplitude. Model posterior mean and 95% credible 227 

intervals are shown in purple, individual slopes as short grey lines in the background, and raw data as 228 

black dots. See also Tables S3 and S4. 229 

  230 
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Tables 231 

 232 

Table 1. In the presence of conspecifics, dippers trade-off song amplitude against blink rate. 233 

Estimate (posterior mean) and 95% credible interval of the Gaussian GLMM examining the effects of 234 

river noise, song amplitude, and the presence of a conspecific on dipper blinking rate on the subset of 235 

data for which we recorded both blink rate and song simultaneously (N=113, 11 dippers) 236 

Predictor 
Estimate 

[95% credible interval] 

(intercept) 56.63 [49.55, 63.27] 

River noise level (per 6 dB (A)) 1.21 [-0.55, 2.94] 

Conspecific present -1.05 [-5.48, 3.45] 

Song source level (per 6 dB) 0.31 [-1.73, 2.42] 

Song source level:conspecific  

present 
-6.45 [-11.65, -1.14] 

Variance of random effect (bird ID) 58.7 

Variance of residuals 57.3 

 237 

 238 

Table 2. Dippers use different syllable types depending on the background noise level. 239 

Estimate (posterior mean) and 95% credible interval of the logistic GLMM examining the effects of river 240 

noise, blink rate, and the presence of a conspecific on the proportion of each syllable type (based on 241 

N=5409 syllables from 13 dippers for whicheboth song amplitude and blink rate were available). 242 

Estimates are on the logit scale.   243 

Proportion of syllables 

with… 
… two voices … trills 

… fast frequency 

modulations 

… several 

elements 

Predictor 
Estimate 

[95% cri] 

Estimate 

[95% cri] 

Estimate 

[95% cri] 

Estimate 

[95% cri] 

(intercept) 
-1.88 [-2.41, 

- 1.49] 

-0.57 [-0.82, 

- 0.27] 

-0.91 [-1.45, 

- 0.42] 

-0.84 [-1.12, 

- 0.55] 
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River noise level  

(per 6 db(a)) 
-0.05 [-0.13, 0.03] 0.12 [0.06, 0.19] 

-0.10 [-0.17, -

0.03] 
-0.23 [-0.30, -0.16] 

Individual mean 

(quantifying 

inter-individual 

differences) 

0.06 [-0.25, 0.41] 0.21 [0.01, 0.39] 0.05 [-0.33, 0.42] -0.15 [-0.37, 0.05] 

Deviation from 

individual 

mean 

(quantifying 

behavioural 

plasticity) 

-0.06 [-0.15, 0.03] 0.11 [0.05, 0.18] 
-0.11 [-0.18, -

0.03] 
-0.24 [-0.31, -0.17] 

Conspecific present -0.04 [-0.16, 0.26] -0.09 [-0.25, 0.06] 0.12 [-0.05, 0.28] -0.02 [-0.18, 0.15] 

Sex (male) 0.19 [-0.29, 0.82] -0.10 [-0.44, 0.21] 0.25 [-0.35, 0.93] 0.13 [-0.19, 0.46] 

Peak frequency 
-0.13 [-0.20, -

0.05] 
0.12 [0.06, 0.19] 0.02 [-0.04, 0.08] 0.02 [-0.04, 0.07] 

Signal to noise ratio (6 

dB) 
- - -0.01 [-0.02, 0] - 

Variance of random  

effect (bird ID) 
0.04 0.02 0.11 0.02 

Variance of residuals 0.13 0.22 0.21 0.21 

  244 
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STAR methods 245 

 246 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 247 

We studied a free-ranging color-banded population of white-throated dippers21 in Yorkshire Dales 248 

National Park, Cumbria, northwest England (54.32°N, -2.53°E) in February and March 2024.  The birds 249 

were ringed under a British Trust for Ornithology license held by SPS. 250 

 251 

METHOD DETAILS  252 

Observations took place from sunrise onwards. When a bird was singing, one observer (LdF) counted 253 

through a telescope or binoculars the number of blinks for 30 seconds. We noted the actual duration of 254 

the sampling period (in case the bird flew away before 30 seconds) to calculate minute-wise blinking 255 

rate. We waited at least thirty seconds between counts to minimize the risk of temporal autocorrelation. 256 

Simultaneously, a second observer (KD) recorded the birds' song with a directional microphone 257 

(Sennheiser MKH 416 with windshield Nanoshield, Rycote, UK, hand-held recorder Portacapture X6, 258 

Tascam) for at most 1 minute at a time. We noted the position of the bird, whether another dipper was 259 

within 25m of the focal bird (estimation of distance), and the focal bird’s ring colors. We also noted the 260 

gain setting of the recorder and measured the distance between the bird and the microphone with a 261 

laser-range finder (6x24 Range finder and speedmeter, Bresser, UK), the ambient temperature and 262 

relative humidity (portable weather station Kestrel 4000 Pocket weather Tracker, Kestrel Instruments, 263 

USA), and we matched recordings to blink counts.  264 

We observed birds for a maximum of four hours at a time, at the end of which we measured the river 265 

noise level at each song post (or the closest accessible point) using an SPL meter (peak LAF, fast 266 

mode, Casella Cel 240, TSI Incorporated, Minessota, USA) oriented horizontally towards the river over 267 

15 seconds. To ensure that the measures from a distance to a song post were still representative of the 268 

true river amplitude at the song post, we measured the river noise amplitude from three different points 269 

in an easily accessible song post. River noise level varied by less than 3 dB at these three locations, 270 

which is negligible compared to the range the river noise level covered overall (30 dB; the loudest point 271 

had more than 30 times more sound energy than the faintest point).  272 

Playback experiment 273 
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We downloaded five dipper song recordings from the Xeno-Canto Database, band-pass filtered them 274 

(2-10 kHz), and extracted 30 seconds of good-quality audio. The source recordings were made at 275 

locations outside of Britain. We calibrated the playbacks to play the playbacks at a peak amplitude of 276 

85 dB(A) RMS SPL at 1m. We placed a remote-controlled loudspeaker (Turtlebox Gen 1.5) on the 277 

riverbank less than 100m from a dipper nest. When a bird came close to the speaker (i.e. at the nest or 278 

within 50 m) and sang, we counted the number of blinks for one minute, then triggered the playback. 279 

We noted the number of flights, whether the bird sang during the playback presentation, then counted 280 

the number of blinks again for one minute as soon as the bird settled. We also measured the distance 281 

between the bird and the speaker a the start of the playback and the minimum distance during the 282 

playback presentation. 283 

 284 

QUANTIFICATION AND STATISTICAL ANALYSIS 285 

Aggression score 286 

We built a composite measure of the aggressive response of the birds to conspecific songs by 287 

employing a PCA on five single behavioral aggression measures  (song during and after broadcast, 288 

number of flights during broadcast, number of flights after broadcast, and minimum distance to the 289 

speaker; Figure S2). We used the first component (59% of variance explained) as a measure for the 290 

bird’s aggression (negative values indicate more aggressive birds).  291 

 292 

Acoustic analyses 293 

All acoustic analyses were performed in Python v. 11.3. The recording chain was calibrated in the lab 294 

to obtain the frequency response and sensitivity (see supplements for the details). Before analysis, we 295 

corrected all recordings for the frequency response of the microphone. We detected bird song syllables 296 

in the four-time down-sampled recordings using cross-correlation with a 10-ms downwards sweep (7-3 297 

kHz). We extracted a segment of the original recording when the smoothed cross-correlation envelope 298 

(10-ms running average) surpassed its own mean + SD, with a 30-ms buffer before and after. On a 299 

spectrogram (512 window size, overlap 90%, Hanning window). We detected the highest frequency 300 

peak per window. Since river noise is typically of lower frequency than bird song, this procedure resulted 301 

in a bimodal distribution. We performed a kernel clustering analysis (2 clusters, one “noise”, lower 302 

frequencies, and one “bird”, the highest frequencies) and used the 10th percentile – 1 kHz and 90th 303 
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percentiles + 2 kHz to build a band-pass filter (5th-order Butterworth second-order section filter49). We 304 

then calculated the smoothed Hilbert envelope (10 ms running average) and defined the start and end 305 

of the syllable when the envelope crossed the 6-dB threshold below the maximum amplitude. Because 306 

the 6-dB threshold was often buried in the noise, we needed an alternative way of determining the call 307 

start and end. A call with a duration longer than 90% of the call window was likely badly defined. 308 

Because we already assigned each spectrogram window’s highest peak to a “bird” or a “river” cluster, 309 

we used the first and last peak assigned to the “bird” category as the start and end of the syllable. If this 310 

method still gave too long call durations, we used the results of the cross-correlation threshold crossing 311 

directly. We additionally extracted an audio segment of the same duration immediately before the call 312 

segment as a reference for the noise level. 313 

We measured the peak, highest, and lowest frequency (6 dB below peak52) on the average spectrum. 314 

We used the highest and lowest frequencies to calculate the call’s bandwidth. If the peak frequency 315 

was lower than the filter frequency, we reduced the cut-off frequency of the high-pass filter by 500 Hz. 316 

We computed the signal energy of both the bird and the noise segment, then calculated the difference 317 

between the bird and the noise energy, which we divided by the duration of the segment and square-318 

rooted the resulting value to obtain the RMS full-scale received level. This result was then converted 319 

into received sound pressure levels using the microphone’s sensitivity and recording gain, and the bird’s 320 

source level was reconstructed by correcting for distance-dependent spherical spreading using the 321 

inverse square law. 322 

We measured the signal-to-noise ratio as the difference between the noise (filtered with the same high-323 

pass filter) and the call’s RMS amplitude. We discarded syllables of SNR < 1 dB as an accurate 324 

estimation of the source level would not be possible49, too short (below 5 ms), and too long (above 1 325 

second) syllables. We detected over 19000 syllables, which we manually checked in a custom-written 326 

user interface. We corrected occurrences where the algorithm had detected only one unit of a several-327 

unit syllable or the 6-dB threshold did not accurately represent the whole syllable (more than half of the 328 

duration missing). We excluded syllables detected but not clearly visible on the spectrogram, as the 329 

species could not be determined with certainty. We checked that the start and end of each syllable 330 

matched with the spectrogram and corrected occurrences where the algorithm had detected only one 331 

unit of a several-unit syllable or the 6-dB threshold did not accurately capture the entire syllable (more 332 
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than half of the duration missing). Finally, the frequency and amplitude parameters were recalculated 333 

for each call. 334 

 335 

 336 

Workflow of the automatic acoustic measurements on the recordings.  337 
We determined the maximum amplitude in the waveform (1) and used a threshold 6 dB below the peak 338 
(2) to determine the start and end (3) of each syllable. Start and end where then used to measure the 339 
syllable duration (4) and extract the syllable (5) from the recordingfile. In a next step, we computed an 340 
average (Welsh) power spectrum for the syllable (6, left panel) to determine the peak frequency as the 341 
frequency of maximum power (7). Finaly, we used a threshold 6 dB below the maximum power (8) to 342 
determine the maximum and minimum frequency of the syllable (9) and calculate bandwidth. 343 
 344 

Microphone calibration procedure 345 

Microphones were calibrated using the free-field substitution method53. In the substitution method the 346 

same sound is recorded using two microphones, one with a known frequency-response and a target 347 

microphone whose frequency-response needs to be measured. A calibration-grade condenser 348 

microphone (46 BF (1/4”), G.R.A.S. Sound & Vibration, Holte, Denmark) with a flat frequency response 349 

(0.1-10 kHz <0.5 dB variation) was placed at a distance of 5 m from a speaker (VIFA speaker, Avisoft 350 

Bioacoustics, Glienicke, Germany) at height 1.4 m playing back a linear sweep (10-1 kHz, 7 ms). Having 351 
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removed the calibration microphone, the target microphone (Sennheiser MKH 416 with windshield) was 352 

then placed at the same distance and height. The same speaker playback was also recorded. 353 

Microphone positions were verified to be the same relative to the speaker using cross-hair lasers for 354 

alignment and a range-finders (BOSCH GLM 50C, Leinfelden-Echterdingen, Germany) for height from 355 

ground and distance to the speaker. The microphone and speaker pair were placed in a line at the 356 

centre of the room (3.3 × 8.4 m and 2.9 high) – as far as possible from the walls and other reflective 357 

surfaces.  358 

The playback had linear sweeps of three durations (3, 5, 7 ms), and finally only the 7 ms sweep was 359 

used as it resulted in the most consistent frequency-responses. Despite optimizing speaker-microphone 360 

placement, the sweep recordings had non-negligible reflections due to the duration of the sweeps and 361 

shape of the room. The direct path of the sweep was obtained by first deconvolving with the known 362 

linear sweep template, removing the reflection peaks, and then convolving the original sweep. The 363 

sensitivity of the GRAS 46BF was measured using a calibrator playing a 1 kHz tone at 94 dB SPL (B&K 364 

Type 4231, Virum, Denmark). All recordings were made using an handheld recorder (Tascam 365 

Portacapture X6) running at 96 kHz sampling rate and the appropriate gain values for each recording 366 

were noted to compensate for final sensitivity calculations. 367 

Using the known sensitivity of the GRAS 46BF, the spectral received levels in dB SPL rms were 368 

calculated for each frequency band of the linear sweep. For the target microphone, the spectral received 369 

levels of the linear sweep in arbitrary units RMS was calculated. The final sensitivity of the target 370 

microphone was calculated by dividing the known sound-pressure-level with the received level in 371 

arbitrary units.  372 

 373 

Song amplitude quality check 374 

In addition to the spherical spreading of sound, the fading of sounds over distance is also partly due to 375 

the absorption of sound energy by the air (atmospheric attenuation), and the attenuation coefficients 376 

are frequency- and weather-dependent50. Since the microphone was placed on the riverbank, the river 377 

noise recorded originated from closer to the microphone than the bird’s song; therefore, correcting for 378 

atmospheric attenuation directly in the recordings would result in overcompensating the noise level. To 379 

avoid this, we calculated the atmospheric attenuation at the syllable’s peak frequency using ambient 380 

temperature and humidity at the time of recording to calculate the atmospheric attenuation bias, that is, 381 
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by how much we underestimated the source level by not correcting for atmospheric attenuation at the 382 

peak frequency48,  383 

In a quality-check step, we looked at how our measures of song amplitude varied according to the 384 

syllable detection method (-6 dB threshold below maximum amplitude on the envelope, frequency peak 385 

detection, cross-correlation window, or manual definition), the distance to the microphone, and the 386 

atmospheric attenuation bias. We built a Gaussian GLMM (identity link function) with the bird ID and 387 

recording number as random effects. The effect size of the atmospheric attenuation bias on the song 388 

source level was close to -1 dB, indicating that we slightly underestimated the source level by the 389 

amount of atmospheric attenuation we did not correct for. Hence, we corrected the source level by the 390 

amount of the atmospheric attenuation bias and used this measure in further analyses. 391 

 392 

Quality check of the song source level measures. 393 
Estimate (posterior mean) and 95% credible interval of the Gaussian GLMM examining the effects of 394 
measurement methods on the song source level (N=7482, 14 dippers). Results which credible interval 395 
does not overlap zero are shown in bold. The reference level is the syllable definition using the -6-dB 396 
threshold  below peak amplitude with average distance to the microphone and atmospheric attenuation 397 
bias. 398 

 Predictor 
Estimate 
[95% credible interval] 

 (Intercept) 80.37 [79.10, 81.60] 

Potential bias due to the 
recording method 

Distance to the microphone (10m) 1.20 [0.73, 1.68] 

Potential bias due to non 
compensations 

Atmospheric attenuation bias (dB) -0.92 [-1.09, -0.73] 

Potential bias due to the 
measurment method 

Syllable definition (manual) -1.12 [-1.28, -0.96] 

Syllable definition (frequency tracking) -3.87 [-4.24, -3.48] 

Syllable definition (cross correlation) -2.98 [-3.35, -2.58] 

 Variance of random effect (recording) 9.98 

Random effects Variance of random effect (Bird ID) 1.65 

 Variance of residuals 10.39 

 399 

The bias due to distance was especially strong here since we used the entire dataset for this analysis. 400 

In practice, the signal-to-noise ratio of the recording decreased drastically when a bird was farther away 401 

because the received level of the song decreases proportionally to the square of the distance while the 402 

ambient noise remains unchanged. However, as shown below, the highest source level did not change 403 

with the distance from the microphone. This shows that the bias due to distance was correctly corrected 404 

in the acoustic analysis. 405 
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 406 

Song source level as a function of the distance to the microphone.  407 
Note that the average source level increases when the birds are further away, which is due to the 408 
filtering of fainter syllables that are drowned out by the noise when the bird is further away from the 409 
microphone. However, the maximum source level as a function of the distance remains constant. 410 
 411 

Syllable complexity score 412 

We scored the syllable complexity according to four criteria: presence of several, non-temporally 413 

overlapping units; trills (at least three reversal frequency modulations not separated by silences); 414 

several units overlapping in time suggesting the use of the two sides of the syrinx independently; and 415 

ratio between the syllable bandwidth and duration (i.e. index of frequency modulation) lower than 0.25. 416 

Each syllable was scored for each of the four categories (trait present/absent). 417 

 418 

Blinking rate and song amplitude 419 

Since we recorded only one measure of blink rate per recording, and each recording contained 1-164 420 

song syllables, we selected in each recording the 95th percentile of the RMS syllable amplitude of trilled 421 

single-element syllables, which were reliably present in all recordings. The 95th percentile is a reliable 422 

estimate of the maximum amplitude51, 52, 54. 423 

 424 

Statistical analysis 425 
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All statistical analyses were performed in R v 4.2.2 in a Bayesian framework with the packages rstanarm 426 

v. 2.32.1 and bayesplot v. 1.10.0. Models were run with default, non-informative priors. We ensured the 427 

models had mixed correctly by inspecting chain plots, and we checked model fit by performing posterior-428 

predictive checks as advised by Gabry (2022)55. 429 

 430 

Statistical model parameters 431 

Model  
Response 
variable 

Fixed 
effects 

Random 
effects 

Sampl
e size 

Family 
Link 
function 

Number of 
iterations 

Warm-
up 

Thin 
rate 

Results  

Quality 
check 

RMS song 
level  

Call 
detection 
method 

Distance to 
the bird 

Atmospheric 
attenuation 
bias 

Bird ID 

Recordin
g ID 

7520 
syllable
s, 14 
birds 

Gaussi
an 

identity 5000 1000 10 

STAR 
methods:  
Quality 
check of 
the song 
source 
level 
measures 

Song 
amplitu
de 
accordi
ng to 
other 
parame
ters 

RMS song 
level 
corrected 
for 
atmospheri
c 
attenuation 

Trill criterion 

Element 
criterion 

Two-voice 
criterion 

Fast FM 
criterion 

Syllable 
duration 

Bandwidth 

Peak 
frequency 

Sex 

River noise 

Bird ID 

Recordin
g ID 

7482 
syllable
s, 14 
birds 

Gaussi
an 

identity 5000 1000 10 Table S3 

Trill 
compos
ition 

Trill 
criterion 

River noise 

Blink rate 

Presence of 
conspecific 

Sex 

Peak 
frequency 

Bird ID 

7482 
syllable
s, 14 
birds 

Binomi
al 

logistic 4000 1000 4 Table 2 

Compo
sition in 
syllable
s with 
several 
elemen
ts 

Element 
criterion 

River noise 

Blink rate 

Presence of 
conspecific 

Sex 

Peak 
frequency 

Bird ID 

7482 
syllable
s, 14 
birds 

Binomi
al 

logistic 4000 1000 4 Table 2 
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Two-
voice 
syllable 
compos
ition 

Two-voice 
criterion 

River noise 

Blink rate 

Presence of 
conspecific 

Sex 

Peak 
Frequency 

Bird ID 

7482 
syllable
s, 14 
birds 

Binomi
al 

logistic 4000 1000 4 Table 2 

Fast 
FM 
syllable 
compos
ition 

Fast FM 
criterion 

River noise 

Blink rate 

Presence of 
conspecific 

Sex 

Peak 
frequency 

Bird ID 

Recordin
g ID 

7482 
syllable
s, 14 
birds 

Binomi
al 

logistic 4000 1000 4 Table 2 

Blinking 
respon
se to 
playbac
k 

Blinking 
rate 

Playback 
phase 

Aggressivity 
score  

Bird ID 

30 
observ
ations,  

15 
birds 

Gaussi
an 

identity 5000 1000 5 Table S1 

Blinking 
rate 
accordi
ng to 
river 
noise 

Blinking 
rate 

River noise 

Conspecific 
presence 

River noise : 
conspecific 
presence 

Sex 

Observer ID 

Bird ID 

403 
observ
ations, 
22 
birds 

Gaussi
an 

identity 5000 1000 5 Table S2 

Blinking 
rate 
accordi
ng to 
song 
amplitu
de 

Blinking 
rate 

River noise 

Song level  

Conspecific 
presence 

Song level  : 
conspecific 
presence 

Bird ID 

114 
observ
ations, 
11 
birds 

Gaussi
an 

identity 5000 1000 5 Table 1 

 432 

Plasticity in song complexity 433 

To assess whether birds modified their song structure in response  to river noise, we quantified the 434 

proportion of syllables that met one or several complexity criteria across noise levels (Table S4). For 435 

this, we built one binomial model for each criterion with a score of  whether or not a syllable satisfed 436 

this criterion as a resonse variable, and river noise, peak frequency, blink rate, bird sex, and the 437 

presence of a conspecific as fixed predictors, and bird ID as a random factor. 438 

Noise-related differences in song structure could arise from two sources: (1) behavioural plasticity within 439 

individuals, or (2) consistent differences between individiuals. To distinguish between these 440 
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possibilities, we performed two types of inter-individual comparisons. First, we decomposed the noise 441 

predictor into two components: inter-individual variation (i.e., subject-specific mean noise level) and 442 

intra-individual variation (i.e., deviations from the subject mean). We then refitted the binomial GLMMs 443 

used to examine the proportion of syllables in each criterion substituting  raw noise level with the two 444 

noise components56.  445 

A statistically meaningful effect of the subject meanwould suggest that the differences in song structure 446 

were primarily due to inter-individual variation,  reflecting population-level differences. Conversely, a 447 

statistically meaningful effect of the deviation from the subject mean would indicate that the observed 448 

changes were driven primarily by within-individual plasticity. When evidence pointed towards plasticity, 449 

we conducted a second analysis—a random regression—to test whether individuals differed in how 450 

they adjusted their song structures in response to noise. 451 

Because random regressions with binomial response variables can be insensitive, we first validated our 452 

approach using a simulated data set with the same structure as the real data and known individual 453 

variation in response slopes (randomly sampled between 0 and 3 on the log-odds scale)57. We refitted 454 

the initial model, which included river noise level, conspecific presence, and focal bird sex as fixed 455 

effects, under three scenarios:  456 

1.  no random effects 457 

2. Bird ID as a random intercept only (replicating the original model) 458 

3.  Bird ID as a random intercept and noise as a random slope  459 

We compared the predictive performance of these models using the Leave-One-Out Cross-Validation 460 

(LOO)58, which yields an estimate of the Expected Log-Predictive Density (ELPD) and its standard 461 

deviation (SD). The model with the highest ELPD was considered the best. We deemed differences in 462 

model performance statistically meaningful when the ELPD of a lower-ranked model plus twice its SD 463 

was still lower than the ELPD of the top model58. In the simulated data, the model including random 464 

slopes outperformed the other two, confirming that our approach was sufficiently sensitive to detect 465 

inter-individual differences in noise-related song adjustment. Results of the simulation are shown below. 466 

We applied this full procedure across all four syllable complexity criteria. 467 

 468 

Leave-One-Out Comparison on the simulated data, to test if the model would be able to detect 469 
differences in behavioural plasticiy based on our dataset using random structures.  470 
The simulated slopes for the 13 birds were 0.13, 0.33, 0.75, 10.3, 1.12, 1.21, 1.74, 1.95, 2.03, 2.06, 471 
2.15, 2.57, and 2.73. The model with random slope has more predictive power than the other two 472 



22 
 

models, indicating that comparing the models with and without random slopes will enable the detection 473 
of significant differences in behavioural plasticity in our dataset. ELPD: expected log-predictive density. 474 
 475 

Model 
ELPD 
difference 

Standard error of 
ELPD difference 

Model has worse 
predictive power 

Random slope and 
intercept 

0 0 (best model) 

Random intercept only -95.357 13.345 Yes 

No random effect -228.092 19.899 Yes 

 476 

 477 

 478 
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KEY RESOURCES TABLE 

RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

Python version 3.11 Python Software Foundation http://www.python.org 

Package scipy version 1.13.0 Virtanen et al.41 https://scipy.org/ 

Package Scikit-maad version 

1.4.2 

Ulloa et al.42 https://scikit-maad.github.io/ 

Package Numpy version 1.26.4 Harris et al.43 https://numpy.org/ 

Package Matplotlib version 

3.8.4 

Hunter44 https://matplotlib.org/ 

Package Soundfile version 

0.12.1 

B. Bechtold https://python-

soundfile.readthedocs.io/ 

Package Scikit-learn version 

1.5.0 

Pedregosa et al.45 https://scikit-learn.org/ 

R version 4.2.2 The R Foundation for Statistical 

Computing 

R: The R Project for Statistical 

Computing, https://www.r-

project.org 

Package rstanarm version 

2.32.1 

Goodrich et al.46 https://mc-stan.org/rstanarm 

Package bayesplot version 

1.10.0 

Gabry & Mahr47 https://mc-stan.org/bayesplot/ 
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Figure S1. Blink frequency differences between blackbirds and dippers. 
The blackbird data are based on 13 observations of six birds. On average, the blackbirds 
blinked  16.4 ± 7.8 times per minute. Dippers blinked markedly more frequently, with  36.6 
[29.1, 43.5] more blinks per minute than the blackbirds (Gaussian GLMM with bird ID as a 
random effect and species as a fixed effect). Related to Figure 1. 
 
 

 
 
Figure S2. Principal Component Analysis (PCA) biplot of the aggression score of dippers in 
response to playback presentation. 
The plot shows the relationships between 15 observations and 5 behavioral variables. 
Obser-vations are represented as points (labeled 1–15), while variables are shown as blue 
arrows indicat-ing their contribution and direction in the reduced two-dimensional PCA 
space (Dim1 and Dim2). The length and orientation of the arrows represent the strength and 
direction of each variable’s influence. Related to STAR Methods. 
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Table S1. Dippers blink more when they respond more aggressively. 
Estimate (posterior mean) and 95% credible interval of the Gaussian GLMM examining the 
effects of playbacks on dipper blink rate (N=15 dippers). Results which credible interval does 
not overlap zero are shown in bold. Reference level is r the blinking rate before the playback 
started in birds with an average aggression score. Related to Figure 1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table S2. Dippers blink more when a conspecific is within 25m. 
Estimate (posterior mean) and 95% credible interval of the Gaussian GLMM examining the 
effects of river noise and the presence of a conspecific on the dipper blink rate on the full 
dataset (N=403, 22 dippers). Results which credible interval does not overlap zero are shown 
in bold. The reference level is female birds with no conspecific within 25 m and at average 
river noise level. Related to Figure 1. 
  

Predictor 
Estimate 
[95% credible interval] 

(Intercept) 52.99 [48.33, 57.61] 
Playback phase (after) 2.85 [-0.95, 6.70] 
Aggression score (PC1, negative => more aggressive) -2.98 [-5.82, -0.13] 
Variance of random effect (Bird ID) 34.3 
Variance of residuals 13.5 

Predictor 
Estimate 
[95% credible interval] 

(Intercept) 53.55 [48.72, 58.19] 
River noise level (per 6 dB(A)) -0.06 [-0.96, 0.80] 
Conspecific present -1.22 [-3.40, 0.98] 
River noise level:conspecific  

present 
2.95 [1.17, 4.84] 

Sex (Male) 1.40 [-4.71, 7.71] 
Observer 2 -3.29 [-7.63, 0.60] 
Observer 3 2.07 [-6.05, 11.26] 
Variance of random effect (Bird ID) 26.5 
Variance of residuals 57.3 



 

 

 

Table S3. Dipper song syllable source level according to the context, acoustic parameters 
and measurement parameters. 
Estimate (posterior mean) and 95% credible interval of the Gaussian GLMM examining the 
effects of context and syllable characteristics on the syllable source level (N=7482, 14 
dippers). Results for which the credible interval does not overlap zero are shown in bold. 
Related to Figure 2.  
* The reference level is female birds with no conspecific within 25m, with average river noise level and 
syllable parameters, and a syllable belonging to none of the complexity categories. The reference syllable 
definition is the -6dB threshold below peak amplitude. 

  

Predictor 
Estimate 
[95% credible interval] 

 (Intercept)* 78.45 [75.63, 81.40] 

Environmental 
parameters 

River noise level (doubling energy, +6 
dB(A)) 

1.14 [0.59, 1.66] 

Conspecific present 0.36 [-1.04, 1.72] 
Sex (male) 0.62 [-2.99, 3.98] 

Acoustic syllable 
parameters 

Duration (10 ms) -0.04 [-0.07, -0.01] 
Peak frequency (1 kHz) -0.13 [-0.22, -0.04] 
Bandwidth (1 kHz) -1.21 [-1.36, -1.06] 

Syllables 
category 

2 voices 0.39 [0.17, 0.60] 
Trill 0.76 [0.59, 0.92] 
Several elements 0.15 [-0.02, 0.35] 
Fast FM 0.73 [0.51, 0.93] 

Measurement 
method 

Syllable definition (manual) -0.81 [-0.99, -0.64] 
Syllable definition (frequency tracking) -3.62 [--3.98, -3.27] 
Syllable definition (cross correlation) -2.72 [-3.11, -2.33] 

 Variance of random effect (recording) 9.93 
 Variance of random effect (Bird ID) 3.85 
 Variance of residuals 9.94 



 

 

 
 
Table S4. Leave-One-Out Comparison of the models with different random structures to 
test for individual differences in noise-induced adjustments of song composition. 
Results for which the credible interval does not overlap zero are shown in bold. ELPD: 
expected log-predictive density. Related to Figure 2.  

Proportion of 
syllables with 

Model 
ELPD 
difference 

Standard error 
of ELPD 
difference 

Model has worse 
predictive power 

several elements 

Random slope and 
intercept 

0 0 
(best model) 

Random intercept 
only 

-0.914 1.711 
No 

No random effect -11.796 5.156 Yes 

trills 

Random slope and 
intercept 

0 0 
(best model) 

Random intercept 
only 

-4.755 2.731 
No 

No random effect -15.378 5.621 Yes 

fast FM 

Random slope and 
intercept 

0 0 
(best model) 

Random intercept 
only 

-0.979 2.302 
No 

No random effect -18.161 6.272 Yes 


