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Understanding the molecular level mechanisms underpinning Alzheimer’s disease (AD) by study-
ing crucial genes associated with the disease remains a challenge. Alzheimer’s, being a multifac-
torial disease, requires understanding the gene-gene interactions underlying it for theranostics and
progress. In this article, a novel attempt has been made using a quantum regression to decode how
some crucial genes in the AD Amyloid Beta Precursor Protein (APP ), Sterol regulatory element
binding transcription factor 14 (FGF14), Yin Yang 1 (Y Y 1), and Phospholipase D Family Member
3 (PLD3) etc. become influenced by other prominent switching genes during disease progression,
which may help in gene expression-based therapy for AD. Our proposed Quantum Regression Net-
work (Alz-QNet)a introduces a pioneering approach with insights from the state-of-the art Quantum
Gene Regulatory Networks (QGRN) to unravel the gene interactions involved in AD pathology,
particularly within the Entorhinal Cortex (EC), where early pathological changes occur. Using the
proposed Alz-QNet framework, we explore the interactions between key genes (APP , FGF14, Y Y 1,
EGR1, GAS7, AKT3, SREBF2, and PLD3) within the CE microenvironment of AD patients,
studying genetic samples from the database GSE138852, all of which are believed to play a crucial
role in the progression of AD. Our investigation uncovers intricate gene-gene interactions, shedding
light on the potential regulatory mechanisms that underlie the pathogenesis of AD, which helps us
to find potential gene inhibitors or regulators for theranostics.

I. INTRODUCTION

Alzheimer’s disease (AD) presents a formidable chal-
lenge in healthcare, characterized by progressive cogni-
tive decline and neurodegeneration [1]. The accumula-
tion of peptides of Amyloid Beta (Aβ) from APP is a cru-
cial factor in the pathology of AD [2]. Despite extensive
research efforts over decades, the intricate mechanisms
underlying AD remain elusive, impeding the development
of effective therapeutic interventions [3]. The hypothesis
of the amyloid cascade, which attributes neurotoxicity
and neuronal loss to the accumulation of Aβ peptides,
has been a prominent theory but has faced limitations
in translating it into successful treatments [4]. Clinical
trials targeting Aβ accumulation have produced disap-
pointing results, underscoring the multi-factorial nature
of AD pathogenesis influenced by factors such as Reactive
Oxygen Species (ROS) and ferroptosis [5]. Mounting evi-
dence suggests that Aβ deposition may be a downstream
consequence rather than the primary driver of neurode-
generation, necessitating a reevaluation of therapeutic
strategies and a deeper understanding of the molecular
underpinnings of AD. The failure of the Amyloid Cascade
hypothesis proved why AD is a multifactorial disease by
debunking the myth that the gene that causes upregula-
tion of amyloid beta, APP, is the primary driver of AD
progression. Thus, the requirement to study a multigene
model in the EC environment for potential gene control-
based therapy has great potential.
Gene Regulatory Networks (GRN) [6, 7] are complex sys-
tems that govern gene expression and cellular processes.

a The Pytorch code for our Alz-QNet implementation is available at
https://anonymous.4open.science/r/QuantumGRN-E255.

Understanding the dynamics of GRN is essential to elu-
cidate the molecular mechanisms underlying physiolog-
ical functions and disease states. In AD, the entorhi-
nal cortex is particularly significant due to its early in-
volvement in disease progression [8]. However, decipher-
ing AD-related GRN presents challenges, which require
innovative computational approaches to integrate multi-
omics data and reveal the regulatory landscape of AD-
associated genes [9]. Correlation- and regression-based
methods are commonly employed techniques for GRN in-
ference because of their computational efficiency. These
methods typically compute correlation or regression co-
efficients for gene pairs based on the total number of cells
in the dataset. However, they have limitations, as they
treat gene pairs independently, failing to fully capture
complex expression patterns by incorporating additional
layers of information.
Quantum Computing (QC) harnesses the principles of
quantum mechanics to perform computations beyond the
capabilities of classical computers [10]. Unlike classical
bits, which can only exist in a state of either 0 or 1, quan-
tum bits or qubits can exist in superpositions of these
states, enabling exponentially greater computational ca-
pacity and effective computations [11]. This exponen-
tial scaling opens avenues for solving computationally in-
tractable problems in genomics [12]. For example, the hu-
man genome is given by 3 billion base pairs, which can be
represented by 1010 classical bits, which are equivalent to
34 qubits (2n possible states for each). Building upon the
foundations of Quantum Machine Learning (QML) seeks
to leverage quantum algorithms and hardware to enhance
traditional machine learning techniques [13]. QML offers
the promise of accelerated learning and improved per-
formance in large datasets by exploiting quantum paral-
lelism and entanglement [14]. Moreover, QML can poten-

https://anonymous.4open.science/r/QuantumGRN-E255
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tially address challenges such as feature selection, dimen-
sionality reduction, and pattern recognition, extending
the applicability of machine learning to complex scien-
tific domains [12, 13, 15, 16].
However, the main problem lies in the computational ex-
pense and complexity of quantum circuits, considering
the costs of gates like controlled rotation, which are ex-
tensively used in QML (regression) circuits, which do not
entirely make quantum computing an economically fea-
sible option for data science in the short term [17]. The
traditional method of Quantum Gene Regulatory Net-
works (QGRN) [18] suffers from being computationally
very expensive to implement, as the quantum circuit with
n qubits requires n(n − 1) controlled rotation gates and
n rotation gates.
Recognizing these limitations, our Alz-QNet model har-
nesses the computational power of QML to explore
high-dimensional genomic data to reveal intricate gene-
gene interactions that contribute to the pathogenesis of
AD [19]. In the midst of the intricate molecular mecha-
nisms and unresolved queries in AD research, the integra-
tion of QML and GRN analysis holds promise to unravel
the complexities of AD pathogenesis. Using quantum re-
gression networks (Alz-QNet) inspired by GRN, the ob-
jective is to uncover the regulatory dynamics controlling
key genes associated with AD, such as APP , SREBF2,
and EGR1. Through this interdisciplinary effort, the
aim is to advance the understanding of AD pathogenesis
and lay the foundation for innovative therapeutic inter-
ventions targeting dysregulated gene networks [20].
The primary contributions of our work are summarized
in the following.

1. In this study, we optimized Quantum Gene Regu-
latory Networks (QGRN) [18] to address the com-
putational complexity and expense associated with
the construction of variational quantum circuits for
larger datasets. Our proposed Alz-QNet requires
n(n−1)

2 controlled rotation gates over n(n − 1) for
the QGRN model, demonstrating that a single con-
trolled rotation gate between 2 qubits is sufficient
to measure the interaction.

2. In our Alz-QNet circuit, the reduction of CRY
gates

by half compared to the traditional QGRN [18], op-
timizes the number of variational parameters, θx,y
between two qubits x and y. We observed that the
value of θx,y = θy,x. It enhances the scalability
potential of our proposed Alz-QNet.

3. The study also aimed to uncover how APP inter-
acts with other key genes in AD, potentially offer-
ing information on control-based therapies for the
gene expression of the disease.

4. Furthermore, beyond APP , the research used sin-
gle nucleus RNA sequencing of the entorhinal cor-
tex to explore less explored genes such as Y Y 1,
SREBF2, PLD3, GAS7, and EGR1.

Motivation: QML research in general has demon-
strated better performance in term of generalization, ex-
pressivity, privacy and robustness [15, 16, 21]. It presents
several notable advantages over the classical GRN re-
construction methods [18]. The QML algorithms uti-
lized in GRN research leverage quantum superposition
and entanglement, which allows them to capture com-
plex, non-linear relationships between genes that classical
algorithms may overlook. Furthermore, QML is better
equipped to address the curse of dimensionality, which is
especially pertinent given the high-dimensional nature of
genomic data.

II. VARIOUS GENE TYPES WITH
ALZHEIMER’S DISEASES

Comprehending the regulatory connections among piv-
otal genes associated with AD, such as APP , SREBF2,
and other relevant genes, is essential for deciphering
the molecular mechanisms driving AD pathogenesis.
These genes are fundamental in synaptic function, lipid
metabolism, and neuronal viability, and their dysregula-
tion is associated with AD-related neuropathological pro-
cesses, including Aβ accumulation, tau hyperphosphory-
lation, and synaptic dysfunction [22].
At the forefront of AD research lies the APP , a gene
pivotal to the disease’s pathogenesis. Anomalies in APP
processing lead to the generation of amyloid beta pep-
tides, whose accumulation forms insoluble plaques - a
hallmark of AD pathology [8, 23]. This neurotoxic cas-
cade disrupts synaptic function, induces oxidative stress,
and triggers inflammatory responses, ultimately result-
ing in synaptic dysfunction and neuronal loss. Continu-
ing investigations actively explore strategies to modulate
APP metabolism, prevent Aβ42 aggregation, or improve
Aβ42 clearance as potential therapeutic interventions for
AD [24].
However, APP is one component of the intricate puzzle
of AD. Other genes, such as AKT3, SREBF2, Y Y 1,
GAS7, EGR1, FGF14, and PLD3, also play crucial
roles in the pathogenesis of AD. For example, dysreg-
ulation of AKT3 signaling has been associated with in-
sulin resistance, a common feature of AD pathology that
exacerbates neurodegeneration. Studies suggest that ac-
tivated AKT3 promotes neuronal survival by inhibit-
ing Glycogen Synthase Kinase-3 β (GSK − 3β), a pro-
apoptotic protein, and enhances adult neurogenesis in
neural stem cells (NSC). Conversely, dysregulated AKT3
signaling may worsen neuronal vulnerability and con-
tribute to AD pathogenesis, particularly in conditions
like insulin resistance [25]. Therefore, exploring the
molecular mechanisms underlying AKT3 dysregulation
in AD provides valuable information on potential thera-
peutic targets to mitigate neurodegeneration and cogni-
tive decline in individuals with AD [26, 27].
SREBF2, a key regulator of lipid metabolism, interacts
with pathways involving crucial genes in AD, impact-
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ing processes such as amyloid-beta production, transcrip-
tional regulation, and insulin signaling. Dysregulation
of SREBF2 signaling is associated with neurodegenera-
tion, exacerbating amyloid beta accumulation, synapto-
toxicity, and memory deficits in neuronal cells [28]. Fur-
thermore, disrupted SREBF2 signaling affects choles-
terol homeostasis in brains with AD, preventing the clear-
ance of plaques Aβ and increasing oxidative stress in neu-
ronal cells. Recent research has highlighted the role of
SREBF2 in AD, demonstrating significant changes in
its nuclear translocation and activation patterns in AD
brains and relevant animal models. Specifically, reduced
nuclear translocation of mature SREBF2 (mSREBP2)
is observed in AD brains, with tau modifications associ-
ated with these alterations [2, 29].
The involvement of Y Y 1 in regulating the Fuz gene adds
another layer of significance to its role in AD research.
Aberrant Y Y 1 activity can result in excessive methyla-
tion of the Fuz gene promoter, leading to reduced tran-
scription. This alteration affects the polarity of the pla-
nar cells and subsequent cell stability, which are crucial
for neuronal health. The elevated Fuz transcript levels
observed in individuals with AD pathology suggest that
Y Y 1-mediated modifications of the Fuz gene may con-
tribute to neuronal apoptosis and neurodegeneration in
AD. Thus, unraveling the interplay between Y Y 1 and
the Fuz gene provides information on additional mecha-
nisms underlying AD pathogenesis, offering potential av-
enues for therapeutic intervention targeting Y Y 1− Fuz
interactions to mitigate neuronal loss and cognitive de-
cline in AD. Targeting Y Y 1 expression or activity could
hold therapeutic potential for alleviating AD pathology,
making it a significant focus in the pursuit of effective
AD treatments [4, 30].
GAS7, EGR1, FGF14, and PLD3 each play distinct
roles in AD pathogenesis, influencing processes such
as tau phosphorylation, synaptic plasticity, and lipid
metabolism. Dysregulated expression of GAS7 in neu-
rons has been associated with altered microtubule trans-
port proteins, potentially leading to tau dysregulation
and increased susceptibility to AD development. Re-
cent research has shed light on the involvement of GAS7
in neuronal maturation and morphogenesis, further im-
plicating its role in the progression of AD [31]. GAS7
expression promotes the formation of dendrite-like pro-
cesses and filopodia projections in neuronal cells, en-
hancing neurite outgrowth and microtubule bundling.
These findings suggest that GAS7 governs neural cell
morphogenesis by coordinating actin filaments and mi-
crotubules, thereby influencing neuronal maturation and
potentially impacting AD progression. The intricate in-
terplay among these genes unveils a complex network of
molecular events driving AD progression [32]. EGR1’s
modulation of acetylcholinesterase mRNA and protein
levels indicates its significant contribution to alterations
in acetylcholine signaling observed in AD, where acetyl-
choline depletion is prominent. Furthermore, EGR1’s
regulation ofmiRNA−132, impacting the nucleus basalis

of Meynert rich in acetylcholine, underscores its role in
AD-related neurotransmitter dysregulation [33]. Recent
studies have provided promising information on the ther-
apeutic potential of EGR1 in AD. Silencing EGR1 in AD
mouse models reduces tau phosphorylation, decreases
amyloid-beta pathology, and improves cognition [34].
EGR1 regulates tau phosphorylation and amyloid syn-
thesis by influencing the activities of Cdk5 and BACE−
1, respectively, suggesting its potential as a therapeu-
tic candidate for the treatment of AD [35]. Con-
versely, dysfunction in sodium channel signaling due to
FGF14 deficiency has been linked to neurological dis-
orders, such as schizophrenia [36]. In particular, mod-
ulation of sodium channel signaling FGF14’ can affect
amyloid beta pathology, with PPAR− γ agonists show-
ing promise by phosphorylating FGF14 and modulating
sodium channel signaling. This suggests a potential role
for FGF14 as a therapeutic target in the management of
neuronal dysfunction and memory loss observed in early
AD. Additionally, FGF14 demonstrates neuroprotective
effects by inhibiting MAPK signaling, highlighting its
potential as a therapeutic agent for neurodegenerative
conditions. Its complex interactions with voltage-gated
sodium channels at the axonal initial segment influence
neuronal excitability, synaptic transmission, and neuro-
genesis, affecting cognitive and affective behavioral out-
comes [37]. In translational studies, FGF14 has been
increasingly associated with diseases related to cognitive
and affective domains, including neurodegeneration, in-
dicating its involvement as a converging node in the eti-
ology of complex brain disorders, further emphasizing its
potential significance in AD pathogenesis [38].
PLD3’s involvement in the formation of amyloid plaque-
associated axonal spheroids highlights its role in the dys-
function of the neural network in AD [39]. Mechanically,
PLD3 encodes a highly concentrated lysosomal protein
in axonal spheroids, with its overexpression leading to
spheroid enlargement and exacerbated axonal conduction
blockades. In contrast, deletion of PLD3 reduces the size
of the spheroid and improves the function of the neural
network. Targeted modulation of endolysosomal biogen-
esis mediated by PLD3 in neurons presents a promising
avenue to reverse axonal spheroid-induced neural circuit
abnormalities in AD, independent of amyloid removal. In
AD brains, suppressing inappropriate PLD signaling has
shown the potential to enhance synaptic resilience and
decelerate cognitive decline, offering therapeutic advan-
tages in AD management [40].
Studying the gene regulation of all eight genes collec-
tively provides a comprehensive understanding of AD
pathophysiology. By elucidating the dynamic interac-
tions among these genes, researchers can uncover com-
mon underlying mechanisms and novel therapeutic tar-
gets for AD [40].
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A. Single-Nucleus RNA Sequencing

Single-nucleus RNA sequencing (snRNA − seq) is a
powerful technique to analyze gene expression patterns
at the single-cell level. Unlike traditional RNA sequenc-
ing methods, which require intact cells, snRNA − seq
enables analysis of gene expression of individual nuclei
extracted from tissues, including complex tissues such as
the brain [41]. The snRNA-seq process involves several
steps:

1. Nuclei Isolation: Tissue samples are dissoci-
ated to release individual nuclei while preserving RNA
integrity.

2. Library Preparation: RNA is extracted from iso-
lated nuclei, and cDNA libraries are generated by reverse
transcription.

3. Sequencing: cDNA libraries are sequenced using
high-throughput sequencing platforms, generating mil-
lions of short reads corresponding to RNA transcripts.

4. Data Analysis: Bioinformatics tools are used
to align sequencing reads to a reference genome, quan-
tify gene expression levels, and perform downstream an-
alyzes, such as identifying cell types and characterizing
gene regulatory networks.

5. Studying Gene Expression: snRNA − seq
provides information on gene expression heterogeneity
within cell populations and allows researchers to iden-
tify rare cell types and transcriptomic changes associ-
ated with various biological processes and disease states.
By profiling gene expression at the single-cell level,
snRNA − seq enables the discovery of novel cell types,
regulatory pathways, and biomarkers with high resolu-
tion and sensitivity [42].

III. QUANTUM COMPUTING THEORY

A. Qubits and Basis States

In quantum computing, the basic unit is qubit. A qubit
can exist in a superposition of the states |0⟩ and |1⟩,
represented as [43]:

|ψ⟩ = α|0⟩+ β|1⟩ , (1)

where α and β are complex numbers such that |α|2 +
|β|2 = 1. The states |0⟩ and |1⟩ are the computational
basis states.

B. Quantum Gates

Quantum gates manipulate qubits through unitary op-
erations. Here are some basic quantum gates and their
operations [43]:

1. NOT Gate: The NOT (X) gate flips the state
of a qubit as follows [44]:

X =

(
0 1
1 0

)
, (2)

X|0⟩ = |1⟩, X|1⟩ = |0⟩ . (3)

2. Hadamard Gate: The Hadamard (H) gate
creates a superposition of the states |0⟩ and |1⟩ [44]:

H =
1√
2

(
1 1
1 −1

)
, (4)

H|0⟩ = 1√
2
(|0⟩+ |1⟩), H|1⟩ = 1√

2
(|0⟩ − |1⟩) . (5)

3 Controlled-NOT Gate: The Controlled-NOT
(CX) gate flips the target qubit if the control qubit is in
the state |1⟩ [44]:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (6)

The action of a CX gate on the basis states:

CX |00⟩ = |00⟩, CX |01⟩ = |01⟩ . (7)

CX |10⟩ = |11⟩, CX |11⟩ = |10⟩ . (8)

4. Rotation Gate: The rotation gate around the
Y-axis (RY ) rotates the qubit state by an angle θ [44]:

RY (θ) =

(
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

)
. (9)

5. Controlled-RY Gate: The controlled-RY (CRY
)

gate rotates around the Y -axis on the target qubit if the
control qubit is in the state |1⟩. This can be constructed
using a CX gate and RY gates as follows [44]:

CRY
(θ) =


1 0 0 0
0 1 0 0
0 0 cos( θ2 ) − sin( θ2 )
0 0 sin( θ2 ) cos( θ2 )

 . (10)

This operation can be decomposed into a sequence in-
volving a CX gate and RY gates:

CRY
(θ) = (I ⊗RY (

θ

2
)) ·CX · (I ⊗RY (−

θ

2
)) ·CX . (11)

Here, I is the identity matrix. The standard basis state
table for controlled rotation gates is provided in Table I
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FIG. 1: A Quantum Regression Network (Alz-QNet) relying on Variational Quantum Circuit (VQC) to study
Alzheimer’s gene interactions (The circuit is continued from top to bottom).

Basis state |x⟩ CRY (θ)|x⟩
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ cos

(
θ
2

)
|10⟩+ sin

(
θ
2

)
|11⟩

|11⟩ − sin
(
θ
2

)
|10⟩+ cos

(
θ
2

)
|11⟩

TABLE I: Mapping basis states using a CRY
(θ) gate.

IV. QUANTUM REGRESSION NETWORK
ARCHITECTURE

The proposed Alz-QNet model centered on studying
the 8 genes specific to Alzheimer’s disease by signifi-
cantly reducing the cost of the CRY

gates through a
bypass mechanism, thereby decreasing their number by
half to analyze Gene Regulatory Networks (GRN) [6]
with reduced computational complexity. Inspired by the
Quantum Gene Regulatory Networks (QGRN) [18], our
proposed Alz-QNet, as shown in Fig. 1, leverages the
quantum entanglement quantum computing offers to ex-
plore gene regulatory relationships. In the proposed Alz-
QNet model, each qubit represents a gene and initializes
to phase 0. The Alz-QNet is structured into two sec-
tions: the encoder and regulation layers. The encoder
layer translates snRNA − seq data into a superposi-
tion state, while the regulation layers entangle qubits to
model gene-gene interactions within the quantum frame-
work. Through these layers, we construct an 8 × 8 ma-
trix, with an initial unknown value of θx,y in the CRY

gates entangling 2 qubits, where x represents the control
qubit (gene) and y represents the target qubit (gene).
The optimized values of each θ in the matrix correspond
to the strength of gene interaction. Traditional Laplace
smoothing and the gradient descent algorithm are used
for the optimization process to minimize a loss function
based on Kullback-Leibler (KL) divergence [45].
Our Alz-QNet model utilizes a CRY

gate to establish con-
nections between each pair of qubits in the regulation
layers, simulating the regulatory relationships between
two genes. The rotation angle of the CRY

gate signifies
the strength of the interaction between the control gene
and the target gene. Following optimization, these ro-
tation angles are parameterized and translated into the
adjacency matrix to construct a GRN. A primary unit
circuit is depicted in Fig. 3, initialized in the |00⟩ state.
This circuit comprises a control qubit (1st qubit, rotated
with a RY gate at an angle ϕ1), a target qubit (2nd qubit,
rotated with a RY gate at an angle ϕ2) and a CRY

gate
with a rotation angle θ.
We measured the output register to obtain the output
distribution pout of the basis states. The probability of a
particular state in pout was set to 0, and the remaining
distribution was rescaled to sum to 1. Laplace smooth-
ing was applied to reshape pobs and pout into smoothed
distributions p̃obs and p̃out, respectively. These smoothed
distributions are computed as follows:

p̃(x) =
p(x) + α

N + α · |X|
, (12)
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where α is the smoothing parameter (typically set to 1),
N is the total number of occurrences in the distribu-
tion, and |X⟩ is the size of the distribution’s support. In
other words, p̃ represents the original distribution after
smoothing.

A. Loss Function

The loss function, comprising the KL divergence
(LKL) [45] and a constraint term (Lc), is defined as fol-
lows:

LKL =
∑

pobs log
pobs
pout

. (13)

Lc =
∑

(θ − θ0)
2
, (14)

where θ is the parameter in the proposed Alz-QNet model
and θ0 is the initial parameter set. Thus, the total loss
function was defined as:

L = LKL + λLc , (15)

where λ is a dynamic coefficient that rescales Lc to the
same order of magnitude as LKL. In summary, the term
LKL aligns the output distribution pout with the observed
distribution pobs, while the term Lc prevents any param-
eter θ from deviating significantly from θ0.
Optimization has been performed by iteratively minimiz-
ing the loss function until it has reached a threshold value
of 2n×10−4 using a modified gradient descent algorithm
with a learning rate (η) of 0.05. If this threshold is un-
met, optimization has continued for a predefined number
of iterations ι. The parameter θ in iteration ι was up-
dated as:

θ(ι+1) = θ(ι) − η∇LT , (16)

where ∇L is the gradient of the loss function, ensuring θ
remains a symmetric matrix. In the proposed Alz-QNet,
θk,k as the parameter for the RY gate on the kth qubit
in the Le layer, and θk,p for the CRY

, n gate with the kth
qubit as control and the pth qubit as target in the Lk

layer of an n-qubit system. For our case where n = 8,
the layers are defined as follows:

Le = RY (θ7,7)⊗RY (θ6,6)⊗ · · · ⊗RY (θ1,1)⊗RY (θ0,0) ,
(17)

and

Lk =

7∏
i=0,i̸=k

CRY
, n(θk,i) = CRY

, n(θk,7)

⊗ · · · ⊗ c−RY , n(θk,1)⊗ CRY
, n(θk,0) .

(18)

In our Alz-QNet circuit, we have reduced the num-
ber of CRY

gates by half compared to the traditional
QGRN [18], optimizing the upper triangular matrix of

θx,y. We observed that the value of θa,b = θb,a, demon-
strating that a single controlled rotation gate between 2
qubits is sufficient to measure the interaction. By man-
ually setting θa,b = θb,a, we construct the entire matrix:

θ =


θ0,0 θ0,1 · · · θ0,7
θ1,0 θ1,1 · · · θ1,7
...

...
. . .

...
θ7,0 θ7,1 · · · θ7,7

 . (19)

In the modified constraint loss Lc, the parameter θ0 rep-
resents the initial rotation angles of the quantum gates,
reflecting prior assumptions or biological priors. In our
implementation, θ0 is initialized to 0 for all non diagonal
elements in the matrix, thus having 0 bias. All diagonal
elements are having θ0 of 2 arcsin(

√
ak), where ak is the

activation ratio for the kth gene.

V. SIMULATIONS

Our work is integrated with Qiskit, an open-source
quantum computing library that simulates a noisy quan-
tum circuit using the Aer Simulator backend with default
parameters.

A. Dataset Processing and Parameter Initialization

The dataset GSE138852 [42] comprises single-nucleus
RNA sequencing (snRNA-seq), and has been used to ana-
lyze the Entorhinal Cortex (EC) tissues derived from the
control and Alzheimer’s Disease (AD) brains of twelve
individuals. This approach resulted in the identification
of a total of 13, 214 high-quality nuclei, all of which are
sourced from AD-positive patients and we used the ini-
tial subset of 1, 041 cells.
Initially, the data set with A genes and B cells is nor-
malized using Pearson’s residual method. Subsequently,
attention was directed to the chosen 8 genes. The nor-
malized expression matrix X has been binarized by ap-
plying a threshold of 0, resulting in a binarized matrix
Xb. In this binarization process, the expression values
above 0 are set to 1, while the values equal to or below
0 are set to 0. The binarized matrix Xb has dimensions
of 8 ×m. Labels are assigned by creating string vectors
based on binarized expression values of selected genes
8 for each cell, representing the activation states of the
cells. To compute the observed distribution pobs, we cal-
culated the percentage of the occurrence of each label
among m cells. In pobs, the percentage for the label ℓ
was set to 0, and the remaining distribution was rescaled
to the sum of 1. This approach ensures that only cells
that express at least one of the n genes are considered
informative, addressing the lack of consistency inherent
in the snRNA − seq data due to dropout events during
sequencing. The non-diagonal elements associated with
CRY

gates were initialized to 0. In contrast, the diagonal
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elements corresponding to the RY gates are initialized
using θ = 2arcsin(

√
ak), where ak is the activation ratio

for the kth gene. This initialization ensures that for each
qubit, the probability of measuring a state of 1 aligns
with the activation ratio of the respective gene after the
Le layer [18].

B. Simulation Results

In our investigation, we used snRNA − seq EC data
from AD patients to explore the genetic and molecular
mechanisms underlying this neurodegenerative disorder
(GSE138852). The EC crucial for memory and navi-
gation is among the primary regions impacted by AD,
making it an ideal focus for studying early pathologi-
cal changes. From this dataset, we selected 8 specific
genes: APP , SREBF2, GAS7, PLD3, Y Y 1, FGF14,
AKT3, and EGR1. In quantum simulations, a nodal
graph is generated using Qiskit along with the observed
vs. output frequency distribution graph and the observed
vs. simulated frequency distribution graph, as shown in
Fig. 2, which resembles the classical GRN [7]. In addi-
tion, we also simulated the QGRN as a baseline model
and found that it produced a similar probability distri-
bution to Alz-QNet, as illustrated in Fig. 3, while saving
computations.

1.058 0.044 0.050 0.123 −0.054 0.044 −0.000 0.025
0.044 1.044 0.174 −0.022 −0.025 0.002 −0.047 −0.078
0.050 0.174 0.773 −0.050 −0.105 −0.066 −0.153 0.074
0.123 −0.022 −0.050 0.562 −0.058 −0.060 −0.168 −0.019

−0.054 −0.025 −0.105 −0.058 0.540 −0.112 0.034 −0.029
0.044 0.002 −0.066 −0.060 −0.112 0.524 −0.033 −0.011

−0.000 −0.047 −0.153 −0.168 0.034 −0.033 0.485 −0.019
0.025 −0.078 0.074 −0.019 −0.029 −0.011 −0.019 0.138


The above matrix shows the θx,y values, where each

row and column corresponds to a different gene. The
black upper triangular matrix is the optimized value of
theta obtained, and the lower triangular matrix was con-
structed from the equal values of θx,y = θy,x.
The red lines show the down-regulated networks, and the
green lines show the up-regulated networks. Our graph
model delves deeper into the genetic interactions of an
AD patient’s brain taken from the EC. In addition to the
gene interactions that affect prominent genes like APP
and AKT3, which have direct correlations, our findings
extend and support the detailed epigenetic and transcrip-
tomic insights [1], particularly through the interactions
involving Y Y 1 and PLD3, as shown in Fig. 2.
Fig. 4 illustrates the impact of rotation angles θ and ϕ1 on
the amplitude |µ|2 of the |1⟩ state in a quantum circuit.
Each heatmap corresponds to a different fixed value of ϕ1
(0, 0.25π, 0.5π, 0.75π), while θ (X-axis) and ϕ1 (Y-axis)
vary continuously.The heatmaps reveal symmetric pat-
terns across the parameter space. This symmetry, stem-
ming from the property θx,y = θy,x allows us to encode
the same amplitude information with half the number of
gates. For example, the heatmap values for (ϕ1, θ) and
(ϕ2, θ) by fixing either and varying the other and observ-
ing the symmetry in the heatmap to conclude that they

(a)

(b)

FIG. 2: (a) The nodal graph, where each node
corresponds to the specific gene and the edges

determine the gene regulatory interactions. Green edges
represent upregulation, and red edges represent

downregulation. The weight of the edges determines the
strength of the interaction between genes. (b) Heat map
generated to study Alzheimer’s gene interactions for our

model and quantify graph results.

overlap significantly, demonstrating that redundant gates
contribute no additional unique information. The regions
of high and low amplitude values are nearly invariant to
the interchanging of ϕ1 and ϕ2, further validating the
symmetric property of the CRY

gates. Certain boundary
conditions (e.g., ϕ1 = 0 or ϕ1 = π) exhibit near-linear
dependence of amplitudes, simplifying the overall ampli-
tude structure. Leveraging these symmetric properties,
we reduce the number of CRY

gates by 50% without al-
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(a)

(b)

(c)

FIG. 3: (a) The observed vs output frequency
distributions graph for Alz-QNet, (b) The observed vs
simulated frequency distributions graph for Alz-QNet,

and (c) The observed vs simulated frequency
distributions graph for QGRN.

tering the final quantum state representation. This re-
duction directly translates to lower computational cost
and complexity, particularly for large QGRN networks
with multiple gene-gene interactions.

VI. DISCUSSIONS

In this article, integrating transcriptomic and epige-
netic data, our Alz-QNet offers insights into how regu-
latory mechanisms at the genetic and epigenetic levels
contribute to AD. This supports the study conducted by
Grubman et al. [1] with an emphasis on considering tran-
scriptional and epigenetic factors to understand brain
function and disease, highlighting the importance of in-
tegrating multiple layers of biological data to understand
the molecular foundations of diseases like Alzheimer’s.
This interdisciplinary methodology offers valuable insight
into the molecular foundations of AD and underscores the
promising role of QML research in elucidating complex
biological phenomena.

A. Y Y 1 and PLD3 Interaction

Y Y 1 is a transcription factor with dual gene activa-
tion and repression roles. It influences gene expression
epigenetically by recruiting proteins that modify chro-
matin structure. Our results show a negative interaction
between Y Y 1 and PLD3 (-0.112907), suggesting Y Y 1’s
repressive role on PLD3. This aligns with the known
function of Y Y 1 in gene repression and epigenetic regu-
lation.

B. Role of PLD3 in AD

PLD3 is involved in processing APP and regulating
amyloid-beta levels, which are critical in AD pathol-
ogy. Our study reveals complex interactions between
PLD3 and other genes, such as APP and SREBF2.
These interactions suggest that the regulatory network
of PLD3 is influenced by both transcriptional and epige-
netic mechanisms, supporting the emphasis of the neuro-
biology literature on the importance of epigenetic modi-
fications in brain development and disease.

C. Integration of Epigenetic and Transcriptomic
Data

The work of Grubman et al. [1] provides a comprehen-
sive map of gene expression and epigenetic modifications,
allowing the identification of key regulatory genes. Our
study extends these findings by focusing on the entorhi-
nal cortex in AD, demonstrating how specific gene-gene
interactions are modulated by transcriptic factors. The
interactions involving Y Y 1 and PLD3 in our network
analysis reflect that the complex regulatory dynamics are
driven by changes in gene expression, rather than direct
epigenetic modifications. We highlight the importance of
these regulatory interactions within the context of gene
expression, acknowledging the broader potential for fu-
ture research to explore epigenetic mechanisms to study



9

FIG. 4: Illustrates the impact of rotation angles θ and ϕ1 on the amplitude |µ|2 of the |1⟩ state in a quantum circuit.
Each heatmap corresponds to a different fixed value of ϕ1 (0, 0.25π, 0.5π, 0.75π), while θ (X-axis) and ϕ1 (Y-axis)
vary continuously. The colour intensity represents the amplitude magnitude of the target qubit’s |1⟩ state, with

brighter regions indicating higher amplitudes.

molecular mechanisms underpinning the gene regulatory
activity in future.

VII. CONCLUSION

The current study proposes a novel approach that com-
bines the principles of QML, and GRN analysis to in-
vestigate the complex gene-gene interactions involved in
AD pathology within the EC. Our proposed Alz-QNet
model has the potential for significantly enhanced com-
putational power, enabling faster and more precise mod-
eling of intricate gene interactions. This advancement
can lead to a deeper understanding of biological processes
and can offer groundbreaking insights into gene regula-
tion and expression. Leveraging the precision of quantum
computing could revolutionize personalized medicine by
tailoring treatments to individual genetic profiles. Fur-
thermore, quantum algorithms have the capability to
optimize biological processes and provide efficient solu-
tions to complex biological challenges, making them a
potent tool for simulating and understanding intricate
systems. Notably, we have reduced the computational
cost by nearly half compared to traditional QGRN, pro-
viding a progressive edge in addressing the computational
expense issue.

However, the current state of quantum computing is
still in its nascent stages, with limited availability and
challenges such as errors and decoherence. Modeling
the GRN at the quantum level is highly complex and
resource-intensive, necessitating specialized hardware,
software, and expertise, which can be costly. Scalability
poses a significant hurdle, as existing quantum comput-
ers struggle to handle the vast datasets typical of gene
regulatory networks. Given the constraints of hardware
qubits and noise, approximation techniques such as the
utilization of tensor rings may offer a viable approach in
the future for scaling up data input while ensuring accu-
rate results.

VIII. DATA AVAILABILITY

The Alzheimer’s dataset used for our model can
be found at: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE138852

IX. CODE AVAILABILITY

The Pytorch code for our Alz-QNet implementation is
available in Qiskit simulations at https://anonymous.
4open.science/r/AD_Quantum-2BE8.
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