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Abstract
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1. Introduction

According to the expectations hypothesis (EH) of the term structure of interest rates the long-
term rate is equal to the average of expected future short rates plus a constant risk premium.
While results against the EH span the last four decades (Fama and Bliss, 1987; Campbell and
Shiller, 1991; Cochrane and Piazzesi, 2005), the driving forces of time-variation in bond risk
premia are still intensely debated. Part of this debate owes to the difficulties in obtaining more
accurate out-of-sample excess bond return predictions than the historical average benchmark
implied by the EH.

At the same time, however, economic theory provides a clear indication. If investors demand
compensation for the risk of recessions as in notable rational expectations models (Campbell
and Cochrane, 1999; Wachter, 2006), cyclical variation must be relevant: excess bond returns
should be predictable as they evolve with the expected macroeconomic conditions. However, it
is not clear what the exact notion of cyclical variation is. Resorting to dynamic factor analysis,
Ludvigson and Ng (2009) show that latent common macroeconomic factors contain significant
out-of-sample predictive information unspanned by the current yield curve and expected bond
returns are consistent with countercyclical risk aversion.1 More recently, however, Ghysels et al.
(2018) find that once real-time data is considered the predictive power of latent macroeconomic
factors vanishes.2

In this work we consider an alternative approach to the analysis of cyclical variation in
real activity which is based on the extraction of cycles of different lengths or, equivalently, de-
compositions across frequencies. Albeit filtering methods have been used by macroeconomists
for the measurement of business cycles, it is just in the last few years that these approaches
started to attract considerable interest in finance. Nonetheless, a large body of evidence has
already documented frequency-specific effects in asset prices. For example, Dew-Becker and
Giglio (2016) show that once the risk of consumption fluctuations in asset pricing models is de-
composed in the frequency domain, long-run risk is robustly priced in the equity market. Bandi
and Tamoni (2023) study the empirical failure of the classical Consumption CAPM model find-
ing that, unlike consumption growth itself, a 4 to 8 years cyclical component of consumption
growth provides a valuable pricing signal and, similarly to the cyclical consumption measured by
Atanasov et al. (2020), is a powerful predictor of market returns. Furthermore, Atanasov et al.
(2020) show that filtering is theoretically grounded because cyclical consumption closely ap-
proximates surplus consumption, the state variable of Campbell and Cochrane (1999)’s external
habit formation model.3

1Similarly, other influential works such as Cooper and Priestley (2009), Greenwood and Vayanos (2014) and
Joslin et al. (2014) establish a link between the state of the economy and bond return predictability.

2See, however, Caruso and Coroneo (2023) who show that when the latest data vintages available in real time
are used, instead of first releases as in Ghysels et al. (2018), predictions of interest rates are nearly as accurate as
those obtained with fully revised macroeconomic data.

3These are just some of the most notable contributions to a rapidly growing literature. See also Ortu et al.
(2013), Kamara et al. (2016), Chaudhuri and Lo (2018), Neuhierl and Varneskov (2021), Bandi et al. (2019),
Bandi et al. (2021), Bandi and Su (2023), Huang (2023), Li (2024) among many others.
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Inspired by the mounting evidence of frequency-specific effects, we reconsider the predictive
power of latent macroeconomic factors along a new dimension: frequency. Are all macroeconomic
cycles related to expected bond returns? We propose a new dynamic factor model where common
macroeconomic cycles of different lengths are allowed to be driven by different latent factors. Our
spectral approach to latent factors turns out to be crucial to reveal the predictive content of real-
time macroeconomic data which remains hidden when all frequencies are implicitly aggregated
using time-domain techniques. In other words, not all macroeconomic cycles are relevant to
expected bond returns.

Determining the length of the common macroeconomic cycles which predict bond returns
helps uncover the economic interpretation of our findings. Thanks to this key strength of our
approach, we link predictability to the real economy using two frequency-specific factors: the
first one is closely related to a component of monetary policy with very persistent effects in the
real economy, the second one captures investors’ perception of business-cycle risk.

As of today, a burgeoning literature has adopted sophisticated machine learning methods
for predicting bond returns. Motivated by the possible existence of irrelevant macroeconomic
variation (unrelated to future bond returns) in the predictors and/or nonlinearities of unknown
form, increasing interest has been devoted to supervised learning (see Bianchi et al., 2021;
Huang et al., 2023; Huang and Shi, 2023, among others). However, when real-time data is
used the evidence of predictability in these works comes with at least one of the following two
limitations. First, the adoption of overlapping returns which imply an annual holding period.
This choice has been criticized since with annual holding periods important short-run dynamics
— such as Lehman Brothers’ bankruptcy — and business cycle turning points are overlooked
(Gargano et al., 2019; Wan et al., 2022). Fan et al. (2022) show that this is far from being an
innocuous choice: evidence of predictability in overlapping returns produced by deep learning
approaches becomes weak in nonoverlapping returns. Second, there is a difficulty in translating
statistical forecasting accuracy into economic value for investors.4 First raised by Thornton
and Valente (2012) and Sarno et al. (2016), this is still an open issue, especially as far as real-
time nonoverlapping returns forecasting is concerned. Indeed, to the best of our knowledge, no
predictive method considered thus far has been found to generate any economic value in real-time
using nonoverlapping excess bond returns. Significant certain equivalent return (CER) gains are
found by Eriksen (2017), Bianchi et al. (2021), Huang et al. (2023) using overlapping returns,
and by Gargano et al. (2019) using nonoverlapping returns and fully revised macroeconomic
data.5

While our work follows the recent trend of machine learning methods by allowing for non-
linearity and a high-dimensional space of predictors, our framework is still in the tradition of
the seminal work of Ludvigson and Ng (2009) because we consider a dynamic factor model with

4For example, in the work of Wan et al. (2022) forecasts which are more accurate in mean square error terms
than the historical average benchmark are often associated with poor portfolio performance.

5Huang et al. (2023) and the corrigendum to Bianchi et al. (2021) find statistical evidence of predictability
based on nonoverlapping returns, but they perform no economic evaluation.
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latent common macroeconomic factors. We extend this framework by allowing latent macroeco-
nomic factors to be frequency-specific in the sense that they generate common macroeconomic
cycles of given lengths. Our band spectrum factor model is nonlinear since in its frequency-
domain representation factor loadings are allowed to change across bands of frequencies. At
the same time, it has a linear time-domain representation with frequency-specific factors. This
allows us to estimate common factors affecting a band of frequencies using a simple generalized
principal component estimator obtained by decomposing the covariance matrix by frequencies.
So we estimate frequency-specific factors by maximizing specific cyclical comovements of the
variables, rather than the comovements associated with common cycles of all lengths as in
the standard principal component case. In analogy with Engle (1974) who considers the same
setup but with observed factors (band spectrum regressions), we refer to our estimator as Band
Spectrum Principal Components (BSPCs).

Not all common macroeconomic factors predict bond returns. In fact, Ludvigson and Ng
(2009) show that it is necessary to disentangle relevant from irrelevant macroeconomic factors,
and identify a subset of factors with predictive power via an extensive model selection procedure
based on the minimization of a BIC criterion. Similarly to Huang et al. (2023), we do so by
adopting a supervised learning approach based on the principle of statistical sufficiency: rather
than searching for a subset of factors which predicts bond returns, we focus on the space they
span. This space, referred to as central subspace, is identified by projecting each predictor onto
observable proxies before extracting principal components (Fan et al., 2017, 2021). Similarly to
identification methods via instrumental variables, these proxies fulfill exogeneity since they are
orthogonal to common macroeconomic factors unrelated to future bond returns.6 Our procedure
is the same but we extract BSPCs. That is, our predictors are factors extracted by choosing
proxies for the central subspace and a band of frequencies. In so doing, we are able to study
whether excess bond returns live in a subspace of factors generating common macroeconomic
cycles of given lengths.

From a real-time macroeconomic dataset of 54 variables, we extract two frequency-specific
factors across different bands of frequencies, one using inflation as a proxy, the other the term
spread. This is in accordance with a broad literature combining yield factors and possibly un-
spanned macroeconomic factors. For example, Cieslak and Povala (2015) adopt a decomposition
based on a trend-inflation factor and cyclical components of yields.

While weak or no evidence of predictability is found when full-spectrum predictors are
considered, the picture is remarkably different when we instead focus on specific bands of fre-
quencies. Two powerful predictors are obtained within two different spectral bands: the one by
taking factors driving macroeconomic cycles of at least 8 years related to the inflation, the other
macroeconomic cycles of 1 to 3 years related to the term spread. Hereafter we refer to them
as inflation factor and term spread factor, respectively. Being related with inflation targeting,

6See also Kelly et al. (2019) for a similar method for the cross-section of returns based on unobserved factors
with loadings related to observable instruments.
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the inflation factor is relatively more accurate at the short end of the yield curve, whereas the
term spread factor is relatively more accurate for longer maturities which are more exposed to
variation in the risk premium. Using these two predictors, we find evidence of predictability
in both statistical and economic terms for investors of various kinds (i.e. with mean-variance
or power utility and a range of risk aversions). To the best of our knowledge, the finding of
significant CER gains using real-time data and nonoverlapping returns is novel in this literature.

The economic picture arising from our predictive exercise closely ties bond return pre-
dictability with monetary policy. First, the inflation factor, which is found to be unspanned by
the usual yield curve factors (level, slope and curvature) or forward rates (Cochrane and Pi-
azzesi (2005)’s factor), predicts survey inflation expectations. Second, it replicates the dynamics
of risk premia generated by the switches in the stance of monetary policy studied by Bianchi
et al. (2022): according to their work, risk premia increase when the Federal Reserve changes
the monetary policy rule to respond more vigorously to inflation by pushing the federal fund
rate above the natural rate, and so enlarging a monetary policy spread (the gap between the
real federal fund rate and the natural rate). In fact, the predictive power of our inflation factor
is found only during the hawkish monetary policy regimes identified by Bianchi et al. (2022),
and the inflation factor significantly predicts the turning points of the monetary policy spread.
Consistent with the fact that the inflation factor maximizes cycles of at least 8 years in length,
the shifts in the monetary policy rule considered by Bianchi et al. (2022) have long-lasting effect
on real variables.

Our term spread factor maximizing cycles of 1 to 3 years in length seems to confirm the
findings of Fama and French (1989) who conclude that the “term spread is more closely related to
the shorter-term business cycles identified by NBER”, and resembles the cycle factor identified
by Cieslak and Povala (2015), that is, a component of yields which is orthogonal to a slow-
moving average of inflation and whose predictive power increases across maturities. In line with
a business-cycle risk interpretation, our term spread factor predicts recessions, and is a hedge
against the risk of recessions as investors do not demand a compensation for exposure to it when
the economy is contracting. This evidence could also be related to monetary policy. Andreasen
et al. (2021), who analyse in depth the role of the term spread along the phases of business
cycles, similarly to us find a dual role of the slope of the yield curve (hedge in recession, risk
factor in expansion), and conclude that this is a sign that during recessions investors expect the
Federal Reserve to cut rates and close the output gap.

Finally, we reaffirm three main conclusions of Ludvigson and Ng (2009). First, we confirm
the existence of comovements between the macroeconomy and predictable variation in excess
bond returns which are captured by some subset of latent macroeconomic factors. Second, we
reject the expectations hypothesis in favour of countercyclical risk aversion. Third, we add to
the evidence against the “spanning hypothesis” and suggests that affine term structure models
should include macroeconomic information which is not spanned by the current yield curve.7

7Among others, see Chernov and Mueller (2012), Joslin et al. (2014), Coroneo et al. (2016) who also associate
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The rest of this paper is as follows. In Section 2 we outline all the methodological aspects of
our work: our band spectrum factor model, its estimation, and the supervised learning method
we adopt to obtain predictors for excess bond returns. Section 3 is dedicated to the yield
data and the real-time macroeconomic dataset used to construct our predictors. Out-of-sample
forecasting results are presented in Section 4. In Section 5 we open the black box of our factors
and so establish the links between predictability and the real economy. Section 6 concludes.

2. Methodology

There are two difficulties associated with the widespread use of principal components in predic-
tive regressions for bond returns (typically common factors estimated using large macroeconomic
datasets).

First, being linear combinations with maximum variance, principal components account for
variables’ comovements at all frequencies by aggregating cycles of all lengths. Albeit this is
adequate for predicting processes of various kinds, mounting evidence that risk varies across fre-
quencies motivates us to investigate whether macroeconomic cycles of different lengths have the
same relationship, or any relationship whatsoever, with bond returns. If some macroeconomic
cycles contain no predictive power for excess bond returns, the exclusion of the corresponding fre-
quencies reduces the measurement error in the predictors. This means that accurate predictors
cannot be obtained aggregating cycles of all lengths. Similarly, if cycles of different lengths do
not have the same relationship with bond returns, frequency-specific predictive systems should
be allowed for. In these cases, principal components become suboptimal predictors.

In order to shed light on the possible existence of frequency-specific predictors, we develop an
approach to account for comovements among cycles of given lengths. In Section 2.1, we introduce
a novel factor model with frequency-specific factors. The model arises as a natural consequence
of variation in the factor loadings across spectral bands, which we allow for following the seminal
work of Engle (1974) on band-spectrum regressions. In Section 2.2, we propose an estimator
for frequency-specific factors. Our band spectrum principal components are linear combinations
of variables with maximum variance only within a band of frequencies, hence they generalize
principal components.

Second, not all macroeconomic comovements need to contain information on future bond
returns. In fact, Ludvigson and Ng (2009) found that only a subset of common macroeconomic
factors predict bond returns. In Section 2.3 we combine band spectrum principal components
with supervised learning so that we allow our predictors to live in a subspace of frequency-specific
common factors. In so doing, our predictors are not contaminated by common macroeconomic
cycles unrelated to predictable variation in excess bond returns.

unspanned macroeconomic factors with inflation.
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2.1. Frequency-specific factors

Consider a T × N panel X := {xit; i = 1, . . . , N ; t = 1, . . . , T} of mean-zero weakly stationary
variables with a latent factor structure

Xt = ΛFt + et (1)

where Xt is the N -dimensional vector (x1t, x2t, . . . , xNt)′, Λ a N × r matrix of loadings, Ft an
r-dimensional vector of unobservable factors, et a N -dimensional vector of idiosyncratic terms
which are weakly cross-correlated in the sense of Chamberlain and Rothschild (1983) and Connor
and Korajczyk (1986), and orthogonal to Ft at all leads and lags.8 Being the factors common
to all cross-sectional units x1t, · · · , xNt, the term ΛFt is known as the common component
of Xt and interpreted as the effect of comovements between the variables. In this work we
focus on a frequency-specific analysis of those comovements. Letting ι =

√
−1 be the imaginary

unit, ω some frequency in [−π, π], we have the Fourier transforms Xω = T −1/2∑T
t=1 Xte

−ιωt,
Fω = T −1/2∑T

t=1 Fte
−ιωt, Eω = T −1/2∑T

t=1 ete
−ιωt. The factor model (1) allows for a frequency-

domain representation
Xω = ΛFω + Eω

which shows that the relationship between the cycles of length 2π/ω of Xt and those of the same
length of the common factors Ft is constant and independent of ω.

We are interested in a more general framework in which comovements are allowed to vary
across frequencies. Consider, for example, a partition of [−π, π] into two disjoint subsets Ω1 and
Ω2.9 Allowing for different cyclical comovements across these two bands of frequencies calls for
a frequency-domain representation

Xω =

Λ1Fω + Eω ω ∈ Ω1

Λ2Fω + Eω ω ∈ Ω2
(2)

where, similarly to Engle (1974), coefficients (factor loadings) are allowed to vary across fre-
quencies. Equation (2) can be rewritten as

Xω = Λ1Fω,1 + Λ2Fω,2 + Eω (3)
8Following Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986), we consider an approxi-

mate factor structure for which the cross-correlation generated by the idiosyncratic components is asymptotically
negligible. Orthogonality at all leads and lags between the factors and idiosyncratic terms is stronger than the
weak dependence as in Assumption D of Bai and Ng (2002), but needed for the estimation of the spectral density
matrix as in the strand of literature on generalized dynamic factor models initiated by Forni et al. (2000).

9For simplicity and without loss of generality, two bands of frequencies are considered in this section. In the
empirical part of this work we consider four bands.
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where Fω,1 =

Fω ω ∈ Ω1

0 ω ∈ Ω2
and Fω,2 =

0 ω ∈ Ω1

Fω ω ∈ Ω2

As a result, we are interested in the band spectrum factor model

Xt = Λ1Ft (Ω1) + Λ2Ft (Ω2) + et (4)

where Ft (Ω1), Ft (Ω2), defined as the inverse Fourier transforms of Fω,1 and Fω,2, are common
factors across the spectral components of Xt at frequencies ω in Ω1 and Ω2, respectively.10 Being
the factors Ft (Ω) unrelated to any frequency out of the band Ω, we refer to them as frequency-
specific factors which generate the common cycles of Xt of length 2π/ω for all frequencies ω ∈ Ω.
So, to the nonlinear frequency-domain representation (2) corresponds a factor model (4) which
is linear in the frequency-specific factors.

The band spectrum factor model (4) implies a canonical decomposition of the covariance
matrix

C0 ≡ E
(
XtX′

t

)
= Λ1E

(
Ft (Ω1) Ft (Ω1)′

)
Λ′

1 + Λ2E
(
Ft (Ω2) Ft (Ω2)′

)
Λ′

2 + E
(
ete′

t

)
(5)

for which the first term is the covariance of the comovements at frequencies in Ω1, the second
is the covariance of the comovements at frequencies in Ω2, and the last one is the “weak” (i.e.
asymptotically negligible) covariance generated by idiosyncratic cycles of all lengths.11

In order to estimate the frequency-specific factors Ft (Ω), one needs to disentangle common
from idiosyncratic covariances in Ω. Of course, this is only possible with a prior estimate
of the overall (common and idiosyncratic) comovements in Ω. Exploiting the inverse Fourier
transform C0 =

∫ π
−π S (ω) dω, where S (ω) = (2π)−1∑∞

k=−∞ e−ιkωCk is the spectral density
matrix at frequency ω and Ck = E

(
XtX′

t−k

)
, the component of C0 due to the covariance

among all common and idiosyncratic cycles in Ω is

C0 (Ω) :=
∫

ω∈Ω
E
(
XωX ′

ω

)
dω =

∫
ω∈Ω

S (ω) dω (6)

In the rest of this paper we refer to C0 (Ω) as the band spectrum covariance matrix of Xt in Ω.
10The derivation of Ft (Ω) corresponds to the frequency-domain band-pass filter (Priestley, 1981, p. 274–275).

Albeit not as popular as its approximate time-domain counterpart, also this method has been applied to the to
the measurement of business cycles (see Englund et al., 1992; Hassler et al., 1994).

11To see this, it is enough to note that

C0 =
∫ π

−π

E
(
XωX ′

ω

)
dω = Λ1

∫ π

−π

E
(
Fω,1F ′

ω,1
)

dω Λ′
1 + Λ2

∫ π

−π

E
(
Fω,2F ′

ω,2
)

dω Λ′
2 + E

(
ete′

t

)
= Λ1

∫
ω∈Ω1

E
(
FωF ′

ω

)
dω Λ′

1 + Λ2

∫
ω∈Ω2

E
(
FωF ′

ω

)
dω Λ′

2 + E
(
ete′

t

)
since,

∫
ω∈Ω2

E
(
Fω,1F ′

ω,1
)

dω = 0,
∫

ω∈Ω1
E
(
Fω,2F ′

ω,2
)

dω = 0 , and et is orthogonal to all common factors.
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2.2. Band Spectrum Principal components

The estimation of common factors via asymptotic principal components is widespread and
well-known (Bai and Ng, 2002; Stock and Watson, 2002a; Forni et al., 2000). Assuming that
T −1∑T

t=1 FtF′
t and N−1ΛΛ′ converge to some positive definite matrices (with distinct eigenval-

ues) as T and N grow to infinity is enough to ensure that r eigenvalues of ΛT −1∑T
t=1 FtF′

tΛ′

diverge as N grows to infinity. This implies that r eigenvalues of the covariance matrix of the
data C0 diverge as well. Further assuming that the covariance matrix of the idiosyncratic terms
has bounded eigenvalues as N grows to infinity, and some moment conditions, the space spanned
by the factors can be estimated from the eigenvalue-eigenvector decomposition of the sample
covariance matrix of the data.

The covariance structure (5) generated by the band spectrum factor model (4) suggests that
frequency-specific factors Ft (Ω1) and Ft (Ω2) can be estimated following the same logic within
a band of frequencies. Consider the covariance in the band Ω1

C0 (Ω1) =
∫

ω∈Ω1
E
(
XωX ′

ω

)
= Λ1

∫
ω∈Ω1

E
(
Fω,1F ′

ω,1

)
dω Λ′

1 +
∫

ω∈Ω1
E
(
EωE ′

ω

)
dω

= Λ1E
(
Ft (Ω1) Ft (Ω1)′

)
Λ′

1 +
∫

ω∈Ω1
E
(
EωE ′

ω

)
dω (7)

where we used equation (3) and (4). Assuming that N−1Λ1Λ′
1 and T −1∑T

t=1 Ft (Ω1) Ft (Ω1)′

converge to positive definite matrices (with distinct eigenvalues) as N → ∞ and T → ∞
respectively, we have that r eigenvalues of C0 (Ω1) diverge asymptotically. This, combined with
the usual assumptions on the idiosyncratic errors mentioned above, implies that as N , T jointly
grow to infinity, the second term of (7) becomes negligible and the eigenvectors associated with
largest r eigenvalues of C0 (Ω1) span the space of Ft (Ω1). This motivates the band spectrum
principal component estimator

F̂t (Ω1) =
√

TV ′
r (Ω1) Xt (8)

where Vr (Ω1) = (v1 (Ω1) , v2 (Ω1) , . . . vr (Ω1)) and vj (Ω1) is the eigenvector associated with the
j-th largest eigenvalue of Ĉ0 (Ω1) for j ≤ r. Similarly, F̂t (Ω2) =

√
TV ′

r (Ω2) Xt.

The band spectrum covariance C0 (Ω) can be estimated by replacing S (ω) in equation (6)
with its estimate. We use the lag-window estimator

Ŝ (ω) = 1
2π

MT∑
j=−MT

Kj (MT ) e−ιjωĈj (9)

where Ĉj is the sample estimate of Cj , and Kj (MT ) = 1 − |j|
MT

is the triangular kernel with
bandwidth MT , which is known to be consistent if T −1MT → 0 as T → ∞ and MT → ∞. In
practice MT = ⌊

√
T ⌋ is often chosen, where ⌊·⌋ denotes the floor function. In the rest of this
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paper we refer to such estimator as

Ĉ0 (Ω) =
∑

ωk∈Ω
Ŝ (ωk) dω ≈

∫
ω∈Ω

Ŝ (ω) dω (10)

where ωk = πk/T with k = −T, −T + 1, · · · , T is the generic Fourier frequency.

In Appendix A we show that the BSPCs consistently estimate the space spanned by frequency-
specific factors and provide simulation evidence that the estimator performs well in finite sam-
ples.

2.2.1. Discussion

There are important antecedents to our band spectrum principal component estimator. The
idea of estimating models on a band of frequencies dates back to the regression analysis with
distributed lags of Hannan (1963, 1965). The most direct antecedent is however the semi-
nal work on band spectrum regressions of Engle (1974) who, interested in studying whether
slope coefficients change across frequencies, considers a usual least squares framework limited
to a band of frequencies. Although ours is a high-dimensional problem with a set of predic-
tors driven by unobserved factors, our band spectrum principal component estimator is closely
related to band spectrum regressions since it minimizes the least square objective function∫

ω∈Ω (Xω − ΛFω)′ (Xω − ΛFω) dω. Indeed, this problem reverts to:

• OLS when Ω = [−π, π] and Ft is observed;

• principal components when Ω = [−π, π] and Ft is unobserved;

• Engle’s band spectrum regressions when Ω is a subset of [−π, π] and Ft is observed.

Our band spectrum principal component problem corresponds to the case in which Ω is a subset
of [−π, π] and Ft is unobserved.

Being the goal of band spectrum analysis the detection of possible frequency-specific effects,
an essential property of these estimators is that when no frequency-specific effect holds the esti-
mators yield inefficient estimates as compared to their full spectrum counterparts. For example,
if the data generating process is a standard linear regression model band spectrum regressions
across different bands yield inefficient estimates of the same slope coefficients which are constant
across frequencies. Our BSPC estimator obeys the corresponding property when the loadings
do not vary across bands. Returning to the band spectrum model (4), the BSPC estimator is
such that F̂ (Ωj) = XΛ̂j

(
Λ̂jΛ̂′

j

)−1
, so the same estimate across the two bands is obtained when

Λ1 = Λ2 and loadings are consistently estimated. Intuitively, the BSPC becomes a relatively
inefficient but consistent estimator of F since it only uses a band of frequencies even if there
is no such thing as frequency-specific factor that can be obtained from the frequency-domain
representation (2) when loadings are constant over the spectrum.
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Note that even in absence of frequency-specific factors F (Ωj) remains well-defined as it
corresponds to the band-pass filtered version of F in Ωj . For this reason, in the simulation exer-
cises of Appendix A we measure both the distance between F̂ (Ωj) and F (Ωj) (which vanishes
asymptotically under frequency-specific effects) and that between F̂ (Ωj) and F (which vanishes
asymptotically under no frequency-specific effects).

Accounting for the use of spectral regressions and closely related methods for the analysis of
frequency-specific effects in economics and finance goes beyond the scope of this paper. We refer
to the recent survey of Bandi and Tamoni (2022) for an up-to-date, comprehensive discussion
of this vast strand of literature.

2.3. Forecasting bond returns: supervised learning and band spectrum principal
components

The use of principal component analysis in economics and finance is widespread because generally
the space spanned by a high-dimensional process Xt = (x1t, x2t, · · · , xNt), such as a collection of
macroeconomic variables, is well approximated by that spanned by a small number of principal
components

(
F̂1t, F̂2t, · · · , F̂rt

)
, with r ≪ N . Indeed, principal components are widely used to

estimate unobservable common factors (Bai and Ng, 2002; Forni et al., 2000; Stock and Watson,
2002a) and predict macroeconomic aggregates (see Stock and Watson, 2002b; Giannone et al.,
2008; Forni et al., 2018, among many others).

Predicting a specific target, such as excess bond returns, is a different problem than fitting
a collection of macroeconomic variables or aggregates. Even if the macroeconomy contains
predictive information for bond returns, some common macroeconomic factors may represent
macroeconomic fluctuations unrelated to bond returns. In this case, it becomes necessary to
identify a subspace the predictive signal lives in which is spanned by a subset of common factors.
For example, Ludvigson and Ng (2009) perform a model selection procedure for which 8 principal
components and powers thereof are considered in the minimisation of a BIC criterion. Their
selected specification is based on a linear combination of

(
F̂1t, F̂ 3

1t, F̂3t, F̂4t, F̂8t

)
.

The problem of estimating a predictive signal living in a common factor subspace has been
widely considered in the statistical learning literature. Supervised statistical learning solves this
problem in a simpler manner by embedding the individual predictive power of each covariate
x1t, x2t, . . . , xNt into the extraction of the predictive signal via principal components. Using
correlation as a measure of predictive power, Bair et al. (2006) estimate predictors as principal
components of a subset of covariates that correlate well with the predictive target.12 Another
strand of this literature is based on the idea of sufficiency for estimating a minimal common
factor subspace, which is referred to as the central subspace (Cook, 2007). This subspace is
minimal because, despite dimension reduction, it contains all the information in the covariates
for the predictive target.13 These methods are based on the projection of each covariate xit onto

12Subsequent works based on this approach include Bai and Ng (2008) and Giglio et al. (2023).
13That is, the conditional distribution of the target given the predictors X is the same as that given a lower-
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proxies for the central subspace, such as the observed past of the predictive target (Cook and
Forzani, 2008; Huang et al., 2022, 2023) and/or other observed variables (Fan et al., 2017, 2021).
Principal components are then applied to the projected (or fitted) values of the covariates.

In a linear predictive model the dimension of the central subspace is one.14 For example, in
the model rxt+1 = µ+λ′

rxFt +εt+1 (where λrx may have one or more zero elements), the central
subspace is Span (λ′

rxFt) and λ′
rxFt is a single sufficient index. If, also, Ft obeys a standard

factor model (1), one principal component of projected data is sufficient. This is so because,
if zt is a vector of proxies for the central subspace, each projection x̂it (z) = Proj (xit|zt) of
xit onto zt has a common component which is proportional to λ′

rxFt and an idiosyncratic term
orthogonal to it which does not survive cross-sectional aggregation. Therefore, the first principal
component of x̂1t (z) , x̂2t (z), · · · , x̂Nt (z) estimates the sufficient single factor λ′

rxFt.

In this work we investigate whether the central subspace for excess bond returns is spanned
by frequency-specific factors. Consider, for example, rxt+1 = µ + λ′

rxFt (Ω) + εt+1. In this
scenario, the central subspace becomes Span (λ′

rxFt (Ω)) and the sufficient single factor λ′
rxFt (Ω)

is estimated by a band spectrum principal component at the band Ω of x̂1t (z) , x̂2t (z), · · · ,
x̂Nt (z). This example can be extended by allowing for frequency-specific factors in different
bands, such as rxt+1 = µ+λ′

rx,1Ft (Ω1)+λ′
rx,2Ft (Ω2)+εt+1. In this case, allowing for λ′

rx,1Ft (Ω1)
to be proxied by z(1)

t and λ′
rx,2Ft (Ω2) by z(2)

t , for the central subspace we need one band spectrum
principal component in Ω1 of projected data x̂1t

(
z(1)

)
, x̂2t

(
z(1)

)
, · · · , x̂Nt

(
z(1)

)
, and one in

Ω2 of x̂1t

(
z(2)

)
, x̂2t

(
z(2)

)
, · · · , x̂Nt

(
z(2)

)
.

In full generality, our predictors are obtained as follows. Letting zt now be a vector of
proxies for the central subspace at frequencies in Ω, we take the projected values x̂it (z) where
x̂it (z) is an estimate of the component of xit driven by the subset of Ω-specific factors that
predicts excess bond returns. Letting Ĉx̂,0 (Ω, z) be the band spectrum covariance matrix of the
T × N panel of projected data X̂ (z) := {x̂it (z) ; i = 1, . . . , N ; t = 1, . . . , T}, we consider band
spectrum principal components of projected data

v∗
x̂ (Ω, z) = arg max

v∈RN , v′v=1
v′Ĉx̂,0 (Ω, z) v

F̂t (Ω, z) = v∗
x̂ (Ω, z)′ X̂t (z) (11)

where X̂t (z) = (x̂1t (z) , x̂2t (z) , · · · , x̂Nt (z))′. As discussed in Section 2.2, for the band spectrum
covariance we use the plugin estimator

Ĉx̂,0 (Ω, z) =
∑

ωk∈Ω
Ŝx̂ (ωk) dω (12)

where Ŝx̂ (ω) is the estimated spectral density matrix of X̂ (z) obtained using a lag-window

dimensional transformation of X.
14The dimension of the central subspace is greater than one in the nonlinear case considered by Fan et al.

(2017).
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estimator as in equation (9).

Algorithm: Projected Band Spectrum Principal Components

1. For i = 1, · · · , N , take the projections x̂it (z) = Proj (xit|zt).
2. Estimate the spectral density Sx̂ (ω) of X̂ (z) using a lag-window estimator (9).
3. Estimate the band-spectrum covariance matrix Cx̂,0 (Ω, z) as in equation (12).
4. Obtain F̂t (Ω, z) as in equation (11).

In the empirical part of this work, we predict one month ahead excess bond returns using
the predictors F̂t (Ω, z) for different choices of Ω and z.

Allowing for frequency-specific factors is the main element of novelty with respect to other
existing supervised learning methods based on a large number of predictors with a common
factor structure, projections onto observed proxies, and principal component estimators. The
closest approach to ours is that of Huang et al. (2022) which is also based on a linear forecasting
equation. Fan et al. (2017) allow the predictive target to be some unknown nonlinear function
of its sufficient predictive indices (whose dimension exceeds one because of nonlinearity), while
Fan et al. (2021) also consider robust estimation based on Huber loss minimization. In both
works observed covariates are exploited using a projected principal component estimator (Fan
et al., 2016). Huang et al. (2023) further extend Fan et al. (2017) in order to allow for weak
factors.

3. Data

3.1. Excess bond returns

The (continuously compounded) yield of a n-year bond is

y
(n)
t = − 1

n
p

(n)
t

where p
(n)
t = ln P

(n)
t , and P

(n)
t denotes the time t nominal price of a bond with n-years left

to maturity. The excess return of a risky n-year bond is given by the difference between the
log return from a n-year bond bought at time t and sold m months later, and the yield on a
m-period risk-free rate at time t.

rx
(n)
t+m = p

(n− m
12 )

t+m − p
(n)
t − m

12y
( m

12 )
t = ny

(n)
t −

(
n − m

12

)
y
(n− m

12 )
t+m − m

12y
( m

12 )
t (13)

where m is the holding period and y
( m

12 )
t is the annualized m-period risk-free rate.

Setting m = 1, we construct (monthly) nonoverlapping excess bond returns. In so doing, we
follow recent works (such as Gargano et al., 2019; Wan et al., 2022; Borup et al., 2023) which
advocate the use of nonoverlapping returns versus the commonly used monthly overlapping re-
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turns corresponding to an annual holding period (m = 12). Generally, there are a number of
reasons for doing so. First, there are important short-lived dynamics in excess bond returns,
such as Lehman Brothers’ bankruptcy, which cannot be captured with annual holding periods.
Second, overlapping returns present difficulties with the turning points of business cycles, which
bear an intimate relationship with return predictability. Third, nonoverlapping returns are free
from the serial correlation in residuals introduced by overlapping observations which exacerbate
the inferential problems described by Bauer and Hamilton (2018).15 More specifically, in this
work we are interested in characterising the predictability of bond returns related to macroe-
conomic cycles of different lengths: adopting overlapping returns would impair the analysis of
cycles shorter than 1 year.

Yield data is taken from the zero-coupon Treasury yield curve dataset of Liu and Wu (2021)
considering maturities up to 10 years. This is the same choice as in works conducting a similar
out-of-sample predictive exercise, such as Bianchi et al. (2021), Fan et al. (2022). This dataset
is obtained using a nonparametric kernel-smoothing method which compares favourably to the
popular alternative dataset of Gürkaynak et al. (2007) as it takes into account Treasury bills and
securities with less than 3 months to maturity and is found to contain smaller pricing errors.16

3.2. Real-time macroeconomic data

We obtain real-time macroeconomic data from the ALFRED database published by the Federal
Reserve Bank of St. Louis. Apart from minor differences due to discontinued variables, our
dataset is similar to that adopted by Ghysels et al. (2018) and Wan et al. (2022).17 We observe
N = 54 variables which can be broadly classified as “output and income”, “labor market”,
“housing”, “money and credit”, “prices”. Most of these variables are nonstationary and need
being transformed to achieve stationarity. After these transformations, reported in Appendix B,
the sample observations available span from August 1972 until December 2020. Some variables
are available at earlier dates, however this is the largest sample available without missing values.

We observe a total of 465 vintages running from April 1982 to December 2020.18 With
no ragged-edge data, our first vintage dated April 1982 would be based on 117 data points
from August 1972 onwards. However, these variables are available with a publication delay,
typically one or two months. For example, our April 1982 vintage contains variables observed
from August 1972 until to March 1982 and some from August 1972 until to February 1982. For
each vintage we cope with this problem by discarding the first few observations of the variables
with a shorter publication delay until a balanced panel is obtained. This leaves us, for example,

15Gargano et al. (2019) find that, indeed, these problems largely disappear with nonoverlapping returns.
16The popular dataset of Fama and Bliss (1987) is instead unfit to our analysis since it starts from the 1-year

maturity, hence it cannot be used to construct nonoverlapping returns.
17More precisely, 8 out of 60 variables used in Ghysels et al. (2018) were discontinued in December 2015 and,

thus, we exclude them. Our dataset includes the remaining 52 variables plus CURRDD and DEDEP SL also
used by Wan et al. (2022).

18Infrequently, two vintages of a variable are released in a month. In such cases we take the last vintage of the
month. If no vintage is published in a month we take the last vintage of the previous month.
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with an April 1982 vintage of our full dataset collecting all variables with an actual sample size
of 115 observations.

Finally, we remove outliers without looking into the future and standardize the data before
the estimation of our predictors.19

As a preliminary investigation into our macroeconomic dataset, we use the full sample in our
latest vintage dated December 2020 of dimension (T, N) = (579, 54) to decompose the covariance
matrix into its components in the frequency bands indicated below.

Ω1 = [2π/12, π] corresponding to cycles of length up to 1 year;

Ω2 = [2π/36, 2π/12] corresponding to cycles of length between 1 and 3 years;

Ω3 = [2π/96, 2π/36] corresponding to cycles of length between 3 and 8 years;

Ω4 = [0, 2π/96] corresponding to cycles of length of 8+ years,

where, to simplify the notation, the italic Ω = [ω, ω] denotes the band Ω = [−ω, −ω] ∪ [ω, ω]
with 0 ≤ ω < ω ≤ π. In Figure 1, for each band we show the normalized band spectrum covari-
ance matrix C0 (Ω) = 0.5 (ω − ω)−1 C0 (Ω) of our dataset with variables grouped by five broad
categories.20 All in all, stronger comovements are visible as lower frequencies are considered —
this is particularly evident for housing variables. So, while Granger (1966) described a typical
spectral shape for which the long cycles are relatively more important in the (univariate) spec-
tra of economic variables, we find that the strength of comovements among economic variables
has a similar pattern. Other interesting patterns emerge from this picture such as the nearly
constant covariances over all bands of “money and credit variables”, and the covariance within
the “prices” category, which is somewhat stronger at the two extreme bands Ω1 and Ω4.

In order to shed more light on the eigenstructure of the data, we now analyze if factor
estimates within spectral bands differ from their full spectra counterpart, as usual estimated
via principal components. As discussed in Section 2.2.1, in absence of frequency-specific effects
factors estimated at different frequency bands are estimates of full-spectra factors (see also the
simulation evidence in Appendix A). In Table 1 we report trace-R2 statistics R2

(
F̂ (Ωi) , F̂

)
as in

equation (23) for i = 1, . . . , 4, where F̂ (Ωi) is a T ×r-dimensional matrix of band spectrum prin-
cipal components and F̂ (full-spectra) principal components. These results show that principal
component estimates vary across bands of frequencies and the usual full-spectrum estimator is
dominated by high-frequency comovements. The trace-R2 between our lowest frequency BSPC
and PC estimates takes values which are similar to those we found in the simulation exercise in
presence of frequency-specific factors (see Appendix A.2).

19For a given vintage, we define as outliers observations with absolute value larger than 6 times the interquartile
distance and replace them with the median, where both interquantile distance and median are calculated from
the empirical density in that vintage.

20The normalization by the size of the band gives comparable covariances C0 (Ω)s across bands of different sizes.
Their non-normalized counterparts C0 (Ω)s are, instead, the components of C0 due to the fluctuations in different
bands. For example, with our chosen bands we have C0 =

∑4
i=1 C0 (Ωi) =

∑4
i=1 2 (ωi − ωi) C0 (Ωi).

15



While these results cast some doubts on the lack of frequency-specific effects, this is far from
being clear-cut evidence. Most importantly, this preliminary analysis of our macroeconomic
dataset is not insightful on the predictive power of (BS)PC for excess bond returns.

4. Excess bond returns forecasts

We forecast nonoverlapping excess bond returns (13) one month ahead via usual predictive
regressions of the type

r̂x
(n)
t+1 = α̂ + β̂F̂t (Ω, z) (14)

where F̂t (Ω, z) is a supervised band spectrum principal component obtained as in equation (11)
for some choice of Ω and z to be discussed below.21

Our predictions are obtained estimating the forecasting equation (14) over an expanding
window, that is, at time t we use all past data available in real time t which, as explained in
Section 3.2, generally means using observations up to month t − 2 or t − 1.

Our first prediction is made at the time of our first vintage of April 1982 to predict the
excess bond returns in May 1982 and so on until the last prediction made using the November
2020 vintage to predict the excess bond returns in December 2020. Denoting T0 the time
corresponding to April 1982 and T that corresponding to December 2020, our out-of-sample
forecasts are made in real time t = T0, T0 + 1, . . . , T − 1.

The methodology described in Section 2, is based on two key choices: a band of frequencies Ω
for our frequency-specific factors, and a vector of proxies z for the predictive signal in the common
macroeconomic cycles corresponding to the frequencies in Ω. Similarly in spirit to previous
works on frequency-, horizon- or scale-specific effects, in order to dissect the predictability of
excess bond returns we explore different choices of Ω. For example, Bandi et al. (2019) study
scale-specific predictability in predictive regressions under temporal aggregation over different
horizons. In order to observe whether the predictive power of common macroeconomic cycles
varies across frequency bands, we consider the bands Ω1, Ω2, Ω3, Ω4, as defined in Section 3.2.

For each band Ωi, i = 1, . . . , 4, we consider two alternative vectors of proxies zt, both
including the average excess bond return across maturities r̄xt+1 = 1

9
∑10

n=2 rx
(n)
t+1.

zInfl
t = (inflt, r̄xt+1)′ , where inflt = (1 − L)2 CPIt and CPIt is the “Consumer Price Index

for All Urban Consumers: All Items” taken from the ALFRED dataset.22

zT ms
t = (tmst, r̄xt+1)′ , where tmst is the term spread taken from the dataset of Welch and

Goyal (2008).
21The estimation of the spectral density matrix in equation (9) is defined with a bandwidth equal to the smallest

integer near to the square root of the sample size. As explained in Section 3.2, publication delays dictate the
actual sample size available for our expanding estimation in real time t. Hence, our bandwidth becomes ⌊

√
T t⌋

where Tt is the actual sample size at time t.
22Since CP I is part of our macroeconomic dataset, using it as a proxy means removing it from the panel X

before the estimation of factors. Clearly, not doing so would yield a panel of projected data X̂ with a singular
convariance matrix.

16



As discussed in Section 2.3, the supervised learning literature suggests the target variable to be
predicted as a natural proxy for the central subspace. Since, following Cochrane and Piazzesi
(2005), the same factors are used to predict excess bond returns across all maturities, in both
choices above we consider the “average target” r̄xt+1 rather than each target rx

(n)
t+1. Of course,

since r̄xt+1 leads the predictors xit, these choices mean that at time t the projections x̂it (z) =
Proj (xit|zt) can be estimated up to time t − 1. Inflation and term spread are well-known
predictors of excess returns since at least Fama (1981) and Fama and French (1989) and our
choice is consistent with term structure models such as that of Cieslak and Povala (2015).

In order to reach a conclusion regarding the existence of frequency-specific effects, we also
make predictions based on full-spectrum principal components of projected data corresponding
to Ω0 = [0, π] for which cycles of all lengths are aggregated.

For i = 0, 1, . . . , 4, the predictions obtained using the predictor F̂t

(
Ωi, zInfl

)
in the fore-

casting equation (14) are denoted as Infl (Ωi), while Tms (Ωi) stands for the predictions using
F̂t

(
Ωi, zT ms

)
.

4.1. Statistical accuracy

We compare our forecasts against the standard benchmark suggested by the expectations hy-
pothesis, the historical mean r̂x

(n)
t+1,EH . Following Campbell and Thompson (2008), we use the

out-of-sample R2 measure

R2
OS = 1 −

∑T
t=T0+1

(
r̂x

(n)
t − rx

(n)
t

)2

∑T
t=T0+1

(
r̂x

(n)
t,EH − rx

(n)
t

)2 (15)

that is, a relative reduction in mean square error, which in all tables is reported in percentages.
Following the standard practice in this literature, we evaluate the statistical significance of these
mean square error improvements using the test of Clark and West (2006).

The R2
OS values in Table 2 support the existence of frequency-specific predictors as the

forecasts corresponding to the bands Ω2, Ω3 and Ω4 are considerably more accurate than those
corresponding to Ω1 and the full spectrum Ω0. This suggests that high-frequency macroeconomic
fluctuations are noisy and add measurement error to the predictors.

Starting from the forecasts obtained using the vector of proxies zInfl
t , while the R2

OSs
of Infl (Ω0) and Infl (Ω1) are either negative or insignificant at all maturities, Infl (Ω2),
Infl (Ω3), Infl (Ω4) provide large R2

OSs at all maturities which are 1% significant at matu-
rities 2 to 6 and 5% significant at maturities 7 to 10. Also, the R2

OSs of Infl (Ω2), Infl (Ω3),
Infl (Ω4) are larger at shorter maturities. Overall, Infl (Ω4) is slightly more accurate than
Infl (Ω2) and Infl (Ω3) at each maturity.

Much statistical significance is found across all bands when zT ms
t is used as proxy. How-

ever, 1% significance at all maturities is only found for Tms (Ω2 ), Tms (Ω3 ) and Tms (Ω4 ).
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Furthermore, Tms (Ω0) and Tms (Ω1 ) are associated with smaller R2
OSs at all maturities and

considerably so for maturities of at least 3 years. Tms (Ω2 ), Tms (Ω3 ) and Tms (Ω4 ) provide
their largest R2

OSs at maturities longer than 3 years.

These results provide evidence of frequency-specific predictability which vanishes completely
or becomes weaker when full-spectrum predictors are used. In Appendix C (Table C.1) we show
that even adopting the supervised learning approaches of Huang et al. (2023) and Fan et al.
(2017) (which, as discussed in Section 2.3, are related to ours) full-spectrum predictors perform
poorly. Regarding the real-time forecasting performance of unsupervised principal component
predictors, we refer to Wan et al. (2022) who find no evidence of predictability for nonoverlapping
returns. Finally, in unreported results (available upon request), we find that unsupervised
frequency-specific factors are also not accurate. This confirms the results of Ludvigson and
Ng (2009) who document the existence of common macroeconomic variation unrelated to bond
return predictability.

4.2. Economic value of the forecasts

Thus far we found statistical evidence of bond return predictability using frequency-specific
factors. However, as pointed out by works such as Thornton and Valente (2012) and Sarno et al.
(2016), statistically accurate forecasts do not necessarily generate economic value for investors
trading on Treasury bonds. Therefore, we now examine whether our forecasts translate into
economic gains for investors with mean-variance preferences or a power utility function. In both
cases, we consider the asset allocation decisions of an investor who selects weights w

(n)
t on a

risky bond with n years to maturity versus the one-month T-bill, that is a risk-free yield y
(1/12)
t .

A mean-variance investor maximizes the utility function

U
(
w

(n)
t , rx

(n)
t+1

)
= Et

(
R

(n)
p,t+1

)
− γ

2 Vart

(
R

(n)
p,t+1

)
(16)

where γ is the relative risk aversion and R
(n)
p,t+1 = y

(1/12)
t +w

(n)
t rx

(n)
t+1 the portfolio return at time

t + 1 given the generic allocation w
(n)
t . The solution of the above optimisation problem is

ẇ
(n)
t =

r̂x
(n)
t+1

γ
(
σ̂

(n)
t+1|t

)2

where r̂x
(n)
t+1 is some excess return forecast on n-year bond, and

(
σ̂

(n)
t+1|t

)2
is the conditional

variance estimated using a rolling window estimator over the past five years of observations as
in Campbell and Thompson (2008).

A power utility investor instead maximizes the utility function

U
(
w

(n)
t , rx

(n)
t+1

)
= 1

1 − γ

((
1 − w

(n)
t

)
exp

(
y

(1/12)
t

)
+ w

(n)
t exp

(
y

(1/12)
t + rx

(n)
t+1

))1−γ
(17)

18



In this case, the optimal weights we use are those obtained under the log-normal approximation
of Campbell and Viceira (1999)

ẇ
(n)
t =

r̂x
(n)
t+1 +

(
σ̂

(n)
t+1|t

)2
/2

γ
(
σ̂

(n)
t+1|t

)2

Under both preferences, we follow Campbell and Thompson (2008) who winsorize the
weights by imposing the restriction 0 ≤ w

(n)
t ≤ 1.5 to prevent the investor from taking ex-

treme positions such as leveraging above 150% and shorting positions.

The optimal portfolio weights ẇt given some predictions r̂x
(n)
t+1 are used at every time t

to compute the investor’s realized utilities U̇t+1. Similarly, the benchmark realized utilities
U̇t+1,EH are obtained using optimal weights given the expectations hypothesis forecasts r̂x

(n)
t+1,EH .

The certainty equivalent return (CER) gains of a given predictive model with respect to the
benchmark are obtained as the difference between its average realized utility over time and the
average benchmark realized utility. So, positive CER gains indicate that the predictive model
considered produces economic value in excess of that of the expectations hypothesis model.
We report CER gains in annualized percentage terms. Finally, to test whether these gains are
statistically greater than zero, we use the test of Diebold and Mariano (1995). Specifically, we
estimate the regression

U̇
(n)
t+1 − U̇

(n)
t+1,EH = δ(n) + ϵ

(n)
t+1

and test if δ(n) equals zero. To examine the effect of risk aversion γ, we repeat the above analysis
considering the values 3, 5 and 8.

Table 3 shows the CER gains for investors with mean-variance utility. The most important
result here is the evidence of significant CER gains which thus far, to the best of our knowledge,
has not been found with nonoverlapping returns using data available in real-time. However,
no single predictor provides significant CER gains at all maturities and across all risk aversion
coefficients. For example, no prediction is significant at maturities 9 and 10 when γ = 8.

Similarly to the R2
OSs in Section 4.1, when zInfl

t is used we find evidence of frequency-
specific effects with results varying much across our spectral bands. Regardless the risk aversion
coefficient, all CER gains of Infl (Ω0) and Infl (Ω1 ) are either negative or insignificant. The
CER gains of Infl (Ω2 ), Infl (Ω3 ) and Infl (Ω4 ) are instead significant across all maturities for
γ = 3, until maturity 8 for γ = 5, and until maturity 6 for γ = 8. At least for γ = 5, 8, Infl (Ω4)
is slightly better than Infl (Ω2) and Infl (Ω3).23

Some interesting patterns across our spectral bands emerge when zT ms
t is used. For all risk

aversion coefficients, Tms (Ω1 ) gives significant CER gains at maturities 2 to 6 and insignificant
gains at maturities 8 to 10. Tms (Ω2 ) has the largest (significant) CER gains at maturities 7 to
10 for risk aversion γ = 3, 5, and at maturities 5 to 8 for γ = 8. Despite being outperformed by

23Among Infl (Ω2), Infl (Ω3), Infl (Ω4), the latter is the only one to exceed the others at some maturities by
at least 0.01 and at the same or higher levels of significance.
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Tms (Ω2 ), Tms (Ω3 ), Tms (Ω4 ) in statistical terms, Tms (Ω0) generates some significant CER
gains, especially at the two shortest maturities, 2 and 3.

At least qualitatively, the results are very similar for power utility investors; the correspond-
ing CER gains are reported in Appendix C (Table C.2).

4.3. Two predictors and the spanning hypothesis

In the previous sections we found considerable differences between forecasts obtained across
different bands of frequencies both in statistical and economic terms. This is true for both
families of predictors F̂t

(
Ω, zInfl

)
and F̂t

(
Ω, zT ms

)
as Ω varies between the bands Ω1 to Ω4.

Nonetheless, Tms (Ω) predictions are better when shorter common macroeconomic cycles are
considered and are relatively more accurate for bonds with longer maturities, while the opposite
applies to Infl (Ω). So, we are tempted to conjecture that zInfl and zT ms proxy for different
predictable components of excess bond returns.

Searching for more convincing evidence, we now extend our out-of-sample predictive exercise
by considering the following additional predictive models based on two predictors

r̂x
(n)
t+1 = α̂ + β̂1F̂t

(
Ωi, zInfl

)
+ β̂2F̂t

(
Ωj , zT ms

)
(18)

for any possible pair of predictors for i, j = 0, 1, . . . , 4. For each pair we make forecasts and
in Figure 2 we report averages across maturities of R2

OS values and CER gains under mean-
variance preferences. These results show that the most accurate individual predictors combine
well together. In line with the above results on Infl (Ω4) and Tms (Ω2), the predictions based on
both predictors F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
yield the largest average R2

OS and average CER
gains for all risk aversion coefficients. Also, similarly to the evidence on individual predictors,
full-spectrum predictions — corresponding to the pair F̂t

(
Ω0, zInfl

)
, F̂t

(
Ω0, zT ms

)
— or those

based on the shortest macroeconomic cycles are less accurate.24 Again, R2
OSs and CER gains

vary much across the bands of frequencies considered. F̂t

(
Ω, zInfl

)
gives much better results

at Ω2, Ω3, Ω4, that is when higher-frequency fluctuations are excluded. F̂t

(
Ω, zT ms

)
is more

accurate at Ω2, especially in terms of CER gains.

In Table 4, for each maturity we report all results — R2
OS values and CER gains — based on

the forecasts jointly produced by our most accurate predictors F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
using the forecasting equation (18) for i = 4 and j = 2. We label such forecasts as Both.
In Panel A of Table 4 we see that Both gives R2

OS values which are considerably larger than
Infl (Ω4) and Tms (Ω2) (or any other prediction obtained with a single predictor) and 1%
significant at all maturities. The evidence in Panel B of Table 4 is even stronger since, unlike
any forecast based on individual predictors, Both gives significant CER gains at all maturities

24Despite positive averages across maturities, in unreported results (available upon request), we found
that the full-spectrum pair F̂

(
Ω0, zInfl

)
, F̂
(
Ω0, zT ms

)
and the pair at our highest-frequency band

F̂
(
Ω1, zInfl

)
, F̂
(
Ω1, zT ms

)
provide little evidence of significant CER gains across maturities and risk aversion

coefficients.
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and for any value of risk aversion. This strengthens our novel result of significant CER gains
using nonoverlapping returns and data available in real time: Both forecasts are our best both
in economic and statistical terms. We must conclude that F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
are

two powerful predictors for different predictive components of excess bond returns. In the rest
of this paper we refer to them as inflation factor and term spread factor, respectively.

The results discussed thus far do not help understanding whether excess bond return pre-
dictability comes uniquely from the information contained in the current yield curve as the
spanning hypothesis postulates. While, by construction, the term spread factor is a spanned fac-
tor related to the slope of the current yield curve, our inflation factor could contain information
which is unspanned by the cross-section of yields. In order to determine if that is the case, we
need to obtain an unspanned version of the inflation factor. We do so by controlling for yields
variation in the estimation of the inflation factor. In our algorithm (Section 2.3) we now replace
X̂t (z) with X̃t (z) = {x̃it (z) , i = 1, . . . , N} where x̃it (z) = δ′

i,zzt is the unspanned component
of xit using some controls for yields ct in the projection Proj (xit|zt, ct) = δ′

i,zzt + δ′
i,cct.25 We

repeat this exercise with four different controls for yields: the Cochrane-Piazzesi factor (c(1)
t ), 3

and 5 principal components of yields (c(2)
t and c(3)

t ), and our term spread factor (now c(4)
t ). The

R2
OS values in Table 5 show that these four unspanned versions of our original inflation factor

F̂t

(
Ω4, zInfl

)
generate predictions which are as accurate as those generated by the original fac-

tor (already seen in Table 2 and repeated in the last line of Table 5 for readability). Therefore,
all the predictive content of the inflation factor must reside in its unspanned component. These
results imply that affine term structure models should include macroeconomic unspanned infor-
mation which, similarly to Ludvigson and Ng (2009), Chernov and Mueller (2012), Joslin et al.
(2014), Coroneo et al. (2016), relates to the inflation.

5. Links to the real economy

5.1. Monetary policy

Being particularly accurate at the short end of the yield curve and containing unspanned macroe-
conomic information, the inflation factor must be closely related with monetary policy. At the
same time, since it maximises cycles of at least 8 years, the inflation factor must be associated
with an endogenous component of monetary policy with permanent effects in the economy, not
the typically transitory monetary policy shock. This suggest that the inflation factor is linked
to systematic monetary policy, especially inflation targeting. We corroborate this intuition by
estimating predictive regressions where the inflation factor is found to predict survey measures
of inflation expectations taken from the Survey of Professional Forecasters. In Table 6, we show
that this result holds even taking into account lagged expected inflation or lagged observed
inflation. This means that the inflation factor predicts survey inflation expectations no matter

25An alternative procedure would be to first project the xit’s onto ct and then estimate the inflation factor
using the residuals of such projection. The results are very similar to those in Table 5.
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whether agents adjust their expectations just sluggishly or learn from their mistakes.

Bianchi et al. (2022) (BLL henceforth) propose a macro-finance model of monetary policy
transmission documenting that long-lasting effects of monetary policy are due to changes in the
stance of monetary policy. Hawkish regimes, in which the monetary policy rule of the Federal
Reserve becomes more responsive to inflation, are associated with increased return premia. The
main intuition is that hawkish monetary policy widens the monetary policy spread, the gap
between the real federal fund rate and the natural rate. BLL find two hawkish regimes in the
US: the first starts before the beginning of our forecasted sample (i.e. the last quarter of 1978)
and ends in the third quarter of 2001, the second spans 2006:Q2 to 2008:Q2.

Is our inflation factor consistent with BLL’s evidence? We analyse the predictions obtained
using the inflation factor by decomposing our statistical and economic measures of predictability
across BLL’s hawkish and dovish regimes of monetary policy. R2

OS and CER gains are reported in
Table 7 (Panel A and B, respectively). Both measures provide clear-cut results. At all maturities,
R2

OS and CER gains are positive and highly significant during hawkish regimes while they turn
negative during dovish regimes. In Figure 3 we plot the cumulative utility gains averaged across
maturities in our baseline mean-variance exercise with γ = 5 (blue line) together with BLL’s
smoothed probability of hawkish monetary policy. The figure shows that the economic value
generated by the inflation factor moves in sync with the regimes of monetary policy — positive
during hawkish regimes (cumulative utility gains increase) and negative during dovish regimes
(cumulative utility gains decrease) — seemingly sharing the same turning points. To validate
this visual intuition we adopt the test of directional predictive ability proposed by Pesaran and
Timmermann (1992). Under the null hypothesis the inflation factor does not predict the turning
points of the monetary policy spread which in BLL’s model drives regime switches in the stance
of the Federal Reserve. Such null hypothesis is rejected with a p-value equal to 0.027. We must
conclude that the stance of monetary policy is indeed a key component of the inflation factor.

5.2. Business-cycle risk

We now turn to the term spread factor. Considering that it maximizes macroeconomic cycles of 1
to 3 years, and its association with the term spread, it seems intuitive that the term spread factor
represents investors’ perception of business-cycle risk. In order to validate this interpretation,
we begin by investigating whether the term spread predicts recessions. In Panel A of Table 8
we show that it predicts monthly and annual changes of the (monthly) smoothed US recession
probability, and quarterly and annual changes of the (quarterly) GDP-based recession indicator
index. So, our term spread factor is a leading business-cycle indicator just like the term spread.
Going back to return predictability, in Panel B of Table 8 we show that the term spread factor
is a powerful predictor of nonoverlapping bond returns, while the term spread is a much weaker
predictor. We run three return predictive regressions at each maturity: in the first one we
include both term spread factor and term spread, in the second one only the term spread, in the
last one only the term spread factor. Two results are noteworthy. First, the term spread does
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not contain any predictive information which is not already in our term spread factor. Second,
at least at longer maturities, the term spread contains some predictive power for nonoverlapping
bond returns, while the term spread factor is a strong predictor at all maturities. Taken together,
this evidence sheds light on the benefits of our supervised learning approach when we use the
term spread as a proxy of expected returns. Since it predicts recessions, the term spread factor
explains the link between the business-cycle and the slope of the yield curve. At the same time,
such business-cycle information is effectively exploited by our BSPC estimator to extract from
a number of macroeconomic indicators a predictive signal for bond returns which is way more
powerful than that contained in the term spread.

We continue our analysis by observing the performance of the term spread factor over
our sample. Unlike the inflation factor, whose economic value is confined to short subsamples
(hawkish policy regimes), the term spread factor generates more consistent economic value over
time; see the cumulative utility gains in Figure 4. We now split our sample into periods of
recessions and expansions using the NBER recession indicator.26 In Table 9 we decompose
the R2

OS of the predictive models based on our two factors either individually (Infl (Ω4) and
Tms (Ω2)) or jointly (Both). Most predictability is found in recessions. However, unlike a
number of works concluding that return predictability is absent during expansions — among
many others see Rapach and Zhou (2013), Henkel et al. (2011), Dangl and Halling (2012) for
equity returns, and Sarno et al. (2016); Gargano et al. (2019) for bond returns —, we find
evidence of predictability even in expansions which is entirely accounted for by the term spread
factor. Predictability during expansions is also found by Bianchi et al. (2021) who also use
machine learning techniques, albeit different from ours, and by Andreasen et al. (2021).

The results in Table 9 bear two remarkable similarities with Andreasen et al. (2021) who
study the predictive performance of the slope of the yield curve across the business cycle. First,
the term spread is powerful during expansions. Indeed, while the forecasts obtained without
including the term spread factor (Infl (Ω4)) generate negative R2

OS in expansions at most ma-
turities, Tms (Ω2) and Both, which include the term spread factor, give 1%-significant improve-
ments over the benchmark at all maturities. Second, the predictive power of the term spread
factor gets weaker in recessions for longer maturities. During recessions the Tms (Ω2) forecasts,
based only of the term spread factor, are just 10%-significant for maturities up to 6 years and
insignificant at longer maturities.

There are important portfolio implications if the term spread factor accounts for investors
hedging against business-cycle risk. In Table 10 we report CER gains in expansions and reces-
sions. These results show that the term spread factor is a hedge in recession as investors demand
compensation for exposure to it only during expansions. That is, during recessions investors are
willing to get exposure to a term spread factor, while in expansions the term spread factor be-
comes a usual risk factor. Using a macro-finance term structure model, Andreasen et al. (2021)
conclude that this result is due to accommodating monetary policy in recessions as investors

26The recession indicator “USREC”, is taken from the FRED database.
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perceive the ability of the Federal Reserve to stimulate the economy and close the output gap.

5.3. Additional results on business cycles

Motivated by the intuition that investors demand compensation for the risk of recessions, no-
table rational expectations models, such as Campbell and Cochrane (1999) and Wachter (2006),
feature countercyclical risk aversion. Having established evidence of predictability, we now in-
vestigate whether our out-of-sample expected returns are consistent with the countercyclical
risk premia widely documented by prior empirical works dismissing the expectations hypothesis
such as Fama and Bliss (1987) and Campbell and Shiller (1991).

We start by measuring whether our expected returns correlate with monthly measures of real
economic activity growth. Table 11 shows that expected returns generated by our two factors
either individually (Infl (Ω4) and Tms (Ω2)) or jointly (Both) are clearly countercyclical. All
these forecasts are negatively correlated with the Michigan consumer sentiment index (MCSI)
and significantly so at 1% for all maturities. Evidence of countercyclicality is also found by
looking at the year-on-year industrial production growth (IP y-o-y growth) and the Chicago Fed
National Activity sub-index on consumption and housing (CFNAI C&H). The only exception is
the correlation between Tms (Ω2 ) and IP y-o-y growth which is still negative but insignificant.
The absolute value of all correlations increases across maturities. The same conclusion is reached
by adjusting for risk: in Appendix C we report larger Sharpe ratios during recessions than
expansions for all maturities and predictions (see Table C.3).

Additional evidence in line with countercyclical risk aversion comes from Table 9 which
shows that accuracy in recessions (measured by R2

OSs) is way higher than during expansions, and
Table 10 where we observe larger economic value (CER gains) during recessions. In Appendix
C, we report countercyclical term premium estimates adopting the method of Ludvigson and
Ng (2009).

6. Conclusions

Real-time macroeconomic data can predict nonoverlapping excess bond returns and generate
economic value for investors. However, a spectral method is needed because their predictive
power is only related to common macroeconomic cycles of specific lengths. Thanks to our band
spectrum principal component approach, we find two powerful predictors: an inflation factor
related to common macroeconomic cycles of at least 8 years, and a term spread factor related to
cycles of 1 to 3 years. These factors have a clear economic interpretation. The inflation factor
reveals a link between bond yields and Federal Reserve’s inflation targeting: investors demand
compensation for exposure to hawkish monetary policy. The term spread factor tracks investors’
perception of business-cycle risk and their hedging strategy.

In this paper, we proposed a method to estimate latent factors when loadings vary across
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frequencies. Our approach is of independent interest in finance (see, for example, Huang, 2023;
Li, 2024, for cross-sectional asset pricing) and macroeconomics. A more systematic approach
for the detection of frequency-specific effects is left to future research.

The investigation of the international implications of our evidence is also high in our research
agenda. Despite the central role of the United States in highly-integrated financial markets,
business cycle synchronization, monetary policy spillovers and investors’ home bias should be
carefully considered in an analysis whose goals go beyond the scope of this paper.
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Tables

Table 1: Macro data: BSPC estimates.

r

1 2 3 5 8

R2
(

F̂ (Ω1) , F̂
)

0.997 0.910 0.878 0.905 0.962
R2
(

F̂ (Ω2) , F̂
)

0.953 0.941 0.904 0.935 0.904
R2
(

F̂ (Ω3) , F̂
)

0.748 0.738 0.791 0.873 0.866
R2
(

F̂ (Ω4) , F̂
)

0.617 0.713 0.773 0.849 0.850

Notes: Trace-R2 statistics (23) for common factors estimated from the of the ALFRED dataset (December 2020 vintage).
F̂ (Ωi) are band spectrum principal components where the bands Ωi for i = 1, . . . , 4 are defined in Section 3.2; F̂ are
principal components.

Table 2: R2
OS across frequency bands.

Maturities
2 3 4 5 6 7 8 9 10

Infl (Ω1) 0.593 0.279 0.136 −0.023 −0.150 −0.047 0.027 0.027 −0.023
Infl (Ω2) 4.385∗∗∗ 3.723∗∗∗ 2.418∗∗∗ 1.948∗∗∗ 1.993∗∗∗ 1.871∗∗ 1.885∗∗ 1.653∗∗ 1.573∗∗

Infl (Ω3) 4.481∗∗∗ 3.904∗∗∗ 2.606∗∗∗ 2.115∗∗∗ 2.094∗∗∗ 1.936∗∗ 1.936∗∗ 1.687∗∗ 1.567∗∗

Infl (Ω4) 4.578∗∗∗ 3.990∗∗∗ 2.679∗∗∗ 2.170∗∗∗ 2.142∗∗∗ 1.987∗∗ 1.982∗∗ 1.725∗∗ 1.597∗∗

Infl (Ω0) 0.568 0.200 0.074 −0.106 −0.289 −0.143 −0.059 −0.049 −0.041

T ms (Ω1) 0.237∗∗∗ 0.973∗∗∗ 0.625∗∗ 0.738∗∗ 0.533∗∗ 0.380∗∗ 0.316∗ 0.269∗ 0.146
T ms (Ω2) 0.412∗∗∗ 1.514∗∗∗ 2.033∗∗∗ 2.226∗∗∗ 2.012∗∗∗ 1.880∗∗∗ 1.774∗∗∗ 1.743∗∗∗ 1.531∗∗∗

T ms (Ω3) 0.580∗∗∗ 1.457∗∗∗ 1.973∗∗∗ 2.186∗∗∗ 2.062∗∗∗ 2.035∗∗∗ 1.969∗∗∗ 1.980∗∗∗ 1.800∗∗∗

T ms (Ω4) 0.564∗∗∗ 1.437∗∗∗ 1.951∗∗∗ 2.164∗∗∗ 2.044∗∗∗ 2.020∗∗∗ 1.957∗∗∗ 1.968∗∗∗ 1.792∗∗∗

T ms (Ω0) 0.074∗∗∗ 0.820∗∗∗ 0.557∗∗∗ 0.748∗∗ 0.544∗∗ 0.390∗∗ 0.358∗∗ 0.309∗ 0.127∗

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. The predictions obtained
using the predictor F̂t

(
Ωi, zInfl

)
in the forecasting equation (14) are denoted as Infl (Ωi) for i = 0, 1, . . . , 4. Tms (Ωi)

stands for the same predictions using F̂t

(
Ωi, zT ms

)
. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level

using the test of Clark and West (2006) (only reported for positive R2
OS values).
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Table 3: CER gains (Mean-Variance utility)

Maturities
2 3 4 5 6 7 8 9 10

γ = 3
Infl (Ω1) 0.128 0.176 0.275 0.119 −0.029 −0.158 −0.206 −0.407 −0.517
Infl (Ω2) 0.401∗ 0.685∗∗ 0.806∗∗ 0.843∗∗ 0.904∗ 0.933∗ 1.194∗ 1.328∗∗ 1.450∗∗

Infl (Ω3) 0.463∗ 0.749∗∗ 0.888∗∗ 0.935∗∗ 1.014∗ 1.061∗ 1.286∗ 1.467∗∗ 1.604∗∗

Infl (Ω4) 0.457∗ 0.743∗∗ 0.887∗∗ 0.922∗∗ 1.017∗ 1.070∗ 1.285∗ 1.475∗∗ 1.622∗∗

Infl (Ω0) 0.029 0.103 0.194 0.020 −0.151 −0.299 −0.318 −0.585 −0.670

T ms (Ω1) 0.433∗ 0.567∗ 0.496∗ 0.564∗ 0.819∗ 0.774 0.837 0.948 0.935
T ms (Ω2) 0.238 0.510∗ 0.699∗ 0.644 0.776 1.007∗ 1.285∗ 1.738∗∗ 1.888∗∗

T ms (Ω3) 0.163 0.327 0.397 0.369 0.604 0.982 1.259∗ 1.605∗∗ 1.722∗∗

T ms (Ω4) 0.156 0.317 0.391 0.352 0.586 0.966 1.241∗ 1.575∗∗ 1.688∗

T ms (Ω0) 0.453∗ 0.579∗ 0.475 0.542 0.755 0.893∗ 1.088∗ 1.336∗∗ 1.374∗

γ = 5
Infl (Ω1) 0.121 0.154 0.053 −0.099 −0.340 −0.439 −0.581 −0.748 −0.892
Infl (Ω2) 0.422∗ 0.653∗∗ 0.671∗∗ 0.635∗ 0.750∗ 0.907∗ 0.994∗ 0.738 0.668
Infl (Ω3) 0.478∗∗ 0.725∗∗ 0.745∗∗ 0.726∗ 0.842∗ 1.045∗∗ 1.129∗∗ 0.859 0.782
Infl (Ω4) 0.478∗∗ 0.721∗∗ 0.745∗∗ 0.741∗∗ 0.849∗ 1.068∗∗ 1.156∗∗ 0.888 0.811
Infl (Ω0) 0.079 0.116 −0.042 −0.186 −0.468 −0.582 −0.757 −0.898 −0.950

T ms (Ω1) 0.427∗ 0.489∗ 0.533∗ 0.688∗ 0.749∗ 0.839∗ 0.792 0.697 0.617
T ms (Ω2) 0.276 0.471∗ 0.492 0.684∗ 0.966∗ 1.442∗∗ 1.595∗∗ 1.664∗∗ 1.638∗∗

T ms (Ω3) 0.158 0.232 0.271 0.506 0.742 1.174∗ 1.334∗ 1.544∗ 1.611∗

T ms (Ω4) 0.150 0.227 0.263 0.493 0.725 1.146∗ 1.306∗ 1.527∗ 1.576∗

T ms (Ω0) 0.427∗∗ 0.506∗∗ 0.467 0.718∗ 0.935∗∗ 1.064∗∗ 1.114∗∗ 1.063∗ 1.005

γ = 8
Infl (Ω1) 0.084 0.055 −0.093 −0.235 −0.489 −0.661 −0.707 −0.666 −0.700
Infl (Ω2) 0.401∗∗ 0.542∗∗ 0.443∗ 0.601∗∗ 0.701∗ 0.482 0.384 0.245 0.215
Infl (Ω3) 0.460∗∗ 0.601∗∗ 0.515∗ 0.706∗∗ 0.815∗∗ 0.596 0.476 0.303 0.274
Infl (Ω4) 0.462∗∗ 0.599∗∗ 0.525∗ 0.722∗∗ 0.835∗∗ 0.617 0.495 0.319 0.281
Infl (Ω0) 0.064 −0.019 −0.206 −0.381 −0.610 −0.746 −0.844 −0.803 −0.813

T ms (Ω1) 0.366∗∗ 0.433∗ 0.494∗ 0.632∗ 0.724∗ 0.573 0.444 0.248 0.162
T ms (Ω2) 0.260∗ 0.300 0.512∗ 0.910∗∗ 1.219∗∗ 1.201∗∗ 1.122∗ 0.866 0.645
T ms (Ω3) 0.130 0.096 0.308 0.664∗ 0.908∗ 1.082∗ 1.065 0.931 0.707
T ms (Ω4) 0.124 0.088 0.299 0.647∗ 0.890∗ 1.054∗ 1.041 0.912 0.690
T ms (Ω0) 0.372∗∗ 0.437∗ 0.573∗∗ 0.774∗∗ 0.918∗∗ 0.760 0.681 0.509 0.386

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. The predictions obtained
using the predictor F̂t

(
Ωi, zInfl

)
in the forecasting equation (14) are denoted as Infl (Ωi) for i = 0, 1, . . . , 4. Tms (Ωi)

stands for the same predictions using F̂t

(
Ωi, zT ms

)
. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level

using the test of Diebold and Mariano (1995) (only reported for positive CER gains).
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Table 4: R2
OS and CER gains using F̂

(
Ω4, zInfl

)
and F̂

(
Ω2, zT ms

)
Maturities

2 3 4 5 6 7 8 9 10

Panel A: R2
OS

Infl (Ω4) 4.578∗∗∗ 3.990∗∗∗ 2.679∗∗∗ 2.170∗∗∗ 2.142∗∗∗ 1.987∗∗ 1.982∗∗ 1.725∗∗ 1.597∗∗

T ms (Ω2) 0.412∗∗∗ 1.514∗∗∗ 2.033∗∗∗ 2.226∗∗∗ 2.012∗∗∗ 1.880∗∗∗ 1.774∗∗∗ 1.743∗∗∗ 1.531∗∗∗

Both 5.934∗∗∗ 5.560∗∗∗ 4.495∗∗∗ 4.125∗∗∗ 4.184∗∗∗ 4.170∗∗∗ 4.056∗∗∗ 3.665∗∗∗ 3.354∗∗∗

Panel B: CER gains

Mean-Variance utility, γ = 3
Infl (Ω4) 0.457∗ 0.743∗∗ 0.887∗∗ 0.922∗∗ 1.017∗ 1.070∗ 1.285∗ 1.475∗∗ 1.622∗∗

T ms (Ω2) 0.238 0.510∗ 0.699∗ 0.644 0.776 1.007∗ 1.285∗ 1.738∗∗ 1.888∗∗

Both 0.473∗ 0.717∗ 1.017∗∗ 1.229∗∗ 1.596∗∗ 2.064∗∗ 2.478∗∗ 2.779∗∗∗ 2.999∗∗∗

Mean-Variance utility, γ = 5
Infl (Ω4) 0.478∗∗ 0.721∗∗ 0.745∗∗ 0.741∗∗ 0.849∗ 1.068∗∗ 1.156∗∗ 0.888 0.811
T ms (Ω2) 0.276 0.471∗ 0.492 0.684∗ 0.966∗ 1.442∗∗ 1.595∗∗ 1.664∗∗ 1.638∗∗

Both 0.453∗ 0.649∗ 0.946∗∗ 1.247∗∗ 1.675∗∗ 2.185∗∗∗ 2.376∗∗∗ 2.397∗∗ 2.466∗∗

Mean-Variance utility, γ = 8
Infl (Ω4) 0.462∗∗ 0.599∗∗ 0.525∗ 0.722∗∗ 0.835∗∗ 0.617 0.495 0.319 0.281
T ms (Ω2) 0.260∗ 0.300 0.512∗ 0.910∗∗ 1.219∗∗ 1.201∗∗ 1.122∗ 0.866 0.645
Both 0.433∗ 0.635∗∗ 0.870∗∗ 1.231∗∗ 1.603∗∗∗ 1.726∗∗ 1.684∗∗ 1.479∗ 1.370∗

Notes: Forecasts labelled Both are obtained as in equation (18) for i = 4 and j = 2. In Panel A ∗, ∗∗, ∗∗∗ denote
statistical significance at 10, 5, 1 percent level using the test of Clark and West (2006) (only reported for positive R2

OS
values). In Panel B ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Diebold and
Mariano (1995) (only reported for positive CER gains).

Table 5: The predictive power of the unspanned component of F̂t

(
Ω4, zInfl

)
: R2

OS

Maturities
2 3 4 5 6 7 8 9 10

c(1) 4.335∗∗∗ 4.098∗∗∗ 2.916∗∗∗ 2.342∗∗∗ 2.148∗∗∗ 1.919∗∗ 1.904∗∗ 1.663∗∗ 1.483∗∗

c(2) 4.075∗∗∗ 3.848∗∗∗ 2.676∗∗∗ 2.153∗∗∗ 1.971∗∗∗ 1.724∗∗ 1.723∗∗ 1.503∗∗ 1.316∗∗

c(3) 4.025∗∗∗ 3.916∗∗∗ 2.770∗∗∗ 2.205∗∗∗ 1.996∗∗∗ 1.681∗∗ 1.667∗∗ 1.473∗∗ 1.253∗∗

c(4) 4.420∗∗∗ 3.754∗∗∗ 2.450∗∗∗ 2.082∗∗∗ 2.069∗∗∗ 1.944∗∗ 1.831∗∗ 1.515∗∗ 1.283∗∗

Infl (Ω4) 4.578∗∗∗ 3.990∗∗∗ 2.679∗∗∗ 2.170∗∗∗ 2.142∗∗∗ 1.987∗∗ 1.982∗∗ 1.725∗∗ 1.597∗∗

Notes: The R2
OS reported in each line are obtained controlling for yield variation as described in Section 4.3, where the

controls c(1), c(2), c(3), c(4) are the Cochrane-Piazzesi factor, 3 and 5 principal components of yields, and our term spread
factor F̂t

(
Ω2 , zT ms

)
, respectively. For readability, the R2

OSs obtained with F̂t

(
Ω4, zInfl

)
(rather than its unspanned

component) are repeated here and denoted by Infl (Ω4) as in Table 2. ∗, ∗∗, ∗∗∗ denote statistical significance at 10,
5, 1 percent level using the test of Clark and West (2006) (only reported for positive R2

OS values).
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Table 6: Inflation factor: in-sample predictive results

INFCPI1YR DPGDP3 DPGDP4 DPGDP5 DPGDP6
Êπt+1 = β̂F̂t

(
Ω4, zInfl

)
β̂ 0.171∗∗ 0.431∗∗∗ 0.404∗∗∗ 0.373∗∗∗ 0.379∗∗∗

Êπt+1 = β̂F̂t

(
Ω4, zInfl

)
+ δ̂Eπt

β̂ 0.037∗∗ 0.038∗∗ 0.037∗∗ 0.036∗∗ 0.020

Êπt+1 = β̂F̂t

(
Ω4, zInfl

)
+ δ̂πt

β̂ 0.167∗∗ 0.410∗∗∗ 0.391∗∗∗ 0.360∗∗∗ 0.368∗∗∗

Notes: No intercept is included because regressors are regressands are standardized. ∗, ∗∗, ∗∗∗ denote statistical
significance at 10, 5, 1 percent level. INFCPI1YR is the mean expectation of the one-year-ahead annual-average inflation
measured by the CPI. DPGDP3, DPGDP4, DPGDP5 and DPGDP6 are the mean expected annualized percent change of
mean GDP implicit deflator one, two, three and four quarters ahead, respectively. All variables are taken from the Survey
of Professional Forecasters available at the website of the Federal Reserve Bank of Philadelphia. Eπt denotes the inflation
expectation according to the corresponding column header. πt denotes observed inflation.

Table 7: Infl (Ω4 ): R2
OS and CER gains across BLL’s regimes.

Maturities
2 3 4 5 6 7 8 9 10

Panel A: R2
OS

Hawkish 8.114∗∗∗ 6.783∗∗∗ 4.731∗∗∗ 3.823∗∗∗ 3.909∗∗∗ 3.621∗∗∗ 3.452∗∗ 2.854∗∗ 2.620∗∗

Dovish −13.383 −6.226 −3.283 −2.073 −2.130 −1.714 −1.237 −0.632 −0.472

Panel B: CER gains

Hawkish 1.040∗∗ 1.557∗∗∗ 1.760∗∗∗ 2.048∗∗∗ 2.348∗∗∗ 2.610∗∗∗ 2.614∗∗∗ 2.130∗∗∗ 2.035∗∗

Dovish −0.299 −0.465 −0.733 −1.220 −1.354 −1.108 −0.845 −0.837 −0.911

Notes: In Panel A ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Clark and West
(2006) (only reported for positive R2

OS values). In Panel B ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent
level using the test of Diebold and Mariano (1995) (only reported for positive CER gains). As discussed in Section 5.1,
hawkish and dovish monetary policy regimes are detected as in Bianchi et al. (2022).
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Table 8: Term spread factor: in-sample predictive results

Panel A: Recession probability forecasts ∆̂Pt+1 = β̂F̂t

(
Ω2, zT ms

)
Recession indicators

RECPROUSM156N JHGDPBRINDX
monthly annual quarterly annual

β̂ 0.142∗∗∗ 0.157∗∗∗ 0.302∗∗∗ 0.349∗∗∗

Panel B: return predictive regressions

Maturities
2 3 4 5 6 7 8 9 10

r̂x
(n)
t+1 = β̂(n)F̂t

(
Ω2, zT ms

)
+ δ̂(n)tmst

δ̂(n) −0.103 −0.066 −0.023 −0.011 −0.012 0.005 0.020 0.027 0.033
β̂(n) 0.242∗∗∗ 0.211∗∗ 0.172∗∗ 0.165∗∗ 0.176∗∗∗ 0.165∗∗ 0.154∗∗ 0.145∗∗ 0.138∗∗

r̂x
(n)
t+1 = δ̂(n)tmst

δ̂(n) 0.062 0.079 0.095 0.102∗ 0.109∗ 0.118∗∗ 0.125∗∗ 0.126∗∗ 0.127∗∗

r̂x
(n)
t+1 = β̂(n)F̂t

(
Ω2, zT ms

)
β̂(n) 0.171∗∗∗ 0.166∗∗∗ 0.157∗∗∗ 0.158∗∗∗ 0.168∗∗∗ 0.169∗∗∗ 0.168∗∗∗ 0.164∗∗∗ 0.160∗∗∗

Notes: No intercept is included because regressors are regressands are standardized. ∗, ∗∗, ∗∗∗ denote statistical
significance at 10, 5, 1 percent level. In Panel A, ∆Pt denotes the monthly, quarterly or annual change in recession probability
according to the corresponding column header. RECPROUSM156N and JHGDPBRINDX are (monthly) Smoothed US
Recession probability and (quarterly) GDP-based recession indicator index, respectively, both available at the FRED
database. In Panel B Newey-West standard errors are used.

Table 9: R2
OS in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) −1.179 0.350∗∗ 0.202∗ −0.011 −0.357 −0.708 −0.642 −0.556 −0.628
T ms (Ω2) 0.231∗∗∗ 1.492∗∗∗ 2.023∗∗∗ 2.024∗∗∗ 1.790∗∗∗ 1.557∗∗∗ 1.566∗∗∗ 1.479∗∗∗ 1.290∗∗∗

Both 0.162∗∗∗ 1.940∗∗∗ 2.131∗∗∗ 2.035∗∗∗ 1.797∗∗∗ 1.414∗∗∗ 1.439∗∗∗ 1.444∗∗∗ 1.229∗∗∗

Recessions
Infl (Ω4) 20.969∗∗ 17.282∗∗∗ 12.847∗∗∗ 11.972∗∗∗ 14.482∗∗∗ 14.387∗∗ 13.494∗∗ 11.632∗∗ 10.859∗∗

T ms (Ω2) 0.928∗ 1.599∗ 2.073∗ 3.132∗ 3.095∗ 3.335 2.634 2.829 2.464
Both 22.355∗∗ 18.774∗∗ 14.205∗∗ 13.512∗∗ 15.949∗∗ 16.805∗∗ 15.455∗∗ 13.222∗∗ 12.097∗∗

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled Both are obtained as in equation (18) for i = 4 and j = 2.
∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Clark and West (2006) (only reported

for positive R2
OS values).
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Table 10: CER gains in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) 0.260 0.425∗ 0.362 0.350 0.410 0.584 0.640 0.386 0.286
T ms (Ω2) 0.302 0.491∗ 0.478 0.646 0.932∗ 1.394∗∗ 1.558∗∗ 1.663∗∗ 1.730∗∗

Both 0.207 0.328 0.536 0.813∗ 1.168∗ 1.656∗∗ 1.892∗∗ 2.100∗∗ 2.253∗∗

Recessions
Infl (Ω4) 2.672∗ 3.708∗ 4.608∗∗ 4.686∗∗ 5.265∗∗ 5.941∗∗ 6.352∗ 5.942∗ 6.096∗

T ms (Ω2) 0.017 0.279 0.647 1.101 1.345 1.896 1.832 1.468 0.426
Both 2.932∗ 3.877∗ 5.123∗∗ 5.672∗∗ 6.812∗∗ 7.474∗∗ 7.120∗ 5.191 4.332

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled Both are obtained as in equation (18) for i = 4 and j = 2.
CER gains are calculated as in the economic evaluation exercise described in Section 4.2 under mean-variance preferences
and with γ = 5. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using the test of Diebold and Mariano
(1995) (only reported for positive CER gains).

Table 11: Macroeconomic determinants of expected excess returns

Maturities
2 3 4 5 6 7 8 9 10

IP y-o-y growth
Infl (Ω4) −0.147∗∗∗ −0.149∗∗∗ −0.151∗∗∗ −0.151∗∗∗ −0.157∗∗∗ −0.165∗∗∗ −0.164∗∗∗ −0.172∗∗∗ −0.177∗∗∗

T ms (Ω2) −0.052 −0.054 −0.055 −0.056 −0.056 −0.059 −0.055 −0.060 −0.063
Both −0.106∗∗ −0.094∗∗ −0.079∗ −0.080∗ −0.094∗∗ −0.101∗∗ −0.097∗∗ −0.102∗∗ −0.109∗∗

CFNAI C&H
Infl (Ω4) −0.061 −0.089∗ −0.133∗∗∗ −0.149∗∗∗ −0.132∗∗∗ −0.144∗∗∗ −0.141∗∗∗ −0.167∗∗∗ −0.176∗∗∗

T ms (Ω2) −0.093∗∗ −0.106∗∗ −0.125∗∗∗ −0.142∗∗∗ −0.136∗∗∗ −0.154∗∗∗ −0.147∗∗∗ −0.167∗∗∗ −0.177∗∗∗

Both −0.054 −0.073 −0.100∗∗ −0.118∗∗ −0.114∗∗ −0.131∗∗∗ −0.128∗∗∗ −0.146∗∗∗ −0.158∗∗∗

MCSI
Infl (Ω4) −0.150∗∗∗ −0.158∗∗∗ −0.168∗∗∗ −0.170∗∗∗ −0.165∗∗∗ −0.170∗∗∗ −0.164∗∗∗ −0.173∗∗∗ −0.177∗∗∗

T ms (Ω2) −0.256∗∗∗ −0.267∗∗∗ −0.277∗∗∗ −0.287∗∗∗ −0.283∗∗∗ −0.291∗∗∗ −0.284∗∗∗ −0.295∗∗∗ −0.301∗∗∗

Both −0.266∗∗∗ −0.300∗∗∗ −0.331∗∗∗ −0.343∗∗∗ −0.338∗∗∗ −0.350∗∗∗ −0.347∗∗∗ −0.361∗∗∗ −0.369∗∗∗

Notes: Correlation between expected returns and macroeconomic cyclical indicators. IP y-o-y growth stands is the year-
on-year industrial production growth, CFNAI C&H is the Chicago Fed National Activity sub-index on consumption and
housing, MCSI is the Michigan consumer sentiment index. Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Forecasts labelled Both
are obtained as in equation (18) for i = 4 and j = 2. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level.
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Figure 1: ALFRED dataset: covariance matrix decomposition by its cyclical components
Notes: Cycle length are: up to 1 year (Ω1); between 1 and 3 years (Ω2); between 3 and 8 years (Ω3); 8+ years (Ω4). For
the generic band Ω = [ω, ω], we consider the normalized band spectrum covariance C0 (Ω) = 0.5 (ω − ω)−1 C0 (Ω).
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Figure 2: Average R2
OS and CER gains using all combinations of two predictors

Notes: Average out-of-sample R2 and CER gains under mean-variance preferences across maturities corresponding to the
predictions obtained as in equation (18) for any i, j = 0, 1, . . . , 4.
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Figure 3: Monetary policy stance and inflation factor’s utility gains
Notes: The blue line are the cumulative quarterly utility gains with respect to the historical average benchmark associated
with the predictions Infl (Ω4), obtained as described in Section 4. The red line is the smoothed probability of hawkish
monetary policy estimated by Bianchi et al. (2022).
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Figure 4: Cumulative utility gains
Notes: Baseline mean-variance exercise with γ = 5: cumulative monthly utility gains with respect to the historical average
benchmark associated with the predictions Infl (Ω4), T ms (Ω2), Both obtained as described in Section 4. Shaded areas
denote NBER recessions.
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Appendix

A. Frequency-specific factor estimation

A.1. Consistent estimation of the factor space

In this section we establish the consistent estimation of the space spanned by frequency-specific
factors which motivates the use of estimated factors in our predictive regressions as if such
factors were observed.

We begin with an unfeasible estimator F̃ (Ω) of frequency-specific factors F (Ω) based on
a continuum of frequencies within the generic band Ω = [ω, ω] and show that its asymptotic
properties are identical to the those of the principal estimator when latent factors are not
frequency-specific. That is, the space spanned by the factors is estimated at the usual rate
min (N, T ).

Then, we cast a T -dimensional grid of Fourier frequencies ω1, ω2, . . . , ωT over [−π, π] and
estimate frequency-specific factors in the band Ω using the subset of frequencies ωl, ωl+1, . . . ,
ωu where l is the smallest integer such that ω ≤ ωl and u the largest integer such that ωu ≤ ω

(to keep the notation simple we suppress the dependence of ωu and ωl on Ω). Being Ω an
arbitrary fixed band, the number of available frequencies u − l + 1 grows linearly with T as
the interval between neighbouring Fourier frequencies shrinks with T −1. Hence, the cardinality
|ΩT | = u − l + 1 is O (T ). The feasible estimator so obtained, which is the one proposed in the
main text, is such that the factor estimates recover the span of frequency-specific factors at rate
min (N, T/ (MT log MT )), where MT is the bandwidth for the lag window estimator (9).

Without loss of generality, in the rest of this section we refer to the two-band example
introduced in Section 2.

For j = 1, 2, define the N -dimensional vectors Xt (Ωj) =
∫

ω∈Ωj
Xωeιωtdω and et (Ωj) =∫

ω∈Ωj
Eωeιωtdω, the T × N matrices X (Ωj) = (X1 (Ωj) , X2 (Ωj) , · · · , XT (Ωj))′ and E (Ωj) =

(e1 (Ωj) , e2 (Ωj) , · · · , eT (Ωj))′ with generic entries xit (Ωj) and eit (Ωj), respectively, and the
T -dimensional vectors ei = (ei1, ei2, · · · , eiT )′, ei (Ωj) = (ei1 (Ωj) , ei2 (Ωj) , · · · , eiT (Ωj))′. We
will use the singular value decomposition

(NT )−1/2 X (Ωj) = UNT (Ωj) DNT (Ωj) VNT (Ωj)′

= UNT,r (Ωj) DNT,r (Ωj) VNT,r (Ωj)′ + UNT,N−r (Ωj) DNT,N−r (Ωj) VNT,N−r (Ωj)′

where the diagonal entries of DNT (Ωj) are sorted in decreasing order. Finally, we use the
Frobenius norm ∥A∥ =

√
tr (AA′).

Assumption 1. For i = 1, 2

(i) E (eit|Λ1, Λ2, Ft (Ω1) , Ft (Ω2)) = 0
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(ii) It exists M < ∞ such that

(a) E
(
N−1/2∑N

i=1 (eiteis − E (eiteis))
)2

≤ M ;

(b) T −1∑T
t=1

∑T
s=1 |E (eiteis)| ≤ M , for all i;

(c) N−1T −1/2 ∥e′
tE′∥ = Op

(
min

(
N−1/2, T −1/2

))
, for all i;

(d) T −1N−1/2 ∥e′
iE∥ = Op

(
min

(
N−1/2, T −1/2

))
, for all t.

Assumption 2. For j = 1, 2

(i) limN→∞ N−1Λ′
jΛj = CΛ,j

(ii) plimT →∞ T −1F (Ωj)′ F (Ωj) = CF (Ωj)

where CΛ,j and CF (Ωj) are positive definite with distinct eigenvalues.

Assumption 3. For j = 1, 2

(i) E
∥∥∥N−1/2∑

i Λjeit (Ωj)
∥∥∥2

≤ M and (NT )−1 et (Ωj)′ E (Ωj)′ F (Ωj)′ = Op
(
min

(
N−1, T −1)),

for each t;

(ii) E
∥∥∥T −1/2∑T

t=1 Ft (Ωj) eit (Ωj)
∥∥∥2

≤ M and (NT )−1 ei (Ωj)′ E (Ωj) Λj = Op
(
min

(
N−1, T −1)),

for each i.

Assumption 1 corresponds to Assumption A1 of Bai and Ng (2020), while Assumptions 2, 3
merely readapt their Assumptions A2, A3 to our context with frequency-specific factors. These
assumptions ensure the existence of a factor structure. These three assumptions are enough to
derive the properties of the unfeasible estimator.

Using the singular value decomposition of (NT )−1/2 X (Ωj) and the unfeasible factor esti-
mator F̃ (Ωj) =

√
TUNT,r (Ωj) we have

(NT )−1 X (Ωj) X (Ωj)′ F̃ (Ωj) = UNT (Ωj) D2
NT (Ωj) UNT (Ωj)′ √

TUNT,r = F̃ (Ωj) D2
NT,r (Ωj)

(19)
Using the definition of X (Ωj) we have

X (Ωj) X (Ωj)′ = F (Ωj) Λ′
jΛjF (Ωj)′+F (Ωj) Λ′

jE (Ωj)′+E (Ωj) ΛjF (Ωj)′+E (Ωj) E (Ωj)′ (20)

(19) and (20) imply that

F̃ (Ωj) D2
NT,r (Ωj) =

F (Ωj) Λ′
jΛjF (Ωj)′ + F (Ωj) Λ′

jE (Ωj)′ + E (Ωj) ΛjF (Ωj)′ + E (Ωj) E (Ωj)′

NT
F̃ (Ωj)

Defining the rotation matrix H̃NT (Ωj) =
(

Λ′
jΛj

N

)(
F(Ωj)F̃(Ωj)

T

)
D−2

NT,r (Ωj), we have

F̃ (Ωj) = F (Ωj) H̃NT (Ωj)+
(
F (Ωj) Λ′

jE (Ωj)′ + E (Ωj) ΛjF (Ωj)′ + E (Ωj) E (Ωj)′
) F̃ (Ωj)

NT
D−2

NT,r (Ωj)
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Rearranging and taking norms gives

T −1
∥∥∥F̃ (Ωj) − F (Ωj) H̃NT (Ωj)

∥∥∥2
≤ 2

T

∥∥∥∥E (Ωj) Λj

N

∥∥∥∥2 ∥F (Ωj)∥2

T

∥∥∥F̃ (Ωj)
∥∥∥2

T −1
∥∥∥DNT,r (Ωj)−2

∥∥∥2
+

+
∥∥∥∥∥E (Ωj) E (Ωj)′

NT

∥∥∥∥∥
2 ∥∥∥F̃ (Ωj)

∥∥∥2
T −1

∥∥∥DNT,r (Ωj)−2
∥∥∥2

= A + B

A is Op
(
N−1) because T −1

∥∥∥E(Ωj)Λj

N

∥∥∥2
is Op

(
N−1) by Assumption 3, ∥F (Ωj)∥2 T −1 is

Op (1) by Assumption 2,
∥∥∥F̃ (Ωj)

∥∥∥2
T −1 = r because F̃ (Ωj) =

√
TUNT,r (Ωj) and the columns

of UNT,r (Ωj) are unit-length,
∥∥∥DNT,r (Ωj)−1

∥∥∥2
is Op (1). To see the latter result note that

∥∥∥D2
NT,r (Ωj)

∥∥∥ ≤
∥∥∥D2

NT (Ωj)
∥∥∥ ≤

∥∥∥∥∥X (Ωj) X (Ωj)′

NT

∥∥∥∥∥
≤
∥∥∥∥∥F (Ωj) F (Ωj)′

T

∥∥∥∥∥
∥∥∥∥∥ΛjΛ′

j

N

∥∥∥∥∥+ 2
∥∥∥∥∥F (Ωj) Λ′

jE (Ωj)′

NT

∥∥∥∥∥+
∥∥∥∥∥E (Ωj) E (Ωj)′

NT

∥∥∥∥∥
where the last two terms are asymptotically negligible as discussed above, and by Assumption
2 the first term converges in probability to ∥CF (Ωj)∥

∥∥CΛ,j

∥∥.
B is Op

(
T −1) because, under Assumption 1,

∥∥∥E(Ωj)E(Ωj)′

NT

∥∥∥2
≤
∥∥∥EE′

NT

∥∥∥2
= Op

(
min

(
N−1, T −1))

where the last equality is established by Lemma 1 of Bai and Ng (2020) under Assumption 1.

Finally, noting that

∥∥∥H̃NT (Ωj)
∥∥∥ ≤

∥∥∥∥∥Λ′
jΛj

N

∥∥∥∥∥
∥∥∥∥∥F (Ωj)′ F (Ωj)

T

∥∥∥∥∥
1/2 ∥∥∥∥∥ F̃ (Ωj)′ F̃ (Ωj)

T

∥∥∥∥∥
1/2 ∥∥∥D−2

NT,r (Ωj)
∥∥∥ = Op (1)

we obtain the result

T −1
∥∥∥F̃ (Ωj) − F (Ωj) HNT (Ωj)

∥∥∥2
= Op

(
max(N−1, T −1)

)
For the feasible band spectrum principal component estimator we need to replace X (Ωj) and

E (Ωj) with X̂ (Ωj) =
(
X̂1 (Ωj) , X̂2 (Ωj) , . . . , X̂T (Ωj)

)′
and Ê (Ωj) =

(
Ê1 (Ωj) , Ê2 (Ωj) , . . . , ÊT (Ωj)

)′
,

where X̂t (Ω) =
∑ωu

ω=ωl

∑ωT
λ=ω1

√
g (ω − λ)Xλeιλt , Êt (Ω) =

∑ωu
ω=ωl

∑ωT
λ=ω1

√
g (ω − λ)Eλeιλt and

g (ω − λ) ≡ T −1∑MT
j=−MT

e−ι(ω−λ)jKj (MT ), and use the singular value decomposition

(NT )−1/2 X̂ (Ωj) = ÛNT,r (Ωj) D̂NT,r (Ωj) V̂NT,r (Ωj)′ + ÛNT,N−r (Ωj) D̂NT,N−r (Ωj) V̂NT,N−r (Ωj)′

The asymptotic properties of the estimator depend on those of the band spectrum covariance
estimator (10). To derive these properties we introduce the following assumptions.

Assumption 4. Ft = N (L) ut where ut is a q-dimensional zero-mean stochastic process with
q ≤ r < N , and N (L) is r×q-dimensional and one-sided with absolutely summable coefficients.
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Assumption 5. For i ∈ N, t ∈ Z

eit =
∞∑

j=1

∞∑
k=0

βij,kηj,t−k

and (u′
tηηη

′
t)

′ is i.i.d. orthonormal, where ηηηt = (η1t, η2t, . . . )′. Moreover, βij,k is such that∑∞
j=1

∑∞
k=0 β2

ij,k < ∞,

|βis,k| ≤ Bisρk with
∑∞

s=1 Bis ≤ B and
∑∞

i=1 Bis ≤ B,

for some 0 < Bis < ∞, 0 < B < ∞ and 0 ≤ ρ < 1.

Assumption 6. For i ∈ N, t ∈ Z, j = 1, . . . , q there exist p > 4 and 0 < A < ∞ such that
E (|ujt|p) ≤ A and E (|ηit|p) ≤ A

Assumption 7. (i) The kernel function K is even, bounded, with support [−1, 1] and such
that

1) for some κ > 0, |K (u) − 1| = O (|u|κ) as u → 0,

2)
∫∞

−∞ K2 (u) du < ∞,

3)
∑

j∈Z sup|s−j|≤1 |K (jw) − K (sw)| = O (1), as w → 0.

(ii) For some positive constants c1, c2, δ and δ with 0 < δ < δ < 1 < δ (2κ + 1), the bandwidth
MT is such that c1T δ ≤ MT ≤ c2T δ.

Assumptions 4 and 5 strengthen Assumption 3 since no weak correlation among factors
and idiosyncratic terms is allowed for. This is a requirement for the estimation of the spectral
density matrix, which is also typical in the generalized dynamic factor models originated from
Forni et al. (2000). Assumptions 6 and 7 correspond to Assumptions 8 and 9 of Forni et al.
(2017) and are needed to use the results on the upper bound for the variance of the spectral
density estimator established by Wu and Zaffaroni (2018). Under these assumptions Forni et al.
(2017) obtain the uniform convergence of the spectral density estimator, a result which in our
context corresponds to Lemma 2.

Proposition 1. Under Assumptions 2, 4, 5, 6, 7

N−1
∥∥∥Ĉ0 (Ω) − C0 (Ω)

∥∥∥ = Op

√MT log MT

T



Using the singular value decomposition of (NT )−1/2 X̂ (Ωj) and the feasible factor estimator
F̂ (Ωj) =

√
T ÛNT,r (Ωj) we have

(NT )−1 X (Ωj) X (Ωj)′ F̂ (Ωj) = (NT )−1
(
X̂ (Ωj) X̂ (Ωj)′ F̂ (Ωj) + BF̂ (Ωj)

)
= ÛNT (Ωj) D̂2

NT (Ωj) ÛNT (Ωj)′ √
T ÛNT,r + (NT )−1 BF̂ (Ωj)

= F̂ (Ωj) D̂2
NT,r (Ωj) + (NT )−1 BF̂ (Ωj) (21)
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where B ≡ X (Ωj) X (Ωj)′ − X̂ (Ωj) X̂ (Ωj)′. (21) and (20) imply

F̂ (Ωj) = F (Ωj) ĤNT (Ωj)+
(
F (Ωj) Λ′

jE (Ωj)′ + E (Ωj) ΛjF (Ωj)′ + E (Ωj) E (Ωj)′ + B
) F̂ (Ωj)

NT
D̂−2

NT,r (Ωj)

where ĤNT (Ωj) ≡
(

Λ′
jΛj

N

)(
F(Ωj)F̂(Ωj)

T

)
D̂−2

NT,r (Ωj). Rearranging and taking norms gives

T −1
∥∥∥F̂ (Ωj) − F (Ωj) ĤNT (Ωj)

∥∥∥2
≤ 2

T

∥∥∥∥E (Ωj) Λj

N

∥∥∥∥2 ∥F (Ωj)∥2

T

∥∥∥F̂ (Ωj)
∥∥∥2

T −1
∥∥∥D̂NT,r (Ωj)−2

∥∥∥2
+

+
∥∥∥∥∥E (Ωj) E (Ωj)′

NT

∥∥∥∥∥
2 ∥∥∥F̂ (Ωj)

∥∥∥2
T −1

∥∥∥D̂NT,r (Ωj)−2
∥∥∥2

+

+
∥∥∥∥ B

NT

∥∥∥∥2 ∥∥∥F̂ (Ωj)
∥∥∥2

T −1
∥∥∥D̂NT,r (Ωj)−2

∥∥∥2

A similar argument as above for unfeasible estimator applies to the first two terms. For the

last term note that
∥∥∥ B

NT

∥∥∥2
=
∥∥∥∥ Ĉ0(Ω)−C0(Ω)

N

∥∥∥∥2
= Op

(
T −1MT log MT

)
where the last equality is

ensured by Proposition 1. To see this, note that

Ĉ0 (Ω) =
ωu∑

ω=ωl

Ŝ (ω) =
∑
ω

∑
|j|≤MT

e−ιjωKj (MT ) Ĉj

=
∑
ω

∑
|j|≤MT

e−ιjωKj (MT ) T −1
ωT∑

λ=ω1

XλX ′
λeιλj

=
∑
ω

∑
λ

T −1 ∑
|j|≤MT

Kj (MT ) e−ι(ω−λ)jXλX ′
λ

=
∑
ω

∑
λ

g (ω − λ) XλX ′
λ = X̂ (Ω)′ X̂ (Ω)

where the second line exploits

XλX ′
λ =

(
1√
T

T∑
t=1

Xte
−ιλt

) 1√
T

T∑
j=1

Xje−ιλj

′

= 1
T

∑
t

∑
j

XtX′
je−ιλ(t−j) =

∑
|k|≤T −1

e−ιλk 1
T

T∑
t=|k|+1

XtX′
t−|k|

(with k ≡ t − j) and the corresponding inverse Fourier transform for Ĉj .

Thanks to Assumption 7, it is straightforward to show that, similarly to DNT,r (Ωj) and
H̃NT (Ωj), D̂NT,r (Ωj) and ĤNT (Ωj) are Op (1). As a result we have that

T −1
∥∥∥F̂ (Ωj) − F (Ωj) ĤNT (Ωj)

∥∥∥2
= Op

(
max

(
N−1, T −1MT log MT

))
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Proof of Proposition 1

N−1
∥∥∥Ĉ0 (Ω) − C0 (Ω)

∥∥∥ = N−1

∥∥∥∥∥∥ π

|ΩT |
∑

ωk∈Ω
Ŝ (ωk) −

∫
Ω

S (ω) dω

∥∥∥∥∥∥ ≤

≤ N−1

∥∥∥∥∥∥ π

|ΩT |
∑

ωk∈Ω

(
Ŝ (ωk) − S (ωk)

)∥∥∥∥∥∥+ N−1

∥∥∥∥∥∥ π

|ΩT |
∑

ωk∈Ω
S (ωk) −

∫
Ω

S (ω) dω

∥∥∥∥∥∥
= a + b

For a it holds that

E

N−2
N∑

i,j=1

∣∣∣∣∣∣ π

|ΩT |
∑

ωk∈Ω
(ŝij (ωk) − sij (ωk))

∣∣∣∣∣∣
2
 ≤ E

N−2
N∑

i,j=1
πmax

ωk∈Ω
|ŝij (ωk) − sij (ωk)|2



By Lemma 2, the latter term is Op
(
T −1MT log MT

)
, hence a is Op

(
T −1/2√

MT log MT

)
.

For b,

N−2
N∑

i,j=1

∣∣∣∣∣∣ π

|ΩT |
∑

ωk∈Ω
sij (ωk) −

∫
Ω

sij (ω) dω

∣∣∣∣∣∣
2

≤ N−2
N∑

i,j=1

π

|ΩT |
∑

ωk∈Ω
max

ωk−1≤ω≤ωk

|sij (ωk) − sij (ω)|2

Using Lemma 1 and noting that |ΩT | is Op (T ), the latter term is Op
(
T −1), hence b is Op

(
T −1/2

)
.

Lemmata

Lemma 1. Under Assumptions 2, 4, 5, sij (ω) possess derivatives of any order and are of bounded
variation uniformly in i, j ∈ N.

Proof. Under Assumption 4, 5, sij (ω) = λi1SF,1 (ω) λ′
j1 + λi2SF,2 (ω) λ′

j2 + se
ij (ω). Forni et al.

(2017, Proposition 2) prove that under Assumption 5 the third term se
ij (ω) has derivatives of

all orders and bounded variation uniformly in i, j. The first two terms are such that

λi1SF,1 (ω) λ′
j1 + λi2SF,2 (ω) λ′

j2 =

λi1SF (ω) λ′
j1 ω ∈ Ω1

λi2SF (ω) λ′
j2 ω ∈ Ω2

Say, without loss of generality, that ω ∈ Ω1. By Assumption 4 (absolute summability) CF,k =
E
(
FtF′

t−k

)
=
∑∞

j=0 Nk+jN ′
j < ∞, hence λi1SF (ω) λ′

j1 = (2π)−1 λi1
∑∞

k=−∞ e−ιkωCF,kλ′
j1 has

derivatives of any order and is of bounded variation.

Lemma 2. Under Assumptions 2, 4, 5, 6, 7, for all T , and i, j ∈ N it exists a positive constant
C such that

E
(

max
ωk∈Ω

|ŝij (ωk) − sij (ωk)|2
)

≤ CT −1MT log MT (22)
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Proof. The proof is trivial since

E
(

max
ωk∈Ω

|ŝij (ωk) − sij (ωk)|2
)

≤ E
(

max
|k|≤MT

|ŝij (ωk) − sij (ωk)|2
)

≤ CT −1MT log MT

where the last inequality is established by Forni et al. (2017, Proposition 6).

A.2. Simulation results

We generate r = 2 common factors Ft = AFt−1 + ηt with A = diag (0.4, 0.4), and idiosyncratic
errors eit = 0.8εit + 0.2ϵt where ηt, εit and ϵt are mutually independent iid N(0, 1). So we
have autocorrelated factors and weakly cross-sectional dependent errors. A T × N panel X is
generated as described in equation (4) with Ω2 = [−θ, θ], and Ω1 = [−π, −θ) ∪ (θ, π] considering
three different scenarios.

DGP 1 : θ = π/2, Λ1, Λ2 independently drawn from a uniform distribution in [−1, 1].

DGP 2 : θ = π/4, Λ1 and Λ2 independently drawn from a uniform distribution in [−1, 1].

DGP 3 : θ = π/4, Λ1 = Λ2 drawn from a uniform distribution in [−1, 1].

We measure estimation accuracy by projecting estimated factors onto real ones and report trace-
R2 statistics

R2
(
Ŷ, Y

)
= tr

(
Ŷ′PY Ŷ

)
/tr

(
Ŷ′Ŷ

)
(23)

of such multivariate projections, where tr(·) stands for trace, PY = Y (Y′Y)−1 Y′, Y and Ŷ
are either F, F (Ω1), F (Ω2) and F̂, F̂ (Ω1), F̂ (Ω2), respectively. The results for each DGP and
T × N = [25 50 100 200] × [25 50 100 200] are obtained as averages across 500 replications.

The trace-R2 statistics in Table A.1 show that in presence of frequency-specific effects, that
is under DGP 1 and DGP 2, the BSPC estimator yields mean-square consistent estimation
of frequency-specific factors: as N and T grow R2

(
F̂ (Ω1) , F (Ω1)

)
and R2

(
F̂ (Ω2) , F (Ω2)

)
approach 1. On the contrary, under DGP 3, that is in absence of frequency-specific effects, the
BSPC estimator estimates Ft: R2

(
F̂ (Ω1) , F

)
and R2

(
F̂ (Ω2) , F

)
approach 1 while

R2
(
F̂ (Ω1) , F (Ω1)

)
and R2

(
F̂ (Ω1) , F (Ω2)

)
do not. In fact, as discussed in Section 2.2.1, in this

case the BSPC is a inefficient but consistent estimator of F. Nonetheless, the loss of efficiency is
very mild since the trace-R2s of the two BSPC estimates, R2

(
F̂ (Ω1) , F

)
and R2

(
F̂ (Ω2) , F

)
,

are very close to those of the usual principal component estimator, R2
(
F̂, F

)
.

The first two DGPs violate the usual assumptions for the consistent principal component
estimation of F and, indeed, F̂t does not seem to converge to Ft (this is particularly evident for
DGP 2). DGP 3 is instead a usual factor model and the good performance of F̂ is in line with
well-known results in the factor model literature.

The finite-sample properties of the BSPC estimator under the first two DGPs are somehow
inferior to those of the PC estimator under DGP 3, but still reasonable for sufficiently large N
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and T . For example, in Figure A.1 we repeat the same exercise for r = 1 and N = T = 200 and
find that true and estimated factors are nearly undistinguishable. The solid lines are the spectra
obtained with the unfeasible lag-window estimator that uses true factors, the dashed lines are
instead obtained using the factors estimated via BSPCs. In the first two DGPs the estimated
spectra of F̂t (Ω1) and F̂t (Ω2) are very close to those obtained using the unfeasible estimator
which observes Ft (Ω1) and Ft (Ω2). Under DGP 3 the estimated spectra of F̂t (Ω1) and F̂t (Ω2)
are undistinguishable because F̂t (Ω1) and F̂t (Ω2) are both estimates of Ft (the confidence bands
for F̂t (Ω1) and F̂t (Ω2) are also remarkably similar).

Table A.1: Simulation results.

DGP 1 DGP 2 DGP 3

R2
(

F̂ (Ω1) , F (Ω1)
)

R2
(

F̂ (Ω1) , F (Ω1)
)

R2
(

F̂ (Ω1) , F (Ω1)
)

N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200
T = 25 0.543 0.677 0.751 0.818 0.728 0.826 0.878 0.918 0.531 0.552 0.566 0.568
50 0.583 0.733 0.826 0.902 0.774 0.870 0.929 0.962 0.491 0.506 0.513 0.523
100 0.625 0.762 0.863 0.927 0.797 0.886 0.940 0.969 0.485 0.507 0.521 0.520
200 0.643 0.773 0.875 0.932 0.813 0.893 0.946 0.972 0.491 0.507 0.517 0.520

R2
(

F̂ (Ω2) , F (Ω2)
)

R2
(

F̂ (Ω2) , F (Ω2)
)

R2
(

F̂ (Ω2) , F (Ω2)
)

N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200
T = 25 0.781 0.836 0.865 0.884 0.607 0.682 0.715 0.761 0.426 0.446 0.449 0.459
50 0.837 0.888 0.919 0.929 0.720 0.804 0.851 0.883 0.454 0.473 0.483 0.485
100 0.861 0.910 0.940 0.956 0.763 0.845 0.895 0.928 0.454 0.465 0.467 0.479
200 0.874 0.926 0.957 0.969 0.782 0.866 0.922 0.947 0.445 0.462 0.468 0.475

R2
(

F̂, F
)

R2
(

F̂, F
)

R2
(

F̂, F
)

N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200
T = 25 0.586 0.619 0.646 0.654 0.523 0.548 0.570 0.581 0.853 0.887 0.907 0.918
50 0.620 0.654 0.685 0.693 0.494 0.529 0.549 0.553 0.891 0.925 0.943 0.952
100 0.623 0.674 0.693 0.703 0.479 0.515 0.532 0.538 0.913 0.944 0.961 0.970
200 0.644 0.682 0.713 0.717 0.481 0.498 0.528 0.530 0.923 0.955 0.972 0.980

R2
(

F̂ (Ω1) , F
)

R2
(

F̂ (Ω1) , F
)

R2
(

F̂ (Ω1) , F
)

N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200
T = 25 0.375 0.380 0.361 0.349 0.496 0.528 0.533 0.538 0.844 0.881 0.903 0.914
50 0.340 0.315 0.303 0.289 0.459 0.480 0.489 0.498 0.886 0.922 0.941 0.950
100 0.317 0.303 0.285 0.282 0.456 0.481 0.499 0.506 0.911 0.942 0.960 0.969
200 0.314 0.286 0.284 0.273 0.461 0.489 0.506 0.513 0.921 0.955 0.971 0.980

R2
(

F̂ (Ω2) , F
)

R2
(

F̂ (Ω2) , F
)

R2
(

F̂ (Ω2) , F
)

N = 25 50 100 200 N = 25 50 100 200 N = 25 50 100 200
T = 25 0.606 0.643 0.652 0.669 0.473 0.494 0.506 0.515 0.847 0.880 0.901 0.912
50 0.642 0.675 0.692 0.703 0.461 0.480 0.491 0.501 0.891 0.924 0.942 0.950
100 0.653 0.680 0.700 0.712 0.437 0.459 0.473 0.479 0.913 0.944 0.961 0.970
200 0.664 0.691 0.712 0.721 0.435 0.460 0.471 0.480 0.923 0.956 0.972 0.980

Notes: The table reports trace-R2 statistics (23). Data generating processes and all details of the simulation exercise are
described in Section A.2. T ,N denote the dimension of the panel considered for each DGP.
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DGP 1 DGP 2

DGP 3

Figure A.1: Simulation: spectral density of estimated factors
Notes: Simulation exercise for the DGPs described in Section A.2 with (T, N) = (200, 200) and r = 1. Spectral densities are estimated using a
lag-window estimator (9). The solid lines are the spectra obtained with the unfeasible lag-window estimator that uses true factors, the dashed lines
are instead obtained using the factors estimated via BSPCs. Shaded areas denote 95% confidence bands around the feasible BSPC estimates.
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B. Real-time macroeconomic data

Table B.1: ALFRED data

Mnemonic Description Tcode

1 AWHMAN Avg Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1
2 AWHNONAG Avg Weekly Hours Of Production And Nonsupervisory Employees: Total private 2
3 AWOTMAN Avg Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 2
4 CE16OV Civilian Employment 5
5 CLF16OV Civilian Labor Force 5
6 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6
7 CURRDD Currency Component of M1 Plus Demand Deposits 6
8 CURRSL Currency Component of M1 5
9 DEMDEPSL Demand Deposits at Commercial Banks 6
10 DMANEMP All Employees: Durable goods 5
11 DSPI Disposable Personal Income 5
12 DSPIC96 Real Disposable Personal Income 5
13 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4
14 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
15 HOUST2F Housing Starts: 2-4 Units 4
16 INDPRO Industrial Production Index 5
17 M1SL M1 Money Stock 6
18 MANEMP All Employees: Manufacturing 5
19 NDMANEMP All Employees: Nondurable goods 5
20 OCDSL Other Checkable Deposits 6
21 PAYEMS All Employees: Total nonfarm 5
22 PCE Personal Consumption Expenditures 5
23 PCEDG Personal Consumption Expenditures: Durable Goods 5
24 PCEND Personal Consumption Expenditures: Nondurable Goods 5
25 PCES Personal Consumption Expenditures: Services 5
26 PI Personal Income 5
27 SAVINGSL Savings Deposits - Total 6
28 SRVPRD All Employees: Service-Providing Industries 5
29 STDCBSL Small Time Deposits at Commercial Banks 6
30 STDSL Small Time Deposits - Total 6
31 STDTI Small Time Deposits at Thrift Institutions 6
32 SVGCBSL Savings Deposits at Commercial Banks 6
33 SVGTI Savings Deposits at Thrift Institutions 6
34 SVSTCBSL Savings and Small Time Deposits at Commercial Banks 6
35 TCDSL Total Checkable Deposits 6
36 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5
37 UEMP15OV Civilians Unemployed - 15 Weeks & Over 5
38 UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
39 UEMP27OV Civilians Unemployed for 27 Weeks and Over 5
40 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 5
41 UEMPMEAN Average (Mean) Duration of Unemployment 2
42 UEMPMED Median Duration of Unemployment 2
43 UNEMPLOY Unemployed 5
44 UNRATE Civilian Unemployment Rate 2
45 USCONS All Employees: Construction 5
46 USFIRE All Employees: Financial Activities 5
47 USGOOD All Employees: Goods-Producing Industries 5
48 USGOVT All Employees: Government 5
49 USMINE All Employees: Mining and logging 5
50 USPRIV All Employees: Total Private Industries 5
51 USSERV All Employees: Other Services 5
52 USTPU All Employees: Trade, Transportation & Utilities 5
53 USTRADE All Employees: Retail Trade 5
54 USWTRADE All Employees: Wholesale Trade 5

Notes: Tcode indicates the transformation adopted to achieve stationarity and is as follows. Letting x̃it be a raw variable
and xit its stationary transformation, we consider one of the following six transformation codes. 1: xit = x̃it; 2: xit =
(1 − L) x̃it; 3: xit = (1 − L)2 x̃it; 4: xit = ln (x̃it); 5: xit = (1 − L) lnx̃it; 6: xit = (1 − L)2 lnx̃it.
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C. Additional empirical results

Table C.1: Out-of-sample R2 using SUFF and sSUFF

Maturities
2 3 4 5 6 7 8 9 10

SUFF −6.899 −6.089 −5.515 −4.184 −5.078 −4.859 −5.419 −3.765 −5.110
sSUFF −5.780 −5.276 −5.954 −5.220 −5.121 −5.165 −4.853 −3.593 −4.769
SUFF (Infl) −3.848 −1.930 −1.121 −0.838 −0.393 −0.340 −0.703 −0.029 0.544∗∗

sSUFF (Infl) −7.865 −6.756 −7.163 −5.662 −5.526 −4.775 −4.734 −4.273 −5.010
SUFF (T ms) −3.695 −2.732 −1.724 −3.037 −0.463 −0.878 −1.485 −3.437 −4.681
sSUFF (T ms) −3.020 −0.943 −1.804 −1.261 −2.993 −8.760 −5.543 −4.936 −4.418
SUFF (Infl, T ms) −6.158 −4.290 −4.965 −2.847 −2.294 0.166∗ 0.106∗ −0.756 1.352∗∗

sSUFF (Infl, T ms) −3.255 −3.698 −3.709 −3.759 −4.434 −4.957 −5.629 −5.407 −5.514

Notes: SUFF and sSUFF are performed as described in Huang et al. (2023) and extracting 6 latent factors and 2 predictive
indices. Where additional regressors are indicated in brackets the predictors are first projected onto the sieve space of such
additional regressors as in Fan et al. (2017, 2021). ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1 percent level using
the test of Clark and West (2006) (only reported for positive R2

OS values).
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Table C.2: CER gains (Power utility)

Maturities
2 3 4 5 6 7 8 9 10

γ = 3
Infl (Ω1) 0.126 0.166 0.261 0.201 0.061 −0.085 −0.132 −0.186 −0.260
Infl (Ω2) 0.387∗ 0.640∗ 0.804∗∗ 0.876∗∗ 0.892∗ 0.983∗ 1.174∗ 1.400∗∗ 1.571∗∗

Infl (Ω3) 0.454∗ 0.709∗∗ 0.883∗∗ 0.960∗∗ 0.994∗ 1.076∗ 1.267∗ 1.511∗∗ 1.709∗∗

Infl (Ω4) 0.449∗ 0.706∗∗ 0.881∗∗ 0.948∗∗ 0.991∗ 1.082∗ 1.273∗ 1.511∗∗ 1.700∗∗

Infl (Ω0) 0.029 0.073 0.213 0.088 −0.034 −0.192 −0.228 −0.331 −0.410

T ms (Ω1) 0.395∗ 0.551∗ 0.498∗ 0.536 0.712 0.744 0.763 0.921 0.938
T ms (Ω2) 0.209 0.463∗ 0.725∗ 0.658 0.775 0.950 1.145∗ 1.647∗∗ 1.810∗∗

T ms (Ω3) 0.139 0.287 0.415 0.386 0.542 0.879 1.133 1.580∗∗ 1.683∗∗

T ms (Ω4) 0.129 0.271 0.414 0.378 0.525 0.862 1.109 1.552∗ 1.651∗

T ms (Ω0) 0.437∗ 0.554∗ 0.490∗ 0.512 0.676 0.823 0.923 1.266∗∗ 1.277∗

Both 0.440∗ 0.670∗ 0.990∗∗ 1.167∗∗ 1.543∗∗ 1.924∗∗ 2.308∗∗ 2.713∗∗ 2.965∗∗∗

γ = 5
Infl (Ω1) 0.116 0.167 0.092 −0.050 −0.291 −0.310 −0.456 −0.612 −0.689
Infl (Ω2) 0.404∗ 0.646∗∗ 0.679∗∗ 0.683∗ 0.729∗ 0.943∗ 1.059∗ 0.907∗ 0.876
Infl (Ω3) 0.459∗∗ 0.712∗∗ 0.737∗∗ 0.750∗∗ 0.822∗ 1.040∗∗ 1.192∗∗ 1.031∗ 0.989∗

Infl (Ω4) 0.460∗∗ 0.710∗∗ 0.732∗∗ 0.758∗∗ 0.823∗ 1.056∗∗ 1.213∗∗ 1.053∗ 1.013∗

Infl (Ω0) 0.072 0.116 0.002 −0.141 −0.416 −0.455 −0.617 −0.781 −0.770

T ms (Ω1) 0.417∗ 0.497∗ 0.484∗ 0.675∗ 0.687∗ 0.822∗ 0.797 0.731 0.702
T ms (Ω2) 0.259 0.467∗ 0.490 0.642∗ 0.858∗ 1.361∗∗ 1.540∗∗ 1.713∗∗ 1.766∗∗

T ms (Ω3) 0.153 0.228 0.246 0.461 0.659 1.103∗ 1.262∗ 1.537∗ 1.663∗

T ms (Ω4) 0.144 0.221 0.239 0.452 0.645 1.067∗ 1.231∗ 1.518∗ 1.641∗

T ms (Ω0) 0.429∗∗ 0.509∗∗ 0.446 0.660∗ 0.850∗ 1.055∗∗ 1.100∗∗ 1.068∗ 1.045

Both 0.437∗ 0.629∗ 0.900∗∗ 1.187∗∗ 1.569∗∗ 2.142∗∗∗ 2.356∗∗∗ 2.448∗∗∗ 2.596∗∗∗

γ = 8
Infl (Ω1) 0.085 0.074 −0.050 −0.213 −0.451 −0.607 −0.666 −0.594 −0.632
Infl (Ω2) 0.394∗∗ 0.538∗∗ 0.462∗ 0.585∗∗ 0.722∗ 0.559 0.474 0.399 0.420
Infl (Ω3) 0.451∗∗ 0.592∗∗ 0.538∗ 0.681∗∗ 0.840∗∗ 0.662 0.574 0.472 0.466
Infl (Ω4) 0.452∗∗ 0.591∗∗ 0.548∗∗ 0.695∗∗ 0.860∗∗ 0.683 0.593 0.487 0.469
Infl (Ω0) 0.066 0.002 −0.150 −0.340 −0.570 −0.693 −0.788 −0.711 −0.713

T ms (Ω1) 0.359∗∗ 0.415∗ 0.507∗ 0.612∗∗ 0.704∗ 0.578 0.470 0.324 0.242
T ms (Ω2) 0.249∗ 0.299 0.494∗ 0.847∗∗ 1.168∗∗ 1.214∗∗ 1.146∗ 0.964 0.766
T ms (Ω3) 0.129 0.098 0.303 0.600∗ 0.857∗ 1.052∗ 1.062∗ 1.018 0.824
T ms (Ω4) 0.122 0.088 0.296 0.583 0.838∗ 1.020∗ 1.034 0.998 0.804
T ms (Ω0) 0.368∗∗ 0.423∗ 0.559∗∗ 0.729∗∗ 0.890∗∗ 0.776∗ 0.698 0.558 0.438

Both 0.420∗ 0.603∗∗ 0.855∗∗ 1.168∗∗ 1.553∗∗∗ 1.719∗∗ 1.702∗∗ 1.554∗∗ 1.487∗

Notes: Ω1 = [2π/12, π], Ω2 = [2π/36, 2π/12], Ω3 = [2π/96, 2π/36], Ω4 = [0, 2π/96], Ω0 = [0, π]. Both forecasts
are obtained as in equation (18) for i = 4 and j = 2. ∗, ∗∗, ∗∗∗ denote statistical significance at 10, 5, 1
percent level using the test of Diebold and Mariano (1995) (only reported for positive CER gains).
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Table C.3: Sharpe ratios in expansions and recessions

Maturities
2 3 4 5 6 7 8 9 10

Expansions
Infl (Ω4) 0.227 0.218 0.189 0.172 0.166 0.153 0.151 0.127 0.122
T ms (Ω2) 0.221 0.212 0.190 0.184 0.185 0.182 0.181 0.170 0.170
Both 0.214 0.202 0.196 0.193 0.196 0.191 0.192 0.184 0.186

Recessions
Infl (Ω4) 0.684 0.652 0.574 0.521 0.499 0.428 0.385 0.334 0.315
T ms (Ω2) 0.621 0.581 0.470 0.408 0.388 0.332 0.285 0.240 0.208
Both 0.711 0.664 0.578 0.525 0.514 0.452 0.397 0.328 0.290

Notes: Ω2 = [2π/36, 2π/12], Ω4 = [0, 2π/96]. Both forecasts are obtained as in equation (18) for i = 4 and j = 2. Sharpe
ratios are calculated from portfolio returns obtained as in the economic evaluation exercise described in Section 4.2 under
mean-variance preferences and with γ = 5.

We analyse the term premium, defined as the gap between an n-year yield y
(n)
t and its

expectation component n−1Et

(
y

(1)
t + y

(1)
t+1 + · · · + y

(1)
t+n−1

)
, which can be estimated as

tp
(n)
t = 1

n

(
r̂x

(n)
t+12 + r̂x

(n−1)
t+24 + · · · + r̂x

(2)
t+12(n−1)

)
where the hats stand for predictions at time t. While the EH implies a constant term premium,
rational expectation models predict instead a countercyclical term premium. Adopting Lud-
vigson and Ng (2009)’s VAR procedure for multi-step ahead forecasts, we measure the cyclical
properties of the term premium implied by our Both forecasts. Following Ludvigson and Ng
(2009) h-year-ahead predictions are obtained using a monthly vector autoregressive model with
12 lags that includes as variables the excess bond returns and a set of predictors. In Figure
C.1 we show the term premium estimated using all maturities considered so far, that is n = 10,
excluding or including our factors (top to bottom) against IP y-o-y growth. Both estimated
term premia are countercyclical but the countercyclicality obtained including our predictors is
almost twice as large — i.e. the correlation between the estimated term premium and industrial
production growth is −0.29 versus −0.17. These values are very similar to those of Bianchi et al.
(2021). All correlation coefficients are 1% significant.
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Figure C.1: Cyclical properties of the term premium
Notes: In the top plot, only yields are used to predict excess bond returns. In the bottom plot the expected excess bond
returns are obtained using our macroeconomic predictors F̂t

(
Ω4, zInfl

)
and F̂t

(
Ω2, zT ms

)
. Shaded areas denote NBER

recessions.
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