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Enable Quantum Graph Neural Networks on a
Single Qubit with Quantum Walk

Yijie Zhu, Richard Jiang, Qiang Ni, and Ahmed Bouridane

Abstract—Quantum computing holds significant potential for
advancing machine learning, particularly in handling complex
graph-structured data. This paper introduces Single-Qubit Quan-
tum Graph Neural Networks (sQGNNs), a novel model that
integrates quantum networks with quantum walk operations to
improve generalization in graph learning tasks. By leveraging
quantum walks, we demonstrated sQGNNs capture complex
relational patterns and enhance network expressiveness beyond
classical methods. Our results proved that quantum encoding
efficiently represents high-dimensional graph data, preserving
dependencies and optimizing memory use. Across benchmark
datasets, SQGNNs demonstrate superior generalization and ro-
bustness against overfitting, achieving higher accuracy with
reduced computational cost. Our results underscore sQGNNs’
promise for scalable, quantum-enhanced graph learning, es-
tablishing a foundation for future quantum-assisted machine
learning applications.

Impact Statement—This research presents a groundbreaking
Single-Qubit Quantum Graph Neural Network (sQGNN) that
addresses critical NISQ-era limitations through an integrated
architecture combining quantum walk embedding with SU(2)-
optimized single-qubit unitary operations. Our novel model
leverages SU(2) group theory to enhance parameter efficiency
in single-qubit encoding while introducing a quantum walk-
based compression that reduces parameters compared to classical
GNNs. Rigorous hardware validation on IBM Manila demon-
strates robust performance under noise, establishing the first
experimental proof of accurate graph classification using just one
qubit. This unified framework—spanning theoretical innovation,
algorithmic design, and NISQ implementation—advances prac-
tical quantum machine learning toward real-world applicability.

Index Terms—Quantum Machine Learning, Quantum Walk,
Quantum Neural Networks, Quantum Graphs, Qubits.

I. INTRODUCTION

As information technology advances and data density grows
exponentially, innovative approaches to machine learning com-
plexity become imperative [1]. Quantum algorithms show
potential for exponential speedups in high-dimensional data
processing compared to classical solutions [1]. Combining
quantum computing with machine learning has led to quantum
machine learning (QML), which could enhance classical algo-
rithms [2, 3]. However, QML faces implementation challenges
in today’s Noisy Intermediate-Scale Quantum (NISQ) era of
quantum hardware [4, 5, 6].
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While quantum computers have progressed significantly [1],
major NISQ-era limitations persist [4]. These include limited
qubit counts, architectural constraints, and high noise levels
[7]. These factors, along with the distant prospect of fault-
tolerant quantum computers [4], hinder achieving quantum
supremacy (real-world computational advantages) [8]. Thus,
the key challenge is leveraging current NISQ devices despite
limited qubits, connectivity, and error-prone circuits. Varia-
tional Quantum Algorithms (VQAs) [9] are popular in QML
but face limitations like trainability issues and the “barren
plateau” problem (where optimization becomes extremely dif-
ficult as systems scale up) [10].

A notable example is the quantum convolutional neural
network [11], which adapts classical convolutional concepts
to QML. However, current NISQ devices struggle with its
high qubit and quantum volume requirements. For instance,
processing even the modest MNIST image dataset [12] would
require 784 qubits—far beyond current and near-term capabil-
ities.

Current quantum computers remain costly and scarce [13],
with limited public access. Given slow resource growth, ef-
ficient quantum resource utilization is crucial. Consequently,
most QML research uses small or specialized datasets, leaving
complex neural networks and real-world benchmark tasks
largely unexplored in the quantum domain.

Recent work proposed implementing neural networks on
single qubits using data-reuploading techniques [14], later
extended to convolutional architectures [15]. Studies confirm
the strong expressive power of such single-qubit approaches
[16, 17]. Building on this, we apply single-qubit methods to
graph neural networks, avoiding complex multi-qubit graph
structures. On this basis, we use SU (2) group theory to
optimize the single-qubit method and apply it to graph neural
networks, avoiding complex multi-qubit graph structures.

This paper introduces a novel Single-Qubit Quantum Graph
Neural Network (sQGNN) for graph data analysis on resource-
constrained NISQ (Noisy Intermediate-Scale Quantum) Varia-
tional Quantum Circuits (VQCs) [14, 15]. Our approach aims
to improve generalization on complex data while reducing
resource requirements. We introduce a discrete-time quantum
walk method for efficient graph embedding and use our
innovative single-qubit approach based on SU(2) group theory
for efficient encoding and feature learning.

The single-qubit design allows sQGNN to generalize ef-
fectively across large-scale graph data, making it ideal for
resource-constrained quantum systems. Simulation results
demonstrate robust performance on graph data, and successful
implementation on real quantum hardware underscores its



practicality. The model performs well even in the presence
of NISQ-era noise, showcasing resilience—essential for near-
term quantum applications. In addressing critical resource
limitations, SQGNN offers a scalable and effective solution,
advancing quantum model generalization within current quan-
tum technology constraints.

This paper is organized as follows: Section 1 is the intro-
duction, Section 2 is the related work, Section 3 is our method,
Section 4 is the experimental part, Section 5 is the discussion,
and Section 6 is the conclusion.
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Fig. 1. Schematic representation of the mentioned models.

II. RELATED WORK

Graph-structured data has become a highly active research
topic in the field of machine learning. However, classical
neural networks are designed to process data with regular
structures in Euclidean space, and their efficiency is con-
sequently reduced when dealing with complex graph data.
Quantum computing has been suggested as a potential solution
to address this computational complexity, as data in quantum
machine learning is often represented in a high-dimensional
Hilbert space by quantum states, which has been demonstrated
to be beneficial for classification tasks [18].

Existing quantum GNN approaches face significant ar-
chitectural constraints. The pioneering quantum graph neu-
ral network [19] and its derivatives (quantum graph RNNs
and CNNs) require prior knowledge of graph structure for
circuit design and impose strict size limitations (typically
N < 20 nodes). For instance, processing standard datasets
like MUTAG (average 18 nodes) would demand ~18 qubits
and O(IN?) circuit parameters. Similarly, the quantum graph
convolutional network [20], while inspired by classical CNNss,
maintains these graph size constraints and requires ~15 qubits
for molecular graphs. Hybrid approaches [21] that append
quantum circuits to classical networks fail to achieve quan-
tum advantage, as they incur classical bottlenecks while still
requiring O(N) qubits.

Our sQGNN overcomes these constraints through three key
innovations: First, quantum walk embedding compresses arbi-
trary graph structures into fixed-dimensional vectors, eliminat-
ing topology-specific circuit design. Second, single-qubit pro-
cessing reduces qubit requirements from O(NV) to O(1). Third,
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parameter-efficient rotation gates lower parameter counts (e.g.,
12 parameters vs. ~10k in classical GNNs for MUTAG).
This architectural simplification enables processing of larger
graphs on current NISQ devices while maintaining competitive
accuracy, as demonstrated in Section IV. Figure 1 illustrates
these architectural differences.

III. SINGLE-QUBIT GRAPH NEURAL NETWORK

Figure 2 illustrates the workflow of our proposed sQGNN
method, which consists of three steps. First, the quantum walk
graph embedding method is applied to convert raw graph
data into a vector form that can be processed. Second, the
processed graph representation vector is input into the single-
qubit circuit in a predefined order of unitary operations, as
depicted in Figure 2. This single-qubit method can encode all
data with a single qubit, thus reducing the total number of
qubits necessary for the NISQ era and effectively avoiding
the “barren plateau” phenomenon [10] caused by excessive
qubits in VQA. Finally, we measure the single-qubit circuit,
calculate the fidelity and the loss of the model, and update
the parameters of the quantum circuits to perform the training
of the neural network. The training process provides us with
the desired model. Further details on these three steps can
be found in the Methods section. Subsequently, experiments
were conducted to evaluate our SQGNN method on several
real-world datasets from the chemistry and biology domains.
For the specific process, please see Algorithm 1.

In summary, our method has the following advantages:
Save quantum resources. Our approach requires only one
qubit, which is significant in the NISQ era of quantum
computing resources. Anti-noise. Our model exhibits good
noise immunity on simulated depolarization errors as well as
real quantum computers. The good robustness of the quantum
method itself can save the extra quantum resources required
by the Quantum Error Correction (QEC) algorithm. Avoid
the ”’barren plateau”. Our method only needs one qubit,
effectively avoiding the “barren plateau”. The amount of
parameters is small. Our quantum approach has signifi-
cantly fewer model parameters than the classical approach.
Extensibility. Our quantum model can be combined with
other quantum or classical structures to form a hybrid neural
network. Easy to deploy. Our model requires only one qubit
and can be easily deployed on real quantum computers.

A. Quantum Walk based Graph Embedding

In order to embed a graph onto a single qubit, classical
graph data needs to be processed. Our method is inspired
by [22]. When given a group of graphs, the method employs
discrete-time quantum walks [23] to analyze them. Compared
to classical walks, quantum walks possess remarkable fea-
tures due to their dependence on unitary matrices instead of
random ones. As they evolve, quantum walks create patterns
of destructive interference, leading to improved graph repre-
sentations [23]. Additionally, quantum walks operate in the
state space of directed edges rather than vertices, allowing for
enhanced detection of the graph’s structure. A coordinate wave
function can be used to describe the particle position:
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Fig. 2. The diagram of the quantum embedding and the Single-Qubit quantum circuit. The elements in the representation vector of the graph are in units
of 3 and are encoded onto the qubits using a quantum rotation gate. Every three quantum rotation gates constitute a unitary operation, and the Single-Qubit
method uses this unitary operation as the basic unit of encoding and parameter training.

V) =D cal) (1
Where |z) is the wave function of particle in position = and
¢, is the complex amplitude. So the probability of finding a

particle at z is:

2

The particle is in a superposition state of various positions
during the process of walking. Considering the random walk
of particles, we need to introduce the flipping operator C' and
moving operator S

p() = |eo”

C=H®I, 3)

S=10)0[@|e+1) @[+ (1) |e-1) ] @

Where H is the Hadamard gate and I, is the identity matrix
of wave function of z. Apply these two operators to the initial
state |1¢p) where the position is 0 and the state is up spin, the
next state is:

1+4 1+
9) = 210l + 0 L) 6)
The state |11) is in superposition of position z = —1 and = =

1. This process can obtain a different probability distribution
than the classical process.

To begin, we apply the commute time spanning tree (CTST)
representation of the input graphs. Next, we execute simula-
tions involving the evolution of a discrete-time quantum walk
across the CTSTs. With access to the CTST representations

of the graphs, we proceed to simulate the evolution of a
discrete-time quantum walk on each of the trees, employing
the Perron-Frobenius operator [24]. Afterwards, we calculate
the associated time-averaged density matrix for each quantum
walk. This matrix captures the statistical set of quantum states
resulting from the time evolution of the quantum walk. Each
element along the main diagonal of this matrix represents the
time-averaged probability of the walk occupying an edge in
the underlying graph. These probabilities effectively charac-
terize the likelihood of the walk moving along specific arcs
throughout the course of its evolution. Based on this, we can
obtain a representation vector for each graph. The specific
work embedding process is shown in Figure 2.

B. Single-Qubit based Quantum Encoding of Graph Data

Data encoding for many Machine Learning (ML) tasks is
often presented as column vectors of classical data. Single-
qubit encoding, introduced in [14], is a strategy for encoding
a vector of classical data into a characteristic Hilbert space
through a series of single operations acting on each input data
dimension, applied to a single qubit as shown in Figure 2.

Imagine the quantum state as a point on Earth’s surface.
Euler angles work like GPS coordinates: 3, v , J controls
rotation at the quantum state. Together they uniquely locate
any quantum state on the Bloch sphere.

The unitary operation can be expressed as:
U = Rz(B)Ry (v)Rz(8) = 7= "17ui07= (6)

Where o are Pauli matrices. The special unitary group SU(2)
is defined as the set of all 2 x 2 complex matrices satisfying:

SUQR) ={U e C**? |UU =1I,detU = 1} (7)



Algorithm 1 sQGNN Training and Inference Workflow
Require: Graph dataset G = {G1,Ga, ..., G, }, Target labels

y = {ylay27~~'ayn}
Ensure: Trained sQGNN model with optimized parameters
9*7 ¢*

1: Initialize quantum circuit parameters 6, ¢ > Trainable
rotation angles
2: Define target states: |Yuret) = {|0) for class 0, |1) for
class 1}
3: Set hyperparameters: learning rate 7, epochs F, batch size
B
for epoch =1 to F do
for each batch in Batches(G, B) do
Graph Embedding Phase:
for each graph G in batch do
[temped) < QuantumWalkEmbedding(G) >
Discrete-time quantum walk

® R

9: v < Vectorize(|1embed) ) > Convert to
classical vector

10: end for

11: Quantum Processing Phase:

12: circuit_loss + 0

13: for each embedding vector v do

14: [1) < |0) > Initialize qubit

15: Apply parameterized rotations (Euler an-
gles):

16: for j =0 to len(v) step 3 do

17: B« 0; +v[j]- ¢; > Z-rotation angle

18: v 0j41+v[j+1]-¢j11 > Y-rotation
angle

19: 0012 +v[j+2]-¢j12 > Z-rotation
angle

20: ) < Ro(B)Ry(v)R=(6)[¢)) > Apply
unitary operation

21: end for

22: Measurement & Loss Calculation:

23: [Youtput) < |¥) > Final quantum state

24: F + |(Yuarget|Poupu)|* > Fidelity calculation

25: L+—1-F > Fidelity-based loss

26: circuit_loss < circuit_loss + £

27: end for

28: Classical Optimization:

29: Compute gradients: V¢, Vg =
O(circuit_loss)/9(0, ¢)

30: Update parameters:

31: 0+ 0—-—n-Vy

32: p—¢d—n-Vy

33: end for

34: end for

35: function PREDICT(Gey)

36: Viest — Vectorize(QuantumWalkEmbedding(Giey))

37: |thest) < ProcessCircuit(vies, 6%, ¢*) > Using trained
parameters

38: Foy + ‘<O|wtesl>|2

39: Fl — ‘<1|wtesl>|2

40: return arg max([Fp, F1])
fidelity

41: end function

> Class with highest
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Each element U € SU(2) can be parameterized using the

exponential map:
0
U=exp|—i=n-o ()

where 6 € [0,47), A = (ng,ny,n;) is a unit vector in R3,
and o = (04,0, 0) are the Pauli matrices. This corresponds
to a rotation by angle ¢ around axis n on the Bloch sphere.

Any SU(2) operation can be decomposed into Euler rota-
tions as:

U =exp <—i§az> exp (—i%ay) exp (—igaz> ©)]

This decomposition is universal for single-qubit opera-
tions, with the rotation angles forming a diffeomorphism to
SU@)/u(l).

The Euler angles 3, v, 6 € R define rotations around Z-Y-Z
axes respectively. These angles are parameterized as:

B=0;+z; ¢ (10)
¥ =0i1 4+ Tit1 - Pit1 (11
0 =0ir0 4+ Tito - Giyo (12)

Where 6; and ¢; are trainable weights, and z; is the input
value at dimension <.
The combined unitary operation is:

U (B) _ piw

Where @ = (w(8),w(v),w(5)) components convert angular
rotations to exponential form. Combining three rotation gates

into a unitary operation, there is:
)
( i ) sin ( ) (14)

( 1—cos2 ( )sm( ) (15)
w(5):c( lfcosc sm( > () (16)

Where cos ¢ = cos g”""s ) The single-qubit encoding
method can be employed to encode up to three input dimen-
sions per unitary operation. The input vector is thus cycled
through in order to encode three-dimensional values until the
entire input has been encoded. This method can be flexibly
implemented on quantum circuits that process data of different
structures and can increase the data capacity per qubit.with the
scaling factor ¢(v/1 — cos? ¢) ~! ensuring proper normalization
on the Bloch sphere.

For graph data, our quantum walk embedding first converts
topological features to a classical vector (e.g., [bond-count,
node-degree, centrality]). This vector is then encoded via
the above Euler parameterization - each graph “fingerprint”
maps to unique Bloch sphere coordinates. For example, after
quantum walk embedding, we get the vector ¥ = {z¢, z1, 22},
then xg,x1,2o will correspond to (,7,5 respectively, as

13)

w(ﬁ)zc( 1—cosc

Jos
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shown in Eq. (7-9). If the vector has more elements, more
unitary operators are added according to the situation.

For classic models, there is Universal Approximation Theo-
rem (UAT) [25] to support its approximation capabilities. Sim-
ilarly, for quantum models, UAT can be used to demonstrate
approximation capabilities. According to [26], a quantum
analogue can be constructed on the basis of UAT. Let f
and ¢ be a pair of functions, with f € R™ — [0,1] and
0 € R™ — [0,27), there is:

)

.= N - —
‘f (&) e - <1 [Tv (3:* 0, ¢>>
i=1
Where € > 0. Based on this quantum UAT, it can be considered
that the Single-Qubit method is able to approximate the
functions.

<e (17

C. Measurement and Loss Calculation in Our Single-Qubit
GNN

In the measurement phase, we observe the quantum circuit
to obtain its final state. Due to the relatively special step
of measurement in quantum circuits compared with classical
methods, we can use the characteristics of measurements to
construct an evaluation method similar to entropy. As opposed
to traditional direct measurement of the qubit state, we adopt
a fidelity-based measurement method for classification tasks.

Fidelity measures how “similar” two quantum states are,
analogous to comparing two arrows in 3D space. If two
arrows point in exactly the same direction, their fidelity is
1 (perfect match). If they point in opposite directions, fidelity
is 0 (complete mismatch).

In quantum information theory, fidelity formally quantifies
this “closeness” between two quantum states. For two states
p and o, it’s defined as:

2
F(p,o)= (tr \/ﬁa\/ﬁ) (18)
This represents the probability that state p would be mistaken
for state o during measurement.

For binary classification, we assign target states |0) (north
pole of Bloch sphere) for Class 0 and |1) (south pole) for Class
1. Each graph’s quantum state is compared to both targets, and
the higher fidelity determines classification:

F <z737$> = ’<$l woutput <?z737$>>

Consider classifying a mutagenic compound (Class 1). After
quantum processing: Fidelity with |0): 0.2 — unlikely Class
0; Fidelity with |1): 0.8 — high probability Class 1.

The loss function quantifies total classification error as the
sum of “mismatches” across all samples:

c(39.9) =2 (1-r(23.3))

i=1
- .
Where 1, is the correct label state.

2
(19)

(20)

Having obtained the loss, we can use the optimizer to
maximize the sum of the fidelity of all data points and find the
best weight for classification, the parameters 6; and ¢; in the
unitary operation above. The optimization strategy we use is
Quantum Natural Gradient, based on [27]. A distinctive feature
of the quantum state space is its possession of an intrinsic
metric tensor known as the Fubini-Study metric tensor. By
capitalizing on this property, we can develop quantum natural
gradient descent:

wir1 = wp —ng Tt (wi) VL(w) (1)

Where g* is the pseudo-inverse of the Fubini-Study metric
tensor. The following is a variational quantum circuit:

U(w)[vo) = Vi (wi) Vi1 (wi-1) - -+ Vo (wo) [ o)

Where V; (w;) are layers of quantum gates with parameters. w
represents the parameters, including the above mentioned /3,
~ and §. Considering that only rotation gates are used in the
Single-Qubit method, these quantum gates can be transformed
into the following form:

X () =R

The block-diagonal submatrix of the Fubini-Study tensor is:

(22)

(23)

gg-) = (V11| KK [Yi-1) — (i1 [ Kilhi—1) (i1 K [hr-1)
(24)

|1—1) = Vic1 (wi—1) - Vo (wo) | o)

Based on this, through quantum backpropagation, we can train
the quantum model at a faster speed.

(25)

IV. EXPERIMENTS

We chose the MUTAG, PTC series, PROTEINS, and NCI1
datasets as experimental data. The MUTAG dataset con-
tains 188 nitro compounds represented as isomer graphs.
The full name of PTC is Predictive Toxicology Challenge,
which is used to develop advanced SAR technology pre-
dictive toxicology models. According to the experimental
rodent species, there are a total of 4 datasets: PTC_FM,
PTC_FR, PTC_MM, and PTC_MR. The PROTEINS dataset
consists of 1,113 protein structures where nodes represent
secondary structure elements and edges indicate neighborhood
relationships, with classification tasks identifying enzyme/non-
enzyme proteins. The NCII dataset contains 4,110 chemical
compounds screened for activity against non-small cell lung
cancer, represented as atom-bond graphs with classification
of active/inactive compounds. We use PennyLane [37] and
PyTorch [38] to perform experiments. The quantum computer
we use is the ibm_manila node provided by IBM [39]. This
quantum computer features 5 qubits, a Quantum Volume of 32,
capability to perform 2800 circuit layer operations per second,
and employs the Falcon r5.11L processor model.
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TABLE I
THE AVERAGE ACCURACY OF THE MODELS OVER DIFFERENT REAL-WORLD GRAPH DATASETS.
Model MUTAG PTC_FM PTC_FR PTC_MM PTC_MR PROTEINS NCI1
edGNN[28] 86.9+1.0  59.8£1.5 657413 64408 56319 74106  742%03
R-GCN[29] 81.542.1  60.7+17  658+0.6  647+17  582+17  72.6+15 69.121.2
Classical  GIN[30] 85.443.5 644467  65.1453  64.8+5.4  64.6+7.0  76.2+2.8 77.0+3.3
RW-GNN[31] | 88341  60.9+2.7  63.121.3  632+1.4  57.1+1.4 747433 75.32.6
TOGL[32] 872438  64.9+4.6  648+38  63.1+41  603+47 752439 76.0£3.9
GBS[33] 864103  53.8+1.0 - N 5 66.0 0.2 63.620.2
QJSK[34] 83.4+05 - ; ; 58208 - 67.4+0.2
Quantum  QUSKTI34] 81.6£0.5 - - ; 574404 - 67.020.2
QSVM[35] 81.8+10.3 607454  62.5+102 57.5+8.8  60.9+7.3  72.5+9.4 77.146.6
QMLP[36] 81.549.7  60.3+62  62.749.6 582484 612469  73.1x9.1 77.0£6.2
QCNN[11] 81.0414.1  59.9+10.9 6324112 59.049.9  61.5¢8.6  741+10.6  77.1+10.1
Ours SQGNN 87.3x48  66.2+7.3 669555  65.9t4.2  65.9t55  76.8%6.6 78.2£6.7
SQGNN-Dual | 872442 66269  664+48 66041  659+6.1  75.6+32 77.3%6.5
TABLE II
THE AVERAGE ACCURACY OF THE MODELS WITH DEPOLARIZING ERROR.
Model gre})’l;’;’)ri;izt‘;“"“ MUTAG PTC_FM PTC_FR PTC_MM PTC_MR PROTEINS NCI1
0.001 8182103 607554 625102 57.5:88  609+73 725404 77.126.6
QSVM[35]  0.01 783+9.8  58.145.6  602+9.6 542485 583469  69.848.9 74.326.1
0.1 73.649.1 547462  56.8+9.1  50.8+7.8  54.9+65  65.4+8.1 70.045.6
0.001 815597  603%62 627496 582484  612%69  73.1%0.1 77.0%6.2
QMLP[36] 0.01 778492 572460 59389 549477  57.8+6.5  69.6+8.4 73.76.0
0.1 721486  53.8+6.4 557484 502472  539%6.1  65.1+7.7 69.5+5.5
0.001 81.0x141 59.9+109 632+112 59.0899 61586  74.1x10.6  77.1=10.1
QCNN[11]  0.01 76.4+13.1  56.5+10.1 60.0£10.5 55.649.1  58248.1  69.3+9.9 72.6£9.4
0.1 7024120 52.049.5 553297  50.848.6  53.6+7.5  63.748.7 67.248.3
0.001 873133 650572  66549.1  653+42  65.8+44 765462 778263
SQGNN 0.01 86.7+4.9 651486  66.145.6  65.7+45 65851 762463 77.3+6.5
0.1 84.846.4  64.0+7.7 650484  637+48  64.5+45  74.9+6.6 75.4+6.7

A. Experiments in the Simulated Quantum Environment

We configured two simulation setups for our sQGNN
models: an ideal quantum environment and a noisy en-
vironment involving noise interference in the simulated
NISQ devices. To evaluate the robustness of the sQGNN
model, we conducted multiple experiments under both sim-
ulated environments and tested the classic models with
edGNN[28], R-GCN[29], GIN[30], RW-GNNI[31], TOGL[32]
and sQGNN. The tested quantum models include GBS[33],
QJSK, QJSKT[34], QSVM]35], QMLP[36], QCNN[11]. To
verify the Single-Qubit method, we set up a control model
composed of two quantum bits. The two qubits of the SQGNN-
Dual model are the same. The input data is encoded once in
the two qubits, and there is a quantum entanglement between
the two qubits. We set the learning rate to 0.1, epoch to 200,
dataset ratio to 8:2, and repeated experiments 10 times for
each model and dataset.

Ideal simulated environment. Table 1 presents the test
results of the SQGNN model in an ideal simulated quantum
environment. The best result is underlined and the second
result is bolded. The results indicated that the SQGNN model
achieved the best performance on the most of datasets. As
a research [? ], increasing the number of processing layers
(i.e., unitary operations) of the single-qubit method improves
the model’s performance, especially when the number of
unitary operations is below three. This could be attributed to
the relatively low number of feature elements in the graph
representation vector of MUTAG data.

The comparison of the results in the ideal quantum environ-

ment revealed that the overall accuracy of our SQGNN model
was superior. Moreover, the SQGNN method has the advantage
of a compact model structure. Classical graph neural networks
tend to be complex in terms of the model structure due to the
complexity of graph data itself. By contrast, our model, which
employs a graph embedding method without hyperparameters
and Single-Qubits QGNN quantum circuits, obtains a huge
advantage in the total number of parameters. For instance, in
the MUTAG dataset, our model requires only 12 parameters,
whereas a classical neural network such as GIN has 13,000
parameters.

The performance of sSQGNN and sQGNN-Dual models did

not show a significant difference. The standard deviation of
the SQGNN-Dual model is relatively small, but this is fore-
seeable, because the input data of the SQGNN-Dual model has
been entered once more once, and the number of parameters
increases. In the task set in the experiment, the number of
qubits increased significantly, but the quantum resources used
were doubled.
Noisy simulated environment. To verify the robustness of
SQGNN against noise when running on NISQ devices, we
train and test the models in a noisy simulated environment. As
shown in Table 3, the depolarization error was set as the noise
in the environment for the SQGNN model. The depolarization
error applies a random Pauli (e.g. X, Y, Z) to each qubit in a
group of qubits and is described by the following formula:

1
E(p) = (1 =) p+eTripl;
Where ¢ is the depolarizing error param, n is the number of

(26)
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This figure is a demonstration of all graph data of the PTC dataset in Hilbert space. The red dot is class 0 and the blue dot is class 1. Red points
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Fig. 4.

qubits for the error channel and I is the Pauli matrix.

We set three levels of the depolarization parameter to assess
the tolerance of sSQGNN to depolarization errors. The test
results are shown in Table 2 and reveal that sQGNN is
almost unaffected by depolarization errors at 0.001 and 0.01,
and slightly affected at 0.1, compared to other multi-qubits
quantum circuit model. Despite the functional limitations of
quantum devices in the NISQ era, the influence of noise is
unavoidable, resulting in significant degradation of perfor-
mance on real quantum computers. However, the results of this
experiment show that the SQGNN model can stably maintain
good performance in the presence of noise.

Figure 3 displays the distribution of graphs from the
PTC_FM dataset in Hilbert space on the surface of Bloch
spheres. Red points correspond to Class 0 and blue points
to Class 1. The spatial separation shows Class 0 primarily
concentrated in the upper hemisphere (near the |0) state at
the north pole), while Class 1 predominantly occupies the
lower hemisphere (near the |1) state at the south pole). This
distribution indicates stronger classification ability for Class
0, as these states remain closer to the circuit’s initial state
|0) and require less transformation. The presence of Class 1

0.05 4

0.04 4

0.03 +

0.02 4

Generalization Gap
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0.00

T T T T T
100 125 150 175 200
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(0)
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(a) Results of Generalization Gap between training error and testing error. (b) Results of Generalization Gap between training loss and testing loss.

outliers in the upper hemisphere suggests either: (1) residual
influence of the initial |0) state on harder-to-classify samples,
or (2) inherent structural properties in certain graph data that
resist full state transformation.

Figure 4 shows our analysis of the generalization ability
of SQGNN on various data sets. The Generalization Gap in
Figure 4(a) is derived from calculating the difference between
training error and testing error, and in 4(b) is between training
loss and testing loss. It can be noticed from the two figures that
although the model gradually becomes stable as the training
process proceeds, there are some fluctuations in this overall
trend due to the existence of quantum noise. The generalization
ability of the model on the PTC data set is stronger than that
on the MUTAG data set. The representation vector obtained by
the MUTAG data set after quantum walking processing only
has 4 elements. Compared with 24 PTC data, quantum noise
will have a greater impact on some MUTAG data.

B. Real Quantum Device Test Experiment

We evaluated the performance of our single-qubit SQGNN
model on the MUTAG dataset using a real quantum computer
provided by IBM. The model was deployed in a simulated
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1 in the test data. The ordinate represents the number of occurrences of a particular state in the measurement. (b) Visualization of the Wigner quasi-probability
function for Class 0 and 1. Our model discriminates between the two classes clearly on a quantum computer.

quantum environment to an IBM online quantum computer,
facilitated by IBM Quantum Lab.

Figure 5 demonstrates the test results of two samples
on the real IBM quantum computer and the corresponding
simulated quantum environment. The accuracy obtained on the
MUTAG dataset was 88.89%, with no degradation in accuracy
compared to the simulation environment. Furthermore, the
measurement results of |0) and |1) are shown in Figure 5(a),
leading to the observation that Class 0 is better classified than
Class 1. This phenomenon can be attributed to the fact that the
initial state is |0) and the difference in the graph data structure
of the two classes, which is consistent with the results obtained
in the simulated environment in Figure 3.

Figure 5(b) visualizes the Wigner quasi-probability distribu-
tion [40] of the final quantum state for a representative sample,
providing phase-space insight into classification performance.
The distinct separation between the two classes’ distributions
demonstrates the model’s ability to map different graph struc-
tures to well-separated quantum states - a critical factor for
classification accuracy. The preserved separation despite noise
artifacts confirms the algorithm’s robustness on NISQ devices,
as overlapping distributions would indicate degraded class
distinguishability. Since current quantum computers initialize
to |0) (represented at the sphere’s north pole), the clear

differentiation from the |1) region (south pole) in Class 1
samples validates our state transformation effectiveness. This
initialization constraint will persist due to hardware limita-
tions, making the demonstrated separation crucial for practical
classification tasks.

Despite promising results, several failure cases and hard-
ware limitations emerged during real-device deployment on
IBM Manila. The most significant constraint was readout error
(avg. 2.594e-2), which caused misclassification of samples
near decision boundaries. For example, when processing graph
structures with ambiguous topological features, flipping classi-
fication outcomes. This was particularly pronounced in graphs
with betweenness centrality values in the 0.4-0.6 range, where
quantum state measurements became inherently ambiguous.

V. DISCUSSION

In the Noisy Intermediate-Scale Quantum (NISQ) era, quan-
tum algorithm implementation is constrained by unavoidable
device noise. The single-qubit method efficiently utilizes lim-
ited quantum resources, suggesting our sQGNNs could be
extended to other tasks. This approach economizes scarce
quantum computing resources.

Experimental evidence indicates our single-qubit method
exhibits noise resilience in both simulated and actual quan-
tum environments. While Quantum Error Correction (QEC)
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TABLE III
ERROR PROFILE COMPARISON ON REAL QUANTUM HARDWARE

Our model
Qubits 5
Quantum Volume 32
Circuit layer operations per second | 2800
Processor model Falcon r5.11L
Layout Linear
Coherence times average T1 155.49us
Coherence times average T2 88.69us
Frequency(GHz) 4.963
Single-qubit gate AVG. error 3.093e-4
Two-qubit gate AVG. error 8.256e-3
Average readout error 2.594e-2

algorithms mitigate device noise errors, they require substan-
tial additional resources. Our algorithm’s inherent robustness
conserves valuable resources by reducing reliance on costly
QEC mechanisms.

Implementing complex neural networks on Variational
Quantum Circuits (VQCs) presents significant challenges. Our
graph embedding technique based on discrete-time quantum
walks effectively extracts structural information while balanc-
ing computational resources. Compared to classical methods,
our quantum circuit achieves comparable performance with
substantially fewer parameters, enabling efficient integration
with both quantum and classical models.

The single-qubit approach inherently reduces susceptibility
to quantum decoherence. However, recent theoretical analysis
[17] questions whether single-qubit implementations limit
expressivity for multivariate functions. To address this, we
compared SQGNN with a dual-qubit version (SQGNN-Dual).
As Table I shows, sSQGNN achieved slightly better accuracy,
indicating no significant performance difference and alleviat-
ing concerns about single-qubit efficacy in our tested tasks.

Nevertheless, we acknowledge that single-qubit circuits
may face limitations in approximating complex multivariate
dependencies or exploiting entanglement, potentially affect-
ing scalability for larger or more intricate problems. While
increasing to two qubits slightly enhanced robustness, it did
not significantly improve performance in our experiments.
This suggests our tasks may not fully capture the benefits of
increased entanglement capacity, which remains an important
direction for future exploration.

Prior work [17] demonstrated single-qubit methods’ ap-
proximation power, while [16] established their ability to
approximate univariate functions. Our work provides practical
validation of single-qubit quantum neural networks on com-
plex graph data, but further investigation is warranted to assess
scalability and generalization to higher-dimensional cases.

By using only one qubit, SQGNN minimizes resource
requirements and avoids the “barren plateau” problem in
VQCs. While studies [10, 27, 41] have proposed mitigation
strategies, a fundamental solution remains elusive. The single-
qubit method offers an effective near-term approach given
barren plateaus’ persistence in VQA-based QML.

VI. CONCLUSION

In conclusion, to address the challenges on the constraints
of limited quantum resources facing the current VQCs of

NISQ era, we successfully leveraged a single qubit strategy
and developed a novel quantum graph neural network archi-
tect on a single qubit by integrating a quantum walk graph
embedding method with sSQGNN quantum circuits that can
successfully reduce the required parameters from over 10k to
only 12 parameters (for MUTAG dataset). Our new method
forms a concise structure suitable for deployment on quantum
devices during the NISQ era. Our experimental results un-
derscore the model’s robustness on both quantum computing
simulators and real quantum computers, showing its great
potential on overcoming resource bottlenecks, achieving robust
performance, withstanding quantum noises, and mitigating the
“barren plateau” issues. However, we recognize that the single-
qubit approach may face challenges in modeling complex
multivariate dependencies or leveraging entanglement. While
it serves as a practical and noise-resilient method for near-term
quantum devices, future work will be needed to explore scala-
bility and expressive power as quantum hardware advances.
Our results represent a promising step toward harnessing
quantum machine learning for real-world applications within
current resource constraints.
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