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Abstract 
The Greenland Ice Sheet (GrIS) is experiencing accelerating surface melt rates, with 

supraglacial meltwater influencing ice dynamics, mass balance, and sea level rise. Yet 

key gaps remain in understanding the spatial and temporal evolution of supraglacial 

melt and hydrological features, especially for understudied features like slush. While 

traditional remote sensing methods are widely used, they often struggle to capture the 

complexity of these systems. Machine learning (ML) offers scalable, automated 

solutions suitable for large-scale or near-real-time monitoring, yet current applications 

remain limited by challenges in accuracy, generalisation, and training data availability. 

This thesis develops and applies satellite remote sensing and ML methodologies to 

improve the detection and mapping of supraglacial hydrology across the GrIS. In doing 

so, this thesis also produces new datasets that advance understanding of supraglacial 

meltwater distribution at ice-sheet scale, including detailed assessments of regional, 

interannual, and seasonal variability, with a focus on contrasting low and high melt 

years. 

First, a comparative study of meltwater features in southwest Greenland during a low-

melt year (2018) and a high-melt year (2019), using optical satellite imagery and 

threshold-based classification algorithms individually developed to delineate different 

components of the supraglacial hydrological system (i.e., supraglacial lakes, channels, 

and slush), reveals a substantial increase in meltwater extent, connectivity, and 

elevation in 2019. Slush emerges as a dominant yet previously under-recognized 

component of the supraglacial hydrological system. Second, a near-decadal, ice-sheet-

wide analysis of slush from 2016 to 2024 using Sentinel-2 optical imagery and ML 

classification demonstrates that slush – underrepresented in existing meltwater 

inventories – is widespread, but highly variable, across regions and years. Third, to 

evaluate and optimise large-scale, cloud-based meltwater mapping, a systematic 

assessment of seven ML classifiers within Google Earth Engine identifies Random 

Forest as the most transferable across space and time, while Gradient-Boosted 

Decision Trees achieves the highest overall accuracy but are more sensitive to 

mislabelled training data. 
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Together, the findings in this thesis advance supraglacial hydrology monitoring by (1) 

establishing slush as an important component of the meltwater system, (2) revealing 

pronounced interannual variability and climate sensitivity in meltwater dynamics, (3) 

promoting a more holistic view of supraglacial hydrology as a continuum of 

interconnected features, and (4) evaluating the utility and scalability of various cloud-

based ML approaches for large-scale meltwater mapping. These contributions enhance 

our understanding of meltwater distribution and dynamics on the GrIS and improve our 

capacity to monitor all components of supraglacial hydrology, including slush, over 

large spatial and temporal scales. These findings also lay the groundwork for 

optimizing ML-based classification approaches, with future implications for long-term 

monitoring and for assessing the impact of supraglacial hydrology on ice sheet stability 

in a warming climate – not only on the GrIS, but also on the Antarctic Ice Sheet and 

mountain glaciers worldwide. 
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Chapter 1 

Introduction and background  
Chapter 1 introduces the Greenland Ice Sheet (GrIS), its geographical setting, and its 

sensitivity to atmospheric and oceanic forcing. It outlines the key processes governing the 

ice sheet’s mass balance, with a focus on recent and ongoing changes driven by 

anthropogenic warming. This chapter provides an overview of the GrIS hydrological system, 

examining the production, transport, and storage of meltwater across supraglacial, englacial, 

and subglacial environments. The role of meltwater in influencing ice dynamics, firn 

structure, and ocean-driven melting is explored, followed by a discussion of future 

hydrological changes under different climate scenarios. The chapter concludes by 

considering the implications of these changes for Greenland’s long-term stability and its 

contribution to global sea-level rise. 

1.1 The Greenland Ice Sheet 
This section provides an overview of the GrIS, emphasizing its importance in the climate 

system, its sensitivity to atmospheric and oceanic interactions, and its role in global sea-level 

rise. It begins by outlining the ice sheet’s geographical setting and the key climate 

mechanisms governing its variability. It then explores the complex interactions between the 

ice sheet and atmospheric and oceanic processes, which both shape and respond to the 

GrIS’s evolving dynamics. The discussion moves on to recent and ongoing changes, 

detailing accelerating ice mass loss driven by a combination of rising air temperatures, 

shifting precipitation patterns, and oceanic heat transport. It examines the key drivers of ice 

loss, including the increasing frequency of extreme melt events, atmospheric influences, and 

feedback mechanisms that amplify surface melting and ice sheet instability. Finally, the 

section explores mass balance trends, explaining the contributions of surface mass balance 

(SMB) and ice dynamics to overall ice loss, with insights from satellite-based monitoring 

techniques. 

The GrIS is experiencing accelerated ice-mass loss due to rising air temperatures. Together 

with the Antarctic Ice Sheet (AIS) and mountain glaciers, it is one of the largest contributors 

to global sea-level rise (SLR). If fully melted, the GrIS would raise global sea levels by 

approximately 7.4 m (Bamber et al., 2018). The GrIS is projected to continue losing mass 

under all future emissions scenarios outlined by the Intergovernmental Panel on Climate 

Change (IPCC), including those limiting global warming to below 2°C (Oppenheimer et al., 
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2019). Under the high-emission scenario (RCP8.5), projections indicate that the GrIS could 

contribute 100–180 mm to global SLR by 2100, with potential increases exceeding 700 mm 

by 2200 (Edwards et al., 2021; Goelzer et al., 2020). Even relatively small increases in sea 

level, such as 100–200 mm will disproportionately affect low-lying coastal regions, 

exacerbating flooding, storm surges, and erosion, thereby endangering infrastructure, 

economies, and livelihoods (Oppenheimer et al., 2019). Freshwater input from the GrIS has 

been linked to potential disruptions in ocean circulation (Rahmstorf et al., 2015), in turn 

affecting marine ecosystems by altering nutrient upwelling processes, with broader 

implications for oceanic biodiversity (Fichefet et al., 2003). Under optimistic scenarios, such 

as those consistent with strong mitigation efforts that limit warming to below 1.5–2°C, 

significant mass loss is still expected, necessitating robust monitoring to refine SLR 

predictions, freshwater flux estimates, and inform global climate adaptation strategies. 

1.1.1 Geographical setting and climate  

The GrIS, which covers approximately 80% of Greenland’s landmass, is the largest body of 

ice in the Northern Hemisphere (Figure 1.1; NSIDC, 2024). It lies between the Arctic and 

Atlantic Oceans, is situated from 60 to 83° N and is confined around the majority of its 

margins by peripheral mountains. The ice sheet has an area of ~1.7 million km², a volume of 

~ 2.9 million km³  and rises to its maximum elevation at two domes: the southern dome, 

which reaches ~3 km a.s.l. and the northern dome, which reaches ~3.3 km a.s.l. Ice flows 

towards the ocean from the divide between these domes, where it makes its way through a 

series of drainage networks to become channelised through valleys and fjords into outlet 

glaciers. The outlet glaciers draining the ice sheet are either land-terminating, such as the 

Russell Glacier, or marine-terminating, such as Jakobshavn Isbræ.     
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Figure 1.1: Overview map of Greenland with ice thickness, highlighting its high latitude and 
location between the Arctic Ocean and the Atlantic Ocean (Source: Eric Gaba (Wikimedia 
Commons user Sting), CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=12566158).  

 

 

https://commons.wikimedia.org/w/index.php?curid=12566158
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The geographical setting of the GrIS makes it highly sensitive to interactions with large-scale 

atmospheric and oceanic circulation patterns (Figure 1.2). Atmospheric variability, 

particularly the North Atlantic Oscillation (NAO), strongly influences regional climate, with its 

negative phase weakening westerlies, enhancing high-pressure anomalies, and promoting 

increased summer melting, while its positive phase generally leads to cooler conditions and 

increased snowfall (Hanna et al., 2016; Noël et al., 2015). The Greenland Blocking Index 

(GBI) further modulates atmospheric circulation by controlling the persistence and intensity 

of high-pressure systems over Greenland, which can lead to prolonged melt events through 

enhanced solar radiation and cloud-free conditions (Tedesco and Fettweis, 2020; Tedesco et 

al., 2016; Woollings et al., 2018; Fettweis et al., 2013).  

 

 

Figure 1.2: Weather, climate and hydrological processes influencing the GrIS (Source: Hanna 

et al., 2024). 
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In addition, Greenland’s climate is further modulated by oceanic variability. For example, the 

North Atlantic Current transports warm Atlantic waters northward, influencing the 

temperature and salinity of waters reaching Greenland’s fjords. This oceanic heat input is a 

key driver of basal melting for marine-terminating outlet glaciers, particularly where warm 

subsurface waters penetrate deep into fjords, enhancing ice-ocean interactions and 

accelerating ice loss (Straneo & Heimbach, 2013; Rignot & Mouginot, 2012). Oceanic forcing 

drives the retreat and thinning of marine-terminating glaciers in Greenland, primarily through 

submarine melting caused by warm Atlantic waters entering fjords (Straneo et al., 2012). 

Subglacial meltwater plumes, fueled by surface runoff, further enhance this melting by 

increasing heat exchange at the ice-ocean interface (Slater et al., 2022). Additionally, 

submarine melting can indirectly lead to glacier retreat through enhanced calving (O’Leary, 

and Christoffersen, 2013).  

As well as being shaped by atmospheric and oceanic variability, the GrIS actively influences 

these systems. In the atmosphere, its high elevation and cold surface help establish large-

scale pressure patterns, such as the GBI, which disrupts mid-latitude storm tracks and 

influences weather patterns across the Northern Hemisphere (Hanna et al., 2018; Tedesco 

et al., 2016). The ice sheet also affects moisture transport and precipitation patterns, while 

cold-air outflows contribute to regional circulation changes. In the ocean, freshwater 

discharge from the GrIS reduces surface salinity, weakening deep-water formation and 

slowing the Atlantic Meridional overturning circulation (AMOC), with potential consequences 

for global climate regulation (Böning et al., 2016; Rahmstorf et al., 2015). This influx of 

meltwater can also stratify the upper ocean, reducing vertical mixing and affecting sea ice 

dynamics. 

Albedo, the fraction of solar radiation reflected by the Earth’s surface, plays a crucial role in 

regulating regional and global climate. For ice sheets, where ice surfaces reflect a high 

proportion of incoming radiation, albedo is particularly important. The high reflectivity of the 

GrIS helps maintain locally cooler temperatures by limiting heat absorption. However, as 

melting increases, exposed bare ice and liquid water reduce albedo, leading to greater solar 

absorption and amplifying warming through a self-reinforcing feedback (Box et al., 2012). 
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1.1.2 Recent and ongoing changes of the Greenland Ice Sheet 

The GrIS has undergone substantial changes in recent decades, with ice mass loss 

accelerating due to anthropogenic climate change (Otosaka et al., 2023; Hanna et al., 2021). 

Rising global temperatures, shifts in atmospheric circulation, and increasing oceanic heat 

content are driving rapid alterations in the ice sheet’s surface and dynamic processes. Since 

the late 20th century, the impact of human-induced greenhouse gas emissions has 

surpassed natural climate variability as the dominant driver of temperature changes (IPCC, 

2023), with Arctic regions, including Greenland, warming at more than twice the global 

average. This warming has led to record-high ice mass loss, driven by intensified surface 

melting, changing precipitation patterns, and enhanced ocean-driven basal melting of outlet 

glaciers.  

This section examines recent and ongoing changes to the GrIS, exploring the key drivers of 

mass loss, the role of surface and oceanic processes, and the broader implications for future 

ice sheet stability. The focus is on changes since the late 20th century–a period marked by 

the strongest anthropogenic warming signal due to the rapid rise in greenhouse gas 

concentrations and associated radiative forcing, surpassing the influence of natural climate 

variability in earlier centuries (IPCC, 2023). The late 20th and early 21st centuries have also 

seen a significant increase in the availability of high-resolution observational records. Since 

the late 1970s, satellite data have provided continuous insights into ice mass loss trends and 

their climatic drivers, enabling robust assessments of recent changes. 

While paleo-records indicate that the ice sheet has fluctuated over millennia, recent mass 

loss rates are comparable to the highest rates recorded in the early Holocene (~6,000 Gt per 

century) but are projected to exceed all natural Holocene variability under future warming 

scenarios (Briner et al., 2020). Modern ice sheet decline is driven by anthropogenic 

greenhouse gas emissions, which have led to record-high global temperatures, increased 

oceanic heat content, and shifts in atmospheric circulation that intensify ice loss (IPCC, 

2023). The IPCC reports that human activities have caused approximately 1.1°C of global 

warming since 1850–1900, with Arctic regions warming at more than twice the global 

average (IPCC, 2021).  

This anthropogenic warming has profoundly influenced the GrIS, with surface air 

temperatures across Greenland rising significantly in the 21st Century, particularly in coastal 

regions, which are warming faster than the interior and summit (Hanna et al., 2008; Box et 

al., 2009). Significant coastal warming of approximately +1.7°C in summer and +4.4°C in 

winter was observed between 1991 and 2019 (Hanna et al., 2021), with the largest 
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increases occurring in southern Greenland. Oceanic warming around southern Greenland, 

where sea surface temperatures have risen by up to +1.5°C in some regions since the late 

1990s, is increasing basal melt, while atmospheric circulation patterns, like Greenland 

Blocking Episodes, have intensified surface melt during extreme events (McLeod & Mote, 

2016). 

Precipitation in the form of snow, which is crucial for maintaining the ice sheet's mass 

balance, is increasingly being replaced by precipitation in the form of rainfall in coastal 

areas. Here, annual rainfall has increased by approximately 50 mm per decade since the 

1990s (Hanna et al., 2021; Loeb et al., 2024). Rainfall lowers the ice sheet's albedo, leading 

to more solar radiation absorption and faster surface melting, with rainfall-driven melt events 

now accounting for approximately 28% of total surface melt and having more than doubled in 

frequency since 1979 (Oltmanns et al., 2019).  In August 2021, an atmospheric river –a 

narrow channel of concentrated moisture–brought unprecedented rainfall to Summit Station, 

extending melt conditions and amplifying ice loss through the melt–albedo feedback effect 

(Box et al., 2022). The rise in the occurrence of atmospheric rivers has brought more warm, 

moist air to Greenland, resulting in a +14% increase in annual rainfall and intensified surface 

melt during extreme events (Tedesco et al., 2020). Since 1979, the occurrence of moisture-

rich air masses entering the region has risen by more than 6% (Mattingly et al., 2016). 

The combined effects of warming temperatures, increased rainfall, and enhanced surface 

melt from oceanic and atmospheric forces make the GrIS especially vulnerable to climate 

change. Looking ahead, continued warming is expected to cause more frequent and severe 

melt events, further accelerating Greenland’s ice mass loss. Hanna et al. (2024) predicts that 

rising temperatures, increasing variability in precipitation, and the growing influence of 

atmospheric rivers will intensify ice loss in the coming decades. The ISMIP6 projections for 

the GrIS estimate a sea-level rise of 90 ± 50 mm by 2100 under the high greenhouse gas 

concentration scenario RCP8.5, and 30 ± 17 mm under the low-emission scenario RCP2.6 

(Goelzer et al., 2020). Other studies suggest that the ice sheet’s committed contribution to 

sea-level rise by 2100 is at least 3.4 cm, with a minimum of 0.6 mm (Nias et al., 2023). 

However, uncertainty in these projections remains high due to factors such as ice sheet 

dynamics, regional climate variability, and the response of outlet glaciers to oceanic and 

atmospheric forcing. 

Over recent decades, darkening of the ice sheet surface has intensified, further increasing 

melt rates. This trend is driven by processes such as snowmelt, snowline retreat, dust 

deposition (e.g., Dumont et al., 2014), and the growth of algae on ice surfaces (e.g., Cook et 

al., 2020). As these processes become more widespread, further declines in albedo are 
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expected, intensifying melt. Reduced surface albedo enhances melting through a self-

reinforcing feedback loop that now affects over 97% of the GrIS and accounts for more than 

half of the observed increase in melting (Box et al., 2012; Tedesco et al., 2011). This cycle of 

decreasing albedo and increasing melt is an important driver of accelerating ice mass loss 

from the GrIS (Box et al., 2022).  

Greenland has experienced an increasing frequency of extreme melt events in recent years, 

with notable examples in 2012 and 2019, amplifying surface mass loss from the ice sheet. 

The 2012 event was unprecedented, with 98.6% of the ice sheet's surface, including the 

summit, experiencing melt (Tedesco and Fettweis, 2020). Similarly, in 2019, another extreme 

melt event occurred, with 97% of the ice sheet surface experiencing melting within just three 

days (Sasgen et al., 2020). With progressing climate change, such extreme melt events are 

expected to occur more frequently and become more severe and persistent, further 

accelerating ice mass loss and contributing to global sea-level rise (Beckmann and 

Winkelmann, 2023). 
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1.1.2 Mass balance  

This subsection provides an overview of the GrIS mass balance, outlining the key processes 

that govern its changes and their response to climate forcing. It first introduces the general 

principles of ice sheet mass balance, including the contributions of SMB and ice dynamics, 

followed by an overview of the primary satellite-based methods used to estimate mass 

balance. The discussion then shifts to recent trends in GrIS mass change, highlighting the 

increasing rates of ice loss, their implications for global SLR, and the relative contributions of 

SMB and ice dynamics over recent decades. 

1.1.2.1 Overview of mass balance 

Ice sheet mass balance is the net difference between mass gain (primarily through 

precipitation) and loss (through surface/subsurface melting and dynamic processes; Benn 

and Evans, 2010; Cogley et al., 2010). Mass loss from the ice sheet occurs through two 

primary mechanisms: SMB loss and dynamic ice loss. SMB refers to the net difference 

between mass gain through accumulation and mass loss through ablation on the surface of 

the ice sheet. Mass accumulates on top of the ice sheet through precipitation, condensation, 

and deposition; mass is removed from the surface through surface melting and subsequent 

runoff (melt – rainfall + refreezing; Lenaerts et al., 2019). Dynamic loss refers to mass loss 

through ice discharge directly to the ocean, i.e., through iceberg calving. Changes in ice 

discharge arise through ice flow fluctuations in the outlet glaciers fringing Greenland’s coasts 

(King et al 2020; Enderlin et al., 2014).  While evaporation and sublimation are also 

components of SMB, their contribution to mass loss is relatively minor in Greenland 

compared to the AIS where strong katabatic winds and arid conditions result in significantly 

higher sublimation rates (Van Wessem et al., 2018; Lenaerts and van den Broeke, 2012). 

The mass balance of the GrIS is commonly estimated through satellite monitoring by using: 

fluctuations in Earth’s gravitational fields using gravimetry (e.g. Groh et al., 2019; Velicogna 

et al., 2020), elevation and volume changes through altimetry (Simonsen et al., 2021; 

Sørensen et al., 2011; Sasgen et al., 2012), or input-output methods, using ice flow 

observations from optical and radar imagery (Mouginot et al., 2019; Rignot et al., 2019). 

Although these techniques can provide an estimate of the location, timing, and way mass is 

gained or lost from the ice sheet, each has limitations (Mankoff et al. 2021; Shepard et al., 

2012). As such, the most comprehensive estimates of mass balance use combined 

measurements derived from all three geodetic methods (Figure 1.3; Shepard et al., 2012; 

The IMBIE team, 2020; Otosaka et al., 2023). 
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Figure 1.3: Comparison of ice sheet mass balance rates for the GrIS from 2003 to 2018, based 
on altimetry, gravimetry, and input–output methods (Source: Otosaka et al., 2023). 

1.1.2.2 Recent changes in mass balance 

The GrIS was in a near-balanced state in the 1970s, however, ice loss has substantially 

increased in the following decades (The IMBIE team, 2020). Recently, the GrIS has been 

subject to increased air (Hanna et al., 2021) and ocean (Straneo et al., 2013) temperatures, 

as well as decreased cloud cover through summer months (Hofer et al., 2017). Such 

conditions have caused the ice sheet to lose mass at an accelerated rate, leading to a 

negative mass balance every year since 1998 (Mouginot et al., 2019). 

An ice sheet in a negative mass balance regime is actively contributing to SLR. The most 

recent estimates of mass balance of the GrIS show that each year from 1992 to 2020, the 

GrIS has lost 169 ± 9 Gt yr−1 on average, totalling to 4892 ± 457 Gt of ice, or a contribution of 

~14 mm to global sea level (Otosaka et al., 2023). More recently, from 2002 - 2022, the ice 

sheet has lost mass at even greater rates, estimated at −255 ± 19 Gt yr−1 (Figure 1.4; Hanna 

et al., 2024). Within this negative trend, the mass balance of the GrIS has also experienced 

large variability (Sagden et al., 2020; The IMBIE team, 2020; Hanna et al., 2024), with ice 

loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 (Otosaka et al., 2023). For 

example, significant surface melt events occurred in 2010, 2012, and 2019 across the ice 

sheet, which lasted from several days to a few weeks, and produced annual mass loss 
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anomalies that were twice as large as those in prior and subsequent years, for example, 

2012 compared to 2013 (Hanna et al., 2024; Figure 1.4).  

 

Figure 1.4: Time series of mass change and corresponding sea level equivalent for the GrIS 
from 2002 to 2022. Estimates are shown for the entire ice sheet (purple), as well as for the 
regions north (green) and south (grey) of approximately 72°N (Source: Hanna et al., 2024). 

From 1992 to 2018, the GrIS has lost mass in near-equal parts through SMB (50.3 %) and 

dynamic mass loss (49.7 %; Figure 1.5; The IMBIE team, 2020). However, more recently 

(from 2007 - 2017), total mass loss was estimated to consist of 64% from SMB and 36% 

from ice dynamical processes (Otosaka et al., 2023). Between 1992 and 2018, an 

increasingly negative SMB compared to earlier periods contributed to a loss of 1964 ± 565 

Gt of ice (Figure 1.5; The IMBIE team, 2020), which was driven by warming temperatures 

leading to increased melting and surface runoff (Hanna et al., 2021; Slater et al., 2021). 

Between 1992 and 2018, dynamic mass loss caused 1938 ± 541 Gt mass loss from the GrIS 

(The IMBIE team, 2020), with increased ice acceleration from Jakobshavn Isbræ and 

Southeast glaciers in the 2000s considerably contributing to the dynamical imbalance 

(Holland et al., 2008; Howat et al., 2008). 
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Figure 1.5: Cumulative anomalies in total mass, SMB and dynamic mass loss from the GrIS 
(Source: The IMBIE Team, 2020).  

1.2 Greenland Ice Sheet hydrology 
This section explores the hydrological processes of the GrIS, focusing on the production, 

transport, and storage of meltwater. It begins by outlining the surface energy balance 

governing meltwater production and the role of ice sheet facies in modulating meltwater 

runoff and storage. The discussion then examines supraglacial hydrology, detailing the 

formation, distribution, and seasonal evolution of meltwater features such as supraglacial 

lakes (SGLs), rivers, slush, and runoff pathways, which regulate surface water transport and 

influence ice sheet dynamics. It further explores the englacial hydrological system, 

highlighting the role of crevasses and moulins in routing meltwater from the surface to the 

bed. Finally, the section addresses subglacial hydrology, describing drainage system 

configurations and the influence of subglacial lakes on ice flow and meltwater flux.  

1.2.1 Meltwater production and ice sheet facies 

The surface melt process is governed by the energy exchange at the ice-atmosphere 

interface, where the net surface energy balance determines whether melting will occur 

(Hock, 2005). Although air temperature influences melt potential, actual melting only begins 

once the ice reaches its melting point of 0°C. Before this, any surplus energy is first used to 

warm the ice surface to 0°C, and only after this threshold is reached does additional energy 

contribute to surface melt (Benn and Evans, 2010). The ice sheet’s response to melt is 

further modulated by the firn layer, which regulates runoff according to its variable storage 

capacity. During high melt conditions, the firn can become saturated, reducing its ability to 
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retain meltwater and thereby amplifying mass loss through increased runoff (Munneke et al., 

2015; van den Broeke, 2008). 

Melting of snow and ice accounts for the majority of ablation on the GrIS, particularly in the 

ablation zone, where annual mass loss exceeds accumulation (Cogley et al., 2010). The 

ablation zone, where the annual mass balance is negative, is characterized by exposed bare 

ice during the summer. In contrast, the accumulation zone, characterized by a positive 

annual mass balance, lies above the equilibrium line altitude (ELA) – the elevation where 

annual mass balance is zero (Box et al., 2022). The accumulation zone is further divided into 

three glacier facies: the dry snow zone, where melting is negligible; the percolation zone, 

where limited meltwater infiltrates snow and firn and refreezes; and the wet snow zone, 

where snow becomes fully saturated with meltwater by the end of the melt season (Figure 

1.6; Benson, 1962; Nolin and Payne, 2007).  

 

Figure 1.6: Cross section of a glacier showing near-surface ice and snow facies at the end of 
the ablation season (Source: Cuffey and Paterson, 2010).  

Meltwater infiltrating the porous firn layer, a temporary storage system, can refreeze, be 

retained as liquid by capillary forces, or flow through perennial firn aquifers (Herron and 

Langway, 1980; Forster et al., 2014; Machguth et al., 2018). Over time, refreezing within the 

firn creates impermeable ice layers, slabs, or lenses that limit permeability and enhance 

surface runoff (Pfeffer et al., 1991; Machguth et al., 2016; MacFerrin et al., 2019; Culberg et 

al., 2024). When drainage is inefficient due to saturated firn, slush flows can occur, while 

lateral runoff across ice horizons reduces surface albedo and accelerates further melting 

(Charalampidis et al., 2015; Machguth et al., 2016). 
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1.2.2 Meltwater runoff 

Meltwater that is not retained or refrozen flows across the ice sheet, following surface and 

basal topographic gradients to form complex networks of supraglacial hydrological features 

(Figure 1.7a). Storage and routing processes play a central role in regulating the timing, 

volume, and pathways of this runoff, shaping interactions between surface and basal 

hydrological systems. Ultimately, it drains into the ocean, driving ice mass loss and 

contributing to sea level rise. Beyond the ice sheet, the export of runoff influences freshwater 

fluxes to the surrounding ocean, with implications for ocean circulation and regional climate 

systems. 

 

Figure 1.7: Components of the supraglacial hydrologic network on glaciers and ice sheets: (a) 
Diagram from Pitcher and Smith (2019); (b) Supraglacial channel on the ice surface; (c) an 
SGL; (d) Moulin funneling meltwater to the bed, influencing ice dynamics (Source: Lauren 
Rawlins, University of York, antarcticglaciers.org). 
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Runoff occurs primarily during the summer melt season, peaking in July and August when 

surface temperatures are highest. During this period, liquid water accumulates in SGLs 

(Figure 1.7c), rivers (Figure 1.7b), crevasses, and moulins (Figure 1.7d), forming an 

extensive drainage system that transports meltwater across the ice sheet surface and into 

the englacial and subglacial system (Banwell et al., 2016; Flowers, 2018; Hoffman et al., 

2018).  

Temporally, the extent of supraglacial drainage networks varies interannually, depending on 

atmospheric conditions and melt intensity. In extreme melt years, such as 2012, supraglacial 

meltwater channels were observed at elevations up to ~1850 m asl, with 11 ± 4% of the 

season’s runoff originating from above this elevation (Machguth et al, 2016). Over the period 

1991–2011, the mean ELA was ~1550 m asl, ranging from ~1240 to ~1830 m asl (van de 

Wal et al., 2012), reflecting the variability in runoff production and transport processes. 

Across the ice sheet, meltwater runoff is most pronounced in the western and southwestern 

GrIS, where extensive ablation zones, dark bare-ice surfaces, and low albedo enhance melt 

intensity (Lenaerts et al., 2015; van den Broeke et al., 2017). Between 1991 and 2017, 

southwest Greenland alone contributed approximately 30% of the total GrIS runoff (Noël et 

al., 2019). Northern Greenland has also experienced increasing runoff due to the expansion 

of the ablation area, with the ELA rising by ~200 m in recent decades, contributing an 

additional 12 Gt yr⁻¹ of meltwater runoff (Noël et al., 2019). 

Longer and more intense melt seasons have significantly increased runoff in recent 

decades, a trend projected to continue under future warming scenarios. Observations from 

CryoSat-2 satellite altimetry indicate that between 2011 and 2020, runoff averaged 357 ± 58 

Gt/yr, a 21% increase compared to the preceding three decades (Slater et al., 2021). 

Tedstone and Machguth (2022) demonstrated that the runoff limit, which they define as the 

highest elevation of supraglacial channel features, has risen between 1985–1992 and 2013–

2020. This upward migration was most pronounced in the west (242 m), north (194 m), and 

northeast (59 m) sectors of the ice sheet, leading to an overall expansion of ~47,400 km² 

(29%) in the runoff area. Notably, this observed increase exceeds estimates from SMB 

models, indicating that current models may underestimate the extent of supraglacial 

drainage networks. 

The increase in runoff is primarily driven by rising temperatures and longer melt seasons, 

which enhance surface melting and reduce refreezing within the firn. Warming-induced shifts 

in the ELA are exposing larger areas of the ice sheet to melt conditions, further expanding 

the runoff-producing area. Cloud cover has also emerged as a significant factor influencing 
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runoff. Van Tricht et al. (2016) found that clouds enhance meltwater runoff by ~33% relative 

to clear-sky conditions, primarily by suppressing meltwater refreezing rather than increasing 

direct melt. This accelerates bare-ice exposure, amplifying meltwater production and runoff 

fluxes. Additionally, changes in large-scale atmospheric circulation patterns are influencing 

seasonal and interannual variability in runoff, contributing to the observed 60% increase in 

runoff variability (Slater et al., 2021). Despite advancements in understanding meltwater 

runoff processes, substantial uncertainties remain such as feedback mechanisms involving 

climate warming, surface albedo changes, and cloud-radiation interactions, which present 

challenges for accurately modelling future runoff trends. 

1.2.3 Supraglacial hydrology 

Supraglacial hydrology refers to the network of meltwater features that form on the ice sheet 

surface, playing a critical role in the transport, storage, and redistribution of meltwater. As 

seasonal melting intensifies, liquid water accumulates and flows across the ice sheet, 

forming SGLs, channels, and slush-covered zones, which are key components of the 

broader hydrological system. The fate of this surface meltwater–whether it is stored, 

refrozen, or drained–significantly influences the GrIS mass balance, ice dynamics, and 

freshwater flux into the surrounding ocean. Understanding supraglacial hydrology is 

essential for accurately quantifying the GrIS's response to climate change and predicting its 

future contributions to sea-level rise. This subsection examines the formation, distribution, 

seasonal evolution, and long-term trends of key supraglacial meltwater features, highlighting 

their role in ice-sheet-wide hydrological processes. 

1.2.3.1 Supraglacial lakes 

1.2.3.1.1 Formation and distribution of supraglacial lakes 

Meltwater runoff on the GrIS can accumulate in SGLs (Figure 1.7c), which form during the 

spring and summer melt season when meltwater pools in impermeable surface depressions 

in the ablation and lower accumulation zones (Box and Ski, 2007; McMillan et al., 2007; 

Sneed and Hamilton, 2007; Selmes et al., 2011). These SGLs exhibit a wide range of sizes, 

from just a few square meters to tens of square kilometres and can reach depths of several 

meters (Selmes et al., 2011; Box et al., 2012). Their locations are largely influenced by ice 

surface topography, which is shaped by underlying bedrock undulations (Echelmeyer et al., 

1991; Gudmundsson, 2003; Selmes et al., 2011). SGLs are predominantly distributed 

between elevations of 1000 and 1600 m (Fan et al., 2025) but are often underdeveloped 
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above 1200 m a.s.l. and rarely form above 2000 m a.s.l. (Sundal et al., 2009; Lampkin, 2011; 

Chu, 2014; Fitzpatrick et al., 2014).  

The first systematic study of SGLs was conducted by Echelmeyer et al. (1991), who 

documented SGLs ranging in size from 10 m² to 10 km² on Jakobshavn Isbræ. SGLs have 

since been identified to span across all regions of the ice sheet (e.g., Selmes et al., 2011). 

Early research primarily focused on basin-scale studies in western Greenland (e.g., McMillan 

et al., 2007; Sundal et al., 2009; Williamson et al., 2018a; Miles et al., 2017; Yang et al., 

2021). However, more recent work has extended to the rapidly changing northern regions 

(Turton et al., 2021; Rawlins et al., 2023; Otto et al., 2022; Hochreuther et al., 2021) and the 

southeast (Everett et al., 2016).  

Despite numerous regional-scale studies of SGLs, relatively few have examined their spatial 

distribution and evolution across the entire GrIS (Selmes et al., 2011, 2013; Hu et al., 2022; 

Zhang et al., 2023; Fan et al., 2025; Dunmire et al., 2025). Selmes et al. (2011) conducted 

one of the first pan-Greenland investigations, analysing SGL drainage behaviour across all 

regions of the ice sheet between 2005 and 2009. They observed that while SGLs were 

present in all regions, their distribution was uneven. The southwest region contained the 

majority (55%) of detected SGLs, with the northwest and northeast regions contributing 19% 

and 13%, respectively. Recent work by Fan et al. (2025) further expanded this 

understanding by producing the first annual, ice-sheet-wide database of maximum summer 

SGL extents, spanning 1985 to 2023. Using July and August Landsat imagery, they found 

that SGLs were primarily distributed in the northwestern, northeastern, and southwestern 

basins (Figure 1.8). 
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Figure 1.8: SGL reoccurrence (1985–2023) and spatial density on the GrIS and basins: (a) NO, 
(b) NW, (c) CW, (d) SW, and (e) NE. Pie chart shows reoccurrence class distribution and circle 
size reflects average SGL area (Source: Fan et al., 2025). 
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1.2.2.1.2 Seasonal evolution and dynamic behaviour of supraglacial lakes 

SGLs first form near the ice margin early in the melt season and progressively appear at 

higher elevations as temperatures rise. Between spring and summer, these SGLs enlarge in 

area and depth, coinciding with the inland progression of surface melting (Box and Ski, 

2007; McMillan et al., 2007; Sneed and Hamilton, 2007; Miles et al., 2017; Yang et al., 

2021). SGLs are more likely to occur in areas with lower elevations and shallower slopes 

(Turton et al., 2021). However, during intense melt years, they become more established 

and reach increasingly higher elevations (Liang et al., 2012; Zhang et al., 2023).  

SGLs on the GrIS either drain rapidly, drain slowly or refreeze. They can then become buried 

(Figure 1.9). Rapid drainage occurs in hours via hydrofracture, slow drainage occurs over 

days to weeks via channel incision and overflow. Hydrofracture-driven drainage happens 

when the hydrostatic pressure of a meltwater-filled crevasse propagates the fracture tip 

(Krawczynski et al., 2009), partially or fully draining the SGL. The likelihood and efficiency of 

hydrofracture depend on the local stress regime: under extensional stress, crevasses are 

more likely to open and propagate downward, facilitating rapid SGL drainage, whereas 

under compressive stress, crevasse propagation is inhibited, limiting the potential for 

hydrofracture-driven drainage. Early work estimates that approximately 10% of SGLs drain 

rapidly by hydrofracture across the GrIS (Selmes et al., 2011, 2013), however, more recent 

estimates suggest this figure is between 28% and 45% (Fitzpatrick et al., 2014).  

Rapid drainage events are more common during high-melt years (Dunmire et al., 2025) and 

are less likely at higher elevations where extensional flow is reduced due to slower ice 

velocities and increased compressive stress, which inhibit crevasse propagation (Johansson 

et al., 2013). Poinar et al. (2015) argue that meltwater above 1600 m predominantly drains 

on the surface rather than through hydrofracture, though instances of rapid drainage above 

this elevation have been observed (e.g., Dunmire et al., 2025). In some cases, rapid 

drainage triggers cascading events, where strain rate perturbations induce nearby SGLs to 

drain (Christoffersen et al., 2018). Smaller SGLs, particularly those below 0.0495 km², are 

thought to be unlikely to trigger hydrofracture through 1 km-thick ice (Krawczynski et al., 

2009). Potential factors influencing rapid drainage, such as SGL area, volume, water depth, 

ice surface velocity, surface strain rate, and cumulative melt and runoff, have been 

investigated, although they remain poorly constrained (Williamson et al., 2018b; Lutz et al., 

2024). Recent studies suggest that SGL depth increases the likelihood of hydrofracture, as 

deeper SGLs exert greater hydrostatic pressure, promoting fracture propagation (Dunmire et 

al., 2025). 
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Slow drainage occurs when SGLs overflow their basins or when meltwater thermally incises 

surface channels after the rate of thermal erosion surpasses ablation (Catania et al., 2008; 

Banwell et al., 2012; Yang et al., 2016). Meltwater from these events flows down-glacier 

through shallow surface channels. SGLs that do not drain may freeze over and shrink at the 

end of the melt season as temperatures decrease (Selmes et al., 2013; Miles et al., 2017; 

Dunmire et al., 2025). Some SGLs remain partially liquid and are insulated beneath the ice, 

persisting through the winter in a buried state (Koenig et al., 2015; Miles et al., 2017; 

Dunmire et al., 2021). 

 

Figure 1.9: Percentage of SGLs on the GrIS that refreeze, drain rapidly, drain slowly, or 
become buried in 2018 (low melt year) and 2019 (high melt year), grouped by region (Source: 
Dunmire et al., 2025). Regional abbreviations: SW – Southwest, CW – Central West, NW – 
Northwest, NO – North, NE – Northeast, SE – Southeast. 

1.2.2.1.3 Long-term trends in supraglacial lake extent and distribution 

Although relatively few studies have systematically quantified long-term trends in the extent, 

distribution, and migration of SGLs across the GrIS, existing research indicates a 

progressive increase in SGL formation at higher elevations and an overall expansion in SGL 

area (Fan et al., 2025). However, extreme melt years drive substantial deviations from this 

trend, causing sharp increases in total SGL extent (e.g., Fitzpatrick et al., 2014). Ice-sheet-

wide, SGLs have expanded in both size and number since the early 21st century, with an 

annual expansion rate of 51 km² in total SGL area and an annual upward migration of 10 m 

in maximum SGL elevation between 1985 and 2023 (Fan et al., 2025). Additionally, from 

2014 to 2022, statistically significant increases in total meltwater volume have been 

observed across drainage basins in the north, east, and south of the ice sheet (Corr et al., 
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2023), which reflects both a greater extent of supraglacial hydrological features and an 

increase in the depth and persistence of surface meltwater storage.  

Regional trends reinforce these patterns of inland migration and SGL expansion. In 

northwest Greenland, SGLs have exhibited particularly strong growth in both area and 

elevation. Between 1985 and 2016, maximum and mean SGL elevations increased by 418 

m and 299 m, respectively, while SGL coverage at high elevations (≥ 1200 m a.s.l.) 

expanded by over 2750% (Gledhill and Williamson, 2016). This inland migration coincided 

with a near-doubling of total regional SGL area and volume, with post-2000 accelerations 

largely driven by regional surface-temperature anomalies. A similar trend is evident in west 

Greenland where SGLs migrated inland between 2002 and 2012 (Fitzpatrick et al., 2014). 

While the number of SGLS varied annually, averaging 200 SGLS per year, total SGL area 

increased substantially during the high-melt years of 2010, 2011, and 2012 (Fitzpatrick et al., 

2014). Additionally, Fitzpatrick et al. (2014) found that SGLs above 1400 m a.s.l. occupied 

49% more area in record melt years compared to the 11-year mean.  

1.2.2.2 Supraglacial channels  

1.2.2.2.1 Formation and distribution of supraglacial channels 

Supraglacial channels can be categorized as either rivers or streams (Smith et al., 2015). 

Supraglacial rivers are major, high-order channels that are evenly spaced and often 

terminate in moulins (Pitcher and Smith, 2019). In contrast, supraglacial streams are 

shallow, transient, and of lower stream order, often acting as tributaries to rivers (Smith et al., 

2015). Supraglacial channels vary greatly in size and shape, ranging from just a few 

centimetres to several meters in width, and can extend for tens of kilometres before draining 

into SGLs, entering the englacial environment, or reaching the ocean (Yang and Smith, 

2016; Rippin and Rawlins, 2021). Together, these stream-river systems serve as the primary 

pathways for transporting surface meltwater across the southwest of the ice sheet (Yang et 

al., 2016). The routing of water through these channels is largely controlled by surface 

topography, meaning that the locations of larger supraglacial streams remain relatively 

constant across melt seasons (Irvine-Fynn et al., 2011).  

The formation of supraglacial channels is still not entirely understood but thought to occur 

when meltwater thermally incises the surface of the ice, with thermal erosion outpacing 

ablation rates (Yang et al., 2016). Meltwater originating from precipitation, surface melt, 

saturated slush, or overflow from water-filled moulins, crevasses, and SGLs contributes to 

the development of these channels (Chu, 2014). On steep surface slopes, ponded meltwater 

or slush is funnelled into narrow and shallow channels, which erode and expand over time 
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as the snowpack is melted. As the channels become more established, they facilitate 

increasingly efficient meltwater transport across the ice sheet surface (Chu, 2014). 

The majority of research on supraglacial channels has been conducted in southwest GrIS, 

where dense networks of supraglacial rivers and streams dominate the ablation zone 

(Pritchard and Smith, 2019). In this region, drainage systems are characterized by closely 

spaced streams and rivers (Smith et al., 2015; Yang et al., 2016; Yang et al., 2021). In 

contrast, relatively little research has focused on supraglacial channels in other parts of the 

ice sheet, such as the northeast (e.g., Rawlins et al., 2023; Lu et al., 2021). In the dynamic 

Northeast Greenland Ice Stream (NEGIS) region, channel characteristics are closely tied to 

ice flow regimes. Areas dominated by ice deformation feature long rivers, whereas regions 

influenced by basal sliding are characterized by shorter rivers and larger SGLs (Lu et al., 

2021). 

Supraglacial rivers dominate surface meltwater drainage on the GrIS, forming the majority of 

the hydrological network and controlling meltwater transport across the ice sheet. In 

northeastern Greenland, rivers account for 83.8% of the supraglacial drainage system, 

compared to 62% in the southwest (Lu et al., 2021; Yang et al., 2021). However, while rivers 

control most of the meltwater area and facilitate rapid drainage, their role must be 

considered in relation to SGLs, which regulate meltwater storage and release. At higher 

elevations (>1600 m), rivers dominate due to steeper slopes that enhance transport 

efficiency, while SGLs are scarce due to the lack of topographic depressions. In contrast, 

lower elevations host more SGLs, which accumulate meltwater before eventually draining 

into river networks or moulins. Despite their smaller footprint, SGLs influence river 

distribution by acting as temporary reservoirs–delaying, regulating, and in some cases, 

enhancing downstream flow through overflow events. Thus, while rivers define the 

connectivity of the supraglacial drainage system, their function is shaped by interactions with 

SGLs, highlighting the interdependence between transport and storage mechanisms within 

the meltwater system. 

1.2.2.2.2 Evolution of supraglacial channels  

Supraglacial river systems are highly dynamic, evolving on both diurnal and seasonal 

timescales. Stream discharge follows a diurnal cycle, with peak flow occurring during periods 

of maximum solar radiation and decreasing at night (Ferguson, 1973). Seasonally, as 

temperatures rise in spring and summer, increased supraglacial runoff enables the formation 

and expansion of supraglacial river networks, which extend farther up-glacier as the melt 

season progresses and melting intensifies. Discharge is lowest at the beginning and end of 
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the melt season, reaching its peak in mid-summer (Holmes, 1955). During the early stages 

of channel development, high discharge volumes can significantly shape channel 

morphometry, often promoting meander formation. However, as rivers mature and their 

channels become more established, discharge has less of an effect on channel evolution, 

and the river's morphology stabilizes (Ferguson, 1973). In winter, lower temperatures cause 

channels to freeze and shut down, with potential erosion of channel pathways if water flow is 

insufficient. However, some remnant channels may persist and be reused the following 

season, making the location of river networks more predictable over time (Rippin and 

Rawlins, 2021; Pritcher and Smith, 2019). 

2.2.2.2.3 Long-term trends of supraglacial channel networks 

The long-term trends of supraglacial channel networks across the GrIS are not yet fully 

understood, with limited comprehensive studies tracking their evolution over extended 

periods. While there is growing evidence of significant changes in the distribution of 

supraglacial river networks over time, these trends are often obscured by interannual 

variability and the episodic nature of extreme melt years.  

Rawlins et al. (2023) examined the seasonal and multi-annual behaviour of the supraglacial 

drainage network at Humboldt Glacier in northern Greenland, a region that has been 

experiencing significant changes due to warming temperatures. Using high-resolution 

Sentinel-2 (S2) imagery from 2016 to 2020, Rawlins et al. observed that the supraglacial 

drainage network exhibited considerable interannual variability, with substantial expansion 

during high-melt years such as 2019. In contrast, the network’s development was more 

limited in low-melt years, such as 2017 and 2018. This implicates extreme melt events as a 

key driver of the rapid expansion of supraglacial channels. 

1.2.2.3 Supraglacial slush  

Supraglacial slush, defined as fully water-saturated firn or snow, typically forms in the 

percolation zone of the GrIS. Slush formation occurs when meltwater percolation is impeded, 

either because the rate of meltwater production exceeds the firn's capacity to absorb water, 

leading to saturation at depth (Clerx et al., 2022; 2024), or due to low-permeability ice layers 

obstructing downward flow (MacFerrin et al., 2019). 

When surface snow and ice reach saturation, drainage can mobilize the snow and firn, 

generating slush flows that propagate through topographic lows (e.g., Irvine-Fynn et al., 

2011; Onesti, 1985; Onesti and Hestnes, 1989). Slush facilitates lateral meltwater transport 

by forming hydrologically connected zones that channel meltwater into supraglacial rivers 
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and SGLs (Holmes, 1955; Cuffey and Paterson, 2010). These zones also initiate and sustain 

supraglacial channels (Chu, 2014; Rippin and Rawlins, 2021). When slush fields connect to 

moulins or crevasses, they deliver meltwater to the ice-bed interface and the subglacial 

hydrological networks (Smith et al., 2021). Additionally, the refreezing of slush plays a key 

role in forming and expanding near-surface ice slabs. These ice slabs reduce firn's meltwater 

retention capacity and increase surface runoff (Machguth et al., 2016; Pfeffer et al., 1991; 

Harper et al., 2012; Miller et al., 2018; 2020). This process establishes a feedback loop: as 

thicker ice slabs impede downward percolation, they further contribute to slush formation 

(Covi et al., 2022; Machguth et al., 2016; MacFerrin et al., 2019; Miller et al., 2022; Jullien et 

al., 2023).  

Although slush was first observed on the GrIS in the 1950s (Holmes, 1955), it has often 

been overlooked in meltwater mapping studies. Large-scale studies reveal that slush 

distribution aligns closely with runoff limits derived from optical satellite imagery (Machguth 

et al., 2023), while smaller basin-scale studies have identified slush primarily in the 

southwestern and northern regions of the GrIS (e.g., Covi et al., 2022; Rawlins et al., 2023). 

Previously, slush has been delineated on the GrIS only to eliminate it from supraglacial 

channel delineation efforts (Yang and Smith, 2012). Since slush accounts for nearly two-

thirds of the meltwater area on the Roi Baudouin Ice Shelf, East Antarctica, and 

approximately half of the meltwater area across 56 other Antarctic ice shelves, which 

experience a climate similar to that of the GrIS (Dell et al., 2022; 2024), its exclusion from 

Greenland-based meltwater mapping efforts may lead to significant underestimation of total 

meltwater extent. 

1.2.3 Englacial hydrology  

The englacial hydrological system refers to the distribution of meltwater between the surface 

of the ice sheet and the base. Less is known about englacial hydrology compared to the 

supraglacial system since it is much more difficult to access in situ and monitor remotely. 

Meltwater flows into the englacial system via crevasses and moulins, which in turn provide 

pathways to the bed of the ice sheet. This subsection explores the formation and structural 

characteristics of crevasses and moulins, as well as their role in routing meltwater through 

the englacial system and into the subglacial drainage network. 

1.2.3.1 Crevasses 

Crevasses are open fractures in the ice sheet that can range from a few millimetres to tens 

of meters wide and tens of meters to kilometres long (Chudley et al., 2021, 2025). They are 
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surface expressions of glacier stress, formed by extensional flow, compression, or shear, 

and are intrinsically linked to glacier dynamics (Colgan et al., 2016). With increasing depth, 

ice overburden pressure causes crevasses to close; however, water pressure can widen and 

deepen fractures, propagating them through the full ice thickness via hydrofracture (Figure 

1.10; van der Veen, 2007; Alley et al., 2005). This process enables crevasses to facilitate 

meltwater transfer to the subglacial system. Crevasse fields, which may capture up to half of 

the seasonal surface runoff, are believed to deliver more meltwater to the ice sheet bed than 

SGLs (Koziol et al., 2017). Crevasse fields allow for spatially distributed, slower meltwater 

drainage (Chu, 2014). Crevasses are increasing in extent, with a 13 ± 4% rise in the number 

of crevasses wider than 2 m in west Greenland observed between 1985 and 2009 (Colgan 

et al., 2011), potentially promoting increased water delivery to the basal system. Additionally, 

Chudley et al. (2025) found that crevasse volume increased by up to 25.3 ± 10.1% in 

southeast Greenland between 2016 and 2021, driven by accelerating ice flow. 

 

 

Figure 1.10: Controls on crevasse depth in valley glaciers. After Benn and Evans, 2010. 
(Source: Bethan Davies, Newcastle University, antarcticglaciers.org).  

1.2.3.2 Moulins  

Moulins (Figure 1.7d) are vertical ice channels that form through full-thickness fractures in 

crevasses, developing either during rapid SGL drainage events, where far-field tensile stress 
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exceeds the ice's fracture toughness, or through prolonged meltwater flow into a crevasse 

that causes it to enlarge (Hoffman et al., 2018). These features, which range in size from a 

few centimetres to tens of meters in diameter, enable rapid vertical drainage of meltwater to 

the en- and sub-glacial environments (Colgan et al., 2011). Moulins create efficient drainage 

pathways, driven by water pressure exceeding fracture strength and maintained by turbulent 

meltwater flow (Das et al., 2008; Krawczynski et al., 2009). Banwell et al. (2016) highlight the 

importance of moulin density and timing in determining the configuration of subglacial 

drainage on the GrIS, with higher densities facilitating earlier and more widespread basal 

channelization, while lower densities lead to delayed and more localized channel 

development. Once moulins have opened, they may act as surface-bed connections for the 

remainder of the melt season, enabling prolonged meltwater delivery to the ice sheet base 

(Joughin et al., 2008, Banwell et al., 2013, 2016; Hoffman et al., 2018). 

1.2.4 Subglacial hydrology 

Subglacial hydrology refers to water present at the base of a glacier, which can be an 

important control upon glacier dynamics. Water at the ice-bed interface originates from two 

primary sources: supraglacial inputs delivered to the bed through crevasses, fractures and 

moulins, and locally sourced basal meltwater produced by geothermal heat or frictional 

melting on the underside of the ice sheet. During the melt season (May - September), 

subglacial drainage is dominated by supraglacial inputs. This subsection examines the 

primary components of the subglacial hydrological system, focusing on drainage 

configurations and subglacial lakes, which together regulate the efficiency, connectivity, and 

impact of basal meltwater flow beneath the GrIS. 

1.2.4.1 Subglacial drainage configurations 

Theoretical models of subglacial drainage morphologies beneath the GrIS are largely 

derived from studies of Alpine glaciers due to the limited accessibility of the subglacial 

environment of the ice sheet (Hubbard and Nienow, 1997). Subglacial drainage systems of 

the GrIS are generally classified into two main configurations: efficient channelized systems 

and inefficient distributed systems, with a third weakly-connected drainage type recently 

proposed (Hoffman et al., 2016). Efficient systems include Röthlisberger or Hooke channels, 

carved upward into the ice (Röthlisberger, 1972), Nye channels, incised into the bed (Nye, 

1976), or combinations of both. Inefficient drainage occurs through distributed mechanisms 

such as thin water films (Weertman, 1962), porous flow (Boulton and Jones, 1979), and 

linked-cavity systems, the dominant form, which develop as ice slides over bedrock 

protrusions (Kamb, 1987). The key difference between these configurations lies in their 
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response to fluctuations in water input. In distributed systems, increased meltwater supply 

raises water pressure, enlarges cavities, and lowers effective pressure. When discharge 

surpasses a critical threshold, the system transitions to a channelized configuration, where 

increased meltwater supply reduces water pressure due to the efficient expansion of 

channels driven by wall melting and viscous heat dissipation (Kamb, 1987; Röthlisberger, 

1972; Schoof, 2010; Mankoff and Tulaczyk, 2017). While distributed systems dominate 

under low discharge and channelized systems during high discharge, these configurations 

are not mutually exclusive and can coexist and interact in the same region (Hubbard et al., 

1995; Alley, 1996). 

1.2.4.2 Subglacial lakes 

Subglacial lakes, bodies of water stored beneath ice sheets or glaciers, play an important 

role in the subglacial hydrology system by acting to buffer the flux of meltwater to the ocean 

(Fricker et al., 2007; Siegert et al., 2016; Arthur et al., 2025). In Greenland, fewer than 100 

subglacial lakes have been identified, mostly near the ice sheet margin where rapidly 

changing surface conditions challenge detection (Livingstone et al., 2022; Bowling et al., 

2019). Subglacial lakes can be stable, maintaining a relatively constant volume, or active, 

periodically draining and refilling due to surface meltwater inputs that overcome the pressure 

of the overlying ice (Livingstone et al., 2022; Chandler et al., 2013). Active subglacial lakes, 

which fill and drain on annual to decadal timescales, influence ice flow by lubricating the ice-

bed interface, altering ice discharge speeds, and transferring sediment and nutrients 

downstream (Siegfried and Fricker, 2018; Malczyk et al., 2020; Vick-Majors et al., 2020). 

Some active subglacial lakes are hydraulically connected to others, enabling water and 

sediment exchange (Smith et al., 2017). Observations, such as the 2011 drainage of a 

subglacial lake in Greenland, suggest these lakes can be fed by surface meltwater through 

moulins and drain via subglacial tunnels to the ice margin, temporarily impacting ice flow 

velocities downstream (Palmer et al., 2015). 
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1.3 Influence of meltwater on the Greenland Ice Sheet 
In this section, the influence of meltwater on GrIS dynamics is examined through its 

interactions with the subglacial environment, ice properties, firn structure, and ocean-driven 

melting. Key feedback mechanisms, such as the melt-elevation and melt-albedo feedbacks, 

are discussed in the context of their role in amplifying ice sheet mass loss. The impact of 

meltwater on ice motion is analysed, highlighting how its delivery to the bed can either 

enhance or stabilize flow depending on subglacial drainage efficiency. Meltwater infiltration 

into firn is considered, focusing on its role in densification, ice slab formation, and the 

development of firn aquifers that regulate water storage and runoff. Finally, the contribution 

of surface-derived meltwater to oceanic melting at marine-terminating glaciers is explored, 

with emphasis on how subglacial discharge plumes enhance ice-ocean interactions and 

accelerate submarine melt. 

1.3.1 Feedback mechanisms and albedo   

Supraglacial meltwater plays an integral role in amplifying ice sheet mass loss through self-

reinforcing feedback processes. One of the most significant is the melt-elevation feedback 

(Oerlemans, 1981), where substantial melting causes surface lowering, exposing the ice 

sheet to warmer atmospheric temperatures and enhancing further melt. This effect is 

compounded by the melt-albedo feedback, in which the transition from reflective snowpack 

to darker bare ice increases solar radiation absorption, further accelerating melting (e.g., Box 

et al., 2012). Additionally, biological darkening, driven by glacier algae colonizing exposed 

ice surfaces, can further reduce albedo and intensify melt (Cook et al., 2020). Ice sheet 

modelling and paleoclimate reconstructions suggest that once the melt-elevation feedback 

reaches a critical threshold, it can sustain irreversible ice loss (Levermann and Winkelmann, 

2016). 

Beyond these broad-scale feedbacks, supraglacial meltwater features–such as SGLs and 

slush –introduce additional albedo effects that enhance localized melting. The albedo of 

meltwater and slush is significantly lower than that of snow and bare ice, allowing greater 

absorption of solar radiation and reinforcing the melt-albedo feedback (Leeson et al., 2015; 

Lüthje et al., 2006). This process facilitates the expansion of supraglacial meltwater 

networks, as melting of surrounding snow and ice is enhanced (Lüthje et al., 2006; Box et 

al., 2012). Field and modelling studies underscore the magnitude of this effect: ablation 

beneath SGLs has been observed to be 70% to 170% greater than that of bare ice (Grüell et 

al., 2002; Lüthje et al., 2006), and the presence of slush on Antarctic ice shelves has been 

linked to a 2.8-fold increase in snowmelt (Dell et al., 2024). 
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The influence of these feedbacks extends beyond localized melt enhancement to broader 

atmospheric and climatic interactions. As seasonal albedo declines due to snowline retreat 

and increasing meltwater coverage, surface-atmosphere heat exchange is altered, modifying 

local temperature gradients and atmospheric circulation patterns. These effects, in turn, can 

further accelerate ice loss by influencing melt season duration and the spatial extent of 

surface melting.  

1.3.2 Impact of meltwater on ice dynamics  

When surface meltwater reaches the base of the GrIS, if the subglacial hydrological system 

is inefficient and distributed, then the additional water can increase water pressure at the ice-

bed interface, countering the ice overburden pressure, reducing basal friction and increasing 

ice flow speed (Zwally et al., 2002). If the subglacial hydrological system is efficient and 

channelized then meltwater is evacuated more effectively, and an increase in basal water 

pressure does not occur (Bartholomew et al., 2010). An initial acceleration is commonly 

observed at the onset of each melt season when the subglacial hydrological system is 

inefficient and thus more susceptible to meltwater-induced speed-up (Bartholomew et al., 

2010). This effect stabilises over the course of the melt season as the subglacial network 

evolves. 

On longer timescales, increased surface melt has led to the development of more efficient 

drainage systems. This has actually resulted in reduced annual ice velocities in some 

marginal regions of the GrIS, despite increasing surface melt rates. For example, between 

1985–1994 and 2007–2014, annual ice velocity in southwestern Greenland decreased by 

12%, even as surface meltwater production increased by 50% (Tedstone et al., 2015). This 

reduction is attributed to the formation of larger, more frequent subglacial channels that act 

as low-pressure arteries, reducing water pressure across extensive areas (Tedstone et al., 

2015; Stevens et al., 2016). However, in higher-elevation regions with lower basal water flux 

and greater overburden pressure, efficient drainage systems may not fully develop, allowing 

meltwater inputs to scale positively with ice motion. For instance, a ~2.2% increase in ice 

motion was observed between cooler and warmer years at 1840 m above sea level, where 

thick ice and limited drainage efficiency maintain higher subglacial water pressures year-

round (Doyle et al., 2014). 

Rapid drainage events from SGLs can temporarily overwhelm even efficient subglacial 

drainage systems. During these events, large volumes of water are transported to the ice-

sheet bed, reducing subglacial effective pressure and causing significant short-term 

accelerations in ice velocity, sometimes up to 400% of pre-drainage levels (Shepherd et al., 
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2009; Schoof et al., 2010; Bartholomew et al., 2012; Tedesco et al., 2013; Banwell et al., 

2016). However, these accelerations are typically localized and short-lived, lasting hours to 

days, with ice flow decelerating to pre-drainage velocities shortly after, resulting in minimal 

net annual acceleration (~1 m yr⁻¹; Das et al., 2008). Beyond these immediate effects, SGL 

drainage events have longer-term influences on ice dynamics. For example, they can open 

new moulins which contribute to sustained meltwater delivery throughout the ablation 

season (Hoffman et al., 2018), aiding the seasonal transition from inefficient, distributed 

drainage to efficient, channelized systems (Bartholomew et al., 2010). This evolution 

reduces basal water pressure and thus promotes lower ice velocity over seasonal 

timescales. 

1.3.3 Cryohydrologic warming 

The infiltration of meltwater into the ice sheet influences its thermal structure through 

cryohydrologic warming (Phillips et al., 2010, 2013). As meltwater percolates into firn and 

ice, it refreezes, releasing latent heat that warms the ice, reduces its viscosity, and enhances 

deformation, facilitating further meltwater penetration and transport to englacial and 

subglacial environments. Over time, this process contributes to ice softening, increasing flow 

velocities and influencing long-term ice dynamics (Poinar et al., 2017). SGL drainage events 

can further accelerate warming by rapidly injecting large volumes of relatively warm 

meltwater into cold ice, releasing additional latent heat upon refreezing (Phillips et al., 2010, 

2013; Poinar et al., 2017). This localized warming reduces viscosity, increases strain 

heating, and forms a feedback loop that promotes continued softening and flow acceleration, 

with lasting consequences for ice sheet dynamics, particularly in regions experiencing 

sustained meltwater input. 

1.3.4 Effect of meltwater on firn  

Firn, the transitional layer between fresh snow and glacial ice, covers ~78–92% of the GrIS 

with a thickness of up to 80 meters (Box et al., 2012; Fausto et al., 2018). Its porous 

structure acts as a buffer against meltwater runoff by allowing meltwater to percolate, be 

retained, and refreeze within its pore spaces (The Firn Symposium Team, 2024). 

Approximately 50% of Greenland’s surface meltwater is currently stored or refrozen in the 

firn, reducing runoff to the ocean (Noël et al., 2018). However, climate warming has 

degraded firn by decreasing its thickness by 1–1.5 meters since 1980 and has reduced pore 

space by ~5% (Kuipers Munneke et al., 2015).  

Meltwater infiltration into firn significantly alters its structure and properties (Figure 1.11). 

This process leads to firn densification, where porous, low-density snow transitions into 
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compacted, higher-density firn. This occurs as meltwater rounds and lubricates grains, 

increasing their size and enhancing compaction (Colbeck, 1982). Refreezing further 

increases firn density by filling pore spaces with ice, forming impermeable ice layers, lenses, 

and pipes that reduce permeability and water storage capacity (Braithwaite et al., 1994). 

Refreezing also releases latent heat, warming the surrounding firn and decreasing its 

capacity to refreeze subsequent infiltration, creating feedback loops between meltwater 

infiltration, thermal conditions, and firn structure (Vandecrux et al., 2020; The Firn 

Symposium Team, 2024). These processes can lead to the development of ice slabs 

(MacFerrin et al., 2019) and firn aquifers (Miège et al., 2016; Forster et al., 2014), which 

export meltwater from the firn to other parts of the hydrological system. 

Ice slabs, which cover 60,400–73,500 km² of the ice sheet, have expanded by 37–44% in 

Greenland between 2012 and 2018 (Jullien et al., 2023; MacFerrin et al., 2019). These slabs 

form at lower elevations with high melt rates and limited snowfall, blocking vertical 

percolation and forcing meltwater to flow laterally. This contributes to surface runoff, 

supraglacial stream formation, and SGL expansion (Machguth et al., 2016; Tedstone et al., 

2022). Firn aquifers, subsurface reservoirs of liquid water insulated by overlying snow, form 

in high-melt, high-accumulation areas where meltwater saturates the firn and resists freezing 

(Kuipers Munneke et al., 2015). Covering at least 21,900 km², these aquifers store 

significant water volumes, such as the 2.2–4.8 Gt reservoir at Helheim Glacier (Montgomery 

et al., 2017; Koenig, 2014). While aquifers delay surface runoff in the short term, they can 

drain to the ice-sheet bed through hydrofracture, supplying year-round water to subglacial 

systems and influencing seasonal ice velocity fluctuations (Poinar et al., 2017, 2019). 
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Figure 1.11: A diagram illustrating a dry firn column experiencing melting, which produces 
surface hydrological features like meltwater that could lead to hydrofracture (Source: The Firn 
Symposium Team, 2024). 
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1.3.5 Meltwater and ocean-driven melting  

The release of surface-derived meltwater into the ocean plays a critical role in modulating 

submarine melting, calving, and fjord circulation at Greenland’s marine-terminating glaciers 

(Figure 1.12). During the melt season, large volumes of supraglacial meltwater drain through 

the ice sheet and emerge at depth as subglacial discharge plumes. These buoyant plumes 

entrain warmer, saltier seawater as they rise along the glacier front, enhancing mixing across 

the ice-ocean boundary layer and accelerating submarine melting (Jenkins, 2011; Slater et 

al., 2018). While oceanic heat transport is a key driver of ice loss in Greenland’s fjords, 

recent work suggests that the atmosphere plays a first-order role in governing submarine 

melting, particularly by regulating surface meltwater availability. Even in the absence of 

direct ocean warming, a warming atmosphere can amplify submarine melting by increasing 

meltwater discharge, which enhances heat transfer from the ocean to the ice (Slater and 

Straneo, 2022). At the ice sheet scale, atmospheric forcing dominates in some regions, such 

as northwest Greenland, whereas oceanic variability exerts stronger control in others, such 

as the south (Slater and Straneo, 2022).  

 

Figure 1.12: Schematic of submarine melting at marine-terminating glaciers being driven by 
subglacial discharge plumes, which entrain warm fjord waters and are influenced by both 
atmospheric meltwater input and oceanic heat availability. (Source: Slater and Straneo, 2022). 
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1.4 The future of meltwater and its influence on the 
Greenland Ice Sheet 
Under all future emissions scenarios outlined by the IPCC–ranging from low-emission 

pathways such as RCP2.6 to high-emission pathways like RCP8.5–Greenland’s atmosphere 

is projected to warm, leading to intensified surface melt (Fettweis et al., 2013; IPCC, 2021). 

As such, the GrIS is expected to undergo profound changes in its hydrological system, with 

increased meltwater production influencing surface processes, ice dynamics, and firn 

structure. This section examines these projected changes, focusing on the inland expansion 

of SGLs and their role in enhancing basal lubrication, contributing to cryo-hydrologic 

warming, and impacting seasonal ice flow acceleration. The implications of evolving 

subglacial drainage efficiency for ice dynamics are considered, highlighting regional 

differences in long-term flow trends. Changes in firn properties, including reductions in firn 

thickness, air content, and meltwater storage capacity, are explored in the context of their 

role in the expansion of ice slabs, which amplify runoff and accelerate sea-level rise. Finally, 

the increasing frequency and intensity of extreme melt events are assessed, with emphasis 

on their role in mass loss and long-term ice sheet stability. 

1.4.1 Expansion of supraglacial lakes 

Future projections suggest that SGLs will form at even higher elevations, extending further 

inland where gentler surface slopes may allow them to grow larger (Figure 1.13; Leeson et 

al., 2015; Luthje et al., 2006). Leeson et al. (2015) estimate that under RCP 4.5 and RCP 8.5 

scenarios, SGLs could expand inland by 103 km and 110 km, respectively, by 2060. This 

expansion is expected to increase the total SGL-covered area on the GrIS by 48–53%. As 

SGLs expand, surface melting may be further amplified due to albedo-driven impacts, with 

projected increases in meltwater volume of 0.7–0.8% – more than double the current 

contribution from SGLs and equivalent to an additional 6.6–8.5 Gt of meltwater per year 

across the ice sheet. Up to half of these newly formed SGLs may grow large enough to 

drain, enhancing basal lubrication but may also contribute to cryo-hydrologic warming, 

particularly in regions with inefficient subglacial drainage. Under RCP 4.5, Leeson et al. 

(2015) estimate that between 4–51% of SGLs could become large enough to hydro-fracture, 

while under RCP 8.5, this number rises to between 8–50%, potentially triggering rapid 

drainage events. Consistent with these trends, Ignéczi et al. (2016) project that SGL 

volumes will increase by 113% under RCP 4.5 and 174% under RCP 8.5 by the late 21st 

century, with the most substantial growth in the northeastern sector of the ice sheet and 

more moderate increases in the west. 
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While large, sudden meltwater inputs to the bed from SGL drainages can trigger short-term 

accelerations, these events often promote rapid channelization, limiting their long-term 

impact on ice velocity (Das et al., 2008; Hoffman et al., 2011). However, Poinar et al. (2015) 

find that crevasses–and thus moulins–are unlikely to form above ~1600 m, limiting direct 

drainage from SGLs at higher elevations. Consequently, meltwater in these regions primarily 

flows via surface streams to existing moulins downstream, suggesting that the inland 

expansion of SGLs will have a limited impact on extending melt-induced seasonal ice flow 

acceleration. However, studies have observed SGL drainage events at elevations >1600 m 

a.s.l.; for example, Yang et al. (2021) found that at elevations > 1600 m, 21% of SGLs drain 

into moulins on southwest GrIS during the 2015 melt season. 

 

Figure 1.13: the projected expansion of SGLs under different climate scenarios (Source: 
Leeson et al., 2015). 

1.4.2 Future ice dynamics 

It has been suggested that in land-terminating systems, dynamic changes due to enhanced 

meltwater will be limited in future due to the compensating effect when increased meltwater 

drives the development of efficient subglacial drainage (e.g., Nienow et al., 2017; Tedstone 

et al., 2013; Sole et al., 2013). Davison et al. (2019) suggest that future increases in runoff 

may enhance seasonal ice flow variability but lead to contrasting long-term trends across the 

ice sheet. In regions with well-connected drainage systems, annual ice flow will likely decline 

due to increased drainage efficiency and reduced basal water pressure, while further inland, 
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areas with developing hydrological connectivity may experience increased ice flow unless 

self-regulation mechanisms expand. 

1.4.3 Meltwater in firn  

It is likely that future climate changes will impact the firn layer of the GrIS, both directly 

through increased surface melt and indirectly via alterations in hydrological features such as 

ice slabs and firn aquifers (The Firn Symposium Team; Lenaerts et al., 2020; Fettweis et al., 

2013; Flowers, 2018). Reduced snowfall, increased refreezing, and the expansion of the 

ablation zone are expected to decrease firn thickness, air content, and meltwater storage 

capacity. These changes will diminish the firn’s ability to buffer meltwater, leading to 

increased runoff and amplifying the GrIS’s contribution to global sea-level rise. The extent of 

these impacts will depend on future warming trajectories, with strong mitigation efforts 

offering the most effective means to limit firn degradation and its cascading effects on the ice 

sheet and global sea levels. 

A key factor in this process is the expansion of ice slabs. MacFerrin et al. (2019) project that 

the area covered by ice slabs will approximately double by 2050, significantly accelerating 

runoff from the ice sheet interior as meltwater infiltration decreases. Although runoff from the 

top of ice slabs has contributed less than one millimetre to global sea-level rise so far, this 

contribution is projected to grow substantially as ice slabs expand inland in a warming 

climate. By 2100, runoff over ice slabs is expected to contribute between 7 to 33 mm under 

moderate-emissions scenarios and 17 to 74 mm under high-emissions scenarios (MacFerrin 

et al., 2019). This represents approximately double the estimated runoff from Greenland’s 

high-elevation interior, as predicted by SMB models that do not account for the presence of 

ice slabs. Without accounting for ice slabs, regional climate models may significantly 

underestimate future meltwater discharge. 

Compounding this issue, Noël et al. (2022) predict that peak firn refreezing will occur around 

the year 2126 ± 14 under extreme warming scenarios, driven by increased meltwater 

production saturating the firn layer. Beyond this peak, the GrIS’s ability to retain meltwater 

will sharply decline as firn porosity decreases and ice lenses expand, limiting percolation and 

refreezing capacity. This reduction in firn refreezing will result in greater surface runoff and 

reduced meltwater storage, amplifying the GrIS's contribution to sea-level rise more than 

twenty-fold compared to recent decades. Even under moderate warming, peak refreezing is 

expected by the year 2172 ± 20, reflecting the long-term susceptibility of firn to persistent 

meltwater input. In contrast, low-end warming scenarios stabilize firn refreezing capacity 
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after 2100, highlighting the importance of mitigation efforts in preserving the firn's role as a 

critical meltwater buffer. 

1.4.4 The role of extreme melt events 

Extreme melt events are expected to increase in both frequency and intensity on the GrIS. 

Frequent extreme events under high emission scenarios could raise sea level by 20 to 450 

mm and reduce ice sheet area by an additional 6,000 to 26,000 km² by the year 2300 

compared to scenarios without such extremes (Beckmann & Winkelmann, 2023). While 

extreme events can temporarily reduce surface velocities due to surface thinning, the 

combined effects of dynamic processes and SMB amplify mass loss, raising sea level 

contributions by over 30% compared to SMB-only models by 2300 (Beckmann & 

Winkelmann, 2023). However, Ing et al. (2024) demonstrated that late-season extreme melt 

events contribute only ~2% more annual ice discharge compared to scenarios without such 

speed-ups. While these events can induce temporary acceleration of GrIS motion, with 

velocities increasing by up to ~240%, their isolated impact on net mass loss via ice 

discharge remains limited. 
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Chapter 2 

Techniques for identifying supraglacial 
hydrology via remote sensing 
To effectively monitor and study supraglacial hydrology, a variety of methods have been 

employed. Traditional approaches, such as field-based observations and airborne surveys 

(e.g., Gleason et al., 2016), have provided invaluable data but are limited logistically and by 

both spatial and temporal coverage. More recently, numerical models (e.g., Leeson et al., 

2012; Gantayat et al., 2023) have been developed to simulate hydrological processes, but 

their accuracy depends on the quality and resolution of input data. This thesis focuses on 

satellite remote sensing of supraglacial hydrology.  

This chapter introduces the topic of satellite remote sensing for supraglacial meltwater 

mapping and provides an overview of the L8 and S2 missions, the main data sources used 

in this thesis. Methods for delineating supraglacial hydrology in satellite imagery are 

reviewed, including manual delineation, image thresholding, and machine learning (ML) 

based approaches. The chapter concludes by addressing the challenges and limitations of 

satellite remote sensing in this context, highlighting key knowledge and capability gaps that 

inform the aims and objectives of this thesis. 

2.1 Satellite remote sensing  
Remote sensing is a technique used to collect information from the Earth’s surface by 

sampling reflected and emitted electromagnetic radiation, typically from airborne or 

spaceborne instruments (Horning, 2008). In Glaciology, remote sensing has become 

indispensable for studying vast, often inaccessible regions over extended timescales. 

Advancements over the past 50 years have transformed cryospheric research, allowing 

continuous, large-scale observation of ice sheets and glaciers (Tedesco, 2015). On the GrIS, 

satellite data have been essential for tracking mass balance, analyzing ice velocity over 

multi-decadal timescales and improving understanding of ice sheet hydrology.  

Remote sensing instruments are either passive or active: the former is when a sensor 

measures reflected solar radiation from the Earth’s surface, and the latter is when the sensor 

emits a beam which measures reflected backscatter from a target. Passive instruments 

typically employ multi- or hyper-spectral sensors, and resolve in the optical, thermal, and 

microwave parts of the electromagnetic spectrum. Passive sensors are unable to resolve the 

surface of the Earth in dark or cloudy conditions, which can be a major limitation when 
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studying regions like Greenland and Antarctic as they endure periods of polar night through 

winter.  

The spatial resolution of these sensors varies, and as such, so does the type of information 

retrieved. Coarse-resolution examples of passive remote sensors (i.e. those with a spatial 

resolution greater than 250 m) include The Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Advanced Very High Resolution Radiometer (AVHRR). Owing to the fine 

temporal resolution of these sensors, data acquired has been successfully used to 

characterize rapidly evolving supraglacial hydrology on the AIS and GrIS (e.g. Sundal et al., 

2009; Williamson et al., 2017; Selmes 2011, 2013; Morriss et al., 2013), although this is at 

the expense of detecting small-medium and narrow features. Medium-resolution passive 

sensors (those with a spatial resolution between 10 – 250 m) are capable of resolving 

smaller-scale supraglacial meltwater features, such as small SGLs (e.g. Williamson et al., 

2018b) and rivers (e.g. Yang et al., 2019). Examples of such sensors include S2, Landsat 1 

– 9, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). 

Medium scale sensors have been used to map supraglacial hydrology and extract meltwater 

characteristics both regionally (e.g. Otto et al., 2022; Dell et al., 2020; Arthur et al., 2020; 

Rawlins et al., 2023) and ice-sheet wide (e.g. Zhang et al., 2023; Corr et al., 2022; Stokes et 

al., 2019). 

Active remote sensors can operate in cloudy and dark conditions and are capable of 

penetrating materials such as snow and firn (e.g., Benedek and Willis; Miles et al., 2017). 

These sensors include Radio Detection and Ranging (RaDAR), Laser Imaging Detection and 

Ranging (LiDAR), and Sound Navigation and Ranging (SoNAR). In recent years, Synthetic 

Aperture Radar (SAR) has been increasingly used to detect surface and subsurface lakes on 

the GrIS and AIS. Unlike optical imagery, which relies on direct visual contrast, SAR 

identifies differences in the backscatter signal of SGL features relative to the surrounding 

environment. However, interpreting SAR signals can be challenging due to factors such as 

scattering effects, surface roughness, and the complexity of subsurface reflections (Miles et 

al., 2017). Sentinel-1 (S1), for example, has been employed to map both surface and 

subsurface lakes on the GrIS (Jiang et al., 2022; Miles et al., 2017; Dunmire et al., 2021; 

Benedek and Willis, 2020). While SAR is effective for certain applications, it is less suitable 

for detecting features like slush because of its sensitivity to surface roughness and the 

complex scattering associated with variable meltwater conditions. Additionally, SAR cannot 

measure the depth or volume of SGLs, as microwave signals are strongly attenuated in 

water, preventing penetration below the surface. 
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NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-2) laser altimeter is an active sensor 

capable of directly measuring SGL depths from space (e.g., Arndt and Fricker, 2024; Lutz et 

al., 2024; Melling et al., 2024). This is possible because its green laser light penetrates the 

water’s surface, allowing the detection of photons reflected from both the SGL surface and 

the SGL bed. Although ICESat-2 provides highly accurate depth measurements, its spatial 

coverage is limited to narrow, one-dimensional ground tracks that are widely spaced. As a 

result, it offers detailed information along specific paths but lacks continuous coverage 

across large areas. 

High-resolution optical imagery, such as L8 and S2, has been particularly useful for surface 

hydrology studies, particularly the monitoring of meltwater features such as SGLs, channels 

and slush (Williamson et al., 2017, 2018a; Hochreuther et al., 2021; Rawlins et al., 2023; 

Yang et al., 2019; Lu et al., 2021; Miles et al., 2017; Yang et al., 2021). The integration of 

multiple satellite sensors is now commonly employed to optimize trade-offs between 

resolution and return period, improving our understanding of meltwater feature evolution 

both within and between melt seasons. While fieldwork remains crucial for ground-truthing 

and process studies, the integration of remote sensing with in situ measurements continues 

to drive advancements in ice sheet hydrology.  
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2.1.1 Landsat 8  
The Landsat mission, orchestrated by NASA and the USGS, has allowed for uninterrupted 

monitoring of the Earth’s surface since 1972 by providing moderate scale resolution multi-

spectral imagery. The Landsat 8 (L8) satellite was launched in 2013. The L8 satellite 

undergoes a sun-synchronous near polar orbit around the earth at an altitude of 705 km, 

with a 185 km swath and a repeat cycle of 16 days. 

The L8 satellite has two sensors onboard: The Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS). OLI captures data across eight short-wave multispectral 

bands at 30 m resolution, and a single panchromatic band at 15 m resolution (Band 8; Table 

2.1). TIRS collects data from two longwave infrared bands at 100 m resolution (Band 10 and 

11). Both OLI and TIRS are push-broom sensors, using linear arrays of detectors to capture 

imagery line by line as the satellite moves along its orbit. Unlike older whisk-broom sensors, 

which scan side-to-side with a single detector, push-broom sensors acquire data more 

efficiently. OLI and TIRS operate in tandem to collect multispectral and thermal data 

simultaneously. 

L8 imagery (Figure 2.1) has been frequently used to detect, measure, and monitor 

supraglacial hydrology on both the AIS (e.g. Stokes et al., 2019; Banwell et al., 2021; 

Moussavi et al., 2020; Dell et al., 2020; Corr et al., 2022; Arthur et al., 2020) and GrIS (e.g. 

Pope et al., 2016; Williamson et al., 2018b; Miles et al., 2017; Yang et al., 2021). 

L8 data are free of charge and can be acquired from the USGS EROS EarthExplorer 

website: https://earthexplorer.usgs.gov/. 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 2.1: SGLs on the western GrIS, derived from NASA/USGS L8 imagery on July 12, 2014, 
at a) 9 km, b) 6 km, c) 3 km. The image is a composite of red, green, and blue channels (bands 
4, 3, and 2). Source: (Dr. Allen Pope and NASA's Goddard Space Flight Center, 
https://svs.gsfc.nasa.gov/11973/).  
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Table 2.1: L8 bands, their central wavelength and resolution  

L8 Bands Central Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.44 30 

Band 2 - Blue 0.48 30 

Band 3 - Green 0.56 30 

Band 4 - Red 0.655 30 

Band 5 - Near Infrared (NIR) 0.865 30 

Band 6 - SWIR 1 1.61 30 

Band 7 - SWIR 2 2.2 30 

Band 8 - Panchromatic 0.59 15 

Band 9 - Cirrus 1.37 30 

Band 10 - Thermal Infrared (TIRS) 1 10.895 100 

Band 11 - Thermal Infrared (TIRS) 2 12.005 100 
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2.1.2 Sentinel-2 
ESA’s S2 mission provides high resolution multispectral satellite imagery, which is used 

throughout this thesis. The mission comprises two identical satellites: S2-A (launched in 

2015) and S2-B (launched in 2017). The S2 satellites are situated in the same sun-

synchronous orbit, although they are phased at 180 to ensure a high revisit time. Separately, 

the S2 satellites have a revisit time of 10 days, which is reduced to 5 days when combined. 

The satellites orbit the earth at an altitude of 786 km and have a swath of 290 km. A third 

satellite, Sentinel-2C, was launched in 2024 and became operational in early 2025 to ensure 

mission continuity and maintain high temporal coverage as S2-A nears the end of its design 

lifetime. 

Both satellites carry a Multi-Spectral Instrument (MSI): a push-broom sensor which samples 

13 spectral bands. MSI senses from Visible (VNIR) and Near Infra-Red (NIR) to the Short 

Wave Infra-Red (SWIR), with four bands at spatial resolution of 10 m, six bands at 20 m and 

three bands at 60 m (Table 2.2). 

Owing to its fine spatial resolution and frequent revisit time, S2 data (Figure 2.2) has been 

used to resolve the characteristics and evolution of meltwater of the surface of both the AIS 

(e.g. Moussavi et al., 2020; Kingslake et al., 2017; Bell et al., 2017; Stokes et al., 2019; and 

GrIS (e.g. Williamson et al., 2018b; Hochreuther et al., 2021; Rawlins et al., 2023; Yang et 

al., 2019; Lu et al., 2021). 

S2 and L8 data can also be combined to produce a dataset with a higher temporal sampling 

than using just one sensor or the other, which allows for fine temporal and spatial scale 

tracking of meltwater evolution (e.g. Williamson et al., 2018; Moussavi et al., 2020; Corr et 

al., 2022). Although, it should be noted that, due to the differing radiometric and spatial 

properties of each sensor, merging these data can be challenging. 

S2 data can be acquired freely from the Copernicus Open Access Hub: 

https://scihub.copernicus.eu/. 

 

 

 

 

 

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Figure 2.2: Animated Gif of changes in meltwater and SGLs on the GrIS from August 1 to 
August 23, 2021, derived from Copernicus S2 imagery. Credit: ESA, contains modified 
Copernicus S2 data (2021), processed by ESA. (Source: 
https://www.esa.int/ESA_Multimedia/Images/2022/05/Meltwater_and_surface_lakes_on_the_Gr
eenland_ice_sheet).  

https://www.esa.int/ESA_Multimedia/Images/2022/05/Meltwater_and_surface_lakes_on_the_Greenland_ice_sheet
https://www.esa.int/ESA_Multimedia/Images/2022/05/Meltwater_and_surface_lakes_on_the_Greenland_ice_sheet
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Table 2.2: S2 bands, their central wavelength and resolution  

S2 Bands Central Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.443 60 

Band 2 - Blue 0.49 10 

Band 3 - Green 0.56 10 

Band 4 - Red 0.665 10 

Band 5 - Vegetation Red Edge 0.705 20 

Band 6 - Vegetation Red Edge 0.74 20 

Band 7 - Vegetation Red Edge 0.783 20 

Band 8 - NIR 0.842 10 

Band 8A - Vegetation Red Edge 0.865 20 

Band 9 - Water vapour 0.945 60 

Band 10 - SWIR - Cirrus 1.375 60 

Band 11 - SWIR 1.61 20 

Band 12 - SWIR 2.19 20 
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2.2 Supraglacial meltwater feature delineation methods 
Mapping SGLs, channels, and slush areas enables researchers to quantify seasonal and 

interannual changes in melt extent, assess potential impacts on ice sheet dynamics, and 

improve predictions of meltwater runoff into the ocean. Additionally, understanding the 

spatial and temporal evolution of these features provides insight into ice-sheet-wide 

hydrological connectivity and the efficiency of supraglacial-to-subglacial meltwater transfer. 

Since surface meltwater can contribute to dynamic ice loss through hydrofracture and basal 

lubrication, as well as directly to SLR via runoff into the ocean, accurately delineating these 

features is essential for constraining projections of Greenland’s future contribution to global 

sea level. Various methods have been developed to classify meltwater features in satellite 

imagery, ranging from manual delineation to automated approaches that leverage spectral 

indices, image thresholding, and ML. Below, this section provides a review of these 

methods, highlighting their strengths and limitations. 

2.2.1 Manual delineation  
Manual delineation has been widely used to map meltwater features on the GrIS. This 

method involves interpreting satellite imagery and manually tracing SGL and channel 

outlines using visual cues, band combinations, or indices like the Normalized Difference 

Water Index (NDWI). In Greenland, studies such as McMillan et al. (2007) and Lampkin and 

VanderBerg (2011) have utilized manual delineation to identify 292 and 1,190 SGLs from 

ASTER and Landsat-7 imagery, respectively. The key advantage of manual delineation lies 

in its precision, as it allows researchers to incorporate expertise and prior knowledge to 

identify complex or subtle features that automated methods might miss. However, this 

approach is labour-intensive, time-consuming, and prone to user bias (Langley et al., 2016; 

Williamson et al., 2017). Due to these limitations, semi- and fully-automated methods are 

now preferred for large-scale assessments. These approaches leverage advanced 

algorithms and ML techniques to efficiently analyse large datasets, providing consistent and 

objective detection of meltwater features across regional to ice-sheet-wide scales (Stokes et 

al., 2019; Moussavi et al., 2020). 

2.2.2 Thresholding  
Image thresholding is the standard approach for mapping supraglacial hydrology on the 

Earth’s ice sheets (Moussavi et al., 2020; Stokes et al., 2019; Williamson et al., 2017; Corr et 

al., 2021). First applied to the GrIS by Box and Ski (2007), this method classifies pixels as 

‘water’ or ‘non-water’ based on an optimized threshold. Open water appears dark blue in 

optical satellite imagery due to stronger red light attenuation relative to blue light. NDWI 
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exploits these spectral properties to distinguish meltwater features from ice and snow 

(Morriss et al., 2013; Liang et al., 2012; Pope et al., 2016; Yang and Smith, 2012; Sneed and 

Hamilton, 2007; Box and Ski, 2007). 

Originally developed for terrestrial applications, NDWI combines NIR and green wavelengths 

to enhance open water detection while minimizing interference from soil and vegetation 

(McFeeters, 1996). However, its suitability for ice sheets is limited, as snow, ice, and firn 

exhibit low NIR reflectance (Yang and Smith, 2012). To address this, most recent studies use 

NDWI_ice (Yang and Smith, 2012), which applies a red/blue reflectance threshold (typically 

0.2–0.5) better suited to glaciological environments (Fitzpatrick et al., 2014). While effective, 

NDWI_ice can misclassify features with similar spectral signatures (e.g., rocks, clouds, 

shadows) and struggles with detecting shallow or narrow meltwater bodies (Arthur et al., 

2020). Refining thresholding techniques can reduce classification errors and improve 

accuracy (Moussavi et al., 2020). A more robust classification method, integrating NDWI_ice 

with the Normalized Difference Snow Index (NDSI; Hall et al., 1995), has been successfully 

applied to five East Antarctic ice shelves, reducing misclassification of clouds and rocks and 

improving detection of shallow SGLs (Moussavi et al., 2020). Corr et al. (2021) extended this 

approach across all Antarctic ice shelves, achieving high accuracy (98.7%–98.3%) for S2 

and L8 imagery. 

To further improve classification, additional processing steps–such as masking non-water 

features–are required, often supplemented by manual refinement. While thresholding has 

been used to delineate shallow surface water and slush on the Greenland (Yang and Smith, 

2013) and Antarctic (Bell et al., 2017) ice sheets, few studies explicitly focus on slush 

detection. Lower NDWI_ice thresholds (e.g., 0.12–0.14) have been applied for this purpose, 

but further research is needed to refine these methods. 

Identifying supraglacial rivers in satellite imagery is challenging due to their narrow widths (< 

30 m) and spectral similarity to slush, which complicates differentiation using traditional 

remote sensing techniques (Yang and Smith, 2012). Thresholding methods alone are 

insufficient for detailed mapping of these hydrological networks, necessitating advanced 

processing approaches. Yang and Smith (2013) introduced the first automated method for 

extracting supraglacial channels, later refined in subsequent studies (Yang et al., 2016; 

2019; Figure 2.3). Their approach, applied to WorldView, S2, and Landsat imagery, 

combines NDWI with noise reduction via a band-pass filter, Gabor filtering to highlight river 

cross-sections, and a path-opening operator for improved connectivity (Yang et al., 2019; Lu 

et al., 2021; Yang et al., 2021). This method demonstrates high accuracy (~97.8%), with a 

true positive rate of ~94.3% and a false positive rate of ~1.8% on L8 imagery (Yang et al., 
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2016). Under optimal conditions, it can detect rivers as narrow as ~3 m in 15 m L8 imagery 

(Yang et al., 2016). 

 

 

Figure 2.3: Supraglacial river networks on the northwest GrIS, mapped from 10 m S2 (23 July 
2016) and 30 m L8 (30 July 2016) images (Source: Yang et al., 2019). 

2.2.3 Machine learning  
ML is a subset of artificial intelligence (AI) that enables systems to improve their 

performance autonomously by learning from data, without explicit programming. It builds 

models that simulate human learning, allowing systems to identify patterns, make 

predictions, and generalize to unseen data. ML algorithms can be broadly categorized into 

three main types: supervised learning, unsupervised learning, and reinforcement learning.  

Supervised learning algorithms use labelled training data to perform classification. The 

model learns by adjusting its weights as input data is processed, comparing predictions to 

the actual labels, and refining itself based on the results. This process includes cross-

validation to avoid overfitting or underfitting. The model continues to adjust until it reaches 

the desired accuracy or learning plateaus. Once trained, the model can apply the learned 

relationships between input variables and outcomes to classify new, unseen data. 

Unsupervised learning algorithms group unlabelled data by identifying patterns, similarities, 
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and differences within the data. These algorithms do not require human intervention or 

labelled data. Instead, they allow the system to independently discover hidden structures or 

relationships in the data, such as clustering similar data points together or reducing the 

dimensionality of the data. Reinforcement learning allows models to self-correct through trial 

and error, using environmental feedback (positive or negative) to improve performance 

without labelled data. The algorithm is rewarded for desired outcomes and penalized for 

undesired ones, gradually optimizing its actions over time. Deep learning, a specialized 

branch of ML, leverages multiple layers of neural networks to process complex data and 

solve intricate tasks by simulating the decision-making process of the human brain. 

While ML has been applied to satellite imagery analysis since the 1990s (e.g., Charlebois et 

al., 1993), its use in supraglacial hydrology mapping is more recent. Random Forest is the 

most widely used classifier in this field and is often combined with clustering methods (e.g., 

k-means), which group spectrally similar pixels to support training data creation. It has 

demonstrated high accuracy in mapping SGLs in Antarctica (Dirscherl et al., 2020; Dell et al., 

2022, 2024), Greenland (Yuan et al., 2020; Hu et al., 2022; Wang and Sugiyama, 2024; Lutz 

et al., 2023), and mountain glaciers (Wangchuk & Bolch, 2020). More recently, deep learning 

techniques, such as Convolutional Neural Networks (CNNs) and U-Net, have shown promise 

in SGL mapping, often in combination with RF for enhanced segmentation (Dirscherl et al., 

2021b; Niu et al., 2023). Despite these advances, ML is still underutilized in this field, with a 

limited range of classifiers employed. 

ML-based classification has shown promising results in limited-area studies across both the 

GrIS and AIS (e.g., Dell et al., 2022; Dirscherl et al., 2020; Hu et al., 2022; Lutz et al., 2024). 

However, a major barrier to the widespread application of ML in meltwater mapping is the 

lack of high-quality training data. One promising strategy to overcome this limitation is hybrid 

learning, which combines supervised and unsupervised methods to reduce dependence on 

large manually labelled datasets. Unsupervised clustering techniques, such as k-means, can 

generate initial training datasets that are later refined using expert validation, improving 

efficiency (Dell et al., 2022; Halberstadt et al., 2020).  
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2.2.4. Machine learning classifiers used in this thesis 
This section gives an overview of the ML classifiers that are used in Chapters 4 and 5 of this 

thesis.  

i. K-means clustering 

K-means clustering is an unsupervised classification technique that partitions data into a 

predefined number of clusters based on similarity (Figure 2.4). It has been applied in 

supraglacial meltwater mapping, either as a standalone method or in combination with 

supervised approaches, achieving overall classification accuracies exceeding 90% (Dell et 

al., 2022, 2024; Halberstadt et al., 2020). K-means offers advantages such as computational 

efficiency, simplicity, and independence from labelled training data. However, its accuracy 

depends on selecting an appropriate number of clusters and can be affected by spectral 

overlap between surface types, requiring manual validation and post-processing (e.g., Dell et 

al., 2022).  

 

Figure 2.4: A visual representation of K-means clustering. On the left, unlabelled data points 
are distributed in feature space. On the right, the K-means algorithm has grouped the data into 
clusters, each represented by a different colour, with black crosses indicating the centroids of 
each cluster (Source: Cardille et al., 2024). 
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ii. Classification and regression trees (CART) 

Classification and regression trees (CART) is a decision tree algorithm (Figure 2.5) that 

classifies data by recursively splitting it into subsets based on feature values, forming a tree-

like structure (Breiman et al., 1984). It has been applied in supraglacial hydrology mapping in 

a single study, Halberstadt et al. (2020), where it achieved validation accuracies up to 

91.4%. While CART effectively identifies SGLs, its reliance on binary splits can make it 

sensitive to variations in input data, potentially leading to overfitting in complex glaciological 

environments. 

 

 

Figure 2.5: A decision tree illustration where circles represent variables (C1, C2, and C3) and 
rectangles indicate classification outcomes (Class A and Class B). Each branch is labelled 
‘True’ or ‘False,’ reflecting the result of the preceding node’s test, guiding the classification 
process (Source Uddin et al., 2019). 
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iii. Random Forest (RF) 

Random forest (RF) is a supervised ensemble classifier that constructs multiple decision 

trees from subsets of training data, collectively forming a "forest" to determine the most 

probable classification outcome (Figure 2.6; Breiman, 2001). It has recently been applied to 

mapping supraglacial hydrological features, including SGLs (Dirscherl et al., 2020, 2021; 

Halberstadt et al., 2020; Yuan et al., 2020; Dell et al., 2022, 2024), returning pixel-based 

accuracies of 92.6% (Halberstadt et al., 2020). RF offers advantages such as low 

computational cost, parallel processing, simple parameter tuning, and robustness against 

overfitting, making it effective for handling complex and noisy data, such as satellite imagery. 

However, RF's accuracy depends on the quality and of its training data, and in 

heterogeneous ice-sheet environments with varying snow, ice, and meltwater conditions, it 

may struggle with generalization.  

 

 

Figure 2.6: A conceptual illustration of a RF classifier. Multiple decision trees are trained on 
different subsets of the training data, and their individual predictions are combined using 
majority voting (for classification) or averaging (for regression) to produce the final result 
(Source: Cardille et al., 2024). 
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iv. Gradient Boosted Decision Trees (GBDT) 

Gradient Boosted Decision Trees (GBDT) is a supervised ML algorithm that builds an 

ensemble of decision trees sequentially, with each tree improving upon the errors of the 

previous one (Figure 2.7; Friedman, 2001). Unlike RF, which trains trees independently in 

parallel, GBDT follows a boosting approach where each new tree is trained to correct the 

residual errors of the previous trees, resulting in an optimized predictive model. However, 

GBDT can be computationally expensive and sensitive to hyperparameter tuning, which may 

affect its scalability and generalization. In the cryosphere, one of the few applications is 

IceBoost, a GBDT-based framework used to model glacier ice thickness (Maffezzoli et al., 

2024). Despite its demonstrated success in various remote sensing applications, GBDT has 

not yet been applied in supraglacial hydrology studies. 

 

Figure 2.7: Flow chart of a GBDT model. The process begins with the original training data 
(D1), which is used to train the first decision tree. In subsequent iterations, the dataset is 
updated (D2, D3, DN), and additional trees (Tree 2, Tree N) are trained with updated weights. 
The predictions from all trees (Predict 1, Predict 2, Predict N) are then averaged to produce the 
final prediction (Source: Zhang et al., 2024). 
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v. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning algorithm that classifies data by 

drawing the best possible boundary, called a hyperplane, to separate different classes 

(Figure 2.8; Cortes and Vapnik, 1995; Rüping, 2001). It finds the hyperplane that maximizes 

the margin between the closest data points from each class, serving as a decision boundary 

for classifying new data points based on their position relative to it. SVM is computationally 

demanding, particularly for large remote sensing datasets, and its performance is highly 

sensitive to parameter tuning and kernel selection, which can impact classification accuracy 

and generalization. SVM has not been widely applied in supraglacial hydrology mapping, 

with the only notable study, Halberstadt et al. (2020), finding that while SVM achieved high 

validation accuracy (up to 94.9%), it tended to miss some shallow SGL areas. However, it 

demonstrated strengths in reducing cloud shadow misclassification and correctly identifying 

SGLs in low-sun-elevation scenes. Additionally, SVM has been effectively applied to classify 

diverse ice-sheet and glacial features, including blue ice areas, meltwater channels, and 

crevasse fields, in East Antarctica using integrated optical and SAR datasets (Choukset et 

al., 2021). 

 

 

Figure 2.8: A simplified representation of the SVM process, where a hyperplane is identified to 
maximize the separation between the ‘star’ and ‘circle’ classes (Source: Uddin et al., 2019).  
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vi. K-nearest neighbour (KNN) 

The K-nearest Neighbour (KNN) algorithm, introduced by Cover and Hart (1967), is one of 

the simplest and earliest classification methods (Figure 2.9). It is a non-parametric, 

supervised learning technique that classifies or makes predictions about a data point's group 

based on the proximity to other data points. The "K" in KNN refers to the number of nearest 

neighbours considered when determining the classification or prediction, with each 

neighbour voting to determine the outcome. Different values of "K" can lead to varying 

classification results for the same data point. Despite its simplicity, KNN has limitations, 

particularly when working with high-dimensional data. It often does not scale well with large 

datasets and is prone to overfitting. While KNN has not yet been applied to supraglacial 

hydrology delineation, it has been used effectively in other areas of cryospheric research, 

such as avalanche forecasting (Brabec and Meister, 2001) and predicting Arctic sea ice 

cover (Lin et al., 2023). 

 

 

Figure 2.9: A basic demonstration of the K-nearest neighbour algorithm. For K = 3, the sample 
point ('star') is categorized as 'black' because it is surrounded by more neighbours from the 
'black' class. However, when K = 5, the same sample point is classified as 'red' due to a higher 
number of neighbours from the 'red' class. (Source: Uddin et al., 2019) 
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vii. Minimum Distance (MD) 

Minimum Distance (MD) is a classification method that assigns pixels to the class with the 

closest mean spectral value, using distance metrics like Euclidean, Mahalanobis, or cosine 

distance (Figure 2.10). While MD is simple and computationally efficient, it relies only on the 

class mean, which can be problematic with overlapping spectral distributions. In Halberstadt 

et al. (2020), MD was applied to classify SGLs on the Amery Ice Shelf. The method showed 

varying performance, with validation accuracies ranging from 46.8% using Euclidean 

distance to 74.4% using Mahalanobis distance. 

 

 

Figure 2.10: Schematic of a Minimum Distance classifier. This method classifies data points 
based on their distance from the mean vector of each class, where unclassified data points 
(shown in yellow) are assigned to the class (blue, green, or red) with the closest mean vector 
(represented by squares). The dashed lines indicate the decision boundaries between the 
classes (Source: Razaque et al., 2021). 
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vii. Maximum Entropy (ME) 

Maximum Entropy (ME) is a statistical model that predicts the most likely distribution of an 

outcome based on known environmental conditions, with the aim of maximizing entropy (or 

randomness) subject to these constraints (Phillips et al., 2004). While ME has not been 

widely applied in supraglacial hydrology mapping, it was used by Halberstadt et al. (2020) to 

classify SGLs on Antarctic Ice Shelves. In this study, ME achieved a high validation accuracy 

of 90.8% in certain cases. However, its performance varied significantly across application 

scenes from different regions, with accuracy dropping as low as 42.6% for some scenes on 

the Amery and Roi Baudouin Ice Shelves. 

2.2.5 Google Earth Engine 
Google Earth Engine (GEE) has become an important tool for large-scale satellite image 

analysis, providing the computational power and cloud-based infrastructure necessary to 

study supraglacial hydrology across vast regions like the GrIS. By leveraging high-

performance cloud computing, GEE enables rapid processing of large datasets, significantly 

reducing the time required for complex analyses (Gorelick et al., 2017). It integrates multi-

temporal datasets from sensors such as Landsat, Sentinel, and MODIS, allowing 

comprehensive spatiotemporal analyses without the need for local storage (Gorelick et al., 

2017). Additionally, GEE provides built-in ML capabilities, enabling users to train and apply 

classification models directly within the platform. Its extensive catalogue of preprocessed 

datasets, including topographic, climatic, and land cover data, further supports large-scale 

hydrological studies by facilitating multi-source data fusion and automated feature extraction. 

In this thesis, GEE is used to process S2 and L8 imagery, which serve as the primary 

datasets for mapping supraglacial meltwater features. The platform supports automated 

classification and feature extraction using both threshold-based methods (e.g., NDWI-based 

approaches; Tuckett et al., 2021) and ML techniques (e.g., Wang et al., 2024; Dell et al., 

2022, 2024; Dirscherl et al., 2020). Its ML capabilities facilitate efficient model training, 

validation, and deployment using large, high-resolution datasets, enabling scalable and 

automated supraglacial hydrology mapping (Halberstadt et al., 2020; Dell et al., 2022). For 

example, GEE’s RF classifier, often combined with k-means clustering, has been 

successfully used to map meltwater features across entire ice sheets, demonstrating its 

effectiveness in large-scale applications (Dell et al., 2022; Zhu et al., 2022). 

GEE has been previously applied to supraglacial hydrology research, with recent studies in 

Antarctica (Halberstadt et al., 2020; Dell et al., 2022, 2024; Tuckett et al., 2021) and 

Greenland (Zhu et al., 2022; Hu et al., 2021; Wang et al., 2024) highlighting its potential for 
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automating meltwater mapping and supporting scalable ML applications. However, despite 

these advancements, significant knowledge gaps remain. The extent to which different ML 

algorithms perform and generalize across diverse spatial and temporal conditions on the 

GrIS is not well understood. Additionally, the training data requirements necessary to 

optimize classifier performance remain unclear. Addressing these gaps is crucial for 

improving the robustness and transferability of ML-based meltwater mapping and informing 

the design of future large-scale supraglacial hydrology monitoring efforts. 

2.2.6 Supraglacial lake depth quantification 
Estimating SGL depth is more complex than simply determining their area, and several 

methods are employed to estimate depth. In-situ techniques, such as boat surveys or 

remote-controlled vehicles, provide accurate depth data but are resource-intensive and 

impractical for large-scale or remote studies (Tedesco et al., 2014; Box and Ski, 2007). 

Empirical models, based on field data and remote sensing, can estimate SGL depth but are 

typically region-specific and less applicable on a larger scale (Pope et al., 2016; Tedesco 

and Steiner, 2011). 

Laser altimetry offers precise depth measurements by detecting laser reflections from the 

lakebed (Arndt et al., 2024; Lutz et al. 2024; Melling et al., 2024), with recent work 

developing fully automated method for determining SGL depths along ICESat-2 tracks (e.g., 

Arndt et al. 2024). However, its limited spatial coverage (only along satellite tracks) and 

coarse temporal resolution make it unsuitable for tracking rapid SGL changes (Melling et al., 

2024). DEMs, such as ArcticDEM, calculate depth by comparing elevations of empty and 

filled basins. They offer high spatial resolution but poor temporal coverage, limiting their 

ability to capture dynamic SGL depth changes (Das et al., 2008; Lampkin and VanderBerg, 

2011). 

Physics-based models, like the radiative transfer equation (RTE), estimate depth using light 

attenuation in the water column (Sneed and Hamilton, 2007; Philpot, 1989; Williamson et al., 

2018a). The depth z is calculated by equation 2.1: 

 

𝑧 = !"($%&'()&!"('*&'()
+

,                                  

(2.1) 
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where Ad is lakebed reflectance, R∞ is the reflectance of optically deep water, Rw is the 

satellite measured reflectance value of a water pixel, and g is the attenuation coefficient rate 

associated with losses in upward and downward directions through the waterbody. 

For L8 data, SGL depths using the RTE are derived by averaging the red and panchromatic 

TOA reflectance values, with lakebed reflectance obtained from the average of the first non-

water pixel surrounding the SGL. The reflectance of optically deep water is either taken as 

the darkest ocean pixel or set to zero if absent. The attenuation coefficients are 0.38 for the 

panchromatic band and 0.75 for the red band (Williamson et al., 2018a; Pope et al., 2016). 

For S2, depths are calculated similarly using the red TOA reflectance, but the lakebed 

reflectance is averaged over the first three surrounding pixels, and the attenuation coefficient 

is set to 0.83. The reflectance of optically deep water is assumed to be zero (Williamson et 

al., 2018a). 

Williamson et al. (2018a) applied this method to both the red and green bands of S2 imagery 

and validated the results against L8 data, finding that the method worked well with the red 

band, with an RMSE of 0.6 meters. However, when the green band was used, the depth 

estimates were found to be exceptionally high, likely due to spectral sensitivity issues at 

greater depths, and were therefore excluded from the final analysis. While the RTE is widely 

used and applicable at large scales, it has limitations in its application to deeper SGLs (> 3.5 

meters), where the red wavelengths of light used in the calculation become saturated, 

leading to overestimates of depth (Williamson et al., 2018a). The RTE also requires 

assumptions, such as homogeneous SGL bottoms and low turbidity. 

To compare different depth estimation techniques, Melling et al. (2024) used ArcticDEM 

digital elevation models, ICESat-2 photon refraction, and the RTE applied to S2 imagery 

across five SGLs in southwest Greenland (Figure 2.11). The results showed a high level of 

agreement between the ArcticDEM and ICESat-2 methods (Pearson's r=0.98), indicating 

that these two techniques produce similar depth estimates. However, the RTE had notable 

limitations, overestimating SGL depth by up to 153% when using the green band and 

underestimating depth by up to 63% when using the red band. The study identified that the 

largest source of uncertainty in RTE-based estimates was the reflectance values at the 

lakebed, which are empirically derived and subject to significant variability. Similarly, Lutz et 

al. (2024) highlighted the sensitivity of RTE-based methods to parameter selection, noting 

that empirical approaches, particularly those calibrated with ICESat-2 and in situ sonar data, 

offer more reliable depth estimates under clear atmospheric conditions and low-sediment 

environments. 
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Figure 2.11: SGL depth estimates from the band-specific RTE, ArcticDEM, and ICESat-2 along 
transects. ‘Lit.’ refers to RTE values previously used in earlier literature (Source: Melling et al., 
2024). 

2.2.7 Supraglacial lake tracking  
In addition to traditional methods for quantifying the area and depth of SGLs on the GrIS, 

several approaches have been developed to monitor their evolution and drainage dynamics 

over time. One such method, demonstrated by Selmes et al. (2011, 2013), involved manually 

inspecting MODIS data to visually analyse changing SGL shapes and textures, offering 

insights into drainage dynamics. This manual approach was time-consuming and relied on 

low spatial resolution MODIS data.  

Rapid SGL drainage events, occurring in hours, pose challenges for satellite detection due 

to sensor revisit times. However, a dual-sensor approach combining optical and radar 

imagery can enhance spatial resolution and temporal coverage for better tracking of SGL 

dynamics. For example, Miles et al. (2018) used L8 and S1 data to track SGLs in western 

Greenland during the 2015 summer season, detecting SGL dynamics with a 25-40 m 

resolution and 3-day revisit time. Although this approach effectively detected SGL dynamics, 

it could not estimate SGL volumes and was unsuitable for areas with saturated firn. The Fully 
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Automated Supraglacial Lake Tracking at Enhanced Resolution (FASTER) algorithm, 

developed by Williamson et al. (2018a), uses both L8 and S2 imagery to track SGLs across 

the southwestern GrIS. This method offers a spatial resolution of 10-30 m and a revisit time 

of approximately 4 days, with an error of about 1.1 days. FASTER improves upon earlier 

techniques by offering finer spatial resolution, though it still faces limitations as it does not 

categorise refreezing events. The FASTER algorithm has also been applied to track both 

circular (i.e., SGLs) and linear water bodies (i.e., channels) across Antarctic Ice Shelves 

(Dell et al., 2020). 

Previous studies on SGL behaviour are either outdated, low-resolution, or focused on basin-

scale analysis. Dunmire et al. (2025) introduced a novel time-series classification model to 

automatically categorize SGLs across the GrIS into four groups: refreezing, rapidly draining, 

slowly draining, and transitioning to buried subsurface lakes (Figure 2.12). Using optical and 

microwave imagery with advanced deep learning, this model improves automatic 

classification. However, with a 6-day window for detecting rapid drainage events, it may still 

miss some events.  

 

Figure 2.12. Time series of optical and microwave data for GrIS SGL behaviour groups: (b) 
refreezing, (c) rapidly draining, (d) slowly draining, and (e) buried (Source: Dunmire et al., 
2025). 
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2.3 Knowledge and capability gaps in remote sensing of 
supraglacial hydrology  
In the review above, key knowledge gaps have been identified relating to the use of remote 

sensing to resolve and understand supraglacial hydrology. These gaps fall into several 

categories: 1) Process-level knowledge gaps, where fundamental uncertainties remain in the 

physical processes governing supraglacial hydrology, for example, in the formation, 

distribution, and evolution of meltwater features such as SGLs, channels, and slush. 2) 

methodological accuracy, where the accuracy and reliability of traditional remote sensing 

and ML approaches limit the ability to fully characterize supraglacial hydrology, often leading 

to misclassifications or biases in feature detection and interpretation; and 3) technological 

challenges, computational constraints and the scarcity of high-quality training data hinder 

large-scale, automated mapping efforts. Below, each of these knowledge gaps are explored 

in more detail, beginning with process-level uncertainties before addressing methodological 

accuracy and technological limitations. 

2.3.1 Process-level knowledge gaps 
Compared to slush, SGLs and supraglacial channels have been more extensively studied, 

providing a relatively stronger understanding of their formation, evolution, and impacts on the 

ice sheet. However, uncertainties remain, for example, the response of all supraglacial 

meltwater features to extreme melt years–events that are likely to become more frequent 

with climate change–remains uncertain, especially in comparison to low-melt years.  

Slush, in particular, remains poorly studied despite its known role in hydrological 

connectivity, runoff processes, and albedo, as demonstrated in AIS studies (e.g., Dell et al., 

2022, 2024). Previous GrIS mapping efforts have largely overlooked slush, limiting our ability 

to assess its distribution, evolution, and temporal variability.  

Despite forming a highly interconnected system, supraglacial meltwater features are typically 

studied in isolation (e.g., Box & Ski, 2007; Selmes et al., 2011; Williamson et al., 2017; 

Sundal et al., 2009; Smith et al., 2015; Greuell & Knap, 2000; Machguth et al., 2023; 

Tedstone & Machguth, 2022). While some studies have attempted a more holistic approach 

(e.g., Rawlins et al., 2023; Zhang et al., 2023), their spatial and temporal coverage remains 

limited. Additionally, many regional studies overlook key meltwater features, such as slush 

and smaller SGLs that do not meet hypothesized area thresholds for rapid drainage initiation 

(i.e., Krawczynski et al., 2009). At the same time, large-scale assessments often lack the 

spatial and temporal resolution needed to resolve key hydrological processes, highlighting a 

second major category of knowledge gaps: methodological limitations. 
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2.3.2 Methodological accuracy 

The detection and classification of supraglacial meltwater features present significant 

methodological challenges due to the indistinct spectral and physical characteristics of 

SGLs, channels, and slush. Traditional remote sensing approaches, particularly thresholding 

methods, have been widely used to delineate meltwater features (as described in the review 

above). However, these methods often rely on a single, generalized threshold, which fails to 

capture the spectral nuances between different meltwater features, leading to incomplete or 

inaccurate classifications. To improve accuracy, more detailed, feature-specific classification 

methods have been developed, such as approaches that account for the linear morphology 

of channels (e.g., Yang et al., 2015) or the shallow nature of slush (e.g., Bell et al., 2017). 

While these methods enhance classification precision, they have typically been applied in 

isolation rather than in combination. Integrating these feature-specific approaches is 

necessary to achieve a more comprehensive and accurate classification of supraglacial 

hydrology. 

While traditional remote sensing methods–whether manual or semi-automated–may be 

effective in basin-scale settings, they are time-intensive and impractical for large-scale, 

repeat monitoring, especially given the increasing volume of satellite imagery. ML presents a 

promising alternative, yet its application to supraglacial hydrology remains somewhat limited. 

Most studies have relied on RF or selected deep learning models (e.g., Wangchuk & Bolch, 

2020; Hu et al., 2021; Dirscherl et al., 2020, 2021; Dell et al., 2022, 2024; Yuan et al., 2020; 

Halberstadt et al., 2020; Wang & Sugiyama, 2024; Hu et al., 2022; Lutz et al., 2024), with 

little consideration of alternative algorithms. Additionally, there is no clear consensus on the 

optimal training data requirements for supraglacial meltwater classification, including dataset 

size and labelling strategies. A key challenge lies in balancing data quantity and quality: 

insufficient training data may limit model accuracy, while excessive data can lead to 

inefficient training and diminishing returns. Further uncertainty exists regarding the balance 

between manual and automated labelling and the extent to which models trained on one 

region or melt season can generalize effectively to others. 

To improve supraglacial meltwater classification accuracy, there is a need for both feature-

specific approaches and large-scale ML-based methods. Feature-specific classification 

techniques allow for high-precision delineation of individual meltwater features, ensuring 

accuracy at localized scales. Meanwhile, ML enables automated, scalable classification 

across ice-sheet-wide datasets.  
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2.3.3 Technological challenges 

While ML approaches offer scalability and automation, their effectiveness is constrained by 

broader technological challenges. Large-scale monitoring of supraglacial hydrology is 

hindered by computational limitations, which limit the widespread implementation of ML-

based methods across the GrIS. Traditional approaches relying on locally downloaded 

satellite imagery are slow, require substantial storage, and are impractical for large-scale 

and near-real-time analysis. Recent advances in cloud computing and ML offer scalable 

solutions, but these technologies remain underexplored in supraglacial hydrology. Cloud-

based platforms such as GEE provide opportunities for large-scale analysis, yet adoption in 

this field has been limited. Expanding the use of ML algorithms implemented in the cloud 

could enable more efficient, comprehensive and timely monitoring of supraglacial meltwater 

features. 

An integrated approach that combines regional-scale analyses, ice-sheet-wide assessments, 

and ML advancements has the potential to address all of the gaps outlined above and 

improve large-scale monitoring of supraglacial meltwater features. Regional-scale analyses 

provide essential context for understanding the processes driving supraglacial hydrology, 

offering insights that can inform larger-scale classifications. Ice-sheet-wide assessments, in 

turn, enable the quantification of broader trends and spatial variability. Finally, ML 

advancements enhance the scalability and efficiency of these classifications, ensuring they 

remain adaptable to diverse supraglacial conditions. 

This thesis is structured around these key themes. First, it examines how interannual 

variability influences supraglacial hydrology at a regional scale. Second, it expands the focus 

to quantify and track the evolution of slush across the GrIS. Third, it develops and evaluates 

ML-based methods to improve the scalability and accuracy of supraglacial meltwater 

mapping. These themes form the basis of the research objectives outlined in the following 

section. 
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2.4 Thesis aims and objectives 
Understanding the spatial and temporal dynamics of surface hydrology on the GrIS is critical 

for predicting its response to climate change and its contribution to global sea level rise. 

Supraglacial meltwater features, including SGLs, channels, and slush, play a key role in 

influencing ice dynamics, SMB, and meltwater routing to the ice sheet bed and the ocean as 

discussed in Chapter 1. However, several key knowledge and capability gaps limit our 

understanding of these processes, as outlined in Section 2.3. 

To address these gaps, this thesis aims to advance understanding of: 1) how GrIS 

supraglacial meltwater features evolve over time and 2) how best to monitor them at scale. 

To achieve this, three main objectives have been defined, which together will allow these 

overarching aims to be met. These objectives are as follows: 

1. Understand how the distribution, evolution, and morphology of supraglacial 
meltwater varies within, and between, high and low melt years (Chapter 3). This 

objective directly addresses the process-level knowledge gap by examining how 

interannual variability in summer temperatures influences the distribution and 

evolution of SGLs, channels, and slush. By comparing these features in contrasting 

melt seasons, this research provides insight into the sensitivity of meltwater features 

to extreme melt conditions, which are becoming increasingly frequent due to climate 

change. This research also contributes to a more holistic understanding of 

supraglacial hydrology beyond the isolated treatment of individual features, using 

different feature-specific methods to distinguish between SGLs, rivers, and slush 

more effectively.  

2. Understand the spatial and temporal distribution of slush on the GrIS (Chapter 
4). This objective directly addresses a major methodological limitation by developing 

methods for mapping slush on the GrIS and applying these methods to classify its 

extent and variability. Mapping slush over multiple years provides insights into its 

distribution, variability, and evolution at an ice-sheet-wide scale, addressing process-

level knowledge gaps by improving understanding of slush dynamics and its role in 

supraglacial hydrology. This work also contributes to addressing technological 

challenges for meltwater feature mapping by deploying scalable monitoring 

approaches on a cloud-based platform and thus capturing slush meltwater features 

across large spatial scales and tracking their evolution over time. 

3. Optimise the performance of and understand the trade-offs between ML 
classifiers deployed in the cloud. By assessing accuracy, transferability, and 

scalability, this objective identifies the most effective approaches for large-scale, 
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automated mapping of supraglacial meltwater features. By determining the most 

effective ML approaches for supraglacial hydrology mapping, this objective directly 

supports the thesis aim by optimising ML and remote sensing-based methods for 

large-scale meltwater monitoring. By focusing on cloud-based ML methods, this 

objective enhances the scalability and efficiency of supraglacial hydrology monitoring 

and achieves the thesis aim by establishing the foundations for improved automated 

meltwater mapping on the GrIS. 

Together, these objectives provide a detailed view of recent supraglacial meltwater evolution 

on the GrIS and contribute to the development of improved monitoring tools. By first 

examining the distribution, evolution, and morphology of supraglacial meltwater features in 

southwest Greenland under contrasting melt conditions, Chapter 3 establishes how 

interannual variability influences surface hydrology, highlighting the role of slush as an 

important yet often overlooked component of the meltwater system. Building on these 

findings, Chapter 4 expands the focus to an ice-sheet-wide assessment of slush, mapping its 

distribution and evolution from 2016 to 2024 using S2 imagery and ML. This large-scale 

analysis provides insights into slush variability both within and between different melt 

seasons, offering a broader perspective on its hydrological significance across the GrIS. 

Chapter 5 evaluates the performance of ML classifiers for supraglacial feature delineation. 

By assessing classifier accuracy, transferability, and computational efficiency, this research 

identifies the most effective approaches for automated mapping, ultimately improving long-

term monitoring of supraglacial hydrology in a changing climate. Finally, in Chapter 6, the 

thesis findings are synthesized, explored within a broader context, and potential directions 

for future research are discussed. 
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Abstract 

Over recent decades, the Greenland Ice Sheet (GrIS) has lost mass through increased 

melting and solid ice discharge into the ocean. Surface meltwater features such as 

supraglacial lakes (SGLs), channels and slush are becoming more abundant as a result of 

the former and are implicated as a control on the latter when they drain. It is not yet clear, 

however, how these different surface hydrological features will respond to future climate 

changes, and it is likely that GrIS surface melting will continue to increase as the Arctic 

warms. Here, we use Sentinel-2 and Landsat 8 optical satellite imagery to compare the 

distribution and evolution of meltwater features (SGLs, channels, slush) in the Russell-

Leverett Glacier catchment, southwest Greenland, in relatively high (2019) and low (2018) 

melt years. We show that: 1) supraglacial meltwater covers a greater area and extends 

further inland to higher elevations in 2019 than in 2018; 2) slush – generally disregarded in 

previous Greenland surface hydrology studies - is far more widespread in 2019 than in 2018; 

3) the supraglacial channel system is more interconnected in 2019 than in 2018; 4) a greater 

number, and larger total area, of SGLs drained in 2019, although draining SGLs were, on 

average, deeper and more voluminous in 2018; 5) small SGLs  (≤ 0.0495 km²) - typically 

disregarded in previous studies - form and drain in both melt years, although this behaviour 

is more prevalent in 2019; and 6) a greater proportion of SGLs refroze in 2018 compared to 

2019. This analysis provides new insight into how the ice sheet responds to significant melt 

events, and how a changing climate may impact meltwater feature characteristics, SGL 

behaviour and ice dynamics in the future.  
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3.1. Introduction 
Over recent decades, the Greenland Ice Sheet (GrIS) has undergone substantial mass loss, 

totalling 4,892 ± 457 Gt of ice from 1992 to 2020 (Otosaka et al., 2023). This mass loss has 

arisen through a reduction in surface mass balance (SMB), as well as dynamic factors; with 

meltwater runoff now being the main contributor to ice loss (Mouginot et al., 2019; van den 

Broeke et al., 2016; The IMBIE Team, 2020; Hanna et al., 2024). Increased surface melt, 

driven by atmospheric warming, causes a direct reduction in mass through surface runoff. 

Since the early 1990’s, the GrIS has experienced a total mean summer temperature 

increase of ~1.7°C (Hanna et al., 2021), with a commensurate increase in surface meltwater 

production through an increase in melt extent as well as enhanced local melt rates (van As 

et al., 2012; Hall et al., 2013), and surface runoff has risen by 33-50% since the early 2000s 

(Trusel et al., 2018). Surface melting on the GrIS has migrated to higher elevations since 

2000 (Gledhill and Williamson, 2018), and meltwater features, including supraglacial lakes 

(SGLs), channels and slush, have also migrated inland (Howat., et al., 2013; Tedstone and 

Machguth, 2022). This trend is expected to continue as the climate warms further - 

temperatures are predicted to increase by up to 6.6 °C by 2100 (Hanna et al., 2021) - with 

models suggesting that, relative to the period 2000 – 2010, meltwater features on the GrIS 

will extend 110 km further inland by 2060 under extreme warming/emission scenarios 

(Leeson et al., 2015). 

Supraglacial melt on the GrIS can create meltwater features by ponding in SGLs, flowing in 

channels, and saturating snow and firn to create supraglacial slush. SGLs generally form in 

late spring or early summer, enlarging in area and depth throughout the melt season as they 

accumulate water (McMillan et al., 2007; Sneed and Hamilton, 2007; Selmes et al., 2011). 

SGLs can drain rapidly in hours by hydrofracture (Das et al., 2008; Doyle et al., 2013; 

Williamson et al., 2018a), slowly in days to weeks via channel incision and overflow 

(Hoffman et al., 2011; Tedesco et al., 2013), become buried in snow then persist into winter 

(Benedek and Willis, 2021; Dunmire et al., 2021), or refreeze at the end of the melt season 

(Selmes et al., 2013). Moulins, often created by SGL hydrofracture events (e.g. Das et al., 

2008; Tedesco et al., 2013), allow supraglacial meltwater to access the ice sheet base, 

where the location and timing of meltwater injection can modulate ice flow (Zwally et al., 

2002; Bartholomew et al., 2010; 2012; Hoffman et al., 2011; Sole et al., 2011; Nienow et al., 

2017). Once moulins have opened, they may act as surface-bed connections for the 

remainder of the melt season, enabling meltwater to impact ice dynamics over monthly-to-

seasonal timescales (Joughin et al., 2008, Banwell et al., 2013, 2016; Hoffman et al., 2018). 

Supraglacial channel systems are the main way in which surface meltwater is transported as 

runoff across the southwest GrIS (Yang et al., 2016). Supraglacial channels may direct 
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meltwater towards moulins and crevasses, where meltwater can access the ice sheet base 

and influence ice velocity (Bartholomew et al., 2010, 2012; Nienow et al., 2017), or channels 

can transport meltwater directly off the ice sheet and into the ocean (Yang et al., 2019). 

Meltwater can also travel laterally across the ice sheet surface through slush fields, which 

are features that have been identified on the ice sheet as early as the 1950s (Holmes, 1955). 

Slush fields can initiate or reopen supraglacial channel routes (Miller et al., 2018; 2020; 

Clerx et al., 2022; Machguth et al., 2023). Refrozen slush and SGLs can create low-

permeability ice slabs, which inhibits water storage in the underlying firn and, in turn, 

increases ice-surface runoff and ultimately contributes to global sea-level rise (MacFerrin et 

al., 2019; Tedstone and Machguth, 2022). 

As meltwater runoff is the main contributor to GrIS mass loss (The IMBIE Team, 2020; 

Otosaka et al., 2023), the distribution of supraglacial meltwater on Greenland has been the 

focus of several modelling (e.g. Banwell et al., 2012; Leeson et al., 2012; Arnold et al., 2015) 

and remote-sensing (e.g. Yang and Smith., 2013; McMillan et al., 2007; Selmes et al., 2011; 

Williamson et al., 2017, 2018a; Miles et al., 2017; Yang et al., 2021; Lu et al., 2021; Turton et 

al., 2021; Rawlins et al., 2023; Zhang et al., 2023) studies. Previously, the characteristics 

and behaviour of medium to large SGLs (defined as > 0.0495 km²; where this value was 

inferred to correspond to the minimum lake size required to fracture to the ice-sheet bed 

(Krawczynski et al., 2009)), have been studied in single melt-seasons (e.g. Williamson et al., 

2017, 2018a; Miles et al., 2017). Although several multi-seasonal studies have been 

conducted, they have often been limited by coarse spatial resolution data and hence have 

ignored small SGLs (≤ 0.0495 km²) (e.g. Selmes et al., 2013; Fitzpatrick et al., 2014). This 

approach has often been justified by the understanding that larger volumes of water are 

needed to hydrofracture through kilometre or so thick ice (Krawczynski et al., 2009). 

However, since small SGLs tend to form at the ice margin where the ice is thinner, it is 

possible that small SGLs may trigger hydrofracture and perturb ice dynamics in marginal 

areas (Williamson et al., 2018a).  

Supraglacial meltwater on the GrIS exists in different forms and previous remote-sensing 

studies have predominantly focussed on SGLs, channels and slush as separate entities (e.g. 

Box and Ski, 2007; Selmes et al., 2011; Williamson et al., 2017; Yang and Smith, 2016; 

Sundal et al., 2009; Smith et al., 2015; Greuell and Knap, 2000; Machguth et al., 2023; 

Tedstone and Machguth, 2022). Although there have been a handful of studies that have 

focussed on mapping and analysing the supraglacial hydrological system as a whole (e.g. 

Rawlins et al., 2023; Zhang et al., 2023; Yang et al., 2021), the vertical drainage of meltwater 

features through the ice sheet via hydrofracture was not considered. Likewise, some studies 

included buried lakes (e.g. Dunmire et al., 2021; Miles et al., 2017), although supraglacial 
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slush features were ignored. Despite recent research, little is known about how the 

distribution of all forms of supraglacial meltwater features, including SGLs, slush, and 

channels, differs as a whole system across fine spatial and temporal scales, and how this 

varies between high and low melt years. 

Since the distribution and dynamics of supraglacial meltwater has a profound influence on 

the mechanisms contributing to mass loss from the GrIS, it is important to understand its 

evolution and distribution, especially since high melt years - presumably more conducive to 

surface melt and meltwater ponding - are becoming more frequent as the climate warms. In 

this study, we compare the distribution, evolution and morphology of all supraglacial 

meltwater features in the Russell-Leverett Glacier catchment, southwest Greenland, in the 

low melt year of 2018, to the relatively high melt year of 2019. We delineate SGL, slush and 

channel features using a variety of Normalised Difference Water Index (NDWI) thresholding 

methods tailored to each meltwater feature and applied to both Landsat 8 and Sentinel-2 

optical satellite imagery. Our dataset includes small (i.e., SGLs > 0.0018 km² and ≤ 0.0495 

km²) and shallow (i.e., slush) meltwater features, which are important, but have been 

overlooked in previous mapping studies, as well as the previously more commonly included, 

large SGLs (i.e., > 0.0495 km²) and channels (i.e., linear meltwater features > 1000 m long). 

We also compare the drainage dynamics and hypsometry of SGLs, and partition SGLs into 

those that drain versus those that refreeze in the low and high melt seasons. Together, these 

data provide new insights into how a warming climate - where high melt years become the 

norm - may influence the spatial and temporal distribution of supraglacial meltwater features 

and the drainage dynamics of SGLs.   
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3.2. Methods  
3.2.1. Study area 

We focus on a ~5800 km² area of Southwest Greenland: the Russell-Leverett Glacier 

catchment (Figure 3.1, orange star). The surface drainage catchment is derived from the 

digital elevation model, ArcticDEM version 3 (Porter et al., 2022) at 1 km resolution. The 

catchment is land terminating and meltwater is transported from the ice sheet margin 

oceanward by both Watson and Isortoq proglacial rivers. The study area is well known for 

prevalent supraglacial hydrology features including SGLs, channels, and moulins (e.g., 

Bartholomew et al., 2010; Sundal et al., 2009; Smith et al., 2015; Fitzpatrick et al., 2014; 

Yang et al., 2021). 

3.2.2. Study years 

We focus on two GrIS melt seasons: the relatively low melt year of 2018, and the relatively 

high melt year of 2019. The 2018 melt season was anomalously cold ice-sheet wide, with a 

summer temperature anomaly of -1.5 °C relative to the 2002–2016 mean (Sasgen et al., 

2020). The maximum daily extent of supraglacial melt in 2018 reached 44% of the total ice 

sheet area, only slightly above the 1981-2010 mean of 40% (Tedesco et al., 2019). In 

contrast to the 2018 melt season, the 2019 melt season was exceptionally warm, with some 

regions on the ice sheet reaching a summer mean temperature anomaly of +1.5 °C relative 

to 2002–2016 (Sasgen et al., 2020). Maximum daily extent of supraglacial melt in 2019 

reached 60% of the total ice sheet area, greatly exceeding the 1981-2010 mean of 40% 

(Tedesco et al., 2019).  
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Figure 3.1: Maximum areal extent of all supraglacial meltwater features in (a) 2018 and (b) 2019 
within the Russell-Leverett Glacier catchment derived from ArcticDEM (black outline). Slush is 
light blue, channels are green, and SGLs are dark blue. Elevation contours from the ArcticDEM 
are shown in grey (m a.s.l.). Background is a true colour Sentinel-2 image acquired on 
26/09/2019. Inset depicts the location of the catchment within southwest GrIS. a(i) depicts a 
supraglacial channel system, a(ii) shows SGLs linked with channels, a(iii) is an example of 
underdeveloped SGLs in the ~1600 m a.s.l. region of the catchment, a(iv) depicts slush and 
channels in the percolation zone (~1700 m a.s.l.). b(i) shows small SGLs close to the margins 
of the catchment, b(ii) highlights interconnected channels and SGLs, b(iii) shows 
interconnected SGLs, channel and slush, b(iv) depicts high-elevation (˜1900 m) slush, 
channels and the highest elevation SGL (1880 m) in our 2019 dataset. 
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3.2.3. Satellite imagery and pre-processing 

All available imagery from both the Landsat 8 Operational Land Imager (hereafter ‘L8’) and 

the Sentinel-2 Multispectral Instrument (hereafter ‘S2’) sensors was acquired from 1 May to 

30 September for both 2018 and 2019 melt seasons (Table A.1). We initially limited the cloud 

cover to < 50% based on the image metadata. However, after manual inspection, it 

appeared that some white ice/snow was misclassified as cloud. Therefore, we manually 

checked all available images and included misclassified images (labelled with > 50% cloud 

cover) in our dataset. Images with a sun angle < 20° were discarded due to difficulties in 

accurately differentiating meltwater features from adjacent features under these conditions 

(Halberstadt et al., 2020). 10 L8 images and 18 S2 images were used for 2018, and 16 L8 

and 63 S2 images were used for 2019, corresponding to a mean temporal sampling of ~ 5 

days and ~ 2 days in 2018 and 2019, respectively. 

L8 data were downloaded as Level-1T geometrically and radiometrically calibrated images in 

the form of Digital Numbers. The L8 Level-1T data were converted to Top-Of-Atmosphere 

(TOA) reflectance using individual image metadata and equations provided in the Landsat 8 

Data Users Handbook (USGS, 2019). L8 bands 2 (blue), 3 (green), 4 (red) and 5 (NIR), 

which have a spatial resolution of 30 m, were pan-sharpened to a 15 m resolution using 

intensity hue saturation methods (Rahmani et al., 2010), to better match the 10 m resolution 

of S2 data. L8’s bands 6 (SWIR) and 10 (thermal infrared), which have a spatial resolution of 

30 and 100 m, respectively, were resampled using nearest neighbour interpolation. S2 data 

were downloaded as Level 1-C orthorectified TOA reflectance products with sub-pixel 

multispectral registration. S2 bands 1 (Coastal Aerosol) and 11 (SWIR) have a spatial 

resolution of 60 m and 20 m, respectively, and so were resampled using nearest neighbour 

interpolation to match the finer (10 m) resolution of bands 2 (blue), 3, (green), 4 (red) and 8 

(NIR). 

3.2.4. Image masking 

Prior to meltwater delineation, rock and cloud masks are created and applied to each L8 and 

S2 image to reduce classification errors, using methods by Corr et al. (2022), which are 

summarised here and in Figure 3.2, where all threshold values are also stated. The addition 

of masks allowed for better separation between deep meltwater features, rocks, clouds, and 

shaded snow areas. For L8 images, rock masks were created using the thermal infrared 

band, blue band, and red band. For S2 imagery, rock masks were created by applying the 

Normalised Difference Snow Index (NDSI), created by Hall et al. (1995), as well as 

additional blue and green filters, which applied separately, to remove snow and clouds. 
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Clouds were masked from L8 imagery using the NDSI, Short-Wave Infrared band (SWIR), 

and blue band. Clouds were masked in S2 imagery using the SWIR band, SWIR-Cirrus 

band, and blue band. We took the threshold values for these masks directly from Corr et al. 

(2022; Figure 3.2).  

 

Figure 3.2: Workflow of SGL delineation by NDWI thresholding and additional filtering on 
Sentinel-2 (left) and Landsat 8 (right) image scenes, following methods adapted from Corr et 
al. (2022). Top of Atmosphere (TOA) reflectance values are used as input. Normalised 
Difference Snow Index (NDSI), Normalised Difference Water Index (NDWI), NDWI adapted for 
ice (NDWI_ice) and additional band (B) combinations are used to mask imagery and define 
meltwater. The wavelengths of each numbered band are taken from the Sentinel-2 User 
Handbook and Landsat 8 Data User Handbook (see Data Availability section).  

3.2.5. Supraglacial lake delineation 

We delineate SGLs from the masked L8 and S2 imagery following Corr et al. (2022) (Figure 

3.2). We apply the NDWI calculated from the ratio of green and NIR wavelengths 

(McFeeters, 1996), in addition to the NDWI adapted for ice (NDWI_ice), which utilises the 

ratio of blue and red wavelengths and better accounts for the supraglacial conditions of the 

GrIS (Yang and Smith, 2013). For both L8 and S2 imagery, NDWI values > 0.24 and 

NDWI_ice values > 0.25 were classified as water pixels with all other pixels designated as 

not water (Figure 3.2). Our chosen threshold values are in line with those from previous 
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studies, which typically lie between 0.15 and 0.30 (e.g., Williamson et al., 2018a; 2018b; 

Miles et al., 2017; Bell et al., 2017; Stokes et al., 2019; Yang and Smith, 2013). For both L8 

and S2 imagery, after application of the NDWI and NDWI_ice, we implemented two further 

threshold values to better distinguish meltwater features from surrounding ice/snow: the 

green band subtracted by the red band, and the green band subtracted by the blue band, 

again using the values from Corr et al. (2022) (Figure 3.2).  

After SGLs had been delineated, binary lake/non-lake masks were created from all L8 and 

S2 scenes. In line with similar studies undertaken in Antarctica (Stokes et al., 2019; Dell et 

al., 2020; Langley et al., 2016), SGLs ≤ 0.0018 km² (≤ 2 L8 and ≤ 18 S2 image pixels) were 

removed from the binary meltwater images to reduce misclassification errors. The same 

area threshold was used for both L8 and S2, despite these sensors’ different resolutions, in 

order to maintain consistency in the processing of data from both sensors. In our study, 

‘small lakes’ are defined as SGLs > 0.0018 km² and ≤ 0.0495 km². The final stage of SGL 

delineation was to convert binary meltwater images to polygon features.  

3.2.6. Supraglacial slush delineation 

Before delineating slush, we first applied rock, cloud and SGL masks to each individual L8 

and S2 image. As our preliminary analysis indicated that crevasses were often confused as 

slush, in line with findings of Rawlins et al. (2023), we applied a crevasse mask (Chudley et 

al., 2021). Having applied this mask, we delineated slush using methods adapted from Bell 

et al. (2017) and Yang and Smith (2013). Whereas Bell et al. (2017) and Yang and Smith 

(2013) used just a single NDWI threshold, we used two separate NDWI and NDWI_ice 

thresholds to identify shallow water and slush, which is consistent with our SGL identification 

method (Corr et al., 2022) (Section 2.5). In our study, we found that using these two 

separate thresholds (> 0.14 and > 0.15 for the NDWI and NDWI_ice, respectively) optimized 

slush identification while minimizing misclassifications with other meltwater features. These 

thresholds were determined through iterative testing against true-colour images, evaluating a 

range of potential values (from 0.1 to 0.2 in increments of 0.01). The iterative process 

involved visually comparing the classified slush areas with their appearance in true-colour 

images, allowing us to identify thresholds that best matched the observed spatial extent of 

slush. Binary slush masks were then created and converted to polygon features for analysis.  

3.2.7. Supraglacial channel delineation 

Supraglacial channels have different physical and spectral characteristics to SGLs, and thus 

we delineated channels using channel-specific methods developed by Yang et al. (2015). 
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We extracted channels based on their Gaussian-like cross-sections and longitudinal open-

channel morphometry. All meltwater features were first enhanced by calculating the NDWI 

for the image. A band-pass filter, which is ramped between 1/200 and 1/40 m-1 (Yang et al., 

2015), was then applied to remove low frequency background and high frequency noise. 

This was followed by applying Gabor filtering to amplify the cross-section of small channels 

with widths < 2 pixels. A path opening operator (with a minimum length of 20 pixels) was 

then implemented to produce better channel connectivity. We then removed any features < 

1000 m in length to reduce classification uncertainties. To account for variations in 

environmental conditions across the different tiles, a pixel brightness threshold of 5 for lower-

elevation (‘_T22WEV_’) S2 tiles and all L8 tiles, and 10 for higher-elevation (‘_T22WFV_’) 

S2 tiles (Table A.1), out of 255 was then used to extract the channels (Lu et al., 2020; 

Rawlins et al., 2023). We again tested threshold values in our study against true colour 

images to optimize channel delineation in select tiles, a process consistent with approaches 

in other studies where thresholds are manually adjusted to ensure consistent feature 

extraction (e.g., Zhang et al., 2023). Masks were then applied to remove all features (rock, 

cloud, SGL, slush, crevasse) not related to channels, before delineated channel features 

were polygonised.   

3.2.8. Post-processing meltwater feature polygons 

To account for the detection of false positives and/or negatives in the polygon features, 

manual enhancement was undertaken for all image acquisitions used in the study by 

comparing the appearance of supraglacial meltwater on true colour composite images. 

Polygons which incorrectly identified supraglacial meltwater were manually removed, and 

undetected meltwater features such as deep SGL centres and narrow channels were 

manually added.  

To calculate meltwater feature statistics from each meltwater feature polygon, the mean 

elevation of each individual waterbody polygon was extracted from the ArcticDEM 100 m 

mosaic, which represents median elevation values from data acquired between 2011 and 

2017 (Porter et al., 2018). Mean ice thickness values for every meltwater feature were 

extracted from BedMachine Greenland v4 at a 150 m spatial resolution (Morlighem et al., 

2017; 2022). 

To evaluate meltwater channel interconnectivity, we calculated the channel drainage density 

of the catchment (e.g. Yang et al., 2019). For each day of available imagery, we calculated 

the total channel length of each channel centreline and divided this value by the area of the 

catchment (5800 km²).  
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3.2.9. Uncertainty analysis of meltwater feature area 

The uncertainty associated with using a dual sensor (L8 and S2 imagery) approach is 

generally low in our study. We calculate that the greatest uncertainties between meltwater 

features delineated from the two different sensors are observed during peak season (3 July), 

with an R² of 0.93 and RMSE = 0.1 km² at this time.  

An evaluation between meltwater feature areas derived from L8 and S2 images was 

undertaken to determine whether sensor resolution impacts SGL detection accuracy. 

Individual lake areas of overlapping lake polygons across the whole catchment, derived from 

L8 and S2 images from 8 June, 3 July and 29 August 2019, were compared. We found a 

strongly significant relationship between both lake area datasets on all of these three dates 

(with R² values of 0.98 on 8 June, 0.93 on 3 July and 0.98 on 29 August; Figure 3.3).  There 

were no overlapping S2 and L8 images in the 2018 melt season to compare. Although it has 

previously been shown that S2 imagery can detect meltwater at the boundaries of hard to 

distinguish lakes more accurately than L8 (i.e. Arthur et al., 2020a), here we conclude that 

sensor resolution does not have a significant impact on our ability to accurately detect 

meltwater or calculate SGL area, and both sensors can be used in conjunction for such 

analysis. 

 

Figure 3.3: Lake area frequency distribution from three overlapping Landsat 8 and Sentinel-2 
image scenes throughout the 2019 melt season. 

In the absence of extensive ground truth data, it is very difficult to assess the accuracy of 

calculated meltwater feature areas, and this is an acknowledged challenge in the literature 

(e.g., McMillan et al., 2007; Sundal et al., 2009; Leeson et al., 2012; Corr et al., 2022). To 

provide an indicative estimate of the confidence in our meltwater delineation methods, we 

therefore compare our dataset to a fully manually delineated dataset, in line with the 

methods employed by other meltwater mapping studies (e.g. Corr et al., 2022; Arthur et al., 

2021). Two ‘experts’ (i.e. glaciologists with extensive expertise in Greenland surface 

hydrology mapping) manually digitised meltwater features (categorised as SGLs, streams 

and slush based on physical appearance) from eight true colour composite S2 images 
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spanning across the 2018 and 2019 melt seasons. In comparing the areas of the manually 

and automatically derived datasets, we find that the mean difference between meltwater 

feature area manually derived by experts and area automatically delineated in our dataset to 

be 0.06 km². This reflects both the uncertainty in the automated and manual mapping 

procedures, and with the challenges of mapping small lakes and slush. While the number 

and size of features vary between scenes, total mapped meltwater area per image typically 

ranged from ~10 to 80 km², indicating that a mean difference of 0.06 km² per feature is 

relatively minor in context. Nonetheless, this figure provides only an indicative estimate of 

delineation uncertainty in the absence of ground truth data. 

3.2.10. Calculating supraglacial lake depth and volume 

Water depth for each SGL pixel was determined using the physically-based radiative transfer 

model used in a variety of prior studies (e.g., Sneed and Hamilton, 2007; Banwell et al., 

2014; Pope et al., 2016; Williamson et al., 2018a; Macdonald et al., 2018). This algorithm 

calculates meltwater feature depth assuming that light penetrating a water column is 

attenuated with depth (Philpot, 1989). An assumption is made that the optical properties of 

the meltwater features are not altered by wind-driven surface roughness or column-

integrated particulate matter. The lake bottom albedo is taken to be homogenous (Sneed 

and Hamilton, 2007). Depth, z, is calculated using equation 3.1: 

𝑧 = !"($%&'()&!"('*&'()
+

 ,                                              (3.1) 

where Ad is lakebed reflectance, R∞ is the reflectance of optically deep water, Rw is the 

satellite measured reflectance value of a water pixel, and g is the attenuation coefficient rate 

associated with losses in upward and downward directions through the waterbody.  

For L8 data, depths were determined by an average of both red and panchromatic TOA 

reflectance values (after Williamson et al., 2018a, Macdonald et al., 2018, and Pope et al., 

2016). Ad was obtained from the average reflectance of the first non-water pixel surrounding 

each feature, determined by a single pixel (30 m) buffer around meltwater features. R∞ was 

determined in each individual image as the darkest open ocean pixel and if deep water was 

not present in an image, R∞ was taken to be 0 (Sneed and Hamilton, 2007; Banwell et al., 

2019; Dell et al., 2020). Following Williamson et al., (2018a) the value of g was taken to be 

0.3817 for the panchromatic band and 0.7504 for the red band (after Pope et al., 2016).  

For S2 data, depths were determined by using the red TOA reflectance value, after 

Williamson et al. (2018a). Due to S2’s finer spatial resolution compared to L8, Ad was 

determined by the average reflectance of the first three pixels surrounding the waterbody, as 
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opposed to just one surrounding pixel for L8. R∞ was taken to be 0, as for L8 (see above), 

and a g value of 0.8304 was taken from Williamson et al. (2018a). 

For both the L8 and S2 imagery, meltwater feature volumes were then calculated by taking 

the sum of depths multiplied by the pixel area. We assume an uncertainty of 21.2% on these 

volume estimates, after Melling et al., (2023), who compared meltwater feature depth and 

volume determined by the same radiative transfer algorithm to those determined from the 

ArcticDEM, for five SGLs in the Russell-Leverett catchment. It should also be noted that this 

method may be less accurate in higher elevation regions due to the prevalence of slush that 

may alter the reflectance of surrounding pixels (Melling et al., 2023). 

3.2.11. Tracking lakes through time 

The seasonal evolution and drainage dynamics of SGLs within the catchment were tracked 

using the Fully Automated Supraglacial Lake Tracking at Enhanced Resolution (FASTER) 

algorithm developed by Williamson et al. (2018a). Using this algorithm, we created maximum 

meltwater extent array masks for both the 2018 and 2019 melt seasons by superimposing 

individual SGL masks derived from each image. We then applied FASTER to these SGL 

masks and used it to track changes in SGL area and volume between images, which also 

enabled us to detect SGL drainage events.  

In addition to simply detecting SGL drainage, Williamson et al. (2018a) also used the 

FASTER algorithm to partition between rapid and slow SGL drainage events based on a 4-

day sampling period. However, given the paucity of our data in 2018 relative to 2019, we 

performed an assessment of the temporal sampling that would be required in order to 

robustly determine whether a meltwater feature drained rapidly or slowly. Our findings show 

that data with a temporal sampling of two to three days is required for such partitioning, while 

the typical temporal sampling of data in 2018 is only five days. As such, in this study, we 

restrict our analysis to assessing drainage of any kind, regardless of timeframe.   

We use our 2019 dataset of SGLs to highlight the influence of the timescale of image 

availability on rapid and slow SGL drainage events. An SGL was determined to drain rapidly 

if > 80% of its volume was lost over a period of 1-5 days, and an SGL was determined to 

drain slowly if it lost 20% of its volume over any time period (Figure 3.4a). The proportion of 

rapid drainage events changes when the time threshold changes, highlighting how the 

number of drainage days used to determine a rapid drainage event can alter results 

considerably; the difference between 3 days and 4 days is particularly notable. The typical 

time that previous studies have used to determine a rapid SGL drainage event is 4 days 

(Figure 3.4b). 
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Figure 3.4: Partitioning of lake drainage events. a) Percentage of rapid and slow SGL drainage 
events in 2019 (y axis) and the number of days determining rapid drainage (x axis). b) 
Frequency of rapid and slow SGL drainage events from previous SW Greenland studies.  

An SGL was determined to have drained when > 20% of its liquid volume appeared to have 

been lost over any time period and if it did not gain volume in any subsequent image through 

the melt season. An SGL was determined to have refrozen if it: 1) lost > 20% of its volume 

with no volume regain in subsequent imagery; 2) the mean air temperature was ≤ 0°C +/- 

1°C during, and over the two days before, the volume loss event; and 3) the volume loss 

period lasted at least 72 hours. Mean air temperature was extracted from the RACMO 2 m 

air temperature data (see Section 2.12) at the centroid of each meltwater feature during, and 

over the two days preceding, the volume loss event. The > 72-hour event threshold duration 

reflects the fact that SGL refreezing does not happen instantaneously after the onset of 

negative temperatures. To provide some validation for our approach, we have cross 

referenced a subset of our refreezing lakes with two independent datasets of buried lakes 

acquired from SAR imagery in both years (Dunmire et al., 2021; Zheng et al., 2023). 

To provide some validation for our approach to determine if an SGL has refrozen or not, we 

cross referenced a subset of our refreezing lakes with two independent datasets of buried 

lakes acquired from SAR imagery in both years (Dunmire et al., 2021; Zheng et al., 2023) 

(Figure 3.5). This is undertaken under the assumption that refrozen lakes essentially 

become buried lakes after refreezing. We find good agreement in the locations of refreezing 

lakes in our dataset when compared to the other two datasets. We suggest that differences 

in the locations of these refrozen lakes are due to differing NDWI thresholds used to produce 

the three datasets. 
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Figure 3.5: Cross referencing a subset of refreezing lakes in this study with maps of 
subsurface lakes acquired from SAR imagery in both 2018 (left) and 2019 (right). Blue: dataset 
from Dunmire et al. (2021); green: dataset from Zheng et al. (2023); red: Data from this study. 
Coordinates of lakes in WGS 1984 UTM Zone 22N: a) 47.3861245°W 66.9952765°N, b) 
48.4755826°W 67.0147779°N, c) 47.4456300°W 66.8319809°N, d) 48.2075289°W 67.1934572°N e) 
47.3873357°W 66.9953815°N , f) 48.5521200°W 67.1620352°N.  

In addition to ‘drain’ and ‘refreeze’ SGL behaviour classes, we also included an ‘unknown’ 

behaviour class. An SGL was classified to have ‘unknown’ behaviour if the patterns of area 

and volume decline are not in accordance with that of a draining or refreezing SGL, as 

described above. 
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3.2.12. Regional air temperature and surface melt  

To calculate temperature anomalies for the Russell-Leverett Glacier catchment for our melt 

seasons of interest (i.e. 2018 and 2019), we used mean daily values of 2 m air temperature 

from 1958 to 2019 from the Regional Atmospheric Climate Model (RACMO2.3p2, hereafter 

‘RACMO’) at 5.5 km spatial resolution and further statistically downscaled to a 1 km grid 

(Noël et al., 2018; 2019). We additionally used the air temperature data to partition between 

SGL drainage and refreezing (Section 2.11 above). 

We also extracted daily mean values of total melt (ice and snow) from RACMO throughout 

both 2018 and 2019 melt seasons for the catchment. Previous studies have shown that 

RACMO performs well compared to automatic weather station data along the K-Transect 

(e.g., Noël et al., 2018).  

3.3. Results 
3.3.1. Meltwater feature distribution in each melt season  

Our detailed mapping shows that the distribution of meltwater features differs between the 

2018 and 2019 melt seasons. We compute the maximum meltwater areal coverage as a 

percentage of the catchment area (i.e., the total area where liquid water is observed to be 

present on at least one day of the melt season) to be 6.3% in 2018 and 20.8% for 2019 

(Figure 3.1). In 2018, channels make up the largest proportion of meltwater features by area, 

with a cumulative maximum areal coverage of 4.5% of the catchment area, followed by 

SGLs (1.5%) and slush (0.3%) (Figure 3.1a; Table A.2). In comparison, in 2019, slush covers 

the largest area of the catchment, with a cumulative maximum areal coverage of 12.3% of 

the catchment area, followed by channels (6.4%) and SGLs (2.1%) (Figure 3.1b).   

Meltwater extends from the margin to 265 km (1815 m a.s.l.) and 315 km (1920 m a.s.l.) 

inland in 2018 and 2019, respectively. SGLs and channels have a similar median elevation 

of ~ 1350 m a.s.l. in the 2018 melt season (Figure 3.6). In comparison, in 2019, the median 

elevation of SGLs and channels is 1250 and 1500 m a.s.l. (~ 100 m lower and 150 m higher 

than 2018), respectively. Slush is concentrated over higher elevations in 2019 than in 2018 

(Figure 3.6). The elevation range of slush in 2018 is 800 – 1700 m a.s.l., whereas in 2019, 

slush is concentrated over a smaller range and at higher elevations of 1200 – 2000 m a.s.l. 

Slush features are situated at the higher elevations compared to the other meltwater 

features, with a maximum elevation of ~ 1600 m a.s.l. in 2018 and a higher maximum 

elevation of ~ 1700 m a.s.l. in 2019. In both years, SGLs also tend to be larger in area at 
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higher elevations, coincident with lower surface slopes at these elevations (Figure 1; Figure 

3.7). 

 

Figure 3.6: Boxplots showing the hypsometry of supraglacial lakes, channels, and slush 
features in 2018 (a) and 2019 (b). The black horizontal line represents the median, the edges of 
the box indicate the 25th and 75th percentiles, the whiskers are equal to the 5th and 95th 
percentiles, and outliers represent the full elevation distribution. 

 

Figure 3.7: Scatter plots (a) and (b) displaying the relationship between SGL area and elevation 
for 2018 and 2019, respectively. Histograms (c) and (d) showing the frequency distribution of 
SGL areas separated into 10 different bins for 2018 and 2019, respectively. 
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3.3.2. Meltwater feature evolution through each melt season 
3.3.2.1. Supraglacial lakes 

SGLs appear earlier in the 2019 melt season than in 2018. In 2018, SGLs first appear on 5 

June (Figure 3.8a), whereas in 2019, they first appear approximately one month earlier on 9 

May, following a ~ + 11 °C temperature anomaly in early May 2019 (Figure 3.8b). In 2018, 

total SGL area and volume gradually increase from 5 June by 1.9 km² d-1 and 0.002 km³ d-1, 

respectively, until 18 June. Both total SGL area and volume then remain relatively steady 

until 13 July, when both peak at 40 km² and 0.05 km³, respectively (Figure 3.8a). Both SGL 

area and volume abruptly decrease by 4.3 km² d-1 and 0.004 km³ d-1, respectively, from 19 to 

24 August 2018, coinciding with lower surface air temperatures and melt rates. 

Rates of increase of area and volume are slightly lower in 2019 (1.1 km² d-1 and 0.001 km³ d-

1, respectively), than in 2018. However, these rates are sustained over a longer period of 

time in 2019, throughout May and June, resulting in a peak area and volume that is higher in 

2019 than in 2018, at 56 km² and 0.07 km³, respectively. The 2019 peak also occurs earlier 

in the melt season, on 20 June (Figure 3.8b). From then onwards through the remainder of 

the 2019 melt season, SGL area and volume decrease at an average rate of 1.1 km² d-1 and 

0.001 km³ d-1, respectively, which represents a more gradual decline than in 2018. The 

disappearance of all SGLs occurs only slightly later in 2019 (on the 26 August), than in 2018 

(on 21 August). In both melt seasons, SGLs initially form at low elevations (~1000 m a.s.l.), 

migrating inland to higher elevations as the melt seasons progress.  

Small SGLs (i.e., > 0.0018 km² and ≤ 0.0495 km²) are more abundant in 2019 than in 2018 

(Figure 3.9). In both years, small SGLs are most prevalent at the start of the melt season at 

low elevations (Figure 3.1a (i)). In 2018, small SGLs make up 86% of all SGLs that form 

within the first month (June), and are situated at a mean elevation of 1040 m a.s.l. In 2019, 

small SGLs make up 89% of all SGLs that form within the first month (May), and are situated 

at a lower mean elevation of 950 m a.s.l.  
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Figure 3.8: Time series of total areas of SGLs (dark blue), channels (green), slush (light blue) 
and all meltwater features (grey) in (a) 2018 and (b) 2019 from L8 and S2 imagery. SGL volume 
is given in red and channel drainage density is given in purple. Also shown is cloud cover 
percentage (black bars), RACMO 2 m air temperature anomaly (light green line) from the 1958 - 
2019 catchment average with the spatial standard deviation (light green shading), and RACMO 
total daily melt (mm w.e.; light blue line) with the spatial standard deviation (light blue 
shading). Note that the y-axis ranges are different for the slush and total areas between (a) and 
(b). 

 

Figure 3.9: The total number of SGLs observed throughout the 2018 (a) and 2019 (b) melt 
seasons, partitioned into large (> 0.0495 km²; teal green) and small (> 0.0018 km² and ≤ 0.0495 
km²; aqua blue) SGLs. The black solid circles indicate the days on which measurements were 
acquired. 
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3.3.2.2. Supraglacial channels 

In both 2018 and 2019, dense, dendritic drainage networks of supraglacial channels form, 

allowing for meltwater connectivity across the majority of the catchment towards the ice-

sheet margin and proglacial area (Figure 3.1). In both years, channels are observed to 

expand up glacier from lower elevations (~800 m a.s.l.) to higher elevations (~1800 m a.s.l.) 

as the melt seasons progress (Supplementary Animation 1 and 2, Section A.1.). 

In 2018, a large channel network (~125 km²) abruptly appears on 10 June after a spike in 

melt, before reducing by 4.9 km² d-1 until 3 July (Figure 3.8a). Total channel area then 

increases by 11.5 km² d-1 and peaks at ~ 130 km² on 13 July 2018, coinciding with peak 

melt. Channel area in 2018 then gradually reduces by 4.2 km² d-1 to ~ 15 km² by 10 August. 

We then observe a small 3.2 km² d-1 increase in total channel area to ~ 45 km² on 19 August 

2018, followed by a 1.1 km² d-1 reduction in total channel area by 30 September. 

In 2019, supraglacial channels appear earlier in the melt season compared to 2018, 

following the observed behaviour of SGLs (Section 3.2.1). Total channel area remains low 

throughout most of May (~ 4 km²) but then increases at a rate of 3.6 km² d-1 to reach a peak 

of 100 km² on 20 June (coinciding with maximum SGL areal extent) (Figure 3.8b). This peak 

is less than in 2018 (130 km²) and earlier in the melt season by 23 days. After the peak, total 

channel area in 2019 then decreases by 4.2 km² d-1 to 45 km² on 3 July, where it remains 

mostly steady until it begins to taper off on 24 August, reducing by 0.4 km² d-1 until channel 

features are no longer visible by 28 September.  

The drainage density of the supraglacial channel network throughout both 2018 and 2019 

follows a similar pattern to the total channel area (Figure 3.8). In 2018, the drainage density 

peaks in mid-June at 0.8 km km-² (Figure 3.8a). In 2019, the drainage density also peaks in 

mid-June, although at a greater value of 1 km km-² (Figure 3.8b). The density of the drainage 

network is consistently higher on average in 2019 compared to 2018, where it experiences 

distinct peaks and troughs. 

3.3.2.3. Supraglacial slush  

The evolution of supraglacial slush also differs throughout each melt year. In 2018, the total 

area of slush within the catchment follows a similar trend to channels and is mostly observed 

as extensions of channel features in the percolation zone (~ 1500 m a.s.l.) in mid-July 

(Figure 3.1a (iv)). The areal extent of slush remains low for most of the 2018 season, 

ranging from 0.02 km² on 6 July (by 0.53 km² d-1) to a peak of ~10 km² on 25 July, which is 

when it reaches its maximum elevation of 1800 m a.s.l. (Figure 3.8a). Following this peak, 



90 
 

total slush area reduces by 0.4 km² d-1 until it reaches 0.65 km² on 19 August and then 

remains low until the end of the 2018 melt season.  

Conversely, in 2019, slush is the most dominant meltwater feature in terms of areal coverage 

and, unlike in 2018 where it looks like extended channels, in 2019 it is characterised as 

patches of dense, light blue meltwater, with poorly defined boundaries (Figure 3.1b (iv)). In 

2019, slush first develops at ~1500 m a.s.l. in mid-June and migrates up-glacier through July 

by occupying topographic lows, before stabilising in early-August at a maximum elevation of 

~ 2000 m a.s.l. (i.e. 200 m higher than 2018) (Supplementary Animation 1 and 2, Section 

A.1.). The total area of slush remains low until it becomes established in late-June, when it 

increases from 14.9 km² on 3 July by 15.6 km² d-1 to peak at 466 km² on 1 August, which is 

47 times larger than in 2018 (Figure 3.8b). The total area of slush then reduces in area by 

19.4 km² d-1 until it ceases to be observed on 24 August 2019. 

3.3.3. Modes of supraglacial lake evolution  

3.3.3.1. Supraglacial lake drainage 

Of the 1011 and 1495 SGLs that form in 2018 and 2019, respectively, 43% (432) and 44% 

(650) are observed to drain (either rapidly or slowly) (Table 3.1). In both melt seasons, 

drainage of SGLs occurs at increasing elevations and distances inland from the ice margin 

as the melt seasons progress (Figures 3.10a and b). The total meltwater volume drained 

from SGLs is similar in each year (0.54 km³ and 0.50 km² for 2018 and 2019, respectively), 

but the total drained meltwater area in 2019 is nearly double that in 2018 (59 km² and 99 

km², respectively) (Table 3.1). However, the mean SGL drainage volume is greater in 2018 

than in 2019 (1.3 x10-3 km² and 7.7 x10-4 km², respectively). In both years, the SGLs that 

drain early in the melt season are typically small lakes (Figure 3.10; Figure 3.11). For 

example, in 2018 and 2019, respectively, 83% and 87% of SGLs that drain in the first month 

of each season are classed as small SGLs (Figure 3.10). We also find that in 2018 and 

2019, respectively, 47% and 67% of small SGL drainage events occur where the ice sheet is 

< 1 km thick.  

Drainage events in 2018 are sporadic and spread over time throughout the melt season, with 

most drainage occurring in July and August (Figure 3.12a). The greatest number of drainage 

events in 2018 occur between elevations of 1200 and 1600 m a.s.l. We identify fewer SGL 

drainage events at the highest elevations in the catchment, with two notable exceptions 

being large events that occurred on 6 and 19 August 2018 (between 1600 - 2000 m a.s.l.). In 

comparison, in 2019, drainage events are more frequent and concentrated in time, occurring 

~ a month earlier in the season, and predominantly in June and early-July (Figure 3.12b). 
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Similar to 2018, drainage frequency is greatest between 1200 and 1600 m a.s.l.; however, 

there is notably less volume of water that drains at the highest elevations in 2019. We 

identify more drainage events at low elevations in 2019 compared to 2018.  

Table 3.1: Statistics of SGLs that drain, refreeze or have unknown behaviour in 2018 and 2019. 
DOY is the ‘day of year’ in 2018 and 2019. DOY sampling is calculated by averaging the start 
drainage DOY and the end drainage DOY. Percentage values are proportions of the sum of the 
total meltwater areas or volumes over each melt season. 
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Figure 3.10: SGLs that drain, refreeze or have unknown behaviour in the Russell-Leverett 
Glacier catchment in 2018 (left) and 2019 (right). (a) and (b) depict the timing of SGL drainage 
(square) and SGL refreezing (triangle) events in 2018 and 2019, respectively. SGLs of unknown 
behaviour are represented by small grey circles. (c) and (d) depict small (≥ 0.0018 and ≤ 0.0495 
km²; black) and large (>0.0495 km²; white) SGL drainage (square) and SGL refreezing (triangle) 
events in 2018 and 2019, respectively. Light to dark purple gradient represents ice sheet 
thickness in metres. SGLs of unknown drainage/refreezing behaviour are not shown in panels 
c and d. 
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Figure 3.11: Seasonal variation in the area of draining SGLs in 2018 (a) and 2019 (b). The area 
of large draining SGLs (>0.0495 km²; solid black circles) and small draining SGLs (≥ 0.0018 
and ≤ 0.0495 km²; open circles) is plotted on a logarithmic scale against the day of the year 
(DOY). 

3.3.3.2. Supraglacial lake refreezing 

In 2018, 13% (129) of SGLs refreeze, corresponding to 31% of total SGL area (12 km²) and 

11% of total SGL volume (0.065 km³) (Table 3.1). In 2019, 4% (59) of SGLs refreeze, 

corresponding to 14% of total SGL area (23 km²) and 19% of total SGL volume (0.12 km³). 

On average, SGLs refreeze at higher elevations in 2018 (~1460 m a.s.l.) than in 2019 (~ 

1260 m a.s.l.) (Table 3.1). The mean SGL refreezing elevation in 2018 is ~200 m higher than 

the mean drainage elevation and the mean SGL refreezing elevation in 2019 is ~100 m 

higher than the corresponding mean drainage elevation. In 2018, refreezing tends to occur 

at higher elevations (> 1200 m a.s.l.) where ice is thicker (Figure 3.10c; Figure 3.12). In 

2019, refreezing typically occurs at elevations < 1000 m a.s.l. across the catchment, as well 

as in the northern area of the catchment between 1600 and 2000 m a.s.l. (Figure 3.10d; 
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Figure 3.12). We observe that ~12 SGLs appear to refreeze at lower elevations in May 2019, 

but limitations in temporal sampling prevent full characterisation of their subsequent 

dynamics. 

 

Figure 3.12:  Time series of SGL drainage and refreeze within the Russell-Leverett catchment 
in a) 2018 and b) 2019, partitioned into elevation bands. From top to bottom: frequency of 
drainage/refreeze events (i.e., the number of features that drained or refroze); total daily area 
loss; total daily volume loss. Bars extending upward correspond to drainage events (left y-
axis), while bars extending downward correspond to refreezing events (right y-axis). The data 
is colour-coded based on elevation: <800 m a.s.l. (red), 800–1200 m a.s.l. (orange), 1200–1600 
m a.s.l. (blue), and 1600–2000 m a.s.l. (purple). 

3.4. Discussion  
By comparing meltwater features within the Russell-Leverett Glacier catchment between the 

high melt season of 2019 and the relatively lower melt season of 2018, we identify a clear 

contrast in supraglacial meltwater distribution, evolution and SGL behaviour. As Greenland’s 

climate warms, exacerbated by Arctic amplification and climate/ice-sheet feedback 

processes, the frequency of high melt years like 2019 will likely increase (e.g., Hanna et al., 

2024). By examining supraglacial meltwater behaviour during 2019–a year with warmer-

than-average temperatures–we gain insight into how the ice sheet responds to large 

amounts of melt, contributing to our understanding of its future evolution in a changing 

climate. Our study also provides an assessment of the extent to which previously poorly 

mapped and understudied supraglacial hydrological features (such as small SGLs and 

slush) may play a role on the broader en- and sub-glacial systems, particularly in the context 

of a warmer climate.  
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3.4.1. Meltwater features at high elevations 

We observe that meltwater features tend to extend further inland to higher elevations in the 

high melt year of 2019 than in the lower melt year of 2018 (Figure 3.6). This is in keeping 

with previous studies that found meltwater features tend to reach increasingly higher 

elevations during more intense melt years (e.g., Sundal et al., 2009; Liang et al., 2012; 

Lüthje et al., 2006). While these studies primarily focused on SGLs, our results indicate that 

channels and slush can typically coexist with SGLs across similar elevation bands, although 

slush is more commonly observed at higher elevations compared to SGLs and channels. 

The formation of channel, slush and SGL features at higher elevations in more intense melt 

seasons is indicative of the substantial surface runoff present in these regions during these 

periods. It has been previously reported that moulins are present at higher elevation regions 

in our study area (> 1600 m a.s.l., e.g., Yang et al., 2021). As such, it is possible that 

meltwater produced at high elevations may be routed to the bed through these moulins, in 

turn reaching areas where the subglacial hydrological system is relatively inefficient, which 

may cause temporary and localised speed up events (Leeson et al., 2015). The formation of 

meltwater features within the high elevation percolation zone may result in densification of 

firn and possibly ice slabs (e.g., MacFarren et al. 2019; Jullien et al., 2023), reducing the 

firn’s meltwater storage capability and leading to enhanced supraglacial meltwater runoff in 

subsequent years (Machguth et al., 2016; Nienow et al., 2017). 

3.4.2. Slush 

We identify that the maximum spatial extent of peak slush area in 2019 is an order of 

magnitude greater, and extends to higher elevations, relative to 2018 (Figures 3.6 and 3.8). 

This is likely due to higher surface melt rates in 2019, especially above the equilibrium-line 

altitude. In previous work, the ‘slush limit’ has been used as an indicator of the visible runoff 

limit, representing the upper boundary where meltwater runoff is directed to the ocean and 

contributes to mass loss (Gruell and Knap, 2000; Tedstone and Machguth, 2022; Machguth 

et al., 2023; Clerx et al., 2022). Our study therefore suggests that the upper visible runoff 

limit is higher in the 2019 melt season compared to the 2018 melt season. Tedstone and 

Machguth (2022) found that the visible runoff area of the entire GrIS has increased by 29% 

between 1985 and 2020 and it is likely that projected warming may drive this limit upwards. 

We note that while our study–and indeed others that have used optical satellite imagery–can 

only detect slush on the ice surface, slush may also exist within the subsurface snowpack 

(Clerx et al., 2022). As such, our methodology of mapping slush from optical imagery 
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provides a minimum bound for slush extent, because the total slush area may be even 

greater than what we can observe from optical imagery alone. 

The refreezing of slush at high elevations may have a long-term influence on the runoff from 

the GrIS by forming near-surface ice slabs, which act as aquitards, restricting meltwater 

percolation into the firn and reducing retention capacity (Machguth et al., 2016; MacFerrin et 

al., 2019; Miller et al., 2022; Jullien et al., 2023). As high melt years like 2019 become more 

frequent, it is likely that slush will become more prevalent, leading to the formation and 

expansion of low-permeability ice slabs, preconditioning the ice sheet surface for greater 

ponding and surface runoff in future years. This is potentially already occurring at Humboldt 

Glacier in North Greenland, where a previous study identified the earlier activation of the 

supraglacial hydrologic system and longer melt-seasons in years following widespread slush 

events (Rawlins et al., 2023).  

Most prior mapping studies of Greenland's supraglacial hydrology, such as those by 

McMillan et al. (2007), Selmes et al. (2011), Williamson et al. (2017, 2018a), and Miles et al. 

(2017), have focused on SGLs, while others, including Smith et al., (2015), Yang et al. 

(2021), Lu et al. (2021), and Turton et al. (2021), examined meltwater channels and drainage 

patterns. However, these studies largely overlooked slush, which our findings show accounts 

for a significant proportion of the total meltwater area. In our study, slush accounts for ~ 59 

% of total meltwater area in our study area of southwest Greenland in 2019. The exclusion of 

slush in these previous studies likely led to underestimations of meltwater extent.   

The presence of widespread slush is likely to lower the surface albedo and hence increase 

solar absorption relative to ice or snow, thus influencing the surface energy balance. In 

Antarctica, Dell et al. (2024) found that slush accounted for ~ 50% of total meltwater area 

across 57 ice shelves around the continent. As variations in surface albedo due to slush (and 

ponded water) are not currently accounted for within surface energy balance routines in 

regional climate models, Dell et al. (2024) went on to calculate that modifying the surface 

albedo in a regional climate model to reflect the lower albedo of surface meltwater caused 

snowmelt to increase by 2.8 times across a subset of five ice shelves. That finding, 

combined with our observations in southwest Greenland, highlight the importance of 

including slush when mapping supraglacial meltwater across both of Earth's ice sheets. We 

further advocate for the refinement of regional climate models to account for slush’s impact 

on albedo, which will likely enhance the accuracy of modelled surface meltwater production. 
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3.4.3. Interconnectivity 

The density and area of the supraglacial channel network provides an indication of meltwater 

interconnectivity across the catchment (Figure 3.8). Overall, we observe that the channel 

interconnectivity is more developed in the higher melt year of 2019 than in the relatively low 

melt year of 2018. The configuration of the supraglacial channel network has implications for 

both the routing of supraglacial meltwater, as well as the magnitude, location and timing of 

meltwater delivery to the en- and sub-glacial environment (e.g. Banwell et al., 2013; 2016; 

Smith et al., 2021). At lower elevations, meltwater routing is more efficient than at higher 

elevations (e.g. Smith et al., 2015) due to steeper gradients, crevassing, and minimal 

surface snow cover. Nonetheless, as air temperatures increase, as observed in 2019, so 

may the density and extent of the drainage network, with channel formation also extending 

to higher elevations (e.g., Yang et al., 2023), even in flatter, snow-covered regions, as 

demonstrated in our study.  

A future increase in channel drainage density may also allow for amplified interactions 

between supraglacial channels and thin fractures, potentially leading to a slow mode of 

stream-driven hydrofracture via reactivation of existing fractures, with potential implications 

for cryo-hydrological warming at depth and decreased ice viscosity (Chandler and Hubbard, 

2022). 

3.4.4. Modes of supraglacial lake evolution 

We show that previously understudied small SGLs (≥ 0.0018 km² and ≤ 0.0495 km²) form 

and drain in both melt years, although these features are more abundant in the high melt 

year of 2019 (Figure 3.9). Small SGLs tend to form and drain earlier in each melt season, 

and at lower elevations, than larger SGLs. This is likely because crevassing is more 

prevalent at lower elevations (Das et al., 2008) and smaller surface topographic undulations 

in these regions (Johansson et al., 2013) limit SGL growth. This allows small SGLs to reach 

their maximum volumes earlier in the melt season, when they may drain earlier via overflow. 

Although we do not partition slow and rapid SGL drainage in this study, it is reasonable to 

assume that moulins are created when small SGLs drain rapidly, which may then modulate 

ice dynamics on intra-seasonal time scales by providing access points for meltwater runoff to 

reach the ice sheet base throughout the remainder of the melt season (Banwell et al., 2016). 

While small SGLs contribute a relatively small proportion to the overall drainage flux across 

the melt season (3.5% in 2018 and 3.1% in 2019), their importance lies in the timing of their 

drainage. These events typically occur early in the season, when the subglacial hydrological 

system is inefficient due to limited preceding meltwater input (e.g., Bartholomew et al., 2010) 
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and may accelerate the transition to a more efficient subglacial configuration. The drainage 

of small SGLs dominates the first month of each melt season (e.g., June 2018 and May 

2019), accounting for the majority (>80%) of drainage events. This early-season activity may 

contribute to the initial development of the subglacial hydrological system, potentially 

affecting when and where an efficient drainage network is established. 

Furthermore, in both melt years studied, over a third of small SGLs drained in areas where 

ice thickness is less than 1 km, making it plausible that their drainage pathways extended to 

the bed, if they drained rapidly via hydrofracture. If so, moulin density at these lower 

elevations may be higher than previously reported (Banwell et al., 2016; Hoffman et al., 

2018). This challenges the previous assumption that smaller lakes are unlikely to trigger 

hydrofracture through 1-1.5 km thick ice (Krawczynski et al., 2009), which was stated as the 

reason for why studies such as Miles et al. (2017) and Williamson et al. (2018a) restricted 

analyses to SGLs larger than 0.0495 km². Our observations suggest that small SGLs may 

play a more significant role in meltwater routing than previously recognised, particularly 

during high melt years such as 2019, when small lakes were approximately 15% more 

abundant, formed earlier in the melt season, and occurred at lower elevations compared to 

2018. We suggest that including SGLs smaller than 0.0495 km² in future remote-sensing and 

modelling-based studies is important for better understanding where, when, and how much 

supraglacial meltwater is routed to the ice sheet bed, and the associated implications for ice 

dynamics. 

We have identified that a greater number, and larger total area, of SGLs drained in 2019 

compared to 2018, however our observations show that in both years a similar total volume 

of water drained. Interestingly, we find that SGLs which drained in the low melt year of 2018 

were typically deeper and greater in volume than those that drained in the high melt year of 

2019; a finding that is in line with those of Dunmire et al. (2024). It is possible that SGLs in 

2019 were unable to reach greater depths due to increased ice speeds in 2019, perhaps 

resulting from rapid lake drainage events in the Spring, which in turn temporarily increased 

local ice velocity and hence tensile stress, triggering additional rapid SGL drainages (e.g., 

Christoffersen et al., 2018)  relatively early in the melt season and thereby preventing SGLs 

in 2019 filling to their 2018 depths (Dunmire et al., 2024). Also, the increased supraglacial 

channel network interconnectivity that we observe in 2019 relative to 2018 may have 

provided a mechanism for meltwater to overflow out of SGLs via basin-side incision, thus 

preventing deeper SGLs from forming in 2019. 

We find that a greater proportion of SGLs refreeze in 2018 (13%) compared to 2019 (4%), 

likely due to reduced number of lakes that drain in 2018, compounded by the cooler surface 
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air temperatures in 2018. If SGL refreezing on the GrIS becomes less common in the future, 

then a greater proportion of liquid meltwater will be available to drain to the ice sheet’s base 

and/or be routed as supraglacial runoff towards the ocean. Additionally, open water in SGLs 

has a lower albedo than frozen SGLs, thereby resulting in increased melting through the 

positive melt-albedo feedback.  

In both melt years, we find that SGLs more commonly drain than refreeze, and that 

refreezing typically occurs at higher elevations than drainage. This is in keeping with the 

findings of Johansson et al. (2013), Selmes et al. (2013) and Dunmire et al. (2024). The 

majority of the SGLs that we observe to refreeze do so at relatively high elevations (1250 to 

1450 m a.s.l.), which is to be expected due to lower air temperatures, shallow surface slopes 

making SGL drainage via lateral surface overflow less likely (e.g. Raymond and Nolan, 

2000), and thicker ice inhibiting rapid, vertical drainage through hydrofracture (e.g., 

Krawczynski et al., 2009). We acknowledge that, given the temporal sampling of our dataset, 

it is difficult to unequivocally distinguish between SGLs that drain and refreeze, and that 

consequently our partitioning method has several limitations. Our method only accounts for 

lake surface refreezing (i.e. lakes that form a cap of ice on their surface) and not full-

thickness freeze through, and it is therefore possible that liquid meltwater may still persist 

under the refrozen surface. This may lead to the drainage of meltwater outside of the melt 

season when the subglacial drainage system is more likely to be inefficient and ice flow is 

more sensitive to meltwater input (e.g., Benedek and Willis, 2021). Dunmire et al. (2021) 

found that, in southwest Greenland in the 2018 and 2019 melt seasons, 87 and 80 buried 

lakes were identified, respectively, and we assume that these features were likely classified 

as refreezing events in our study. Finally, we note that some uncertainty in our study may 

exist because SGLs can lose volume through multiple mechanisms in a single melt season; 

for example, by undergoing both partial drainage and refreezing (e.g. Gantayat et al., 2023). 

3.4.5. Limitations of using the 2019 melt season as a proxy for 
future warming 

Using the relatively high melt season of 2019 to investigate how the GrIS responds to 

intensified warming offers valuable insights into the impact that future changes in climate 

may have on the ice sheet’s hydrology and dynamics. Nonetheless, it is clear that using a 

single high melt year like 2019 to directly infer future conditions has inherent limitations, due 

to the fact that surface properties are dependent upon changes that occur over multiple 

seasonal cycles (e.g., Hanna et al., 2024). Beyond melt intensity and duration, for example, 

surface and near-surface properties such as snowpack thickness, firn air content, and the 
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presence of ice slabs partially control supraglacial meltwater and slush field extents. Ice 

slabs, for example, act as aquitards that prevent the vertical percolation of meltwater down 

into the firn and instead facilitate supraglacial runoff (MacFerrin et al., 2019; Jullien et al., 

2023), while a thinner snowpack leads to faster saturation and slush expansion (Harper et 

al., 2012; Machguth et al., 2016). Therefore, while the 2019 melt season provides a 

snapshot of potential future melt and supraglacial hydrological conditions, it is essential to 

consider the broader context of multi-year climatic trends and the development of features 

such as ice slabs when fully assessing the GrIS's response to ongoing climate change.       

3.5. Conclusion 
In this study, we have undertaken a detailed mapping and intercomparison of the distribution 

and dynamics of supraglacial meltwater features across the Russell-Leverett Glacier 

catchment in the high melt year of 2019 and the comparatively low melt year of 2018. 

Through this, we have aimed to establish deeper insights into how the GrIS’s hydrological 

system responds to variations in atmospheric temperature forcing. As such, this work 

contributes to an improved understanding of how rising air temperatures and more intense 

melt events may impact the hydrology of the GrIS in the future. This research provides 

detailed observations of GrIS hydrology, offering new insights that can help to inform the 

representation of hydrological processes in the physical models that are used to make 

projections of future mass balance and sea level rise. 

As high melt years like 2019 become more common in the future, our study suggests that 

the GrIS may experience increased surface meltwater ponding and transport, with more 

interconnected and efficient supraglacial channel systems at higher elevations on the ice 

sheet, potentially leading to increased meltwater flow to the ice sheet base via moulins. 

Additionally, greater slush extents in these high melt years, which lowers surface albedo and 

reduces surface permeability when it refreezes, may further increase ice sheet surface runoff 

and hence decrease mass balance. Moreover, the formation and drainage of smaller SGLs 

during higher melt years like 2019 may enhance surface-to-bed connections early in the melt 

season, which has implications for the representation of subglacial hydrology and hence ice 

flow velocities in models. Furthermore, the complex relationship between meltwater drainage 

and melt intensity, highlighted by deeper SGLs in the low melt year as well as similar total 

drainage volumes in both high and low melt years, also demonstrates the need for nuanced 

representation of surface hydrology when coupling climate and ice sheet models.  

Two of the most novel aspects highlighted in our study are the widespread presence of slush 

and small SGLs. We suggest that these previously poorly mapped and/or under-studied 
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supraglacial hydrological features may exert a significant impact on glacio-hydrological 

systems, especially in future warmer melt years. Future work should therefore focus on 

understanding the longer-term distribution and evolution of slush on the GrIS. To better 

estimate melt on the GrIS, we recommend that slush, and crucially its effect on albedo, 

should be incorporated into regional climate models to improve projections of the future 

behaviour of the GrIS. Additionally, better identification and representation of small SGLs in 

future remote-sensing and modelling studies will improve understanding of meltwater routing 

under climate change, which is vital for understanding the complex processes that will 

influence the response of the GrIS to a warming climate.  
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Abstract 
Surface melt on the Greenland Ice Sheet (GrIS) has intensified in recent decades, 

accelerating mass loss and transforming supraglacial hydrology. Yet the extent and 

behaviour of slush – fully saturated firn or snow – remain poorly constrained, despite its 

critical role in meltwater storage, routing, and refreezing. Here, we present the first GrIS-

wide classification of slush, based on over 300,000 Sentinel-2 images and a supervised 

Random Forest classifier implemented in Google Earth Engine. This near-decadal (2016–

2024), high-resolution (10 m) dataset maps slush distribution across six major drainage 

basins covering the entire ice sheet. On average, slush covers ~4.2% of the GrIS each 

summer (~73,300 km²), with strong interannual variability: peak coverage reached 8.3% 

(144,800 km²) during the extreme melt year of 2019, dropping to 1.4% (24,400 km²) in the 

low melt year of 2018. Notably, around 40% of slush (~29,300 km²) occurs in areas with low-

permeability subsurface features such as ice slabs and firn aquifers. Slush alone covers up 

to 14.5 times more area than lakes and streams identified in previous studies, revealing it as 

the dominant form of surface meltwater on the GrIS. We further show that machine learning 

classification outperforms traditional thresholding techniques, providing a robust and 

scalable approach for slush detection. As climate change drives more frequent and 

prolonged melt seasons, slush is likely to become a defining feature of the melt regime – 

promoting lateral meltwater flow, surface refreezing, and albedo reduction – and must be 

incorporated into hydrological models and ice-sheet mass balance projections. 
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4.1. Introduction 
The Greenland Ice Sheet (GrIS) has experienced a negative mass balance for several 

decades, losing ice at a rate of −255 ± 19 Gt yr-1 from 2002 to 2022 (Otosaka et al., 2023), 

with supraglacial melting being the principal driver of this mass loss (IMBIE, 2020). Between 

1991–2019, the mean summer air temperature on the GrIS increased by approximately 

1.7°C (Hanna et al., 2021). This warming has led to enhanced supraglacial melt rates – e.g., 

a 21% increase in supraglacial runoff between 2011 and 2020 compared to the previous 

three decades (Slater et al., 2021). Supraglacial melt extents and meltwater features have 

also increased in area and elevation (Mouginot et al., 2019; van den Broeke et al., 2016; 

Leeson et al., 2015; Howat et al., 2013). For example, the maximum meltwater runoff 

elevation shifted inland by as much as 329 m between the years 1985 and 2020 (Tedstone 

and Machguth, 2022). In some regions, supraglacial melt has reached areas of the 

percolation zone that were previously subject to little melt (Tedesco, 2007; Fettweis et al., 

2011).  

First observed in the 1950s (Holmes, 1955), slush is defined as fully water-saturated firn or 

snow and is expressed on a glacier or ice sheet surface as blue hued features in optical 

satellite imagery. Slush usually forms when a low-permeability ice layer prevents the vertical 

percolation of meltwater deeper into the snowpack, a process which typically occurs in the 

percolation zone of the GrIS. Slush facilitates lateral meltwater transport, as meltwater flows 

more easily through slush than through compacted snow or firn (Clerx et al., 2022), creating 

hydrologically connected zones that channel meltwater into supraglacial rivers and lakes 

(Holmes, 1955; Cuffey and Paterson, 2010). This network may form new supraglacial 

channels or reactivate existing ones, enhancing meltwater routing (Chu, 2014; Rippin and 

Rawlins, 2021). When channels within slush fields connect to moulins or crevasses, they can 

direct meltwater to the ice-bed interface, lubricating the ice sheet’s base and accelerating ice 

flow, driving dynamic ice loss (Smith et al., 2021). Slush zones also promote the up-glacier 

expansion of the drainage network as the snowline retreats and supraglacial runoff 

increases (Rawlins et al., 2023). The refreezing of slush contributes to the formation of 

extensive near-surface ice layers, often called ‘slabs’, which reduce the meltwater retention 

capacity of firn (Machguth et al., 2016; Pfeffer et al., 1991; Harper et al., 2012; Miller et al., 

2018; 2020), in turn promoting rapid runoff of meltwater across the ice sheet surface. In the 

southwestern GrIS, newly formed ice slabs enable supraglacial rivers originating from slush 

fields to flow at elevations as high as 1840 m a.s.l. (Machguth et al., 2016; Tedstone and 

Machguth, 2022). 
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Meltwater mapping studies in Greenland have largely overlooked the presence of slush, with 

only a limited number monitoring either small-scale slush distribution or the slush limit, which 

is defined as the highest elevation where water-saturated material is visible and has been 

used as a proxy for the runoff limit on the GrIS (Machguth et al., 2022). In southwest 

Greenland, Covi et al. (2022) found slush formed up to 1900 m elevation in intense melt 

years but remained below 1750 m in low melt years (2016 and 2021). Rawlins et al. (2023) 

identified slush within the supraglacial drainage network at Humboldt Glacier (2016–2020) 

but did not distinguish it from river features. Glen et al. (2025) compared meltwater features 

in low- and high-melt years within the Watson catchment, southwest Greenland (2018 and 

2019, respectively), finding slush extended to higher elevations and covered a significantly 

larger area in 2019. Gruell and Knap (2000) found that the slush limit along the K-Transect 

(~1720 m a.s.l.) remained consistent in high-melt years (e.g., 1990, 1991, 1995) which they 

attribute to a density barrier preventing slush formation above it. Tedstone and Machguth 

(2022) observed a 29% increase in the slush limit from 1985 to 2020 using Landsat imagery, 

while Machguth et al. (2022) identified a maximum slush elevation of ~2080 m a.s.l. using 

MODIS data (2000–2022). In Antarctica, Dell et al. (2024) reported that slush comprised 

50% of the meltwater area across 57 ice shelves, suggesting previous studies may have 

underestimated meltwater volumes, both in Antarctica and Greenland. Furthermore, Dell et 

al. (2024) demonstrated that including surface melt-albedo feedbacks in regional climate 

models increased modelled snowmelt by 2.8-fold, emphasizing the need to incorporate slush 

in meltwater mapping and climate modelling studies. 

While optical remote sensing techniques have been widely employed to detect and monitor 

supraglacial lakes (SGLs) and streams on the GrIS (e.g., McMillan et al., 2007; Selmes et 

al., 2011; Williamson et al., 2017, 2018; Miles et al., 2017; Yang et al., 2021; Lu et al., 2021; 

Turton et al., 2021; Zhang et al., 2023), a notable gap exists in the development of remote 

sensing techniques to map slush. For instance, thresholding methods, such as the 

commonly used Normalised Difference Water Index (NDWI), are effective for delineating 

meltwater features, but often fail to capture the subtleties of slush due to its spectral 

similarity to other supraglacial meltwater features and its indistinct boundaries (e.g., Rawlins 

et al., 2023; Yang and Smith, 2012).  Machine Learning (ML) classification methods have 

recently shown promise as an alternative to image thresholding for meltwater classification in 

both Greenland and Antarctica, for instance using Random Forest (RF) algorithms (e.g., Hu 

et al., 2022; Halberstadt et al., 2020; Wangchuk et al., 2020; Yuan et al., 2020; Dirscherl et 

al., 2020) and deep learning methods (e.g., Qayyum et al., 2020; Wu et al., 2020; Jiang et 

al., 2022; Lutz et al., 2023). Dell et al. (2022; 2024) utilised a k-means clustering algorithm to 

create training classes from Landsat 8 imagery, subsequently training a RF classifier to 
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delineate both slush and SGLs on Antarctic ice shelves. This approach was shown to 

enhance classification accuracy by incorporating spatial context and object characteristics, 

making it particularly useful for distinguishing slush from other supraglacial meltwater 

features. However, no previous study has explored the use of ML classification methods for 

slush detection in Greenland. 

Here, we aim to quantify the spatial-temporal distribution of slush across the entire GrIS from 

2016 to 2024, analysing both the ice sheet as a whole and across six distinct basins that 

together represent the full extent of the GrIS. Following the methods of Dell et al. (2022; 

2024) for Antarctic ice shelves, we use Google Earth Engine (GEE), to delineate slush by 

employing: i) a k-means clustering algorithm to generate training classes; and ii) a RF 

classifier, both applied to Sentinel-2 imagery. In doing so, we aim, for the first time, to better 

understand the spatial distribution, extent, and evolution of slush on the GrIS over nine 

summers. 

4.2. Methods and study area 
We conduct our analysis across the entire GrIS, split into six basins: Southwest (SW), 

Central West (CW), Northwest (NW), North (NO), Northeast (NE) and Southeast (SE) 

(Figure 4.1) (Mouginot and Rignot, 2019). To classify slush, we largely follow the approach 

outlined by Dell et al. (2022, 2024) but adapted to the GrIS (Figure 4.2) as detailed in the 

following sections. A summary of all steps is provided in Figure 4.2. 
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Figure 4.1: Overview map of Greenland separated into six drainage basins: Southwest (SW), 
Central West (CW), Northwest (NW), North (NO), Northeast (NE) and Southeast (SE) (Mouginot 
and Rignot, 2019). Red boxes indicate footprints of the 24 training/validation images used to 
train and validate the RF classifier used in this study. Base map source: Esri, Maxar, Earthstar 
Geographics, and the GIS User Community. 
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Figure 4.2: Flowchart of slush classification processes following Dell et al. (2022) for Antarctic 
ice shelves, adapted in this study for the GrIS.  

4.2.1. Image pre-processing  

4.2.1.1. Sentinel-2 imagery 

We acquired and pre-processed Sentinel-2 (S2) Multi-Spectral Imager (MSI) Level 1C data 

from the GEE data catalogue, processing a total of 329,229 images from 2016 - 2024. ESA’s 

S2 mission provides high-resolution multispectral imagery via two satellites, S2A (launched 

in 2015) and S2B (launched in 2017), in a sun-synchronous orbit, with a combined temporal 

revisit time of 5 days. Images were converted to Top-Of-Atmosphere (TOA) reflectance using 

a scaling factor of 10,000 (ESA, 2015). We ensured that all S2 images had a sun elevation 

angle of > 20° to better differentiate water bodies from adjacent features (Halberstadt et al., 

2020), and that images were limited to cloud cover of < 25%. We use all the S2 MSI bands 

for analysis, which are detailed in Table 4.1. 
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Table 4.1: Sentinel-2 satellite bands, their central wavelengths, spatial resolutions, and how 
each band was used in the study. 

 

4.2.1.2. Image masking  

A cloud detection algorithm, based on thresholds from Corr et al. (2022), was applied to 

each S2 image, with a 1 km buffer added to account for cloud shadows. To exclude rock 

outcrops, we used a modified Normalised Difference Snow Index (NDSI; Moussavi et al., 

2020), adding a 1 km buffer for complete removal. A crevasse mask, generated from 

ArcticDEM (Porter et al., 2023) at 2 m resolution, was applied to avoid confusion between 

crevasses and meltwater features (Chudley et al., 2021). Following Dell et al. (2022), all 

meltwater features, including slush, were isolated using a NDW_ice threshold. Although Dell 

et al. (2022) used a threshold of > 0.1 for Antarctica, for Greenland, we increased this 

threshold to > 0.12 (Yang and Smith, 2013) to account for differing albedo and reflectance 

properties between ice sheets. A B2 threshold of > 0.03 was also applied to exclude 
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shadows from rocks/crevasses and other non-meltwater features (Dirscherl et al., 2020; Corr 

et al., 2021). After applying this automated masking process, any residual cloud, rock, and 

crevasse features were manually removed through visual inspection, ensuring only 

meltwater features were analysed in the later processing steps. While we did not quantify the 

exact proportion of features requiring manual removal, the automated masking process was 

largely effective. Residual features that necessitated manual correction were generally 

limited to smaller, less distinct elements such as faint cloud shadows or crevasse artifacts. 

These instances were more prevalent in regions with subtle spectral variability or complex 

topography, but overall, the manual intervention required was minimal. 

4.2.2. Label generation for model training and validation 

For each basin, we selected 24 S2 tiles (four per basin) for training and validation (Table 

B.1). These tiles were manually chosen from the 2016–2024 melt seasons (01 May to 30 

September), ensuring minimal cloud cover (< 20%) with a range of solar elevations varying 

between 42° and 75°. This selection aimed to capture a broad range of supraglacial melt 

conditions and spectral characteristics. Each image was clipped to the boundaries of the six 

drainage basins (Figure 4.2). 

Training and validation data were generated from the 24 pre-processed S2 images using k-

means clustering, following Halberstadt et al. (2020) and Dell et al. (2022). K-means 

clustering refines cluster boundaries and improves accuracy by revealing spectral patterns 

that may be missed through manual methods, combining automated clustering with manual 

interpretation. 

The k-means algorithm clustered pixels based on spectral characteristics, using bands B1 

through B12 and NDWI_ice, with 100,000 pixels sampled per image and between 5 and 70 

clusters created. Clusters were manually interpreted to distinguish 'slush' from ‘non-slush' 

classes. Slush was identified as water-saturated features appearing as dense, light blue 

patches in true-colour images, while non-slush encompassed all other features (e.g., SGLs, 

channels, rock, snow, ice, cloud, cloud shadows, sediment, and cryoconite). Misclassified 

areas were masked, and 2,000 pixels from each class were randomly selected for a 

balanced training dataset. The data were then split randomly, with 80% used for training and 

20% for validation.  
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4.2.3. Training and validation 

Following Dell et al (2022, 2024), the classification of slush from S2 satellite imagery was 

performed using a RF classifier, implemented within GEE 

(ee.Classifier.smileRandomForest). This ensemble learning method trains multiple decision 

trees on random subsets of data and features, classifying by majority voting (Breiman, 

2001). In this study, the RF classifier was applied to spectral bands B1 through B12, as well 

as the NDWI_ice (Dell et al., 2022). The incorporation of multiple spectral bands and the 

NDWI_ice helped ensure that both spectral and spatial variations in surface conditions were 

captured, improving the accuracy of the classification. Hyperparameters were tuned by 

comparing performance on training and validation datasets, ensuring the model generalised 

well to unseen data. Performance was evaluated using metrics derived from the confusion 

matrix for the validation data. While no specific target metric was predefined, 

hyperparameter tuning was stopped when the model achieved stable performance on the 

validation dataset, with no significant improvement in key metrics.   

4.2.3.1. Hyperparameter testing 

We determined hyperparameter values specific to our study by comparing the training and 

validation datasets, selecting those that yielded the highest accuracy with the lowest 

computational time (Figure 4.3). We tuned each hyperparameter individually, starting with 

the most impactful ones, such as the number of trees, based on their theoretical importance 

and observed influence on model accuracy. We then used these values as fixed inputs for 

subsequent tuning. This approach contrasts with Dell et al. (2022, 2024), who relied on 

default settings for their analyses, and gives our study a more precise product with the 

highest possible accuracy. The RF classifier’s hyperparameters were set with 50 trees, a 

bag fraction of 0.7, and a minimum leaf population of 20, balancing accuracy and overfitting 

control. A cap of 500 maximum nodes, a seed of 30 for reproducibility, and 10 variables per 

split provided a robust structure while managing computational efficiency. Further details on 

these hyperparameters and their impact are provided in Table 4.2. 

Feature importance analysis (Figure 4.3) highlighted B2 and B3 as the most influential 

spectral bands for slush detection. Hyperparameter tuning showed that increasing the 

number of trees improved accuracy up to around 50 trees, with diminishing returns beyond 

this point. The out-of-bag (OOB) error decreased until about 40 trees, after which it 

stabilised. Increasing the minimum leaf population and maximum nodes also improved 

accuracy, while the random seed caused only minor fluctuations. However, further increases 
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in these parameters yielded only marginal accuracy gains, which did not outweigh the 

additional computational cost. 

Table 4.2: Hyperparameter settings for the RF Classifier, detailing our chosen values for key 
parameters (see section 4.2.3.1) 
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Figure 4.3: Hyperparameter tuning results for the accuracy of the RF classifier in our study. a) 
The feature importance for the selected bands used in classification. b) The effect of the 
number of trees on model accuracy. c) The OOB error estimate as a function of the number of 
trees. d) The accuracy in relation to the minimum leaf population. e) The accuracy versus the 
maximum number of nodes per tree; f) The effect of different random seed values on accuracy. 
g) The accuracy as it relates to the number of variables considered per split. h) The accuracy 
versus the bag fraction. 
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4.2.3.2. Accuracy assessment 

To evaluate the RF classifier's performance, we analysed confusion matrix metrics (Figure 

4.4; Table 4.3; Table 4.4). The model achieved an overall accuracy of 97.5%, with 74,969 

true positives and 1,000 false negatives for 'slush', and 6,755 true negatives with 1,133 false 

positives for ‘non-slush’. Precision was 85.6% for 'non-slush' and 98.7% for 'slush', while 

recall was 87.1% for 'non-slush' and 98.5% for 'slush'. The F1-scores were 86.4% and 

98.6% for 'non-slush' and 'slush', respectively. The Kappa statistic of 0.85 indicates strong 

agreement between predictions and true classes, showing the classifier's performance is 

well above chance. 

Table 4.3: Definitions and formulas of performance metrics used for evaluating RF 
classification. 

 

Metric Description Formula 
Precision Represents the proportion of correctly 

classified positive instances out of all 

instances predicted as positive. Reflects 

the reliability of positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall Indicates the proportion of actual positive 

instances correctly identified by the model. 

Reflects the model's ability to detect true 
positives 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score Balances precision and recall by 

calculating their harmonic mean. Useful 

when both metrics are critical for 
evaluating model performance, especially 

in imbalanced datasets. 

𝐹1 = 2 ∙ 	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

Overall Accuracy (OA) Measures the proportion of correctly 
classified instances across all classes. 

Provides a general performance metric 

but can be misleading for imbalanced 
datasets. 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃	 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Kappa Coefficient (κ) Evaluates the level of agreement between 

classification results and reference data, 

accounting for random chance. Useful for 
assessing reliability across datasets. 

𝑘 =
𝑃, − 𝑃-
1 − 𝑃-
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Figure 4.4: Confusion matrix for the RF classifier applied to slush detection. The matrix 
compares predicted versus actual values, with two classes: "slush" and "non-slush." The 
vertical axis represents the actual labels, while the horizontal axis represents the predicted 
labels. The colour bar on the right indicates the scale of the number of observations, with 
darker shades representing higher counts. 

Table 4.4: Performance metrics derived from the confusion matrix of the RF classifier used for 
slush detection. 

 

  



117 
 

4.2.4 Application of trained RF model  

Once trained, the supervised RF classifier was applied across all six drainage basins (Figure 

4.1) to S2 imagery between 2016 and 2024. To prepare the S2 imagery for classifier 

application, after filtering based on spatial bounds of each basin, we filtered and pre-

processed the images using the same process described above in Section 4.2.1. Before 

applying the NDWI_ice > 0.12 filter (Yang and Smith, 2012), we created both monthly (May–

September) and annual Sentinel-2 mosaics by selecting, at each pixel location, the image 

with the highest NDWI_ice value from all available observations, following Dell et al. (2022). 

The supervised classifier was then applied to each image mosaic. Similar to other studies 

(e.g., Corr et al., 2023; Dell et al., 2022), manual post-processing was performed on each 

mosaic to address and correct clear misclassifications, including residual cloud cover and 

shaded regions near crevasses and fjords. Approximately 5-7% of pixels from the final 

mosaics were identified as misclassifications and removed from the dataset. The elevation of 

slush was determined for each mosaic by using values extracted from the ArcticDEM at a 

100 m spatial resolution (Porter et al., 2023). 

4.2.5. Comparison to other methods 

We compare a subset of our RF classification results to two thresholding methods. Masking 

for these comparisons follows the approach described in Section 4.2.1.2. This comparison 

serves to validate our RF classification by assessing its performance relative to alternative 

approaches and evaluating the consistency of slush detection across methodologies. 

4.2.5.1. Normalised Difference Water Index 

We compared our results with those from Glen et al. (2025), using thresholds of NDWI > 

0.14 (McFeeters, 1996) and NDWI_ice > 0.15 (Yang and Smith, 2012) for slush 

identification. These indices leverage green/NIR and blue/red band ratios, respectively, to 

optimize slush detection under supraglacial conditions (bands detailed in Table 4.1). NDWI 

(equation 4.1) and NDWI_ice (equation 4.2) are defined as: 

𝑁𝐷𝑊𝐼	 = 	
𝐵3 − 𝐵8
𝐵3 + 𝐵8 

(1) 
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𝑁𝐷𝑊𝐼,-. =	
𝐵2 − 𝐵4
𝐵2 + 𝐵4 

(2) 

             

4.2.5.2. Greenness Index 

We also compared results with the Greenness Index (Gind) from Covi et al. (2022), which 

detects slush by emphasizing green reflectance relative to blue and red while reducing cloud 

interference using shortwave infrared. Gind (equation 4.3) is defined as: 

 

𝐺/"% =
3	 ∙ 𝐵3

𝐵2 + 𝐵3 + 𝐵4 − 2	 ∙ 𝐵12 

(4.3) 

A threshold of Gind > 1 was applied to classify slush (bands detailed in Table 2.1). 
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4.3. Results 

4.3.1. Spatial distribution of slush across the Greenland Ice Sheet 

Over the whole ice sheet, mean summer (1st May to 30th September) slush coverage 

between 2016 and 2024 was ~4.2%, with the greatest extent within the ice marginal areas 

(i.e. 10 - 20 km inland), though slush extended up to a maximum of 170 km inland in the SW 

basin (Figure 4.5). The SW basin showed the highest mean slush coverage over all 

summers (5.5%), followed by the NO basin (4.8%). NE, CW, and NW basins showed 3%, 

1.9%, and 1.8% slush coverage respectively, while the SE exhibited the lowest coverage 

(0.6%). 

Over multiple melt seasons, persistent slush was most notable in the NE and NO basins, 

where 8.7% (915 km²) and 4.6% (487 km²) of slush-covered areas remained each year from 

2016 to 2024 (Figure 4.5; Figure 4.6). Despite the SW basin having the highest proportion of 

its basin covered by slush on average, slush persistence over multiple seasons in the SW 

basin was more variable between melt seasons compared to NE and NO basins, with only 

0.4% (51 km²) of the slush area consistently present each year. The SE basin showed 

minimal and less variable slush formation over seasons, with only 0.5% (43 km²) of slush 

area consistently present (Figure 4.5; Figure 4.6). 

We identify that the spatial configuration and pattern of slush varied by basin and year 

(Figure 4.7). In the NW (Figure 4.7(a)), slush appeared as linear, river-like features with 

dispersed boundaries, as observed in 2021. In the CW (Figure 4.7(b)), slush in 2022 

appeared to connect SGLs. In the SW (Figure 4.7(c)), slush blanketed extensive areas with 

patches of exposed snow, as seen in 2023. In the NO (Figure 4.7(d)), a dendritic network of 

narrow, web-like slush tributaries channelled meltwater across the northern ice sheet, as 

observed in 2017. In the NE (Figure 4.7(e)), meltwater collected in SGLs and streams within 

a slush matrix, forming a distinct slush line boundary in 2019. Finally, in the SE (Figure 

4.7(f)), slush formed preferentially around rocky outcrops, observed in 2023. These 

highlighted examples illustrate notable configurations of slush in each basin, but these 

patterns were not necessarily consistent every year. The spatial distribution of slush varied 

depending on the melt season, with some years exhibiting different or less distinct 

configurations. 
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Figure 4.5: Slush persistence and average coverage across basins during the summer months 
(1st May to 30th September). Slush persistence is represented by a colour bar on a scale from 
1 (light yellow) to 9 years (dark orange). The average slush coverage for each basin is 
illustrated by the size of the circles, which reflect the average slush coverage value across all 
years from 2016 to 2024, calculated by averaging the slush-covered area annually. Within each 
circle, pie charts display the mean monthly distribution of slush coverage averaged over all 
nine melt seasons. Base map source: Esri, Maxar, Earthstar Geographics, and the GIS User 
Community. 
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Figure 4.6: Slush persistence across the six basins of the GrIS from 2016 to 2024. The x-axis 
represents the persistence from 1 to 9, where 9 indicates slush presence in all nine years of 
the study period. The y-axis shows the total slush area (km²) for each score by basin (see 
Figure 4.5).  
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Figure 4.7: Examples of the spatial distribution of slush for six selected areas basins of the 
GrIS (locations shown in the central panel) shown using S2 RGB imagery (left) and classified 
slush areas (red) overlaid on the imagery (right). (a) NW: linear, river-like features with 
dispersed boundaries (2021); (b) CW: slush connecting SGLs (2022); (c) SW: extensive areas 
of slush with exposed snow patches (2023); (d) NO: dendritic, web-like tributaries channelling 
meltwater (2017); (e) NE: SGLs and streams within a slush matrix, forming a distinct slush line 
boundary (2019); (f) SE: slush forming around rocky outcrops (2023). Base map source for 
central GrIS panel: Earthstar Geographics. 

  



123 
 

Figure 4.8 highlights correlations in slush extent between the six basins over the study 

period. The highest Pearson correlation coefficient values are between the NO and NW 

(0.76), and the SW and CW, basins (0.84). In contrast, the SE exhibits weaker correlations 

with other basins, such as with CW (0.35). We also see moderate correlations of the NE with 

western basins, including SW (0.53) and CW (0.68).  

 

Figure 4.8: Correlation matrix of slush extent on GrIS basins from 2016–2024. Each cell 
represents the Pearson correlation coefficient, with values ranging from -1 to 1, where blue 
indicates stronger positive correlations, and red indicates weaker correlations. 
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4.3.2. Elevation trends and variability of slush 

Slush consistently formed at the highest elevations in the SW basin, with the mean of annual 

maximum elevations ranging from 1740 m a.s.l. in 2017 to 1880 m a.s.l. in 2021 (Figure 4.9; 

4.10). Similarly, the SE basin exhibited high elevations, with a mean maximum elevation of 

1800 m a.s.l. in 2023. In contrast, the NO basin recorded the lowest elevations overall, with 

a maximum of 1370 m a.s.l. in 2023 and a minimum of 1140 m a.s.l. in 2018. The CW basin 

displayed the greatest variability, with annual maximum elevations ranging from 1380 m 

a.s.l. in 2020 to 1770 m a.s.l. in 2019 (Figure 4.9; 4.11).  

 

 

Figure 4.9: Annual time series of the mean maximum elevation (m a.s.l.) of slush within each of 
the six basins of the GrIS from 2016 to 2024: CW (deep red), NE (orange), NO (black), NW 
(grey), SE (light blue), and SW (dark blue).  
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Figure 4.10: Annual maximum slush elevation limits across the GrIS between 2016 to 2024. 
Base map is surface elevation from the ArcticDEM.  
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Figure 4.11: Radar charts showing the interannual variability in slush formation across 
different basins on the GrIS from 2016 to 2024. Each chart displays normalised values for 
slush area (orange) and elevation (blue). Under each plot, each basin's minimum and 
maximum elevations, as well as areas, are stated. 
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4.3.3. Inter-annual variability of slush across Greenland 

4.3.3.1. Ice-sheet wide variability 

Between 2016 and 2024, slush formation was consistently observed across all basins on the 

GrIS during the summer months of May to September (Figure 4.5; 4.12; 4.13). The lowest 

area of slush coverage occurred in 2018 (1.4%; 24,400 km²), while the highest was recorded 

in 2019 (8.3%; 144,800 km²). No statistically significant trend in slush area was observed 

over the study period. 

 

Figure 4.12: Total slush area across the GrIS from 2016 to 2024. a) Cumulative slush area by 
month (May to September) for each year. b) Percentage of total ice sheet area covered by 
slush annually. 
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Figure 4.13: Ice sheet wide spatial distribution of slush (navy blue) from 2016 - 2024. Base map 
source: Earthstar Geographics. 
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4.3.3.2. Regional variability 

From 2016 to 2024, slush presence across the GrIS varied by basin (Figure 4.14). The SW 

basin recorded the highest peak area of slush in 2019 at 9.6% (20,100 km²), while the NO 

basin peaked at 7.2% (17,500 km²) in 2023. The NE basin held the largest absolute slush 

presence in 2019 at 5.6% (27,290 km²). The NW and CW basins peaked at 3.1% (8,600 

km²) in 2023 and 5.0% (11,500 km²) in 2019, respectively. The SE basin remained 

consistently low, ranging from 0.45% (1,000 km²) in 2018 to 1.8% (5,000 km²) in 2023. 

 

 

Figure 4.14: Annual time series of slush coverage and maximum area within each of the six 
basins of the GrIS from 2016 to 2024: CW (deep red), NE (orange), NO (black), NW (grey), SE 
(light blue), and SW (dark blue). The top panel shows the percentage of basin coverage, and 
the bottom panel depicts the maximum area (in km²) of slush across the six basins. 
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4.3.4. Intra-annual variability of slush across Greenland 

4.3.4.1. Ice sheet wide variability 

Monthly slush coverage across the GrIS from May to September (2016–2024) showed 

considerable variability (Figure 4.15). In all years, slush area was greatest in July and August 

(averaging 1.7% and 1.6%, respectively). May and September exhibited the lowest coverage 

for all years, typically below 0.2%, with September being the most variable month and May 

the least variable (Figure 4.15). 

 

Figure 4.15: Heatmap illustrating the percentage of the GrIS covered by slush from 2016 to 
2024, organised by month. Each cell represents the percentage of slush coverage for a 
specific month and year, with darker shades indicating higher coverage percentages. 
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4.3.4.2. Regionally 

As seen ice-sheet wide, July and August were the primary months for slush coverage across 

all basins, with smaller extents in May and September (Figure 4.16). July accounted for the 

peak slush coverage in NW (40%), CW (40%), SW (44%), NE (45%), and NO (45%), with a 

slight reduction into August (Figure 4.5). SE, however, peaked in August, showing a 

substantial 41% increase over July. The SW basin showed the most pronounced increase in 

mean monthly slush area across basins (which was calculated from May to September for 

2016–2024), rising from under 1,000km² in May to 6,700 km² in July (Figure 4.16). The SE 

basin consistently maintained the lowest slush area, remaining under 1,000 km² throughout 

the melt season and peaking slightly above 500 km² in August. 

 

Figure 4.16: Mean slush area across the six GrIS basins from May to September, calculated as 
the mean slush area for each month over a nine-year period from 2016 to 2024. CCW (deep 
red), NE (orange), NO (black), NW (grey), SE (light blue), and SW (dark blue).  
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Throughout our study period we identify two distinct peaks in slush coverage: one in August 

2019 and another later in the season in September 2022 (Figure 4.17; 4.18). In August 

2019, the SW basin recorded the largest slush area at 18,000 km² (9% basin coverage), the 

highest observed across all basins during the study period (Figure 4.17), with an example of 

its spatial distribution shown in Figure 4.19(a). The NW (5,060 km²; 3%), NE (11,700 km²; 

4%), and CW (7,100 km²; 3%) basins also reached their highest extents in August 2019. 

September 2022 marked a late-season peak in slush area across most basins, with the SW 

basin again recording the highest extent for September at 6,800 km² (3%) (Figures 4.17, 

4.18), with an example of its spatial distribution shown in Figure 4.19(b). In September 2022, 

the NO and NE basins recorded 3,000 km² (1%) and 2,700 km² (1%), respectively, roughly 

equivalent to their August values in the same year, while the SE basin showed a more typical 

September with only 600 km² (0.2%) of slush. 

 

Figure 4.17: Bar plots illustrating the total area (in km²) covered by slush across different 
basins of the GrIS from 2016 to 2024. Each subplot represents a specific basin (NW, CW, SW, 
SE, NE, NO), with the total area segmented by month: May, June, July, August, and September. 
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Figure 4.18 Heatmap depicting the percentage of slush coverage in the basins of the GrIS. a) 
spans from May 2016 to September 2020 and b) spans from May 2021 to September 2024. Each 
cell represents the percentage of the respective basin covered by slush for a specific month. 
The colour gradient illustrates the range of coverage, with darker shades indicating higher 
percentage values. 
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Figure 4.19: Examples of the spatial distribution of slush in a) August 2019 and b) September 
2022, shown using S2 RGB imagery (left) and classified slush areas (red) overlaid on the 
imagery (right). Base map source: Earthstar Geographics. 
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4.3.5. Comparison of slush detection methods 

To evaluate the performance of the RF classifier and its agreement with alternative 

threshold-based slush detection methods, its classifications were compared with those 

derived from NDWI and Gind across the six basins (Tables 4.5; 4.6). We determined how 

closely the spatial distribution of slush identified by RF corresponds to that detected by 

NDWI and Gind, which was assessed using the extent of spatial overlap between RF and 

the other methods, classification metrics (Recall, Precision, and F1-score), as well as visual 

comparisons of classified outputs across selected basins and years. 

4.3.5.1 Quantitative Comparison 

RF showed better agreement with NDWI than with the Gind method, as evidenced by higher 

Recall values, F1-Scores, and larger spatial overlap between RF and NDWI classifications 

compared to RF and Gind classifications (Tables 4.5; 4.6). Overlap between areas where 

both the RF and NDWI methods detect slush was substantial in basins such as the SW (733 

km²), and the CW (41 km²). In contrast, overlap in slush detection areas between the RF and 

Gind results were consistently lower, peaking at 436 km² in SW and dropping to just 11 km² 

in CW, emphasizing a weaker spatial correspondence.  

The classification metrics of Recall and Precision reinforced the findings described above. 

RF's Recall values were consistently higher when compared to NDWI than when compared 

to Gind, ranging from 0.55 (SE) to 0.73 (CW) in NDWI comparisons, versus 0.53 (SE) to 

0.65 (NW) in Gind comparisons (Tables 4.5; 4.6). Again, these results suggest that RF more 

effectively captured the slush features identified by NDWI than those identified by Gind. 

Precision values were more comparable across the two method comparisons, with RF 

achieving between 0.66 (NW) and 0.79 (CW) against NDWI, and between 0.64 and 0.78 

against Gind. This reflects RF's consistent ability to classify slush features with minimal false 

positives, regardless of the comparison method (Tables 4.5; 4.6). However, F1-scores, which 

balance Precision and Recall, were generally higher in NDWI comparisons (ranging from 

0.56 in SE to 0.76 in CW) than in Gind comparisons (ranging from 0.51 in NO to 0.68 in 

NW). This further supports the finding that RF classifications align more closely with NDWI 

classifications than with Gind classifications. 
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4.3.5.2. Visual Assessment  

Figure 4.20 presents three examples visually comparing RF classification results with NDWI 

and Gind methods with optical imagery of three areas of the GrIS for reference. These 

qualitative comparisons help to further illustrate the differences in classification patterns and 

errors associated with each classification method. 

In the optical image of the CW basin (Figure 4.20a), NDWI and RF showed closer 

agreement in their classification of slush features, while Gind identified fewer slush features 

overall. Based on our visual analysis of optical imagery, Gind misclassified lake boundaries 

as slush more frequently than NDWI and RF. 

In the NO basin (Figure 4.20 b), a complex image with cloud cover and mosaicking artifacts 

was intentionally selected to evaluate the methods. NDWI heavily overestimated slush in this 

image, misclassifying a substantial portion of clouds as slush. RF captured more detail than 

either thresholding method, successfully identifying linear slush streams between the clouds 

without misclassifying the clouds themselves. Gind, while avoiding the misclassification of 

clouds, detected very limited slush compared to RF.  

In the SW basin (Figure 4.20c), NDWI and RF exhibited relatively good agreement in 

identifying dispersed slush features. RF also detected additional slush areas in the centre of 

the image that were not captured by either NDWI or Gind. The image contained limited cloud 

cover, which was not misclassified as slush by any method. Through visual inspection, Gind 

misclassified a shallow lake in the scene as slush and showed weaker agreement with RF 

compared to NDWI in this basin. 
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Table 4.5: Performance metrics (Recall, Precision, F1-Score) and spatial overlap areas of slush 
for the comparison of RF classifications with NDWI across the six GrIS basins. 

 

 

Table 4.6: Performance metrics (Recall, Precision, F1-Score) and spatial overlap areas of slush 
for the comparison of RF classifications with Gind across the six GrIS basins. 
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Figure 4.20: Visual comparison of RF with NDWI and Gind classification methods against S2 
optical imagery across three basins and years: a) CW 2018, b) NO 2022, c) SW 2019. The left 
column displays the original S2 RGB images for reference. The middle column shows NDWI 
classifications, and the right column shows Gind classifications. Red indicates areas 
classified as slush by both RF and the thresholding method, orange represents slush 
identified only by RF, and blue indicates slush identified only by the thresholding method. 
Note: The NO 2022 image was intentionally selected as a complex case due to significant 
cloud cover and artifacts such as visible seams and spectral discontinuities between adjacent 
scenes resulting from the mosaicking process. 
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4.4. Discussion  
This study presents the first ice-sheet-wide investigation of slush distribution on the GrIS 

from 2016 to 2024. Using GEE and a combination of k-means clustering and RF 

classification, we were able to efficiently process large volumes of S2 imagery (329,229 

scenes) and delineate slush at high spatial and temporal resolutions. 

4.4.1. Spatial distribution of slush across the Greenland Ice Sheet 

Our observations of slush distribution across the GrIS demonstrates clear regional variability, 

with greater areal extents observed in the western and northern basins compared to the 

eastern and southern basins. This pattern is consistent with previous Greenland-wide 

studies of supraglacial hydrology (e.g., Zhang et al., 2023; Dunmire et al., 2021). Slush 

predominantly occurs near the ice margins but is generally absent from the most crevassed 

areas along the very edge of the ice sheet, with notable inland penetration in the southwest. 

Among all basins, the SW exhibits the most extensive summer slush coverage, followed by 

the NO basin. Moderate coverage is observed in the NE, CW, and NW basins, while the SE 

consistently records the lowest slush presence in each summer. Our findings that slush 

coverage in the SW is more extensive than in any other GrIS basin is consistent with 

meltwater detected in previous studies (e.g., Selmes et al., 2011; Hu et al., 2022; Zhang et 

al., 2023; Fan et al., 2025), which report that the western ice sheet contains the largest area 

of SGLs. 

The high slush coverage in the SW basin is driven by the basin’s favourable topographic 

conditions, including low relief, shallow surface slopes (Ignéczi et al., 2018), and extensive 

ablation zones (Ryan et al., 2019), combined with high melt rates (Mikkelsen et al., 2016; 

van As, 2017). These factors make the basin particularly susceptible to slush formation. 

However, within the SW basin, a distinct stripe along the western margin shows a notable 

absence of slush (Figure 4.5), in stark contrast to the surrounding areas. This absence 

corresponds to the "dark zone," a basin characterized by relatively low albedo and limited 

snow cover (Tedstone et al., 2017), which reduces slush formation. Other studies have 

shown that this dark zone is expanding, with a 12% expansion between 2000 and 2014 in 

SW Greenland (Shimada et al., 2016). As such, the future expansion of this dark area may 

further influence the spatial distribution of slush in the SW basin in the future. In contrast, SE 

Greenland's minimal slush presence reflects its steep slopes (up to 30% steeper and 1,000 

m higher than the SW basin), small ablation zones, and high winter snowfall accumulation 

due to proximity to North Atlantic storm tracks (Morlighem et al., 2017; Noël et al., 2019; 
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Hanna et al., 2016; 2024). These factors limit early summer melt, constraining slush 

formation in this SE basin. 

We find that, across the GrIS, approximately 40% of slush is spatially concurrent with 

subsurface features such as low-permeability ice slabs and firn aquifers. This includes the 

30% (45,100 km²) of slush that we observe to be above ice slabs, which act as aquitards 

that restrict vertical meltwater percolation into the firn (Figure 4.21; Jullien et al., 2023; Miller 

et al., 2022). As a result, excess meltwater accumulates at the surface, promoting slush 

formation and the lateral transport of meltwater through the firn, enhancing runoff. At the end 

of the season, meltwater retained as slush may refreeze at the end of the season, thickening 

the near-surface ice slabs and contributing to their expansion. This process further reduces 

the firn’s retention capacity, alters meltwater pathways, and amplifies runoff in subsequent 

melt seasons, creating a reinforcing feedback loop (Covi et al., 2022; Machguth et al., 2016; 

MacFerrin et al., 2019; Miller et al., 2022; Jullien et al., 2023). Similarly, ~10% (8,334 km²) of 

slush forms atop firn aquifers, which store liquid water year-round within firn layers. Slush 

formation may occur where excess meltwater saturates the surface layers during intense 

melt events through the upward movement of meltwater from subsurface reservoirs to the 

surface (Forster et al., 2014; Miege et al., 2016). Together, these processes highlight the 

dual role of slush as both a product and driver of hydrological changes on the GrIS.  

In contrast, we observe 60% of slush in regions of the ice sheet without low-permeability 

layers. In these areas, slush develops during melt events when the rate of meltwater 

production exceeds the firn's capacity to absorb and facilitate water percolation. Achieving 

full firn saturation is more challenging under these conditions, as the firn must become 

saturated at depth, which typically occurs when preferential flow fingers are overwhelmed 

and a uniform wetting front saturates the surface layers (Clerx et al., 2022; 2024). Once 

saturation is achieved, slush may refreeze in place, reducing the firn’s ability to fill and store 

meltwater and increasing the likelihood of supraglacial runoff during subsequent melt 

seasons. Additionally, the formation of infiltration ice alters the thermal and structural 

properties of the firn, influencing its permeability and modifying meltwater pathways in future 

years. When still liquid, meltwater from slush can travel laterally, contributing to enhanced 

runoff and redistribution of meltwater across the ice sheet. 

Our study shows that slush is a dominant yet overlooked component of GrIS hydrology. In 

both the low-melt year of 2018 and the high-melt year of 2019, we detected a far larger melt 

area than in previous studies. For example, Zhang et al. (2023) mapped rivers, lakes, and 

water-filled crevasses but omitted slush. In 2018, we mapped 24,400 km² of slush versus 

their 4,900 km² of meltwater area–a fivefold increase. In 2019, we detected 144,800 km² of 
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slush compared to their 9,990 km² of total melt area, a 14.5-fold difference. Regionally, the 

discrepancy persists. In the NE basin, 11,700 km² of slush detected in our study in 2019 

represents a 14.3-fold increase over the supraglacial meltwater features mapped by Zhang 

et al., while the NW basin exhibited the smallest increase, with 5,060 km² of slush–still more 

than double the previously mapped supraglacial melt extent. Additionally, Fan et al. (2025) 

reported that total lake areas rarely exceed 3,500 km² even in peak melt years, emphasizing 

that assessments focused solely on supraglacial lakes significantly underestimate melt-

affected areas. While supraglacial lakes have long been a research focus, our findings 

indicate that slush plays an important role in meltwater storage and runoff. Similar Antarctic 

studies (Dell et al., 2024) show that slush and ponded water cover comparable areas on ice 

shelves, and incorporating their lower albedo into models increased simulated snowmelt by 

2.8 times. Future research must integrate slush into hydrology assessments and further 

examine its effects on albedo and energy balance to refine melt models and improve ice-

sheet mass balance projections. 
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Figure 4.21: Maximum slush extent between 2016 - 2024 (orange), ice slab extent between 
2010–2018 (Jullien et al., 2023) (dark green), and firn aquifers in 2010–2014 (Miège et al., 2016) 
(light green). Base map source: Earthstar Geographics. 
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4.4.2. Trends and variability in slush elevation 

During warmer, and hence more intense melt years, such as 2019 and 2023, we observe 

slush extending to higher elevations than in cooler years with limited melt (Figures 4.9; 4.22). 

This pattern aligns with previous findings that SGLs also form at progressively higher 

elevations during warmer years of substantial melting (e.g., Sundal et al., 2009; Liang et al., 

2012; Lüthje et al., 2006; Glen et al., 2025). Covi et al. (2022) further observed this pattern in 

the Kangerlussuaq sector of the western GrIS, where years with below-average melt, such 

as 2017, 2018, and 2020, blue slush was limited to lower elevations, and in contrast, years 

with intense melt, such as 2016, 2019, and 2021, saw expansion of blue slush to higher 

elevations. Generally, water percolating into subfreezing firn at higher elevations refreezes, 

modifying the thermal and physical properties of the firn and releasing latent heat that raises 

the firn temperature to a critical point where meltwater can begin to drain freely (Chu et al., 

2013). Additionally, at these higher elevations, melting initiates structural changes within the 

snow and firn, including increased densification rates as liquid water infiltrates for the first 

time and drives snow grain metamorphosis.  

We observe no significant trends in slush elevation over our study period, either at an ice 

sheet or regional scale. This aligns with Machguth et al. (2022), who reported no significant 

change in maximum slush elevation between 2012 and 2021 on the GrIS’s western flank. 

Their findings also highlight considerable variability in maximum slush elevation during 

individual summers, which is consistent with our observations. However, our findings 

contrast with Tedstone and Machguth (2022), who documented a significant rise in the 

visible runoff limit (i.e., slush elevation) from 1985 to 2020, with average increases of 242 m 

in the west, 194 m in the north, and 59 m in the northeast. Additionally, the absence of a 

trend in maximum slush elevation is inconsistent with studies that documented the 

increasing elevations of SGLs (e.g., Howat et al., 2013; Gledhill and Williamson, 2017; Zhu 

et al., 2022). 

Examining the relationship between maximum slush area and maximum slush elevation 

reveals that these two metrics often vary independently (Figure 4.11). For example, the SW 

basin exhibited synchronized peaks in both area and elevation during 2016 and 2019, 

reflecting widespread slush formation at higher elevations during intense melt seasons. In 

contrast, the NW basin in 2024 displayed extensive slush coverage concentrated at lower 

elevations, likely due to more localized meltwater retention. Similarly, the NE basin in 2017 

recorded high slush elevation but limited area, suggesting favourable conditions for slush 

formation at elevation but insufficient meltwater to support horizontal expansion. Further 

study is required to better understand these processes. 
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4.4.3. Inter-annual variability of slush across Greenland 

Slush presence across the GrIS from 2016 to 2024 exhibits dynamic fluctuations, with 

notable peaks and troughs in terms of areal extent, which correspond closely to modelled air 

temperature anomalies (Figure 4.22; 4.23). However, during our 9-year study period, the 

lack of a significant trend in slush area across the ice sheet prevents us from concluding 

consistent long-term changes. Fan et al. (2025), however, showed that from 1985 to 2023, 

SGL area across the entire GrIS increased by 50.5 km² per year. The fact that we did not 

observe an increase in slush area may be due to our relatively short 9-year study period. Or, 

although supraglacial melt has increased over this time period, increased meltwater storage 

in supraglacial hydrological features such as SGLs may have limited the expansion of slush 

area over this time period. Further work is needed to assess the partitioning of meltwater 

between slush and other supraglacial hydrological features, such as SGLs, to better 

understand the factors governing slush extent and persistence.  

In 2020, passive microwave data suggest that the near-surface melt area across the ice 

sheet was lower compared to other relatively low-melt years, such as 2017 and 2018 (Figure 

4.24). However, interestingly, we show that the slush extent in 2020 was double that of 2017 

and 2018 (Figure 4.12). Regionally, this pattern was also evident, with the 2020 summer’s 

slush extent surpassing 2017 across all basins, including a fourfold increase in the NO 

basin. This discrepancy may be linked to the extensive slush event in 2019, which recorded 

the highest observed slush coverage on the GrIS (~4%). It is plausible that the slush from 

2019 refroze at the end of the melt season, forming a low-permeability layer beneath the 

surface. In the summer of 2020, only the seasonal winter snowpack on top of this layer 

needed to saturate to generate widespread slush. This preconditioning of the ice sheet 

surface enhances the potential for greater supraglacial runoff and meltwater ponding in 

subsequent years. Such surface preconditioning has also been identified by Rawlins et al. 

(2024), who observed this process at Humboldt Glacier in North Greenland. Their study 

showed earlier activation of the supraglacial hydrologic system and extended melt seasons 

in years following widespread slush events (Rawlins et al., 2023). Similarly, Covi et al. (2022) 

documented a substantial increase in slush extent in the Kangerlussuaq sector during 2020 

compared to 2017 and 2018, despite 2020 experiencing the lowest positive degree days in 

the region. These findings align with our observations, indicative of prior widespread slush 

events causing widespread refreezing, which preconditions the surface for greater slush 

formation in subsequent years. 

The NO basin exhibited a clear step-increase in slush area from 2019 onwards, with 

consistently elevated levels observed in subsequent years. It is possible that the widespread 
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refreezing event in 2019, which created extensive low-permeability ice layers across the ice 

sheet, had a long-term impact on this basin. This could explain the persistent slush formation 

in the NO basin even during years with relatively lower melt intensity, as the refrozen layers 

would require only the seasonal winter snowpack to saturate for slush to develop. This is 

also in combination with warming trends in the NO basin. As shown in Figure 4.23, the NO 

basin has experienced persistently positive temperature anomalies, particularly in years 

such as 2019. Such warming has driven a 46% expansion of the northern ablation zone–

nearly double the 25% increase observed in the south (Noël et al., 2019, 2022). Northern 

Greenland also showed the greatest trends in number of extreme melt days across the GrIS 

from 1950 to 2022, attributed to positive anomalies in downward longwave radiation and a 

5–10% rise in early-summer cloud cover since the 1990s, which have intensified melt rates 

(Bonsoms et al., 2024; Noël et al., 2019, 2022). Projections indicate northern Greenland will 

experience the greatest warming across the GrIS in the 21st century, further exacerbating its 

vulnerability in part due to relatively low winter accumulation rates compared to other ice 

sheet sectors (Hill et al., 2018; Goelzer et al., 2013). These factors make the NO basin a key 

basin for understanding and monitoring the impacts of future climatic changes (Rawlins et 

al., 2023). 

 

Figure 4.22: May to September monthly temperature anomalies (°C) from the 1958–2015 mean 
for the GrIS during 2016–2023. Data is derived from the RACMO climate model (Noel et al., 
2019).  
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Figure 4.23: May to September monthly temperature anomalies (°C) from the 1958–2015 mean 
for each basin of the GrIS during 2016–2023. Data is derived from the RACMO climate model 
(Noel et al., 2019).  

4.4.4 Intra-annual variability of slush across Greenland 

The intra-annual variability of slush across Greenland from 2016 to 2024 reveals 

pronounced and anomalous patterns during years with extreme melt events and late-season 

warming. For instance, 2019 shows pronounced positive air temperature anomalies in the 

early-to-mid season (Figure 4.23), corresponding to an intense melt season that likely drove 

widespread slush formation which peaked at ~ 4% coverage of the ice sheet in August - the 

greatest seen throughout our study (Figure 4.14). Under typical conditions, slush follows a 

predictable seasonal cycle, forming in May, peaking in July, and retreating during the autumn 

freeze-up, similar to the behaviour of SGLs (e.g., Otto et al., 2022; Yang et al., 2021; Glen et 

al., 2024). However, during anomalous years such as 2019 and 2022, this cycle is disrupted 

by exceptional atmospheric and supraglacial melt conditions. 

In 2019, persistent anticyclonic circulation and a strong Greenland Blocking Index led to one 

of the most extreme melt seasons on record, as seen in Figure 4.24. From May to July, 

consistently high positive temperature anomalies were observed, with May reaching +3.5°C 

above the 1958–2015 mean (Figure 4.22). These elevated temperatures drove prolonged 

and intense melt conditions, further exacerbated by melt-albedo feedbacks due to reduced 
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snowfall and the exposure of darker ice surfaces. As a result, slush fields expanded further 

inland and covered the largest proportions of the ice sheet during the study period, nearing 

1900 m a.s.l and 4% ice sheet coverage (Sasgen et al., 2020; Tedesco and Fettweis, 2020; 

Hanna et al., 2021). 

In September 2022, anomalously high temperatures and exceptional rainfall caused 

substantial ice-sheet wide melt (Figure 4.24), which disrupted the seasonal melt cycle by 

delaying the autumn freeze-up, resulting in sustained slush fields into October (Moon et al., 

2022; C3S, 2023). This anomaly is reflected in air temperature records, with September 

2022 showing temperature anomalies exceeding ~6°C across several basins, a sharp 

contrast to typical late summer cooling patterns (Figure 4.23). The persistence of late-

season slush coverage in September 2022 may have had implications for ice dynamics. 

Acting as a transient reservoir, slush may have temporarily stored and released excess 

supraglacial runoff later in the summer than usual, overwhelming subglacial drainage 

systems. This hydrological disruption may have contributed to a brief acceleration of ice flow 

until the hydrological system adapted by channelizing the additional meltwater, stabilizing ice 

velocities (Ing et al., 2024). 

 

Figure 4.24: Monthly maximum area of surface and near-surface melt (km²) across the whole 
GrIS from 2016 to 2024, derived from passive microwave sensors. Each bar shows the 
maximum melt areal extent for a specific month, with colours representing May through 
October. Data used to make figure came from the National Snow and Ice Data Center/T. Mote, 
University of Georgia (Mote et al., 1995, 2007). 
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4.4.5 Method performance, comparison and limitations 

Our ML method, following Dell et al. (2022; 2024), but adapted for the GrIS, integrates 

unsupervised k-means clustering with a supervised RF classifier, which enables automated 

slush detection across the GrIS. The k-means clustering step uncovers subtle spectral 

patterns in slush areas, while manual refinement of the training data ensures robustness, 

making it applicable for large-scale, multi-temporal analyses. To assess the performance of 

our approach, we quantitatively compared the RF classifier results with those from two other 

methods: NDWI and Gind, as well as qualitative visual comparison with optical imagery.  

4.4.5.1 NDWI comparison 

NDWI showed reasonable quantitative agreement with RF in some regions, particularly 

where surface conditions were relatively simple such as in the SW, but the performance of 

NDWI declined in areas with more complex topography such as SE. Visual comparisons 

supported these patterns: while NDWI and RF produced similar outputs in some cases like 

the CW basin, NDWI frequently overestimated slush, especially in challenging environments 

with variable terrain or cloud cover, where it misclassified clouds as slush. For example, in 

NO (2022), NDWI substantially overestimated slush by misclassifying clouds, an error that 

RF avoided. Together, these findings highlight that although NDWI can provide an 

approximation of slush extent in straightforward settings, its reliance on a static threshold 

limits its reliability across diverse conditions, reducing its suitability for consistent, large-scale 

slush mapping. 

4.4.5.2 Gind comparison  

In contrast to our comparison of NDWI results with those from the RF, Gind showed weaker 

spatial agreement with RF. For instance, in the CW basin (Table 4.5; 4.6), the overlap 

between RF and Gind was just 13% of the RF-detected slush area. In comparison, the 

overlap between RF and NDWI in the same basin was 48%, highlighting Gind's more limited 

slush detection capabilities relative to the RF method. This trend was consistent across other 

GrIS basins too. Visual comparisons support these results, showing that Gind missed large 

portions of slush areas identified by both RF and NDWI methods. For example, in the NO 

(Figure 4.20b), Gind detected very little slush, overlooking clear linear slush streams 

mapped by RF, while in the SE (Figure 4.20c), Gind underestimated slush extent where 

surface expressions were more subtle. These limitations demonstrate that while Gind can 

provide some useful information in basins containing relatively simpler surface spectral types 

and topography, its performance diminishes in areas with more challenging environmental 

conditions. 
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4.4.5.3 RF performance and limitations  

Our RF approach demonstrates superior detection capabilities compared to both NDWI and 

Gind thresholding methods, particularly with regard to capturing the fine-scale spatial and 

temporal variability of slush. However, RF is not without its limitations. In a minority of cases, 

such as in the SW basin in 2019, the RF method appears to overestimate slush coverage 

(Figure 4.20). Additionally, the manual interpretation and refinement required during k-means 

clustering introduce a degree of subjectivity, as operator expertise and decision-making 

influences the selection and adjustment of clusters, potentially affecting classification 

consistency and efficiency. Despite the application of masking techniques to exclude clouds, 

crevasses, and exposed rock, commission errors persist, particularly in basins with complex 

environmental conditions, as our analysis has shown.  
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4.5. Conclusion  
This study has provided the first comprehensive assessment of slush distribution across the 

GrIS from 2016 to 2024, offering insights into its variability, spatial patterns, and potential 

drivers. By combining RF classification with k-means clustering, we successfully mapped 

slush across the GrIS and within six basins at a high temporal and spatial and temporal 

resolution. While previous research has extensively examined meltwater storage in SGLs, 

and meltwater flow in rivers and streams, the spatial and temporal dynamics of slush–a 

critical yet often overlooked meltwater feature–have remained largely unexplored. By filling 

this gap, our analysis provides new insights into the distribution, extent, and persistence of 

slush across the GrIS over nearly a decade.  

We found that slush coverage was most extensive in the SW, NE and NO basins, while the 

SE basin consistently exhibited minimal slush presence, a pattern also observed with SGL 

distribution in other studies. Slush showed highest interannual persistence in the NE and NO 

basins, which aligns with observed warming trends in North Greenland, and could suggest 

that these basins may continue to be particularly sensitive to future climate change.  

Extreme events on the GrIS, including the record high melt seasons of 2019 and 2022 

(Hanna et al. 2024), summers where we observed particularly large areal slush extents, 

highlight the sensitivity of slush production to atmospheric anomalies, highlighting its 

increasing prominence in a warming climate. As rapid climate warming in the Arctic 

continues, processes driving slush formation–such as prolonged and more intense 

supraglacial melting, as seen in August 2019 and September 2022–are projected to further 

intensify. This raises concerns about the role of slush in accelerating supraglacial runoff and 

influencing subglacial hydrology. If warmer conditions become the norm, slush could shift 

from being a seasonal anomaly to a defining feature of the ice sheet’s melt season each 

year, with significant implications for en- and sub-glacial meltwater routing, ice dynamics, 

and sea-level rise contributions.  

Our findings demonstrate that slush is a dominant yet often previously overlooked 

component of GrIS supraglacial hydrology. Our results show that slush-covered areas alone 

exceed previous estimates of total meltwater extent by up to 14.5 times. Even the most 

conservative difference–double the previous estimates–emphasizes the need to incorporate 

slush into models of meltwater hydrology and ice-sheet mass balance. The widespread 

presence of slush reduces surface albedo relative to snow and firn, increasing solar 

absorption relative to ice or snow and influencing the surface energy balance. As regional 

climate models do not currently account for albedo variations resulting from the presence of 
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slush, our results highlight the need for model refinements to better represent supraglacial 

melt processes. We also suggest that future mapping work should aim to assess all 

supraglacial meltwater features, including slush, SGLs, and streams, to provide a more 

comprehensive understanding of their combined hydrological impacts. 

This study provides a foundation for further exploration of slush dynamics and their broader 

impacts on ice sheet behaviour. Both monitoring and modelling slush processes are 

essential for understanding the GrIS’s response to future climate conditions, as well as 

refining predictions of supraglacial hydrology and ice sheet mass loss via runoff. With global 

temperatures projected to rise by up to 6.6°C by 2100 (Hanna et al., 2021), the 

intensification of slush formation and its refreezing into ice slabs may amplify runoff and 

accelerate the GrIS's contribution to sea-level rise. 
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Abstract 
The Greenland Ice Sheet is losing mass at an accelerating rate, as climate warming 

increases supraglacial meltwater production, driving surface runoff and the formation of 

meltwater features. Supraglacial lakes, rivers, and slush form a dynamic, interconnected 

hydrological network that regulates how meltwater is stored, routed, and exported from the 

ice sheet–impacting surface mass balance, ice flow dynamics, and freshwater input to the 

ocean. However, large-scale mapping of this hydrological network remains challenging, as 

traditional remote sensing methods require location-specific tuning and extensive manual 

correction to address false positives and negatives. Machine learning (ML) offers a scalable 

alternative and is increasingly used in supraglacial hydrology, but the rapid development of 

new algorithms has outpaced their systematic evaluation in this context. This study 

addresses that gap by evaluating seven machine learning classifiers for supraglacial 

meltwater mapping in Google Earth Engine, comparing their accuracy, transferability, and 

sensitivity to training data characteristics. Random Forest (RF) and Gradient Boosted 

Decision Trees (GBDT) performed best: GBDT had the highest accuracy (0.99 ± 0.004) 

within the same region and year, but was sensitive to incorrect training labels, while RF had 

the most consistent performance across regions and melt seasons (0.96 ± 0.009), albeit with 

a slight loss in accuracy. Spectrally diverse training data–particularly from high-melt years 

and heterogeneous regions–enabled better model transfer in space and time. While larger 

training datasets improved performance, accuracy stabilized at ~16,000 randomly selected 

points (50% of the dataset), and accuracy also plateaued when using more than 3–7 

spectral bands and indices as inputs. These findings provide clear guidance for efficient and 

effective ML-based monitoring of meltwater evolution and support the scalable, automated 

mapping of supraglacial hydrology as Greenland’s climate continues to warm. 
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5.1. Introduction 
Over recent decades, the Greenland Ice Sheet (GrIS) has experienced substantial net mass 

loss due to intensified surface melting and dynamic ice flow changes (Slater et al., 2021; 

Otosaka et al., 2023; IMBIE, 2020; Moon, 2020; Mouginot et al., 2019; van den Broeke et al., 

2008). Between 1992 and 2020, the GrIS lost an average of 169 ± 9 Gt of ice annually, 

amounting to a total of 4892 ± 457 Gt, which contributed ~14 mm to global sea level rise 

(Otosaka et al., 2023). From 2007 to 2017, 64% of this mass loss resulted from increased 

surface melting, while the remaining 36% was driven by increases in dynamic ice loss 

(Otosaka et al., 2023). As the climate warms, the GrIS’s contribution to global sea level is 

expected to increase; potentially adding 3–14 cm to global sea levels by 2100 under a range 

of emissions scenarios (IPCC, 2021; Morlighem et al., 2017; Otosaka et al., 2023).  

Increased meltwater production on the GrIS over recent decades (Slater et al., 2021; 

Tedstone and Machguth, 2022) has been driven by rising air temperatures (Hanna et al., 

2012, 2021), changing summertime atmospheric circulation patterns (van den Broeke, 

2017), and the ongoing expansion (Noël et al., 2019) and darkening (Tedesco et al., 2016) of 

the bare ice zone. Surface meltwater on the GrIS forms complex networks of supraglacial 

lakes (SGLs), channels, and saturated firn, known as slush. Increased melting has resulted 

in the proliferation of supraglacial meltwater features, increasing in both area and number 

(Liang et al., 2012; Palmer et al., 2015; Howat et al., 2013). Notably, supraglacial meltwater 

features have been observed at progressively higher elevations across the ice sheet, 

reaching regions previously considered too cold for substantial melting (Howat et al., 2013; 

Leeson et al., 2015). 

Supraglacial hydrology exerts a fundamental control on the behaviour of the GrIS, 

influencing both surface and basal processes that regulate mass loss across seasonal and 

multi-annual timescales. At the surface, networks of SGLs, channels, and slush fields 

develop across the ablation zone and lower accumulation zone during summer, routing large 

volumes of meltwater downslope. This water contributes directly to mass loss through runoff 

and reduces the ice sheet’s albedo, enhancing the absorption of solar radiation and 

amplifying surface melt (Leidman et al., 2021). In addition, the refreezing of near-surface 

meltwater forms impermeable ice slabs that limit firn porosity and reduce meltwater storage 

capacity, further increasing runoff (MacFerrin et al., 2019). Meltwater generated at the 

surface can also exert powerful controls on basal processes when it is transferred to the bed 

via moulins and hydrofractures. Once at the base, this water can reduce basal friction and 

trigger transient accelerations in ice flow (Chu, 2014; Zwally et al., 2002; Joughin et al., 

2008; Banwell et al., 2013; Hoffman et al., 2018), facilitating the delivery of ice to lower 
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elevations where it becomes more vulnerable to surface melt and calving. Over longer 

timescales, the sustained input of relatively warm meltwater can drive cryo-hydrologic 

warming, softening the ice and promoting enhanced internal deformation (Phillips et al., 

2010, 2013). Rapid drainage of SGLs can induce ice–bed separation, temporarily enhancing 

basal lubrication and accelerating ice flow, while also reorganising subglacial drainage by 

opening new pathways to the bed (Banwell et al., 2016). Under sustained or extreme 

meltwater input, these processes can contribute to widespread and prolonged weakening of 

the subglacial bed, amplifying basal motion and ice loss (Maier et al., 2022).  

Because of the range of processes through which supraglacial meltwater influences ice 

sheet behaviour, it is essential to monitor the distribution and evolution of surface 

hydrological features to improve understanding of how the ice sheet responds to 

atmospheric warming.  

Much of the research on meltwater processes in the GrIS has focused on the delineation of 

SGLs (e.g., McMillan et al., 2007; Selmes et al., 2011; Williamson et al., 2017, 2018a; Miles 

et al., 2017; Yang et al., 2021; Lu et al., 2021; Turton et al., 2021; Zhang et al., 2023), and to 

a lesser extent, channels (e.g., Yang and Smith, 2012; Lu et al., 2020; Yang et al., 2016) and 

slush (e.g. Rawlins et al., 2023; Yang and Smith., 2013; Tedstone and Machguth 2022; 

Machguth et al., 2023). These delineation efforts have commonly been conducted using both 

manual methods (e.g., Leeson et al., 2013; Fitzpatrick et al., 2014; Lampkin and 

Vanderberg, 2014; Langley et al., 2016; Yang and Smith, 2016) and automated threshold 

based detection algorithms (Fitzpatrick et al., 2014; Miles et al., 2017; Williamson et al., 

2018; Yang et al., 2021; Moussavi et al., 2020; Banwell et al., 2014; Box & Ski, 2007; Yang 

et al., 2017). The most commonly used semi-automated method to map supraglacial 

hydrology is the Normalised Difference Water Index (NDWI), which classifies pixels as 

‘water’ or ‘non-water’ based on spectral characteristics (McFeeters, 1996). While NDWI-

based approaches can be effective, they often require extensive additional filtering and 

manual intervention to correct for misclassifications, making it difficult to scale across large 

datasets (Corr et al., 2022; Moussavi et al., 2020). 

Machine learning (ML) offers potential for automated, large-scale supraglacial hydrology 

mapping, addressing many of the limitations of traditional remote sensing methods that rely 

on manual or threshold-based techniques, which are impractical for large-scale, repeat 

monitoring. ML algorithms provide scalable, automated solutions capable of handling vast 

satellite datasets, leveraging spectral, spatial, and textural information from satellite imagery 

to improve classification accuracy. Despite promising results from algorithms like Random 

Forest (RF) (e.g., Dell et al., 2022; Dirscherl et al., 2020) and emerging deep learning 
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approaches (Hu et al., 2022; Lutz et al., 2024), ML remains underutilized in mapping 

supraglacial hydrology. The application of ML to supraglacial meltwater mapping is still in its 

early stages, with the first studies focusing on SGL detection emerging around 2020 (e.g., 

Dirscherl et al., 2020; Halberstadt et al., 2020), and slush classification receiving attention 

even more recently (e.g., Dell et al., 2022; 2024). Halberstadt et al. (2020) used Landsat 8 

imagery and k-means-derived training data to evaluate classification methods for SGL 

mapping in Antarctica, where RF performed the best, achieving 99.3% overall accuracy. 

However, the study did not optimize hyperparameters or explore advanced techniques like 

boosted algorithms, and the reliance on 30-meter resolution imagery limited the detection of 

smaller SGLs, which higher-resolution Sentinel-2 (S2) data has the potential to address. 

More recently, deep learning techniques like Convolutional Neural Networks (CNNs) and U-

Net architectures have shown promise in SGL mapping, with U-Net being applied to 

Sentinel-1 (S1) and S2 imagery for SGL detection in Greenland and Antarctica, often 

integrated with RF to improve segmentation performance (Dirscherl et al., 2021a; Niu et al., 

2023). ML classification methods have also shown promise for slush mapping; for example, 

Dell et al. (2022; 2024) utilized a k-means clustering algorithm to create training classes from 

Landsat 8 imagery, subsequently training an RF classifier to delineate both slush and SGLs 

on Antarctic ice shelves. To date, there are no studies focused specifically on the 

classification of supraglacial rivers using ML, with the only example being Choukset et al. 

(2021), which applied SVM to classify surface features in East Antarctica, including some 

supraglacial hydrological features. 

Despite the growing use of ML in supraglacial hydrology, several critical gaps remain. A key 

limitation is the availability of reliable training data, which is essential for developing, 

validating, and generalizing classification models. Generating high-quality ground truth data 

is challenging in polar environments due to logistical constraints and the dynamic nature of 

meltwater features. While manually enhancing existing datasets can help, this process is 

time-consuming and may introduce biases by relying on subjective decisions about which 

features to include and how to label them. Persistent misclassification issues, including 

shadow effects, partial SGL freezing, and cloud interference, also pose challenges, 

particularly when distinguishing meltwater features from surrounding ice (Dirscherl et al., 

2020; Dell et al., 2022). Additionally, most ML studies focus on localized regions or specific 

melt seasons, limiting the spatial and temporal transferability of results across the GrIS. The 

scalability of ML approaches for large-scale, long-term monitoring remains underexplored, 

with computational constraints hindering the analysis of extensive satellite archives.  

The advent of freely available cloud-based platforms like Google Earth Engine (GEE) has 

revolutionised the ability to analyse large-scale satellite data efficiently (Gorelick et al., 



158 
 

2017), providing a powerful tool for studying supraglacial hydrology (e.g., Tuckett et al., 

2021; Zhu et al., 2022; Wang et al., 2024; Dell et al., 2022, 2024; Dirscherl et al., 2020). 

Early applications focused on adapting traditional threshold-based methods, such as Tuckett 

et al. (2021), who mapped SGLs on the Amery Ice Shelf using reflectance thresholds and 

introduced visibility metrics to account for cloud cover, producing a multi-year time series of 

SGL area and number from 2005 to 2020. Dell et al. (2022) and Dell et al. (2024) leveraged 

GEE’s built-in ML algorithms, combining k-means clustering with RF classification to 

distinguish slush from ponded water. Applied to the entire Landsat 8 catalogue, their method 

generated monthly records of meltwater features across 57 Antarctic ice shelves from 2013 

to 2021, demonstrating the potential for large-scale, automated monitoring. In Greenland, 

Wang et al. (2024) utilized GEE’s RF classifier with Landsat 8 and S2 imagery to map SGLs 

on Heilprin and Tracy Glaciers. Their automated workflow enabled sub-weekly tracking of 

SGL formation and evolution between 2014 and 2021, providing new insights into seasonal 

and interannual meltwater dynamics.  

GEE’s data catalogue offers access to multi-petabytes of high-resolution satellite imagery 

from sensors such as Landsat, Sentinel, and MODIS, covering several decades of Earth 

observation. Alongside advanced image processing capabilities, this makes GEE well-suited 

for analysing supraglacial hydrology at scale, facilitating real-time analysis across large 

spatial extents. The inclusion of both optical and radar datasets enables comprehensive 

monitoring, even in cloud-prone regions like Greenland and Antarctica. The integration of 

multi-sensor data within the GEE environment allows for cross-validation and improved 

temporal coverage, while ancillary datasets available through the GEE data catalogue–such 

as digital elevation models (DEMs), climate reanalysis products, and surface temperature 

records–provide additional context for analysing meltwater dynamics without the need to 

export data for external processing. Coupled with GEE’s scalable computational 

infrastructure and built-in ML algorithms, these features make GEE an ideal solution for 

conducting large-scale, high-resolution, and temporally extensive analyses of ice sheet 

supraglacial hydrology. 

Despite advancements in ML for supraglacial hydrology mapping within GEE, it is unclear 

how the choice of ML methods affects classification outcomes, and thus the design of future 

large-scale supraglacial meltwater monitoring systems. This study addresses this by 

performing a systematic comparison and performance evaluation of seven different ML 

classifiers within the GEE environment for the extraction of supraglacial meltwater features; 

Random Forest (RF), Support Vector Machine (SVM), Minimum Distance (MD), 

Classification and Regression Trees (CART), Maximum Entropy (ME), and Gradient 

Boosting Decision Trees (GBDT).  
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Specifically, we: (1) assess the performance of the classifiers through cross-validation and 

manual comparison with reference datasets; (2) evaluate the spatial and temporal 

transferability of these classifiers to determine their robustness across different melt seasons 

and geographic regions; and (3) investigate the influence of training data configurations, 

including dataset size, feature selection, and label quality, on classification outcomes. 

Finally, this work identifies the most effective and transferable ML approaches for large-scale 

supraglacial hydrology mapping and make recommendations for enhancing the accuracy, 

efficiency, and scalability of future meltwater monitoring on the GrIS.  
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5.2. Methods  
In order to evaluate the effectiveness of ML classifiers for mapping supraglacial meltwater 

features on the GrIS, first a training dataset is prepared covering a range of geographic 

regions and melt seasons across the GrIS (Section 5.2.2). Seven supervised classifiers - 

detailed in table 5.1 - were then trained using these data (Section 5.2.2.3). Classifier 

performance was evaluated (Section 5.2.5.1), and their transferability to regions and melt 

seasons not included in the training sample was assessed (Section 5.2.5.2). Additional 

experiments were conducted to examine how factors such as training dataset size, input 

feature selection, and label inaccuracies affect model performance (Section 5.2.5.3). Finally, 

the trained classifiers were applied to Sentinel-2 imagery from two contrasting regions and 

melt seasons–the Northeast Greenland Ice Stream (NEGIS) in 2019 (a high-melt year) and 

the Watson River catchment in 2018 (a low-melt year)–to evaluate their practical utility for 

mapping supraglacial hydrology under differing glaciological settings and melt conditions 

(Section 5.2.6). 
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Table 5.1: Overview of supervised ML algorithms compared and evaluated in this study, 
detailing their corresponding GEE classifiers, references documenting their prior use in 
delineating SGLs, whether implemented within GEE or through other remote sensing 
approaches, algorithm descriptions, advantages, disadvantages, and tuneable 
hyperparameters with their purposes. This table is compiled from algorithm documentation 
and peer-reviewed studies that have applied these methods to supraglacial hydrology or 
similar remote sensing tasks. 
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5.2.2. Training and validation data preparation  
5.2.2.1. S2 imagery  

A total of 93 high-resolution S2 Multispectral Instrument images were used in this study and 

accessed through the GEE data catalogue (Figure 5.1). 91 of these were used for training 

and validation (Section 5.2.3.1) with the remainder used to verify the results of the training 

and validation exercise (Section 5.2.3.2). These scenes, detailed in Table C.1, were acquired 

from 2017 to 2020 between May and September and were selected to encompass diverse 

geographic, temporal, and surface conditions. They cover all six major drainage basins of 

the GrIS (Mouginot and Rignot, 2019), representing environments from the ice sheet margin 

to over 200 km inland, multiple melt seasons, and varying solar elevation angles. The 

locations of these training and validation images are shown in Figure 5.1.  

All images were processed to top-of-atmosphere reflectance using a scaling factor of 10,000 

(ESA, 2015). The S2 instrument records 13 spectral bands across visible, near-infrared 

(NIR), and shortwave infrared (SWIR) wavelengths. The spectral bands utilized in this study 

included Coastal Aerosol (B1), Blue (B2), Green (B3), Red (B4), Red Edge (B5, B6, B7), NIR 

(B8), Narrow NIR (B8A), Water Vapor (B9), and SWIR (B10, B11, B12), as detailed in Table 

5.2. 
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Figure 5.1:  Overview map of the GrIS separated into six drainage basins: Southwest, Central 
West, Northwest, North, Northeast and Southeast (Mouginot and Rignot, 2019). Orange boxes 
indicate footprints of the 91 training/validation images used for the primary training and 
validation dataset used in this study. Note: Due to overlapping acquisitions across multiple 
years and regions, the total number of visible footprints appears fewer than the 91 images 
used. Blue filled box represents the S2 image for Watson, captured on 30th July 2018. The 
Purple filled box represents the S2 image for NEGIS, captured on 13th July 2019. Base map 
source: Earthstar Geographics.  
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5.2.2.2.  Image masking 

To ensure accurate classification, a cloud detection algorithm was applied to each S2 image 

based on thresholds outlined by Corr et al. (2022). A 1 km buffer was added around detected 

clouds to account for potential shadows. To exclude rock outcrops, a modified Normalized 

Difference Snow Index (NDSI) approach was used, following Moussavi et al. (2020), with an 

additional 1 km buffer applied to ensure complete removal of exposed rock. 

5.2.2.3. Band indices  

Using the S2 bands described above, a suite of spectral indices was calculated, as detailed 

in Table 5.3. These indices were selected based on their prior use in ML-based supraglacial 

meltwater classification studies (e.g., Corr et al., 2022; Dirscherl et al., 2021), where they are 

commonly included as input features. While the potential benefits of using spectral indices–

such as highlighting water or snow-related surface characteristics–have been suggested in 

previous work, their actual impact on classification performance is assessed explicitly in this 

study. Combined with the original spectral bands, these indices were used to generate 25-

band composite images. 

Table 5.2 S2 bands, their central wavelengths, and spatial resolutions, and input feature order 
(see Section 5.2.5.3.3). 

 

S2 Band (B) 
Central Wavelength 

(µm) Resolution (m) 
Input Feature 

Order 

B1 - Coastal aerosol 0.443 60 1 

B2 - Blue 0.49 10 2 

B3 - Green 0.56 10 3 

B4 - Red 0.665 10 4 

B5 - Vegetation Red Edge 0.705 20 5 

B6 - Vegetation Red Edge 0.74 20 6 

B7 - Vegetation Red Edge 0.783 20 7 

B8 - NIR 0.842 10 8 

B8A - Vegetation Red Edge 0.865 20 9 

B9 - Water vapour 0.945 60 10 

B10 - SWIR - Cirrus 1.375 60 11 

B11 - SWIR 1.61 20 12 

B12 - SWIR 2.19 20 13 
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Table 5.3. Spectral indices used in this study, including their formulas, target features, 
references, and input feature order (see Section 2.5.3.3). See table 5.2 for S2 Band information.  

 

5.2.3. Label generation for model training and validation 
Two distinct datasets were generated to support model training and validation: the primary 

training and validation dataset and the manual verification dataset. In this context, a label 

refers to the binary classification assigned to each pixel – either melt or non-melt. The 
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primary dataset was used for both model training and validation and the manual verification 

dataset provided an independent verification, based on two S2 images not used in training 

(NEGIS and Watson). The following sections explain how labels were created based on 

each dataset. 

5.2.3.1. Primary training and validation dataset  

Training and validation labels were created in two classes: surface water and non-surface 

water. Each class encompassed multiple distinct feature types. The surface water class 

included SGLs, channels, and slush. These features were delineated using NDWI-based 

water masks optimized for surface water detection, with thresholds suited for identifying 

SGLs and slush (as described in Chapter 3; Glen et al., 2025; Corr et al., 2022). Channels 

were extracted using an automatic river delineation method from Yang et al. (2017), which 

identifies river networks based on Gaussian-like cross-sections and longitudinal open-

channel morphometry (see Chapter 3). These methods produced polygons representing 

diverse surface water features, all grouped under the single surface water class. The non-

surface water class encompassed a variety of features not classified as surface water, 

including but not limited to bare ice, exposed rock, snow, clouds, sediment, and cryoconite. 

Polygons for these non-surface water features were manually delineated through visual 

interpretation of S2 true-colour imagery and merged to create a single class. Each image 

contained polygons representing both surface water and non-surface water. Within these 

polygons, approximately 2,000 pixels per scene were randomly sampled, evenly split 

between surface water (1,000 pixels) and non-surface water (1,000 pixels). Stratified random 

sampling was used to ensure that samples were evenly drawn from each class, preventing 

class imbalance in the training data. 

5.2.3.2. Manual verification dataset 

Two additional images, not included in the primary training and validation dataset, were 

selected for manual verification to represent contrasting melt conditions. One image from the 

Watson region in Southwest Greenland was captured on 30 July 2018, a low melt year, while 

the other, from the Northeast Greenland Ice Stream (NEGIS), was captured on 13 July 2019, 

a high melt year. These years were chosen to capture interannual variability in surface 

hydrology, with 2018 reflecting limited meltwater presence and 2019 characterized by 

widespread melt due to anomalously warm conditions. The Watson and NEGIS regions were 

selected to represent areas with distinct glaciological and environmental characteristics: 

Watson is located in southwest Greenland, influenced by a relatively warmer, maritime 

climate with dynamic supraglacial hydrology (e.g., Smith et al., 2015; Fitzpatrick et al., 2014; 

Yang et al., 2021), while NEGIS lies in northeast Greenland, within a colder, drier 
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environment dominated by fast-flowing ice streams and complex ice dynamics (Turton et al., 

2021; Lu et al., 2021). The locations of these validation regions are shown in Figure 5.1.  

For the manual verification dataset, polygons delineating water and non-water regions were 

manually drawn using two S2 images from NEGIS and Watson regions. A balanced 

sampling strategy was applied, with approximately 750 points randomly sampled for each 

class (water and non-water) per region, resulting in a total of ~1,500 validation points per 

image. 

5.2.4. Hyperparameter tuning 
To ensure optimal classifier performance, a nested cross-validation approach was employed 

for hyperparameter optimization across all classifiers. Nested cross-validation is a model 

evaluation technique that incorporates two loops: an inner loop for hyperparameter tuning 

and an outer loop for model performance assessment. This structure helps prevent 

information leakage between training and validation data, reducing the risk of overfitting 

(Hastie et al., 2001; Cawley and Talbot, 2010). In the outer loop, the dataset was divided into 

five folds, with one-fold used for validation and the remaining folds for training. The choice of 

five folds reflects a common practice in the literature, where 5 to 10 folds are typically used 

to balance computational efficiency and reliable performance estimation (Kohavi, 1995). 

Within each outer loop fold, the inner loop further split the training data into five additional 

folds to systematically evaluate various hyperparameter combinations. A random sampling 

strategy was applied to explore the hyperparameter combinations, selecting the combination 

with the highest mean accuracy across the inner folds as the optimal configuration. The 

optimised classifier was then trained on the full training data from the outer loop and 

validated on the held-out fold. Details of hyperparameters that are tuned are given in Table 

5.1, with additional information regarding specific hyperparameter values given in Table C.2.  
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5.2.4. Validation metrics 
Performance was evaluated using multiple accuracy metrics, including precision, recall, 

overall accuracy, and the Kappa coefficient, as detailed in Table 5.4. All metrics are derived 

from the confusion matrix, which compares predicted labels with actual ground-truth labels to 

provide a summary of classification outcomes. When performance evaluation is conducted 

over repeated runs, the confusion matrix is cumulative rather than averaged. This approach 

aggregates the classification results across all iterations, allowing for a more robust 

assessment of model performance. By summing the true positives, false positives, true 

negatives, and false negatives across runs, the cumulative confusion matrix reflects the 

overall trends and consistency in classification behaviour. 

Table 5.4: Definitions and formulas of performance metrics used for evaluating the 
classification models. 

 

 

Metric Description Formula 

Precision Represents the proportion of correctly 

classified positive instances out of all 

instances predicted as positive. Reflects 

the reliability of positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Recall Indicates the proportion of actual positive 

instances correctly identified by the 

model. Reflects the model's ability to 
detect true positives 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Overall Accuracy (OA) Measures the proportion of correctly 

classified instances across all classes. 

Provides a general performance metric 

but can be misleading for imbalanced 

datasets. 

𝑂𝐴

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃	 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Kappa Coefficient (κ) Evaluates the level of agreement 

between classification results and 

reference data, accounting for random 

chance. Useful for assessing reliability 
across datasets. 

𝑘 =
𝑃! − 𝑃"
1 − 𝑃"
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5.2.5. Classifier analysis 
A series of experiments were conducted to 1) evaluate the performance of each classifier, 2) 

examine their transferability in both spatial and temporal contexts, and 3) analyse the 

influence of different training data configurations on classification. 

5.2.5.1. Performance evaluation 

Classifier performance was evaluated using three approaches, repeated validation, cross-

validation and independent validation. These approaches were chosen in order to 

comprehensively understand how well each classifier performed under different conditions.  

5.2.5.1.1. Repeated validation 

Repeated validation tests how much the model’s results vary with different random data 

splits, providing insight into its stability and sensitivity to data variability.  Validation was 

conducted by splitting the primary dataset into 80% training and 20% testing subsets, 

ensuring equal class representation. This process was repeated 20 times with different 

random seeds, and performance metrics were calculated for each iteration. The 80/20 split is 

a standard ratio that provides a good balance between having enough data to train the 

model effectively and enough data to reliably evaluate its performance. This split minimizes 

the risk of bias from insufficient training data and reduces variability in performance 

estimates that can occur with small test sets. Repeating the process 20 times captures 

variability due to random data splits, allowing us to assess the consistency and stability of 

classifier performance. This helps determine whether observed performance differences are 

due to genuine model behaviour or simply random chance.  

5.2.5.1.2. Cross-validation 

Cross-validation measures how well the model performs across the entire dataset, offering a 

comprehensive assessment by ensuring all data points are used for both training and 

testing. A 10-fold cross-validation strategy was implemented by systematically dividing the 

dataset into 10 folds, where each fold represents a unique subset of the data containing 

one-tenth of the total samples. Each fold was used for validation once, while the remaining 

nine folds were used for training. Performance metrics were computed across all folds.10 

folds were used as this number offers an effective balance between computational efficiency 

and performance reliability (e.g., Kohavi, 1995), compared to higher fold numbers, which can 

be less practical for large datasets. 
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5.2.5.1.3 Independent validation using manual datasets 

Independent validation evaluates the model’s accuracy on completely new data, helping to 

determine its real-world applicability and generalization to unseen conditions. Classifiers 

trained on the main dataset were tested on manually sampled points from images not used 

in the main training exercise (as described in Section 5.2.3.2), with the validation process 

repeated 20 times to ensure robust performance estimates.  

5.2.5.2. Transferability of classifiers  

In these experiments, spatial and temporal transferability of classifiers were assessed in 

order to evaluate their ability to generalize across distinct regions and years. This approach 

helps determine how well models trained on one set of data can perform when applied to 

new, unseen data. Transferability is a critical consideration in remote sensing applications, 

where models are often deployed in environments or time periods different from the training 

data. 

5.2.5.2.1. Spatial transferability, i.e. across different regions of the ice sheet 

Transferability tests are essential because the GrIS spans a wide range of climatological and 

glaciological settings, which can affect classifier performance.  The ability of the classifiers to 

transfer between regions of the ice sheet was tested using data from the NEGIS region 

which is characterized by fast-flowing ice streams, colder and drier conditions, and complex 

ice dynamics (e.g., Turton et al., 2021; Lu et al., 2021) and the Watson River region which is 

situated in southwest Greenland and experiences a relatively warmer, maritime-influenced 

climate with more dynamic supraglacial hydrology (e.g., Smith et al., 2015; Fitzpatrick et al., 

2014; Yang et al., 2021). Data covering May to September from 2017 to 2020 was used, with 

classifiers trained on the NEGIS [Watson] data and tested on the Watson [NEGIS] data. 

These contrasting glaciological settings–differing in location, climate, ice dynamics, and 

surface melt patterns–provide a robust framework for evaluating the adaptability of 

classifiers to varying geographical locations. 

5.2.5.2.2. Temporal transferability across melt years 

Since melt conditions vary between years, temporal transferability was assessed to test how 

well classifiers generalise across time. Temporal transferability was assessed in two 

scenarios to evaluate classifier performance under varying melt conditions across the entire 

primary dataset, which includes data from all six major drainage basins of the GrIS (Figure 

5.1). Classifiers were trained on data from the high melt year (2019), characterized by 

extensive surface melt due to anomalously warm conditions, and tested on data from the low 
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melt year (2018). The reverse scenario was also conducted, with models trained on 2018 

data and tested on 2019 data.  

5.2.5.3. Training data configuration 

Several experiments were conducted to explore the sensitivity of classifiers to training data 

configurations. This is important because creating high-fidelity training datasets is time-

consuming and resource-intensive, representing a key limitation of current ML approaches. 

Understanding how factors like dataset size, input feature selection, and label quality affect 

model performance can help to optimize training strategies, reduce manual effort, and 

improve classifier performance. All training data experiments, described in further detail 

below, were trained and validated on the primary dataset. 

5.2.5.3.1. Impact of training dataset size 

To assess the impact of training dataset size, subsets ranging from 10% to 80% of the 

primary training dataset were created. Classifiers were trained on these subsets and 

validated against a fixed validation set (also from primary dataset), repeated 20 times to 

account for variability introduced by random sampling. Metrics were analysed to assess the 

trade-off between dataset size and reliable performance, and how this varied for each of the 

different classifiers, in order to understand the sensitivity of each classifier to the size of 

training dataset used. 

5.2.5.3.2. Contributions of spectral bands and indices 

This experiment aimed to evaluate the added value of including derived spectral indices 

alongside raw spectral bands in the classification process. To investigate this, three training 

scenarios were compared: one using only raw spectral bands (B1–B12, i.e. 12 features), one 

using only the derived spectral indices defined in Table 5.3 (13 features), and another 

combining these bands with all the spectral indices (25 features in total). The purpose of this 

experiment was to determine whether the potential improvement in classification accuracy 

offered by the inclusion of spectral indices justifies the additional effort required to compute 

these indices. Classifier performance in each scenario was assessed over 20 repeated runs 

to ensure robust results. This approach allowed us to determine whether the inclusion of 

spectral indices enhances classification accuracy or if similar performance can be achieved 

with fewer input features, thereby simplifying the model and reducing computational 

demands. 
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5.2.5.3.3. Feature subset analysis 

Feature number–referring to the input variables used for classification (i.e., the 25 combined 

spectral bands and derived indices)–was assessed using an iterative approach, where 

classifiers were trained with progressively larger subsets of features, ranging from 1 to 25. 

Each configuration was evaluated over 20 repeated runs to ensure robustness. The feature 

order was based on the original sequence of the feature list, determined by the order in 

which the spectral bands and derived indices were introduced during data preparation, given 

in tables 2.2 and 2.3. This approach enabled an unbiased evaluation of model performance 

without making prior assumptions about the predictive power of individual features. 

5.2.5.3.4. Sensitivity to label inaccuracies 

ML classifiers are often trained on datasets where the labelled examples serve as ground 

truth. However, in real-world applications, some degree of label inaccuracy is inevitable due 

to human error or ambiguities in classification criteria. This experiment evaluates how 

different classifiers deal with label inaccuracies by systematically introducing noise into the 

training dataset and measuring the resulting performance degradation when tested on clean 

data. This methodology allowed for a systematic evaluation of classifier robustness to label 

noise, highlighting which models were more resilient to training inaccuracies.  

To simulate labelling errors, a controlled proportion of training labels–ranging from 1% to 

20%–was randomly altered, meaning that a fraction of correct labels was intentionally flipped 

to incorrect values. Once this alteration was performed, classifiers were then trained on the 

modified labels and validated against the original, uncorrupted dataset to quantify the impact 

of label noise on classification performance. Due to computational constraints, this 

experiment was conducted as a single-run analysis. 

5.2.6. Application of classifiers 
Finally, a comparative evaluation of the ability of the seven supervised ML classifiers was 

performed to detect supraglacial hydrological features in S2 imagery from two contrasting 

glaciological settings: NEGIS in 2019 (a high-melt year) and Watson in 2018 (a low-melt 

year). These classifiers were trained on the primary training dataset and optimized using the 

best-performing hyperparameters. Each classifier produced binary water/non-water masks 

for the respective regions, enabling us to explore similarities and differences in their 

detection of supraglacial hydrological features. 

To assess classifier performance, both qualitative and quantitative evaluations were 

conducted. First, a visual comparison of classifier outputs against true-colour S2 imagery 
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was done, identifying areas of agreement and misclassification, such as the erroneous 

labelling of clouds or crevasses as meltwater. This qualitative analysis provided insight into 

classifier behaviour under different melt conditions and highlighted systematic over- or 

underestimation of melt extent. 

To complement the visual assessment, classifier agreement was quantified using 

classification overlap maps, which illustrate regions of consensus and areas of increased 

divergence between different classifiers. Additionally, pairwise agreement using the 

Intersection over Union (IoU) metric was computed, measuring the extent to which classifiers 

detected the same meltwater pixels. These analyses provide a quantitative framework for 

evaluating classifier consistency, helping to identify methods that produced similar outputs 

across different conditions, though not necessarily confirming their absolute accuracy. 
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5.3. Results  
This section presents the results of the meltwater classification analysis. It begins with the 

application of classifiers to real-world meltwater mapping scenarios in the NEGIS and 

Watson regions, providing visual outputs that offer an intuitive understanding of classifier 

performance and highlighting patterns of agreement and disagreement in meltwater 

detection. Following this, classifier performance is evaluated through repeated validations, 

cross-validation, and independent manual experiments. The analysis then explores the 

transferability of classifiers, both spatially and temporally, to assess their generalization 

across different regions and melt years. Next, the influence of training data characteristics is 

examined, including dataset size, input feature selection, the inclusion of spectral indices, 

and the impact of labelling inaccuracies. Finally, the section concludes with a ranking of 

classifiers, synthesizing performance metrics across all evaluation scenarios to identify the 

most robust models. 

5.3.1. Visual Assessment of Classifier Outputs 
Seven supervised ML classifiers were applied to S2 imagery from two contrasting GrIS 

scenarios: NEGIS in 2019 (a high-melt year) and Watson in 2018 (a low-melt year). These 

settings provide diverse glaciological and climatic conditions, enabling a robust test of each 

classifier’s ability to detect and delineate SGLs, channels, and slush. This section presents a 

visual assessment of classifier outputs. 

5.3.1.1. NEGIS 

The NEGIS 2019 meltwater maps in Figure 5.2 show that all classifiers detect meltwater in 

plausible locations, consistently identifying slush, rivers, and SGLs. Slush formations appear 

particularly detailed, revealing distinct linear structures. However, some misclassifications 

are evident: all classifiers erroneously label a cloud area in the upper left as meltwater, and 

the MD classifier tends to misclassify crevasses as meltwater. 

5.3.1.2. Watson 

For Watson 2018, all classifiers exhibit comparable performance when assessed visually 

(Figure 5.3). While all methods appear to overpredict meltwater extent compared to the true-

colour image they all reliably detect a network of SGLs and channels. Additionally, the cloudy 

region to the bottom right of the image is consistently classified as non-water by all methods. 
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Figure 5.2: Comparison of classified meltwater maps generated by the seven classifiers for 
NEGIS 2019 alongside the S2 true-colour image for reference. Blue indicates water, and red 
represents non-water. White represents where the image was masked. 
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Figure 5.3: Comparison of classified meltwater maps generated by different classifiers (CART, 
GBDT, KNN, ME, MD, RF, and SVM) for Watson 2018 alongside the S2 true-colour image for 
reference. Blue indicates water, and red represents non-water.  
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5.3.2. Classifier Agreement  
This section examines areas of consensus and disagreement among classifiers, quantifying 

the consistency of meltwater detection to evaluate the relative similarity of each method’s 

outputs. 

5.3.2.1. NEGIS 

In regions characterized by clear and distinct surface types–such as dense slush fields, 

rivers, and SGLs–the classifiers exhibit a high level of agreement (i.e., all seven concur; 

Figure 5.4; Figure 5.5). This strong consensus suggests that well-defined features are 

readily detected by most methods. However, noticeable discrepancies emerge along feature 

boundaries where pixels are more scattered, leading to greater classification variability. 

Specific examples within Figure 5.4 and Figure 5.5 highlight these patterns. In panel (i), 

cloud-covered areas generally show strong classifier alignment, indicating that cloud pixels 

are consistently misclassified. In panel (ii), the linearity of slush fields is accurately captured 

by all classifiers. Panel (iii) shows that the linear slush features are well resolved, with good 

agreement between classifiers despite cloud cover. Panel (iv) demonstrates that areas with 

more diffuse or indistinct slush boundaries result in lower agreement between classifiers, 

suggesting that these gradual transition zones are more challenging to classify consistently. 

SGLs, as shown in panel (v), are also identified with high consensus; however, a single 

classifier (MD) uniquely misclassifies additional surrounding crevasses as water bodies. 

Figure 5.6 presents the pairwise agreement between classifiers when applied to the NEGIS 

2019 image, measured using IoU. This metric quantifies the proportion of shared water 

pixels between two classifiers relative to their total detected water pixels, ensuring a 

symmetric comparison. Assessing classifier agreement is important for evaluating the 

stability and reliability of meltwater classification methods, helping to identify which 

classifiers produce consistent results and which diverge. The highest agreement is observed 

between ME and SVM (0.94), followed closely by ME and RF (0.91) and RF and SVM 

(0.90), indicating strong consistency among these classifiers. In contrast, the lowest IoU 

values are recorded between CART and MD and between GBDT and MD (both 0.73), 

indicating notable disagreement in these pairs. More broadly, MD consistently exhibits lower 

pairwise agreement across multiple comparisons, supporting the observation that it diverges 

more than other classifiers in this setting. 
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Figure 5.4: Classifier agreement map showing the overlap of classified meltwater features 
across all classifiers for NEGIS 13th July 2019. The values (1–7) represent the number of 
classifiers agreeing on the classification of each pixel. The corresponding true colour image 
panels are also shown on the following page.  
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Figure 5.5: True colour image panels for Figure 5.4 (NEGIS 13th July 2019). 
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Figure 5.6: Pairwise agreement between classifiers applied to the NEGIS 2019 image, 
measured using IoU. This metric quantifies the proportion of shared water pixels between two 
classifiers relative to their total detected water pixels, providing a symmetric measure of 
classifier consistency. Darker blue indicates higher overlap, reflecting greater agreement 
between classifiers, while lighter blue represents lower overlap.  
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5.3.2.2. Watson 

Figure 5.7 and 5.8 shows that classifiers generally agree on the most distinct SGLs and 

meltwater channels in the Watson region during the low-melt year of 2018. Although, there is 

less agreement between classifiers in frozen parts of SGLs. In panel (i), a partially frozen 

SGL is visible, with liquid water in the centre and frozen boundaries. Classifiers show strong 

agreement in the SGL’s liquid region and along linear slushy streams connecting SGLs, but 

agreement decreases at the frozen edges. Similarly, in panel (ii), slushy streams linking 

SGLs–some with ice lids–are well-detected, with high agreement on these channels but 

slightly lower agreement on SGLs. panel (iii) highlights narrow meltwater channels, which 

are consistently identified across classifiers. However, agreement decreases in the partially 

frozen SGL into which these channels flow. Finally, panel (iv) shows isolated frozen SGLs, 

one with small, attached streams. Here, classifier agreement is strong. 

Figure 5.9 presents the pairwise agreement between classifiers when applied to the Watson 

2018 image, measured using IoU. The Watson IoU values are generally lower than those 

observed for NEGIS 2019, suggesting greater variability in classification agreement for 

Watson 2018. The highest agreement is observed between ME and SVM (0.93), followed by 

RF and GBDT (0.85), indicating strong consistency among these classifiers. In contrast, the 

lowest IoU value, 0.73 for CART and KNN, reflects the greatest classification discrepancies. 

Comparing the two regions in contrasting melt years, ME and SVM consistently demonstrate 

the highest agreement, indicating a strong and stable alignment between these classifiers 

across contrasting glaciological settings and melt conditions. In contrast, the classifiers 

contributing to the lowest pairwise agreement differ between regions–MD in NEGIS and 

KNN in Watson. 
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Figure 5.7: Classifier agreement map showing the overlap of classified meltwater features 
across all classifiers for Watson 30th July 2018. The values (1–7) represent the number of 
classifiers agreeing on the classification of each pixel. The corresponding true colour image 
panels are also shown on the following page.  
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Figure 5.8: True colour image panels for Figure 5.7 (Watson 30th July 2018). 



184 
 

 

Figure 5.9: Pairwise agreement between classifiers applied to the Watson 2018 image, 
measured using IoU. Darker blue indicates higher overlap, reflecting greater agreement 
between classifiers, while lighter blue represents lower overlap.  
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5.3.3 Computational efficiency 

Computational efficiency is a key consideration when selecting classifiers for large-scale or 

operational monitoring, where processing time may constrain feasibility. To assess this, the 

total execution time of each classifier was recorded during their application to S2 imagery 

from NEGIS and Watson (Table 5.5). The computational performance of classifiers varied 

considerably, with execution times ranging from under 5 seconds to over 50 seconds. ME 

(50.4 seconds) and MD (36.2 seconds) were the slowest, while GBDT (3.9 seconds) and RF 

(3.9 seconds) were the fastest, reflecting the efficiency of optimized tree-based processing. 

SVM (4.2 seconds) and KNN (5.2 seconds) showed moderate computational demand, 

whereas CART (11.8 seconds) was slower than the other decision tree models (RF and 

GBDT). This represents an order of magnitude difference between the fastest and slowest 

classifiers. 

To evaluate scalability, Table 5.5 presents estimated processing times per image and 

projected totals for a GrIS periphery snapshot (~300 images) and a full melt season (~5400 

images). These figures illustrate the practicality of each classifier in operational contexts, 

with RF and GBDT offering the greatest potential for time-efficient large-scale application. 

Table 5.5. Estimated classifier execution times based on validation runs over two S2 images 
(NEGIS and Watson). Time per image was derived by halving the total execution time. 
Projections are shown for a GrIS-wide periphery snapshot (~300 images) and a full melt 
season (~5400 images).  

 

Classifier Time per image (s) Time for snapshot 
(~300 images) 

Time for a season 
(~5400 images) 

RF 1.95 585 (9.75 min) 10,530 (2.9 hr) 

GBDT 1.95 585 (9.75 min) 10,530 (2.9 hr) 

SVM 2.10 630 (10.5 min) 11,340 (3.15 hr) 

KNN 2.60 780 (13 min) 14,040 (3.9 hr) 

CART 5.90 1,770 (29.5 min) 31,860 (8.85 hr) 

MD 18.10 5,430 (1.5 hr) 97,740 (27.15 hr) 

ME 25.20 7,560 (2.1 hr) 136,080 (37.8 hr) 
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5.3.4. Classifier performance evaluation 
This section presents the results from the different evaluation methods to highlight how each 

classifier performs under various testing conditions. Classifier performance evaluation is 

important to understand how well ML models perform, not just in terms of raw accuracy, but 

also regarding their stability, generalization, and real-world applicability. By employing 

multiple evaluation methods–repeated validation, cross-validation, and comparison to 

manual datasets– models that are not only technically proficient but also robust under 

different data conditions can be identified. This multi-faceted approach helps uncover 

potential issues like overfitting, sensitivity to data variability, and performance consistency 

across diverse datasets. 

5.3.4.1. Repeated classifier 

This assessment evaluates the stability and robustness of classifiers when exposed to 

different random splits of the primary training dataset (Section 5.2.3.1). The primary training 

dataset includes labelled surface water and non-surface water pixels sampled from 91 S2 

images, acquired between 2017 and 2020 across all six major drainage basins of the GrIS 

(Figure 5.1). Repeated validation provides insights into how consistently each model 

performs under varying data partitions, helping to identify classifiers that are resilient to data 

variability.  

Most classifiers achieve accuracies between 0.95 and 0.99 (Figure 5.10), demonstrating 

stable performance. MD is the clear outlier, underperforming with an accuracy of 0.78 ± 0.01 

and a Kappa of 0.56 ± 0.01, approximately 20% lower than the top classifiers. The ± values 

represent standard deviation, with lower values indicating more consistent performance. 

GBDT is the top-performing classifier, achieving the highest accuracy (0.99 ± 0.004) and 

Kappa (0.99 ± 0.004), with the lowest variability. RF follows with an accuracy of 0.97 ± 0.006 

and a Kappa of 0.94 ± 0.007, while CART records an accuracy of 0.96 ± 0.008 and a Kappa 

of 0.93 ± 0.008.  
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Figure 5.10: Results of the repeated classifier validation using the Primary training and 
validation dataset. a) Cumulative confusion matrices summarizing classification outcomes 
across 20 iterations. b) Accuracy distributions showing classifier performance consistency. c) 
Kappa coefficient distributions illustrating agreement with the main validation dataset. The 
orange horizontal line within each box represents the median value, indicating the central 
tendency of the classifier’s performance. The box spans the interquartile range (IQR), 
representing the middle 50% of the data (from the 25th to the 75th percentile). The whiskers 
extend to 1.5 times the IQR, showing the range of most data points, while individual circles 
represent outliers, indicating performance deviations across iterations. 
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5.3.4.2. Cross-validation 

In this assessment, the generalization capability of classifiers was evaluated using cross-

validation. The cross-validation was performed on the primary dataset, which includes 

labelled S2 pixels between 2017 and 2020, spanning all six major drainage basins of the 

GrIS. This experiment is designed to test how well classifiers perform when exposed to 

different subsets of data, providing a measure of their ability to generalize beyond the 

specific conditions seen during training. Unlike single-split validation, cross-validation 

ensures that each data point is used for both training and validation, reducing the risk of 

biased results.  

As shown in Figure 5.11, classifier accuracy generally ranges from 0.95 to 0.99, with MD as 

a clear outlier, achieving an accuracy of 0.78 ± 0.0055 and a Kappa of 0.56 ± 0.011–

approximately 20% lower than the top classifiers. GBDT is the top-performing classifier, 

achieving the highest accuracy (0.99 ± 0.0009) and Kappa (0.99 ± 0.0018) with the lowest 

variability. RF and CART perform similarly (0.97 ± 0.0021 and 0.97 ± 0.0023 accuracy; 0.94 

± 0.0042 and 0.93 ± 0.0045 Kappa). 

When comparing these results with the repeated validation outcomes discussed in Section 

5.3.3.1, the performance patterns remain consistent. GBDT and RF continue to outperform 

other classifiers, while MD consistently underperforms. Accuracy and Kappa values remain 

nearly identical across both validation methods. 

 

 



189 
 

 

Figure 5.11: Results of the k-fold validation using the Primary training and validation dataset. 
a) Cumulative confusion matrices summarizing classification outcomes across 20 iterations. 
b) Accuracy distributions showing classifier performance consistency. c) Kappa coefficient 
distributions illustrating agreement with the main validation dataset. Note: The cumulative 
confusion matrices reflect the summed results across all folds, which differ from the 80/20 
validation totals due to the nature of the k-fold cross-validation approach, where each fold is 
used for validation exactly once. The orange horizontal line within each box represents the 
median value, indicating the central tendency of the classifier’s performance. The box spans 
the IQR, representing the middle 50% of the data (from the 25th to the 75th percentile). The 
whiskers extend to 1.5 times the IQR, showing the range of most data points, while individual 
circles represent outliers, indicating performance deviations across iterations. 
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5.3.4.3. Comparison to manual datasets 

While repeated and cross-validation assess model stability and sensitivity to data variability 

within the primary dataset, comparison to manual datasets provides a more stringent test of 

generalization, revealing how well classifiers perform on previously unseen regions and melt 

conditions. To complement these internal evaluations, independent manual verification 

datasets were used, as described in Section 5.2.3.2. Classifiers trained on the primary 

dataset were tested on manually sampled points from independent images, with the 

validation process repeated 20 times to ensure robust performance estimates. This 

approach provides an assessment of the model’s real-world performance by testing it on 

images that it has never encountered during training. The manual verification dataset was 

made from two images not trained on, with data derived using different methods to the 

primary dataset: one from the Watson region, captured in 2018 (a low melt year), and 

another from NEGIS, captured in August 2019 (a high melt year). 

5.3.4.3.1. NEGIS 

In evaluating classifier performance using manually derived datasets from NEGIS (Figure 

5.12), accuracy scores ranging from 0.91 to 0.94 were observed. RF and ME consistently 

outperformed other classifiers, achieving accuracy rates of 0.94 ± 0.001 and 0.93 ± 0.001, 

respectively, with both Kappa values of 0.86 ± 0.001. GBDT and CART also performed well, 

both reaching 0.93 ± 0.002 accuracy with Kappa values close to 0.86 ± 0.001 and 0.85 ± 

0.001, though they exhibited slightly more variability. SVM demonstrated the weakest 

performance, with an accuracy of 0.91 ± 0.0001 and a Kappa of 0.81 ± 0.0002.   

When comparing these results to the automated validation outcomes of the repeated 

classifier (Section 5.3.3.1) and cross-validation (Section 5.3.3.2), performance patterns 

remain consistent in some aspects but diverge in others. GBDT and RF continue to 

outperform other classifiers, demonstrating strong generalization and low variability across 

datasets. MD consistently shows poor performance, aligning with its underperformance in 

earlier tests. SVM, which performed moderately in prior tests, shows weaker results in 

manual validation. ME shows strong performance in manual NEGIS, comparable to RF, even 

though ME had lower accuracy scores in earlier automated validations.  
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Figure 5.12: Results of the repeated classifier using manually derived data from NEGIS for 
validation. a) Cumulative confusion matrices summarizing classification outcomes across 20 
iterations. b) Accuracy distributions showing classifier performance consistency. c) Kappa 
coefficient distributions illustrating agreement with the main validation dataset. The orange 
horizontal line within each box represents the median value, indicating the central tendency of 
the classifier’s performance. The box spans the IQR, representing the middle 50% of the data 
(from the 25th to the 75th percentile). The whiskers extend to 1.5 times the IQR, showing the 
range of most data points, while individual circles represent outliers, indicating performance 
deviations across iterations. 



192 
 

5.3.4.3.2. Watson 

The classifier performance, validated against manually derived Watson data (Figure 5.13), 

showed accuracies ranging from 0.70 to 0.87. Most classifiers achieved moderate accuracy, 

with the notable exception of MD, which underperformed with an accuracy of 0.70 ± 0.001–

approximately 12–17% lower than the others. CART achieved the highest accuracy at 0.87 ± 

0.02 with a Kappa of 0.75 ± 0.04, indicating strong classification performance, although with 

relatively large variability. Notably, RF ranked as the third-lowest performer, with moderate 

accuracy (0.82) and Kappa (0.65), diverging from its consistently strong performance in 

previous experiments. 

Most classifiers are highly sensitive to meltwater features as shown by the confusion 

matrices where false negatives are 0% (except for ME). However, this comes at the cost of 

increased false positives, particularly for MD and KNN, which misclassify 30% and 17% of 

non-meltwater pixels as meltwater, respectively. This trade-off means that while these 

classifiers effectively capture meltwater features, they also overestimate meltwater extent by 

incorrectly labelling non-meltwater areas. The fact that this overestimation trend is observed 

across multiple classifiers suggests a systematic bias stemming from the training and 

validation data, rather than from classifier-specific behaviour. 

When comparing these results to those obtained from the high melt year (manual NEGIS 

dataset), a few key differences emerge. In the low melt year (manual Watson dataset), 

accuracy ranged from 0.70 to 0.87, whereas NEGIS classifiers achieved a higher accuracy 

range of 0.91 to 0.94. This difference may reflect the improved detectability of abundant and 

spectrally distinct meltwater features during high melt conditions. However, while sparse 

meltwater in the low melt year presents challenges–such as fewer training examples and 

reduced spectral contrast with surrounding surfaces–it could also reduce ambiguity in 

boundary delineation due to less saturated firn and more stable surface conditions. The 

reduced accuracy in Watson suggests that, in this case, the limited spectral distinctiveness 

of meltwater features outweighed any potential advantages. 
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Figure 5.13: Results of the repeated classifier using manually derived data from Watson for 
validation. a) Cumulative confusion matrices summarizing classification outcomes across 20 
iterations. b) Accuracy distributions c) Kappa coefficient distributions. The orange horizontal 
line within each box represents the median value, indicating the central tendency of the 
classifier’s performance. The box spans the IQR, representing the middle 50% of the data 
(from the 25th to the 75th percentile). The whiskers extend to 1.5 times the IQR, showing the 
range of most data points, while individual circles represent outliers, indicating performance 
deviations across iterations. 
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Classifier performance was consistently higher in repeated and cross-validation tests (0.97–

0.99 across classifiers) than in the independent manual validation datasets, where accuracy 

dropped to 0.91–0.94 for NEGIS (Figure 5.12) and 0.70–0.87 for Watson (Figure 5.13). This 

discrepancy reflects the difference between in-sample validation and independent testing: 

repeated and cross-validation draw from the same data distribution as the training set, often 

inflating metrics due to exposure to familiar spectral and spatial patterns. In contrast, the 

manual validation datasets consist of entirely separate images, introducing novel conditions 

and providing a more rigorous test of model generalizability. 

Despite high automated accuracy, classifiers like RF and GBDT exhibited reduced accuracy 

and greater variability on the manual datasets. This suggests their strong performance in 

repeated and cross-validation does not fully translate to unseen imagery. Inspection of 

confusion matrices (Figures 5.12a and 5.13a) indicates that most errors stem from false 

positives, with non-water pixels incorrectly identified as water. This issue is most pronounced 

in SVM and MD, while top-performing classifiers like RF and GBDT maintain relatively low 

false negative rates, indicating they still reliably detect true water pixels under unfamiliar 

conditions. 
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5.3.5. Transferability analysis  
In these experiments, we assessed the spatial and temporal transferability of classifiers by 

filtering the primary dataset accordingly. For spatial transferability, classifiers were trained on 

data from one region – either NEGIS or Watson – and tested on the other across all years. 

This simulates applying a model trained in one geographic area to a different, unseen area. 

For temporal transferability, classifiers were trained on data from either 2018 (a low melt 

year) or 2019 (a high melt year) and tested on the other across all regions. This setup 

evaluates how well models generalise across contrasting melt conditions. Together, these 

tests provide insight into classifier adaptability under varying spatial and temporal scenarios, 

supporting informed model selection for real-world applications. 

5.3.5.1. Spatial transferability  

Overall, classifiers performed better when trained on NEGIS and tested on Watson, 

achieving accuracies exceeding 0.9. In contrast, training on Watson and testing on NEGIS 

resulted in lower performance, with accuracies averaging closer to 0.8 (Figure 5.14). 

In the NEGIS to Watson transfer, RF was the strongest performer, achieving the highest 

accuracy (0.96 ± 0.009), outperforming all other classifiers. SVM (0.96 ± 0.01) and GBDT 

(0.95 ± 0.01) followed closely, demonstrating strong generalization across regions. In 

contrast, ME performed the worst, achieving only 0.78 ± 0.013. 

For the Watson to NEGIS transfer, GBDT achieved the highest accuracy (0.91 ± 0.01), with 

RF following closely (0.90 ± 0.01). However, SVM (0.75 ± 0.01) and KNN (0.78 ± 0.019) 

experienced the largest performance declines compared to their NEGIS to Watson results. 

ME remained the weakest performer (0.66 ± 0.009), reinforcing its poor transferability across 

spatial domains. 

Among all classifiers, CART exhibited the highest variability, with a standard deviation of 

0.052 for NEGIS to Watson and 0.020 for Watson to NEGIS, highlighting its inconsistent 

performance. RF was the most stable for NEGIS to Watson, showing the lowest variability 

(0.0089), while ME exhibited the least variability for Watson to NEGIS (0.009), despite its 

poor performance. 

RF and GBDT were the most transferable classifiers, both with a combined average 

accuracy of 0.93 across both transfer directions. ME was the least transferable, with a low 

combined accuracies of 0.72 and larger performance drops when applied to new areas. 
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Figure 5.14: Results from 20 repeated runs evaluating spatial transfer scenarios. Accuracy 
(top) and Kappa (bottom) scores are displayed for models trained on NEGIS and tested on 
Watson (left) and models trained on Watson and tested on NEGIS (right). 

Classification errors varied markedly between the two spatial transfer directions (Figure 

5.15). When trained on NEGIS and tested on Watson, classifiers such as CART and KNN 

produced notably more false positives–for instance, CART misclassified 626 non-water 

pixels as water, while KNN recorded 333 false positives–indicating a tendency to over-

predict water presence in the Watson region. This overprediction pattern was consistent 

across most classifiers in this transfer direction, with false negatives remaining relatively low 

(e.g., RF: 72 false negatives, GBDT: 71). In contrast, classifiers trained on Watson and 

tested on NEGIS showed a reversal in error profile, with substantially more false negatives. 

CART, for example, produced 752 false negatives–over four times more than its false 

positives–while SVM misclassified 1903 water pixels as non-water, reflecting a consistent 

under-prediction of water features in the NEGIS environment. 
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Figure 5.15: Cumulative confusion matrices summarizing classification outcomes from 20 
repeated runs across two spatial transfer scenarios: models trained on NEGIS and tested on 
Watson (left) and models trained on Watson and tested on NEGIS (right).  

5.3.5.2. Temporal transferability  

The temporal transferability of classifiers was assessed by training on one year (2018 or 

2019) and testing on the other (Figure 5.16). Overall, classifiers performed slightly better 

when trained on 2019 and tested on 2018 data, with an average accuracy of 0.96 compared 

to 0.94 for the reverse direction (2018 to 2019). However, the difference in performance 

between the two directions is minimal, indicating that classifiers can generalize well across 

years with only a small variation in accuracy.  

When training on 2018 and testing on 2019 data, classifier performance varied. RF 

maintained strong and consistent accuracy at 0.96 ± 0.0007, followed closely by GBDT at 

0.96 ± 0.0012. Both classifiers exhibited low standard deviation, indicating stable 

performance across iterations. In contrast, MD struggled in this transfer scenario, achieving 

the lowest accuracy (0.86 ± 0.0033) with the highest variability, reflecting its inconsistency in 
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adapting to changing melt conditions. 

In the reverse direction, training on 2019 and testing on 2018 data, SVM emerged as the top 

performer with the highest accuracy (0.98 ± 0.0003) and the lowest standard deviation, 

suggesting good stability across temporal shifts. RF (0.96 ± 0.0007) and GBDT (0.96 ± 

0.0011) maintained strong performance with similarly low variability, reinforcing their 

robustness in generalizing across years. MD remained the weakest performer (0.91 ± 

0.0032), showing the highest variability among classifiers, further highlighting its poor 

adaptability to varying melt conditions. 

Across both temporal transfer directions, SVM emerged as the most transferable classifier, 

achieving the highest average accuracy (0.97) and the lowest variability, demonstrating 

strong generalization across years. RF, GBDT, ME, and KNN all performed similarly (0.96 

average accuracy), maintaining strong generalization but with slightly lower accuracy 

compared to SVM. In contrast, MD was the least transferable, with the lowest average 

accuracy (0.88) and the highest variability, indicating its difficulty in adapting to different 

temporal conditions. 
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Figure 5.16: Results from 20 repeated runs evaluating temporal transfer scenarios. Accuracy 
(top) and Kappa (bottom) are displayed for models trained in 2018 and tested in 2019 (left) and 
trained in 2019 and tested in 2018 (right). 

Classification errors revealed clear directional differences between the two interannual 

transfer scenarios (Figure 5.17). When trained on 2018 (the lower melt year) and tested on 

2019 (the high melt year), classifiers tended to produce higher false positives, especially 

CART (23,139), MD (34,000), and SVM (10,260). This reflects a tendency to over-predict 

meltwater features. By contrast, when trained on 2019 and tested on 2018, classifiers more 

often under-predicted water, with higher false negatives observed in CART (6,063), and ME 

(5,850), indicating a struggle to detect the subtler melt features typical of 2018.  
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Figure 5.17: Cumulative confusion matrices summarizing classification outcomes from 20 
repeated runs across two spatial transfer scenarios: models trained on NEGIS and tested on 
Watson (left) and models trained on Watson and tested on NEGIS (right).  

5.3.5.3. Overall transferability  

RF emerged as the most transferable classifier across both spatial and temporal domains, 

achieving the highest combined accuracy (0.92) with minimal variation, demonstrating strong 

generalization capabilities. SVM performed well in temporal transfer, particularly from 2019 

to 2018 (0.98), but struggled with spatial transfer, dropping to 0.75 when tested from Watson 

to NEGIS, highlighting its sensitivity to spatial variability. GBDT performed well in spatial 

transfer from Watson to NEGIS (0.89) but showed a decline in the reverse direction (0.74). It 

also ranked second in temporal transfer, maintaining solid generalization across years. KNN 

performed well spatially but with slightly lower accuracy than the top classifiers, while ME 

and MD were the least transferable, with the lowest combined accuracies (0.72 for ME and 

0.88 for MD), reflecting their difficulty in adapting to different spatial and temporal conditions. 
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The variability in classifier transferability aligns with spectral differences across datasets, 

highlighting the role of spectral diversity in shaping generalization performance. Section 

5.3.5.4 explores these spectral influences in greater detail, examining how variability across 

key bands affects classifier adaptability across spatial and temporal domains. 

5.3.5.4. Spectral variability and its impact on classifier transferability 

Spectral variability appears to play a key role in classifier adaptability, with broader spectral 

distributions improving generalization. 

In spatial transferability, classifiers trained on NEGIS outperformed those trained on Watson, 

reflecting higher spectral variability in NEGIS across B1–B12 (coastal blue to shortwave 

infrared) (Figure 5.18). B1 (443 nm) in NEGIS had a standard deviation of 0.162 compared 

to 0.115 in Watson, while B3 (560 nm) showed greater variability in NEGIS (0.153) than in 

Watson (0.112) (Figure 5.19). This broader spectral range provided a more diverse training 

set, improving classifier robustness when applied to Watson’s more uniform spectral 

conditions. In contrast, Watson-trained classifiers struggled in NEGIS, where greater 

spectral variability, particularly in B3 (~560 nm) and B6 (~740 nm), led to higher 

misclassification rates. 

In temporal transferability, classifiers trained on 2019 generalized better to 2018 than vice 

versa, aligning with higher spectral variability in 2019 across B2–B7 (blue to near-infrared) 

and B11–B12 (shortwave infrared) (Figures 5.20 and 5.21). B1 (443 nm) variability was 

higher in 2019 (std = 0.163) than in 2018 (0.128), and B11 (1610 nm) showed similar trends 

(0.153 vs. 0.132). This wider range of melt conditions in 2019 allowed classifiers to develop 

more adaptable decision boundaries, while 2018-trained models struggled with the more 

complex spectral conditions of 2019. However, the difference in accuracy between the two 

temporal transfer directions was minimal, indicating classifiers generalized well across years 

with only small variations in performance. 
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Figure 5.18: Histograms of reflectance values for water pixels across all 12 spectral bands, 
generated by extracting water pixel reflectance values from training datasets for NEGIS and 
Watson and binning them into frequency distributions for each spectral band. 

 

Figure 5.19: Standard deviation of reflectance values for water pixels across all 12 spectral 
bands in NEGIS and Watson, generated by computing the per-band standard deviation of 
reflectance values from water pixels in the training datasets for each year. 
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Figure 5.20: Histograms of reflectance values for water pixels across all 12 spectral bands, 
generated by extracting water pixel reflectance values from training datasets for 2018 and 2019 
and binning them into frequency distributions for each spectral band. 

 

Figure 5.21: Standard deviation of reflectance values for water pixels across all 12 spectral 
bands in 2018 and 2019, generated by computing the per-band standard deviation of 
reflectance values from water pixels in the training datasets for each year. 
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5.3.6. Training data  
Optimizing ML models for remote sensing requires a clear understanding of how training 

data configurations–including their size, composition, and quality–impact classification 

performance. Since creating high-quality training datasets is resource-intensive, this study 

systematically evaluated the effects of (1) dataset size, (2) input features derived from 

training data, and (3) label accuracy. These experiments explored how training dataset 

volume affects model reliability, how the selection of training features (e.g., raw bands vs 

indices) influences accuracy, and how robust different classifiers are to noisy or imperfect 

training labels. The following sections summarize key findings, highlighting the training data 

characteristics that most strongly influence classification accuracy and generalization. 

5.3.6.1. Training data number 

In this assessment, the degree to which the number of training data points influences 

classifier accuracy was evaluated, as well as variability in accuracy across repeated training 

runs. This was done, using the primary dataset described in Section 5.2.3.1, which spans 

multiple regions of the GrIS from 2017 to 2020.  

Figure 5.22 illustrates the impact of increasing training data size from 20–80% of the primary 

dataset (8,000–32,000 samples) on classifier accuracy. While larger datasets generally 

improve performance, the rate of improvement varies across classifiers. GBDT and RF 

reach near-peak accuracy with relatively small datasets, compared to other classifiers that 

require more data to achieve similar performance. GBDT achieves 0.96 ± 0.002 accuracy 

with just 10% of the training data, increasing only 0.012 to 0.97 ± 0.001 at 50%, indicating 

diminishing returns beyond this point. Similarly, RF starts at 0.95 ± 0.001 (10%) and reaches 

0.96 ± 0.001 (50%), showing stable performance even with limited data. 

By contrast, CART and KNN rely more on larger training datasets, with accuracy continuing 

to increase across all training percentages. CART improves from 0.94 ± 0.004 (10%) to 0.95 

± 0.002 (50%), while KNN follows a similar trend, increasing from 0.94 ± 0.001 to 0.95 ± 

0.001. This suggests that while they can achieve competitive accuracy, they require more 

data for stability. At the lower end, MD performs the worst, achieving 0.78 ± 0.004 accuracy 

with little improvement as training data increases, indicating difficulty in distinguishing 

between classes regardless of dataset size. 

Interestingly RF shows a slight accuracy decline at higher training percentages, likely due to 

overfitting from redundant or noisy samples. This suggests that 80% training data may have 
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been excessive, and a smaller training size (50–60%) likely offers a better balance between 

accuracy and efficiency. 

 

Figure 5.22: Accuracy trends for classifiers as a function of training dataset size. Each panel 
illustrates the accuracy progression for each classifier as the percentage of training data 
increases from 20% to 80%. The combined plot compares all classifiers except MD: blue for 
CART, orange for GBDT, green for KNN, pink for ME, purple for RF, and grey for SVM. Note: MD 
is excluded from the combined plot due to its significantly lower performance and higher 
variability. 
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5.3.6.2. Number of input features 

As described in Section 5.2.5.3.3, the number of features refer to the number of spectral 

bands and derived indices used as input variables for classification. The feature subset 

analysis was conducted using an iterative approach, where classifiers were trained with 

progressively larger subsets of features, ranging from 1 to 25. The order of feature inclusion 

followed the original sequence in which spectral bands and indices were introduced during 

data preparation (Tables 2.2 and 2.3), providing a consistent and reproducible framework for 

evaluating classifier performance as feature numbers increase. 

The results for this experiment indicate that classifier accuracy improves rapidly with the 

inclusion of the first few features before reaching a performance plateau (Figure 5.23). For 

example, GBDT achieves its highest accuracy (0.98 ± 0.003) with 7 features, while RF 

reaches near-optimal performance (0.95 ± 0.003) with just 3 features. As seen in Tables 2.2 

and 2.3, these first three features correspond to B1 (Coastal aerosol), B2 (Blue), and B3 

(Green). This suggests that both classifiers require relatively few input variables to perform 

well. In contrast, CART, KNN, and SVM exhibit a more gradual improvement, stabilizing at 

their peak accuracies of 0.96 ± 0.003, 0.962 ± 0.003, and 0.95 ± 0.005, respectively, only 

after incorporating 10–12 features. These models require more information to match the 

performance of GBDT and RF. 

MD demonstrates lower accuracy compared to all other classifiers, stabilizing at just 0.78 ± 

0.01 after four features. This performance is not only weak but also highly variable, with a 

standard deviation of approximately ± 0.01, indicating inconsistency across different runs. 

Similarly, ME shows a steady but slow increase in accuracy, reaching its highest 

performance (0.95 ± 0.004) only at the near maximum number of input features (24).  
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Figure 5.23: Accuracy trends for classifiers as a function of the number of features. Each panel 
illustrates the accuracy progression for each classifier as features are incrementally added. 
The combined plot compares all classifiers: blue for CART, orange for GBDT, green for KNN, 
pink for MD, maroon for ME, purple for RF, and grey for SVM.  
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5.3.6.3. Impact of spectral indices on classifier performance 

This experiment assessed whether incorporating derived spectral indices alongside raw 

spectral bands improves classification accuracy sufficiently to justify the additional 

computational effort required for their calculation. To investigate this, three training 

configurations were compared: one using only the raw spectral bands (B1–B12, 12 

features), one using only derived indices (Section 5.2.2.3, 13 features), and another 

combining these bands with all derived spectral indices (25 features in total). 

Results indicate that incorporating spectral indices alongside raw spectral bands improves 

classification accuracy for most algorithms (Figure 5.24). RF and GBDT, which already 

perform well using only a small subset of spectral bands (accuracies of 0.974 ± 0.003 and 

0.975 ± 0.003, respectively), exhibited modest but consistent gains when spectral indices 

were included, with improvements of 0.7% and 0.8%, respectively. Classifiers with lower 

baseline performance–such as CART and KNN–showed more variable responses. CART 

demonstrated the most pronounced improvement, increasing by 1.2% from 0.945 ± 0.005 to 

0.956 ± 0.003 with the combined feature set, while KNN showed a marginal decline (−0.4%). 

MD was the only classifier to show a substantial drop in accuracy (−3.1%), indicating that the 

addition of spectral indices may introduce noise or redundancy for this distance-based 

method. 

Spectral indices alone generally underperformed compared to raw bands, suggesting that 

while they capture some spectral information, they are most effective when used in 

conjunction with the full spectral profile. These findings suggest that the additional 

computational cost of calculating spectral indices may be justified, particularly when 

enhancing weaker classifiers or designing a general-purpose classification approach. 

However, for high-performing classifiers such as RF and GBDT, the marginal gains may not 

outweigh the increased processing demands in operational settings where speed or 

simplicity is prioritized. 
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Figure 5.24: Comparison of classifier performance (accuracy) across models using spectral 
bands only, derived indices only and spectral bands combined with indices. The box spans 
the IQR, representing the middle 50% of the data (from the 25th to the 75th percentile). The 
whiskers extend to 1.5 times the IQR, showing the range of most data points, while individual 
circles represent outliers, indicating performance deviations across iterations. 
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5.3.6.4. Label inaccuracies  

By introducing increasing levels of noise and analysing performance degradation, this 

assessment provided insight into how much label error a classifier could tolerate before 

experiencing significant drops in accuracy. This is particularly important for real-world 

applications where perfectly labelled datasets are rarely available, and robustness to noise is 

an important factor in model selection. 

As label inaccuracies increased from 1% to 20%, classifier performance exhibited a clear 

trend of gradual degradation, though the rate and extent of decline varied across models 

(Figure 5.25). GBDT and RF, which had the highest initial accuracy, responded differently to 

increasing inaccuracies. GBDT, which started at 0.99 at 1% inaccuracies, experienced a 

substantial drop to 0.88 at 20%, representing an 11 % accuracy loss. In contrast, RF, which 

began at 0.97, declined more gradually to 0.94, resulting in only a 2.6% decrease. These 

results indicate that while GBDT is the best-performing classifier in low-inaccuracy 

conditions, it is more susceptible to label inaccuracies than RF, which maintains better 

stability at higher levels of noise. 

Among the other classifiers, KNN and CART exhibited moderate resilience. KNN 

experienced a 6.0% accuracy loss, showing that while it is affected by label inaccuracies, it 

degrades less severely than GBDT. CART demonstrated even greater robustness, with only 

a 2.3% decline. SVM also showed relatively stable performance, with a gradual decline from 

0.95 at 1% inaccuracies to 0.93 at 20% inaccuracies. 

Among the remaining classifiers, performance under label noise varied. MD, which had the 

lowest initial accuracy at 0.78, showed little variation but remained the weakest performer 

throughout, ending at 0.77 at 20% inaccuracies. ME, however, experienced the steepest 

decline of all classifiers, plummeting from 0.95 to 0.65–representing a 32% accuracy loss. 

This suggests that ME is highly sensitive to mislabelled data, struggling to maintain 

classification performance even at moderate levels of label inaccuracy. 
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Figure 5.25: Accuracy of classifiers under increasing noise levels, showing individual 
performance trends for CART, GBDT, KNN, MD, ME, RF, and SVM, along with a combined 
overview. Note: No shading is included as this experiment was conducted with a single run 
due to computational constraints. 
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5.3.6. Ranking classifiers 
To synthesize the results from all classification experiments, the seven classifiers were 

ranked based on their performance across multiple evaluation criteria. This ranking 

framework provides a holistic assessment of classifier reliability in supraglacial meltwater 

mapping, highlighting the most robust models for different applications. The evaluation 

considers ten key metrics derived from previous sections, including overall accuracy 

(Sections 5.3.3.1–5.3.3.3), spatial transferability (Section 5.3.4.1), temporal transferability 

(Section 5.3.4.2), sensitivity to training data size (Section 5.3.5.1), feature selection (Section 

5.3.5.2), the impact of spectral indices (Section 5.3.5.3), and robustness to label noise 

(Section 5.3.3.4).  

Both absolute performance and stability were considered, where absolute performance was 

determined through accuracy metrics and stability was assessed using the standard 

deviation of classifier performance across multiple experimental iterations, with lower values 

indicating greater reliability across datasets and conditions.  

All evaluation tests are summarized in Table 5.6, with results detailed in Table 5.7, while 

Figures 5.26 and 5.27 provide a visual breakdown of classifier rankings across different 

assessment categories. The combined rankings in Figure 3.26 were derived by computing 

mean ranks across three key evaluation criteria: overall performance, transferability, and 

training data sensitivity, described in Table 3.1. 

In terms of overall accuracy, GBDT emerged as the most accurate classifier, consistently 

achieving high accuracy across all validation tests. RF closely followed, demonstrating 

notable strength in generalizing to previously unseen datasets. CART ranked third, 

particularly excelling in manual verification for the Watson region. KNN achieved moderate 

yet stable accuracy, ranking fourth, while ME, ranked fifth, exhibited inconsistent results 

across validation tests. SVM performed less effectively, ranking sixth overall, and MD 

consistently demonstrated the lowest performance across all validation assessments. 

Assessments of transferability indicated that RF was the top-performing classifier, excelling 

in both spatial and temporal transferability. GBDT ranked second, providing reliable results, 

though its adaptability was somewhat limited compared to RF. SVM demonstrated strength 

primarily in temporal transferability, securing third place, but struggled with spatial 

generalization. CART and KNN maintained moderate transferability rankings at fourth and 

fifth place, respectively. ME and MD showed poor transferability, ranking sixth and seventh 

due to consistent underperformance. 
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Evaluating sensitivity to variations in training data, RF again ranked highest, demonstrating 

robustness to changes in dataset size, feature selection, and label noise. GBDT ranked 

second, showing high sensitivity to label noise despite performing well in other sensitivity 

metrics. CART ranked third, maintaining stability across various tests, while KNN, in fourth 

place, required larger datasets to achieve optimal performance. SVM and ME ranked fifth 

and sixth, respectively, reflecting moderate to significant sensitivity to training data 

variations. MD was consistently the weakest performer across all sensitivity tests, ranking 

last. 

The classifiers were finally categorized based on these evaluations into optimal, efficient, 

suboptimal, and inefficient groups. RF and GBDT were classified as optimal due to their 

strong generalization capabilities and high accuracy, respectively, even though GBDT was 

sensitive to label noise. CART and KNN were considered efficient, suitable under specific 

dataset conditions, though limited in flexibility. SVM and ME were categorized as suboptimal 

due to their inconsistent performance and limited generalization capabilities. MD was 

classified as inefficient, consistently underperforming across all evaluations and thus not 

recommended for supraglacial hydrology applications. 
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Table 5.6: Summary of classification evaluation tests, categorized by Overall Performance, 
Transferability, and Training Data Sensitivity. Overall Performance tests measure classifier 
accuracy and consistency across different validation techniques. Transferability tests evaluate 
the ability of classifiers to generalize across spatial and temporal domains. Training Data 
Sensitivity tests analyse how classifiers respond to variations in dataset size, input feature 
selection, spectral indices, and label noise. The reference section column provides links to 
detailed descriptions of each test in the main text. 

Test name Test category  Description Reference 
section 

Repeated Validation Overall accuracy  Assesses classifier consistency across multiple 
random splits of the dataset, measuring stability 
in performance. 

Section 5.3.3.1 

K-Fold Validation Overall accuracy  Evaluates classifier generalization by training 
and testing across multiple data folds, ensuring 
all samples are used for validation. 

Section 5.3.3.2 

NEGIS Manual 
Dataset 

Overall accuracy  Compares classifier outputs against a manually 
labelled dataset from NEGIS (2019, high-melt 
year) to assess real-world accuracy. 

Section 5.3.3.3.1 

Watson Manual 
Dataset 

Overall accuracy  Similar to NEGIS manual verification but applied 
to Watson (2018, low-melt year), testing 
classifier reliability under different melt 
conditions. 

Section 5.3.3.3.2 

Spatial Transferability Transferability  Tests how well classifiers generalize when 
trained in one region (e.g., Watson) and applied 
to another (e.g., NEGIS). 

Section 5.3.4.1 

Temporal 
Transferability 

Transferability  Evaluates how well classifiers trained in one 
melt year (e.g., 2018) perform when applied to 
another year (e.g., 2019). 

Section 5.3.4.2 

Training Data 
Number 

Training data 
sensitivity 

Analyses how classifier performance varies with 
different training dataset sizes, identifying 
models requiring more data for stability. 

Section 5.3.5.1 

Feature Number 
Sensitivity 

Training data 
sensitivity 

Examines how classification accuracy changes 
when different numbers of spectral bands and 
indices are used as input features. 

Section 5.3.5.2 

Derived Indices Training data 
sensitivity 

Tests whether including additional spectral 
indices alongside raw bands improves classifier 
performance. 

Section 5.3.5.3 

Noise Sensitivity Training data 
sensitivity 

Introduces increasing levels of label noise to 
evaluate classifier robustness under real-world 
uncertainties. 

Section 5.3.5.4 



215 
 

 

 

Figure 5.26: Combined rankings of all classifiers, where 1 represents the best-performing 
classifier and 7 the worst. CART is orange, GBDT is light blue, KNN is Green, MD is yellow, ME 
is black, RF is dark blue, SVM is pink. Classifiers are grouped into three evaluation categories:  
overall performance, Transferability, and Training Data Sensitivity. The final combined ranking 
is derived by assessing classifier consistency across multiple evaluation metrics within each 
category. Further details are provided in Table 5.6. 
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Figure 5.27: Rankings of all classifiers for each individual test, where 1 (dark blue) represents 
the best-performing classifier and 7 (light blue) represents the worst-performing. "W" refers to 
Watson, "N" refers to NEGIS, "19" denotes the 2019 dataset, and "18" denotes the 2018 
dataset. “>” indicates the direction of transfer, with the classifier trained on the first dataset 
and tested on the second Refer to Table 5.6 for detailed descriptions of the individual tests.  
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Table 5.7: Summary of classifier rankings based on overall performance, transferability, and 
training data sensitivity. Each classifier is ranked from 1 (best) to 7 (worst), with strengths and 
weaknesses identified based on evaluation tests. 

.  

  

Classifier Rank Strengths Weaknesses 

RF 1 Best generalization; robust 
to spatial & temporal 
transfer; handles noisy 
data well 

Slightly lower accuracy than 
GBDT; some sensitivity to 
dataset size; lower ranking 
in tests involving low melt 
conditions 

GBDT 2 Highest accuracy in 
validation; performs well 
with small datasets 

Struggles with label 
inaccuracies 

CART 3 Consistent performance; 
robust to noise 

Lower ranking in major 
accuracy tests; weaker 
temporal transferability 

KNN 4 Moderate stability; decent 
spatial generalization 

Requires larger training 
datasets; weaker temporal 
transferability 

SVM 5 Strong temporal 
generalization; good 
manual verification 
performance 

Struggles with spatial 
transferability; highly 
sensitive to feature selection 

ME 6 Performed well in 
controlled manual 
validation 

Poor transferability; 
inconsistent across datasets 

MD 7 None Underperforms in all tests; 
highly sensitive to noise and 
dataset variations 
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5.4. Discussion 
ML is playing an ever-increasing role in remote sensing applications for supraglacial 

meltwater feature delineation, offering scalable, automated alternatives to traditional 

threshold-based methods, which often struggle to generalize across large datasets and 

variable melt conditions. However, the effectiveness of different ML algorithms in classifying 

meltwater features remains underexplored, particularly in the context of cloud-based 

processing environments like GEE. This study systematically evaluates multiple classifiers, 

assessing their accuracy, transferability across space and time, as well as their sensitivity to 

training data variation–key considerations for reliable large-scale hydrological mapping. 

The following sections discuss the leading classifiers identified in this study, challenges in 

classifier performance, the role of spectral variability in transferability, and the optimization of 

training data selection. Additionally, the potential for holistic meltwater feature mapping was 

explored and the broader implications of the findings of this study for future research and 

operational applications. 

5.4.1. Interpretation of evaluation approaches 

In the context of large-scale supraglacial meltwater mapping on the GrIS, understanding how 

classifiers perform under varying data conditions is essential for both scientific and 

operational applications. Although all three evaluation methods used in this study–repeated 

validation, cross-validation, and independent manual comparison–report accuracy and 

Kappa scores, they assess distinct aspects of model performance. 

Repeated and cross-validation test internal consistency and sensitivity to data variability 

within the primary dataset, helping to identify overfitting and assess how reliably a classifier 

performs when trained on different partitions of familiar data. The high scores achieved in 

these tests demonstrate how well models can replicate known patterns. In contrast, manual 

dataset comparisons offer a more stringent test of generalization, evaluating performance on 

fully independent images captured in different years and regions, and labelled using 

alternative methodologies. This simulates real-world deployment, where models encounter 

unfamiliar spectral and environmental conditions. Performance declines in these tests–

particularly in cases like Watson 2018, where subtle melt signals and low spectral contrast 

lead to elevated false positive rates. 

The divergence in outcomes between evaluation methods also highlights a key distinction: 

while internal validation emphasizes accuracy within known domains, independent validation 

better reflects a model’s precision and reliability in novel settings. For example, RF maintains 
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balanced recall and precision across diverse conditions, while classifiers like CART may 

overestimate meltwater extent in unfamiliar regions. 

Ultimately, this multi-faceted framework offers a fuller picture of both technical capability and 

practical utility. Internal validation is best suited for model development and benchmarking, 

while independent validation provides a more realistic assessment for operational use. The 

relative weight placed on each should reflect the intended application–whether the goal is 

theoretical insight or robust deployment across space and time. 

5.4.2. RF and GBDT as leading classifiers 
A key aim of this study is to assess how different ML classifiers perform in supraglacial 

meltwater mapping. Among the classifiers evaluated, RF and GBDT emerged as the most 

effective models for supraglacial meltwater classification. RF has been widely used in 

remote sensing applications for SGL detection (e.g., Wangchuk & Bolch, 2020; Hu et al., 

2021; Dirscherl et al., 2020, 2021; Dell et al., 2022, 2024; Yuan et al., 2020; Halberstadt et 

al., 2020; Wang & Sugiyama, 2024). This study reaffirms RF’s strengths but also highlights 

the potential of GBDT, which has yet to be used for this purpose. GBDT ranked first in 

overall performance based on repeated validation and cross-validation accuracy, both of 

which are in-dataset validation methods that assess model consistency by resampling 

subsets of the same dataset. In contrast, RF ranked first in transferability, demonstrating 

superior spatial and temporal generalization–an essential capability for real-world 

supraglacial mapping, where models must accommodate variations in surface reflectance, 

illumination conditions, and meltwater expressions that were not represented in the training 

data. This distinction suggests that while GBDT is highly effective when applied to datasets 

with similar spectral characteristics to the training set, excelling in scenarios where the 

model does not need to extrapolate beyond familiar conditions, RF is better suited for large-

scale, multi-year meltwater mapping due to its robustness across heterogeneous 

environments and its ability to generalize to unseen spectral and temporal variations.  

A key limitation of GBDT is its sensitivity to label noise–an important factor in operational 

settings where training data quality may be variable. Although GBDT outperformed RF under 

ideal training conditions, its performance degraded more sharply when noise was 

introduced, limiting its suitability for large-scale applications without extensive label 

refinement. These findings indicate that RF and GBDT should not be viewed as competing 

classifiers but rather as complementary models with distinct strengths. A hybrid classification 

framework integrating GBDT’s precision with RF’s robustness could provide an optimized 

solution for large-scale supraglacial hydrology mapping. One potential approach would be to 
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use GBDT in regions with high spectral consistency, where its precision is most effective, 

while deploying RF in more heterogeneous or uncertain areas to ensure broader 

generalization. Alternatively, ensemble or meta-learning strategies could be explored, 

combining the strengths of both models through weighted predictions or context-aware 

switching to enhance classification accuracy across diverse conditions. This warrants further 

investigation to determine whether such an approach could improve supraglacial meltwater 

mapping on the GrIS.  

5.4.3. Challenges in classifier performance for large-scale 
meltwater mapping 
While RF and GBDT performed best, other classifiers struggled with key challenges that limit 

their usefulness for large-scale supraglacial meltwater mapping. MD was the weakest, failing 

to separate meltwater from ice and shadows, likely because it assumes clear differences 

between classes, which is not the case in complex supraglacial environments. This led to 

high misclassification rates and poor adaptability across regions and years, making MD 

unreliable for tracking meltwater changes. SVM showed promise in tracking year-to-year 

melt changes within the same region but struggled when applied to different locations, 

limiting its usefulness for large-scale studies. Previous work by Chouksey et al. (2021) and 

Halberstadt et al. (2020) found that SVM reduced false positives in challenging conditions 

like cloud shadows, yet these results show it has trouble handling different spectral patterns 

across space.  

CART consistently overfit the training data, performing well in controlled conditions but failing 

when applied to different years or regions. This makes it unreliable for large-scale mapping, 

where adaptability is crucial. KNN required vast, high-quality training datasets to function 

effectively. Its accuracy improved with more data, but it remained computationally slow, 

making it impractical for real-time or large-scale applications in GEE. ME was inconsistent, 

occasionally producing strong results but highly sensitive to label inaccuracies. When 

training data contained moderate errors, the accuracy of ME dropped by over 30%, making it 

unreliable for real-world applications where perfect labels are rarely available. While some of 

these methods may still have niche uses–such as SVM for detailed multi-year regional 

studies –the results of this analysis show that RF and GBDT are the best choices for 

reliable, transferable meltwater classification on the GrIS. 

5.4.4. The role of spectral variability in classifier transferability 
This study finds that classifier performance was generally higher [lower] when trained on 

NEGIS [Watson] and tested on Watson [NEGIS], likely due to the greater spectral variability 
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present in NEGIS. In NEGIS, meltwater features coexist with fresh snow, providing a 

stronger contrast that aids classifier performance. In contrast, frozen-over SGLs in Watson 

offer a more subtle spectral contrast, which makes distinguishing meltwater from non-

meltwater areas more challenging. Similarly, classifiers trained on the high melt year (2019) 

generalized more effectively to the low-melt year (2018) than vice versa, likely due to the 

highly variable melt conditions of 2019, which led to greater spectral variability. Greater 

spectral variability in the training data enables classifiers to develop a more adaptable 

decision boundary, improving performance when applied to the more spectrally uniform 

conditions of the low-melt year.  

The manual verification experiments (Section 5.3.3.3), which tested classifiers on 

independent datasets from both NEGIS (2019) and Watson (2018), further reinforce these 

observations. For example, classifiers trained on spectrally homogeneous areas, like 

Watson (2018), where meltwater features are sparse and subtle, tend to be overly sensitive 

to the few visible meltwater areas, leading to the detection of all actual meltwater (reducing 

false negatives to 0%), but this sensitivity also causes the misclassification of non-meltwater 

areas as meltwater, resulting in an overestimation of meltwater extent. This overestimation 

was less pronounced in NEGIS, where the contrast between meltwater and non-water 

surfaces, such as snow, was stronger, allowing classifiers to more effectively distinguish 

between water and non-water areas. These patterns further highlight the importance of 

spectral diversity in training data.  

5.4.5. Optimising training data selection 
Optimizing training data for generalization involves more than just selecting scenes with high 

spectral variability; it also requires careful consideration of dataset size, feature selection, 

and tolerance to annotation error to ensure consistent performance across diverse 

conditions–especially given the challenges of large-scale classification in the dynamic and 

heterogeneous environments of the GrIS. 

While increasing training data size generally improves classifier accuracy, the relationship is 

not linear, and additional data does not always yield proportional gains. The fact that GBDT 

and RF reached peak accuracy with only around half of the available training data–despite 

points being randomly selected–suggests that classifier performance does not necessarily 

depend on large volumes of data. This finding is particularly relevant for large-scale 

operational mapping, where computational efficiency and training data availability are key 

constraints. In contrast, lower-performing classifiers like CART and KNN appear to benefit 

more consistently from larger training datasets, with performance continuing to improve as 

more data are added. This suggests that some models are more reliant on volume than 
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others. The slight decline in RF accuracy at higher training percentages may also hint at 

overfitting, serving as a caution against assuming that larger training datasets will always 

lead to better performance. 

Beyond dataset size, the choice of input features matters more than simply including every 

spectral band and index available, suggesting that adding more variables does not always 

translate to better results. Instead, a minimal subset of features–added in S2 band order–

was often sufficient, reducing computational burden while maintaining accuracy. This is 

particularly relevant in cloud-based platforms like GEE, where efficiency is critical for large-

scale classification. Interestingly, the inclusion of spectral indices had only a minor effect on 

accuracy. While some studies (e.g., Wang and Sugiyama, 2024; Dirscherl et al., 2020) have 

emphasized the importance of derived indices for meltwater delineation, the findings from 

this study suggest that RF and GBDT extract enough information from spectral bands alone, 

with only marginal improvements (~ 0.7%) when indices were included. This suggests that 

indices may not be essential for these classifiers in large-scale meltwater mapping.  

Another important aspect of training data selection is its resilience to labelling inaccuracies, 

as real-world datasets are rarely free from annotation errors. Given the time-intensive nature 

of manual labelling, it is important to consider whether classifiers should be trained on highly 

refined datasets or if they can tolerate some level of noise. Findings from this study reveal 

that classifier performance declines as label noise increases, but not all classifiers are 

affected equally. GBDT is highly sensitive to annotation errors, while RF remains stable, 

suggesting that it can better handle the inconsistencies that inevitably arise in large-scale 

mapping efforts. This makes RF a strong candidate for operational applications, where 

absolute labelling consistency across all datasets may not be achievable. 

These results provide a foundation for future efforts to optimise training data selection in ML-

based supraglacial hydrology mapping. Increasing dataset size alone is unlikely to 

guarantee optimal performance across classifiers. Instead, improving the representativeness 

and spectral diversity of training data may be a more effective strategy, particularly for 

models applied across varied spatial and temporal domains.  

5.4.5. Advancing holistic meltwater feature mapping 

A key finding of this study is the ability of ML classifiers to consistently identify multiple 

supraglacial meltwater features–SGLs, rivers, and slush–across distinct environmental 

conditions, e.g. the high-melt year of NEGIS (2019) and the low-melt year of Watson (2018). 

This represents a shift from many previous studies, which have predominantly focused on 

mapping SGLs in isolation, often neglecting the interconnectivity of supraglacial hydrological 
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features. Recent research increasingly acknowledges that supraglacial hydrology functions 

as a coupled system, with SGLs, rivers, and slush collectively transporting meltwater across 

the ice surface and towards the bed (Glen et al., 2025; Rawlins et al., 2024; Yang and Smith, 

2012; Chu, 2016). The ability of ML classifiers to capture the spatial extent of these features 

in a unified framework enhances the ability to quantify meltwater connectivity, improving 

representations of supraglacial drainage processes. The results from this highlight the 

potential for ML classifiers, when appropriately trained, to move beyond single-feature 

mapping and support a more integrated understanding of supraglacial hydrology. Further 

work will be needed to refine classifiers to better distinguish between feature types and their 

boundaries, but the ability to capture the broader meltwater network represents an important 

step forward. 

5.4.6. Caveats and considerations 
It should be noted that the findings presented here are based on specific datasets and 

methodological choices, including the use of S2 optical imagery, supervised classifiers 

available within GEE, and a training dataset derived from select regions of the GrIS. These 

factors shape the results, and while they offer valuable insights into classifier performance, 

they do not necessarily generalize to all supraglacial environments (e.g., Antarctica), 

different satellite sensors, or alternative classification approaches. Additionally, the 

evaluation is constrained by the spatial and temporal scope of the study. Differences in 

atmospheric conditions (e.g., variable cloud cover or low solar angles), ice sheet surface 

properties (e.g., the presence of cryoconite), and sensor data characteristics (e.g., 

differences in spatial resolution, spectral coverage, or revisit frequency across satellite 

platforms) could influence classification outcomes in other locations or time periods. 

Moreover, while the study explores the impact of training data characteristics, the optimal 

balance between dataset size, feature selection, and label accuracy may vary depending on 

the specific goals of a given application. For example, while the classifiers evaluated here 

perform well within the scope of this study, different applications may impose different 

requirements. Large-scale monitoring initiatives may prioritise efficiency and robustness 

across diverse conditions, whereas targeted process studies may demand higher accuracy 

in resolving subtle feature differences. The optimal training strategy will therefore depend on 

the intended use case. These findings should therefore be interpreted as a guideline rather 

than a prescriptive rule. Future research incorporating additional regions, different sensors 

(e.g., radar, hyperspectral), and alternative classification strategies (e.g., deep learning - not 

currently supported by GEE) will be essential for further refining best practices in 

supraglacial meltwater mapping. 
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5.5. Practical implications and concluding remarks 
This study provides a systematic assessment of ML classifiers for supraglacial meltwater 

mapping, advancing understanding of both model performance and the broader challenges 

of large-scale classification on the GrIS. While remote sensing has long been used to track 

supraglacial hydrology, traditional threshold-based approaches often struggle to generalize 

across regions and melt seasons. By evaluating multiple classifiers within a cloud-based 

framework, this study identifies RF and GBDT as the most effective models for large-scale 

supraglacial meltwater mapping, with RF excelling in transferability and robustness, while 

GBDT offers the highest classification accuracy under controlled conditions. The results 

reinforce that classifier selection should be guided by the intended application, with RF 

proving the most reliable for real-world, large-scale mapping, while GBDT may offer 

advantages in targeted, high-accuracy settings. 

Beyond classifier rankings, this study highlights the critical role of spectral variability in 

training data selection, demonstrating that models trained on spectrally diverse datasets–

such as those from high-melt years (2019) or spatially heterogeneous regions (NEGIS)–are 

more transferable across space and time. This finding challenges the common assumption 

that increasing dataset size alone leads to better generalization. Instead, these results 

emphasize that training data should be curated to maximize spectral diversity, rather than 

indiscriminately expanding labelled datasets. This insight has practical implications for future 

supraglacial meltwater studies, where efficiency in training data selection is crucial for 

scaling classification efforts to the full ice sheet. 

A further contribution of this work is the shift towards a more holistic approach to supraglacial 

hydrology mapping. Unlike previous studies that have primarily focused on SGL 

segmentation, this study demonstrates that ML classifiers can reliably identify multiple 

meltwater features, including supraglacial SGLs, rivers, and slush. This supports the 

emerging view that supraglacial hydrology should be treated as an interconnected system, 

where different meltwater features interact to influence water storage, transport, and 

eventual drainage into the ice sheet. Moving forward, classification frameworks should move 

beyond isolated feature mapping to capture the dynamic evolution of supraglacial hydrology 

in a more integrated manner. 

While this study advances ML-based supraglacial hydrology mapping, it also underscores 

several open challenges that should guide future research. A key limitation of current 

approaches is their reliance on optical imagery, which remains susceptible to cloud 

contamination and low-light conditions. Integrating multi-sensor datasets, such as S1 SAR or 



225 
 

thermal imagery, could improve classification accuracy, particularly in persistently cloudy 

regions. Additionally, while this study focuses on traditional ML classifiers, the growing 

accessibility of deep learning approaches, such as CNNs, presents new opportunities for 

feature extraction and classification in complex melt environments. However, deep learning 

models require large, labelled datasets and significant computational power, necessitating 

further research into their feasibility for supraglacial hydrology applications. 

From an operational perspective, the findings of this study support the scalability of ML-

based supraglacial meltwater classification for real-time monitoring. The strong transferability 

of RF, combined with its resilience to label noise, suggests that it is a viable candidate for 

integration into automated monitoring frameworks on cloud platforms such as GEE. A hybrid 

classification approach, leveraging RF’s adaptability and GBDT’s precision, could provide an 

optimal balance between generalization and accuracy, further enhancing large-scale 

monitoring efforts. The ability to track meltwater evolution over multiple seasons with minimal 

re-training represents an important step toward operationalizing ML for large-scale ice sheet 

hydrology studies. As the GrIS continues to experience increasing melt under a warming 

climate, robust and scalable classification approaches will be critical for monitoring evolving 

hydrological processes.  
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Chapter 6  

Synthesis and conclusions  
This thesis advances research on supraglacial hydrology mapping and monitoring on the 

Greenland Ice Sheet (GrIS) by applying semi-automated remote sensing and machine 

learning (ML) methods to identify, quantify, and track surface meltwater features across the 

ice sheet. These contributions enhance both the understanding of meltwater distribution and 

dynamics on the GrIS, and the methodological approaches used for supraglacial hydrology 

monitoring.  

The overarching aim of this research was to improve understanding of supraglacial 

hydrology on the GrIS through three key objectives, as outlined in Chapter 2: 

1. Better understand how the distribution, evolution, and morphology of 
supraglacial meltwater varies within, and between, high and low melt years. 
Chapter 3 offers insights into how increased surface meltwater may influence future 

ice sheet hydrology by comparing supraglacial meltwater features in southwest 

Greenland during a low-melt year (2018) and a high-melt year (2019), a study which 

is published in the Cryosphere (Glen et al., 2025). 

2. Better understand the spatial and temporal distribution of slush on the GrIS. 
Chapter 4 provides the first near-decadal, ice-sheet-wide assessment of slush 

distribution, revealing its seasonal and regional variability. 

3. Optimize the performance of and understand the trade-offs between ML 
classifiers deployed in the cloud. 
Chapter 5 presents a systematic comparison of the accuracy, transferability, and 

training data dependencies of ML classifiers within Google Earth Engine (GEE). This 

evaluation highlights the strengths and limitations of different classification 

approaches, providing a framework for informing the selection of optimal methods for 

future supraglacial meltwater mapping studies. 
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This thesis was designed to address knowledge gaps in process understanding, 

methodological approaches, and technological scalability in supraglacial hydrology. While 

SGLs and channels have been extensively studied, slush remains underexplored despite its 

critical role in hydrological connectivity and runoff. As the Earth’s climate warms, increasingly 

frequent extreme melt years further complicate understanding of how these meltwater 

features interact and evolve within hydrological drainage systems. Despite forming a 

connected system, meltwater features have often been studied in isolation (e.g., Box & Ski, 

2007; Selmes et al., 2011; Williamson et al., 2017; Sundal et al., 2009), and holistic 

approaches remain limited in spatial and temporal scope. 

Methodological challenges arise from the difficulty of distinguishing SGLs, channels, and 

slush from one another. Many classification methods apply generalized approaches that fail 

to account for their distinct spectral and morphological characteristics of different meltwater 

features, leading to incomplete or inaccurate results. While ML presents a promising 

solution, its application to supraglacial hydrology has so far been relatively limited, with 

previous studies relying on random forest (RF) or select deep learning models, often without 

critical comparison to alternative models (e.g., Wangchuk & Bolch, 2020; Hu et al., 2021; 

Dell et al., 2024). Additionally, key uncertainties persist in prior ML-based studies of 

supraglacial meltwater, particularly regarding optimal training data requirements and the 

transferability of classification models across different regions and melt seasons – a gap that 

has not yet been systematically addressed in existing research.  

Technological limitations further constrain large-scale supraglacial hydrology mapping. 

Traditional approaches relying on locally stored satellite imagery are computationally 

inefficient, limiting large-scale analysis. Cloud-based ML frameworks, such as GEE, offer 

scalable solutions but remain underutilized in this field. Expanding the use of cloud-based 

processing and deep learning frameworks could significantly improve the efficiency and 

accuracy of supraglacial meltwater classification. 

This final Chapter synthesizes the key contributions of this thesis to supraglacial hydrology 

research on the GrIS, summarizing principal findings, emerging research themes, and 

pathways for refining and expanding supraglacial meltwater monitoring. It then discusses 

study limitations and outlines priorities for future work. While this research is focused on the 

GrIS, the findings may also inform supraglacial hydrology studies on mountain glaciers and 

the Antarctic Ice Sheet, where similar remote sensing and classification challenges arise. 
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6.1. Summary of key findings 
This thesis directly addresses the knowledge gaps outlined in Chapter 2 and as briefly 

explained above, the three interconnected studies each contribute to a more comprehensive 

understanding of supraglacial hydrology on the GrIS. 

Chapter 3 compares the distribution, evolution, and morphology of supraglacial meltwater 

features in southwest Greenland during a low-melt year (2018) and a high-melt year (2019). 

By examining the entire supraglacial meltwater system–including SGLs, channels, and 

slush–this research provides new insights into how increased melt influences meltwater 

feature characteristics, SGL behaviour and hydrological connectivity. The results reveal that 

in 2019, meltwater covered 20.8% of the catchment area, compared to only 6.3% in 2018, 

with slush playing a significant role in surface water distribution. Additionally, the study 

highlights the increasing prevalence of small SGLs, which influence early-season surface-to-

bed connections and may impact ice sheet dynamics. These findings emphasize the 

importance of considering all meltwater components in hydrological models and climate 

projections. 

Building on the findings of slush from Chapter 3, the fourth Chapter presents the first near-

decadal, ice-sheet-wide assessment of slush distribution, mapping its extent from 2016 to 

2024 using Sentinel-2 (S2) imagery and RF classification. The results indicate that slush is a 

dominant component of supraglacial hydrology, covering an average of 4.2% of the GrIS 

annually, with strong regional and interannual variability. The SW and NO basins exhibit the 

highest slush coverage, with annual averages of 5.5% and 4.8%, respectively, while the SE 

consistently shows the lowest at just 0.6%. The NO basin stands out as an area of 

increasing slush presence, particularly since 2019. During extreme melt years, slush 

expands significantly, reaching higher elevations than previously observed and exceeding 

prior surface meltwater extent estimates by as much as 14.5 times. Even the lowest increase 

doubles previous estimates. Interannual variability reflects its sensitivity to atmospheric 

conditions, with coverage peaking at 8.3% (144,800 km²) in 2019 and contracting to just 

1.4% (24,400 km²) in 2018. This study also demonstrates the advantages of ML-based 

classification over traditional thresholding techniques, offering a more robust and scalable 

approach for detecting slush. Our results also highlight the need to integrate slush into 

hydrological and climate models to improve predictions of meltwater storage, runoff, and 

hence ice-sheet mass balance. 

The fifth Chapter systematically evaluates a variety of ML classifiers for supraglacial 

meltwater delineation in GEE. By comparing classifier accuracy, transferability, and training 
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data requirements, this work identifies RF and Gradient Boosting Decision Trees (GBDT) as 

the most effective classifiers for large-scale, automated meltwater mapping. The study also 

demonstrates that training data diversity is critical for improving classifier performance, with 

models trained on spectrally variable environments generalizing more effectively to new 

regions and melt conditions. These findings contribute to the development of scalable, ML-

based classification frameworks that enhance the efficiency and accuracy of supraglacial 

hydrology monitoring. 

6.2. Synthesis of key findings 
This thesis advances the study of supraglacial hydrology on the GrIS by addressing key 

knowledge gaps in the observation, classification, and understanding of supraglacial 

meltwater features and drainage systems. While previous research has largely focused on 

individual components of supraglacial hydrology–such as SGLs or streams–this work 

contributes a broader, system-level perspective, emphasizing the spatial and temporal 

complexity of meltwater processes and the methodological innovations required to monitor 

them effectively. Through a combination of comparative melt year analysis, ice-sheet-wide 

mapping, and ML algorithm development, this thesis contributes to both the scientific 

understanding of supraglacial hydrology and the tools needed to study it at scale. Several 

key themes emerge from this work. 

This work highlights the pronounced interannual variability and climate sensitivity of 

supraglacial hydrology. By contrasting meltwater features in 2018 and 2019, and mapping 

slush over nearly a decade, this research shows how quickly, and dramatically surface 

hydrology can reorganize in response to extreme melt seasons. The differences between 

low- and high-melt years are stark: slush coverage, meltwater connectivity, and the 

prevalence of small SGLs all increase significantly during warmer conditions. These findings 

reinforce the idea that Greenland’s hydrology is highly sensitive to climate forcing, with 

extreme years like 2019 offering a glimpse into the future behaviour of the ice sheet as 

climate warming continues. Importantly, this melt variability is not just a matter of areal extent 

but also of system structure–extreme years foster more connected, more saturated, and 

more dynamic hydrological networks. 

A central contribution is the focus on slush, an ephemeral and often-overlooked feature of 

Greenland’s meltwater system. Despite its widespread presence, slush has historically been 

neglected in large-scale remote sensing studies due to its spectral ambiguity and transient 

nature. By first identifying that slush is more widespread in a high-melt year compared to a 

low-melt year, this thesis then presents the first near-decadal, GrIS-wide assessment of 
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slush, revealing its dominance as a key component of surface hydrology during extreme melt 

years and a persistent feature in certain regions. By quantifying slush coverage, elevation, 

and interannual variability, this research suggests that slush plays a critical role in meltwater 

storage, surface albedo reduction, and runoff generation. These findings elevate slush from 

a peripheral to a central feature of supraglacial hydrology, highlighting the need for its 

inclusion in future process studies and predictive models of hydrology and ice sheet mass 

balance. 

Building on the theme described above, the thesis advances a holistic, interconnected view 

of supraglacial hydrology. Rather than treating SGLs, channels, and slush as discrete 

features, this work emphasizes their co-evolution and interdependence. Through 

comparative analysis of low- and high-melt years, and across different spatial regions, it 

becomes clear that meltwater features respond collectively to changing atmospheric 

conditions. Slush frequently forms along the margins of SGLs and channels, small SGLs 

feed into supraglacial streams, and widespread surface saturation can influence drainage 

efficiency across entire catchments. This integrated perspective highlights the importance of 

viewing supraglacial hydrology as a continuum of water storage and transport pathways, 

where transitions between features are fluid and dynamic. Such a framework is essential for 

accurately modelling meltwater routing, predicting subglacial inputs, and understanding the 

broader response of the ice sheet to climate forcing. 

An important finding of this thesis is the upward migration of meltwater features to higher 

elevations on the ice sheet. Traditionally, supraglacial hydrology has been thought of as 

concentrated in the lower elevations of the ice sheet, where melt is most intense. However, 

this thesis documents the upward expansion of SGLs and slush, with features appearing at 

elevations above 1900 m a.s.l. during extreme melt years. This shift has significant 

implications for the stability of the firn zone and the capacity of high-elevation areas to buffer 

meltwater through refreezing. As melt penetrates further inland and upward, the hydrological 

and thermal structure of the ice sheet is being reshaped, with potential feedbacks for runoff 

generation, firn densification, and mass loss. These findings contribute to growing evidence 

that the spatial limits of active surface hydrology are expanding, challenging long-held 

assumptions about the vertical structure of the GrIS's hydrological system. 

This thesis also argues that ML is not just a useful tool, but an essential component of 

supraglacial hydrology research going forward. The complexity and scale of supraglacial 

hydrology cannot be captured through manual delineation or threshold-based methods 

alone. ML provides a scalable, adaptable, and transferable solution to the challenges of 

classifying diverse meltwater features across varying atmospheric and surface conditions. 
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Beginning with the identification of ML as a necessary methodological advance, the research 

develops, tests, and implements classifiers capable of distinguishing SGLs, channels, and 

slush, even in challenging environments with partial cloud cover or subtle spectral 

differences. These contributions move the field toward operational, ice-sheet-wide 

monitoring, where supraglacial hydrology can be tracked consistently across years and 

regions. 

Finally, underpinning the scientific advances outlined above is a commitment to 

methodological scalability and operational monitoring. The approaches developed in this 

thesis–integrating ML within cloud-based platforms like GEE–demonstrate that large-scale, 

repeatable mapping of supraglacial hydrology is not only possible but essential as melt 

seasons grow more dynamic and satellite archives expand. 
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6.3. Limitations and directions for future research 
While this thesis provides significant advancements in the study of supraglacial hydrology on 

the GrIS, several limitations must be acknowledged. These limitations stem from data 

constraints, methodological challenges, and broader issues related to scalability and 

generalization. Addressing these challenges in future research will improve supraglacial 

meltwater mapping and enhance our ability to monitor and predict ice sheet hydrology under 

ongoing climate change. 

6.3.1.  Limitations of optical imagery 

The availability of optical images is primarily constrained by sensor revisit times. S2, with its 

twin satellites, has a 5-day revisit cycle, while Landsat 8 (L8) has a 16-day cycle. The shorter 

revisit time of S2 improves temporal resolution, aiding the capture of dynamic supraglacial 

hydrology. However, meltwater can be transported across, or drain through, the ice sheet 

within hours or days, meaning even a 5-day revisit cycle may not capture all hydrological 

variability. 

In Chapter 3, we identify that the availability of satellite imagery varies between years, with 

more frequent image acquisitions in 2019 (~2-day intervals) compared to 2018 (~5-day 

intervals). This disparity limits the ability to differentiate between rapid and slow drainage 

events, which can have distinct effects on supraglacial, englacial, and subglacial hydrology. 

While this thesis utilizes both S2 and L8 data, future work should integrate additional remote 

sensing datasets, such as Synthetic Aperture Radar (SAR) from Sentinel-1, to improve 

temporal resolution. SAR’s ability to penetrate cloud cover provides more consistent 

observations, particularly for tracking rapid drainage events. 

Additionally, optical sensors can only detect surface slush, while subsurface layers remain 

invisible, meaning our reported slush extents likely represent a minimum bound. SAR offers 

a potential solution, as it can penetrate cloud cover and detect subsurface slush, similar to 

its use in mapping SGLs (e.g., Miles et al., 2017; Dunmire et al., 2021). By combining SAR 

with optical methods, future work has the potential to provide a more comprehensive 

assessment of slush distribution, its seasonal evolution, and its impact on meltwater 

transport. 

Another challenge of optical image usage lies in errors introduced by cloud cover and cloud 

shadows. Despite the use of cloud masks, misclassifications occur, particularly when cloud 

edges or thin clouds resemble slush in spectral imagery. These errors lead to false positives, 

where clouds are mistakenly classified as slush, inflating the detected extent. A potential 
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solution is time-series filtering, where classifications with low persistence (i.e., pixels 

identified as slush only once in a season) are excluded (e.g., Dell et al., 2022). However, this 

approach risks removing real, short-lived slush events, potentially underestimating true 

coverage. Developing more effective cloud-masking techniques or post-classification filtering 

methods will be necessary to improve classification accuracy. 

6.3.2. Interannual variability and climate sensitivity 

A central theme of this thesis is the pronounced interannual variability and climate sensitivity 

of supraglacial hydrology. Chapter 3 highlights the contrast between the low-melt year 

(2018) and the high-melt year (2019), using 2019 as a proxy for intensified future melt 

conditions. However, while this comparison illustrates the hydrological response to extreme 

surface melt, it does not capture the long-term evolution of ice-sheet surface properties. 

Chapter 4 expands the temporal scope through a nine-year analysis of slush, yet the record 

is limited to observations from 2016 onward. As a result, it remains unclear whether the 

observed patterns reflect short-term variability or indicate sustained changes driven by 

climate forcing. Multi-year processes such as firn densification, ice slab formation, and 

cumulative meltwater retention will play an important role in the GrIS’s response to climate 

change. Future research should examine extended melt records, incorporating historical 

datasets from the 1980s onward using Landsat imagery. This will allow for a clearer 

distinction between interannual variability and long-term climate-driven trends in supraglacial 

hydrology. 

6.3.3. Challenges in supraglacial lake behaviour and depth 
estimation 

Distinguishing between SGL drainage and refreezing also remains difficult. Chapter 3 

classified drainage and refreezing based on changes in SGL area and volume, 

supplemented by modelled air temperature data. However, without in situ validation, some 

SGLs identified as refreezing may have partially drained or retained liquid water beneath an 

impermeable ice surface', leading to classification uncertainties. Incorporating thermal 

imaging or radar-based techniques, such as SAR penetration depth analysis, could help 

differentiate between refrozen and partially drained SGLs. The framework developed by 

Dunmire et al. (2025) provides a promising automated classification approach for capturing 

SGL behaviour by incorporating higher-temporal-resolution datasets and sophisticated ML-

based analyses. 

SGLs depth estimation presents another challenge. Depth calculations based on optical 

reflectance are limited by a saturation threshold, typically between 1 and 3 m (Melling et al., 
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2024). This constraint affects volume estimates, introducing uncertainty into calculations of 

meltwater storage capacity. Our calculated 21.2% uncertainty associated with SGL volume 

estimates underscores the need for improved depth retrieval methods. Future research 

should explore alternative techniques, such as ICESat-2 laser altimetry. The empirical depth 

estimation model proposed by Lutz et al. (2024), which combines S2 reflectance with 

ICESat-2 and sonar-derived depth calibrations, represents a promising approach. 

Additionally, incorporating DEM derived SGL basin bathymetry post-drainage could provide 

further validation of optical-based estimates. Expanding field-based measurements across a 

wider range of SGL types and locations would also improve model accuracy. 

6.3.4. Methodological challenges in meltwater classification 

A key limitation of our current method used in Chapter 4 is its reliance on K-means clustering 

for generating training data, which may not be the most optimal approach for distinguishing 

slush from other hydrological features. This is, however, the method Dell et al (2022, 2024) 

used for detecting slush on Antarctic ice shelves. While K-means is a widely used 

unsupervised technique, it assigns clusters based purely on spectral similarity without 

considering the physical properties of meltwater or its spatial context. This can lead to 

heterogeneous class definitions, where slush pixels are grouped with spectrally similar but 

physically distinct features like wet firn or thin ice layers. A more refined approach would 

involve semi-supervised or active learning methods, where an initial classifier is iteratively 

improved through expert-labelled corrections. Alternatively, self-supervised learning 

techniques could leverage large unlabelled datasets to learn more meaningful 

representations of slush without relying on predefined clustering. Exploring these 

alternatives could improve the consistency and generalizability of training data, ultimately 

leading to more robust slush classification. 

Beyond training data generation, the choice of classification algorithm itself presents a 

methodological challenge. While this thesis primarily uses traditional ML methods–RF in 

Chapter 4 and various cloud-based classifiers in Chapter 5–it remains uncertain whether 

these are the most effective approaches for meltwater classification. Emerging techniques 

such as convolutional neural networks, transformer models, and hybrid approaches may 

better capture complex spatial patterns and reduce errors in mixed-pixel environments. 

Future research should evaluate whether deep learning models trained on multi-modal 

datasets (e.g., optical, radar, and topographic data) can outperform traditional classifiers, 

particularly in dynamically evolving melt conditions. Additionally, uncertainty quantification 

methods, such as Bayesian inference, should be explored to provide confidence estimates 

for classification outputs, improving the interpretability of large-scale meltwater assessments. 
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Additionally, there is currently a notable lack of an explicit ML method for distinguishing 

between all types of supraglacial meltwater features (i.e., SGLs, channels, and slush), 

though some studies do use ML techniques to delineate one or two of these meltwater 

feature types. Chapter 3 employed multiple thresholding methods and manual delineation, 

which, while effective for localized analysis, is impractical for large-scale mapping across the 

GrIS. Meanwhile, the classifiers tested in Chapter 5 delineated meltwater extent as a binary 

classification but did not differentiate between these features. A promising approach would 

be to use the dataset developed in Chapter 3 as training data for ML models, enabling 

automated classification of supraglacial hydrological features while preserving the ability to 

distinguish between different meltwater components, and connectivity between them. 

Additionally, the addition of automated post-processing techniques, such as spatial filtering, 

morphological analysis, or object-based image classification, could facilitate large-scale 

identification of distinct hydrological features. 

Computational demands remain a significant challenge for large-scale, ice-sheet-wide 

meltwater monitoring. Chapter 5 found that while GEE enables cloud-based processing, 

classifier efficiency varies, with some models (e.g., Minimum Distance, Maximum Entropy) 

being computationally expensive without offering substantial performance gains. Future 

research should focus on optimizing ML workflows for large-scale classification, potentially 

leveraging cloud-based deep learning frameworks (not currently supported by GEE) such as 

TensorFlow or PyTorch to enhance scalability and efficiency. Automating classifier selection 

based on dataset characteristics could further streamline processing, enabling models to 

dynamically select the most suitable algorithm for specific classification tasks. 
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6.4. Concluding remarks 
This thesis has significantly advanced our understanding of supraglacial hydrology on the 

GrIS by integrating satellite remote sensing with ML techniques to address key observational 

and methodological challenges. It presents three major contributions: (i) a comparative 

analysis of meltwater evolution during contrasting melt years (Chapter 3), (ii) the first near-

decadal, ice-sheet-wide mapping of slush using S2 imagery and random forest classification 

(Chapter 4), and (iii) a systematic evaluation of supervised ML classifiers for automated 

delineation of supraglacial meltwater features using cloud-based platforms (Chapter 5). 

To achieve these outcomes, this thesis employed a progression of remote sensing and 

classification approaches, from semi-automated thresholding to scalable ML-based 

workflows. The results demonstrate that high melt years, such as 2019, drive increased 

hydrological connectivity, increased upslope migration of lakes and slush, and the expansion 

of surface meltwater storage. Slush is shown to be a widespread and climatically sensitive 

meltwater component on the GrIS but was previously underrepresented in large-scale 

hydrological studies. As a result of this thesis, its spatial distribution, interannual variability, 

and elevation migration have now been quantified at the ice-sheet scale. Furthermore, the 

performance of seven ML classifiers was assessed across multiple regions and melt 

seasons, with RF and GBDT emerging as the most effective methods for delineating 

supraglacial meltwater features from optical satellite imagery. This work establishes a robust, 

transferable framework for automated supraglacial meltwater mapping within platforms such 

as GEE, enabling near-real-time monitoring across broad spatial and temporal ice sheet 

domains. 

The findings mentioned above carry several important implications. First, they reinforce our 

understanding that the interannual variability of supraglacial hydrology is strongly sensitive to 

climate, with extreme melt seasons offering insight into the ice sheet’s potential response to 

ongoing warming. Second, they establish slush as an integral and dynamic component of 

the surface hydrological system, underrepresented in prior studies. Third, this thesis 

demonstrates that scalable ML-based classification, when implemented in cloud-based 

environments, can overcome key limitations of traditional remote sensing approaches–such 

as location-specific tuning, extensive manual correction for false positives and negatives, 

and constraints on processing time and storage–enabling efficient, high-resolution 

monitoring of supraglacial hydrology. 

Together, the key findings in this thesis enhance our ability to monitor, model, and predict the 

future state of supraglacial hydrology on the GrIS, laying the foundation for continued 
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research in an era of accelerating climate change. Continued observation, and better 

understanding, of these processes is essential for improving projections of future ice sheet 

mass loss under a warming climate. 
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Appendix A 

A comparison of supraglacial meltwater features 
throughout contrasting melt seasons: Southwest 
Greenland 

Table A.1: details of all Sentinel-2 (S2) and Landsat 8 (L8) satellite imagery used in this study. 
Scene ID Date Satellite Cloud 

Cover 
(%) 

S2A_MSIL1C_20180516T150041_N0206_R125_T22WEV_20180516T170011 16-May-18 S2 9.8 

S2A_MSIL1C_20180516T150041_N0206_R125_T22WFV_20180516T170011 16-May-18 S2 87.7 

S2A_MSIL1C_20180526T145921_N0206_R125_T22WEV_20180526T201815 26-May-18 S2 68.6 

S2A_MSIL1C_20180526T145921_N0206_R125_T22WFV_20180526T201815 26-May-18 S2 60.2 

LC08_L1TP_008013_20180605_20200831_02_T1 05-Jun-18 L8 35.4 

S2B_MSIL1C_20180610T150009_N0206_R125_T22WEV_20180610T183746 10-Jun-18 S2 16.1 

S2B_MSIL1C_20180610T150009_N0206_R125_T22WFV_20180610T183746 10-Jun-18 S2 82.8 

S2A_MSIL1C_20180615T145911_N0206_R125_T22WEV_20180615T170226 15-Jun-18 S2 34.3 

S2A_MSIL1C_20180615T145911_N0206_R125_T22WFV_20180615T170226 15-Jun-18 S2 43.1 

S2A_MSIL1C_20180618T150911_N0206_R025_T22WEV_20180618T185402 18-Jun-18 S2 4.9 

S2A_MSIL1C_20180618T150911_N0206_R025_T22WFV_20180618T185402 18-Jun-18 S2 22.6 

S2B_MSIL1C_20180703T150909_N0206_R025_T22WEV_20180703T201427 03-Jul-18 S2 71.9 

S2B_MSIL1C_20180703T150909_N0206_R025_T22WFV_20180703T201427 03-Jul-18 S2 19.6 

LC08_L1TP_008013_20180707_20200831_02_T1 07-Jul-18 L8 31.2 

S2B_MSIL1C_20180710T150009_N0206_R125_T22WEV_20180710T202212 10-Jul-18 S2 5.0 

S2B_MSIL1C_20180710T150009_N0206_R125_T22WFV_20180710T202212 10-Jul-18 S2 94.5 

S2B_MSIL1C_20180713T151139_N0206_R025_T22WEV_20180713T200909 13-Jul-18 S2 4.3 

S2B_MSIL1C_20180713T151139_N0206_R025_T22WFV_20180713T200909 13-Jul-18 S2 0.3 

S2A_MSIL1C_20180725T145911_N0206_R125_T22WEV_20180725T185310 25-Jul-18 S2 89.9 

S2A_MSIL1C_20180725T145911_N0206_R125_T22WFV_20180725T185310 25-Jul-18 S2 25.1 

S2B_MSIL1C_20180730T150009_N0206_R125_T22WEV_20180730T202856 30-Jul-18 S2 0.1 

S2B_MSIL1C_20180730T150009_N0206_R125_T22WFV_20180730T202856 30-Jul-18 S2 0.2 

S2A_MSIL1C_20180810T151911_N0206_R068_T22WEV_20180810T202556 10-Aug-18 S2 2.5 

S2A_MSIL1C_20180810T151911_N0206_R068_T22WFV_20180810T202556 10-Aug-18 S2 0.0 

S2B_MSIL1C_20180819T145959_N0206_R125_T22WEV_20180819T200111 19-Aug-18 S2 26.2 
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S2B_MSIL1C_20180819T145959_N0206_R125_T22WFV_20180819T200111 19-Aug-18 S2 9.3 

S2A_MSIL1C_20180824T145911_N0206_R125_T22WEV_20180824T190305 24-Aug-18 S2 59.8 

S2A_MSIL1C_20180824T145911_N0206_R125_T22WFV_20180824T190305 24-Aug-18 S2 65.3 

S2A_MSIL1C_20180913T145911_N0206_R125_T22WEV_20180913T171024 13-Sep-18 S2 0.0 

S2A_MSIL1C_20180913T145911_N0206_R125_T22WFV_20180913T171024 13-Sep-18 S2 0.0 

S2B_MSIL1C_20180918T145959_N0206_R125_T22WEV_20180918T200337 18-Sep-18 S2 0.0 

S2B_MSIL1C_20180918T145959_N0206_R125_T22WFV_20180918T200337 18-Sep-18 S2 6.9 

S2A_MSIL1C_20180919T151911_N0206_R068_T22WEV_20180919T191221 19-Sep-18 S2 17.2 

S2A_MSIL1C_20180919T151911_N0206_R068_T22WFV_20180919T191221 19-Sep-18 S2 0.0 

S2B_MSIL1C_20180921T151119_N0206_R025_T22WEV_20180921T201342 21-Sep-18 S2 28.2 

S2B_MSIL1C_20180921T151119_N0206_R025_T22WFV_20180921T201342 21-Sep-18 S2 95.4 

S2B_MSIL1C_20180924T152029_N0206_R068_T22WEV_20180924T202449 24-Sep-18 S2 1.2 

S2B_MSIL1C_20180924T152029_N0206_R068_T22WFV_20180924T202449 24-Sep-18 S2 0.0 

S2A_MSIL1C_20190501T145921_N0207_R125_T22WEV_20190501T165756 01-May-19 S2 1.6 

S2A_MSIL1C_20190501T145921_N0207_R125_T22WFV_20190501T165756 01-May-19 S2 45.5 

S2B_MSIL1C_20190502T151809_N0207_R068_T22WEV_20190502T190011 02-May-19 S2 0.0 

S2B_MSIL1C_20190502T151809_N0207_R068_T22WFV_20190502T190011 02-May-19 S2 0.0 

S2B_MSIL1C_20190506T150019_N0207_R125_T22WEV_20190506T195836 06-May-19 S2 2.4 

S2B_MSIL1C_20190506T150019_N0207_R125_T22WFV_20190506T195836 06-May-19 S2 0.7 

LC08_L1TP_008013_20190507_20200828_02_T1 07-May-19 L8 3.8 

S2B_MSIL1C_20190509T150809_N0207_R025_T22WEV_20190509T184714 09-May-19 S2 0.6 

S2B_MSIL1C_20190509T150809_N0207_R025_T22WFV_20190509T184714 09-May-19 S2 13.4 

S2A_MSIL1C_20190517T151911_N0207_R068_T22WEV_20190517T171614 17-May-19 S2 29.3 

S2A_MSIL1C_20190517T151911_N0207_R068_T22WFV_20190517T171614 17-May-19 S2 0.0 

S2B_MSIL1C_20190519T150809_N0207_R025_T22WEV_20190519T184819 19-May-19 S2 6.3 

S2B_MSIL1C_20190519T150809_N0207_R025_T22WFV_20190519T184819 19-May-19 S2 7.9 

S2B_MSIL1C_20190522T151919_N0207_R068_T22WEV_20190522T171829 22-May-19 S2 0.0 

S2B_MSIL1C_20190522T151919_N0207_R068_T22WFV_20190522T171829 22-May-19 S2 0.0 

LC08_L1TP_008013_20190523_20200830_02_T1 23-May-19 L8 4.5 

S2A_MSIL1C_20190524T150911_N0207_R025_T22WEV_20190524T170812 24-May-19 S2 7.9 

S2A_MSIL1C_20190524T150911_N0207_R025_T22WFV_20190524T170812 24-May-19 S2 17.3 

LC08_L1TP_006013_20190525_20200828_02_T1 25-May-19 L8 0.7 

S2B_MSIL1C_20190526T150019_N0207_R125_T22WEV_20190526T183734 26-May-19 S2 0.6 

S2B_MSIL1C_20190526T150019_N0207_R125_T22WFV_20190526T183734 26-May-19 S2 79.1 
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S2A_MSIL1C_20190527T151911_N0207_R068_T22WEV_20190527T202622 27-May-19 S2 0.1 

S2A_MSIL1C_20190527T151911_N0207_R068_T22WFV_20190527T202622 27-May-19 S2 0.0 

S2B_MSIL1C_20190529T150809_N0207_R025_T22WEV_20190529T201431 29-May-19 S2 7.6 

S2B_MSIL1C_20190529T150809_N0207_R025_T22WFV_20190529T201431 29-May-19 S2 94.1 

S2A_MSIL1C_20190531T145921_N0207_R125_T22WEV_20190531T165832 31-May-19 S2 3.7 

S2A_MSIL1C_20190531T145921_N0207_R125_T22WFV_20190531T165832 31-May-19 S2 22.6 

S2B_MSIL1C_20190601T151809_N0207_R068_T22WEV_20190601T184204 01-Jun-19 S2 13.6 

S2B_MSIL1C_20190601T151809_N0207_R068_T22WFV_20190601T184204 01-Jun-19 S2 0.0 

S2B_MSIL1C_20190605T150019_N0207_R125_T22WEV_20190605T200407 05-Jun-19 S2 10.1 

S2B_MSIL1C_20190605T150019_N0207_R125_T22WFV_20190605T200407 05-Jun-19 S2 94.0 

S2B_MSIL1C_20190608T150809_N0207_R025_T22WEV_20190608T184815 08-Jun-19 S2 10.1 

S2B_MSIL1C_20190608T150809_N0207_R025_T22WFV_20190608T184815 08-Jun-19 S2 14.1 

LC08_L1TP_006013_20190610_20200828_02_T1 10-Jun-19 L8 1.2 

S2A_MSIL1C_20190613T150911_N0207_R025_T22WEV_20190613T170639 13-Jun-19 S2 52.6 

S2A_MSIL1C_20190613T150911_N0207_R025_T22WFV_20190613T170639 13-Jun-19 S2 0.9 

LC08_L1TP_007013_20190617_20200828_02_T1 17-Jun-19 L8 10.5 

S2A_MSIL1C_20190620T145921_N0207_R125_T22WEV_20190620T183937 20-Jun-19 S2 0.1 

S2A_MSIL1C_20190620T145921_N0207_R125_T22WFV_20190620T183937 20-Jun-19 S2 0.0 

S2A_MSIL1C_20190703T150921_N0207_R025_T22WEV_20190703T184907 03-Jul-19 S2 13.9 

S2A_MSIL1C_20190703T150921_N0207_R025_T22WFV_20190703T184907 03-Jul-19 S2 31.8 

S2A_MSIL1C_20190707T144921_N0207_R082_T22WEV_20190707T164746 07-Jul-19 S2 23.2 

S2A_MSIL1C_20190707T144921_N0207_R082_T22WFV_20190707T164746 07-Jul-19 S2 3.8 

S2B_MSIL1C_20190708T150809_N0208_R025_T22WEV_20190708T185223 08-Jul-19 S2 0.0 

S2B_MSIL1C_20190708T150809_N0208_R025_T22WFV_20190708T185223 08-Jul-19 S2 0.1 

S2B_MSIL1C_20190712T144759_N0208_R082_T22WEV_20190712T164159 12-Jul-19 S2 0.0 

S2B_MSIL1C_20190712T144759_N0208_R082_T22WFV_20190712T164159 12-Jul-19 S2 0.0 

S2B_MSIL1C_20190715T150019_N0208_R125_T22WEV_20190715T200825 15-Jul-19 S2 0.3 

S2B_MSIL1C_20190715T150019_N0208_R125_T22WFV_20190715T200825 15-Jul-19 S2 5.9 

S2B_MSIL1C_20190725T150019_N0208_R125_T22WEV_20190725T183725 25-Jul-19 S2 21.1 

S2B_MSIL1C_20190725T150019_N0208_R125_T22WFV_20190725T183725 25-Jul-19 S2 0.8 

S2B_MSIL1C_20190801T144759_N0208_R082_T22WEV_20190801T164915 01-Aug-19 S2 0.0 

S2B_MSIL1C_20190801T144759_N0208_R082_T22WFV_20190801T164915 01-Aug-19 S2 1.8 

S2A_MSIL1C_20190802T150921_N0208_R025_T22WEV_20190802T170710 02-Aug-19 S2 0.0 

S2A_MSIL1C_20190802T150921_N0208_R025_T22WFV_20190802T170710 02-Aug-19 S2 7.3 
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S2B_MSIL1C_20190804T150019_N0208_R125_T22WEV_20190804T165643 04-Aug-19 S2 4.2 

S2B_MSIL1C_20190804T150019_N0208_R125_T22WFV_20190804T165643 04-Aug-19 S2 17.7 

S2A_MSIL1C_20190809T145921_N0208_R125_T22WEV_20190809T165708 09-Aug-19 S2 0.6 

S2A_MSIL1C_20190809T145921_N0208_R125_T22WFV_20190809T165708 09-Aug-19 S2 0.0 

S2B_MSIL1C_20190811T144759_N0208_R082_T22WEV_20190811T164246 11-Aug-19 S2 0.0 

S2B_MSIL1C_20190811T144759_N0208_R082_T22WFV_20190811T164246 11-Aug-19 S2 0.0 

S2A_MSIL1C_20190812T150921_N0208_R025_T22WEV_20190812T201743 12-Aug-19 S2 0.0 

S2A_MSIL1C_20190812T150921_N0208_R025_T22WFV_20190812T201743 12-Aug-19 S2 11.3 

S2B_MSIL1C_20190817T150809_N0208_R025_T22WEV_20190817T202054 17-Aug-19 S2 52.7 

S2B_MSIL1C_20190817T150809_N0208_R025_T22WFV_20190817T202054 17-Aug-19 S2 16.4 

LC08_L1TP_007013_20190820_20200827_02_T1 20-Aug-19 L8 11.1 

S2B_MSIL1C_20190824T150009_N0208_R125_T22WEV_20190824T201004 24-Aug-19 S2 5.2 

S2B_MSIL1C_20190824T150009_N0208_R125_T22WFV_20190824T201004 24-Aug-19 S2 27.8 

S2A_MSIL1C_20190825T151911_N0208_R068_T22WEV_20190825T185502 25-Aug-19 S2 3.4 

S2A_MSIL1C_20190825T151911_N0208_R068_T22WFV_20190825T185502 25-Aug-19 S2 0.0 

LC08_L1TP_008013_20190827_20200826_02_T1 27-Aug-19 L8 42.5 

S2A_MSIL1C_20190829T145921_N0208_R125_T22WEV_20190829T183408 29-Aug-19 S2 11.2 

S2A_MSIL1C_20190829T145921_N0208_R125_T22WFV_20190829T183408 29-Aug-19 S2 99.5 

S2B_MSIL1C_20190830T151809_N0208_R068_T22WEV_20190830T185641 30-Aug-19 S2 33.3 

S2A_MSIL1C_20190901T150911_N0208_R025_T22WEV_20190901T170819 01-Sep-19 S2 34.5 

S2A_MSIL1C_20190901T150911_N0208_R025_T22WFV_20190901T170819 01-Sep-19 S2 24.2 

S2B_MSIL1C_20190909T151809_N0208_R068_T22WEV_20190909T202539 09-Sep-19 S2 14.6 

S2A_MSIL1C_20190918T150011_N0208_R125_T22WEV_20190918T201931 18-Sep-19 S2 24.1 

S2A_MSIL1C_20190918T150011_N0208_R125_T22WFV_20190918T201931 18-Sep-19 S2 98.3 

S2B_MSIL1C_20190923T150009_N0208_R125_T22WEV_20190923T200537 23-Sep-19 S2 21.1 

S2B_MSIL1C_20190923T150009_N0208_R125_T22WFV_20190923T200537 23-Sep-19 S2 26.7 

S2B_MSIL1C_20190926T150949_N0208_R025_T22WEV_20190926T184849 26-Sep-19 S2 0.5 

S2B_MSIL1C_20190926T150949_N0208_R025_T22WFV_20190926T184849 26-Sep-19 S2 0.0 

S2A_MSIL1C_20190928T150011_N0208_R125_T22WEV_20190928T165931 28-Sep-19 S2 0.0 

S2A_MSIL1C_20190928T150011_N0208_R125_T22WFV_20190928T165931 28-Sep-19 S2 18.8 
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Table A.2: Maximum areal coverage and median elevation a.s.l. of all SGL, channel and slush 
features in 2018 (left) and 2019 (right). 

 

 
 
 
 
 
 
 
Section A.1. 

Supplementary animations 1 and 2 can be found here: 
https://tc.copernicus.org/articles/19/1047/2025/tc-19-1047-2025-supplement.zip 

  

 2018 2019 

Maximum areal coverage 

SGLs 1.5% 2.1% 

Channels 4.5% 6.4% 

Slush 0.3% 12.3% 

Median elevation 

SGLs 1350 m 1250 m 

Channels 1350 m 1500 m 

Slush 1600 m 1700 m 

https://tc.copernicus.org/articles/19/1047/2025/tc-19-1047-2025-supplement.zip
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Appendix B 

Supervised classification of slush on the Greenland Ice 
Sheet using Sentinel-2 satellite imagery 

Table B.1: List of selected S2 images used for training and validation across basins. Image IDs 
correspond to GEE asset identifiers from the ‘COPERNICUS/S2’ collection (Gorelick et al., 
2017). 

Sentinel 2 Image ID 

ee.Image('COPERNICUS/S2/20190721T151809_20190721T151812_T23WMS') 

ee.Image('COPERNICUS/S2/20220704T140739_20220704T140740_T25WDS') 

ee.Image('COPERNICUS/S2/20230716T185919_20230716T185920_T21XWK') 

ee.Image('COPERNICUS/S2/20220825T180919_20220825T181113_T19XEH') 

ee.Image('COPERNICUS/S2/20190802T164901_20190802T164904_T26XMP') 

ee.Image('COPERNICUS/S2/20210621T144749_20210621T144900_T22WES') 

ee.Image('COPERNICUS/S2/20190801T144759_20190801T144759_T22WFV') 

ee.Image('COPERNICUS/S2/20190713T150921_20190713T150916_T26XNP') 

ee.Image('COPERNICUS/S2/20230703T161831_20230703T161832_T21XWC') 

ee.Image('COPERNICUS/S2/20200726T180919_20200726T180916_T20XMN') 

ee.Image('COPERNICUS/S2/20210805T135729_20210805T135732_T25WFS') 

ee.Image('COPERNICUS/S2/20230702T150801_20230702T150959_T22WEC') 

ee.Image('COPERNICUS/S2/20180604T143919_20180604T143920_T26XNJ') 

ee.Image('COPERNICUS/S2/20200613T161829_20200613T161831_T21XWD') 

ee.Image('COPERNICUS/S2/20160503T180920_20160503T231352_T20XMP') 

ee.Image('COPERNICUS/S2/20230501T142741_20230501T142742_T23WPN') 

ee.Image('COPERNICUS/S2/20170616T151911_20170616T152036_T22WED') 

ee.Image('COPERNICUS/S2/20160516T145922_20160516T150205_T22WEA') 

ee.Image('COPERNICUS/S2/20210822T143931_20210822T144327_T22WFS') 

ee.Image('COPERNICUS/S2/20180913T145911_20180913T145910_T26XNM') 

ee.Image('COPERNICUS/S2/20230815T171859_20230815T171900_T20XML') 

ee.Image('COPERNICUS/S2/20220816T164851_20220816T164854_T25XDL') 
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ee.Image('COPERNICUS/S2/20210823T141011_20210823T141007_T24WWV') 

ee.Image('COPERNICUS/S2/20170815T151911_20170815T152131_T22WFB') 
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Appendix C 

Assessing the performance of machine learning 
algorithms in Google Earth Engine for cloud-based 
supraglacial meltwater feature classification on the 
Greenland Ice Sheet 

Table C.1: Sentinel 2 image images used for training and validation. Image IDs correspond to 
GEE asset identifiers from the ‘COPERNICUS/S2’ collection (Gorelick et al., 2017). 

S2 Image ID 

ee.Image('COPERNICUS/S2/20170530T152911_20170530T152909_T22WEB') 

ee.Image('COPERNICUS/S2/20170531T145921_20170531T150133_T22WEA') 

ee.Image('COPERNICUS/S2/20170531T145921_20170531T150133_T22WEV') 

ee.Image('COPERNICUS/S2/20170531T145921_20170531T150133_T22WFA') 

ee.Image('COPERNICUS/S2/20170531T145921_20170531T150133_T22WFV') 

ee.Image('COPERNICUS/S2/20170612T153911_20170612T153906_T26XNN') 

ee.Image('COPERNICUS/S2/20170615T141011_20170615T141200_T25WDS') 

ee.Image('COPERNICUS/S2/20170619T234731_20170619T234734_T21XWB') 

ee.Image('COPERNICUS/S2/20170710T145911_20170710T150120_T22WEA') 

ee.Image('COPERNICUS/S2/20170710T145911_20170710T150120_T22WEV') 

ee.Image('COPERNICUS/S2/20170710T145911_20170710T150120_T22WFA') 

ee.Image('COPERNICUS/S2/20170722T171901_20170722T171857_T20XNK') 

ee.Image('COPERNICUS/S2/20170723T150911_20170723T151115_T22WEB') 

ee.Image('COPERNICUS/S2/20170724T143921_20170724T143924_T27XVE') 

ee.Image('COPERNICUS/S2/20170724T175911_20170724T175913_T20XMN') 

ee.Image('COPERNICUS/S2/20170730T145921_20170730T150103_T22WFB') 

ee.Image('COPERNICUS/S2/20170730T145921_20170730T145915_T26XNN') 

ee.Image('COPERNICUS/S2/20170731T160901_20170731T160903_T21XWB') 

ee.Image('COPERNICUS/S2/20170809T145921_20170809T150205_T22WEV') 
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ee.Image('COPERNICUS/S2/20170812T150911_20170812T150912_T22WEA') 

ee.Image('COPERNICUS/S2/20170812T150911_20170812T150912_T22WEV') 

ee.Image('COPERNICUS/S2/20170812T150911_20170812T150912_T22WFA') 

ee.Image('COPERNICUS/S2/20170812T150911_20170812T150912_T22WFV') 

ee.Image('COPERNICUS/S2/20170825T165851_20170825T170139_T20XNK') 

ee.Image('COPERNICUS/S2/20170830T142931_20170830T142933_T27XVE') 

ee.Image('COPERNICUS/S2/20170908T145911_20170908T150039_T22WEA') 

ee.Image('COPERNICUS/S2/20170908T145911_20170908T150039_T22WEV') 

ee.Image('COPERNICUS/S2/20170908T145911_20170908T150039_T22WFA') 

ee.Image('COPERNICUS/S2/20170908T145911_20170908T150039_T22WFV') 

ee.Image('COPERNICUS/S2/20180526T145921_20180526T150107_T22WEA') 

ee.Image('COPERNICUS/S2/20180526T145921_20180526T150107_T22WEV') 

ee.Image('COPERNICUS/S2/20180526T145921_20180526T150107_T22WFA') 

ee.Image('COPERNICUS/S2/20180526T145921_20180526T150107_T22WFV') 

ee.Image('COPERNICUS/S2/20180913T145911_20180913T145910_T22WEA') 

ee.Image('COPERNICUS/S2/20180913T145911_20180913T145910_T22WEV') 

ee.Image('COPERNICUS/S2/20180913T145911_20180913T145910_T22WFA') 

ee.Image('COPERNICUS/S2/20180913T145911_20180913T145910_T22WFV') 

ee.Image('COPERNICUS/S2/20190601T160901_20190601T160904_T27XVH') 

ee.Image('COPERNICUS/S2/20190712T153911_20190712T154146_T21XXA') 

ee.Image('COPERNICUS/S2/20190713T164901_20190713T164901_T27XVJ') 

ee.Image('COPERNICUS/S2/20190901T150911_20190901T150911_T22WEA') 

ee.Image('COPERNICUS/S2/20190901T150911_20190901T150911_T22WEV') 

ee.Image('COPERNICUS/S2/20190901T150911_20190901T150911_T22WFA') 

ee.Image('COPERNICUS/S2/20190901T150911_20190901T150911_T22WFA') 

ee.Image('COPERNICUS/S2/20190901T150911_20190901T150911_T22WFV') 

ee.Image('COPERNICUS/S2/20190903T154911_20190903T154905_T27XVJ') 
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Table C.2: Best hyperparameters and corresponding outer accuracy and kappa values for each 
classifier across five cross-validation folds 

  
Best Hyperparameters 

Outer 
Accuracy 

Outer 
Kappa 

CART       

1 {minLeafPopulation=4.0, maxNodes=200.0} 0.961827 0.923646 

2 {minLeafPopulation=4.0, maxNodes=200.0} 0.95606 0.912119 

3 {minLeafPopulation=4.0, maxNodes=200.0} 0.958199 0.916369 

4 {minLeafPopulation=3.0, maxNodes=200.0} 0.954168 0.908347 

5 {minLeafPopulation=3.0, maxNodes=200.0} 0.954585 0.909181 

GBDT       

1 {seed=3, numberOfTrees=150.0, samplingRate=0.9, 
maxNodes=150.0, shrinkage=0.2} 0.977096 0.954189 
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2 {seed=3, numberOfTrees=150.0, samplingRate=0.9, 
maxNodes=150.0, shrinkage=0.2} 0.972912 0.945826 

3 {seed=2, numberOfTrees=200.0, samplingRate=0.7, 
maxNodes=200.0, shrinkage=0.1} 0.978481 0.956947 

4 {seed=2, numberOfTrees=200.0, samplingRate=0.7, 
maxNodes=200.0, shrinkage=0.1} 0.974692 0.949384 

5 {seed=2, numberOfTrees=200.0, samplingRate=0.7, 
maxNodes=200.0, shrinkage=0.1} 0.97654 0.953079 

KNN       

1 {metric=EUCLIDEAN, searchMethod=AUTO, k=5} 0.959324 0.918636 

2 {metric=EUCLIDEAN, searchMethod=AUTO, k=5} 0.950568 0.90115 

3 {metric=EUCLIDEAN, searchMethod=AUTO, k=3} 0.956963 0.913872 

4 {metric=EUCLIDEAN, searchMethod=AUTO, k=5} 0.956434 0.912884 

5 {metric=EUCLIDEAN, searchMethod=AUTO, k=5} 0.955464 0.910933 

ME       

1 {randomTestPoints=5.0, betaMultiplier=1.0, 
doClamp=false, extrapolate=false} 0.95219 0.904385 

2 {randomTestPoints=5.0, betaMultiplier=1.0, 
doClamp=false, extrapolate=false} 0.944576 0.889142 

3 {randomTestPoints=5.0, betaMultiplier=1.0, 
doClamp=false, extrapolate=false} 0.949542 0.899078 

4 {randomTestPoints=5.0, betaMultiplier=1.0, 
doClamp=false, extrapolate=false} 0.949761 0.899499 

5 {randomTestPoints=5.0, betaMultiplier=1.0, 
doClamp=false, extrapolate=false} 0.951574 0.903132 

RF       

1 {minLeafPopulation=4.0, seed=1, 
numberOfTrees=200.0, bagFraction=0.5, 
maxNodes=200.0, variablesPerSplit=4.0} 0.965457 0.930902 

2 {minLeafPopulation=4.0, seed=1, 
numberOfTrees=200.0, bagFraction=0.5, 
maxNodes=200.0, variablesPerSplit=4.0} 0.955436 0.910883 
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3 {minLeafPopulation=4.0, seed=1, 
numberOfTrees=200.0, bagFraction=0.5, 
maxNodes=200.0, variablesPerSplit=4.0} 0.964259 0.928477 

4 

  

{minLeafPopulation=4.0, seed=1, 
numberOfTrees=200.0, bagFraction=0.5, 
maxNodes=200.0, variablesPerSplit=4.0} 0.961974 0.923955 

5 {minLeafPopulation=4.0, seed=1, 
numberOfTrees=200.0, bagFraction=0.5, 
maxNodes=200.0, variablesPerSplit=4.0} 0.959854 0.919715 

SVM       

1 {svmType = 'C_SVC', kernelType: 'Linear’, 
shrinking=true, cost=10, decisionProcedure=Voting} 0.950688 0.901367 

2 {svmType = 'C_SVC', kernelType: 'Linear’, 
shrinking=false, cost=10, decisionProcedure=Margin} 0.942329 0.88467 

3 {svmType = 'C_SVC', kernelType: 'Linear’, 
shrinking=true, cost=10, decisionProcedure=Voting} 0.950408 0.900771 

4 {svmType = 'C_SVC', kernelType: 'Linear’, 
shrinking=false, cost=10, decisionProcedure=Margin} 0.947746 0.895495 

5 {svmType = 'C_SVC', kernelType: 'Linear’, 
shrinking=true, cost=10, decisionProcedure=Voting} 0.946682 0.89337 
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