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Class-imbalanced flow meter fault diagnosis under small samples using reinforcement learning based 

Mahalanobis Taguchi system 

 

Abstract 

Flow meter is one of the most essential sensors in industrial development, energy measurement and environmental 

protection. Monitoring of flow meter performance can help detect anomalies early and enable timely corrective actions for 

critical industrial equipment in harsh operating environments. However, flow meter diagnostic models are often prone to 

overfitting and low accuracy caused by class-imbalanced small-sample data. To address these problems, a reinforcement 

learning Mahalanobis Taguchi system (RLMTS) model is proposed in this paper, which primarily consists of three modules, 

namely Mahalanobis space (MS) construction, threshold determination, and sample classification. In the MS module, an initial 

MS is constructed by selecting variables through orthogonal array design and signal-to-noise ratio analysis. Reinforcement learning 

is then introduced to adaptively refine the MS which is verified by the Mahalanobis distance. In the threshold determination 

module, a neural network algorithm is proposed to replace the traditional quality loss function for optimal threshold 

determination. In the sample classification module, the fault diagnosis of unknown samples is performed using the valid MS 

and calculated Mahalanobis distance. Experimental results show that the proposed RLMTS is not only suitable for flow meter 

fault diagnosis under different class-imbalance ratios with different small sample sizes, but also demonstrates a better 

diagnostic performance, stronger robustness, and broader applicability compared to the 19 benchmark diagnosis models. The 

use of RLMTS therefore guarantees stable operation of the flow meters, contributing to energy savings and environmental 

protection. 
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1. Introduction 

Flow meter is an essential part of the equipment that 

effectively measures the total amount of fluid over a 

selected time interval. It is widely used in industrial 

development [1], energy measurement [2] and 

environmental protection [3]. A flow meter failure can lead 

to severe consequences, including: (i) measurement errors, 

resulting in the reduced measurement accuracy; (ii) slower 

equipment response, reducing operational stability, 

reliability, and efficiency; (iii) energy waste and financial 

losses; and (iv) environmental pollution and safety risks. 

Therefore, real-time condition monitoring and fault 

diagnosis of flow meters are of substantial practical 

significance. 

In the related research on the fault diagnosis of flow 

meters, Chen et al. applied kernel principal component 

analysis (PCA) to reduce the data dimensionality, and used 

the improved support vector machine (SVM) to realize the 

fault diagnosis of the flow meter [4]. Oh et al. employed 

fault-tolerant control and standards to diagnose faults in 

thermocouples or mass flow meters [5]. Liu et al. utilized 

a backpropagation neural network based on the Adam 

optimization algorithm to detect the fault of the flow 

meters in the air conditioning water system [6]. Qiu et al. 

proposed an auxiliary alarm rule to solve the trade-off 

between sensitivity and false alarm rate for fault detection 

and diagnosis of flow meters [7]. However, research on 

flow meter fault diagnosis overall remains limited, and 

most existing studies are based on big data.  

In practice, due to harsh operating conditions, data 

collected from flow meters in large, high-cost equipment 

often exhibits class imbalance and small sample sizes[8]. 

The class-imbalanced small-sample data problem refers to 

the uneven distribution of response variable values [9] and 

limited sample size [10], posing a challenge for flow meter 

fault diagnosis. This can lead to a general fact that the 

higher the imbalance ratio (IR) of the data, the worse the 

diagnostic performance of the diagnostic models [11]. This 

also makes the diagnostic model prone to overfitting, high 

variance and poor generalization ability [12–14]. 

Current research on equipment fault diagnosis under 

class-imbalanced small sample data primarily focuses on 

increasing sample size. Zhang et al. enhanced the 

downsampling module by using density-based spatial 

clustering of applications with noise and distribution ratio 

calculation, then integrated it into a Siamese network. By 

combining the Siamese network with data augmentation 

techniques, the diagnostic accuracy of the model was 

improved [15]. Fan et al. used a resampling technique to 
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extend the number of small samples, combined conditional 

labeling in a conditional generative adversarial network 

(GAN) with a Wasserstein GAN and gradient penalties to 

control the generated samples and filter the samples using 

the maximum mean difference, and ultimately utilized a 

convolutional neural network (CNN) to achieve fault 

diagnosis [16]. Zhang et al. first incorporated the dual-

stream adaptive deep residual shrinkage block into the 

Vision Transformer architecture to adaptively remove 

redundant information while preserving critical local fault 

features, and then applied an interclass-intraclass 

rebalancing loss function to optimize model convergence 

[17]. Li et al. utilized Wasserstein GAN to achieve data 

balancing, and then used long short-term memory (LSTM) 

full convolutional network to realize fault diagnosis in a 

small-sample working environment [18]. Shen et al. 

generated high-quality pseudo-samples from limited 

faulty data, employed an improved Wasserstein GAN with 

gradient penalty to balance the number of faulty and 

normal samples, and applied a LSTM network for fault 

diagnosis [19]. Wang et al. integrated the improved 

majority weighted minority oversampling technique and 

least squares SVM to develop an interpretable and 

optimizable fault diagnosis model [20]. Although these 

methods offer effective solutions, the process of 

generating new samples inevitably introduces noise, which 

may degrade sample quality and diagnostic model 

performance. 

In this context, the Mahalanobis Taguchi system (MTS) 

emerges as a promising approach. This method constructs 

a Mahalanobis space (MS) using a single-class sample, 

offering distinct advantages for handling class-imbalanced 

data [21]. In addition, MTS requires fewer training 

samples than shallow machine learning models and deep 

learning networks. However, the MTS emphasizes the use 

of orthogonal array to arrange variables and reduce the 

number of trials; the use of orthogonal array and signal-to-

noise ratio (SNR) gain to obtain the MS may not 

necessarily be an optimal solution [22]. Meanwhile, the 

MTS uses the quality loss function in determining the 

classification boundaries, whose parameters are 

determined by the decision cost, which is not easy to 

obtain from the relevant data [23]. These issues need to be 

addressed when dealing with MTS.  

Reinforcement learning (RL) supports balanced 

exploration of new feature combinations versus utilizing 

known valid combinations, and has been widely used in 

the field of fault diagnosis. Fan et al. proposed a novel, 

general imbalanced sample selection strategy based on 

deep RL to address industrial equipment fault diagnosis in 

imbalanced scenarios [24]. Li et al. used an advantage 

actor-critic algorithm to extract important features and 

combined it with synthetic minority over-sampling 

technique (SMOTE) to process imbalanced data for 

bearing fault diagnosis [25]. Zhu et al. employed the 

deterministic learning theory to pre-train neural networks 

and subsequently integrated RL to adaptively optimize 

network parameters, thereby enhancing the model's 

robustness. This approach ultimately enabled effective 

fault diagnosis for rotating machinery [26]. Zhang et al. 

incorporated policy gradient and actor-critic strategies into 

a cost-sensitive classifier to achieve fault diagnosis in 

imbalanced scenarios [27]. 

Thus, a reinforcement learning Mahalanobis Taguchi 

system (RLMTS) is proposed in our study for flow meter 

fault diagnosis under class-imbalanced small-sample data. 

First, the advantages of MTS are fully utilized to construct 

the MS with a single class of samples as a benchmark to 

process the imbalanced data. Second, RL is introduced to 

optimize the MS. The features with SNR gain greater than 

zero are used as the initial action space. The negative value 

of the loss function is taken as the reward, and the goal is 

to maximize the cumulative reward. Based on the given 

exploration strategy, the MS is iteratively optimized. 

Finally, a neural network algorithm (referred to as NNA in 

our paper) is employed to determine and optimize the 

threshold of traditional MTS, thus realizing an effective 

sample classification for fault diagnosis. NNA is not a 

traditional neural network model, instead, it is a nature-

inspired metaheuristic optimization method that mimics 

the dynamic information propagation behavior of 

biological neural networks. Through population-based 

exploration, the algorithm evaluates the current best 

solution and its corresponding objective value, and 

iteratively updates them based on the minimization of a 

predefined objective function. The final solution 

represents the optimal threshold. 

Compared with existing methods, RLMTS does not 

rely on data augmentation techniques, thereby reducing 

the risk of introducing noise and enhancing its reliability 

in diagnostic tasks. Moreover, it does not require the 

construction of sample pairs, which lowers the 

dependency on data preprocessing and makes it more 

flexible and broadly applicable across different fields. 

The main contributions of this paper are summarized 

as follows.  

(i) A systematic diagnostic framework: a new 

diagnostic framework is proposed for class-imbalanced 
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flow meter fault diagnosis under small samples, including 

data preprocessing, MS construction, threshold 

determination and sample classification. Experiments 

show that the proposed framework can maximize the 

difference in Mahalanobis distances (MDs) between 

normal and abnormal samples to handle fault diagnosis 

under different IRs with different small sample sizes, 

achieving great diagnostic performance.  

(ii) An effective feature selection strategy: the 

variables selected by the orthogonal array and SNR gain 

are used as the initial MS, which is then continuously 

optimized through the interaction between the agents and 

environment, while considering the feature selection rules 

to explore a better feature set. 

(iii) An efficient way to determine classification 

boundaries: introduce NNA to leverage its accuracy, 

computational efficiency and adaptability, overcoming the 

subjectivity of the quality loss function and obtaining 

better boundary lines for samples of different classes. 

(iv) Theoretical innovation and application value: the 

ablation study and comparative analysis with the 

benchmark models demonstrate that the proposed RLMTS 

provides a theoretical innovation to the MTS with a better 

diagnostic accuracy and expands the application field of 

MTS. RLMTS can effectively realize the fault diagnosis 

of class-imbalanced small-samples, which is conducive to 

reducing the measurement error, improving the 

operational efficiency of the equipment, ensuring the 

reliability and stability of equipment operation, and thus 

preventing the occurrence of safety accidents and reducing 

economic losses. Furthermore, due to its adaptability to 

numerical features, RLMTS exhibits generalizability to 

other sensor fault diagnosis tasks, such as temperature and 

pressure sensors. This highlights its potential for broader 

applications in industrial fault detection and diagnosis 

across diverse sensor-based systems. 

The rest of the paper is organized as follows. Section 2 

presents the fundamental theories of MTS and RL. Section 

3 describes the RLMTS in detail. Section 4 first verifies 

the feasibility of RLMTS via ablation studies, evaluations 

under different imbalance ratios and sample sizes, and an 

analysis of the impact of data characteristics. It then 

demonstrates the effectiveness of RLMTS through three 

case studies. Finally, the performance of all diagnostic 

models is analyzed and discussed in detail, with particular 

attention to the reasons behind their strengths and 

limitations across different datasets. Section 5 presents the 

conclusion. 

2.Fundmendal theories 

2.1. Mahalanobis Taguchi system 

MTS, proposed by Japanese quality expert Taguchi 

[28], mainly consists of MD and Taguchi method. MD is a 

distance metric that extends and refines the Euclidean 

Distance. MD eliminates the effect of magnitude and can 

cope with the non-independent homogeneous distribution 

among dimensions in dataset with high-dimensional linear 

distribution, which can be used for handling ellipsoidal 

data [29]. 

The original data (sample size is n and the number of 

variables is m  ) is normalized to obtain n mX 
 , where ix  is 

the ith  sample of n mX   , 1,2, ,i n=  . The MDs of the 

samples can be calculated. 

1( )T

i i iMD x R x−=   (1) 

where R is the matrix of correlation coefficients. 

For the Taguchi method, the orthogonal array and the 

SNR are two important components. Taguchi method is a 

balanced design of all control parameters, setting the 

optimal combination of different control parameters from 

their responses, and ultimately achieving the goal of 

maximum efficiency with a minimum number of trials [30]. 

The SNR is calculated using an orthogonal array

( )q

gL m  , where g  denotes the number of trials and q

denotes the level of factors. In MTS, 2q =  , i.e., each 

variable has two levels, representing "select this variable" 

or "do not select this variable". The higher the SNR, the 

better the selection of the feature subset. SNR is calculated 

by eq. (2) as below. 

1

2

11

1
10log

n

i

i

SNR x
n =

=     (2) 

where 1n is the number of abnormal samples. Note that 1n

depends on the training data rather than the orthogonal 

array. 

2.2. Reinforcement Learning 

RL serves as a powerful learning framework capable 

of learning complex strategies in high-dimensional 

environments, having sample efficient yet sensitive to 

hyperparameters settings, and balancing the relationship 

between existing information and environment 

exploration [31]. Fig. 1 illustrates the RL process 

schematically used in our study. 
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Fig. 1. The structure of the RL process. 

The RL framework is often modeled as a Markov 

decision process with an infinite temporal horizon. A 

Markov decision process consists of three key components: 

a set of possible states, a set of actions, and immediate 

rewards. In our study, the states encompass all 

environmental variables directly influenced by the agent, 

including time, sample number, flow meter variables such 

as flatness ratio, symmetry, crossflow, flow velocity, 

sound speed, signal strength and signal quality, and class 

attributes. In RL, the agent observes the environment, 

determines an action based on the current state, and 

receives a reward after interacting with the environment. 

The agent iteratively learns to maximize expected rewards 

or achieve other optimization objectives. 

3. Methodology 

3.1. Framework overview 

Fig.2 presents an overview of the RLMTS framework. 
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Fig. 2. Overview of the RLMTS framework. 

RLMTS consists of three modules: MS construction, 

threshold determination, and sample classification. The 

MS construction module initializes the MS using variables 

filtered by SNR gain, and then leverages RL to optimize 
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the MS composition, ensuring the retention of essential 

information while eliminating redundancy. This module 

lays an important foundation for accurate sample 

classification. The threshold determination module aims at 

minimizing the fitness function and employs the NNA to 

complete exploration of the optimal threshold, which is an 

indispensable step for achieving accurate sample 

classification. The sample classification module 

effectively classifies unknown samples and identifies 

faulty ones. The following sections provide a detailed 

description of each module.  

3.2. Mahalanobis space construction 

The MD and SNR of the input samples are calculated 

according to eqs. (1) and (2). Note that in order to obtain a 

more robust MD, the inverse matrix is replaced by a 

Moore-Penrose pseudoinverse matrix in eq. (1). 

Suppose 1SNR  is the SNR with the variable selected 

and 2SNR is the SNR without the variable selected. Then 

the SNR gain is calculated as below. 

1 2gainSNR SNR SNR= −    (3) 

Since a higher SNR indicates better class separability, 

a feature should be considered important for construction 

of the MTS if its inclusion leads to an increase in the 

overall SNR. In other words, if the SNR gain obtained by 

selecting a feature is greater than zero, the feature is 

deemed valuable. Therefore, features with an SNR gain 

greater than zero are selected to form a subset of features. 

The MDs of the normal and abnormal samples are then 

recalculated and compared. If the MD of the abnormal 

samples exceeds that of the normal samples, the initial MS 

is considered valid. 

If the MS is invalid, it is necessary to reconstruct a new 

MS. For the variables with a SNR gain greater than zero, 

the variables corresponding to smaller values are removed, 

while for the variables with a SNR gain less than zero, the 

variables corresponding to larger values are added to 

construct a new MS. After the new MS is constructed, the 

validity of the new MS needs to be verified. 

We have used the RL to optimize the MS composition. 

Given state ts S and action ta A at the time moment t , 

let ( , )t t tr s a R  be the reward, [0,1)   be the discount 

factor (constant),
*V  be the optimal state value function, 

and 1ts +  be the state at the next time moment ( 1)t +  . The 

optimal action-value function *Q is calculated by eq. (4). 

1

* *

1 1( , ) ( , ) ( , ) ( )
t

t t t t t t t t t t

s

Q s a r s a P s s a V s
+

+ += +    (4) 

where P denotes the probability. 

The optimal policy
* can be obtained from the *Q . 

* *( ) arg max ( , )
tt t a A t ts Q s a =   (5) 

At this point, the action taken by the agent each time is 

determined by eq. (5). This means that the agent executes 

a greedy strategy by which each action is made based on 

the current experience and the principle of maximizing 

subsequent benefits. 

In order to realize the exploration of the environment 

by the agent, the ε greedy strategy is introduced. The agent 

randomly selects an action with a probability of ε and 

executes the greedy strategy with a probability of (1-ε). ε 

greedy strategy is chosen due to its simplicity, ease of 

implementation, and proven effectiveness in balancing 

exploration and exploitation in discrete action spaces. It 

provides a stable convergence in environments with 

limited action complexity, such as feature selection tasks. 

The goal of action exploration is to maximize the value 

of action-value function Q . When the action is executed, 

the feature subspace in the MS changes, and the Q-value 

changes accordingly. The Q-value update is shown in eq. 

(6). 

1

( , ) ( , ) [ ( , )

max ( , ) ( , )]

t t t t t t

t t t t
a

Q s a Q s a r s a

Q s a Q s a



 +

 +

+ −
  (6) 

where (0,1] is the step size. 

For each iteration, the agent interacts with the 

environment (feature subset) and performs ε greedy 

strategy, (0,1)   . Let (0,1)c  be a randomly generated 

constant. 
* *

1 1( , ) ( , ) ( , ) ( ),

0 1,

t t t t t t t t ta s a r s a P s s a V s c

or others

 + +
 = + 




 (7) 

Meanwhile, the feature selection and NNA (to be 

described in the subsequent section) are wrapped up and 

processed during agent exploration. The action rules are 

therefore formulated. 

Let F  be the fitness function and
*

tF  be the optimal 

fitness function at the time moment t . 

2 ( ) ( )x yF count MD K count MD K=   +    (8) 

where xMD  and yMD  represent the MDs of normal and 

abnormal samples, respectively, ( )count   refers to the 

number of eligible samples to be counted, and K  is the 

current optimal solution obtained. 

Let D  be the number of feature selection cases in 

actions 1ta +  and ta  that differ. For example, action ta

contains the variables number 1, 2, 3, 4, 5, 6, while 1ta +

contains the variables number 1, 2, 5, 6, meaning 2D = . 

When 1D = , 

* *

1 1

* *

1

,

,

t t t

t t t

a F F
a

a F F

+ +

+

 
= 



   (9) 

When 1D  , the agent needs to fix the choice of any 

two variables in
ta during the exploration. Assume _t newa
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and 1_t newa +  as the actions made by the agent after fixing 

any two feature selection cases at time moments t  and

( 1)t + , respectively. 

* *

1_ 1

* *

_ 1

,

,

t new t t

t new t t

a F F
a

a F F

+ +

+

 
= 



   (10) 

After the iterations are completed, the MDs of the 

normal and abnormal samples are recalculated according 

to the actions given by the agent. If the MD of the normal 

samples is lower than that of the abnormal samples, the 

MS construction is valid, otherwise it is necessary to return 

to eq. (7) and the exploration process repeats again. 

3.3. Threshold determination 

To better determine the threshold, NNA is introduced 

into the MTS. The NNA is not a conventional feedforward 

neural network with explicit layers, neurons, or activation 

functions. Instead, it is a nature-inspired metaheuristic 

optimization method proposed by Sadollah et al. [32], 

which simulates the dynamic information propagation 

mechanism of biological neural systems. By mimicking 

the way connection weights are transmitted among 

neurons, NNA searches for global optima in continuous 

spaces. Unlike traditional neural networks, NNA does not 

possess a layered structure, making it simpler to 

implement and computationally efficient. The core idea of 

NNA is to emulate the principle of biological evolution 

and group intelligence, and transform the optimization 

problem into a process of searching for the optimal 

solution.  

The NNA is adopted to adaptively determine the 

optimal classification threshold by minimizing eq. (8), 

which defines the misclassification cost based on MDs. 

The algorithm begins by initializing a population and 

evaluating the initial fitness of each candidate solution. It 

then simulates the propagation of neural connections 

through a weight matrix to generate new solutions, by 

incorporating perturbations to enhance exploration. 

During each iteration, the search range is progressively 

narrowed to promote convergence; the objective function 

is recalculated; and the historical best solution is retained. 

This global search mechanism enables NNA to effectively 

avoid local optima and ensures reliable threshold 

optimization for the RLMTS model.  

Detailed steps are described as follows. 

3.3.1. Initialization 

Set popN as the number of populations,T as the number 

of iterations, maxT  as the maximum number of iterations,

max1,2, ,T T=  , 0w  as initial weight matrix, and w  as a 

square matrix of uniformly generated random numbers 

between 0 and 1 of size pop popN N . 

11 21 1

12 22 2

1 2

, , ,

, , ,

, , ,

pop

pop

pop pop pop pop

N

N

N N N N

w w w

w w w
w

w w w

 
 
 

=  
 
 
 

  (11) 

The eq. (11) satisfies,
1

1
popN

ij

j

w
=

=  , (0,1)ijw   ,

, 1,2, , popi j N=  , ijw  denotes the ith  row and jth  column 

element of the weight matrix w . The initial weight matrix

0w is calculated in Algorithm 1. 

Algorithm 1 Initialize w0 

Require: Npop 

W0 <-- a diagonal matrix of size Npop×Npop with all 

diagonal values 0.5 

For i from 1 to Npop do: 

t = Random(1, Npop-1)×0.5, where Random(a, b) refers 

to randomly generating a random array of size a×b. 

t = t / Sum(t)×0.5, where Sum(.) is a summation formula 

Elements in w0 with a value of zero<-- values in t  

End For 

3.3.2. Weight matrix, bias operator and pattern 

solution update 

We randomly generates 1 (0,1)r  to update the weight 

matrix w , and also randomly select a number of columns 

in 1r and replace these columns in w with the columns in 1r , 

then normalize it. 

To fast obtain the optimal solution, NNA searches for 

the solution within the restricted search space. Set the 

lower limit of the search space as l , the upper limit of the 

search space as u  , the position of theTth  iteration as Tp  

(initial solution is 0p ) and the pattern solution of theTth

iteration as TK (initial pattern solution is 0K ). 

0 2

0 0

( )p r u l l

K p

=  − +


=
   (12) 

where 2 (0,1)r  is a random number. 

The Tp is then updated and the following steps as given 

by eq. (13) are iterated over until the predefined iteration 

stopping condition is satisfied or maxT T= . 

1

1

T T T

T T T

p w p

p p p

−

−

= 

= +
   (13) 

The weight matrix can also be updated. 

32

( )

e

j j j

j j j

w w r w w

w w sum w

= +   −

=
   (14) 

where
ew  is the target weight and 3 (0,1)r   is a random 

number.  
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The bias operator  acts as noise and the initial value

0 1 =  . Two methods can be used for updating the bias 

operator  , as given in eq. (15) by Sadollah et al. [32]. 

1

1 max

0.99

1

T T

T T T

 



+

+

= 

= −
   (15) 

In order to minimize the effect of the manually set 

parameter maxT  on   , we choose method 1 0.99T + = 

here. 

The pattern solution
TK can be updated as below. 

*

42 ( )T T T TK K r F K= +   −   (16) 

where
4 (0,1)r  is a random number. 

Finally, the best solution among all
TK is obtained, as 

denoted as
*K  , and the optimal threshold is therefore 

determined. 

3.4. Sample classification 

According to the MS constructed in Section 3.2, the 

MDs of the samples to be tested ( ZMD ) is calculated. The 

class of the samples is determined by comparing between 

the
ZMD  and *K  obtained from the calculation in Section 

3.3. 

*,

,

zfaulty K MD

normal others

 



   (17) 

To effectively assess the performance of the proposed 

diagnostic model, evaluation is conducted using the 

confusion matrix. In addition, precision, recall, specificity, 

accuracy, F1-score, and G-mean are also adopted as key 

performance metrics [33].  

The proposed RLMTS is presented in Fig. 3. The 

methodology of RLMTS is demonstrated in Algorithm 2. 
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Fig. 3. The RLMTS. 

Algorithm 2 RLMTS 

Data standardization 

Calculate the sample MD according to eq. (1) 

Calculate the signal-to-noise gain according to eqs. (2)-(3) 

to construct the initial MS 

a0 <-- initial MS 

Interact with the environment to get the reward r0 

For t=1 to maximum number of moments, do: 

Agent adopts ε greedy strategy and obtains the action 

strategy based on eqs. (4)-(7) 

Update rewards according to eq. (8), note that r and F 

are inversely proportional. 

When D=1, do: 

If Ft+1
opt > Ft

opt, do: 

a=at+1 

Else do: 

a=at 

End if  

When D>1, do: 

Fix the choice of any two variables in at 

If Ft+1
opt > Ft

opt, do: 

a=at+1_new 

Else do: 



 

8 

a=at_new 

End if  

Recalculate the MD to test the validity of MS 

For T=1 to maximum number of iterations, do: 

Calculate the initial p0, K0 and w0 according to eqs. 

(11)-(12) and Algorithm 1 

Update the position and optimal solution based on eq. 

(13) 

Based on eq. (14) update the weight matrix 

Update bias according to eq. (15) 

Compare and save the optimal solutions from the 

iterations and get the K* 

End for 

End for 

Calculate the MD of the unknown sample based on the 

optimal MS 

If MDz > K, do: 

Output (‘Faulty sample’) 

Else do: 

Output (‘Normal sample’) 

End if  

4. Experimental results and discussion 

4.1. Datasets 

The three datasets used with different IRs were taken 

from Gyamfi et al. [34]. These datasets were collected 

from real ultrasonic flow meters: Dataset A was acquired 

from an 8-path ultrasonic flow meters, while Datasets B 

and C were obtained from 4-path ultrasonic flow meters. 

Table 1 provides a detailed description of the datasets. 

Table 2 illustrates the physical meaning of the variables in 

the datasets.

Table 1 

Description of the datasets.  

Dataset Sample size 
Number of 

variables 

Majority class sample 

sizes 
Minority class sample sizes IR 

A 87 37 52 35 1:1.49 

B 181 44 127 54 1:2.35 

C 180 44 129 51 1:2.53 

Table 2 

Physical meaning of variables in datasets. 

Dataset Variable No. Variable meaning Variable No. Variable meaning 

Dataset A 

1 Flatness ratio 2 Symmetry 

3 Crossflow 4-11 Flow velocity in each of the eight paths 

12-19 
Speed of sound in each of the eight 

paths 
20 

Average speed of sound in all eight 

paths 

21-36 
Gain at both ends of each of the 

eight paths 
37 Class attribute 

Dataset B 

& C 

1 Profile factor 2 Symmetry 

3 Crossflow 4-7 Flow velocity in each of the four paths 

8-11 
Speed of sound in each of the four 

paths 
12-19 

Signal strength at both ends of each of 

the four paths 

20-27 
Signal quality at both ends of each 

of the four paths 
28-35 

Gain at both ends of each of the four 

paths 

36-43 
Transit time at both ends of each of 

the four paths 
44 Class attribute 

4.2. Parameter design 

All experiments are implemented using Python 

3.10.12 and Matlab R2022a on a system equipped with a 

12th Gen Intel® Core™ i7-12700H processor (up to 3.69 

GHz), 16 GB of DDR5 RAM (4800 MT/s), and an 

NVIDIA GeForce RTX 3060 Laptop GPU (6 GB VRAM). 

In RLMTS, the environment includes time, samples, 
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and features, etc. State is the set of currently selected 

features. Action is a modification operation on the feature 

space. Reward is the opposite of the loss function, i.e., the 

opposite of eq. (8). Learning rate is 0.1, discount factor

0.95 = , 0.9 = and the number of iterations is 100. 

In our study, we set population size 100popN = . Table 

3 gives details of the search space, where -fold means the

th  fold in the five-fold cross-validation, l is the lower 

limit of the search space, while u is the upper limit of the 

search space. 

Table 3 

Search space of the datasets. 

Dataset ξ-fold l u 

Dataset A 

1 0.97 10.17 

2 0.96 12.35 

3 0.97 31.03 

4 0.96 21.63 

5 0.96 32.48 

Dataset B 

1 0.98 7572.22 

2 0.98 8164.96 

3 0.98 7722.28 

4 0.98 8653.65 

5 0.97 10008.93 

Dataset C 

1 0.98 2006.74 

2 0.98 1867.84 

3 0.98 1937.41 

4 0.97 1907.46 

5 0.97 2388.65 

4.3. Ablation Study 

4.3.1. Validity of RL and NNA 

To validate the effectiveness of RLMTS and assess the 

significance of its core components, ablation studies are 

conducted through sequential removal of the RL module 

and NNA module from the complete framework, resulting 

in two simplified architectures: Model 1 (RLMTS without 

RL) and Model 2 (RLMTS without NNA). Five-fold 

cross-validation is implemented to comprehensively 

evaluate model performance and generalization 

capabilities. This validation methodology divides the 

original dataset into five equal-sized subsets (folds), with 

four subsets designated for model training and the 

remaining subset reserved for testing. Table 4 presents the 

mean values of the evaluation metrics after the ablation 

experiments are performed on three datasets, and each 

dataset is subjected to the five-fold cross-validation. 

As can be seen from Table 4, the model diagnostic 

performance is not robust after excluding the RL module 

or the NNA module; therefore, both the RL and the NNA 

are crucial parts for the RLMTS model. 

Table 4 

Results of the ablation study. 

Models Accuracy F1 G-mean 

RLMTS 0.99 0.98 0.99 

Model 1 0.93 0.86 0.95 

Model 2 0.60 0.61 0.66 

4.3.2. Validity of SNR gain 

In order to verify its effectiveness, the SNR gain 

method is compared with two feature selection methods, 

mutual information (MI) and PCA. Since a greater MD 

difference between normal and abnormal samples makes 

classification easier and achieves higher accuracy, the MD 

difference is used as an evaluation index. Table 5 shows 

the results of the three feature selection methods in detail. 

Table 5 

Sample MD differences using SNR gain, MI and PCA. 

Dataset Models 

MD 

difference 

mean 

MD difference 

standard 

deviation 

A 

SNR gain 294.87 221.92 

MI 200.72 64.50 

PCA 21.67 26.60 

B 

SNR gain 30850.97 5206.33 

MI 1572.04 220.47 

PCA 17.45 20.31 

C 

SNR gain 6221.45 1036.63 

MI 178.81 57.58 

PCA 848.37 693.24 

As can be seen from Table 5, the MD difference 

between normal and abnormal samples computed using 

SNR gain is the most pronounced, which is, therefore, 

more favorable for the model to perform the classification 

task. 

4.3.3. Validity of ε-greedy strategy 

To verify its effectiveness, the ε-greedy strategy is 

compared with Thompson sampling. Using the two 

strategies, the values of the evaluation metrics are 

calculated in conjunction with other modules of RLMTS. 

Fig. 4 shows the results of the model, with metric values 

averaged across three datasets, each of which is evaluated 

using five-fold cross-validation. 
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Fig.4. Comparison of results from ε-greedy and Thompson 

sampling. 

As can be seen in Fig. 4, the combination of ε-greedy 

strategy with other modules of RMLTS has better 

diagnostic performance with higher values of all the 

evaluation metrics. 

4.4. RLMTS for different IRs with different 

small sample sizes 

4.4.1. Experiments with IR from 1:1.19 to 1:1.53 

In order to investigate the diagnostic performance of 

RLMTS on small samples with different IRs, new datasets 

are created by taking 20%, 40%, and 60% of the data from 

datasets A, B, and C, respectively. These new datasets are 

named A-1, A-2, A-3, B-1, B-2, B-3, C-1, C-2, and C-3. 

RLMTS is then applied to the new datasets to conduct fault 

diagnosis. Table 6 gives the confusion matrix, 

demonstrating the diagnostic performance of RLMTS on 

the nine new datasets, where TP denotes true positives, TN 

denotes true negatives, FP denotes false positives, and FN 

denotes false negatives.  

Table 6 

Confusion matrix of RLMTS on the nine new datasets. 

Dataset IR 
Feature 

number 
TP FN FP TN Time 

A-1 

1:1.49 37 

1 0 0 2 4.66 

A-2 2 1 0 4 4.64 

A-3 4 0 0 6 4.76 

B-1 

1:2.35 44 

2 0 0 5 4.76 

B-2 4 0 0 10 4.72 

B-3 6 0 0 15 4.81 

C-1 

1:2.53 44 

2 0 0 5 4.83 

C-2 4 0 1 9 4.70 

C-3 6 0 0 15 4.75 

As can be seen from Table 6, except for one sample 

misjudged by RLMTS in Datasets A-2 and C-2, the rest 

samples are judged correctly, indicating that RLMTS has 

a great diagnostic capability. 

4.4.2. Experiments with IR from 1:1.10 to 1:1.100 

Due to the limited sample size of datasets A-C, it is 

difficult to explore the diagnostic performance of the 

RLMTS under higher IRs. Therefore, Dataset D [35] is 

employed, as an example, to investigate the diagnostic 

performance of the proposed RLMTS method under 

higher imbalance ratios ranging from 1:10 to 1:100. In the 

experiments for Dataset D, the minority class has 30 

training samples and 10 test samples, with the same IR 

maintained in both training and testing. Table 7 presents in 

detail the RLMTS confusion matrix for higher imbalance 

ratios. 

Table 7 

Confusion matrix of RLMTS on the Dataset D. 

IR TP FP FN TN 

1:10 10 0 0 100 

1:20 10 0 0 200 

1:30 10 0 0 300 

1:40 10 0 0 400 

1:50 10 0 0 500 

1:60 10 0 0 600 

1:70 10 0 0 700 

1:80 10 0 0 800 

1:90 10 0 0 900 

1:100 10 0 0 1000 

When IR=1:100, the number of training samples is 

3030 (number of normal samples is 30 and that of 

abnormal samples is 3000) and the number of test samples 

is 1010 (number of normal samples is 10 and that of 

abnormal samples is 1000), and the optimal threshold 

obtained is 53.76. Fig. 5 shows the MDs of normal and part 

of the abnormal samples due to large abnormal samples in 

this case. It can be seen that there is a large difference 

between the MDs of the two types of samples, which 

illustrates that the RLMTS is still effective in identifying 

faulty samples even when the IR is much higher. 
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(b) MD of abnormal samples 

Fig.5. MDs of normal and abnormal samples under IR=1:100. 

Consequentially, RLMTS is suitable for small-sample 

fault diagnosis with good diagnostic performance under 

different IRs. 

4.4.3. Experiments with IR=1:1000 

Due to the difficulty of data collection in real scenarios 

with IR=1:1000, the experiments are conducted using data 

generated based on different distributions. 

All samples have 25 feature dimensions. The training 

set contains 30,000 normal samples and 30 abnormal 

samples, while the test set includes 10,000 normal samples 

and 10 abnormal samples. The normal samples follow a 

multivariate standard normal distribution, whereas the 

abnormal samples are generated from a mixture of two 

abnormal Gaussian modes, with additional heavy-tailed 

perturbations introduced by a t-distribution, as described 

below. 

25(0, )normalx N I   (18) 

25 3

25 3

(3,2 ) 0.5

( 2,1.5 ) 0.5
anomaly

N I t
x

N I t

+


− +
  (19) 

The features with SNR gain greater than zero 

correspond to indices 1 through 23. After RL exploration, 

the selected feature indices are 2, 9, 11, 12, 16, 18, 19, 20, 

21, 22, and 23. The optimal classification threshold 

obtained by the NNA is 3.48. Under this configuration, the 

proposed RLMTS method correctly classifies all samples 

in the dataset. 

Fig. 6 illustrates the MDs of normal and abnormal 

samples. 

 

(a) MD of normal samples 

 

(b) MD of abnormal samples 

Fig.6. MDs of normal and abnormal samples under IR=1:1000. 

Theoretically, RLMTS uses only a single class of 

samples as a baseline for constructing the MS and thus is 

largely independent of the imbalance ratio. RLMTS can 

achieve good diagnostic performance even if the IR is 

large. 

4.5 Impact of data characteristics on RLMTS 

Experiments are conducted to investigate the influence 

of data characteristics such as noise and feature correlation 

on the performance of RLMTS. In the noise analysis, SNR, 

standard deviation, and variance are used as evaluation 

metrics. For the feature correlation, distance correlation is 

used as the evaluation criterion. 

(1) Data characteristics before and after RLMTS 

Fig. 7 illustrates the original data characteristics of 

dataset C and the data characteristics after RLMTS 

processing. 

 

Fig.7. Data characteristics before and after RLMTS. 

The average SNR values of the original data are 0.07 

dB (normal class), 0.09 dB (abnormal class) and 0.08 dB 

(overall), which show a weak class discrimination and 

significant noise interference. After RLMTS processing, 

these SNR values significantly increase to 0.41 dB, 0.51 

dB and 0.48 dB, indicating a clearer signal structure 

resulting from effective feature selection. 

Meanwhile, both the standard deviation and variance 

have decreased, indicating that the model is more compact 

in feature expression after RLMTS processing, and 
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presents stronger anti-interference and stability. The 

decrease in standard deviation and variance also indirectly 

reflects an increase in the internal consistency of the 

samples. 

To further analyze redundancy between the features, 

the distance correlation coefficient matrix is calculated 

between the features of each class of samples and the 

average of its upper triangular part is extracted as an 

evaluation metric. In the original data, the average distance 

correlation of the normal samples is 0.47, that of the 

abnormal samples is 0.61, and that of the whole is 0.48, 

indicating that there is a strong nonlinear dependency 

between the original features, which may affect the 

generalization ability of the model. After RLMTS 

processing, the distance correlation decreases to 0.39, 0.56, 

and 0.44, indicating that RLMTS effectively reduces the 

redundancy between the features and improves the 

discriminative capability, thereby improving the 

generalization capability of the model. 

(2) Diagnostic performance of RLMTS on data after 

adding noise 

To investigate the impact of data characteristics on 

RLMTS, particularly the effect of noise factors, Gaussian 

noise is added to the original data to construct a new 

Dataset C-4. 

A lower magnitude of noise is added to the normal 

samples, while a larger magnitude is introduced to the 

abnormal samples. The increased perturbation in abnormal 

samples is intended to simulate the instability of real-

world anomalies and potential sensor errors. 

For the original sample X , let X be the sample after 

adding noise. 

,

,

normal

anomaly

X if X Normal class
X

X if X Anomaly class





+ 
= 

+ 
   (20) 

where ( )20,( )normal normal normalN a    and 

( )20,( )anomaly anomaly anomalyN a   , with normal  and

anomaly  denoting the standard deviations of normal and 

abnormal samples in each feature dimension, respectively. 

The noise scaling factors are empirically set as 

0.03normala =  for normal samples and 0.08anomalya =  for 

abnormal samples. 

The features with positive SNR gain, namely 3, 4, 6, 7, 

9, 10, 11, 12, 14, 18, 20, 21, 22, 23, 24, 26, 29, 30, 31, 32, 

33, and 36, constitute the initial feature space. After RL 

optimization, the selected feature subset becomes 2, 9, 14, 

16, 20, 23, 24, 32, and 37. The NNA determines an optimal 

classification threshold of 3.74, yielding a confusion 

matrix of [7, 0; 0, 31]. These results indicate that RLMTS 

remains effective for fault diagnosis even in the presence 

of Gaussian noise. 

4.6. Comparative models 

To address class-imbalanced small-sample data, 

SMOTE is widely used to generate new samples. With 

advancements in deep learning, GAN has been employed 

to generate instances of underrepresented classes, 

significantly enhancing sample quality. SVM, logistic 

regression (LR), CNN, and recurrent neural networks 

(RNN) have also been widely used as effective 

classification models in various studies.  

Therefore, 19 diagnostic models (15 widely used 

models and four state-of-the-art models) are selected for 

comparison with RLMTS. These models included SVM, 

LR, CNN, RNN, SMOTE-SVM, SMOTE-LR, SMOTE-

CNN, SMOTE-RNN, GAN-SVM, GAN-LR, GAN-CNN, 

GAN-RNN, RL-CNN, RL-RNN and cost-sensitive LR. 

Additionally, DSADRSViT-IIRL [17] and ACWGAN-GP-

LSTM [19] are included as state-of-the-art models. For 

further comparison, SMOTETomek-M1DCNN-SVM [36], 

which integrates SMOTETomek, multi-scale one-

dimensional CNN, and SVM, is also considered for 

comparison. Ensemble method RUSBoost is also used for 

comparison. 

The following subsections outline the hyperparameter 

optimization strategies employed to ensure fair model 

comparison. 

(1) SMOTE 

The G-value has a direct impact on the quality of the 

generated samples in SMOTE, where G represents the 

selection of G nearest neighbor samples. In our study, the 

G-value was tuned with a step of 1 in the interval [3,10] 

and the mean value of MD between the real and generated 

samples is used as a criterion. Fig. 8 shows the results, and 

the final choice is G = 8. 

 

Fig. 8. MDs of samples with different G values from SMOTE. 

(2) GAN 

The latent space is essential in GANs as it captures the 

underlying structure of data, enabling the transformation 

of random noise into meaningful outputs. Therefore, the 
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dimension of latent space is tuned, which is explored in the 

range of 10-60 with a step size of 10. Fig. 9 shows the 

results by using the MD mean value between real and 

generated samples as a criterion. In this case, the final 

choice of latent dimension is 10. 

 

Fig. 9. MDs of samples with different latent dimensions from 

GAN. 

(3) SVM 

The hyperparameters such as BoxConstraint and 

KernelScale in the SVM are tuned. BoxConstraint is a 

constraint box, implying that the larger the value, the 

smaller the penalty, the smaller the interval of the final 

classification hyperplane, the more the support vectors, 

and the more complex the model. KernelScale is the 

geometric sequence of radial basis function sigma 

parameters scaled by the original kernel scale. These 

hyperparameters have a significant impact on the 

complexity and diagnostic accuracy of the SVM model. 

The process is shown in Fig. 10, with final BoxConstraint 

= 0.001 and KernelScale = 0.9867. 

 

Fig. 10. SVM parameter optimization process. 

(4) CNN 

The hyperparameters, i.e., the kernel sizes of the 

convolutional layer and maximum pooling layer, as well 

as the dropout layer's discard probability in the CNN, are 

tuned. In our study, the kernel sizes of the convolutional 

layer and maximum pooling layer are set to 2 or 3, the 

discard probability of dropout layer is set to 0.1 or 0.2 or 

0.3, and diagnosis accuracy is used as the evaluation 

criteria. Table 8 demonstrates the results. The final kernel 

size of the convolutional layer is 3, the kernel size of the 

maximum pooling layer is 2, and the dropout layer has a 

dropout probability of 0.2. 

Table 8 

Accuracy of CNN with different hyperparameters. 

Convolution

al layer 

kernel size 

Max pooling 

layer kernel 

size 

Dropout 

probability 
Accuracy 

2 

2 

0.1 0.59 

0.2 0.59 

0.3 0.54 

3 

0.1 0.59 

0.2 0.57 

0.3 0.59 

3 

2 

0.1 0.57 

0.2 0.61 

0.3 0.5902 

3 

0.1 0.59 

0.2 0.59 

0.3 0.61 

(5) RNN 

The hidden layers of RNN are effective for feature 

extraction as the number of hidden layers not only affects 

the output at the current moment but also has an impact on 

future computations. In our study, the number of hidden 

layers in the RNN is tuned with a search space of 10-80 

and a step size of 10, and the diagnostic accuracy of the 

training set is used as the evaluation criterion. Fig. 11 

shows the results. The number of hidden layers is 

eventually chosen as 40. 

 

Fig. 11. Accuracy with different number of hidden layers for RNN. 

4.7. Performance of the benchmark model with 

different small sample sizes 

To evaluate the diagnostic robustness under limited 

data conditions, three new datasets named A-1, A-2, and 

A-3 are constructed by randomly selecting 20%, 40%, and 

60% of the original data, respectively. The corresponding 

total sample sizes are 17, 35, and 52. For each dataset, 80% 

of the samples are used for training and the remaining 20% 

are used for validation. Nineteen benchmark models are 

then applied to these datasets to perform fault diagnosis. 

Table 9 presents the resulting confusion matrices, which 
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illustrate the diagnostic performance of the nineteen 

models on the three datasets 

Table 9 

Diagnostic performance of 19 benchmark models with 

different small samples. 

Dataset Method TP FP FN TN Time 

A-1 

RLMTS 1 0 0 2 4.66 

SVM 0 1 0 2 0.01 

LR 0 1 0 2 0.01 

CNN 0 1 0 2 0.02 

RNN 1 0 1 1 0.02 

SMOTE-SVM 0 1 0 2 0.01 

SMOTE-LR 0 1 0 2 0.02 

SMOTE-CNN 0 1 0 2 0.03 

SMOTE-RNN 1 0 1 1 0.05 

GAN-SVM 0 1 0 2 0.46 

GAN-LR 1 0 1 1 0.36 

GAN-CNN 0 1 0 2 0.34 

GAN-RNN 1 0 1 1 0.68 

RL-CNN 0 1 0 2 0.19 

RL-RNN 0 1 0 2 0.11 

Cost-sensitive 

LR 
0 1 0 2 0.01 

DSADRSViT-

IIRL 
0 1 0 2 3.69 

ACWGAN-GP-

LSTM 
1 0 1 1 1.97 

SMOTETomek-

M1DCNN-SVM 
0 1 0 2 0.03 

RUSBoost 0 1 0 2 0.01 

A-2 

RLMTS 2 1 0 4 4.64 

SVM 0 3 0 4 0.01 

LR 0 3 0 4 0.01 

CNN 0 3 0 4 0.03 

RNN 0 3 0 4 0.04 

SMOTE-SVM 0 3 0 4 0.01 

SMOTE-LR 0 3 0 4 0.01 

SMOTE-CNN 0 3 0 4 0.04 

SMOTE-RNN 2 1 0 4 0.06 

GAN-SVM 0 3 0 4 0.26 

GAN-LR 0 3 0 4 0.24 

GAN-CNN 0 3 0 4 0.26 

GAN-RNN 2 1 0 4 0.51 

RL-CNN 0 3 0 4 0.23 

RL-RNN 1 2 1 3 0.10 

Cost-sensitive 

LR 
0 3 1 3 0.01 

DSADRSViT- 1 2 0 4 6.03 

Dataset Method TP FP FN TN Time 

IIRL 

ACWGAN-GP-

LSTM 
2 1 3 1 2.84 

SMOTETomek-

M1DCNN-SVM 
1 2 2 2 0.05 

RUSBoost 1 2 0 4 0.01 

A-3 

RLMTS 4 0 0 6 4.76 

SVM 0 4 0 6 0.00 

LR 3 1 0 6 0.01 

CNN 0 4 0 6 0.04 

RNN 0 4 0 6 0.05 

SMOTE-SVM 1 3 0 6 0.01 

SMOTE-LR 3 1 0 6 0.01 

SMOTE-CNN 0 4 0 6 0.05 

SMOTE-RNN 0 4 0 6 0.08 

GAN-SVM 1 3 0 6 0.26 

GAN-LR 4 0 0 6 0.24 

GAN-CNN 0 4 0 6 0.27 

GAN-RNN 2 2 0 6 0.53 

RL-CNN 4 0 4 2 0.27 

RL-RNN 3 1 0 6 0.10 

Cost-sensitive 

LR 
3 1 0 6 0.01 

DSADRSViT-

IIRL 
4 0 0 6 9.28 

ACWGAN-GP-

LSTM 
2 2 0 6 4.68 

SMOTETomek-

M1DCNN-SVM 
2 2 2 4 0.06 

RUSBoost 3 1 1 5 0.04 

4.8. Case study 

4.8.1. Case A with Dataset A 

(1) MS construction 

Fig. 12 presents the results of MS construction of 

Dataset A, with (a) illustrating the SNR gain obtained 

using orthogonal array, and (b) showing the action change 

process using RL and the added action execution rules (set 

K=1 as the example). Note that in Fig. 12 (a), the SNR 

gains between the variables are independent of each other, 

and their values and the shape of plot depend on the 

variable values. Blue color in Fig. 12 (b) indicates the 

selected variables while white color indicates those 

unselected variables. 
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(b) Agent action change trajectory 

Fig. 12. Results of MS construction. 

(2) Threshold determination 

The optimal thresholds are calculated using NNA 

based on the selected parameters by the above MS. Set 

1 =   as an example, the trajectories of the optimal 

thresholds are shown in Fig. 13. 
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Fig. 13. Variation of the current optimal solution. 

In each iteration, a current optimal solution is obtained 

and compared with the historical best. The global optimal 

solution is updated accordingly based on the minimization 

of the fitness function. 

The final global optimal thresholds obtained from five-

fold cross-validation on Dataset A are 2.91, 2.89, 2.65, 

2.26, and 2.93, respectively. 

(3) Classification results of training samples 

Fig. 14 presents the boxplots of normal and abnormal 

samples in the training set under five-fold cross-validation.  
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(b) MDs of abnormal samples 

Fig. 14. boxplots of normal and abnormal samples on Dataset A. 

As shown in Fig. 14, there is a clear distinction in MDs 

between normal and abnormal samples, which facilitates 

the subsequent classification task performed by the 

RLMTS model. 

(4) Classification results of test samples 

The MDs of the testing samples are calculated based 

on the MS. These MDs are then used to compare with the 

threshold, as described in Section 3.4, thereby generating 

the classification results. 

Table 10 presents the diagnostic performance of 

RLMTS on both the training and testing sets of Dataset A. 

In the training set, all samples are correctly classified 

except for two faulty samples misclassified as normal in 

the first fold and one in the second fold. On the testing set, 

RLMTS achieves high diagnostic accuracy for all samples 

when ξ = 1, 2, and 3. The relatively low recall observed at 

ξ = 4 is primarily due to the small number of total samples, 

despite the RLMTS misclassifying only two. Similarly, the 

low precision at ξ = 5 is due to the same reason, as only 

one sample is misclassified. Overall, RLMTS exhibits 

strong diagnostic capability.
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Table 10 

Diagnostic performance of the RLMTS on Dataset A. 

Data ξ precision recall specificity accuracy F1 G-mean 

Training 

set 

1 0.94 1.00 0.95 0.97 0.97 0.98 

2 0.96 1.00 0.97 0.98 0.98 0.99 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 0.98 1.00 0.98 0.99 0.99 0.99 

Testing 

set 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 0.71 1.00 0.87 0.83 0.85 

5 0.88 1.00 0.90 0.94 0.93 0.95 

Mean 0.98 0.94 0.98 0.96 0.95 0.96 

(5) Comparison with benchmark methods 

The average value of the five-fold cross-validation is 

used for comparison. Table 11 illustrates the comparison 

results of the proposed method with 19 benchmark models. 

As shown, RLMTS evidently exhibits higher precision, 

recall, accuracy, F1, and G-mean values, demonstrating its 

superior diagnostic performance to these benchmark 

models. A comprehensive analysis of the model’s 

performance and its contributing factors is provided in 

Section 4.9. 

4.8.2. Case B with Dataset B 

(1) MS construction and threshold determination 

After being filtered with SNR gain, 14 variables 

(Number 1, 2, 3, 4, 5, 10, 15, 18, 19, 21, 25, 27, 30 and 37) 

with SNR gain less than 0 are eliminated.  

After the RL process, the selected feature indices are 4, 

11, 14, 15, 16, 20, 22, 24, 26, 28, 30, 34, and 35. 

The final global optimal thresholds obtained from five-

fold cross-validation on Dataset B are 443.71, 478.37, 

130.19, 506.95 and 586.20, respectively.  

(2) Classification results of training samples 

Fig. 15 presents the boxplots of normal and abnormal 

samples in the training set under five-fold cross-validation. 
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(b) MDs of abnormal samples 

Fig. 15. boxplots of normal and abnormal samples on Dataset B. 

As shown in Fig. 15, in the five-fold cross-validation 

on the training set, the mean MD values for normal 

samples in the testing subsets calculated by the RLMTS 

model are 0.98, 0.98, 0.98, 0.98, and 0.97, respectively, 

while the corresponding values for abnormal samples are 

6511.83, 5869.62, 5308.31, 5674.89, and 5279.03. The 

substantial difference in MD between normal and 

abnormal samples facilitates the accurate sample 

discrimination. 

(3) Classification results of test samples 

Table 12 presents the diagnostic performance of the 

RLMTS on both the training and testing sets of Dataset B. 
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As shown in Table 12, the RLMTS achieves high accuracy 

diagnostic performance for all samples. The high 

diagnostic accuracy of the proposed method is explained 

in the Discussion section. 

Table 12 

Diagnostic performance of the RLMTS on Dataset B. 

Data ξ precision recall specificity accuracy F1 G-mean 

Training 

set 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

Testing 

set 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

(4) Comparison with benchmark methods 

Table 13 shows the comparison results of the proposed 

method with 19 benchmark models. It can be seen that 

RLMTS has a highly accurate diagnostic performance 

compared to these competitor models, demonstrating that 

the RLMTS is more suitable for flow meter diagnosis with 

class-imbalanced small-sample data. A comprehensive 

analysis of the model’s performance and its contributing 

factors is provided in Section 4.9. 

4.8.3. Case C with Dataset C 

(1) MS construction and threshold determination 

After SNR gain selection, 18 variables (number 1, 2, 3, 

4, 5, 10, 15, 18, 20, 25, 26, 27, 29, 30, 31, 33, 34 and 37) 

with SNR gain less than 0 are removed. 

After the RL process, the selected feature indices are 6, 

7, 8, 11, 13, 14, 16, 19, 23, 35, and 37. 

Based on five-fold cross-validation using NNA, the 

final optimal thresholds used for classifying the testing 

samples are 70.19, 65.39, 67.79, 66.76, and 83.36, 

respectively.  

(2) Classification results of training samples 

Fig. 16 presents the boxplots of normal and abnormal 

samples in the training set under five-fold cross-validation. 
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(b) MDs of abnormal samples 

Fig. 16. boxplots of normal and abnormal samples on Dataset C. 

As shown in Fig. 16, in the five-fold cross-validation 

on training set, the mean values of MD for normal samples 

calculated by the RLMTS model are 0.98, 0.98, 0.98, 0.97, 

0.97, while the mean values of MD for abnormal samples 

are 1791.28, 1805.08, 1921.23, 1915.98, and 2897.14, 

respectively. The difference in MDs between normal and 

abnormal samples appears very significant. 

(3) Classification results of test samples 
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Table 14 presents the diagnostic performance of the 

RLMTS on both the training and testing sets of Dataset C. 

As shown in Table 14, the RLMTS achieves correct 

classification of all samples in each fold of the cross-

validation. The high diagnostic accuracy of the proposed 

method is explained in the Discussion section.

Table 14 

Diagnostic performance of the RLMTS on Dataset C. 

Data ξ precision recall specificity accuracy F1 G-mean 

Training 

set 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

Testing 

set 

1 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 1.00 1.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

(4) Comparison with benchmark methods 

Table 15 shows the comparison results of the proposed 

method with 19 benchmark models. As shown, RLMTS 

presents a highly accurate diagnostic performance 

compared to other models on Dataset C.  

The reason for the high accuracy of RLMTS on 

Dataset C lies in the significant difference in MD between 

the two classes. The RNN-related methods perform poorly 

on Dataset C, judging all samples as abnormal samples. 

This is possibly because the sample size of the abnormal 

samples is larger than that of the normal samples, as well 

as the quality of the generated samples. More details can 

be found in Section 4.9. 

Table 11 

Diagnostic performance of different methods on Dataset A. 

Method precision recall specificity accuracy F1 G-mean Time (second) 

RLMTS 0.98 0.94 0.98 0.96 0.95 0.96 4.73 

SVM 0.00 0.00 1.00 0.59 0.00 0.00 0.01 

LR 0.00 0.00 1.00 0.59 0.00 0.00 0.01 

CNN 0.60 0.67 0.57 0.62 0.53 0.54 0.07 

RNN 0.09 0.06 0.93 0.57 0.07 0.09 0.03 

SMOTE-SVM 0.70 0.40 0.86 0.68 0.44 0.46 0.04 

SMOTE-LR 0.46 0.48 0.59 0.54 0.46 0.53 0.04 

SMOTE-CNN 0.46 0.55 0.49 0.52 0.47 0.48 0.12 

SMOTE-RNN 0.22 0.14 0.72 0.49 0.16 0.22 0.06 

GAN-SVM 0.60 0.24 1.00 0.69 0.31 0.36 1.21 

GAN-LR 0.70 0.15 0.95 0.61 0.24 0.38 1.21 

GAN-CNN 0.44 0.67 0.39 0.50 0.47 0.39 1.28 

GAN-RNN 0.31 0.37 0.61 0.50 0.32 0.38 1.24 

RL-CNN 0.41  0.58  0.55  0.57  0.45  0.34 0.46 

RL-RNN 0.30  0.56  0.36  0.47  0.38  0.16 0.30 

Cost-sensitive LR 0.41 1.00 0.00 0.41 0.58 0.00 0.01  

DSADRSViT-IIRL 0.77 0.54 0.87 0.73 0.62 0.68 6.53 

ACWGAN-GP-LSTM 0.60 0.90 0.16 0.58 0.71 0.27 2.80 
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Method precision recall specificity accuracy F1 G-mean Time (second) 

SMOTETomek-M1DCNN-SVM 0.45 0.28 0.64 0.49 0.30 0.40 0.09 

RUSBoost 0.86 0.77 0.90 0.85 0.81 0.83 0.04  

Table 13 

Diagnostic performance of different methods on Dataset B. 

Method Precision Recall Specificity Accuracy F1 G-mean Time (second) 

RLMTS 1.00 1.00 1.00 1.00 1.00 1.00 4.87 

SVM 0.75  0.89  0.88  0.88  0.80  0.88  0.01 

LR 0.75  0.72  0.88  0.83  0.72  0.79  0.01 

CNN 0.30  1.00  0.00  0.30  0.45  0.00  0.12 

RNN 0.00  0.00  0.99  0.69  0.00  0.00  0.06 

SMOTE-SVM 0.49  1.00  0.56  0.69  0.65  0.74  0.03 

SMOTE-LR 0.00  0.00  1.00  0.70  0.00  0.00  0.03 

SMOTE-CNN 0.89 0.98 0.95 0.96 0.93 0.96 0.19 

SMOTE-RNN 0.87 0.48 0.96 0.82 0.60 0.67 0.10 

GAN-SVM 0.52 1.00 0.62 0.73 0.68 0.78 5.62 

GAN-LR 0.58 0.28 0.95 0.75 0.37 0.45 5.62 

GAN-CNN 0.65 0.11 0.96 0.71 0.18 0.29 5.77 

GAN-RNN 0.63 0.47 0.85 0.75 0.53 0.63 5.69 

RL-CNN 0.30  1.00  0.00  0.30  0.45  0.00  0.66 

RL-RNN 0.30  1.00  0.00  0.30  0.45  0.00  0.36 

Cost-sensitive LR 0.30  1.00  0.00  0.30  0.45  0.00  0.01  

DSADRSViT-IIRL 0.89 0.97 0.94 0.95 0.93 0.96 13.05 

ACWGAN-GP-LSTM 0.97 1.00 0.97 0.98 0.98 0.98 1.73 

SMOTETomek-M1DCNN-SVM 0.55 0.98 0.66 0.76 0.70 0.80 0.22 

RUSBoost 0.94  0.99  0.97  0.98  0.96  0.98  0.01  

Table 15 

Diagnostic performance of different methods on Dataset C. 

Method Precision Recall Specificity Accuracy F1 G-mean Time (second) 

RLMTS 1.00 1.00 1.00 1.00 1.00 1.00 4.77 

SVM 0.82  0.88  0.92  0.90  0.84  0.90  0.01 

LR 0.75  0.68  0.90  0.83  0.71  0.78  0.01 

CNN 0.28  1.00  0.00  0.28  0.44  0.00  0.12 

RNN 0.00  0.00  1.00  0.72  0.00  0.00  0.06 

SMOTE-SVM 0.38  1.00  0.35  0.54  0.54  0.58  0.02 

SMOTE-LR 0.00  0.00  1.00  0.72  0.00  0.00  0.02 

SMOTE-CNN 0.95 0.66 0.99 0.89 0.75 0.79 0.18 

SMOTE-RNN 0.76 0.46 0.93 0.79 0.56 0.64 0.09 

GAN-SVM 0.55 1.00 0.66 0.76 0.70 0.81 6.04 

GAN-LR 0.69 0.29 0.95 0.76 0.40 0.51 6.05 

GAN-CNN 0.10 0.03 0.99 0.71 0.04 0.07 6.20 

GAN-RNN 0.84 0.41 0.97 0.81 0.54 0.62 6.11 

RL-CNN 0.28  1.00  0.00  0.28  0.44  0.00  0.71 

RL-RNN 0.28  1.00  0.00  0.28  0.44  0.00  0.35 

Cost-sensitive LR 0.28  1.00  0.00  0.28  0.44  0.00  0.01  

DSADRSViT-IIRL 0.94 0.99 0.98 0.98 0.96 0.98 11.69 

ACWGAN-GP-LSTM 0.97 1.00 0.97 0.98 0.98 0.98 2.45 



 

20 

Method Precision Recall Specificity Accuracy F1 G-mean Time (second) 

SMOTETomek-M1DCNN-SVM 0.88 1.00 0.90 0.94 0.93 0.95 0.21 

RUSBoost 0.95  1.00  0.99  0.99  0.97  0.99  0.01  

4.9. Discussions 

The ablation study in Section 4.3 demonstrates the 

effectiveness of key components in RLMTS, including RL, 

NNA, SNR gain, and ε-greedy strategy. These modules are 

indispensable to the framework, and their synergistic 

integration provides RLMTS with not only enhanced 

diagnostic performance but also strong robustness. 

The experiments in Section 4.4 verify that RLMTS is 

well suited for fault diagnosis tasks under varying 

imbalance ratios and limited sample conditions. Section 

4.5 further confirms that RLMTS is capable of effectively 

handling datasets with different data characteristics. 

RLMTS, therefore, exhibits broad applicability and strong 

generalization capability. 

The comparative results in Sections 4.7 and 4.8 show 

that RLMTS outperforms 19 benchmark models and is 

particularly well suited for imbalanced and small sample 

fault diagnosis tasks. 

The reasons for high performance of RLMTS are as 

follows: (i) RLMTS constructs the MS based on one class 

of samples, which is less affected by the imbalance ratio. 

(ii) RLMTS optimizes the MS using RL. Specifically, the 

feature space selected based on SNR gain is used as the 

initial action space, which helps mitigate the influence of 

noise. Through continuous interaction with the 

environment, rewards are calculated, and the feature space 

is optimized according to the reward maximization 

principle (i.e., minimizing the objective function defined 

in eq (8)) and a given exploration strategy. This 

optimization process effectively enlarges the MD 

difference between normal and abnormal samples, which 

is beneficial for downstream classification. (iii) RLMTS 

introduces the NNA to determine the optimal threshold. 

After initializing the population and calculating the initial 

fitness values, NNA simulates neural connection 

propagation through a weight matrix to generate new 

solutions, evaluates their fitness, and introduces 

perturbations during the process. In each iteration, the 

search range is gradually reduced to enhance convergence, 

and the objective function is updated while preserving the 

historically best solution. By supporting global search and 

avoiding local optima, RLMTS can adaptively determine 

the optimal threshold within a predefined search range to 

achieve effective sample classification. 

Compared with the benchmark methods, RLMTS has 

an average computation time of approximately 4.80 

seconds, which is higher than that of some baseline 

algorithms but is not the highest overall. Given its great 

diagnostic accuracy, the computation time of 4.80 seconds 

is acceptable and well justified. Note that the computation 

time reported in the performance tables is measured using 

programs executed in Python 3.10.12 on a system 

equipped with a 12th Gen Intel® Core™ i7-12700H 

processor (up to 3.69 GHz), 16 GB of DDR5 RAM (4800 

MT/s), and an NVIDIA GeForce RTX 3060 Laptop GPU 

(6 GB VRAM). 

In Table 11, the specificity value of RLMTS (0.98) is 

slightly lower than that of SVM, LR, and GAN-SVM 

(1.00). Although these benchmark models exhibit great 

discrimination against negative class samples, their ability 

to correctly identify positive class samples is significantly 

inferior to that of RLMTS.  

In Dataset A, both SVM and LR misclassify all test 

samples as negative class due to insufficient training data 

and class imbalance, which collectively prevent effective 

model training. Although RNN outperforms SVM and LR 

in diagnostic capability, it still demonstrates suboptimal 

performance with a persistent negative classification bias. 

This suggests that while the network architecture could 

extract meaningful features for classification tasks, the 

combined challenges of small sample size and class 

imbalance significantly constrain its training efficacy. 

CNN performs relatively better than RNN in diagnosis but 

remains unsatisfactory overall, primarily due to its reliance 

on large-scale training data. After applying SMOTE and 

GAN techniques to address class imbalance, notable 

improvements are observed: (i) balanced class distribution 

and increased training sample quantity can enhance SVM 

and LR performance, and (ii) RNN achieves higher 

positive class diagnosis rates. However, the generated 

samples introduce additional noise, resulting in slight 

performance degradation for CNN. ACWGAN-GP-LSTM 

exhibits a distinct positive classification bias despite 

maintaining some negative class discernment. This 

skewed preference likely originates from deep networks' 

heightened sensitivity to training data quality and quantity 

requirements, ultimately constraining overall accuracy. 

The inferior performance of SMOTETomek-M1DCNN-
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SVM stems from two factors: (i) the noise introduced 

during SMOTETomek sample generation impairs the 

model effectiveness; (ii) the inadequate training sample 

size limits the M1DCNN's feature extraction capability.  

In Datasets B and C, SVM and LR have higher 

diagnostic performance, CNN tends to diagnose the test 

sample as “positive class”, while RNN tends to output 

“negative class”. This divergence likely originates from 

the inherent differences in feature extraction capabilities 

among network architectures when handling data-

constrained scenarios with class imbalance. Notably, both 

CNN and RNN demonstrate suboptimal diagnostic 

efficacy under these conditions. When applying SMOTE 

and GAN to deal with class-imbalanced small-sample data, 

SVM exhibits a tendency to predict "positive class" while 

LR leans toward "negative class" outcomes, suggesting 

that the noise introduced during pseudosample generation 

negatively impacts models with originally robust 

diagnostic capabilities, thereby counteracting their 

performance. In contrast, the generated samples 

effectively address training data scarcity and class 

imbalance issues for CNN and RNN, leading to an 

improved diagnostic performance. Remarkably, SMOTE 

demonstrates greater effectiveness than GAN in enhancing 

these deep learning models, which may be attributed to its 

simpler implementation with fewer hyperparameters 

compared to GAN's complex architecture which involves 

multiple parameters and network training requirements, a 

configuration particularly challenging to optimize under 

limited sample conditions. 

Among the SVM-related, LR-related, CNN-related 

(except RL-CNN) and RNN-related (except RL-RNN) 

methods, the SVM-related methods have the best overall 

diagnostic performance for class-imbalanced small-

sample data (average accuracy of 0.72, average F1 of 0.55 

and average G-mean of 0.61). Among the remaining three 

categories, LR-related methods present the highest 

accuracy (0.71) while CNN-related (except RL-CNN) 

methods have the highest F1 (0.47) and G-mean values 

(0.39). 

The diagnostic performance of RL-CNN and RL-RNN 

is not improved after optimizing CNN and RNN using RL 

due to the fact that (i) both CNN and RNN need a larger 

sample size to learn effective features, and the small 

sample size in this study cannot satisfy the requirement of 

effective learning; and (ii) the optimization strategy space 

of RL is inherently complex when it is used for network 

parameter optimization. Under conditions of limited 

samples and class imbalance, the models are still prone to 

overfitting the majority class or encountering unstable 

training, even when higher weights are assigned to the 

minority class during training. 

After using SMOTE to generate samples, CNN and 

RNN have improved their diagnostic ability for minority 

class samples, and have increased the accuracy, F1 and G-

mean values by 0.39, 0.24 and 0.56 for CNN, 0.04, 0.42 

and 0.48 for RNN. This indicates that the use of SMOTE 

to generate samples is effective for classification with 

neural networks under class-imbalanced small-sample 

data.  

After using GAN to generate pseudo-samples, SVM-

related and CNN-related diagnostic ability for minority 

class samples has been improved whereas LR-related 

performance has instead been decreased. RNN-related 

(except RL-RNN) comprehensive indicator values have all 

increased (accuracy increased by 0.02, F1 value increased 

by 0.44, and G-mean value increased by 0.51). This 

suggests that the samples generated by the GAN are not 

always consistent for these classifiers. 

Although cost-sensitive LR incorporates class weights, 

it predicts all samples as belonging to a single class. This 

may be attributed to the limited discriminative power of 

the features, if the feature distributions between classes are 

not sufficiently distinct. LR, as a linear classifier, may fail 

to learn an effective decision boundary and degenerate into 

predicting only one class. 

RUSBoost achieves performance metrics above 0.9 on 

Datasets B and C, indicating strong diagnostic capability; 

however, its poor performance on Dataset A suggests that 

the stability and generalization ability of RUSBoost still 

require further improvement. 

Compared to the three state-of-the-art fault diagnosis 

models (DSADRSViT-IIRL, ACWGAN-GP-LSTM and 

SMOTETomek-M1DCNN-SVM), the RLMTS is more 

suitable for flow meter fault diagnosis of class-imbalanced 

small-sample data, and it has better robustness and stability. 

The reasons for the better diagnostic performance of the 

RLMTS are as follows: (i) RLMTS does not rely on 

expanding the number of samples for small samples and 

class imbalance problems, so it does not introduce new 

noise in the diagnosis process; (ii) RLMTS fully leverages 

the exploration capabilities of RL, effectively removing 

redundant information while retaining important data; (iii) 

RLMTS uses a single-class sample as a baseline for fault 

diagnosis, which is less affected by the class imbalance of 

the data. 

In summary, when addressing small sample and class 

imbalance problems, existing mainstream methods 
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generally face the following core challenges: (i) Decision 

boundary degradation: linear models such as LR tend to 

collapse into predicting a single class when the features are 

not linearly separable. (ii) Sensitivity to data augmentation: 

techniques like SMOTE and GAN may introduce noise 

during the generation of synthetic samples, which can 

negatively affect generalization performance. (iii) 

Dependence on data scale: models such as CNN and RNN 

require large amounts of data to effectively extract 

representative features. (iv) Unstable generalization 

performance: for example, RUSBoost exhibits significant 

performance fluctuations across different datasets. 

In contrast, RLMTS does not rely on data 

augmentation, exhibits stable feature selection, converges 

quickly during training, and demonstrates strong 

discriminative capability for both positive and negative 

samples. It consistently achieves superior performance 

across multiple datasets, striking a well-balanced trade-off 

among model complexity, robustness, and diagnostic 

accuracy. 

5. Conclusion 

The RLMTS model is proposed to address the class-

imbalanced small-sample data of flow meter fault 

diagnosis. In the MS construction module, RLMTS takes 

the feature subset composed of variables with SNR gain 

greater than zero as the initial MS and constructs the 

effective MS through the exploration of agents from RL. 

During MS optimization, at each iteration, the agent 

generates new actions based on the previous iteration’s 

results, incorporating the ε greedy algorithm and 

predefined rules. The agent aims to maximize rewards (i.e., 

minimizing eq. (8)) to construct an effective MS. In the 

threshold determination and fault diagnosis modules, 

RLMTS searches for the optimal thresholds using NNA. 

The NNA explores the solution space via swarm 

intelligence, computing fitness function values for the 

current solutions. Through iterative optimization, it 

identifies the optimal solution along with its corresponding 

fitness value, thereby determining the final optimal 

threshold. The classes of test samples are determined 

based on the optimal threshold and their MDs. 

To verify the effectiveness of RLMTS, three practical 

datasets with different IRs are selected for experiments, 

which are cross-validated using a five-fold cross validation 

approach. 

The IRs of the three datasets are 1:1.49, 1:2.35, and 

1:2.53, respectively, and 20%, 40%, and 60% of their data 

are taken for the experiment. The accuracy values of 

RLMTS are 0.95, 1.0, and 0.98, F1 values are 0.93, 1.0, 

and 0.96, and G-mean values are 0.94, 1.0 and 0.98, 

indicating that RLMTS is suitable for flow meter fault 

diagnosis with different IRs.  

The mean values of precision, recall, specificity, 

accuracy, F1, and G-mean for 19 competitor models on 

three datasets are analyzed. The performance indicator 

values of RLMTS are higher than those of 19 benchmark 

models, demonstrating that RLMTS has a better diagnostic 

performance and is more robust and thus applicable to a 

wider range of applications. 

The comparative analysis with the benchmark models 

demonstrates the theoretical advancement that the RLMTS 

has made. RLMTS effectively combines MTS, RL and 

NNA to make full use of their respective advantages, 

providing a new research method for flow meter fault 

diagnosis under class-imbalanced small samples. Different 

from existing methods, RLMTS does not expand the 

training set by generating new samples, but uses the 

original data to ensure that no new noise is introduced 

during data processing. Meanwhile, the difference 

between MDs of normal and abnormal samples is 

maximized by fully mining the features to finally achieve 

fault diagnosis. 

RLMTS extends the application of the MTS to small 

sample imbalanced scenarios and overcomes the limitation 

of the diagnostic model for data size, being able to 

effectively deal with flowmeter fault diagnosis, and also 

provides a new framework for the fault diagnosis of other 

devices. 

From the practical perspective, RLMTS provides a 

new diagnostic framework and model for class-

imbalanced small-sample data with a wide range of 

applications. More practical datasets under different 

operational scenarios would be required to further ensure 

the stability, reliability and robustness of the proposed 

approach. In addition, future work will extend RLMTS to 

accommodate more complex data types, such as image-

based information and high-frequency vibration signals, 

thereby enabling its application to a broader range of 

industrial fault diagnosis scenarios. 
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