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Abstract

Academic conferences provide great benefits to their participants and stimulate the

advancement of knowledge. In the hope of exploiting fully a conference though, an ef-

fective schedule is required. Given that many conferences have different constraints and

objectives, different mathematical models and heuristic methods have been designed to

address rather specific requirements of the conferences being studied per se. The aim of

this thesis is the investigation of different operations research tools for the creation of

a generic conference scheduler applicable to many conferences. In chapter 3, a penalty

system is presented that allows organisers to set up scheduling preferences for tracks

and submissions. A generic scheduling tool based on two integer programming models is

presented which schedules tracks into sessions and rooms, and submissions into sessions

by minimising the penalties subject to certain hard constraints. Then, in chapter 4,

a decomposed two-phase matheuristic solution approach is presented as an alternative

approach to mathematical models that struggle for some conference scheduling prob-

lems. The results showed that the matheuristic finds near-optimal solutions and finds

solutions for instances where the mathematical model fails to provide solutions within

the one hour time limit. Next, in chapter 5, we make benchmark data publicly available

to facilitate the comparison and evaluation of different developed methods for conference

scheduling problems. In addition, we present a selection hyper-heuristic algorithm to

solve the benchmark instances and provide computational results. The aim is to encour-

age researchers to contribute to the benchmark dataset with new instances, constraints,

and solving methods. In chapter 6, we present extended formulations of mathematical

models to handle constraints that need to be resolved on time slot level. Lastly, we

compare the performance of all developed methods by solving all available instances

and highlight the benefits and limitations of each method.
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Chapter 1

Introduction

Conferences are formal events of great importance to academic communities as they

provide numerous benefits to participants and stimulate the advancement of knowledge.

They provide the opportunity to academics and researchers to share their latest findings,

exchange ideas, receive critical feedback, and network with other peers across different

institutions and backgrounds. In the hope of exploiting fully a conference though, an

effective schedule is required. However, the development of an effective schedule is not

trivial and usually poses a challenging task for conference organisers due to multiple

preferences and constraints involved. Conferences are usually scheduled by a group

of organisers manually, which is an arduous and often error-prone process done under

time pressure. Additionally, the schedule usually requires last-minute changes, after

being already published, resulting in an overwhelming experience overall. In the past,

organisers were happy to achieve any feasible solution and would stop the scheduling

process at that point without considering optimisation of the conference (Sampson,

2004). However, nowadays, the complexity of conference scheduling has shifted towards

the quality of the solution.

1.1 Literature Review on Conference Scheduling Problems

As noted by Thompson (2002), conference scheduling problems can be tackled through

a Presenter-Based Perspective (PBP) or an Attender-Based Perspective (ABP). The

PBP focuses on a schedule that prioritises presenters’ preferences to enhance their sat-

isfaction, whereas the ABP concentrates on maximising attendee satisfaction. Some

1
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research, however, has embraced a mixed approach, considering the optimisation of

both presenters’ and attendees’ preferences.

1.1.1 Presenter-Based Perspective

Potthoff and Munger (2003) studied the conference scheduling problem (CoSP) of 2001

San Antonio meetings of the Public Choice Society as a test case. The conference was

attended by 333 participants and included in total 14 subjects of areas, 96 panels, and 10

time periods that for each one a maximum number of 10 time slots were available. The

authors collected data from the conference booklet that was distributed to attendees.

The panels were not assigned to the subject areas in the booklet, thus Potthoff and

Munger (2003) did the assignment themselves, though they do not provide details about

this process. In contrast to the studies presented so far, they did not consider attendees’

preferences collection in their work. They justify this decision by explaining that this

would have significantly increased the problem complexity and this is the reason why

previous studies implemented heuristics rather than exact methods. Therefore, the

authors solved the problem of assigning sessions in time slots using integer programming.

The objective was to minimise the conflicts of attendees for competing to attend sessions

of the same time slot subject to the following constraints; 1) each time slot has no more

than 10 sessions scheduled (less is allowed), 2) each panel is scheduled only once, 3)

presenters should not be scheduled to present more than one session of the same time

slot, and 4) the number of sessions from a subject area should be within the ceiling

and floor limits in each time slot. The authors stated that their implemented method

reached the optimal solution with all constraints satisfied.

Potthoff and Brams (2007) extended the previous work by applying the proposed IP

method to the annual meetings of the Public Choice Society in New Orleans for the

years 2005 and 2006. In addition, they presented some issues encountered during the

scheduling process and suggested ideas on how to overcome them in the future. The

2005 annual meeting required the assignment of 76 sessions belonging to 13 subject

areas into 9 time slots, whereas the 2006 annual meeting included 45 sessions within

6 subject areas, and again 9 time slots were available. In contrast to previous annual

meetings, panel chairs or discussants were not required in 2005 and 2006. Similarly to

Potthoff and Munger (2003), the objective was to produce a schedule which minimises

the conflicts of attendees competing to attend sessions of the same time slot. An extra

constraint was added to the existing formulation which indicated all panels along with
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the respective time slots for which a presenter is unavailable to attend. Both solutions

to the annual meetings were feasible having all constraints satisfied and successfully

accomplished the objective. One of the issues that the authors encountered during the

scheduling process were late cancellations of papers. This was particularly problematic

when the presenter had to deliver more than one paper. Another issue was with late

accepted papers for which the best panel matches were already full and thus readjust-

ments on the schedule were required. Additional readjustments were required because

some participants declared unavailability at late notice for already scheduled time slots.

To overcome these issues, Potthoff and Brams (2007) suggested some ideas such as; i)

introducing a non-refundable registration fee as a requirement for abstract acceptance,

ii) rejecting late submission abstracts or accept these but with a higher registration fee

and assign these to panels with no common topic, iii) not allowing one person to submit

multiple abstracts or allow but collect extra fees which would be returned after success-

ful completion of the conference, and iv) collect extra fees for presenters who require a

specific time slot excluding those of exceptional reasons.

Edis and Edis (2013) considered an artificial conference including 10 subject areas and

170 presentations with a 3 days time span. Each day had 4 time periods with ap-

proximately three parallel sessions available for which up to 5 presentations could be

scheduled. The authors tackled the problem by implementing an integer programming

model and an extended version of it which addressed a secondary objective. While the

goal of the primary objective was to minimise the concurrent occurrence of same or

similar subject areas within the same time period in each day, the aim of the secondary

objective was to distribute the number of presentations into time periods in a balanced

manner. In the primary integer programming model, the authors included the following

constraints; 1) determination of time periods with the same subject area within par-

allel sessions in a day, 2) assignment of each presentation into a session only once, 3)

each session should have at most one subject area assigned, 4) only a limited number of

presentations, from the same subject area, is assigned to each session, 5) the difference

between the number of presentations from the same subject area but in different sessions

should be equal to or less than one, 6) allowance of at most one ”problematic” presen-

tation to be scheduled into any session in a day. In the extended integer programming

version, Edis and Edis (2013) considered the participants time preferences of attending

or not a presentation and the time preferences of the Program Chair for presentations

assignment. Thus, the following additional constraints were included in their model; 7)

each presentation associated with a time preference should be scheduled exactly on the

time period and day of preference, 8) each presentation associated with a time preference
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should not be scheduled on non-preferred time period and day, and 9) identification of

time periods for which the number of presentations in all parallel sessions is unequal.

The results of this study showed that the primary objective was successfully obtained

by the primary integer programming model. However, the secondary objective was not

achieved by the primary model and the authors tackled this problem by implementing

the extended integer programming version. They claimed that the extended version

managed to achieve the optimal solution by reducing the violations number from eight

to one.

1.1.2 Attender-Based Perspective

Eglese and Rand (1987) worked on a case study about the Tear Fund conference which

occurred in July 1985, officially introducing for the first time the CoSP. The duration

of the conference was 4 days in total, each day had 1 session available and 7 rooms

were available. In June (one month before the conference), attendees of the conference

were sent a detailed description list of the 15 seminars. They were prompted to declare

four preferred seminars to attend and a reserve choice. Due to insufficient technology

means of that time (eg. submitting preferences manually), only the first 50 preferences

forms out of the 265 forms were used in scheduling the conference. The conference was

scheduled manually and the organiser estimated that 10% of the participants would

attend their reserve choice. The estimation was quite accurate as in fact around 8%

of participants did so (one of the authors was among those participants). Eglese and

Rand (1987) mentioned that the forms were problematic in two ways. Firstly, the forms

did not capture the level of preference strength between choices and secondly, it was

not explicitly mentioned if a statement of preference was implied among the first four

choices. The authors estimated that around 20% of the returned forms were inaccurate

because the first four preferences were in an alphabetical order. They argued that these

drawbacks were significant and played a vital role in timetable evaluation. Therefore,

they evaluated the timetables according to a weight assignment system. A score, which

was a sum of weights, was assigned to each participant based on the seminars that they

were scheduled to attend. This score was calculated by considering the order of the

preferred seminars in the forms, while the weight for a participant being assigned a non

preferred seminar was slightly worse than being assigned their reserve choice. To this

end, the objective of the problem was to minimise the total sum of weights. In addition,

a secondary objective was to equalise the number of participants attending a replicated

seminar. The authors implemented a heuristic solution rather than an exact method due
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to the size of the problem. Constraints included in the formulation were; availability

of rooms (7 in total), seminars replication was allowed for as many times as needed

and avoiding very large or small seminar groups. The constraints of blackout facilities

availability and the fact that one seminar leader was responsible for two seminars were

not included in the formulation. The authors stated that these constraints were not

problematic, but could be easily included if needed, and they checked the solutions to

ensure they were not violated. Their developed heuristic involved two stages; At the

first stage a feasible solution was generated, while at the second stage the solution was

improved through an annealing algorithm. The researchers accomplished to reduce the

number of participants who attended a non-preferred or reserve choice to zero with their

proposed solution.

Sampson and Weiss (1995) were the next who tackled the CoSP, in 1995. In their

work, they generated their own conference data randomly and used these for compari-

son purposes between the developed heuristic solutions and exact solutions. Although

the process of problems generation was not presented in this study, it was discussed in

detail in their extended work, Sampson and Weiss (1996). They also included attendees’

preferences collection and defined a problem size parameter for the number of requests

per participant. Preferences were handled based on a priority order in which requests of

high-priority were considered first. The authors argued that priority order is more ad-

vantageous than participant order for several reasons. The main drawback of participant

order is that attendees reviewed in the early phase had a greater probability of being

allocated to a non-full session than attendees reviewed later. Priority order, on the other

hand, provides better enrolment participant satisfaction and enhanced equity between

attendees. The focus of their study involved the enrolment process of attendees based

on priority order, and the scheduling of sessions into time slots and rooms. Replication

of sessions was allowed in their problem for the sake of increasing availability to atten-

dees. Unlike Eglese and Rand (1987), the authors of this study included finite capacity

of rooms. The objective of their study was to maximise the satisfaction of attendees in

terms of attending preferred sessions. They tackled the problem by implementing a lo-

cal search heuristic which simultaneously solved both enrolment and scheduling phases.

The following constraints were considered; i) every participant is not assigned to more

than one sessions in each time period, ii) participants are not allowed to attend more

than one replicated session of their preference, iii) attendees are not assigned to sessions

of unspecified time periods, iv) assignment of attendees does not exceed specified room

capacities, v) the defined number of each session offerings are scheduled, vi) modera-

tors (who are involved in more than one session) are not assigned into two sessions of
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the same time slot, vii) restriction to certain rooms and/or time periods is allowed for

certain sessions, and viii) schedule is verified in terms of rooms capacity. The authors

compared the solutions of the heuristic to exact solutions for which optimal solutions

were known. The results revealed that their heuristic method yielded near optimal so-

lutions in a few seconds, whereas exact methods required a few hours, especially for

large problems. In addition, they highlighted that simultaneous approaches are more

efficient than sequential or traditional ones as far as enrolment and scheduling phases

are concerned.

Sampson and Weiss (1996), extended their previous work by adding sensitivity analysis

to the problem and described the process of the conference data generation. For the

process of data generation, the authors considered the following parameters; number of

sessions, conference participants, number of time periods, and average number of offer-

ings per session. Requests per participant, which represents the collection of attendees

preferences, were selected and sorted in a random manner. The selection of sessions

by participants was determined by a probability, which was proportional to the average

number of offerings per session. The authors determined room utilisation and capacity

utilisation parameters, instead of directly assigning random values to rooms and capac-

ity. The former parameter defines the average occupied percentage of rooms for each

conference period, while the latter defines the estimation of the occupied total seating

in percentages. Note that all rooms were considered to have equal capacities. The fo-

cus of their study was to provide useful insights regarding the solution sensitivity when

problem parameters change by analysing four key subjects of the problem. Firstly, they

explored the impacts of the length of the conference, the number of offerings per ses-

sion and attendees’ satisfaction on the solution sensitivity. Secondly, they measured the

sensitivity of participants satisfaction to rooms availability. Thirdly, they investigated

whether some conference time periods (T ) could be reduced given that the demand of

attendees for sessions (R) is smaller (R < T ). Finally, they conducted an analysis to

determine the level of seating capacity utilisation that could be considered sufficient.

The authors used simulation to obtain the results of their sensitivity analysis. Overall,

the results revealed that offering some sessions more than once significantly increases

the attendees satisfaction with minimum costs. They mentioned that up to that pe-

riod, rarely had popular conferences followed the specific strategy. Additionally, they

highlighted that conference organisers should focus on selecting rooms based on the size

parameter rather than deciding the number of offered rooms. Another key finding was

that flexibility is essentially increased when more time periods are added in comparison

to more rooms being added. In further analysis, they stated that the determination of
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an ’optimal’ conference duration strongly depends on the collection of attendees’ pref-

erences. Lastly, they mentioned that a ’safety stock’ of seating capacity is beneficial for

ease of enrolment, while over-utilised capacities limit attendees’ enrolment but at the

same time might have a side benefit of reducing potential scheduling conflicts.

Le Page (1996) tackled the CoSP of the American Crystallographic Association 1995 An-

nual Meeting, which was attended by over 1100 participants. The conference involved

26 subject areas including 35 half-day sessions scheduled in 5 rooms of different sizes.

Those sessions were scheduled in parallel and some of them required to be scheduled in

specific order. Le Page (1996) was the first to introduce parallel sessions and sessions

ordering in a CoSP. Prior to the scheduling process, the author collected session pref-

erences from 102 attendees via e-mail. The e-mail requested attendees to submit seven

sessions which they would mostly desire to attend. The objective of the problem was to

assign the sessions into days and rooms by minimising the number of attendees compet-

ing to attend sessions of their desire. A novel semi-automated heuristic algorithm was

developed to accomplish the objective. Although the algorithm was fast and generated

a much better solution than a manual schedule, its main drawback was that it could

not handle all the constraints, which means that a manual intervention was required

during the scheduling process. Specifically, the problematic constraint was the ordering

of particular sessions and the author claimed that softening this constraint should be

ultimately decided by humans.

Sampson (2004) presented the scheduling process of the 2001 Annual Meeting of the

Decision Sciences Institute Conference. This conference included 213 sessions with 10

time periods and 37 rooms available for sessions assignment and was attended by 1086

participants. The author collected attendees’ preferences through the web for the con-

ference scheduling process. In total, 520 participants submitted their preferences in a

ranked order with a maximum allowed limit of 36 preferred discussions per participant.

These submissions were used to create a weighted parameter matrix. The objective of

the problem was to assign all sessions into time periods and rooms in such way that the

participants’ satisfaction is maximised (the author defined this problem as Preference-

Based Conference Scheduling). Although Sampson (2004) provided a formulation of

the problem, he implemented a simulated annealing heuristic to solve it due to the NP-

Complete nature of the formulation. The formulation involved the following constraints;

1) participants are assigned only in their preferred sessions, 2) participants are not al-

lowed to be in more than one place at the same time, 3) participants are only assigned

to scheduled sessions and do not exceed the capacity limits, 4) each session is scheduled
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in only one place, 5) presenters are not allowed to be in more than one place at the same

time, 6) available time periods and rooms for each session are defined, and 7) only one

session is assigned in each room at each given time periods. The quality of the gener-

ated schedule was evaluated by a survey which was distributed to all participants and by

follow-up emails sent to participants who submitted preferences. In all, 230 participants

completed the survey from which 211 participants had attended the same meeting of

the previous year. Results indicated that the quality of the schedule was satisfying and

better than the previous year meeting.

Zulkipli et al. (2013) tackled the Capacity Planing CoSP which involved 3 subject areas,

5 sessions, 60 papers, 3 rooms, and 3 parallel time periods with 4 time slots each.

They asked participants to submit their preferences of attending paper presentations

in a ranking order, starting from 1 to 10. Then, they assigned a weight to each paper

in a respective manner. These weights were then used to form the objective function,

which aimed to assign the papers into rooms and time slots in such way that each time

period achieves a balanced number of papers with respect to the weights. The authors

implemented a goal programming method to eliminate the deviations of each time period

subject to the following constraints; i) maximise weight under-achievement deviations

of all time slots, ii) minimise weight over-achievement deviations of all time slots, iii)

each paper is presented only once, and iv) each time period should have a minimum

number of papers presented. In the final analysis, the authors compared their generated

schedule to the actual schedule of the conference. Results indicated that the proposed

schedule was at 93% optimal by achieving only a weight over-achievement deviation

equal to 3 at a specific time slot, whereas the actual schedule had a score of 374 for

weight over-achievement deviations and a score of 234 for weight under-achievement

deviations.

Quesnelle and Steffy (2015) conducted a case study by using real data from an older

conference, namely The 2013 PenguiCon Conference. This conference involved 253 pre-

sentations, 195 presenters, 14 rooms, and it was attended by around 1000 participants.

In addition to this, the authors included the factor of participants’ preferences in their

work by generating these based on the actual attendance recorded for each talk of the

conference. In this study, they provided problem definitions and showed that the schedul-

ing problem under study along with some variants are all NP-Hard. They specifically

defined and focused on the Extended Conference Timetable Decision Problem (ECTTD)

and the Preference Conference Optimization Problem (PCO) which are both variants

of the typical CoSP. The former defined problem is a variant of Conference Timetable
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Decision Problem (CTTD) (as described in Quesnelle and Steffy (2015)) in which ad-

ditional constraints regarding room availability and compatibility are considered. The

latter defined problem is a variation that includes an additional set of constraints that

considers the participants’ preferences. It is identical to the ABP CoSP as introduced

and described by Thompson (2002) in 2002. Quesnelle and Steffy (2015) presented an

integer programming formulation for each problem and achieved optimal solutions for

both problems. It should be noted that the authors dramatically decreased the required

number of variables in their integer programming models from 27,421,440 variables to

only 91,514 variables. They achieved this by manually excluding variables during the

modelling phase which were known to get zero value and would ,thus, lead to unnecessary

computations. The objective of the ECTTD problem was the assignment of presenters

into presentations and time slots, as well as the allocation of presentations into rooms

based on their availability and compatibility. The following constraints were included in

the formulation; 1) each speaker must be scheduled for all of their presentations, 2) all

co-speakers must have the same schedule for their common presentations, 3) if a speaker

offers multiple presentations, then these presentations are scheduled in different time

slots, 4) the schedule of the rooms is complete, and 5) no room is multi-scheduled. The

PCO problem included the objective of minimising participants’ preferences conflicts by

assigning presenters into presentations and time slots, as well as assigning presentations

into appropriate rooms. In the formulation of PCO the authors used the same constraints

as in ECTTD and added the following to capture participants’ preferences; 6) boolean

variables were used to indicate the time slots of each presentation, 7) validate that the

previously mentioned variables are correct indicators, and 8) boolean variables were used

to indicate concurrent presentations based on boolean variables mentioned in constraint

(6). Both models yielded conference schedules that satisfied all the constraints and the

PCO problem resulted in none participants’ conflicts. As mentioned before, the authors

generated artificial participants’ preferences. They did so by using a uniform distribu-

tion and extended the particular experimentation into generating different participants’

preferences following a normal distribution but with different variances. Results of the

particular experimentation indicated that the computational time increased in an ex-

ponential manner as the variance values were decreased. Quesnelle and Steffy (2015)

reported that this issue was due to the symmetric nature of their integer programming

model. Hence, they decided to investigate and overcome this by implementing some

enhancements in their formulation. Firstly, they grouped all rooms into three room

classes and replaced those in the formulation which speed up significantly the solving

time. Secondly, they decided to dualise the constraint (3) which reduced the solving
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time by 75%. Finally, they compared the Standard PCO model, the Symmetry model,

and the Dualised model (Dualised model includes the symmetry reformulation) in terms

of computational time and variance. This lead to the confirmation of the previous ob-

servation about the relationship of those variables. That is, solving time exponentially

increases when variance decreases.

Manda et al. (2019) used the dataset from Ecology 2013 for testing purposes and de-

livered a schedule for the Evolution 2014 conference. While the former unconstrained

conference spanned 5 days including 324 talks, 8 time slots, and 5 parallel sessions, the

latter constrained conference spanned 4 days including 1014 talks, 16 time slots, and

14 parallel sessions. The objective of this study was to schedule all talks into time

slots and parallel sessions with the purpose of maximising the coherence within sessions

and minimising similarity between parallel sessions. To do so, the researchers followed

a novel approach by extracting keywords from the title and abstract of each talk and

implemented the Latent Dirichlet Allocation (LDA) algorithm to generate topic models.

Then, they developed their own metric, called Match Percentage, to evaluate the fitness

of the generated topic models. In addition, the authors created another metric, namely

the Discrimination Ratio, that captures the session coherence and the dissimilarity be-

tween parallel sessions and was used as the objective function for maximisation. For the

initialisation process, three different approaches were implemented; Random, Greedy,

and Integer Linear Programming (ILP). These initial solutions were then further opti-

mised and compared by two different heuristic methods and two different optimisation

methods. For the first optimisation method defined as stochastic optimisation, the au-

thors implemented a Hill Climbing algorithm (HC) and a Simulated Annealing algorithm

(SA) with a swap operator. In the second optimisation method defined as sequential

optimisation, they implemented variants of HC and SA which split the optimisation

process into two parts. Firstly, the algorithms maximise similarity within sessions and

secondly, the algorithms minimise similarity between sessions. Both heuristic methods

and optimisation methods were tested on the Ecology 2013 dataset to determine their

efficiency. The researchers reported that ILP generated the best initial solution and

SA yielded the best final solution on average within 50 runs but, ultimately, irrespec-

tive of the initialisation approach taken, the final schedules had similar quality. With

regard to the optimisation methods, the authors reported that stochastic optimisation

outperformed the sequential optimisation. After this experimentation, they decided to

proceed with only a random initialisation approach and implemented both optimisation

methods including both heuristic methods to generate the schedule for both constrained

and unconstrained Evolution 2014 conferences. The results were similar to the Ecology
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2013 and surprisingly revealed that the best solution obtained included the constraints.

In the final analysis, the final schedule delivered was significantly altered by the program

committee and the authors decided to receive a further evaluation by 29 volunteers who

were experts in evolutionary biology. The results were statistically tested and showed

no significant differences between the delivered schedule and the altered schedule. These

results might imply that there is space for further research regarding the topic modelling

automation and whether it is possible to perform this in an objective manner.

1.1.3 Mixed Approach

Thompson (2002), conducted two experiments with the aim of comparing the solution

quality of both manual and computer-based ABP conference scheduling approach to

PBP conference scheduling approach. In both of his experiments he considered rooms

of different capacities, rooms availability, and presenters’ requirement to offer replicated

sessions if necessary. The author used data from a real conference to generate three

artificial conferences with similar characteristics for the first experiment. The problem

involved parallel scheduling of 12 sessions into 3 time slots and 4 different rooms. The

number of attendees was 100 in total and the number of presenters was 10, from which

two were assigned to present 2 sessions each. The range of preferences collected was

between 3 and 6 for each participant and were weighted. The weight assignment followed

a descending system with participants attending their first choices being assigned a high

score and a low score for their last choices. This weight system was used to evaluate

the solutions quality. The three artificial conferences were scheduled manually (ABP),

randomly (PBP), and by the proposed method, a simulated annealing heuristic (ABP).

The second experiment involved data from another real conference including 64 sessions,

8 time slots, and 8 different rooms. In this conference, some sessions were allowed to

be repeated, while others were not. A total number of 175 participants, including

presenters, attended the conference and submitted preferences within a range of 0 to 8

sessions. Presenters, when not presenting a session, also attended sessions and submitted

preferences. In this experiment, the weight system was different because attendees did

not specify preference order of sessions and were thus assigned a fixed score for every

desired session they were able to attend. In contrast to the first experiment, the manual

scheduling was skipped for this experiment due to complexity level. The results of the

two experiments were statistically compared and revealed the following key findings; i) no

statistical significance was found between manual and random scheduling methods, ii) a

statistical significance at 0.001 level existed between random (or manual) and heuristic
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methods, and iii) while the heuristic method produced only slightly better solutions

(3 - 4.4%) than the other methods for the first experiment, the solutions were much

better (15.9%) for the second experiment. In other words, the author stated that his

proposed method contributes more to the quality of the solution as the problem size and

complexity increase.

Nicholls (2007) developed a simple heuristic algorithm to schedule the 2003 Western

Decision Science Institute Annual Meeting. This conference involved 330 registered

attendees, 295 papers, 73 regular sessions including four papers in average, 11 special

sessions (a whole session is required for a paper), and 7 rooms of different size. Its

duration was 2 full days and three sessions were held during the third day. Although

the conference practice did not include a formal attendees’ preferences collection, the

ease of stream access was considered during the scheduling process along with a small

number of presenters’ preferences. Nicholls (2007) explicitly stated that his developed

method was used to assist the Program Chair during the scheduling process rather

than autonomously produce the conference schedule. In other words, it was a tool that

assisted the scheduling process but did not provide a complete solution. Additionally,

the author stated that the proposed method did not have an objective function per se,

but its main purpose was to resolve conflicts by utilising a set of rules which considers

preferences from both presenters and attendees. Thus, the heuristic aimed to generate a

feasible solution and did not optimise the solution further. The constraints considered in

this work were; i) meet the preferences of Program Chair who decides which attendees’

preferences to consider, ii) ensure that no author conflicts exist, iii) ensure that time slots

have not been exceeded, and iv) meet the presenters’ preferences. Nicholls (2007) stated

that the generated schedule satisfied all the constraints according to feedback collected

by participants. Finally, he highlighted that more advanced methods are required to

solve larger conferences with more attendees’ and presenters’ preferences included.

Stidsen et al. (2018) tackled the CoSP of the EURO2016 Conference, which is consid-

ered one of the largest OR conferences globally. This particular conference included 25

areas of subject, 124 streams, 463 sessions, 11 time periods (for each typically 4 time

slots were available), 54 rooms, 1600 presenters, and attracted around 2000 participants.

The researchers did not consider the attendees’ preferences due to unavailability of such

data. They stated that because of the design of the registration system it was not

possible to obtain such information and redesigning the system was impractical during

the scheduling process. In addition to this, another data issue was the unavailability of

data regarding the expected attendance for each talk. While historical attendance data



Chapter 1. Introduction 13

could be used to solve this problem, this information was considered as unreliable by

the authors. Therefore, a rule of thumb was used which required that the room size of

each stream and the number of talks in the whole respective stream should be propor-

tional. The research objective of this study was to generate a schedule which follows

the hierarchical structure of the conference by the implementation of a multi-objective

mixed integer programming model. This model had in total 5 objectives which were

ranked based on their significance and were sequentially solved following a lexicographic

optimisation approach. These objectives were ranked in the following order; 1) min-

imisation of the number of areas assigned to different buildings, 2) maximisation of the

number of related areas assigned to the same building, 3) minimisation of the number

of different rooms allocated for each stream, 4) minimisation of the number of time gaps

within streams and, 5) maximisation of the residual room capacity. These objectives

were subject to constraints based on the hierarchical structure of the conference which

were; 1) rooms are only assigned sessions of a stream for which the capacity is satisfied,

2) all sessions belonging to the same stream must be assigned to the same building, 3)

no more than one session is allocated to each room in each building in each time slot

each day, 4) all sessions of each stream must be assigned and, 5) no parallel sessions are

allowed for each stream. The proposed model successfully achieved optimal solutions

for two objectives, specifically (1) and (3), and found near optimal solutions for the

remainder objectives. In order to evaluate the quality of the schedule, the researchers

asked the delegates to answer a questionnaire. The results revealed that the generated

schedule was coherent and the areas of subject were satisfyingly assigned to appropriate

buildings so as to ease the process of switching buildings. Despite the level of complex-

ity involved in the proposed model, there are some worth mentioning notes that the

authors acknowledge. First of all, the author conflicts, which would make the problem

much more complex, are circumvented due to the policy of the conference to not allow

the same author presenting multiple papers. In addition to this, any potential author

conflicts in terms of presenting a paper and chairing another session were addressed

at the early stage of the papers submission by the submission system. Secondly, the

participants’ preferences were not considered and the room utilisation was partially con-

sidered. Finally, it is clarified by the authors that the proposed model generates only a

high-level schedule, leaving intentionally the low-level schedule to the stream organisers

for two reasons. Firstly, they claimed that stream organisers should schedule sessions

and talks so as to maintain a logical order and, secondly, there was not sufficient data

to generate the low-level schedule. Overall, the proposed method was successful and

the same method was used to schedule the IFORS2017 conference and was used for the
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scheduling of EURO2018 and IFORS2020.

Vangerven et al. (2018) addressed the CoSP of four conferences, namely the MathSport

2013, MAPSP 2015 & 2017, and ORBEL 2017. Their work was primarily focused on

maximising the satisfaction of attendees in terms of attending their preferred talks.

Therefore, the authors created a profile for each participant by collecting their prefer-

ences via e-mail. Apart from accomplishing their main purpose, profiles were also used

by the authors in the process of session chairs selection. A secondary goal of the re-

searchers was the minimisation of session hopping. Vangerven et al. (2018) were the first

to introduce the aspect of session hopping in a CoSP. As defined by the authors, ses-

sion hopping occurs when participants miss parts of their preferred talks because these

talks are scheduled in different sessions or rooms and due to presenters not beginning

their talks in the scheduled time. A third objective of this work was to satisfy the pref-

erences of the presenters. The authors proposed a hierarchical three-phased approach

by implementing integer programming formulations, a dynamic programming approach

and a heuristic approach to accomplish the three previously mentioned objectives. In

the first phase, they minimise the total missed attendance and by maintaining the to-

tal attendance at the maximum level, they minimise the session hopping in the second

phase. Notice that in the second phase the authors implemented an integer programming

model along with either dynamic programming approach or heuristic approach. They

decided to develop a fast heuristic approach because in some cases dynamic program-

ming required several hours to yield a solution. In the third phase, they maintained the

levels of the total attendance and the session hopping while they minimised the number

of presenters’ preferences violations. The authors applied their proposed method to

Table 1.1: Characteristics of conferences from Vangerven et al. (2018)

Name Parallel Sessions Talks Rooms Registered Attendees Profiles

MathSport 2013 2 76 2 97 68
MAPSP 2015 3 90 3 - 78
MAPSP 2017 3 87 - - 58
ORBEL 2017 4 80 - 140 101

four medium size conferences in total, which details are shown in Table 1.1. In the

MathSport 2013 conference, the proposed method achieved an optimal solution with 42

scheduling conflicts, zero presenters’ preferences violations, and a 96.7% attendees’ pref-

erences satisfaction on average. For MAPSP 2015, the optimal objective value was 155

in the first phase (90.17% attendees’ preferences satisfaction), 120 in the second phase,

and zero presenters’ preferences violations. Note that for MAPSP 2015 the authors did



Chapter 1. Introduction 15

minor modifications to their proposed model in order to satisfy the room capacities con-

straints. The results for MAPSP 2017 revealed an optimal objective value of 478 in the

first phase, 145 in the second phase, and none presenters’ preferences were violated. In

ORBEL 2017, the authors achieved an optimal objective value of 100 (91.7% attendees’

preferences satisfaction), 281 in the second phase, and zero presenters’ preferences vio-

lations. Overall, the proposed method was proved to be highly efficient by generating

optimal solutions for all four conferences. In the final analysis, Vangerven et al. (2018)

showed that the CoSP with n parallel sessions is NP-Hard when n ≥ 3, which adds to

the result that the preference conference optimisation problem (PCOP) is NP-Hard as

showed by Quesnelle and Steffy (2015).

Patro et al. (2022) defined the Virtual Conference Scheduling (VCS) problem in which

the goal was to schedule submissions into time slots by maximising the efficiency and

fairness objectives. While the former objective maximises the total attendance in the

conference, the latter objective maximises the attendees’ satisfaction, which depends on

their interest in a specific submission and their availability to attend it, and the speakers’

satisfaction which depends on whether their submission is scheduled in a time slot that

provides high attending availability for the interested attendees. The authors consider

the preferences of attendees to attend certain submissions as well as their availability

based on time zone information. They presented an integer programming formulation

suitable for small conferences and a rounding heuristic along with a clustering approach

for larger conferences. Their methods successfully generated balanced conference sched-

ules in terms of efficiency and fairness when tested on real and artificial datasets. How-

ever, it should be noted that the VCS problem is restricted to a single track conference

scenario without parallel sessions, and the speakers’ satisfaction metric does not consider

the availability of the speaker to present based on time zone information.

A case study regarding the scheduling of GECCO 2019 was presented by Riquelme

et al. (2022). The authors defined the problem as a Track-Based CoSP which requires

the assignment of tracks into sessions and rooms, and the assignment of submissions

into time slots of sessions in such way that the number of missing seats is minimised and

certain hard constraints are satisfied. They also presented an instance generator which

they used to generate 45 artificial instances with similar characteristics to GECCO 2019.

In their study, the authors developed an integer programming model and a simulated

annealing heuristic, and evaluated the performance of the two methods by solving the

artificial instances. Computational results showed that the integer programming model

managed to optimally solve most instances but failed to solve several instances within
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the one hour time limit. On the other hand, the simulated annealing replicated the

results of the integer programming model and found decent solutions for the unsolved

instances within a short amount of time.

Rezaeinia et al. (2024) tackled the CoSP as described in Vangerven et al. (2018) and pro-

posed three optimisation approaches to support the scheduling of LOGMS, INFORMS

TSLWorkshop and ICSP. Attendees’ preferences were collected through an online survey

which the authors used to form the objective function, a utility function, of the integer

programming formulations. The authors developed two optimisation approaches assum-

ing that submissions have been already grouped into tracks, namely a single integrated

model and a two-model decomposition approach. The former approach maximises the

utility function by optimising both high and low level schedules simultaneously, whereas

the latter approach initially generates a high level schedule by maximising the utility

function on a session level and, then, it generates the low level schedule, based on the

previously obtained solution, by maximising the utility function on a time slot level. In

the third optimisation approach, which is a relaxed model, they allow submissions to be

freely scheduled regardless of their assigned track. Following different experimentation

scenarios, the results showed that the single integrated model is impractical in terms

of computational time and the relaxed model produced schedules where some tracks

contained submissions which were too disconnected from each other based on feedback

from the organising committee. The two-model decomposition approach proved to be

the most effective approach, finding high-quality solutions within a short amount of time

and resulting in its adoption to schedule the three conferences reported.

1.1.4 Software for Conference Scheduling Problems

In addition to the CoSP studies, a few software tools exist which aid the scheduling

process of conferences. However, such software do not construct the conference schedule

per se, but only provide additional information and recommendations to the organisers

that are involved in the conference scheduling. One of these software tools is Cobi (Kim

et al., 2013), which is a scheduling tool that uses community sourcing applications for

the collection of preferences and constraints from community members. The collected

data is used to resolve the conflicts within a scheduling interface and those conflicts

are highlighted so as to visually help organizers identify and resolve them as shown

in Figure 1.1. Additionally, the software helps organisers to create cohesive sessions

based on the knowledge of paper authors who suggest which of the other papers fits
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Figure 1.1: Scheduling interface of Cobi (adapted from Kim et al. (2013))

well with their own. The interface of Cobi also aids the organisers by suggesting edits

which improve the quality of the schedule, and visually presents the consequences of

their potential edits. All edits and final decisions are made by the organisers who are

the drivers of the system. Cobi considers preferences and constraints related to sessions,

papers, and chairs. The system categorises the constraints (or preferences) into; system-

defined and community-defined. The former category ensures that presenters and chairs

are at one place at a time, all authors can attend their paper presentation, similar

sessions are not scheduled concurrently, and chairs are only allowed to chair sessions

in which they do not have a paper. The latter category is associated with presenters’

preferences and with the identification of papers that fit well within a session. Cobi was

used by the organisers of CHI2013 conference to demonstrate its effectiveness, where

they successfully managed to resolve 168 out of 238 conflicts.

Confer is another software presented by Bhardwaj et al. (2014), which is a paper-

recommendation tool that collects attendees’ preferences and constraints. It is designed

so as to overcome limitations of Cobi and complement each other. In contrast to Cobi,

Confer provides an interface where attendees can explore the exhaustive list of accepted

papers and mark all the papers that they wish to attend. Attendees can either directly

search for a paper by keyword, author name, affiliation, etc. or choose from the recom-

mendations of the system as shown in Figure 1.2. The data collected within this software

is then used to create coherent sessions and aids the scheduling process. Bhardwaj et al.

(2014) argue that more coherent sessions can be created by assigning a pair of papers
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into the same session given that a large number of attendees wish to attend both of

them. However, this could be quite inaccurate as high attendance for two papers does

not necessarily mean that the two papers are related. In addition, Confer helps or-

ganisers to achieve an improved schedule by considering attendees’ conflicts reduction.

Organisers avoid scheduling papers preferred by many attendees concurrently. Lastly,

Confer is useful for determining popularity of papers so as to schedule those accordingly

in rooms of appropriate size.

Figure 1.2: Confer’s interface for CHI2014. (adapted from Bhardwaj et al. (2014))

Some additional software tools are discussed in this paragraph. Confex (Exchange,

1996) is a commercial software that offers conference planning tools for conference man-

agement including tools for scheduling. Organisers use its interface to assign papers

into sessions and schedule sessions into time slots and rooms. Presenters’ conflicts and

double-bookings are automatically detected by the system and are reported to the user.
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In addition, the organisers may set room capacities and requirements to receive warn-

ings when sessions are scheduled in inappropriate rooms. Conference Navigator 2.0

(Wongchokprasitti et al., 2010) and Conferator (Macek et al., 2012) are software tools

similar to Confer. Attendees use these software to mark papers they are interested in

and receive personalised paper recommendations to create their own personal schedules.

However, in contrast to Confer, these software tools have not considered the exploitation

of their data which could be used to resolve attendees’ conflicts during the scheduling

process.

1.2 Research Gaps

The CoSP literature is presented in Table 1.2, where each study focuses on specific

conferences, addressing only conference specific requirements. The Table 1.2 shows that

there is no study up to date that describes a generic conference scheduler. In addition,

the COVID-19 pandemic has resulted in many conferences switching to online and hybrid

conferences. Consequently, conference organisers are now encountered with completely

new parameters to consider during the scheduling process (e.g., time zone differences).

With this in mind, the following research questions are addressed in this thesis;

1. What a generic conference scheduler would look like in terms of objectives, con-

straints and modelling?

2. What Operations Research techniques are efficient for optimal (or near-optimal)

scheduling of conferences, including online and hybrid conferences?

3. Given that there is no open-source code base for conference scheduling available,

could this research result in an open-sourced solution for conference scheduling?

4. What is the potential practical impact of this research?

A clarification of the conference terminology as used in this thesis is now presented

due to the diverse conference terminology that has been used in the CoSP literature.

While various terms such as paper, presentation, talk, discussion, and panel are used

in the literature, we use the term “submission” to refer to a formal event that requires

scheduling at a conference. The term “track” is used to refer to a group of submissions

with similar subject, whereas terms such as stream, subject area, and topic are used

in the literature. We use the term “time slot” to refer to a fixed predefined amount of
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Table 1.2: Requirements of conferences considered in the literature
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Speakers’ conflicts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Speakers’ preferences ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rooms preferences ✓ ✓

Attendees’ conflicts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rooms capacities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Similar tracks ✓

Parallel tracks ✓ ✓ ✓ ✓ ✓

Session hopping ✓ ✓

Track chairs’ conflicts ✓ ✓ ✓ ✓ ✓ ✓

Tracks’ scheduling preferences ✓ ✓

Rooms unavailability ✓ ✓ ✓

Consecutive tracks ✓

Speakers’ time zones

time available for presentation, and the term “session” is used to refer to a certain time

period of the conference that consists of a number of time slots.

In general, a CoSP requires the scheduling of tracks into sessions and rooms to create a

high-level schedule, and the scheduling of submissions into sessions, rooms and time slots

to obtain a low-level schedule considering multiple soft and hard constraints. While some

studies in the literature generate both high and low level schedules, others only generate

a high level schedule leaving the scheduling of the low-level schedule to the organisers.

Due to many conferences having different constraints and objectives, there are various

problem descriptions, objective functions, and developed methods in the literature which

depend on the need of the particular conference. As a result, different mathematical

models and heuristic methods have been designed to address rather specific requirements

of the conferences being studied per se. Consequently, a method that works well for a

conference could be unsuitable for another conference.

The main goal of this thesis is the investigation of different operations research tools

for the creation of a generic conference scheduler applicable to many conferences. This



Chapter 1. Introduction 21

scheduler is freely available at https://github.com/ahmedkheiri/CoSPLib and can

be used to generate both high and low level optimised conference schedules in an au-

tonomous and fully automated manner. A generic solution approach has been designed

to allow the customisation of our scheduler to fit the needs of different conferences. A

spreadsheet file is used to store input data, which follows a specific template with the

purpose of providing a generic approach suitable for many conference scheduling prob-

lems. Our scheduler contains a pool of constraints to select from and allows weight

assignment for each constraint based on their subjective significance. In addition, the

scheduler is also suitable for hybrid and online conferences where submissions need to

be scheduled in appropriate sessions considering timezone information. When a CoSP

is solved using the scheduler, an informative solution file is generated which provides

insights regarding the solution quality. The decision maker is not only able to view a

detailed report of violations for each constraint but also can manually edit the solution

and observe the impact of their changes on solution quality.

1.3 Dataset

The dataset used throughout this thesis consists of sixteen instances from four confer-

ences, namely the Genetic and Evolutionary Computation Conference (GECCO), the

OR Society’s 60th Annual Conference (OR60), the New to OR Conference (N2OR), and

the International Symposium on Forecasting (ISF). Their characteristics are presented

in Table 1.3, while Table 1.4 shows the instances used per chapter. Note that OR60F,

OR60F2 and OR60F3 are artificially generated instances derived from OR60. Apart

from those, the remaining instances are all real data. All instances are available at

https://github.com/ahmedkheiri/CoSPLib.

1.4 Thesis Structure

This thesis follows a paper-based thesis structure and there may be some overlap of

material between chapters. The remainder of the thesis is structured as follows:

In chapter 2, the methodology chapter is presented, which provides definitions of tech-

nical terms and explores the theoretical foundations of each methodology used in this

thesis, along with their relevance and applicability to the research.

https://github.com/ahmedkheiri/CoSPLib
https://github.com/ahmedkheiri/CoSPLib
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Table 1.3: Instances considered in this thesis

Instance Submissions Tracks Sessions Rooms Timeslots

GECCO2019 202 29 13 10 45
GECCO2020 158 24 7 8 28
GECCO2020 Poster 131 1 2 1 132
GECCO2020 Workshop 131 26 8 10 40
GECCO2021 138 27 6 8 24
GECCO2021 Workshop 203 28 8 10 56
GECCO2022 179 39 7 8 56
GECCO2022 Workshop 138 59 8 10 80
GECCO2023 207 26 6 9 60
GECCO2023 Workshop 233 55 8 9 80
ISF2022 311 49 11 10 36
N2OR 35 8 4 4 9
OR60 329 45 8 23 24
OR60F 279 45 8 23 24
OR60F2 556 72 16 23 49
OR60F3 1112 72 32 23 105

In chapter 3, we present a penalty system that allows organisers to set up scheduling

preferences for tracks and submissions regarding sessions and rooms, and regarding the

utilisation of rooms within sessions. In addition, we also consider hybrid and online

conferences where submissions need to be scheduled in appropriate sessions based on

timezone information. A generic scheduling tool is presented that schedules tracks into

sessions and rooms, and submissions into sessions by minimising the penalties subject

to certain hard constraints. Two integer programming models are presented: an exact

model and an extended model. Both models were tested on five real instances and on two

artificial instances which required the scheduling of several hundreds of time slots. The

results showed that the exact model achieved optimal solutions for all instances except for

one instance which resulted in 0.001% optimality gap, and the extended model handles

more complex and additional constraints for some instances. This chapter demonstrates

the suitability of the proposed generic approach to optimise schedules for in-person,

hybrid, and online conferences.

Next, in chapter 4, we present a decomposed robust matheuristic solution approach that

consists of two phases. In phase one, we use an integer programming model to build the

high-level schedule by assigning tracks into sessions and rooms. Based on this solution,

we create the low-level schedule where submissions are allocated into sessions, rooms,

and time slots. In phase two, we make use of a selection perturbative hyper-heuristic
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Table 1.4: Instances considered per chapter

Instance Chapter 3 Chapter 4 Chapter 5 Chapter 6

GECCO2019 ✓ ✓ ✓ ✓

GECCO2020 ✓ ✓ ✓ ✓

GECCO2020 Poster ✓ ✓

GECCO 2020 Workshop ✓ ✓

GECCO2021 ✓ ✓ ✓ ✓

GECCO2021 Workshop ✓ ✓

GECCO2022 ✓ ✓

GECCO2022 Workshop ✓ ✓

GECCO2023 ✓ ✓

GECCO2023 Workshop ✓ ✓

ISF2022 ✓ ✓ ✓

N2OR ✓ ✓ ✓ ✓

OR60 ✓ ✓ ✓ ✓

OR60F ✓ ✓ ✓ ✓

OR60F2 ✓ ✓ ✓ ✓

OR60F3 ✓ ✓ ✓ ✓

to further optimise both levels of the schedule. Our solution approach is compared

against an integrated mathematical model under different time limits on a set of real

and artificial instances. The results showed that the matheuristic finds near-optimal

solutions and finds solutions for instances where the mathematical model fails to provide

solutions within the one hour time limit. This chapter demonstrates the suitability of

the proposed matheuristic in tackling conference scheduling problems as an alternative

approach to mathematical models that struggle for some instances.

The mathematical model in chapter 4 has two major differences compared to the models

presented in chapter 3. That is, the model in chapter 4 is only concerned with the

high-level schedule and it has some of its constraints relaxed. Essentially, a direct

comparison is not possible because they have different purposes. While, the models in

chapter 3 solve the conference scheduling problem as a whole, the model in chapter 4 only

provides a high-level schedule solution for the conference scheduling problem. However,
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some similarities and differences are observed which are described next. Both models

have some constraints in common such as Equation 4.1 and Equation 3.5, Equation 4.2

and Equation 3.15, Equation 4.7 and Equation 3.4, Equation 4.8 and Equation 3.6,

Equation 4.9 and Equation 3.1. The following constraints are relaxed in the model of

chapter 4: i) scheduling the same track in parallel (Equation 4.5), ii) limiting number

of rooms per track (Equation 4.6 compared to Equation 3.3) and iii) scheduling similar

tracks in parallel (Equation 4.4 compared to Equation 3.13). The following constraints

of the model in chapter 4 are unique: Equation 4.3, Equation 4.4 and Equation 4.5.

Lastly, the objective functions of the models are substantially different. The objective

functions of the models in chapter 3 are minimising violations of constraints related to

both submissions and tracks, whereas the objective function of the model in chapter 4

only minimises violations of track related constraints.

In chapter 5, we make benchmark data publicly available to facilitate the comparison

and evaluation of different developed methods for conference scheduling problems. We

also present a selection hyper-heuristic algorithm to solve the benchmark instances and

provide computational results. The aim is to raise awareness of the under-studied confer-

ence scheduling problem, and to encourage researchers to contribute to the benchmark

dataset with new instances, constraints, and solving methods.

In chapter 6, we present the required modifications in the formulations presented in

chapter 3 to obtain the equivalent mathematical models with time slots along with

computational results. We also present an approximation model with a simpler, relaxed

objective function which is obtained through transformations and discuss its performance

compared to the exact model. Additionally, we compare the performance of all developed

methods of this thesis by solving all available instances, and discuss the benefits and

limitations of each method.

Lastly, in chapter 7, the contributions of this thesis are summarised, and potential

directions for future work are suggested.
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Methodology

In this chapter, the background of the considered optimisation methods is presented. Dif-

ferent operations research tools such as integer programming, heuristics, and matheuris-

tics were investigated to build the conference scheduler. All developed optimisation

methods are included in the conference scheduler allowing the decision-maker to select

which one they wish to use as some methods may perform better than others depending

on the given CoSP. In the next paragraph, definitions are provided for some terms that

are used throughout this thesis.

Any approach to problem solving that employs a pragmatic method which is not fully

optimised, perfected, or rationalised is considered a heuristic. A metaheuristic could

be either a high-level procedure or heuristic that aims to find, generate, tune, or select

a heuristic which may return a sufficiently good solution to an optimisation problem.

A hyper-heuristic is a heuristic that aims to automate the selection, combination, gen-

eration and adaptation of simpler heuristics processes to solve computational search

problems in an efficient way. Exact algorithms are algorithms which always provide the

optimal solution to an optimisation problem. An approximation algorithm is any algo-

rithm that can find approximate solutions to optimisation problems. Model complexity

defines how difficult it is to solve a mathematical model. A hard constraint is a very

restrictive constraint that must be satisfied, whereas a soft constraint is a constraint

that is allowed to be violated. The term OR tools refers to problem-solving techniques

and methods that fall within the Operations Research field of study. In this thesis, the

usage of the term exact model refers to an exact algorithm, while the usage of the term

extended model refers again to an exact algorithm, but it is called extended because it

includes additional constraints compared to the exact model.

25
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Figure 2.1: Feasible Region of a Linear Programming Problem

2.1 Integer Programming

Prior to describing the concept of integer programming, we first need to introduce the

classical linear programming. Linear programming is defined as an optimisation method

used to obtain the best solution in a mathematical model whose formulation is expressed

in linear relationships. In other words, linear programming is an optimisation technique

for minimisation or maximisation of a linear objective function, subject to linear equality

and inequality constraints. Its feasible region is given by the set of all possible points of

an optimisation problem that satisfy the constraints of the problem (e.g., see Figure 2.1)

(Williams, 2009; Vanderbei, 1998). A formulation example of a linear programming

problem is as follows:

min c⊤x

Ax ≤ b

x ≥ 0

where x are continuous variables, c and b are given vectors, and A is a given matrix. In

this example, the goal is to minimise the objective function, cTx, with respect to the

constraints, Ax ≤ b and x ≥ 0.
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Figure 2.2: Feasible Integer Points of an Integer Programming Problem

Integer programming is usually considered as an extension of linear programming where

some or all of its variables are restricted to take integer values. A model is defined

as pure integer programming when all variables must be integers, whereas a mixed

integer programming is a model where only some of the variables are restricted to integer

variables. In contrast to linear programming problems, integer programming problems

have feasible integer points instead of a feasible region (see Figure 2.2). It should be

also noted that the computational complexity of integer programming models is greater

than linear programming models because of integer variables and, thus, much more

difficult to solve. Due to this increased complexity, it is usually impractical to solve

large scale real-world problems exactly with integer programming. Therefore, heuristics

are often preferred as an alternative optimisation method which we describe in more

detail in section 2.2 (Williams, 2009; Conforti et al., 2014; Papadimitriou, 1981; Garey

et al., 1990). The formulation of an integer programming problem is similar to the linear

programming problem. For instance, we can rewrite the previous formulation example
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to a pure integer programming problem as follows:

min c⊤x

Ax ≤ b

x ≥ 0

x ∈ Z

where the only difference, comparing to the previous example, is that x variables are

restricted to integer values.

A very practical and useful variant of integer programming is the zero-one linear pro-

gramming (or binary integer programming) that is used for problems where all variables

must be binary (either 0 or 1). The 0-1 variables are widely used to formulate prob-

lems in which decisions are discrete by nature (Yes/No decisions), and to facilitate the

formulation of logical decisions and statements, e.g., if an ingredient i is used then a

proportion of ai must be respected. Moreover, 0-1 variables can be used to convert non-

linear terms into linear such as the product of two 0-1 variables. For instance, assume

we want to replace the product α1α2 with a new 0-1 variable β. We can achieve this by

introducing the following constraints:

β ≥ α1 + α2 − 1

β ≤ α1

β ≤ α2

These constraints enforce β = 1 only when α1 = α2 = 1, otherwise β is restricted to 0

if α1, or α2, or both are 0. Another similar use of 0-1 variables is the approximation

of non-linear models as shown in Figure 2.3. An integer programming model can be

used to convert a certain type of non-linearity into linear terms at a cost in the size of

the converted model though (Williams, 2009). Due to these practical properties of the

zero-one variables, binary integer programming models have been extensively used in

numerous applications and problems such as scheduling (Floudas and Lin, 2005; Ryan

and Foster, 1981), the travelling salesman problem (Miller et al., 1960; Montero et al.,

2017), the knapsack problem (Billionnet and Soutif, 2004; Lodi and Monaci, 2003),

packing and partitioning problems (Litvinchev et al., 2015; Park et al., 1996; Niemann

and Marwedel, 1997), the facility location problem (Canel and Khumawala, 1996; Kratica

et al., 2014), and many others ranging from networks and graphs to capital investment

problems (Veremyev et al., 2014; Meier et al., 2001; Mansini et al., 2015).
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Figure 2.3: A piecewise linear approximation to a non-linear function

2.1.1 Relaxations

Relaxation is a well-known modelling strategy within the field of mathematical opti-

misation to approximate difficult problems by similar problems that are usually easier

to solve. The solution of a relaxed problem provides information about the original

problem. For instance, removing integrality constraints from an integer programming

problem results in a relaxed linear programming problem.

Another relaxation method is the Lagrangian relaxation which allows inequality con-

straints to be violated. Relaxed constraints are moved to the objective function and

are multiplied with a Lagrange multiplier. As a result, a cost is incurred for each vio-

lation of the relaxed constraints. For example, assume we are given the following linear

programming model:

min c⊤x

Ax ≤ b

x ≥ 0
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To obtain the Lagrangian relaxation of the problem, constraint Ax ≤ b is moved to the

objective function and multiplied with a Lagrange multiplier λ⊤ as follows:

min c⊤x+ λ⊤(Ax− b)

x ≥ 0

where λ⊤ ≥ 0. Thus, an approximation of the original problem is achieved in which

the objective function is penalised if the relaxed constraint gets violated (Lemaréchal,

2001).

A similar relaxation method to Lagrangian relaxation is the one introduced in Kendall

(1975). However, the difference is that in his method the relaxed constraints are not

moved to the objective function. Instead, new variables are introduced in both the

objective function and the constraints. These variables are used to represent the ex-

ceeded violation amount of a constraint and the unused amount of a constraint. Kendall

(1975) described this method as a mixture of a conventional objective function and a

goal programming objective function which can be formulated as follows:

min c⊤x+ c
′⊤u+ c

′′⊤v

Ax+ u− v = b

x ≥ 0

where u indicates the unused amount of the constraint, v indicates the exceeded amount

of the constraint, c
′⊤ represents the cost of not fully utilising the constraint, and c

′′⊤

represents the cost of exceeding the constraint.

Goal programming can be defined as an extension or generalisation of linear program-

ming and it is used in multi-objective optimisation to handle multiple, normally con-

flicting objectives. It is an approach that transforms a multi-objective formulation to

a single-objective formulation. For each objective, a goal is set and the objective is to

minimise deviations from the set goals or, in other words, to minimise the violations

of constraints. Even though the approach in Kendall (1975) seems similar to goal pro-

gramming, it is not exactly the same, because in his approach there is no setting of goal

values and, thus, no deviations to minimise.

In this paragraph, additional relaxation methods are presented such as the penalty
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method, cutting planes, dual relaxation, convexification, surrogate relaxation and semidef-

inite relaxation. In the penalty method, the original problem is relaxed by moving con-

straints into the objective function resulting in an unconstrained optimisation problem.

The penalty terms penalise the violations of constraints by increasing or decreasing the

objective value, thus, encouraging the solver to stay within the feasible region (Di Pillo,

1994). The cutting plane method adds linear constraints to the feasible region of the

optimisation problem with the purpose of removing fractional solutions, which results

in a tighter relaxation and bound improvement. It is particularly useful in integer pro-

gramming and mixed-integer programming optimisation problems in which solutions

have integer values (Schrijver et al., 1980). Dual relaxation relaxes some constraints

of the primal problem and solves the corresponding dual problem which is sometimes

easier to solve (Chernyavsky et al., 2023). The goal of the convexification method is

to transform a non-convex optimisation problem into a convex one through convex op-

timisation methods such as convex envelopes, convex hulls, concave-convex procedure

and convex surrogates (Bertsekas, 1979). Surrogate relaxation approximates the original

objective function or constraints with a simpler surrogate function or constraint set. It

is easier to optimise the simpler function compared to the original one. The optimal

solution to the surrogate can be used as a good approximation for the original problem

or improved further. There are several ways to create surrogate functions depending

on the structure of the optimisation problem (Narciso and Lorena, 1999). Semidefinite

relaxation relaxes a non-convex problem into a semidefinite programming problem by

leveraging the properties of semidefinite matrices. A semidefinite programming problem

is a type of convex optimisation problem that is easier to solve (Luo et al., 2010).

Apart from approximating difficult problems, relaxation methods have several addi-

tional benefits and uses which are described next. They can be used to obtain bounds in

branch-and-bound algorithms for integer programming (e.g., (Jessin et al., 2020)) and

to overcome infeasibility issues in mathematical modelling. Additionally, they enable

the handling of complex and soft constraints, and allow the expansion of the solution

space by setting different weights values. That is, they allow the exploration of multiple

solutions along with trade-offs which is beneficial for decision-makers as they are pre-

sented with more options. However, relaxation methods have certain drawbacks as well.

They require the judgement of decision-makers upon selecting the right solution and the

relaxed problem may not converge to the optimal solution of the original problem.
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2.2 Hyper-heuristics

Sometimes, it is impractical to solve a problem exactly to obtain the optimal solution for

various reasons such as computational complexity, size of the problem, and complexities

involved in formulating the problem. In such cases, an effective alternative method is the

implementation of heuristic techniques which sacrifice optimality to find near-optimal

solutions within a short amount of time.

A well-known heuristic method to solve computationally hard optimisation problems

of combinatorial nature is the local search algorithm, or also known as neighbourhood

search. Typically, a combinatorial optimisation problem involves an objective function

to minimise, or maximise, and a set of feasible, or candidate, solutions. The key mech-

anism of the local search algorithm is based on a neighbourhood structure, where a

neighbourhood is defined as a set of solutions that are slightly different compared to a

given solution. Local search algorithms apply local changes to explore neighbourhood

solutions within the space of candidate solutions, or the search space, until a termination

criterion is met (Johnson et al., 1988; Hansen and Mladenović, 2001). For instance, in

a travelling salesman problem, a neighbourhood solution is a tour in which the visiting

order of two cities is different. A significant part of heuristic methods is the criterion

used to accept or reject a new solution, which is known as the move acceptance criterion.

A common move acceptance criterion is the acceptance of the new solution only when

it is better than the previous solution (Pirlot, 1996). While local search algorithms are

effective in terms of execution time and solution quality, they do have a pitfall. That is,

they can get stuck at a local optimum when the neighbourhood search space is poorly

structured (e.g., see Figure 2.4). Several methods exist to overcome this pitfall such as

the usage of a random restart approach in which the local search algorithm is applied

to multiple random initial solutions. Hence, this approach increases significantly the

search space and the probability of finding a better local optimum (Lourenço et al.,

2002). Another method is the implementation of the ruin and recreate principle where

parts of the solution are destroyed and rebuilt or recreated afterwards (Schrimpf et al.,

2000). Alternatively, more sophisticated algorithms may be used instead such as simu-

lated annealing, genetic algorithms, ant colony optimisation, or hyper-heuristics which

are described next.

Many combinatorial optimisation problems have been solved by means of hyper-heuristics

which can be simply defined as a heuristic to choose heuristics. While hyper-heuristics

were conceptualised in 1960s, they were formally defined in the early 2000s as a high-level
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Figure 2.4: Local search algorithm stuck at local maxima

automated search methodology for solving computationally hard problems by exploring

the search space of low-level heuristics. Hyper-heuristics are classified into the following

two categories: selection and generation hyper-heuristics, which are further divided into:

constructive and perturbative hyper-heuristics.

Selection constructive hyper-heuristics usually explore the space of combinations of low-

level constructive heuristics to create an initial solution. The following are some of the

common low-level constructive heuristics in scheduling problems used to choose how

events are scheduled:

• Largest degree represents the number of potential conflicts that a given event has.

• Largest colour degree, a variation of the largest degree, considers conflicts with

scheduled events only.

• Saturation degree indicates the number of feasible time periods in which an event

can be scheduled.

• Largest weighted degree represents the number of individuals that could create a

potential conflict for a given event.

• Largest enrolment indicates the number of individuals who are interested in (or

enrolled for) a given event.
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• Random chooses a random event to schedule.

For instance, s-le-r-lc is a candidate combination of low-level constructive heuristics,

where s is the saturation degree, le is the largest enrolment, r is random and lc is the

largest colour degree. Selection perturbative hyper-heuristics select and apply a heuristic

from a set of low-level heuristics to improve a given solution. They are distinguished into

multi-point selection perturbative hyper-heuristics, which are population-based without

a distinct heuristic selection or move acceptance strategy, and single-point selection

perturbative hyper-heuristics that improve one active current solution and consist of a

specific heuristic selection and move acceptance strategy.

Generation constructive hyper-heuristics create new low-level constructive heuristics

which can be disposable or reusable. A low-level constructive heuristic that is created

for a specific problem instance is defined as disposable, whereas a reusable low-level con-

structive heuristic is created once and can be used to solve multiple instances of the same

problem. Generation perturbative hyper-heuristics have not been as much explored as

the aforementioned types of hyper-heuristics. Sabar et al. (2013) made a contribution

in this area by presenting the grammatical evolution hyper-heuristic framework. This

framework takes as inputs different heuristic selection and move acceptance strategies

and automatically creates a local search template by appropriately combining the pro-

vided strategies to suit a given problem instance and discover new heuristics (Drake

et al., 2020; Pillay, 2016).

Selection constructive hyper-heuristics are mainly used to construct an initial solution

or rebuild parts of a solution rather than optimising a given solution, while generation

hyper-heuristics are not as widely used as selection perturbative hyper-heuristics in solv-

ing scheduling problems. Therefore, selection perturbative hyper-heuristics seem to be

the most promising candidate among the different types of hyper-heuristics in providing

a complete solution to the CoSP. For the remainder of the thesis, we will refer to the

selection perturbative hyper-heuristic simply as hyper-heuristic. A typical framework of

a hyper-heuristic usually includes two sequential steps, the heuristic selection and the

move acceptance (see Figure 2.5). While the former step represents a strategy for se-

lecting and applying a low-level heuristic, the latter step represents a strategy regarding

the acceptance or rejection of the newly created solution (Özcan et al., 2008). More

details about heuristic selection and move acceptance are presented in subsection 2.2.1

and subsection 2.2.2.
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Figure 2.5: A flowchart of the hyper-heuristic framework

Hyper-heuristics have become popular due to their advantages over other customised

methods. Their major benefit is that they are not limited to a single problem domain or

a narrow class of problem instances, instead they are problem independent and are ap-

plicable to a wide range of problem instances (Almutairi et al., 2016; Özcan et al., 2008;

Drake et al., 2020). Additionally, hyper-heuristics are capable of learning by receiving

feedback regarding the performance of low-level heuristics during the optimisation pro-

cess. Two types of learning processes are identified in the literature: the online learning

in which the algorithm directly learns while solving the problem, and the offline learning

in which the algorithm learns by solving a set of training instances. Some recent studies,

though, have incorporated a mixture of online and offline learning (Burke et al., 2013;

Drake et al., 2020). Furthermore, it is relatively easy to implement hyper-heuristics,

compared to other customised methods, as no information is required about the func-

tionality of low-level heuristics. They only require the number or content of the low-level
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heuristics and the type of optimisation (minimisation or maximisation) (Chakhlevitch

and Cowling, 2008; Kendall and Mohamad, 2004). Last but not least, their purpose

is to find an effective method of solving a problem by exploring the space of low-level

heuristics. This is in contrast to other metaheuristic algorithms which are limited to

finding a good solution by exploring directly the space of solutions (Drake et al., 2012a;

Chakhlevitch and Cowling, 2008).

2.2.1 Heuristic Selection Strategies

In this step of the optimisation process, a low-level heuristic is selected from a set of low-

level heuristics and is applied to the solution iteratively. Note that a low-level heuristic

can be a simple operator, a metaheuristic, or even a hyper-heuristic. The performance of

the algorithm depends heavily on the selected strategy as some low-level heuristics may

perform better than others at certain stages of the optimisation process. For instance,

low-level heuristics that perform major changes to the solution are usually more success-

ful at early stages of optimisation rather than later stages. In addition, the sequence in

which low-level heuristics are applied plays a crucial role in terms of performance too,

because different solutions are obtained with altered sequences (Chakhlevitch and Cowl-

ing, 2008). Heuristic selection strategies are defined as deterministic when a selection

sequence is predefined, or stochastic when the selection depends on a probability distri-

bution or learning mechanism (Drake et al., 2020; Özcan et al., 2008). Some examples

of heuristic selection strategies are presented next:

• Simple random: A low-level heuristic is randomly selected.

• Greedy: All low-level heuristics are applied and the best among them is selected

at each iteration.

• Reinforcement learning: Each low-level heuristic is assigned an initial minimum

score which increases or decreases based on performance. At each iteration, the

low-level heuristic with the highest score is selected (Chakhlevitch and Cowling,

2008).

• Tabu search: Low-level heuristics are ranked similarly to reinforcement learning

strategy. Upon solution improvement the rank is increased, otherwise the rank is

decreased and the low-level heuristic enters the tabu list until the solution at hand

changes. This strategy selects the low-level heuristic with the highest rank that is

not included in the tabu list (Drake et al., 2012a).
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• Sequence-based selection: In this strategy, low-level heuristics are selected based

on the sequences of low-level heuristics with the best performance (Almutairi et al.,

2016).

2.2.2 Move Acceptance Strategies

At this stage, the newly obtained solution is evaluated and is either accepted or rejected

based on the selected strategy. Similarly to heuristic selection strategies, move accep-

tance strategies can be defined as deterministic or stochastic. Deterministic strategies

usually accept non-worsening solutions, while stochastic strategies may accept or reject

a solution according to some probabilistic criterion. Stochastic strategies may accept

worse solutions during optimisation which is particularly useful for escaping local opti-

mum solutions and thus diversifying the search space (Drake et al., 2020; Özcan et al.,

2008). A few examples of move acceptance strategies are the following:

• Only improving: The solution is only accepted if it is better than the previous.

• Improving and equal: All non-worsening solutions are accepted.

• Simulated annealing: Solutions are accepted based on the following probabilistic

function:

pt = e
− ∆f

∆F (1− t
T

)

where ∆f is the difference in the objective value at iteration t, T is the maximum

number of iterations, and ∆F is the range of the maximum change in the objective

value after a low-level heuristic is applied (Ahmed et al., 2015).

• Record-to-record travel: A worse solution is only accepted if it is not significantly

exceeding the objective value of the previous solution (Dueck, 1993).

• Late acceptance: Objective values are stored in a set of size L, and a new solution

is only accepted if it is better than the Lth solution (Burke and Bykov, 2008).

• Great Deluge: Accepts all moves within a dynamic level of the objective value. The

initial level is equal to the initial objective value and is linearly updated towards

the expected objective value by using the following formula:

τt = f0 +∆F × (1− t

T
)
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where τt is the threshold level at iteration t, T is the maximum number of itera-

tions, ∆F is the expected range for the maximum change in the objective value,

and f0 is the final expected objective value. (Kendall and Hussin, 2004)

2.2.3 Hyper-heuristics for timetabling problems

Several timetabling problems such as university examination timetabling, school timetabling

and university course timetabling have been successfully tackled by hyper-heuristics.

Ozcan et al. (2009) solved the examination timetabling problem by implementing a

hyper-heuristic with a late acceptance strategy. The authors tested several heuris-

tic selection strategies from which the simple random yielded the best results. Their

hyper-heuristic utilised four low-level heuristics; a mutation heuristic responsible for

rescheduling all exams and three heuristics for exams rescheduling to minimise viola-

tions of constraints. Kendall and Hussin (2004) developed a tabu search hyper-heuristic

to solve the examination timetabling problem. The authors tested the tabu search with

the improving and equal and the great deluge acceptance strategies. A large list of low-

level heuristics was utilised which included five heuristics for rescheduling exams, two

heuristics for swapping the periods of two exams, a heuristic to un-schedule an exam

and five heuristics to reschedule unscheduled exams. Another examination timetabling

problem was solved by Özcan et al. (2012) who developed a hyper-heuristic with a re-

inforcement learning heuristic selection strategy and a great deluge move acceptance

strategy. The authors used different types of low-level heuristics: one type was respon-

sible for rescheduling the exam that resulted in the most constraints’ violations, another

type rescheduled the exam that violated the most a particular constraint and the last

type was used to reschedule randomly all the scheduled exams.

Kheiri et al. (2012) solved the school timetabling problem by developing a generalised

hyper-heuristic, namely the HySST. Two hyper-heuristics were implemented, one was

responsible for the intensification stage and the other for the diversification stage. The

former hyper-heuristic used a simple random heuristic selection strategy to select a

heuristic from a set of nine mutational low-level heuristics, whereas the latter hyper-

heuristic used two hill-climbing heuristics. Raghavjee and Pillay (2012) solved the school

timetabling problem with an evolutionary hyper-heuristic. A set of five low-level heuris-

tics was used, four heuristics were mutational and one heuristic was used for allocation

and de-allocation. The authors compared the hyper-heuristic with several algorithms,
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namely neural networks, tabu and greedy search and a genetic algorithm. Their devel-

oped hyper-heuristic outperformed all the algorithms especially in large scale instances.

Soria-Alcaraz et al. (2014) developed an iterated local search hyper-heuristic to solve

the university course timetabling problem. The hyper-heuristic used an online learning

mechanism as a heuristic selection strategy to select the low-level heuristic with the

best chances of improving the solution based on previous performance. Another univer-

sity course timetabling problem was solved by Kalender et al. (2013) who implemented

a hyper-heuristic that used a greedy gradient heuristic selection strategy and a simu-

lated annealing move acceptance strategy. The same hyper-heuristic was also used to

solve a school timetabling problem. Burke et al. (2003) tackled the university course

timetabling problem by implementing a multi-objective hyper-heuristic. Tabu search

was used as a heuristic selection strategy and each heuristic from the set of low-level

heuristics optimised a particular objective.

2.3 Matheuristics

The term matheuristic, as the name suggests, refers to an optimisation method in which

ideas and methods are combined from both mathematical programming and heuristic

techniques. Puchinger and Raidl (2005) provided a general classification of matheuris-

tics based on the nature of combination. They classified matheuristics into two main

categories, namely the collaborative combinations and the integrative combinations. The

former category refers to matheuristics in which exact and heuristic algorithms are sep-

arate parts and exchange information by being executed sequentially, intertwined or in

parallel, while the latter category refers to matheuristics in which one technique is an em-

bedded component of another technique. While Puchinger and Raidl (2005) touched on

a generic classification of matheuristics, additional classifications are defined in Archetti

and Speranza (2014) which are discussed next:

• Decomposition approaches: In this approach, the master problem is decomposed

into smaller and simpler sub-problems, where each sub-problem is solved by a

specific solution method. Mathematical programming models are then used to

solve some or all sub-problems to optimality or sub-optimality.

• Improvement heuristics: A heuristic method is used to obtain a solution which is

improved via mathematical programming models.
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• Branch-and-price/column generation-based approaches: In this approach, the aim

is to achieve convergence faster by modifying the exact method used.

• Relaxation-based approaches: The concept of this approach is to identify attributes

of an exact method that significantly slow down the convergence and relax them.

From the above classifications, we will focus and elaborate on decomposition approaches

and provide application examples. Decomposition approaches are specifically useful

for complex and integrated problems. Dividing the master problem into sub-problems

that are handled and solved independently reduces the complexity of the problem and

makes it easier to obtain a feasible solution for the master problem. In the context of

matheuristics, mathematical models are used to solve some or all of the sub-problems.

In cases of large scale real-world problems a time limit can be applied to prematurely

stop the exact method and, thus, avoid excessive computational times. A two-phase

approach is a subclass of decomposition approaches in which the matheuristic algorithm

divides the master problem into two phases that are solved separately (Archetti and

Speranza, 2014). This approach is in line with collaborative combinations as described

in Puchinger and Raidl (2005). A few examples of studies that have implemented a two-

phase decomposition matheuristic approach are described next. Flisberg et al. (2009)

studied a pickup and delivery problem involving daily routes assignment of logging

trucks in forestry which was solved in two phases. In the first phase, an exact model was

used to obtain the optimal flow from supply points to demand points, and transport

nodes were created based on the obtained solution. Next, in phase two, they used a

heuristic method to combine the transport nodes into actual routes. In the study of

Yi and Özdamar (2007), a logistic problem arising in disaster response activities was

decomposed into two parts that were solved separately. In the first part, the authors

obtained location decisions and approximate vehicle routes by solving exactly a simplified

version of the complete mathematical formulation. Then, in the second part, they

implemented an algorithm that generated pick up and delivery schedule for each vehicle

based on the information obtained from the previous phase, and built detailed vehicle

routes by solving a system of linear equations. Lastly, Schittekat et al. (2013) studied the

school bus routing problem in which the set of visiting stops needs to be determined,

the stop where each student has to walk to needs to be defined, and the school bus

travelling distance needs to be minimised. The problem was solved in two phases: in

phase one, a heuristic method was used to solve the routing part of the problem, and

in phase two, an exact model is used to assign students to stops. Further examples of
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matheuristic applications including additional classifications can be found in the survey

of Ball (2011).



Chapter 3

A Generic Approach to

Conference Scheduling with

Integer Programming

3.1 Introduction

Conferences are events of great importance to scientific communities. They provide an

opportunity for academics and researchers to present their research work and receive

feedback from the community, and to learn from other presenters. In addition, par-

ticipants benefit from networking opportunities, exchanging ideas, and potential future

collaborations. Hence, a conference schedule brings a significant opportunity and chal-

lenge in offering the best possible experience to every participant. Conference organisers

usually struggle to create, or even characterise, the best schedule due to the large number

of preferences and constraints involved. Some of the constraints that make conference

scheduling an arduous task are requests from presenters to present at a specific time,

resolving presenters’ conflicts, handling capacity issues, to name a few. Additionally,

the COVID-19 pandemic has resulted in many conferences switching to online or hybrid

mode, which introduces further complexity due to different timezones involved.

Due to the diverse conference terminology that has been used in the conference scheduling

problem (CSP) literature, we clarify the conference terminology as used in this paper,

which we believe may be applicable to many conferences. While various terms such as

paper, presentation, talk, discussion, and panel are used in the literature, we use the

42
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term “submission” to refer to a formal event that requires scheduling at a conference.

The term “track” is used to refer to a group of submissions with similar subject, whereas

terms such as stream, subject area, and topic are used in the literature. We use the

term “time slot” to refer to a fixed predefined amount of time available for presentation,

and the term “session” is used to refer to a certain time period of the conference that

consists of a number of time slots.

In this paper, we consider the CSP, which includes a set of tracks along with their

corresponding submissions, a set of available sessions along with their corresponding

time slots, and a set of available rooms. The objective is to achieve a schedule which

is feasible to a number of (hard) constraints and minimises violations of a number

of preferences (soft constraints) by assigning all tracks into sessions and rooms, and

assigning all submissions into sessions. Based on the types of violations, a CSP can

be approached from a Presenter-Based Perspective (PBP) or from an Attender-Based

Perspective (ABP) (Thompson, 2002). A PBP approach aims to minimise violations

associated with presenters’ preferences, such as a request to present on a specific day or

at a specific time (Sampson, 2004). An ABP approach minimises violations regarding

attendants’ preferences. Some examples are that all of the attendants wish to attend

their favourite session, they do not want to miss a session due to space shortage, and

they do not want to choose between two sessions of their interest due to sessions being

scheduled concurrently (Zulkipli et al., 2013). Some studies have adopted a mixed

approach by considering both presenters’ and attendants’ preferences (Nicholls, 2007;

Vangerven et al., 2018).

The CSP was introduced by Eglese and Rand (1987) and was proved to be NP-hard
by Quesnelle and Steffy (2015) and Vangerven et al. (2018). Even though the problem

was introduced several decades ago, it has not received much attention from researchers

compared to related problems, such as Class and Exam Scheduling (Sampson, 2004).

To the best of our knowledge, there are only 16 published studies tackling the CSP

(see section 3.2). However, many conferences have different scheduling requirements,

objectives, and constraints. As a result, a method that works well for a conference

could be unsuitable for another conference. Thus, we believe that a generic framework

for conference scheduling is needed. To this end, in this study we present a generic

approach by considering both PBP and ABP to generate schedules for conferences in a

fully automated manner.

Our work mainly differs from the existing literature in the sense that we generate both
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low-level and high-level conference schedules. That is, we consider preferences and con-

straints associated with both tracks and submissions to create a complete schedule of a

conference. In addition, our approach is suitable for hybrid and online conferences as

we take timezones into account to avoid scheduling submissions into unsuitable times.

To the best of our knowledge, this is the first paper to consider timezone differences in

conference scheduling. Moreover, we present a generic approach for conference schedul-

ing by applying the weighted sum method as described in Ehrgott (2005) to create an

objective function to optimise. The method is applied to our penalty system designed

to accommodate scheduling preferences which are weighted according to their relative

importance. An easy-to-use and configurable spreadsheet template is used to meet the

demands of different conferences. The template offers a single data format that is easy

to adjust in order to fit different conference data. We acknowledge that our template is

not suitable for all conferences, as some conferences may have very specific structures,

but our aim is to accommodate as many as possible. Furthermore, in contrast to most

previous studies which assume that all submissions require the same amount of time

for scheduling (one time slot), we allow for submissions to have a different amount of

required time slots, such as keynote talks.

In section 3.2, we present related work on conference scheduling problems, followed

by section 3.3 which describes the conference scheduling problem as considered in this

work. Then, in section 3.4, we present our exact model as a binary integer program

with linear objective. Computational results are presented in section 3.5, followed by

section 3.6 which presents the extended model with additional constraints along with

computational results. Next, in section 3.7, we summarise our work and suggest potential

future lines of research. We present our proposed spreadsheet template used for storing

input parameters in Appendix C. In Appendix D we present an approximation model

that includes a simpler, relaxed objective function of the exact model; we also present

formulations of our models at a finer-level including time slots and illustrate that its

approximation model makes this more complex model computationally feasible.

3.2 Related Work

A detailed survey on CSP can be found in Vangerven et al. (2018). Apart from those

mentioned in Vangerven et al. (2018), we discuss the following studies which are related

to our work.
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A case study regarding the scheduling of 2001 San Antonio meetings of the Public

Choice Society was presented in Potthoff and Munger (2003). The problem required the

scheduling of submissions into sessions such that submissions of each track are evenly

spread among sessions, and ensuring participants are not scheduled in more than one

submission of the same session. The authors implemented an integer programming

(IP) model to create the schedule of the conference which included 14 tracks and 96

submissions with 10 sessions available.

Potthoff and Brams (2007) extended the previous work by implementing their proposed

IP method on both 2005 and 2006 annual meetings of Public Choice Society in New

Orleans. The 2005 annual meeting required the assignment of 76 submissions from 13

tracks into 9 sessions, whereas the 2006 annual meeting included 45 submissions from 6

tracks with 9 sessions available. The model had the same objective and all the constraints

as in the work of Potthoff and Munger (2003), and included an additional constraint

in the IP formulation which considered the unavailability of some presenters to attend

certain sessions. Both generated solutions had all constraints satisfied and successfully

accomplished the objective.

Nicholls (2007) developed a simple heuristic algorithm to aid the scheduling process of

the 2003 Western Decision Science Institute Annual Meeting. This conference involved

330 registered attendees, 295 submissions, 73 regular sessions including four time slots

on average, 11 special sessions (a whole session is required for a submission), and 7 rooms

of different sizes. The proposed heuristic was used to assist the Program Chair during

the scheduling process rather than autonomously produce the conference schedule. The

proposed heuristic algorithm did not have an objective function per se, but its main

purpose was to resolve conflicts by utilising a set of rules and consider preferences from

presenters and attendees.

Zulkipli et al. (2013) addressed the Capacity Planing problem variant of conference

scheduling. The conference involved 3 tracks, 60 submissions, 5 sessions with 4 time slots

each, and 3 rooms were available for parallel scheduling. They collected preferences from

participants to create weights for each submission and used these to form the objective

function of their goal programming model. The problem required the assignment of

submissions into rooms and time slots in such a manner that each session achieves a

balanced number of submissions with respect to the weights.

Edis and Edis (2013) described a case study in which they considered an artificial con-

ference including 10 tracks and 170 submissions with a 3 days time span. Each day had
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4 sessions with 5 time slots each, and 3 rooms were available for parallel scheduling.

In their case study, the goal of the primary objective was to minimise the concurrent

occurrence of same or similar tracks within the same session in each day. In addition,

a secondary objective of the problem was to distribute the number of submissions into

sessions in a balanced manner. The authors formulated an integer programming model,

along with an extended version to address both objectives.

Another case study was conducted by Quesnelle and Steffy (2015) in which they used

real data from the 2013 PenguiCon Conference. The conference was attended by around

1000 participants and involved 253 submissions, 195 presenters, and 14 rooms. In their

study, the authors provided problem definitions and showed that the scheduling prob-

lem under study along with some variants are all NP-hard. They specifically defined

and focused on the Extended Conference Timetable Decision Problem (ECTTD) and

the Preference Conference Optimisation Problem (PCO). The objective of the ECTTD

problem is the assignment of presenters into submissions and time slots, as well as the

allocation of submissions into rooms based on their availability and compatibility. The

PCO problem includes the objective of minimising participants’ preferences conflicts by

assigning presenters into submissions and time slots, as well as assigning submissions

into appropriate rooms. Both ECTTD and PCO were solved with integer programming

models.

The CSP of one of the largest conferences within the field of Operations Research,

namely the EURO2016 Conference, was addressed in Stidsen et al. (2018). This partic-

ular conference included 25 areas of subject, 124 tracks, 1852 submissions, 11 sessions

(for each typically 4 time slots were available), 5 buildings with 54 rooms in total, 1600

presenters, and attracted around 2000 participants. The problem required the allocation

of subject areas into buildings, and the scheduling of tracks into sessions and rooms so as

to comply with the hierarchical structure of the conference. The authors addressed the

problem by implementing a multi-objective mixed integer programming (MIP) model

which included 5 objectives ranked based on their significance and were sequentially

solved following a lexicographic optimisation approach. These objectives were ranked in

the following order: 1) Minimisation of the number of areas assigned to different build-

ings, 2) Maximisation of the number of related areas assigned to the same building,

3) Minimisation of the number of different rooms allocated for each track, 4) Minimi-

sation of the number of time gaps within tracks and, 5) Maximisation of the residual

room capacity. Furthermore, room capacity constraints were considered, and parallel

scheduling of the same track was not allowed. However, Stidsen et al. (2018) commented
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that author conflicts were circumvented due to the policy of the conference that allows

only one submission per author, and the room utilisation was partially considered due

to insufficient data. The authors clarified that the proposed model generates only the

high-level schedule, leaving intentionally the low-level schedule to the track organisers.

The success of the proposed model is reflected by the fact that it was also used to sched-

ule the IFORS2017, EURO2018, and IFORS2020 conferences, and a slightly improved

version of the model to schedule the subsequent EURO and IFORS conferences.

Although our models share some common scheduling requirements with the model of

Stidsen et al. (2018), they differ significantly. Similarly to Stidsen et al. (2018), we have

considered the fact that the same track must not run in parallel, we minimise the number

of rooms utilised per track, we consider the scheduling of tracks consecutively, and we

take room capacities into account. However, in our study, we also consider the following

requirements. We allow for conference organisers to express preferences regarding the

scheduling of tracks into sessions. Our models take into account that certain rooms might

not be available during some sessions. We consider presenters’ conflicts where a presenter

might have multiple submissions which is circumvented in Stidsen et al. (2018) study due

to the policy of the conference. In addition, our approach is suitable for hybrid and online

conferences as we consider the timezones of the presenters. Our models accommodate

the preferences for sessions and preferences for rooms (accessibility and facility reasons)

from presenters. In addition to presenters’ conflicts, we also consider attendees’ and

track chairs’ conflicts. Furthermore, we consider the scheduling of submissions that

have a different amount of required time slots. In contrast to Stidsen et al. (2018)

who generate a high-level schedule, we generate both high-level and low-level schedules

considering preferences and requirements on both tracks and submissions levels. In

our work we do not consider areas and buildings as described in Stidsen et al. (2018),

neither the assignment of similar areas into same buildings, but we allow for conference

organisers to specify similar tracks which should not be scheduled in parallel. Our

models are significantly different mainly because the EURO conference is unusually

large and follows an unusual hierarchical structure, whose characteristics we believe are

not representative of typical conferences.

Vangerven et al. (2018) addressed the CSP of four conferences, namely the MathSport

2013, MAPSP 2015 & 2017, and ORBEL 2017. Their main objective was to maximise the

satisfaction of attendees in terms of attending their preferred submissions. Preferences

of attendees were collected via e-mail by the authors. A secondary objective was the

minimisation of session hopping, which occurs when participants miss parts of their
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preferred submissions because they are scheduled in different rooms. A third objective

of this work was to satisfy the preferences of the presenters. To achieve the three

objectives, the researchers proposed a hierarchical three-phased approach. Firstly, the

authors maximise the satisfaction of attendees with an integer programming model.

Then, they minimise session hopping with either dynamic programming or heuristic

approach, and in the last phase, they satisfy the preferences of the presenters with an

integer programming model. Their proposed method was implemented on four medium

size conferences for which the number of rooms that allowed parallel scheduling ranged

between 2 to 4, submissions ranged between 76 to 90, and profiles of attendees ranged

between 58 to 101. They also showed that the CSP with n rooms for parallel scheduling

is NP-hard when n ≥ 3.

Another study on CSP was conducted by Manda et al. (2019) who used the dataset from

Ecology 2013 for testing purposes to deliver a schedule for the Evolution 2014 conference.

While the former conference spanned 5 days including 324 submissions, 8 sessions with

10 time slots each, and 5 rooms, the latter conference spanned 4 days including 1014

submissions, 16 sessions with 5 time slots each, and 14 rooms. In their study, all submis-

sions need to be scheduled into time slots by maximising the coherence within sessions

and minimising the similarity between sessions that are scheduled in parallel. Three dif-

ferent approaches, a random, a greedy, and an integer linear programming model were

implemented for the initialisation process. These initial solutions were further optimised

with a hill climbing algorithm and a simulated annealing algorithm, and with two differ-

ent optimisation methods. While the first optimisation method optimised the objectives

concurrently, the other method was sequential. Through experimentation, the authors

found that the different approaches for the initialisation process did not affect the final

solution, and that concurrent optimisation was superior to sequential. Therefore, they

followed the random initialisation process and the concurrent optimisation method to

generate the final schedule. The delivered schedule though was significantly altered by

the program committee.

The above case studies indicate that conferences that were considered for an exactly

optimised scheduling typically involved up to a few hundred submissions, while a few

larger conferences with over a thousand of submissions were addressed using approximate

methods. However, there is a large variety of both exact and approximate methods as

well as their constraints and objectives. In the next sections we present new models

which have been developed to provide a unifying and generic framework for conference

scheduling and would fit most of the conferences described in the above case studies.



Chapter 3. A Generic Approach to Conference Scheduling with Integer Programming49

3.3 Description of the Conference Scheduling Problem

In this section, we describe the essential elements of the problem studied in this paper to

keep it self-contained; a more detailed description of the problem is provided in Kheiri

et al. (2023). We also discuss the functionality of penalties and weights of our approach

and present the real-world conferences that motivated our research. We consider that a

conference is defined by a set of track-submission pairs T SU , a set of sessions S, and a

set of rooms R, whose descriptions and relationships are described next.

We split the whole time of the conference duration into a set of sessions S representing

certain time periods between breaks, which include lunch and coffee breaks, that allow

attendees to move between rooms. That is, we assume that every attendee will stay in

the same room during a session. We assume that the sessions in S := {1, 2, . . . , S} are
chronologically ordered, so S is the last session of the conference. Each session s ∈ S
consists of a number of time slots defined by a set T Ss. Each time slot ts is defined

as a fixed predefined amount of time available for scheduling a submission (e.g., 15 or

20 minutes). For instance, if a time slot has a 15 minute duration, then a session that

consists of 4 time slots has a 60 minute duration. We assume that all time slots have

the same fixed predefined amount of time, but we do not assume that all sessions have

the same number of time slots. We use r to denote the room from the set of available

rooms R. We assume that submissions are presented in parallel during sessions, and

the maximum number of sessions that can be scheduled in parallel is given by the total

number of available rooms.

The conference requires scheduling of a number of submissions which we include in

set T SU , where each submission (t, su) ∈ T SU is uniquely identified as a pair of its

track and the submission itself. We assume that each submission (t, su) is categorised

into exactly one track from the set of tracks T based on their subject similarity, i.e.,

t ∈ T , and we allow for different tracks to contain different number of submissions

SU t, i.e., su ∈ SU t. Each submission usually requires one time slot for scheduling at

the conference. However, some submissions, such as a keynote speech, might require

additional time slots, which must be scheduled in the same session. For each submission

(t, su), we define n(t,su) which indicates its number of required time slots. Similarly, note

that a track may utilise more than one session, but we do not know how many sessions

beforehand. Although “submission” usually refers to a research paper, it may also

refer to any type of formal event that requires scheduling, such as a keynote speech, job
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market, tutorial, workshop, or any other event. Additional tracks are created accordingly

for such formal events.

Furthermore, let H be the set of all humans involved in the conference. A “presenter” is

defined as a person who presents a submission during the conference; we allow for more

than one presenter of each submission (which is required e.g., for a panel discussion).

We define a set T SUp which contains the submissions for which the presenter p ∈ P ⊆ H
is the same.

Moreover, we have the following hard requirements:

• Tracks must be scheduled in only one room: It is not allowed for a track

to utilise more than one room as this would cause inconvenience for attendees

that would have to move between rooms. This also implies that the same track

must not be scheduled within the same session in different rooms. Assuming that

attendees usually attend the whole track of their interest, scheduling the same track

in parallel would result in attendees missing some of their preferred submissions.

• Schedule must be free of presenters’ conflicts: In many conferences, authors

are allowed to present more than one submission. Therefore, we must ensure that

two or more submissions which belong to the same presenter are either scheduled

within the same room of a session or scheduled within different sessions. Note that

a submission does not necessarily have only one presenter, it may include multiple

presenters. We could relax this constraint by considering conflicts only on a time

slot level instead of session level. However, this would require presenters to move

between rooms which is inconvenient, and they would most likely want to attend

both of those sessions.

Apart from these hard requirements, we assume that conference organisers have a num-

ber of requests. These are soft requirements that are used to adjust scheduling prefer-

ences of conference organisers and satisfy additional requirements of a conference. To

accommodate requests, we use a penalty system and a weight system. The soft require-

ments are:

• Track-Session request: We allow to penalise scheduling any track t into any

session s by assigning a non-negative penalty αt
s.
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• Track-Room request: A non-negative penalty βt
r is applied for scheduling a

certain track t into a specified room r. This allows the allocation of tracks with

high expected attendance into appropriate rooms and vice versa.

• Session-Room request: In case a room r is unavailable for scheduling during a

particular session s, we apply a non-negative penalty γs,r.

• Submission-Session request: We allow to penalise scheduling any submission

(t, su) into any session s by assigning a non-negative penalty ϵ
(t,su)
s . This allows the

accommodation of preferences from presenters regarding their preferred scheduled

time.

• Submission-Timezone request: We allow to penalise scheduling any submis-

sion (t, su) into any session s by assigning a non-negative penalty δ
(t,su)
s as a result

of unsuitability of any presenter’s timezone. This is analogous to the Submission-

Session request but we keep it separate to allow for a different weight. Considering

the timezone may be important for online presenters as well as for in-person pre-

senters experiencing a jet-lag.

• Submission-Room request: ζ
(t,su)
r specifies a non-negative penalty for schedul-

ing a particular submission (t, su) into a specified room r. This is used for the

consideration of special requests from presenters who might need to present at a

particular room for accessibility or facilities issues.

Each of the above penalties is weighted by a corresponding non-negative value from set

W = {wα, wβ, wγ , wδ, wϵ, wζ} so as to allow the prioritisation of requests.

The goal is to assign all tracks into rooms and sessions, and assign all submissions into

sessions in such a way that weighted penalties are minimised and all hard requirements

are satisfied. Practically, the problem requires the generation of two schedules, a high-

level schedule which indicates the room and sessions of each track, and a low-level

schedule indicating the room and session of each submission. Note that even though we

generate a low-level schedule, it is still possible for organisers to rearrange the order of

submissions within the same session without any impact on the quality of the solution.

Penalties and weights are used to adjust scheduling preferences. Setting different values

for penalties allows the prioritisation of certain requests. For example, if satisfying a

certain Track-Session request is more important than another Track-Session request,

then we set a greater penalty value for the more important one. In addition, we can
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Table 3.1: Characteristics of the instances

Instance |T SU| |T | |S| |R| |T S| Required TS Available TS

GECCO19 202 29 13 10 45 215 450
GECCO20 158 24 7 8 28 161 200
GECCO21 138 27 6 8 24 150 192
N2OR 35 8 4 4 9 36 36
OR60 329 45 8 23 24 417 540
OR60F 279 45 8 23 24 353 540
OR60F2 556 72 16 23 49 702 1,115
OR60F3 1,112 72 32 23 105 1,404 2,403

prioritise the type of requests that are more important to be satisfied with the use of

weights. For instance, if satisfying Submission-Room requests is more important than

Submission-Session requests, then we set a greater weight value for Submission-Room

requests. Thus, by adjusting penalties and weights, we can explore different solutions

along with their trade-offs.

The motivation for this work originated from scheduling the Genetic and Evolutionary

Computation Conference (GECCO), the OR Society’s 60th Annual Conference (OR60),

and the New to OR Conference (N2OR) (Kheiri et al., 2023). We present the details of

the instances in Table 3.1, where |T SU| is the number of submissions, |T | is the number

of tracks, |S| is the number of sessions, |R| is the number of rooms, |T S| is the number of

time slots, Required TS is the required number of time slots by all the submissions, and

Available TS is the number of available time slots for scheduling across all the sessions

and rooms, excluding penalised time slots due to γs,r. Note that the number of time

slots |TS| is given by summing up the time slots of each session, whereas the number of

available time slots, Available TS, is given by |R| × |TS| and subtracting any penalised

time slots. These characteristics give some rough idea about the size of each instance,

yet do not define a given problem fully as the importance of violating a given constraint

is not provided.

3.4 Methodology

In this section, we first discuss the benefits of using our proposed spreadsheet tem-

plate for conference scheduling problems. Then we provide an overview of the notation,

followed by the formal formulation of the exact model.
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We use a spreadsheet file to store input data, which follows a specific template that offers

flexibility. This flexible template has been created with the purpose of providing a generic

approach suitable for conference scheduling problems. By using a single data format we

want to minimise the need of modifying algorithms to fit specific data formats provided

by conferences. Instead of adjusting algorithms each time, we could just transfer the

given data to the template. In addition, our template makes it easy to modify weights

and scheduling preferences. We present the spreadsheet file in detail in Appendix C.

3.4.1 Model Notation

Sets and Indices. We use the following sets and their corresponding indices in our

formulation:

t ∈ T : The set of tracks

su ∈ SU t : The subset of submissions belonging to a track t

(t, su) ∈ T SU : The set of submissions where {(t, su) : t ∈ T and su ∈ SU t}

h ∈ H : The set of humans involved in the conference

p ∈ P : The set of presenters

(t, su) ∈ T SUp : The subset of submissions belonging to presenter p

r ∈ R : The set of rooms

s ∈ S : The set of sessions

ts ∈ T Ss : The subset of time slots belonging to session s

Parameters. We use the following parameters in our formulation:
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αt
s : Penalty for scheduling track t into session s

wα : Weight of penalty αt
s

βt
r : Penalty for scheduling track t into room r

wβ : Weight of penalty βt
r

γs,r : Penalty for utilising room r within session s

wγ : Weight of penalty γs,r

δ(t,su)s : Penalty for scheduling submission (t, su) within session s

for which the timezone is unsuitable

wδ : Weight of penalty δ(t,su)s

ϵ(t,su)s : Penalty for scheduling submission (t, su) within session s

wϵ : Weight of penalty ϵ(t,su)s

ζ(t,su)r : Penalty for scheduling submission (t, su) into room r

wζ : Weight of penalty ζ(t,su)r

MaxSt : The upper bound on the number of required sessions of track t

n(t,su) : The number of required time slots of submission (t, su)

|T Ss| : The number of time slots within session s

|T SUp| : The number of submissions belonging to presenter p

Mp
s = min{|T SUp|, |T Ss|} : The upper bound on the number of submissions that presenter p

could possibly present during session s (in the same room)

Decision Variables. We use the following decision variables in our formulation:

Zt
s,r ∈ {0, 1} : 1 if track t is scheduled in session s and room r; 0 if not

Y t
r ∈ {0, 1} : 1 if track t is assigned room r; 0 if not

X(t,su)
s,r ∈ {0, 1} : 1 if submission (t, su) is scheduled in session s and room r; 0 if not
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3.4.2 Constraints

In the exact model we have the following (hard) constraints:

∑
s∈S

∑
r∈R

X(t,su)
s,r = 1 ∀ (t, su) ∈ T SU (3.1)

Mp
sX

(t,su)
s,r +

∑
r′∈R\{r}

∑
(t′,su′)∈T SUp

X
(t′,su′)
s,r′ ≤Mp

s ∀ s ∈ S,∀ r ∈ R,∀ p ∈ P,∀ (t, su) ∈ T SUp

(3.2)

∑
r∈R

Y t
r = 1 ∀ t ∈ T (3.3)

∑
s∈S

Zt
s,r −MaxStY

t
r ≤ 0 ∀ r ∈ R, ∀ t ∈ T (3.4)

∑
t∈T

Zt
s,r ≤ 1 ∀ s ∈ S,∀ r ∈ R (3.5)

∑
su∈SUt

n(t,su)X(t,su)
s,r − |T Ss|Zt

s,r ≤ 0 ∀ s ∈ S,∀ r ∈ R, ∀ t ∈ T (3.6)

∑
su∈SUt

X(t,su)
s,r − Zt

s,r ≥ 0 ∀ s ∈ S,∀ r ∈ R,∀ t ∈ T (3.7)

Zt
s,r ∈ {0, 1} ∀ t ∈ T ,∀ s ∈ S, ∀ r ∈ R (3.8)

Y t
r ∈ {0, 1} ∀ t ∈ T ,∀ r ∈ R (3.9)

X(t,su)
s,r ∈ {0, 1} ∀ (t, su) ∈ T SU ,∀ s ∈ S, ∀ r ∈ R (3.10)
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The first set of constraints, Eq. (3.1), ensures that each submission must be scheduled

into exactly one session. The next set of constraints, Eq. (3.2), resolves presenters’

conflicts, where (t, su) ∈ T SUp ⊂ T SU is a set of submissions including a presenter

conflict such that |T SUp| > 1. For every presenter with multiple submissions, this set

of constraints handles conflicts depending on the track of such submissions. If conflict-

ing submissions belong to the same track, then such submissions are not allowed to be

scheduled within different rooms of the same session. On the other hand, if conflict-

ing submissions belong to different tracks, then such submissions are scheduled within

different sessions.

Constraints within Eq. (3.3) ensure that exactly 1 room is allocated to each track. Then

we use “bigM” constraints, Eq. (3.4), to allocate tracks to their assigned room, where

MaxSt is the upper bound on the total number of sessions that a given track might

require to fit all the submissions. Although we could simply set MaxSt equal to the

total number of sessions, we introduced this scenario to decrease the value of MaxSt

so as to strengthen our formulation. The scenario assumes that a track will utilise at

most MaxSt sessions, where MaxSt is given by sorting sessions in ascending order based

on their number of time slots and sessions are added until the number of time slots is

greater or equal to the number of time slots that the given track requires. For example,

suppose “Forecasting” track has 6 submissions and “Simulation” track has 4 submissions,

each requiring one time slot, and four sessions are available with the following number of

time slots: 4, 3, 2, 2. We sort the sessions (2, 2, 3, 4) and set MaxSForecasting = 3 because

2+2+3 ≥ 6, and MaxSSimulation = 2 because 2+2 ≥ 4, rather than setting MaxS = 4

for both tracks.

Constraints Eq. (3.5) ensure that at most one track is scheduled into every given session

and room. Based on the assignment of Eq. (3.4), “bigM” constraints Eq. (3.6) ensure

that at most |T Ss| time slots are allowed to be utilised for a given session and room,

where |T Ss| is the number of available time slots corresponding to session s ∈ S, and
n(t,su) is the total number of time slots that a given submission requires. For instance,

suppose track “Forecasting” is assigned into session “9-11am” and room “A”, which is

defined as ZForecasting
9−11am,A = 1. Also, suppose session “9-11am” has 3 time slots available

|TS9−11am| = 3 and all n(t,su) = 1, then at most 3 submissions corresponding to track

“Forecasting” are allowed to be scheduled into session “9-11am” and room “A”. The

next set of constraints, Eq. (3.7), ensures that a given track is not assigned into a

session-room pair for which no submissions are scheduled. In other words, we prevent

Zt
s,r = 1 if none of the submissions is scheduled within the given session and room.
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Lastly, Eq. (3.8), Eq. (3.9), and Eq. (3.10) indicate that our decision variables Zt
s,r,, Y

t
r ,

and X
(t,su)
s,r are binary.

Note that it is possible for organisers to freely rearrange submissions within sessions.

This has no impact on the quality of the solution because the changes are performed on

a time slot level.

3.4.3 Objective

Recall from subsection 3.4.1 that Zt
s,r is a binary decision variable which is used for

assigning tracks into sessions, where track t ∈ T , session s ∈ S, and room r ∈ R, e.g.,
when ZForecasting

9−11am,A = 1 then track “Forecasting” is allocated into session “9-11am” and

room “A”. The coefficient of Zt
s,r is a weighted sum of penalties αt

s, β
t
r, and γs,r. Penalty

αt
s is incurred for scheduling a specific track into a specified session (Tracks-Sessions

penalty) weighted by wα. Penalty βt
r is incurred for scheduling a specific track into a

specified room (Tracks-Rooms penalty) weighted by wβ, and penalty γs,r is incurred for

utilising a specific room within a specified session (Sessions-Rooms penalty) weighted

by wγ .

Recall also that X
(t,su)
s,r is a binary decision variable which is used to schedule submis-

sions into sessions, where submission (t, su) ∈ T SU corresponds to track t ∈ T , session
s ∈ S, and room r ∈ R, e.g., when X

(Forecasting,FC1)
9−11am,A = 1 this means that submis-

sion “FC1” corresponding to track “Forecasting” is scheduled in session “9-11am” and

room “A”. The coefficient of variable X
(t,su)
s,r is a weighted sum of δ

(t,su)
s , ϵ

(t,su)
s , and

ζ
(t,su)
r . Penalty δ

(t,su)
s is a penalty for assigning a specific submission within a session

for which the timezone is unsuitable (Submissions-Timezones penalty) weighted by wδ.

e.g., a submission is scheduled within a session that is unsuitable for the timezone of

the presenter (03:00 am). Penalty ϵ
(t,su)
s is a penalty for scheduling a specific submission

within a specified session (Submissions-Sessions penalty) weighted by wϵ, and ζ
(t,su)
r is

a penalty for assigning a specific submission into a specified room (Submissions-Rooms

penalty) weighted by wζ .

Based on the above, we formulate the following objective for the exact model:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

+
∑
s∈S

∑
r∈R

∑
(t,su)∈T SU

(wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r )X(t,su)

s,r

(3.11)
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The objective function, Eq. (3.11), assigns tracks into rooms and sessions, and submis-

sions into sessions by minimising the penalties associated with both tracks and sub-

missions. To reduce the size and complexity of the model, we assign submissions into

time slots of sessions in a post-processing algorithm after the IP model is solved. Note

that Eq. (3.11) implies that
∑

s∈S
∑

r∈R
∑

(t,su)∈T SU X
(t,su)
s,r = |T SU|, where |T SU| is a

constant (the number of submissions). However, the sum of Zt
s,r is not a constant which

may result in some Zt
s,r variables being equal to 1 without any submissions scheduled

during a given session and room. We resolve this by including constraints Eq. (3.7).

Alternatively, one could use (1+wαα
t
s+wββ

t
r +wγγs,r) as a coefficient of Zt

s,r to ensure

that variables, for which the sum of penalties is zero, are minimised.

3.5 Computational Results

In this section, we present the results of the exact model which was tested on a num-

ber of real and artificial instances. For the real instances, we obtained past data and

scheduling preferences information which were used to set penalties values and weights.

The artificial instances were created due to a particular instance being infeasible and to

test the models on larger instances.

The results were generated on an i7-11370H CPU Intel Processor with 8 cores at 3.30GHz

with 16.00 GB RAM. We used Python 3.8.3 to build our models which were solved using

Gurobi 9.5.0. We use the following Gurobi parameters for the exact model; MIPGap = 0

and timeLimit = 3600. The former parameter allows the solver to terminate only when

the gap between the lower and upper objective bound is zero, while the latter parameter

implies a time limit of one hour. Note that even though the time required to build the

models is negligible for some instances, it is significant for other instances. We report

the time required to build the models for each instance in Appendix D.

In Table 3.2, we present the penalty values that were used for each type of constraint,

where αt
s indicates values for Tracks-Sessions penalties, βt

r indicates values for Tracks-

Rooms penalties, γs,r indicates values for Sessions-Rooms penalties, δ
(t,su)
s indicates val-

ues for Submissions-Timezones penalties, ϵ
(t,su)
s indicates values for Submissions-Sessions

penalties, ζ
(t,su)
r indicates values for Submissions-Rooms penalties, and “-” denotes that

the type of penalties is not used. For example, in GECCO19 instance, we set βt
r = 10

for cases that are less important to be satisfied, while we set βt
r = 10000 for significant

cases. Penalty values reflect the importance of satisfying the particular constraint.
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Table 3.2: Penalty values used for each type of constraint.

Instance αt
s βt

r γs,r δ
(t,su)
s ϵ

(t,su)
s ζ

(t,su)
r

N2OR - - - - [1] -
GECCO19 [10000] [10, 10000] - - [1] -
GECCO20 [10000] [10, 10000] [10000] - [1, 10] -
GECCO21 [10000] [10, 10000] - [1, 10] [10000] -
OR60 [10, 100] [1, 100] [1000] - [1] -
OR60F [10, 100] [1, 100] [1000] - [1] -
OR60F2 [10, 100] [1, 100] [1000] - [1] -
OR60F3 [10, 100] [1, 100] [1000] - [1] -

For most instances we keep all weights identical and equal to one (wα = wβ = wγ = wδ =

wϵ = wζ = 1). The only exception in which we set different weights is for the GECCO

conferences where we use the following weights; wα = 100, wγ = 10, and wϵ = 100. In

addition, we set wδ = 100 for GECCO21 which was held online.

Our results are summarised in Table 3.3, where Objective indicates the aggregation of

penalties caused by violations of soft constraints, Gap indicates the relative gap between

the two objective bounds, Time indicates the required time for the solver to terminate in

seconds, and N/A indicates the value is not available. The violations of soft constraints

are presented in detail in Table 3.4, where α’s indicates incurred weighted Tracks-

Sessions penalties (i.e.,
∑

s∈S
∑

r∈R
∑

t∈T wαα
t
sZ

t
s,r), β’s indicates incurred weighted

Tracks-Rooms penalties, γ’s indicates incurred Sessions-Rooms penalties, δ’s indicates

incurred Submissions-Timezones penalties, ϵ’s indicates incurred Submissions-Sessions

penalties, ζ’s indicates incurred Submissions-Rooms penalties, N/A indicates the value

is not available, and “-” denotes that the type of penalties is not used. For each instance,

we set a time limit of one hour and we report the number of variables and constraints,

the objective value, the gap which shows the relative gap between the two objective

bounds, and the time required for the solver to terminate in seconds. An infeasible

status for the objective means that the solution is infeasible. Additionally, note that

even though we include the Submission-Room request (ζ
(t,su)
r ) in the model, there is no

available data for this request.

Our model obtained the optimal solution for the N2OR conference instantly without

any violations. The model achieved a solution with a relative gap of 0.001% within

17 seconds for GECCO19, but the optimal solution was not found within the time

limit of 1 hour. The solution had 1 violation for Tracks-Sessions requests (wα × αt
s =

100×10, 000 = 1, 000, 000) and 1 violation for Tracks-Rooms requests (wβ×βt
r = 1×10 =
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Table 3.3: Exact Model Results

Instance Variables Constraints Objective Gap (%) Time (s)

N2OR 720 347 0 0.000 0.1
GECCO19 30,320 26,911 1,000,010 0.001 3,600.0
GECCO20 10,384 5,750 6,110 0.000 8.3
GECCO21 8,136 4,797 11,130 0.000 19.7
OR60 69,851 36,185 Infeasible N/A 3.6
OR60F 60,651 30,983 424 0.000 13.9
OR60F2 232,760 77,724 10 0.000 88.9
OR60F3 873,080 153,720 0 0.000 137.4

Table 3.4: Exact Model Violations

Instance α’s β’s γ’s δ’s ϵ’s ζ’s Total

N2OR - - - - 0 - 0
GECCO19 1,000,000 10 - - 0 - 1,000,010
GECCO20 0 10 0 - 6,100 - 6,110
GECCO21 0 30 - 11,100 0 - 11,130
OR60 N/A N/A N/A - N/A - N/A
OR60F 400 0 0 - 24 - 424
OR60F2 0 0 0 - 10 - 10
OR60F3 0 0 0 - 0 - 0

10). GECCO20 had 1 violation for Tracks-Rooms requests (wβ × βt
r = 1 × 10 = 10)

and 16 violations for Submissions-Sessions requests (wϵ × (11 × ϵ
(t,su)
s + 5 × ϵ

(t,su)
s ) =

100× (11×1+5×10) = 6, 100). The solution of GECCO21 had 3 violations for Tracks-

Rooms requests (wβ × 3 × βt
r = 1 × 3 × 10 = 30) and 30 violations for Submissions-

Timezones requests (wδ × (21× δ
(t,su)
s +9× δ

(t,su)
s ) = 100× (21× 1+ 9× 10) = 11, 100).

OR60 had some extensive tracks that resulted in infeasibility due to constraints Eq. (3.6)

and Eq. (3.7). In other words, the number of available sessions was not enough to avoid

scheduling the same track in parallel, and consequently tracks could not be limited to

utilise only one room. Therefore, we reduced the instance by removing submissions

of such tracks to create a feasible version of OR60, which we refer to as OR60F. The

model found the optimal solution which had 4 violations for Tracks-Sessions requests

(wα × 4× αt
s = 1× 4× 100 = 400) and 24 violations for Submissions-Sessions requests

(wϵ × 24 × ϵ
(t,su)
s = 1 × 24 × 1 = 24). OR60F2 and OR60F3 are both larger versions

of the OR60 instance. The solution of the former instance had only 10 violations for

Submissions-Sessions requests (wϵ× 10× ϵ
(t,su)
s = 1× 10× 1 = 10), while the solution of

the latter instance had no violations.
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3.5.1 Infeasible Instances

Sometimes, it is not possible to completely schedule each track into exactly one room,

which results in an infeasible model (e.g., OR60). A solution to this issue is to relax

constraints Eq. (3.3) by changing the right hand side to ≤MaxRt, where MaxRt is the

maximum number of rooms that could be assigned to a track. We followed this procedure

for the OR60 instance which we describe next. Firstly, we identified the four tracks that

required more than one room to be scheduled. Specifically, three tracks had to utilise

2 rooms and one track had to utilise 3 rooms. However, the model was still infeasible

because of presenters’ conflicts and we had to further relax constraints Eq. (3.3). After

changing the right hand side value several times, we found a feasible model in which two

tracks utilise 2 rooms, one track utilises 3 rooms, and one track utilises 4 rooms. Our

model found the optimal solution within 51.2 seconds which had an objective value of

106. The solution had 1 violation for Tracks-Sessions requests (wα×αt
s = 1×100 = 100),

3 violations for Tracks-Rooms requests (wβ × 3× βt
r = 1× 3× 1 = 3), and 3 violations

for Submissions-Sessions requests (wϵ × 3× ϵ
(t,su)
s = 1× 3× 1 = 3).

3.6 Extended Formulation

In this section, we present an extension of our formulation in which we consider ad-

ditional constraints including some with non-linear terms. We first provide additional

definitions, followed by a discussion of the additional soft and hard requirements. Next,

we present the formal formulation of the extended model along with computational

results and we conclude the section discussing the limitations of the extended model.

We refer to an “attendee” as a person who is a spectator of a submission, and define

a set T SUa which includes the submissions that the attendee a ∈ A ⊆ H wishes to

attend. A “track chair” is defined as the person who attends all the submissions of a

track, and the set T c consists of tracks chaired by the same person c ∈ C ⊆ H. Note that
a human is allowed to have multiple roles and may attend a conference as a presenter,

an attendee, and a track chair.

We consider the following additional hard requirements:

• Avoid scheduling similar tracks in parallel: Organisers can specify some

tracks as being similar and request not to schedule such tracks in parallel. For

each track t we denote a set T t ⊂ T of similar tracks including t.
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• Schedule must be free of attendees’ conflicts: For attendees who have de-

clared attending preferences, we resolve conflicts by scheduling such submissions

in different sessions.

• Schedule must be free of track chairs’ conflicts: In case of a track chair

being responsible for more than one track, we schedule such tracks within different

sessions.

Additionally, we consider the following soft requirement:

• Consecutive track sessions: Tracks are preferred to be scheduled in consecutive

sessions to achieve a cohesive schedule.

The additional soft requirement, is weighted by a non-negative value πK . This weight,

however, is a subsidy, not penalty, and therefore it has a negative sign as the objective

is to be minimised. We model the consecutive tracks requirement as Zt
s,r×Zt

s+1,r which

decreases the objective value by πK when a track t is scheduled consecutively within

sessions s and s+1. For instance, suppose we need to schedule track “Forecasting” into

room “A” and two sessions from the set S = {9−11am, 11−1pm, 1−3pm} are required. If
“9-11am” and “1-3pm” sessions are used, then ZForecasting

9−11am,A ×Z
Forecasting
11−1pm,A = 1×0 = 0 and

ZForecasting
11−1pm,A × ZForecasting

1−3pm,A = 0× 1 = 0. On the other hand, if either “9-11am” and “11-

1pm” or “11-1pm” and “1-3pm” are used, then we prefer any of these combinations which

would result in decreasing the objective value by πK given that none other penalties

are incurred. Note that the more consecutive variables become equal to 1, the fewer

the violations of the consecutive tracks soft constraint is achieved. By including the

additional soft requirement in Eq. (3.11), we achieve the following objective function

with non-linear terms:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r (3.12)

+
∑
s∈S

∑
r∈R

∑
(t,su)∈T SU

(wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r )X(t,su)

s,r

−πK ×
∑

s∈S\{S}

∑
r∈R

∑
t∈T

Zt
s,r × Zt

s+1,r

Then, we convert the non-linear terms of the objective function into linear by introducing

new binary variables. Let Kt
s,r be a product variable of Zt

s,r and Zt
s+1,r which is used to

schedule tracks in a consecutive manner.
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3.6.1 Constraints

In the extended model we have the following (hard) constraints:

(3.1)− (3.10)

∑
r∈R

∑
t′∈T t

Zt′
s,r ≤ 1 ∀ s ∈ S,∀ t ∈ T (3.13)

Ma
sX

(t,su)
s,r +

∑
r′∈R\{r}

∑
(t′,su′)∈T SUa

X
(t′,su′)
s,r′ ≤Ma

s ∀ s ∈ S, ∀ r ∈ R, ∀ a ∈ A,∀ (t, su) ∈ T SUa

(3.14)

∑
r∈R

∑
tc∈T c⊂T

Ztc

s,r ≤ 1 ∀ s ∈ S, ∀ c ∈ C (3.15)

Kt
s,r ≤ Zt

s,r ∀ t ∈ T ,∀ r ∈ R,∀ s ∈ S \ {S} (3.16)

Kt
s,r ≤ Zt

s+1,r ∀ t ∈ T ,∀ r ∈ R,∀ s ∈ S \ {S} (3.17)

Kt
s,r ≥ Zt

s,r + Zt
s+1,r − 1 ∀ t ∈ T ,∀ r ∈ R,∀ s ∈ S \ {S} (3.18)

Kt
s,r ∈ {0, 1} ∀ t ∈ T , ∀ r ∈ R,∀ s ∈ S \ {S} (3.19)

Constraints Eq. (3.13) prevent scheduling specified tracks in parallel, where T t ⊂ T is a

set of similar tracks such that |T t| > 1. The next set of constraints, Eq. (3.14), resolves

attendees’ conflicts, where (t, su) ∈ T SUa ⊂ T SU is a set of submissions including an

attendee conflict such that |T SUa| > 1. In addition, Ma
s is an upper bound on the

number of declared submissions that attendee a could possibly attend during session s

given by min{|TSUa|, |T Ss|}, where |TSUa| is the number of declared submissions by

attendee a. For every attendee with multiple declared submissions, this set of constraints
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handles conflicts depending on the track of such submissions. If conflicting submissions

belong to the same track, then such submissions are not allowed to be scheduled within

different rooms of the same session. On the other hand, if conflicting submissions belong

to different tracks, then such submissions are scheduled within different sessions. The

next set of constraints, Eq. (3.15), resolves track chairs’ conflicts, where tc ∈ T c ⊂ T is

a set of tracks including a track chair conflict such that |T c| > 1. For every track chair

responsible for more than one track, this set of constraints ensures that such tracks are

not scheduled within the same session. Constraints from Eq. (3.16) up to Eq. (3.18)

introduce auxiliary variables Kt
s,r which we will use to convert the non-linear terms in

the objective into linear terms, while constraints Eq. (3.19) indicate that these variables

are binary.

3.6.2 Objective

After replacing the non-linear terms in Eq. (3.12), we obtain the following objective

function:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r (3.20)

+
∑
s∈S

∑
r∈R

∑
(t,su)∈T SU

(wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r )X(t,su)

s,r

−πK ×
∑
s∈S

∑
r∈R

∑
t∈T

Kt
s,r

The new objective function, Eq. (3.20), generates a schedule by minimising the penalties

related to both tracks and submissions, and the violations regarding consecutive track

sessions.

3.6.3 Computational Results

We use the same weights for the extended model as we did for the exact model. Addition-

ally, we use the following weight for consecutive track sessions; πK = 10. We also used the

same Gurobi parameters and included an additional parameter; IntegralityFocus = 1,

which forces variables to take exact integer values. This additional parameter was used

because we noticed that sometimes “bigM” constraints were violated due to variables
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Table 3.5: Penalties & Constraints per instance

Instance Penalties Conflicts Similar tracks

N2OR 10 1 1
GECCO19 405 149 12
GECCO20 290 54 15
GECCO21 112 42 11
OR60 1,478 98 15
OR60F 1,382 70 0
OR60F2 2,059 70 0
OR60F3 3,457 70 0

that meant to be zero, instead took non-trivial values. As a result of this side-effect, in-

feasible solutions were accepted by the solver. The exact model was free of this side-effect

and therefore we did not use that parameter.

For the extended model, the objective values have been computed through evaluation

functions in order to obtain the objective value of the exact model, because the objective

value of the extended model itself does not provide reliable information regarding the

quality of the solution. In Table 3.5 we present the penalties along with constraints

for each instance, where Penalties indicate the number of penalties, Conflicts indicate

the number of all conflict types, and Similar tracks indicates the number of similar

tracks. In Table 3.6 we present the results, where Objective indicates the aggregation of

penalties caused by violations of soft constraints, Gap indicates the relative gap between

the two objective bounds, Time indicates the required time for the solver to terminate

in seconds, and N/A indicates the value is not available. An infeasible status for the

objective means that the model is infeasible, while unknown indicates that the solver

did not find a feasible solution within the time limit of one hour (3,600 seconds). The

extended model is significantly larger compared to the exact model in the number of

variables and especially in the number of constraints. Note that even though we include

attendees’ and track chairs’ conflicts in the model, we do not have available real data

for these constraints.

In Table 3.7, we present in detail the violations of soft constraints for the extended model,

where K’s indicates incurred weighted penalties of consecutive tracks (other notation as

in Table 3.4). The optimal solution was found for the N2OR instance, which had only 1

violation for a Submissions-Sessions request (wϵ × ϵ
(t,su)
s = 1 × 1 = 1). For GECCO19,

the model found the optimal solution, which had 2 violations for Tracks-Sessions (wα ×
2 × αt

s = 100 × 2 × 10, 000 = 2, 000, 000) and 7 violations regarding consecutive tracks
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Table 3.6: Extended Model Results

Instance Variables Constraints Objective Gap (%) Time (s)

N2OR 816 671 1 0.00 0.8
GECCO19 33,800 38,950 2,000,070 0.00 57.5
GECCO20 11,536 10,095 7,750 0.00 51.8
GECCO21 9,216 8,541 11,130 0.00 20.5
OR60 77,096 58,016 Infeasible N/A 4.8
OR60F 67,896 52,718 433 2.50 3,600.0
OR60F2 257,600 152,244 Unknown N/A 3,600.0
OR60F3 924,416 307,728 Unknown N/A 3,600.0

Table 3.7: Extended Model Violations

Instance α’s β’s γ’s δ’s ϵ’s ζ’s K’s Total

N2OR - - - - 1 - 0 1
GECCO19 2,000,000 0 - - 0 - 70 2,000,070
GECCO20 0 10 0 - 7,700 - 40 7,750
GECCO21 0 30 - 11,100 0 - 0 11,130
OR60 N/A N/A N/A - N/A - N/A N/A
OR60F 400 0 0 - 33 - 0 433
OR60F2 N/A N/A N/A - N/A - N/A N/A
OR60F3 N/A N/A N/A - N/A - N/A N/A

(πK×7×K = 10×7×1 = 70). The model achieved the optimal solution for GECCO20

with the following violations; 1 violation for Tracks-Rooms (wβ × βt
r = 1 × 10 = 10), 4

violations for consecutive tracks (πK × 4×K = 10× 4× 1 = 40), and 14 violations for

Submissions-Sessions (wϵ × (7 × ϵ
(t,su)
s + 7 × ϵ

(t,su)
s ) = 100 × (7 × 1 + 7 × 10) = 7, 700).

The solution of GECCO21 is also optimal with 3 violations for Tracks-Rooms requests

(wβ × 3× βt
r = 1× 3× 10 = 30) and 30 violations for Submissions-Timezones requests

(wδ × (21× δ
(t,su)
s +9× δ

(t,su)
s ) = 100× (21× 1+ 9× 10) = 11, 100). The time limit was

reached for OR60F where the model achieved a solution with a 2.5% optimality gap. The

solution had 4 violations for Tracks-Sessions requests (wα×4×αt
s = 1×4×100 = 400),

and 33 violations for Submissions-Sessions requests (wϵ× 33× ϵ
(t,su)
s = 1× 33× 1 = 33).

For the remaining instances, OR60F2 and OR60F3, the model reached the time limit

without finding any solution.
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3.6.3.1 Infeasible Instances

We modified our extended model as in subsection 3.5.1 and tried to solve OR60, how-

ever, this time our model was still infeasible due to constraints Eq. (3.13) that prevent

scheduling similar tracks in parallel. We first tried to identify which particular con-

straints to relax from Eq. (3.13), but it was not a straightforward task. Therefore, we

had to remove some similar tracks restrictions which decreased the number of similar

tracks from 15 to 8. Specifically, we removed six tracks that were labelled as similar

with one track, and another pair of tracks. This led to a feasible model which reached

the time limit of one hour and returned a solution with an objective value of 143. The

solution had 1 violation for Tracks-Sessions requests (wα × αt
s = 1 × 100 = 100), 30

violations for Tracks-Rooms requests (wβ×30×βt
r = 1×30×1 = 30), and 13 violations

for Submissions-Sessions requests (wϵ × 13× ϵ
(t,su)
s = 1× 13× 1 = 13).

3.7 Conclusion

This work has provided two integer programming models along with a generic approach

to address conference scheduling problems. We have shown that our approach generates

low-level schedules for conferences in a fully automated manner. Our weighted penalty

system allows the exploration of multiple solutions by adjusting the weights of the soft

constraints. An easy-to-use spreadsheet template is used to fit the needs of different

conferences. Apart from in-person conferences, we have considered timezone constraints

in this work which also makes it suitable for scheduling hybrid and online conferences.

We have demonstrated the suitability of our mathematical models by testing them on

real data from five different conferences and on additional artificial instances. The results

have shown the success of the exact model in finding optimal solutions for almost all

instances. The extended model also found optimal and near-optimal solutions for some

instances, and revealed some limitations due to its increased size and the complexity of

some constraints.

The additional constraints in the extended model add much more complexity, but we

believe such constraints are essential for conference scheduling. Having many hard con-

straints brings limitations to our models in terms of feasibility. In addition, some con-

ferences have to schedule same tracks in parallel due to limited number of sessions, such

as OR60. Ideally, to achieve a more robust generic approach, we would want to con-

vert most hard constraints into soft so as to explore additional trade-offs and solutions.
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However, such a mathematical model would be too slow in terms of computational time.

Therefore, in order to overcome such limitations, we suggest the investigation of alterna-

tive methods for future research, such as heuristics (Pylyavskyy et al., 2020), to develop

an approach to the largest and most complex conference scheduling problems. Lastly,

in our future work along with developing heuristics, we will also consider the submis-

sions ordering constraint, which will allow organisers to express preferences regarding

the presentation sequence of submissions within their tracks.
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Chapter 4

A Two-phase Matheuristic

Approach to Conference

Scheduling Problems

4.1 Introduction

Academic and professional conferences are formal events that foster the advancement of

knowledge and the dissemination of innovation across various disciplines. Researchers

and innovators are benefited from such gatherings as they have the opportunity to share

their latest findings, exchange ideas and critical feedback, as well as collaborate and

network with other peers from different institutions and backgrounds. In addition, these

events usually include keynote speeches, tutorials, and workshops that inspire innovative

thinking and promote interdisciplinary learning to its participants. However, providing

these benefits to participants depends heavily on the conference schedule, which poses

a challenging task for the conference organisers. More often than not, a different group

of organisers is appointed each time to create the conference schedule. Due to various

reasons, such as limited time and lack of experience, the organisers typically schedule

the conference manually, which is an arduous and often error-prone process done under

time pressure. Therefore, as mentioned in Sampson and Weiss (1996) and Sampson

(2004), organisers are usually satisfied with a feasible conference schedule regardless

of its quality. Additionally, sometimes the schedule requires last-minute changes, after

being already published, resulting in an overwhelming experience overall.

69
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In this paper, we address the conference scheduling problem (CSP) as described in

Pylyavskyy et al. (2024a). Despite the fact that the CSP was introduced several decades

ago by Eglese and Rand (1987), it has not been studied as much as its related problems,

namely the class and exam scheduling problems (Sampson, 2004). While some recent

studies have focused on clustering approaches to group submissions into tracks (Bulhões

et al., 2022; Gündoğan and Kaya, 2022), other studies are software related that only

aid organisers during the scheduling process (Kim et al., 2013; Bhardwaj et al., 2014).

However, due to conferences having different requirements and objectives, most studies

have provided solutions to address rather specific requirements of the conferences being

studied per se.

The paper of Pylyavskyy et al. (2024a) is extended in this paper where we present

an alternative solution approach to CSPs. Even though the Integer Programming (IP)

models developed by Pylyavskyy et al. (2024a) are efficient for some instances, they have

certain limitations. The authors assumed that certain requirements are always consid-

ered as hard constraints, however, this is not always the case and should be decided

by conference organisers. In addition, it would be beneficial to have the flexibility of

switching any constraint from hard to soft and vice versa, but this is not a straightfor-

ward task in mathematical programming due to some constraints being highly complex.

Furthermore, the extended IP model which includes additional constraints failed to re-

turn a solution within the one hour time limit for certain instances. Lastly, an extensive

amount of time is required to build the IP models for large instances. To this end,

we present a robust alternative solution approach in section 4.4 that overcomes these

limitations and maintains the generic approach to CSPs.

The remainder of this paper is structured as follows; in section 4.2 the CSP literature

review is provided, followed by section 4.3 in which we describe the problem. Next, our

decomposed matheuristic approach is presented in section 4.4. Then, we present com-

putation results against the extended IP model in section 4.5, followed by the conclusion

in section 4.6.

4.2 Literature review

According to Thompson (2002), a CSP is either approached by a Presenter-Based Per-

spective (PBP) or an Attender-Based Perspective (ABP) approach. The aim of the

former approach is the scheduling of a conference by considering only preferences of
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presenters and maximising their satisfaction. On the other hand, the latter approach

aims to maximise the satisfaction of attendees. However, some studies have adopted a

mixed approach by considering both presenters’ and attendees’ satisfaction. A detailed

literature review of CSPs is provided in Pylyavskyy et al. (2024a), and in the following

paragraphs, we discuss additional recent publications. We also classify previous papers

based on their followed approach in Table 4.1, and summarise the requirements consid-

ered in the literature in Table 4.2. Note that the terminology used in this paper is as

described in Pylyavskyy et al. (2024a).

Table 4.1: Classification of publications based on approach taken

ABP PBP Both

Eglese and Rand (1987) Potthoff and Munger (2003) Nicholls (2007)
Sampson and Weiss (1995) Potthoff and Brams (2007) Stidsen et al. (2018)

Le Page (1996) Edis and Edis (2013) Vangerven et al. (2018)
Sampson (2004) Patro et al. (2022)

Zulkipli et al. (2013) Riquelme et al. (2022)
Quesnelle and Steffy (2015) Pylyavskyy et al. (2024a)

Manda et al. (2019)
Rezaeinia et al. (2024)

Patro et al. (2022) defined the Virtual Conference Scheduling (VCS) problem in which

the goal is to schedule submissions into time slots by maximising the efficiency and

fairness objectives. While the former objective maximises the total attendance in the

conference, the latter objective maximises the attendee satisfaction, which depends on

their interest in a specific submission and their availability to attend it, and the speaker

satisfaction which depends on whether their submission is scheduled in a time slot that

provides high attending availability for the interested attendees. The authors consider

the preferences of attendees to attend certain submissions as well as their availability

based on time zone information. They presented an IP formulation suitable for small

conferences and a rounding heuristic along with a clustering approach for larger confer-

ences. Their methods successfully generated balanced conference schedules in terms of

efficiency and fairness when tested on real and artificial datasets. However, it should be

noted that the VCS problem is restricted to a single track conference scenario without

parallel sessions, and the speaker satisfaction metric does not consider the availability

of the speaker to present based on time zone information.

A case study regarding the scheduling of GECCO 2019 was presented in Riquelme et al.

(2022). The authors defined the problem as a Track-Based CSP which requires the
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assignment of tracks into sessions and rooms, and the assignment of submissions into

time slots of sessions in such a way that the number of missing seats is minimised and

certain hard constraints are satisfied. They also presented an instance generator which

they used to generate 45 artificial instances with similar characteristics to GECCO

2019. In their study, the authors developed an IP model and a simulated annealing

metaheuristic, and evaluated the performance of the two methods by solving the artificial

instances. Computational results showed that the IP model managed to optimally solve

most instances but failed to solve several instances within the one hour time limit. On

the other hand, the simulated annealing metaheuristic replicated the results of the IP

model and found decent solutions for the unsolved instances within a short amount of

time.

Rezaeinia et al. (2024) tackled the CSP as described in Vangerven et al. (2018) and pro-

posed three optimisation approaches to support the scheduling of LOGMS, INFORMS

TSL Workshop and ICSP. Attendees’ preferences were collected through an online sur-

vey which the authors used to form the objective function, a utility function, of the

IP formulations. The authors developed two optimisation approaches assuming that

submissions have been already grouped into tracks, namely a single integrated model

and a two-model decomposition approach. The former approach maximises the util-

ity function by optimising both high and low level schedules simultaneously, whereas

the latter approach initially generates a high level schedule by maximising the utility

function on a session level and, then, it generates the low level schedule, based on the

previously obtained solution, by maximising the utility function on a time slot level. In

the third optimisation approach, which is a relaxed model, they allow submissions to be

freely scheduled regardless of their assigned track. Following different experimentation

scenarios, the results showed that the single integrated model is impractical in terms

of computational time and the relaxed model produced schedules where some tracks

contained submissions which were too disconnected from each other based on feedback

from the organising committee. The two-model decomposition approach proved to be

the most effective approach, finding high-quality solutions within a short amount of time

and resulting in its adoption to schedule the three conferences reported.

Pylyavskyy et al. (2024a) presented a generic approach to schedule conferences, using

data from Kheiri et al. (2023). They designed a penalty system to accommodate schedul-

ing preferences combined with a weighted sum method to form the objective function,

which minimises the penalties associated with tracks and submissions. In addition, the
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authors provided a spreadsheet template that is easy to customise to fit different confer-

ence data. Two IP models, an exact and an extended model, were developed and tested

on both real and artificial instances. The exact model performed well for most instances

considering multiple basic constraints involved in CSPs. While the extended model had

a decent performance for some instances, it struggled to provide a sufficient performance

for others. To the best of our knowledge, this was the first paper that presented a generic

framework to tackle CSPs, including time zones which makes it suitable for in-person,

hybrid, and online conferences.

In Table 4.2, we present conference requirements, which we describe in detail in sec-

tion 4.3, that have been considered in previous studies. As seen in the table, the most

studied requirements are presenters’ conflicts, attendees’ conflicts, and room capacities.

On the other hand, requirements such as consecutive tracks, similar tracks, session hop-

ping, and rooms preferences have been largely overlooked by most studies. Some of

these studies have included requirements which we do not consider in this paper. One of

these is the collection of ranked preferences from attendees, instead we allow for atten-

dees to declare their preferred submissions without ranking. Another requirement is the

scheduling of submissions among sessions in a balanced manner and the consideration of

time zone information for attendees who are not speakers, which we plan to include in

our solution approach in the future. Lastly, the EURO conference, as described in the

paper of Stidsen et al. (2018), includes requirements related to areas and buildings. In

our paper we do not consider such requirements because the EURO conference is unusu-

ally large and follows an unusual hierarchical structure, which makes it rather unique

compared to typical conferences and, thus, requires a very specific solution approach.

In this paper, we consider all the requirements from Table 4.2 and provide an alternative

solution approach to address certain limitations of the mathematical models developed

in Pylyavskyy et al. (2024a). First of all, we present a solution approach that easily

converts any hard constraint into soft and vice versa by simply changing the weights

values. Secondly, our solution approach can handle constraints that need to be resolved

on a time slot level, not only session level. Thirdly, the assignment of submissions into

rooms and time slots of sessions is determined by the proposed matheuristic, whereas

Pylyavskyy et al. (2024a) used a post-processing algorithm to accomplish this task. Ad-

ditionally, we show that our solution approach achieves near optimal solutions within a

short amount of time and provides solutions for large instances where the previously de-

veloped extended model fails. Lastly, the proposed matheuristic provides fast solutions,
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Table 4.2: Requirements of conferences considered in the literature

Requirement E
gl
es
e
a
n
d
R
a
n
d
(1
98
7
)

S
a
m
p
so
n
an

d
W
ei
ss

(1
9
9
5
)

T
h
o
m
p
so
n
(2
0
0
2)

P
ot
th
off

a
n
d
M
u
n
g
er

(2
00
3
)

S
am

p
so
n
(2
00
4
)

P
o
tt
h
o
ff
an

d
B
ra
m
s
(2
0
07
)

N
ic
h
o
ll
s
(2
0
0
7
)

Z
u
lk
ip
li
et

a
l.
(2
01
3)

E
d
is

an
d
E
d
is

(2
0
13
)

Q
u
es
n
el
le

an
d
S
te
ff
y
(2
01
5
)

S
ti
d
se
n
et

a
l.
(2
0
18
)

V
an

ge
rv
en

et
al
.
(2
01
8)

M
an

d
a
et

a
l.
(2
01
9
)

P
a
tr
o
et

al
.
(2
0
22
)

R
iq
u
el
m
e
et

al
.
(2
0
2
2
)

R
ez
ae
in
ia

et
a
l.
(2
02
4
)

P
y
ly
av
sk
y
y
et

al
.
(2
0
24
a
)

Speakers’ conflicts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Speakers’ preferences ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rooms preferences ✓ ✓ ✓

Attendees’ conflicts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rooms capacities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Similar tracks ✓ ✓

Parallel tracks ✓ ✓ ✓ ✓ ✓ ✓

Session hopping ✓ ✓ ✓

Track chairs’ conflicts ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tracks’ scheduling preferences ✓ ✓ ✓

Rooms unavailability ✓ ✓ ✓ ✓

Consecutive tracks ✓ ✓

Speakers’ time zones ✓

while the integrated IP models requires an extensive amount of time only to build the

model for some instances.

4.3 Problem description

We follow the problem description of the CSP and apply the weighted penalty sys-

tem as described in Pylyavskyy et al. (2024a). However, in contrast to Pylyavskyy

et al. (2024a) where submissions are assigned into time slots of sessions with a post-

processing algorithm, the assignment of submissions into time slots is determined by the

proposed solution approach. In addition to this, our solution approach also determines

the assignment of submissions into rooms as we do not assume that scheduling the same

track in parallel is a hard constraint. Moreover, our proposed solution approach can

resolve presenters’ conflicts and attendees’ conflicts on a time slot level as well, whereas

the mathematical programming models of Pylyavskyy et al. (2024a) only resolve these

conflicts on a session level.
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The conference requirements are classified as described in Thompson (2002), and we

introduce an additional class dedicated to functional requirements. The requirements

are categorised into the following three classes; PBP, ABP, and Functional requirements,

which we describe in detail next.

1. PBP: This class includes requirements that focus on maximising the satisfaction

of presenters attending a conference.

• Presenters’ conflicts: This is a hard requirement which implies that a pre-

senter cannot be present in two different places at the same time. In other

words, many conferences allow authors to submit multiple research papers

and, therefore, such submissions must not be scheduled in parallel. Usually,

presenters’ conflicts are resolved on session level, however, sometimes it might

be preferred to resolve those on time slot level.

• Presenters’ preferences: These are requests received from presenters in which

they either express a preferred session to present their submission or declare

their unavailability to present at specific sessions.

• Presenters’ time zones: On the occasion of an online or hybrid conference,

presenters may request the consideration of time zone differences upon schedul-

ing.

• Rooms preferences: Sometimes presenters may request to present their sub-

mission at a specific room for various reasons. Some examples are that a

room may provide specific facilities which others do not provide, and some

rooms may be easier to access in comparison to others.

2. ABP: Requirements in this class aim to maximise the satisfaction of attendees

attending a conference.

• Attendees’ conflicts: Some conferences collect preferences from attendees re-

garding which submissions they would prefer to attend. In such cases, an

attendee conflict occurs when two preferred submissions of an attendee are

scheduled in parallel, where the attendee will encounter the dilemma of which

one to attend. Note that attendees’ conflicts may be resolved either on a ses-

sion or a time slot level.

• Rooms capacities: Conference organisers, who know information about the

expected attendance of tracks, may request the scheduling of tracks with high

expected attendance into large rooms and vice versa. Overcrowded rooms

would cause an unpleasant experience to attendees.
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• Similar tracks: Sometimes, conferences have a number of tracks which are

similar with the potential of attracting the interest of the same audience.

Therefore, organisers may request that similar tracks are not scheduled in

parallel to prevent attendees from missing their favourite presentations.

• Parallel tracks: It is usually preferred to avoid scheduling the same track

in parallel. Otherwise, it is likely that attendees will miss their favourite

presentations.

• Session hopping: Having a track scheduled in multiple rooms would cause

inconvenience to attendees who want to attend the whole track as they would

have to switch rooms frequently. Therefore, it is preferable to minimise the

number of rooms that each track utilises.

3. Functional: In this class, we include requirements that are somewhat irrelevant to

presenters and attendees, but they allow the accommodation of potential requests

from the conference board or organisers and address other potential issues instead.

• Track chairs’ conflicts: Tracks are usually chaired by a person who might

be also a presenter and/or an attendee at a conference. A track chair con-

flict occurs when either a track chair is responsible for two tracks which are

scheduled in parallel or a track chair is also a presenter or an attendee of a

submission belonging to another track which is scheduled in parallel.

• Tracks’ scheduling preferences: The conference board or organisers may re-

quest for various reasons either to schedule (or not) a track into specific

sessions.

• Rooms unavailability: Sometimes, certain rooms might be unavailable for

utilisation during certain sessions. Therefore, organisers may declare some

rooms as unavailable for some sessions.

• Consecutive tracks: It is usually preferred to have tracks scheduled in a con-

secutive manner.

We acknowledge that not all of the above requirements might be of interest to confer-

ences, and we know, based on literature evidence and based on our experience, that

different conferences would prefer some requirements over others. Therefore, each re-

quirement is assigned a weight to reflect its subjective significance. To this end, the

objective is the assignment of tracks into sessions and rooms, and the allocation of sub-

missions into sessions, rooms and time slots in such a way that the violations of the

weighted requirements are minimised.
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Table 4.3: Characteristics of the instances

Instance |SU| |T | |S| |R| |T S| Required T S Available T S

N2OR 35 8 4 4 9 36 36
GECCO19 202 29 13 10 45 215 450
GECCO20 158 24 7 8 28 161 200
GECCO21 138 27 6 8 24 150 192
OR60 329 45 8 23 24 417 540
ISF22 311 49 11 10 36 317 331
OR60F 279 45 8 23 24 353 540
OR60F2 556 72 16 23 49 702 1,115
OR60F3 1,112 72 32 23 105 1,404 2,403

The motivation for this paper originated from scheduling the Genetic and Evolutionary

Computation Conference (GECCO), the OR Society’s 60th Annual Conference (OR60),

the New to OR Conference (N2OR), and the International Symposium on Forecasting

(ISF) (Kheiri et al., 2023). We present the characteristics of the instances in Table 4.3,

where |SU| is the number of submissions, |T | is the number of tracks, |S| is the number

of sessions, |R| is the number of rooms, |T S| is the total number of time slots across all

sessions, Required T S is the required number of time slots by all the submissions, and

Available T S is the number of available time slots for scheduling across all the sessions

and rooms excluding penalised slots. Note that the number of time slots |TS| is given by

summing up the time slots of each session, whereas the number of available time slots,

Available TS, is given by |R| × |TS| and subtracting any penalised time slots. Also,

note that OR60F, OR60F2, and OR60F3 are artificial instances.

4.4 Solution approach

Considering the NP-hard complexity of the problem as proved by Quesnelle and Steffy

(2015) and Vangerven et al. (2018), we have followed a matheuristic decomposition

approach, as described in Archetti and Speranza (2014), to solve the CSP in two phases.

In the first phase, we create the high-level conference schedule by considering only the

requirements with regard to tracks. The goal of the first phase is to schedule tracks into

sessions and rooms by minimising the weighted penalties (i.e., rooms capacities, similar

tracks, tracks’ scheduling preferences, etc.) and by satisfying as many requirements as

possible associated with tracks (e.g., parallel tracks, session hopping, etc.). Based on this

solution, in phase two, we create the low-level conference schedule where submissions

are allocated into sessions, rooms and time slots, and we further optimise both levels of
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the schedule by minimising the violations of the weighted requirements associated with

both tracks and submissions. Each phase is described in detail.

4.4.1 Phase one: creation of a high-level conference schedule

An integer programming model has been developed to schedule tracks into sessions and

rooms, from which we obtain an optimised high-level schedule. We first present an

overview of the notation, followed by the formal formulation of our model.

Sets and indices

The following sets and indices are used in our formulation:

t ∈ T : The set of tracks

su ∈ SU t : The subset of submissions with multiple time slots belonging to track t

(t, su) ∈ T SU : The set of submissions with multiple time slots

where {(t, su) : t ∈ T and su ∈ SU t}

ts ∈ T Ss : The subset of time slots belonging to session s

r ∈ R : The set of rooms

s ∈ S : The set of sessions

c ∈ C : The set of track chairs

t ∈ T c : The set of tracks chaired by the same track chair

t ∈ T t′ : The set of tracks that are similar to track t′

Parameters

The following parameters are used in our formulation:
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αt
s : Penalty for scheduling track t into session s (tracks’ scheduling preferences)

wα : Weight of penalty αt
s

βt
r : Penalty for scheduling track t into room r (rooms capacities)

wβ : Weight of penalty βt
r

γs,r : Penalty for utilising room r within session s (rooms unavailability)

wγ : Weight of penalty γs,r

λt,t′ : Penalty for scheduling tracks t and t′ in parallel

wη : Weight of violation ηts

wθ : Weight of violation θt

wι : Weight of violation ιts

|S| : The number of total sessions s available

|T Ss| : The number of time slots ts within session s

ReqTSt : The number of required time slots ts to schedule track t

n(t,su) : The number of required time slots of submission (t, su)

Decision variables

The following decision variables are used in our formulation:

Zt
s,r ∈ {0, 1} : 1 if track t is scheduled in session s and room r; 0 if not

Y t
r ∈ {0, 1} : 1 if track t is assigned room r; 0 if not

X(t,su)
s,r ∈ {0, 1} : 1 if submission with multiple time slots (t, su)

is scheduled in session s and room r; 0 if not

Other variables

The following variables are used in our formulation to relax certain constraints:
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ηts ∈ Z+ : Violation amount for constraint similar tracks

θt ∈ Z+ : Violation amount for constraint session hopping

ιts ∈ Z+ : Violation amount for constraint parallel tracks

Constraints

The following constraints are included in our formulation:

∑
t∈T

Zt
s,r ≤ 1 ∀ s ∈ S,∀ r ∈ R (4.1)

∑
r∈R

∑
t∈T c⊂T

Zt
s,r ≤ 1 ∀ s ∈ S,∀ c ∈ C (4.2)

∑
s∈S

∑
r∈R
|T Ss| × Zt

s,r ≥ ReqTSt ∀ t ∈ T (4.3)

∑
r∈R

Zt
s,r +

∑
r∈R

Zt′
s,r − ηts − ιts − ιt

′
s ≤ 1 ∀ s ∈ S,∀ t ∈ T , ∀ t′ ∈ T t (4.4)

∑
r∈R

Zt
s,r − ιts ≤ 1 ∀ s ∈ S,∀ t ∈ T (4.5)

∑
r∈R

Y t
r − θt = 1 ∀ t ∈ T (4.6)

∑
s∈S

Zt
s,r − |S| × Y t

r ≤ 0 ∀ r ∈ R,∀ t ∈ T (4.7)
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∑
su∈SUt

n(t,su) ×X(t,su)
s,r − |T Ss| × Zt

s,r ≤ 0 ∀ s ∈ S, ∀ r ∈ R, ∀ t ∈ T (4.8)

∑
s∈S

∑
r∈R

X(t,su)
s,r = 1 ∀ (t, su) ∈ T SU (4.9)

Zt
s,r ∈ {0, 1} ∀ t ∈ T ,∀ s ∈ S, ∀ r ∈ R (4.10)

Y t
r ∈ {0, 1} ∀ t ∈ T , ∀ r ∈ R (4.11)

X(t,su)
s,r ∈ {0, 1} ∀ (t, su) ∈ T SU ,∀ s ∈ S, ∀ r ∈ R (4.12)

Constraint (4.1) allows at most one track to be scheduled for each session-room pair.

Constraint (4.2) resolves track chairs’ conflicts, where t ∈ T c ⊂ T is a set of tracks

including a track chair conflict such that |T c| > 1. Constraint (4.3) ensures that each

track is assigned a sufficient number of sessions to be completely scheduled, where |T Ss|
indicates the number of available time slots in session s, and ReqTSt indicates the

amount of time slots required by each track t. Constraint (4.4) is a relaxed constraint

which prevents similar tracks to be scheduled in parallel, where T t ⊂ T is a set of similar

tracks such that |T t| > 1, and ηts indicates the violated amount. Note that we include

ιts and ιt
′
s in constraint (4.4) because in some cases the same track may be scheduled in

parallel. Constraint (4.5) is also a relaxed constraint which prevents the same track to

be scheduled in parallel, where ιts is the violated amount of constraint. Constraint (4.6)

is another relaxed constraint which assigns each track into one room to prevent session

hopping, where θt indicates the violated amount of constraint. Constraint (4.7) is a

“bigM” constraint which allows the allocation of tracks only into their assigned room

(or rooms if θt ̸= 0), where |S| is the total number of sessions available at the conference.

We use another “bigM” set of constraints (4.8) to allocate submissions with multiple

time slots into sessions and rooms, where |T Ss| is the number of available time slots

corresponding to session s ∈ S, and n(t,su) is the total number of time slots that a given

submission requires. Constraints (4.9) ensures that all submissions with multiple time

slots must be scheduled into exactly one session and room. Lastly, constraints (4.10),

(4.11), and (4.12) indicate that our decision variables Zt
s,r, Y

t
r , and X

(t,su)
s,r are binary.
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Objective

As defined previously, Zt
s,r is a binary decision variable which schedules tracks into

sessions, where track t ∈ T , session s ∈ S, and room r ∈ R. For instance, when ZFin
MM,1 =

1 then track “Fin” (Finance) is scheduled into session “MM” (Monday-Morning) and

room “1”. We use a weighted sum of penalties αt
s, β

t
r, and γs,r as the coefficient of Zt

s,r.

When a specific track is scheduled into a non-preferred session, a penalty αt
s (tracks’

scheduling preferences) is incurred weighted by wα. A penalty βt
r incurs when a track

is scheduled into a room for which the capacity is violated, weighted by wβ. Similarly,

when a track is scheduled into a room that is unavailable during a specified session, a

penalty γs,r (rooms unavailability) is incurred weighted by wγ .

Recall that X
(t,su)
s,r is also a binary decision variable that allocates submissions with

multiple time slots into sessions and rooms, where track t ∈ T , submission with multiple

time slots su ∈ SU t, session s ∈ S, and room r ∈ R. For instance, when X
(Fin,F1)
MM,1 = 1

then submission “F1” from track “Fin” is allocated into session “MM” and room “1”.

Additionally, recall that ηts, θ
t, and ιts are positive integer variables which indicate the

violated amount of similar tracks, session hopping, and parallel tracks constraints re-

spectively. These violations are weighted by wη, wθ, and wι respectively.

To this end, the objective function is formulated as follows:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r +

∑
s∈S

∑
t∈T

∑
t′∈T t

wηλ
t,t′ηts

+
∑
t∈T

wθθ
t +

∑
s∈S

∑
t∈T

wιι
t
s

(4.13)

The objective function (4.13) schedules tracks and submissions with multiple time slots

into sessions and rooms by minimising the weighted violations of constraints and the

weighted penalties with regard to tracks.

4.4.2 Phase two: creation of a low-level conference schedule and fur-

ther optimisation

In phase two, we create the low-level schedule by randomly assigning the submissions into

sessions, rooms and time slots based on the high-level schedule obtained from phase one.

However, this only results in a sub-optimal solution due to our decomposition approach
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and, thus, we further optimise the complete schedule with a heuristic approach, which

we describe next.

4.4.3 Selection perturbative hyper-heuristic framework

Hyper-heuristics are high-level heuristic methodologies that provide solutions to compu-

tationally hard problems. Among other benefits, their framework notably offers problem

domain independence, learning mechanisms applicability, enhanced exploration of the

solution space, and identification of an efficient problem-solving method. In contrast

to other customised methods, hyper-heuristics do not require expert knowledge of the

domain of the problem (Chakhlevitch and Cowling, 2008). Instead of finding a suffi-

cient solution by searching the space of solutions, hyper-heuristics identify an effective

method of solving a problem by searching the space of low-level heuristics (Chakhlevitch

and Cowling, 2008; Drake et al., 2012b). Hyper-heuristics are classified into two broad

categories, namely generation and selection hyper-heuristics. While the former method

generates new heuristics, the latter selects a low-level heuristic from a predefined set

and applies it to the solution. In addition to this, hyper-heuristics are further divided

into the following two subcategories; 1) constructive methods which construct a solution

from scratch by implementing a set of heuristics at different phases of the construction

process and 2) perturbative methods which use a complete initial solution and apply a

set of heuristics in a perturbative way to improve this solution. A detailed classification

of selection hyper-heuristics can be found in the paper of Drake et al. (2020).

As shown in algorithm 1, we have developed a selection perturbative hyper-heuristic

with a “repair” mechanism to further optimise the complete conference schedule. The

algorithm uses two parameters (qt and qi) that are needed to activate the “repair”

mechanism which we describe next. In each iteration, the algorithm randomly selects

a low-level heuristic and applies it to the current solution. Then, the new solution is

accepted if it is better or equal to the previous solution. Otherwise, it is rejected and the

q variable, which counts the number of rejections, is increased by one. When q variable

is equal to qt, which represents the tolerance limit of non-improvements, the repair

approach is activated for a duration of qi iterations. In each iteration of the “repair”

mechanism we scan the solution to identify the three most violated constraints and

randomly select one of these to improve. Then, the indices of the tracks or submissions

that violate the selected constraint are identified and one of them is provided at random

to a “repair” low-level heuristic in the next stage. Each constraint has one or two
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“repair” low-level heuristics candidates for selection as shown in Table 4.4. Next, the

index of the track or submission is provided to the selected “repair” low-level heuristic

which is applied to the current solution. A new solution is only accepted if it is better or

equal to the previous solution. When qi iterations are reached, the q variable resets to

zero, and this iterative process continues until we reach the time limit. We suggest the

parameters values to be set to qt = 500 and qi = 100 for which we observed a satisfying

performance during preliminary experiments.

Algorithm 1: Hyper-heuristic algorithm

1 Let L represent the set of low-level heuristics
2 Let RepL represent the set of “repair” low-level heuristics
3 Let S represent the current solution
4 Let Snew represent the new solution
5 Let f represent the objective value of a given solution as defined in Equation 4.14
6 Let q represent the number of non-improvements
7 Let qt represent the tolerance limit of non-improvement
8 Let qi represent the duration of the “repair” mechanism
9 Let V represent a list with the three most violated constraints

10 Let I represent the index of the track or submission that violates a constraint
11 repeat
12 Li ← Select(L);
13 Snew ← ApplyLowLevelHeuristic(Li, S);
14 if f(Snew) ≤ f(S) then
15 S ← Snew;
16 else
17 q = q + 1;
18 end
19 if q = qt then
20 repeat
21 V ← ScanSolution(S);
22 Vi ← Select(V );
23 I ← ReturnIndex(Vi, S);
24 RepLi ← Select(RepL);
25 Snew ← ApplyRepairLowLevelHeuristic(RepLi, I, S);
26 if f(Snew) ≤ f(S) then
27 S ← Snew;
28 end

29 until qi iterations;
30 q = 0;

31 end

32 until TimeLimit ;
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Low-level heuristics

We utilise two types of low-level heuristics: the first type does not use the “repair”

mechanism, while the other type does. The following 5 low-level heuristics do not use

the “repair” mechanism:

• LLH1: Randomly selects two tracks belonging to different sessions and swaps

them. The low-level schedule is adjusted accordingly.

• LLH2: Randomly selects two tracks of the same session and swaps their rooms.

The low-level schedule is adjusted accordingly.

• LLH3: Randomly selects two submissions of the same session, and swaps their

time slots. This low-level heuristic only considers submissions of the same length.

That is, they require the same number of time slots to be scheduled. This has no

impact on the high-level schedule.

• LLH4: Randomly selects two submissions belonging to different sessions and

swaps them. This low-level heuristic considers submissions of any length. This

has no impact on the high-level schedule.

• LLH5: Repeats LLH1 for k times, where 2 ≤ k ≤ 4.

“Repair” low-level heuristics

The following low-level heuristics use the “repair” mechanism:

• LLH6: Swaps a randomly selected track with another given track. The low-level

schedule is adjusted accordingly.

• LLH7: Swaps the rooms of a randomly selected track and a given track. The

low-level schedule is adjusted accordingly.

• LLH8: Swaps the time slots of a randomly selected submission and a given sub-

mission. This has no impact on the high-level schedule.

• LLH9: Swaps the sessions of a randomly selected submission and a given submis-

sion. This has no impact on the high-level schedule.
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Table 4.4: The “repair” low-level heuristics used for each constraint

Constraint LLH6 LLH7 LLH8 LLH9 LLH10

Speakers’ conflicts (Session level) ✓ ✓

Speakers’ conflicts (Time slot level) ✓ ✓

Speakers’ preferences ✓

Speakers’ time zones ✓

Rooms preferences ✓

Attendees’ conflicts (Session level) ✓ ✓

Attendees’ conflicts (Time slot level) ✓ ✓

Rooms capacities ✓ ✓

Similar tracks ✓

Parallel tracks ✓

Session hopping ✓ ✓

Track chairs’ conflicts ✓

Tracks’ scheduling preferences ✓

Rooms unavailability ✓ ✓

Consecutive tracks ✓

• LLH10: This low-level heuristic has two heuristics embedded and one of them

is selected randomly. The first heuristic swaps the submissions of a given session

with the submissions of another randomly selected session. This has no impact on

the high-level schedule. The second heuristic randomly selects two submissions of

a given track and moves them into a free session (a session with available time slots

that could fit both submissions), if such session exists. The high-level schedule is

adjusted accordingly.

To further clarify the “repair” mechanism implementation an example is provided. As-

sume the repair approach is activated, the solution is scanned and the three most vio-

lated constraints found are presenters’ preferences, tracks’ scheduling preferences, and

rooms capacities. The tracks’ scheduling preferences has been randomly selected for im-

provement and the solution is scanned again to find the indices that violate the tracks’

scheduling preferences constraint. Assume four indices were found from which one is

selected at random, for example, Track 1 from Session 2 and Room 2. Next, a “repair”

low-level heuristic is selected, in this case LLH6 (see Table 4.4). If a constraint has two

“repair” low-level heuristics associated with it, then one of them is selected at random.
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Next, the index of Track 1 is passed to LLH6 which swaps it with another randomly

selected track. That is, LLH6 selects a track from a random session and room, and

swaps it with Track 1 from Session 2 and Room 2. This results in a new solution with a

new objective. If the new objective is equal or better than the previous objective, then

the new solution becomes the current solution. Otherwise, the new solution is scrapped

and the previous solution is restored.

Objective function

As we described in section 4.3, we have three different classes of constraints which are

weighted based on their subjective significance. Some constraints, such as presenters’

conflicts, that are naturally considered as hard constraints can be satisfied by setting a

sufficiently greater weight compared to other constraints. To this end, the objective is

to minimise the violations of the weighted constraints, as shown in Eq. (4.14):

Min
n∑

i=1

wCi × VCi (4.14)

where wCi indicates the corresponding weight of constraint Ci, VCi indicates the corre-

sponding violated amount of constraint Ci, and n is the total number of constraints.

4.5 Computational results

In this section, we evaluate the performance of the developed matheuristic on a set

of real and artificial instances taken from Kheiri et al. (2023), and we compare our

solution approach against the extended IP model developed in Pylyavskyy et al. (2024a)

under different parameters. Note that we have relaxed constraints similar tracks, session

hopping, and parallel tracks of the extended IP model, as we did for Phase 1, to avoid

infeasibility and make the model comparable.

We used an i7-11370H CPU Intel Processor with 8 cores at 3.30GHz with 16.00 GB

RAM to generate our results. Our mathematical model and algorithm was developed in

Python 3.8.3, and we used Gurobi 9.5.0 in phase one. We present the weight values used

for each instance in Table 4.5 and in Table 4.6, where “-” denotes that a requirement is

not used. Although we distinguish constraints into hard and soft, it is not a strict rule

as some conferences may consider a hard constraint as a soft constraint and vice versa.
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For instance, while session hopping was a hard constraint for most instances, this was

not the case for ISF22. As shown in Table 4.5, we have set very high weights for these

hard constraints.

Table 4.5: Weights of hard requirements used per instance by matheuristic

Requirement N
2O

R

G
E
C
C
O
1
9

G
E
C
C
O
2
0

G
E
C
C
O
2
1

O
R
6
0

IS
F
2
2

O
R
6
0
F

O
R
6
0
F
2

O
R
6
0
F
3

Speakers’ conflicts 103 107 107 107 105 104 105 105 105

Similar tracks 103 107 107 107 105 104 105 105 105

Parallel tracks 103 107 107 107 105 104 105 105 105

Session hopping 103 107 107 107 105 50 105 105 105

Track chairs’ conflicts - - - - - 104 - - -

Rooms unavailability - - 10 - 1 105 1 1 1

Table 4.6: Weights of soft requirements used per instance by matheuristic

Requirement N
2O

R

G
E
C
C
O
19

G
E
C
C
O
20

G
E
C
C
O
21

O
R
60

IS
F
22

O
R
60

F

O
R
60

F
2

O
R
60

F
3

Speakers’ preferences 1 102 102 102 1 102 1 1 1

Speakers’ time zones - - - 102 - - - - -

Rooms preferences - - - - - - - - -

Attendees’ conflicts - - - - - 10 - - -

Rooms capacities - 1 1 1 1 102 1 1 1

Tracks’ scheduling preferences - 102 102 102 1 102 1 1 1

Submissions ordering - - - - - - - - -

Consecutive tracks 10 10 10 10 10 1 10 10 10

We first evaluate the performance of our matheuristic over 30 runs against the extended

model, where we set a time limit for both methods based on the size of the instance. The

instances have been categorised into small, medium, and large based on the number of

submissions. Small instances contain no more than 100 submissions, medium instances

contain up to 500 submissions, and large instances contain more than 500 submissions.

We set a 3 seconds time limit for small instances, a 100 seconds time limit for medium
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Table 4.7: The performance of Matheuristic against Extended model over 30 runs

Extended IP Matheuristic

Instance Objective Time (s) Best Obj. Avg Obj. Std. Ph.1 Avg Time (s) Ph.2 Avg Time (s) Total Time (s)

N2OR 1* 0.8 1* 1 0 0.02 2.98 3.00
GECCO19 2,000,070* 57.5 2,000,100 2,234,830 503,386 0.57 99.43 100.00
GECCO20 7,750* 51.8 8,760 17,993 25,137 0.06 99.94 100.00
GECCO21 11,130* 20.5 11,140 17,478 8,021 0.43 99.57 100.00
ISF22 N/A 100.00 151 10,241 30,523 3.07 96.93 100.00
OR60 N/A 100.00 6,900,745 7,011,070 115,537 21.81 78.19 100.00
OR60F 443 100.00 566 30,660 53,469 2.86 97.14 100.00
OR60F2 N/A 300.00 487 567 188 21.84 278.16 300.00
OR60F3 N/A 300.00 738 17,417 53,067 90.00 210.00 300.00

instances, and a 300 seconds time limit for large instances. The results are presented in

Table 4.7, where Objective indicates the aggregation of penalties caused by violations of

soft constraints, Time indicates the required time for the solver to terminate, Best Obj.

indicates the best objective found, Avg Obj. indicates the average objective value, Std.

indicates the standard deviation, Ph.1 Avg Time indicates the average time of phase

1, Ph.2 Avg time indicates the average time of phase 2, and Total Time indicates the

total time for the matheuristic to terminate. The optimal objective value is denoted

with an asterisk, and N/A indicates that the value is unavailable. We observe that the

matheuristic has found near-optimal solutions for GECCO instances and OR60F within

the time limit. In addition, it found the optimal solution for N2OR, and found solutions

for the instances where the extended model did not return a solution within the time

limit.

Next, we compare again the performances of the two methods but we only allow the

matheuristic to run once with a time limit that is equal to the time that it takes for the

extended model to either terminate or reach the time limit of one hour. Note that we

also include the building time of the models for both methods. We present the results

in Table 4.8, where tb indicates the time required to build the model, ts indicates the

required time for the solver to terminate, and tt indicates the total time required. All

times are in seconds (other notation as in Table 4.7). We observe that the extended

model managed to find solutions for ISF22 and OR60 compared to Table 4.7. The

relative gap between the two objective bounds was 66.7% for ISF22 and 0.7% for OR60.

The main benefit of the matheuristic is observed for instances ISF22, OR60F2, and

OR60F3 which found a better solution than the extended model for ISF22, and it found

solutions for the large instances where the extended model struggles. In addition, the

matheuristic found the optimal solution for N2OR at the same time as the extended

model. For the remaining instances, we observe that the extended model finds superior

solutions, but the performance of the matheuristic is not significantly worse.
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Table 4.8: The performance of Matheuristic against Extended model over 1 run
including model building time

Extended IP Matheuristic

Instance Objective tb ts tt Objective Ph.1 Time Ph.2 Time Total Time

N2OR 1* 0.1 0.8 0.9 1* 0.0 0.9 0.9
GECCO19 2,000,070* 152.2 57.5 209.7 2,000,110 1.3 208.4 209.7
GECCO20 7,750* 5.7 51.8 57.5 9,510 0.4 57.1 57.5
GECCO21 11,130* 2.2 20.5 22.7 11,240 0.3 22.4 22.7
ISF22 161 152.9 3,600.0 3,752.9 150 6.3 3,746.6 3,752.9
OR60 5,200,592 174.9 3,600.0 3,774.9 6,900,729 22.6 3,722.3 3,774.9
OR60F 443 99.2 3,600.0 3,699.2 527 3.7 3,695.5 3,699.2
OR60F2 N/A 344.5 3,600.0 3,944.5 278 25.2 3,919.3 3,944.5
OR60F3 N/A 1,210.1 3,600.0 4,811.8 677 128.2 4,683.6 4,811.8

4.6 Conclusion

In this paper, we have significantly extended the size and complexity of conferences

that can be solved, which were not possible to be optimally solved by Pylyavskyy et al.

(2024a), at a negligible loss of optimality, while in practice conference organisers are

happy if they at least find a feasible solution. We proposed a decomposed robust

matheuristic solution approach that consists of two phases as an alternative solution

approach to CSPs. In phase one, an integer programming model is presented to gener-

ate an optimised high-level schedule. Then, based on the created high-level schedule, we

create the low-level schedule in phase two, where both levels of the schedule are further

optimised by a selection perturbative hyper-heuristic algorithm. The performance of

our solution approach has been evaluated under different time limits on real and arti-

ficial data taken from Kheiri et al. (2023). The results showed that the matheuristic

achieved near-optimal solutions and provided solutions within a short amount of time

for instances where the integrated mathematical model fails to return a solution within

the one hour time limit. In addition, the matheuristic offers fully customised solutions

as one can choose the significance of different types of constraints by setting the weights

accordingly. A last benefit of the matheuristic is that due to the decomposition ap-

proach, a negligible amount of time is required to build the IP used in phase one in

comparison to the extensive amount of time required by the integrated mathematical

models, especially for large instances. Overall, we showed that the matheuristic can be

efficiently used as an alternative solution approach for cases where the mathematical

models struggle. Lastly, in the next paragraph we recommend potential directions for

future work.

A potential future work could include the exploration of the characteristics that make an
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instance harder to solve compared to others. Throughout our work we noticed that the

ISF22 instance is much harder to solve exactly in comparison to other instances of similar

size. We suspect that the hardness might be caused by the limited number of available

time slots, as shown in Table 4.3. However, we are not sure what makes the ISF22 a

harder instance and other characteristics could also play a vital role. Another potential

direction for future work is the exploration of the CSP with more scheduling freedom.

That is, we assume that conference organisers have already categorised submissions into

tracks, and decided upon the number of sessions as well as the number of time slots per

session. However, in some cases conference organisers could allow certain submissions

to be flexible and provide alternative eligible tracks for that submissions. Furthermore,

instead of assuming fixed sessions and time slots, conference organisers could allow for

changes in the structure of the schedule. In other words, they could provide different

options regarding the number of sessions, and a range of minimum and maximum number

of time slots for sessions. Lastly, based on our scheduling experience, we are aware that

more often than not last-minute changes are required to a schedule that has already

been published, which allows very limited alterations on the schedule. Until now, we

have tackled such issues with a manual intervention, but ideally such alterations could

be handled with optimisation techniques that have been successfully applied to minimal

perturbation problems, such as Barták et al. (2003) and Phillips et al. (2017).
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Chapter 5

CoSPLib – A Benchmark Library

for Conference Scheduling

Problems

5.1 Introduction

Conferences play a crucial role in academia, providing researchers with the opportu-

nity to present their ideas and receive valuable feedback. Additionally, they serve as a

platform for networking with colleagues in similar fields, fostering the formation of new

collaborations. Researchers benefit from the opportunity to learn about new methods

and ideas in their fields. When organising a conference it is therefore important to have a

schedule that allows the conference to run smoothly. The conference scheduling problem

(CoSP) is a combinatorial optimisation problem that was initially presented by Eglese

and Rand (1987). Even though the CoSP relates to well-studied problems, such as class

and exam scheduling problems, it has not received much attention from researchers

(Sampson and Weiss, 1996; Sampson, 2004; Thompson, 2002; Greenstreet, 2020). The

CoSP involves creating both a high-level and a low-level conference timetable. A high-

level schedule involves organising tracks into sessions and allocating rooms, whereas a

low-level schedule involves assigning submissions to specific time slots within sessions.

The problem requires the consideration of both hard and soft constraints, and the ob-

jective aims to minimise the total penalty cost deriving from violations of the soft con-

straints. The problem was proved to be NP-hard by Quesnelle and Steffy (2015) and

Vangerven et al. (2018).

92
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The operations research literature has several studies tackling the CoSP including both

exact and heuristic methods. However, it is challenging to compare and evaluate the

developed methods due to several reasons. The primary issue is that many conferences

have different scheduling requirements, objectives, and constraints, some of which are

case-specific. As a result, there are various problem descriptions, objective functions,

and developed methods in the literature which depend on the need of the particular con-

ference. Therefore, benchmark data are needed to provide a fair comparison between

the developed methods. Moreover, benchmark instances will create a competitive envi-

ronment for the development of advanced algorithms to solve CoSP, and raise awareness

of the problem which is a real-world problem that has not been studied as much as re-

lated problems. Last but not least, researchers could contribute to the development of

CoSPLib by submitting new instances, constraints, and solving methods.

In this paper, we are describing what we believe to be the first conference scheduling

benchmark. We also present a hyper-heuristic algorithm to create conference schedules.

The paper has the following structure. Section 5.2 is a literature review. Section 5.3

describes the CoSPLib. Section 5.4 describes the hyper-heuristic method that we used

and presents the computational results. Section 5.5 contains some concluding remarks.

5.2 Background

Thompson (2002) distinguished between two perspectives for CoSP, depending on con-

straints and objectives of the given problem: Presenter-Based Perspective (PBP) and

Attender-Based Perspective (ABP). PBP focuses on optimising presenters’ preferences,

such as scheduling presenters on their preferred day or time, while ABP prioritises

attendees’ preferences, such as attending preferred sessions without conflicts or space-

shortening problems. Thus, the quality of the schedule is subjective and sensitive to the

perspective considered. Similarly to other studies, in this paper, we propose a variant

that combines both perspectives in a single model.

In Potthoff and Munger (2003), the research focused on scheduling submissions into

sessions in a balanced manner using an integer programming model. Potthoff and

Brams (2007) refined this model by incorporating presenter availability, which success-

fully solved a CoSP that included more than 70 submissions. Edis and Edis (2013)

addressed a similar CoSP, aiming to minimise similar tracks scheduled concurrently and
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balance submissions across sessions, using an integer programming model for a confer-

ence with about two hundred submissions. Nicholls (2007) introduced a heuristic algo-

rithm to facilitate organisers in scheduling and tested it on a conference with roughly

three hundred submissions and attendees. Stidsen et al. (2018) addressed the CoSP of

the EURO2016 Conference, which is one of the largest conferences within the field of

operational research. This CoSP involved the assignment of areas into buildings and

the allocation of tracks into sessions and rooms. The authors followed a lexicographic

approach using a multi-objective mixed-integer programming model that consisted of

five ranked objectives to solve the problem. The objectives, in order of priority, aimed

to minimise the number of areas scheduled in different buildings, maximise the number

of areas scheduled in the same building, minimise the number of rooms utilised by each

track, minimise time gaps across scheduled tracks and maximise the residual room ca-

pacity. Constraints included room capacity and prevention of the same track running in

parallel, however, presenters’ conflicts were excluded and room capacity was limited by

data scarcity. Their solution approach focuses on the high-level schedule and leaves the

management of the low-level schedule to the track organisers. Vangerven et al. (2018)

provided a solution to the scheduling of four conferences: MathSport 2013, MAPSP

2015 & 2017, and ORBEL 2017. The primary goal of the CoSP was to maximise at-

tendees’ satisfaction by aligning with their preferred submissions. Furthermore, the

research aimed to minimise session hopping, resulting in attendees missing parts of their

preferred sessions when switching rooms. The third objective included the maximisa-

tion of presenters’ preferences. The authors successfully optimised the schedules of the

four conferences with a hierarchical three-phase approach using integer programming,

dynamic programming, and heuristics. Manda et al. (2019) utilised the dataset from

Ecology 2013 for testing purposes to optimise the schedule of the Evolution 2014 con-

ference. The aim of the CoSP was to schedule submissions into time slots to maximise

consistency within sessions and minimise similarity across parallel sessions. The authors

experimented with random, greedy and integer linear programming approaches to create

initial solutions, which they optimised using hill climbing and simulated annealing algo-

rithms. Bulhões et al. (2022) studied a different perspective from typical CoSP in which

they mainly focused on grouped optimally submissions into tracks based on their sim-

ilarity. However, they also scheduled submissions into sessions considering constraints

such as presenter conflicts and parallel tracks with the purpose of maximising the to-

tal benefit and defined the problem as clustering-based CoSP. Three formulations were

presented and tested on artificial instances, each of the approaches suitable for different

sizes of instances. They also obtained optimal solutions for two real instances which
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were adopted by the organisers of the XV Latin American Robotics Symposium and the

Brazilian Logic Conference. Patro et al. (2022) defined the virtual CoSP that required

maximisation of efficiency and fairness objectives subject to attendees’ preferences and

their availability based on time zone information. The authors developed an exact and a

heuristic method that were tested on both real and artificial datasets. The virtual CoSP

was limited to single-track conferences where parallel sessions are ignored. Riquelme

et al. (2022) generated artificial instances with similar characteristics to GECCO 2019

and solved them via integer programming and simulated annealing. The problem was

defined by the authors as a track-based CoSP requiring the scheduling of tracks into

sessions and rooms, and the scheduling of submissions into time slots of sessions with

the purpose of minimising the number of missing seats. Rezaeinia et al. (2024) sup-

ported the scheduling of LOGMS, INFORMS TSL Workshop and ICSP by developing

and testing three different approaches. Although the CoSP tackled was the same as

described in Vangerven et al. (2018), the authors experimented by relaxing the problem

and allowing submissions to be freely scheduled regardless of their assigned track. How-

ever, this resulted in many submissions being scheduled in tracks in which they did not

fit well based on feedback from the organising committee. Finally, a generic approach

for conference scheduling was presented by Pylyavskyy et al. (2024a) who developed two

integer programming models and tested their performance on the instances presented in

this study.

5.3 CoSPLib

5.3.1 Problem Description

The CoSP that we consider in this study includes a set of tracks (stream, subject area,

topic) along with their corresponding submissions (e.g., papers, presentations, talks), a

set of available sessions along with their corresponding time slots, and a set of available

rooms. We assume that submissions are already assigned to their tracks, and we define

“submission” as any type of formal event (e.g., research paper, keynote speech, workshop,

etc.) that needs to be scheduled. We consider “sessions” to be periods of time between

breaks where participants can switch rooms. For each session, a number of available

time slots is assigned where submissions are scheduled. That is, a time slot is defined

as a fixed amount of time for presentation. Even though time slots have fixed available

time, sessions may consist of different number of time slots. While a submission typically
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requires one time slot, some submissions (e.g., tutorial) may require additional time slots

to be completely scheduled, satisfying the HC2 constraint as defined in Section 5.3.1.1.

The problem requires the scheduling of tracks into sessions and rooms, and the scheduling

of submissions into time slots within sessions and rooms with respect to a number of hard

and soft constraints. The objective is to generate a complete schedule by minimising

the violations of the soft constraints and satisfying the hard constraints.

5.3.1.1 Hard Constraints

Constraints within this class must be satisfied in order to ensure a feasible schedule is

achieved.

• HC1 Feasibility : All submissions must be scheduled.

• HC2 Extended Submissions: Submissions requiring more than one time slot must

be scheduled within the same session.

• HC3 Presenters’ Conflicts: On the occasion of having two or more submissions

which belong to the same presenter, such submissions should be either scheduled

within the same room of a session or scheduled within different sessions. Note that

it is possible to handle presenters’ conflicts either on a session or a time slot level.

• HC4 Track Chairs Conflicts: In case of a track chair being responsible for more

than one track, such tracks should be scheduled within different sessions.

5.3.1.2 Soft Constraints

This class includes soft constraints which do not have to be necessarily satisfied to

achieve a feasible schedule, but the quality of the schedule is determined based on how

many and which of these constraints are satisfied.

• SC1 Track-Session Preference Matrix : The aversion of conference organisers to

schedule a specified track into a specified session.

• SC2 Track-Room Preference Matrix : The aversion of conference organisers to

schedule a specified track into a specified room.
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• SC3 Session-Room Preference Matrix : The aversion of conference organisers to

utilise a specified room during a specified session. Sometimes, certain rooms might

be unavailable during certain sessions.

• SC4 Submission-Session Preference Matrix : The aversion of presenters to present

during a specified session.

• SC5 Parallel Tracks: Scheduling the same track in parallel should be avoided.

• SC6 Limit the Number of Rooms per Track : Scheduling the same track into dif-

ferent rooms should be avoided. Having a track scheduled in multiple rooms is

inconvenient for the participants as they would have to switch rooms frequently.

• SC7 Consecutive Tracks: It is desirable to schedule tracks consecutively.

• SC8 Submission’s Order : Submissions should be scheduled with respect to their

specified order.

• SC9 Track-Track Preference Matrix : The aversion of conference organisers to

schedule a pair of tracks in parallel. This is because some conferences may have a

number of tracks which are similar with the potential of attracting the interest of

the same audience.

• SC10 Presenter’s Time Zone: On the occasion of an online or hybrid conference,

the time zone of each presenter should be considered to schedule their submission

within a suitable session.

• SC11 Submission-Room Preference Matrix : The aversion of presenters to present

within a specified room. Some examples are that a room may provide specific

facilities which others do not provide, and some rooms may be easier to access in

comparison to others.

• SC12 Attendees’ Conflicts: On the occasion of having two or more submissions for

which an attendee has declared attending preference, such submissions should be

either scheduled within the same room of a session or scheduled within different

sessions. Note that it is possible to handle attendees’ conflicts either on a session

or a time slot level.
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Table 5.1: Parameters sheet

Sessions Weights

Local time zone: GMT+0 Tracks Sessions—Penalty: 0
Suitable scheduling times Tracks Rooms—Penalty: 0

From: 09:30 Sessions Rooms—Penalty: 0
To: 21:30 Similar Tracks: 1

Less suitable scheduling times Number of Rooms per Track: 10
From: 07:00 Parallel Tracks: 1

To: 23:00 Consecutive Tracks: 1
Penalty: 1 Submissions Timezones: 0

Unsuitable scheduling times Submissions Order: 1000
Penalty: 10 Submissions Sessions—Penalty: 10

Submissions Rooms—Penalty: 0
Presenters Conflicts: 100000
Attendees Conflicts: 0

Chairs Conflicts: 0
Presenters Conflicts Timeslot Level: 0
Attendees Conflicts Timeslot Level: 0

5.3.1.3 Data Format Description

Each instance within the benchmark dataset is stored as an Excel file and follows a spe-

cific format. The file consists of the following sheets: parameters, submissions, tracks,

sessions, rooms, tracks sessions penalty, tracks rooms penalty, similar tracks, and ses-

sions rooms penalty.

The parameters sheet includes time zone and weights settings (see Table 5.1). Under the

“Sessions” column it is possible to set the local time zone of the location at which the

conference takes place. In addition, it is possible to set the time range that is considered

suitable for scheduling submissions of online presenters. For example, if the time of the

presenter’s location is outside the specified range for their scheduled submission, then

a penalty is incurred. The “Weights” column allows the setting of weight values for all

the soft constraints.

The submissions sheet contains information and constraints for each submission as shown

in Table 5.2. The first column indicates the reference of each submission and the sec-

ond column shows their assigned track. In the third column the number of time slots

that each submission requires is indicated, followed by the fourth column where the

scheduling order of each submission is specified (if irrelevant, zero value is used). For

example, Sub 1 should be the first scheduled submission in Track 1, and Sub 2 should be

scheduled second. The “Presenters” and “Attendees” columns indicate the presenters
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Table 5.2: Submissions Sheet

Reference Track Required Time Slots Order Presenters Attendees Session 1 Session 2 Session 3 Room 1 Room 2

Sub 1 Track 1 1 1 P1 A1
Sub 2 Track 1 1 2 P2 A2 1 10
Sub 3 Track 2 1 0 P3 A3, A5
Sub 4 Track 2 2 0 P4, P5 A4 10

Table 5.3: Tracks Sheet

Tracks Chairs

Track 1 C1, C2
Track 2 C3
Track 3 C4
Track 4 C5

Table 5.4: Sessions Sheet

Session # Time Slots Date Start Time End Time

Session 1 4 28/07/2021 09:30 10:30
Session 2 2 28/07/2021 14:00 14:30
Session 3 2 29/07/2021 09:30 10:00
Session 4 3 29/07/2021 10:30 11:15

and attendees for each submission respectively from which presenters’ and attendees’

conflicts are defined. Note that it is possible for submissions to have multiple presen-

ters and attendees. Then, the next number of columns is given by the total number of

available sessions and form the submission-session preference matrix. For example, if

Sub 2 is scheduled in Session 1 or Session 2, then a penalty of 1 or 10 will be incurred

respectively. Similarly, the remaining number of columns is given by the total number

of available rooms and form the submission-room preference matrix (e.g., a penalty of

10 will be incurred if Sub 4 is scheduled in Room 2).

The tracks sheet contains track names in the first column, followed by the track chairs

in the second column as shown in Table 5.3.

The sessions sheet includes the name of each session in the first column (see Table 5.4).

In the second column, the available number of time slots for each session are indicated.

For instance, up to four submissions can be scheduled in Session 1, but in Session 2

at most two submissions can be scheduled assuming a duration of 15 minutes per time

slot. The remaining columns indicate the date, the start time, and the end time of each

session. The rooms sheet simply contains the name of each room in the first column.
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Table 5.5: Tracks Sessions Penalty Sheet

Session 1 Session 2 Session 3 Session 4

Track 1 1
Track 2
Track 3
Track 4 10

Table 5.6: Tracks Rooms Penalty Sheet

Room 1 Room 2 Room 3 Room 4

Track 1
Track 2 10 10 1
Track 3
Track 4

Table 5.7: Tracks Track Penalty Sheet

Track 1 Track 2 Track 3 Track 4

Track 1 - 1 10
Track 2 - -
Track 3 - - -
Track 4 - - - -

The tracks sessions penalty sheet corresponds to the track-session preference matrix. In

Table 5.5, an example is provided where a penalty of 1 incurs if Track 1 is scheduled in

Session 1, while a penalty of 10 incurs if Track 4 is scheduled in Session 4.

The tracks rooms penalty sheet is used to form the track-room preference matrix as

shown in Table 5.6. In this example a penalty of 10 is incurred if Track 2 is scheduled

in either Room 1 or Room 3, while a penalty of 1 is incurred if Track 2 is scheduled in

Room 4.

The similar tracks sheet corresponds to the track-track preference matrix. An example

is provided in Table 5.7 where a penalty of 1 is incurred if Track 1 is scheduled in parallel

with Track 2, while a penalty of 10 is incurred if Track 1 is scheduled in parallel with

Track 3.

Lastly, the sessions rooms penalty sheet forms the session-room preference matrix as

shown in Table 5.8. In this example, a penalty of 100 is incurred if any room except for

Room 4 is utilised during Session 2.
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Table 5.8: Sessions Rooms Penalty Sheet

Room 1 Room 2 Room 3 Room 4

Session 1
Session 2 100 100 100
Session 3
Session 4

5.3.2 The Library

Even though several studies have developed both exact and heuristic methods for the

CoSP, it is very difficult to compare them as benchmark instances are not available.

Most studies report results based on a real-life or artificial CoSP instance. However,

the developed methods should be ideally tested on a dataset in order to measure their

performance and to enable comparisons. With this in mind, we propose a benchmark

dataset that is publicly available to the research community and can be downloaded from

https://github.com/ahmedkheiri/CoSPLib. The dataset consists of sixteen instances

from four conferences, namely the Genetic and Evolutionary Computation Conference

(GECCO), the OR Society’s 60th Annual Conference (OR60), the New to OR Con-

ference (N2OR), and the International Symposium on Forecasting (ISF). We present

the characteristics of each instance in Table 5.9. OR60F, OR60F2 and OR60F3 are

artificially generated instances derived from OR60.

5.4 Hyper-Heuristic for CoSP

Hyper-heuristics are general-purpose problem-independent search methodologies that

exploit the search space of low-level heuristics to solve computational optimisation prob-

lems. They are classified into two main types: generation hyper-heuristics which gen-

erate new heuristics and selection hyper-heuristics which select heuristics. A selection

hyper-heuristic is further categorised into either a constructive or perturbative hyper-

heuristic depending on the nature of its search structure. While the former type starts

with an empty solution and constructs a complete solution by selecting and applying

a low-level heuristic at each step, the latter type requires a complete solution where

at each step it selects and applies a low-level heuristic to improve the solution. A de-

tailed classification of selection hyper-heuristics can be found in the study of Drake et al.

(2020).

https://github.com/ahmedkheiri/CoSPLib
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Table 5.9: Benchmark Instances

Instance Submissions Tracks Sessions Rooms Timeslots

GECCO2019 202 29 13 10 45
GECCO2020 158 24 7 8 28
GECCO2020 Poster 131 1 2 1 132
GECCO2020 Workshop 131 26 8 10 40
GECCO2021 138 27 6 8 24
GECCO2021 Workshop 203 28 8 10 56
GECCO2022 179 39 7 8 56
GECCO2022 Workshop 138 59 8 10 80
GECCO2023 207 26 6 9 60
GECCO2023 Workshop 233 55 8 9 80
ISF2022 311 49 11 10 36
N2OR 35 8 4 4 9
OR60 329 45 8 23 24
OR60F 279 45 8 23 24
OR60F2 556 72 16 23 49
OR60F3 1112 72 32 23 105

We have developed a selection perturbative hyper-heuristic to generate optimised con-

ference schedules. The framework of our method involves a two-step iterative process

during problem-solving as shown in Algorithm 2.

Algorithm 2: Simple Random - Improving or Equal

1 Let O represent the set of operators
2 Let S represent the current solution
3 Let Snew represent the new solution
4 S ← Initialise();
5 repeat
6 Oi ← Select(O);
7 Snew ← ApplyOperator(Oi, S);
8 if Snew ≤ S then
9 S ← Snew;

10 end

11 until TimeLimit ;

In the first step, a low-level heuristic is selected randomly and is applied to the solution.

Then, in the second step, if the modified solution is not worse than the previous, it is

accepted. Otherwise, it is rejected and the previous solution is restored.
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Table 5.10: High-level Schedule Solution Example

Session
Room

Room 1 Room 2 Room 3

Session 1 Track 1 Track 2 Track 3

Session 2 Track 1 Track 2 Track 5

Session 3 Track 1 Track 4 Track 6

Table 5.11: Low-level Schedule Solution Example

Timeslot
Room

Room 1 Room 2 Room 3

Timeslot 1 (Session 1) Sub 1 Sub 9 Sub 14
Timeslot 2 (Session 1) Sub 2 Sub 10 Sub 15
Timeslot 3 (Session 1) Sub 3 Sub 11 Sub 16

Timeslot 1 (Session 2) Sub 4 Sub 12 Sub 20
Timeslot 2 (Session 2) Sub 5 Sub 13 Sub 21

Timeslot 1 (Session 3) Sub 6 Sub 17 Sub 22
Timeslot 2 (Session 3) Sub 7 Sub 18 Sub 23
Timeslot 3 (Session 3) Sub 8 Sub 19 Sub 24

The solution is represented by two matrices which correspond to a high-level and a

low-level conference schedule. In the first matrix (high-level), rows represent sessions,

columns represent rooms, and elements indicate the scheduled track as shown in Ta-

ble 5.10.

In the second matrix (low-level), rows represent the time slots for each session, columns

represent rooms, and elements show the scheduled submission as shown in Table 5.11.

Our hyper-heuristic uses three low-level heuristics, specifically two swap heuristics and

a reverse heuristic. One of the swap heuristics is applied on the high-level schedule and

swaps a track with another track randomly. The other swap heuristic is applied on the

low-level schedule and swaps two submissions of the same track at random. The reverse

heuristic is also applied on the low-level schedule where a randomly selected sequence

of submissions of the same track are reversed. To enhance the exploration of solutions,

we introduce random shuffling of the current solution at regular intervals during the

algorithm’s execution. Preliminary experiments showed that shuffling every 600 seconds

balances exploration and exploitation.

A feasible solution is achieved by satisfying the hard constraints as described in Sec-

tion 5.3.1.1, and the quality of the solution is given by evaluating the violations of

the weighted soft constraints presented in Section 5.3.1.2. Each of the soft constraints,

SC = {sc1, sc2, . . . , scn}, is assigned a weight, w = {wsc1 , wsc2 , . . . , wscn}, according to
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their subjective significance, where n is the total number of constraints. The goal is

to minimise the following objective function which is a summation of the weighted soft

constraints violations;

min
n∑

n=1

wscn × Vscn (5.1)

where wscn indicates the corresponding weight of constraint SCn, and Vscn indicates the

corresponding violated amount of constraint SCn.

An i7-11370H CPU Intel Processor with 8 cores at 3.30GHz with 16.00 GB RAM was

used to generate the results and the hyper-heuristic algorithm was developed in Python

3.8.3. Each instance was solved in a single run by the hyper-heuristic within a 1 hour

time limit. The weights used and the results are reported in Table 5.12, where “-”

denotes that a constraint is not used. Note that, as we are using a heuristic method,

the hard constraints are treated as soft constraints but with very high weights to ensure

their satisfaction in the final solution. This approach resulted in feasible solutions in all

instances, with the only exception being the GECCO20 instance, which resulted in 3

presenter conflicts.

5.5 Conclusion

In this work, we have provided a benchmark dataset, the CoSPLib, for the under-studied

conference scheduling problem which consists of sixteen instances from the following con-

ferences: the Operational Research Society’s Annual Conference, the New to Operational

Research Conference, the Genetic and Evolutionary Computation Conference, and the

International Symposium on Forecasting. We believe that this library will facilitate the

comparison and evaluation processes of different developed methods tackling CoSPs.

We also hope that the research community will contribute to the further development

of the CoSPLib by submitting new instances, constraints, and developed methods. This

could potentially create competition in terms of developing new scheduling methods and

raise awareness of the real-world problem of conference scheduling. We have also pre-

sented a hyper-heuristic algorithm which follows a weighted sum approach, and solved

all instances from the benchmark dataset. Lastly, we have reported the computational

results of our method to allow their comparison with the results of future works.

Acknowledgement: This work was supported by the UK Research and Innovation

under Grant EP/V520214/1.
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Chapter 6

Exact and Hyper-heuristic

Methods for Solving the

Conference Scheduling Problem

6.1 Introduction

Conferences are crucial events for academic communities, offering numerous benefits to

participants such as sharing the latest research, exchanging ideas, receiving feedback,

and networking with peers from diverse backgrounds. To fully exploit these benefits, an

effective schedule is essential. However, generating such a schedule is challenging due

to numerous preferences and constraints. Traditionally, a group of organisers manually

schedules conferences, which is a time-consuming and error-prone process often sub-

ject to last-minute changes. Previously, achieving any feasible schedule was sufficient

(Sampson, 2004). Nevertheless, nowadays the focus has shifted towards optimising the

schedule quality.

The conference scheduling problem (CSP) was introduced in Eglese and Rand (1987)

and proved to be NP-hard in Quesnelle and Steffy (2015). Even though the CSP

was introduced a few decades ago, it has not been studied as much as related prob-

lems such as class and exam scheduling (Sampson and Weiss, 1996; Sampson, 2004;

Thompson, 2002). There are two primary approaches to CSP based on constraints and

objectives: the Presenter-Based Perspective (PBP) and the Attender-Based Perspective

(ABP) (Thompson, 2002). The PBP considers specific requests from presenters, such as

106
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presenting on a particular day or time. The ABP focuses on minimising attendee prefer-

ence violations, ensuring attendees can attend their preferred sessions without conflicts

or space shortages (Zulkipli et al., 2013). Some studies adopted a mixed approach,

balancing both presenters’ and attendees’ preferences (Nicholls, 2007).

The main goal of this study is the investigation of different decision support tools for the

creation of a generic conference scheduler applicable to many conferences. These tools

are freely available at https://github.com/ahmedkheiri/CoSPLib and can be used to

generate both high and low level optimised conference schedules in an autonomous and

fully automated manner. A generic solution approach has been designed to allow the

customisation of our scheduler to fit the needs of different conferences.

6.2 Problem Description

To clarify the terminology used in this paper due to the diverse conference terms in CSP

literature, we define the following:

• Submission: A formal event that requires scheduling at a conference, replacing

terms such as paper, presentation, talk, discussion, and panel.

• Track: A group of submissions with a similar subject, synonymous with terms

such as stream, subject area, and topic.

• Session: A specific time period of the conference consisting of multiple time slots.

• Time Slot: A fixed, predefined duration available for the presentation of a sub-

mission.

In general, a typical CSP involves scheduling tracks into sessions and rooms to form

the high-level schedule, and scheduling submissions into sessions, rooms, and time slots

to form the low-level schedule, subject to multiple soft and hard constraints. Some

studies in the literature generate both high and low-level schedules, whereas others only

generate a high-level schedule, requiring organisers to generate the low-level schedule.

Due to the diverse constraints and objectives of different conferences, various problem

descriptions, objective functions, and methods have been developed to meet specific

needs. As a result, different mathematical models and heuristic methods have been

designed for particular conferences, and a method effective for one conference might be

unsuitable for another.

https://github.com/ahmedkheiri/CoSPLib
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A spreadsheet file is used to store input data, which follows a specific template with

the purpose of providing a generic approach suitable for many conference scheduling

problems. Our scheduler contains a pool of constraints to select from and allows weight

assignment for each constraint based on their subjective significance. In addition, the

scheduler is also suitable for hybrid and online conferences where submissions need to

be scheduled in appropriate sessions considering timezone information. When a CSP

is solved using the scheduler, an informative solution file is generated which provides

insights regarding the solution quality. The decision maker is not only able to view a

detailed report of violations for each constraint but also can manually edit the solution

and observe the impact of their changes on solution quality.

6.3 Methodology

Different decision support tools, including integer programming, heuristics, and matheuris-

tics are investigated to build the conference scheduler. All these developed optimisation

methods are included in the conference scheduler allowing the decision-maker to select

which one they wish to use as some methods may perform better than others depending

on the given CSP.

The first tool extends the integer programming model described in Pylyavskyy et al.

(2024a). In Pylyavskyy et al. (2024a), two integer programming models were developed

to generate high and low-level schedules in a fully automated manner. The results on real

data from five different conferences and on additional artificial instances demonstrated

the success of the exact models in finding optimal solutions for almost all instances. The

second tool is described in Pylyavskyy et al. (2024b) which is a matheuristic solution

approach that consists of two phases. In phase one, an integer programming model is

used to build the high-level schedule by assigning tracks into sessions and rooms. Based

on this solution, in phase two, the low-level schedule is created where submissions are

allocated into sessions, rooms, and time slots. Then, a selection perturbative hyper-

heuristic is used to further optimise both levels of the schedule. This solution approach

was compared against an integrated mathematical model under different time limits on

a set of real and artificial instances. The results showed that the matheuristic finds

near-optimal solutions and finds solutions for instances where the mathematical model

fails to provide solutions within the one hour time limit. The third tool is a selection

hyper-heuristic algorithm, described in Kheiri et al. (2024). The hyper-heuristic method
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was validated on GECCO 2019 data and has been used to generate effective schedules

for GECCO conferences from 2020 onwards.

In this study, we present the required modifications in the formulations presented in

Pylyavskyy et al. (2024a) to obtain the equivalent mathematical models with time slots

and discuss their performance compared to the original mathematical models. We also

present an approximation model with a simpler, relaxed objective function which is

obtained through transformations and discuss its performance compared to the exact

model with time slots. Additionally, we compare the performance of all these methods

by solving the benchmark instances from Kheiri et al. (2023), and discuss the benefits

and limitations of each method.

6.3.1 Mathematical Models with Time Slots for CSPs

Conference organisers may request some submissions to be scheduled in a specified order

within their track. This is a constraint that has to be resolved on a time slot level and

cannot be handled by formulations presented in Pylyavskyy et al. (2024a). To form the

submissions ordering constraint, we first need to introduce a new subset SUo
t , a new

parameter ids,ts and change X
(t,su)
s,r decision variables to include time slots:

su ∈ SUo
t : The subset of submissions sorted by their specified scheduling order

belonging to track t

ids,ts : The chronological order of time slot ts belonging to session s

X
(t,su)
s,r,ts ∈ {0, 1} :1 if submission (t, su) is scheduled in session s, room r,

and time slot ts; 0 if not

With the above changes, we can now form the submissions ordering constraint, Eq. 6.1,

which ensures that submissions of a given track are scheduled in the desired specified

order. ∑
s∈S

∑
r∈R

∑
ts∈T Ss

ids,ts ×X
(t,su)
s,r,ts + 1 ≤

∑
s∈S

∑
r∈R

∑
ts∈T Ss

ids,ts ×X
(t,su+1)
s,r,ts

∀ t ∈ T , ∀ su ∈ SUo
t \ {SUo

t }
(6.1)
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6.3.1.1 Exact Model

To obtain the equivalent exact model of Pylyavskyy et al. (2024a) with time slots,

we need to proceed with the following modifications. Firstly, we need to add the set of

constraints Eq. 6.2 which ensures that each time slot either gets assigned one submission

or remains empty.

∑
(t,su)∈T SU

X
(t,su)
s,r,ts ≤ 1 ∀ s ∈ S,∀ r ∈ R, ∀ ts ∈ T Ss (6.2)

Additionally, we modify constraints Eq. 1, Eq. 2, Eq. 6, Eq. 7, and Eq. 10 of Pylyavskyy

et al. (2024a) as follows:

∑
s∈S

∑
r∈R

∑
ts∈T Ss

X
(t,su)
s,r,ts = 1 ∀ (t, su) ∈ T SU

Mp
s

∑
ts∈T Ss

X
(t,su)
s,r,ts +

∑
r′∈R\{r}

∑
ts′∈T Ss

∑
(t′,su′)∈T SUp

X
(t′,su′)
s,r′,ts′ ≤Mp

s ∀ s ∈ S,∀ r ∈ R,

∀ p ∈ P, ∀ (t, su) ∈ T SUp

∑
ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts − |T Ss|Zt

s,r ≤ 0 ∀ s ∈ S, ∀ r ∈ R, ∀ t ∈ T (6.3)

∑
ts∈T Ss

∑
su∈SUt

X
(t,su)
s,r,ts − Zt

s,r ≥ 0 ∀ s ∈ S, ∀ r ∈ R, ∀ t ∈ T

X
(t,su)
s,r,ts ∈ {0, 1} ∀ t ∈ T ,∀ su ∈ SU t, ∀ s ∈ S, ∀ r ∈ R, ∀ ts ∈ T Ss

Then, we need to change the objective function of the exact model, Eq. 11 of Pylyavskyy

et al. (2024a), as follows:

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

+
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

(wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r )X

(t,su)
s,r,ts

(6.4)
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6.3.1.2 Extended Model

The equivalent extended model of Pylyavskyy et al. (2024a) with time slots is obtained

by modifying constraints Eq. 14 and the objective function Eq. 20 as follows:

Ma
s

∑
ts∈T Ss

X
(t,su)
s,r,ts +

∑
r′∈R\{r}

∑
ts′∈T Ss

∑
(t′,su′)∈T SUa

X
(t′,su′)
s,r′,ts′ ≤Ma

s ∀ s ∈ S,∀ r ∈ R,

∀ a ∈ A,∀ (t, su) ∈ T SUa

min
∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

+
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

(wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r )X

(t,su)
s,r,ts

−πK ×
∑
s∈S

∑
r∈R

∑
t∈T

Kt
s,r

6.3.1.3 Approximation Model

We can relax the objective function of the exact model, Eq. (6.4), to create an approxi-

mation model by replacing Zt
s,r variables with X

(t,su)
s,r,ts variables through transformations

which we present next. To create the objective function of the approximation model,

we get Eq. (6.3) and proceed with the following steps:

∑
ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts − |T Ss|Zt

s,r ≤ 0 ∀ s ∈ S, ∀ r ∈ R,∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)X
(t,su)
s,r,ts ≤ |T Ss|Zt

s,r ∀ s ∈ S, ∀ r ∈ R,∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)

|T Ss|
X

(t,su)
s,r,ts ≤ Zt

s,r ∀ s ∈ S, ∀ r ∈ R, ∀ t ∈ T

∑
ts∈T Ss

∑
su∈SUt

n(t,su)(wααt
s+wββ

t
r+wγγs,r)

|T Ss|
X

(t,su)
s,r,ts ≤ (wαα

t
s + wββ

t
r + wγγs,r)Z

t
s,r

∀ s ∈ S,∀ r ∈ R,∀ t ∈ T
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We sum over sessions, rooms, and tracks to get the following inequality:

∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
t∈T

∑
su∈SUt

X
(t,su)
s,r,ts

|T Ss|
× n(t,su)(wαα

t
s + wββ

t
r + wγγs,r) ≤

∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

Lastly, we replace
∑

t∈T
∑

su∈SUt
with

∑
(t,su)∈T SU in the left hand side of the inequality:

∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

X
(t,su)
s,r,ts

|T Ss|
× n(t,su)(wαα

t
s + wββ

t
r + wγγs,r) ≤

∑
s∈S

∑
r∈R

∑
t∈T

(wαα
t
s + wββ

t
r + wγγs,r)Z

t
s,r

(6.5)

From Eq. (6.5), we replace the Zt
s,r variables in Eq. (6.4) and obtain the following

objective for the approximation model:

min
∑
s∈S

∑
r∈R

∑
ts∈T Ss

∑
(t,su)∈T SU

ω
(t,su)
s,r,ts X

(t,su)
s,r,ts

where ω
(t,su)
s,r,ts =

n(t,su)(wααt
s+wββ

t
r+wγγs,r)

|T Ss| + wδδ
(t,su)
s + wϵϵ

(t,su)
s + wζζ

(t,su)
r .

6.4 Computational Results

The results in this section were generated on an i7-11370H CPU Intel Processor with 8

cores at 3.30 GHz with 16.00 GB RAM. We used Python 3.8.3 and Gurobi 9.5.0. We

present the computational results in Table 6.1, where Objective indicates the aggrega-

tion of penalties caused by violations of soft constraints, Gap indicates the relative gap

between the two objective bounds, and Time indicates the required time for the solver

to terminate in seconds. N/A indicates the value is not available. We observe that the

size of the exact model is significantly larger compared to Table 3 of Pylyavskyy et al.

(2024a). The exact model with time slots replicated the results of the exact model in

Pylyavskyy et al. (2024a) for some instances but with significantly worse computational

times, and was infeasible for the OR60F instance due to the submissions ordering con-

straints, Eq. 6.1. Additionally, the exact model with time slots failed to find solutions

within time limit for instances OR60F2 and OR60F3.

We observe that the extended model replicated the results of the extended model pre-

sented in Pylyavskyy et al. (2024a) for N2OR, GECCO20, and GECCO21 instances at

worse computational times compared to Table 6 of Pylyavskyy et al. (2024a). It also
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Table 6.1: Exact, Extended and Approximation Models with Time Slots Results

Exact Model Extended Model Approximation Model

Instance Variables Constraints Objective Gap (%) Time (s) Variables Constraints Objective Gap (%) Time (s) Variables Constraints Objective Time (s)

N2OR 1,420 387 0 0.000 0.3 1,516 691 1 0.000 1.2 1,420 387 0 0.3
GECCO19 94,960 27,361 1,000,010 0.001 3,600.0 98,440 39,400 2,000,080 0.001 3,600.0 94,960 27,361 1,000,020 3,600.0
GECCO20 36,928 6,604 6,110 0.000 420.0 38,080 10,333 7,750 0.000 3,274.6 36,928 6,604 6,110 159.5
GECCO21 28,008 4,993 11,130 0.000 98.0 29,088 9,805 11,130 0.000 292.0 28,008 4,993 11,130 56.8
OR60 190,923 41,540 Infeasible N/A 6.6 198,168 66,602 Infeasible N/A 6.0 190,923 41,540 Infeasible 6.6
OR60F 163,323 31,707 Infeasible N/A 2,289.2 170,568 53,442 Infeasible N/A 3,600.0 163,323 31,707 Infeasible 2,224.0
OR60F2 654,764 79,023 N/A N/A 3,600.0 679,604 174,776 N/A N/A 3,600.0 654,764 79,023 N/A 3,600.0
OR60F3 2,740,128 176,470 N/A N/A 3,600.0 2,791,464 353,271 N/A N/A 3,600.0 2,740,128 176,470 N/A 3,600.0

found a slightly worse objective for GECCO19 instance and failed to find solutions for

OR60F2 and OR60F3 within the time limit.

Similar to the extended model, the objective values of the approximation model have

been computed through evaluation functions in order to present the objective value of

the exact model. The results of approximation model compared to the exact model

reveal that the objective of the exact model was replicated in all instances except for

GECCO19 for which a slightly worse objective was found. Moreover, the approximation

model achieved a better computational time for GECCO20 and GECCO21 instances

but also failed to find solutions for OR60F2 and OR60F3.

Overall, the presented models with time slots managed to replicate the results of the

models presented in Pylyavskyy et al. (2024a) for some instances. The computational

times were significantly worse, compared to the models in Pylyavskyy et al. (2024a), due

to the increased size of the models, which makes them impractical for larger instances

such as OR60F2 and OR60F3. However, they seem to be suitable for conferences that

have similar size to N2OR and GECCO which involve constraints that need to be re-

solved on a time slot level. Lastly, it should be noted that the models presented in

Pylyavskyy et al. (2024a) should be preferred over the models with time slots for con-

ference scheduling problems including only constraints that need to be addressed on a

session level.

6.4.1 Performance Comparison of Different Methods for CSPs

In this section, we compare the performance of different methods by solving the bench-

mark instances and using the weights from Kheiri et al. (2023). To make the methods

comparable, we considered the extended model with time slots from Section 6.3.1.2 and

relaxed certain hard constraints as in Pylyavskyy et al. (2024b). Specifically, the re-

laxed constraints are the following: submissions ordering, parallel tracks, number of

rooms per track, and similar tracks. For the remaining two methods, the matheuristic
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Table 6.2: The Performance of Integer Programming (IP), Matheuristic (MH), and
Hyper-heuristic (HH). Best solutions are highlighted in bold.

Instance IP MH HH

GECCO19 98 49 114
GECCO20 5,784 3,895 4,695
GECCO20 Poster 0 0 0
GECCO20 Workshop 72,825 76,627 78,126
GECCO21 221 146 153
GECCO21 Workshop 41,774 11,519 12,053
GECCO22 14,011,954 5,681 2,369
GECCO22 Workshop 22,974 1,920 4,045
GECCO23 21,030,737 3,001,684 5,011,086
GECCO23 Workshop 1,081,310 145 20,151
ISF22 N/A 572 110,863
N2OR 1 1 1
OR60 104,210 43,577 35,477
OR60F 34,069 13,719 10,310
OR60F2 78,633 34,267 51,364
OR60F3 N/A 83,136 132,323

and the hyper-heuristic, no modifications were needed. Each instance was solved with

a time limit of one hour for each method and the results are presented in Table 6.2.

By observing Table 6.2, we notice that the matheuristic method had the best per-

formance overall finding the best solutions in 10 out of 16 instances. The next best

performance was achieved by the hyper-heuristic method which found the best solutions

in 3 out of 16 instances, followed by the integer programming method which only found

the best solution for the GECCO20 Workshop instance, but it failed to find a solution

within the time limit for ISF22 and OR60F3. All methods successfully found the opti-

mal solution for GECCO20 Poster and N2OR instances. In the next paragraphs, some

key takeaways from this experiment are discussed including benefits and limitations of

each method.

The integer programming method has several benefits compared to the other methods.

First of all, it is mostly appropriate for instances involving only constraints that need to

be resolved on a session level and for instances where hard constraints can be satisfied

(e.g., GECCO20 Poster, N2OR). In this case, the models presented in Pylyavskyy et al.

(2024a) can be used which are significantly smaller in size compared to mathematical

models with time slots and, thus, much faster to solve. In addition, this method is ideal

for small conferences with few constraints and it may achieve proven optimal solutions
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given that the model does not need to be relaxed. On the other hand, the integer

programming has several limitations too. It is slow for instances involving constraints

that need to be resolved on a time slot level and, sometimes, it may fail to return a

solution (e.g., ISF22). Another limitation is that for instances where hard constraints

cannot be satisfied, the model needs to be relaxed and, hence, the final solution is not

guaranteed to be optimal. Lastly, this method is unsuitable for large scale instances due

to the increased size of the model (e.g., OR60F3).

The matheuristic and hyper-heuristic methods have common benefits over the math-

ematical models. Both methods achieve decent solutions and can handle numerous

constraints of both types, time slot and session level. Additionally, both methods al-

ways return a solution and they are suitable for conferences of all sizes including large

scale instances. Moreover, the matheuristic method finds good solutions faster than the

hyper-heuristic, but both methods due to the heuristic nature are not guaranteed to find

optimal solutions.

Overall, the integer programming method is suitable for small to medium size conferences

where hard constraints can be satisfied and need to be resolved on a session level. The

matheuristic and the hyper-heuristic methods are suitable for all conferences of any

size and for any type of constraints including both time slot and session level. Lastly,

the matheuristic method is faster in finding decent solutions, compared to the hyper-

heuristic, which allows the exploration of additional alternative solutions within a short

amount of time.

6.5 Conclusion

This work is concerned with the optimisation of the conference scheduling problem. In

this study, we presented extended formulations of mathematical models which are suit-

able for constraints that need to be resolved on time slot level. Moreover, we presented

an approximation model with a simpler, relaxed objective function which is obtained

through transformations, and tested all the mathematical models on a set of real and

artificial instances. The mathematical models with time slots managed to replicate the

results of the models presented in Pylyavskyy et al. (2024a) for some instances, but

at significantly worse computational times due to their increased size. In addition, we

compared the performance of three different methods based on exact, matheuristic and

hyper-heuristic techniques by solving the benchmark instances (available at Kheiri et al.
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(2023)) to explore the benefits and limitations of each method. We observed that the

matheuristic had the best performance overall finding better solutions than the other

methods in 10 out of 16 instances. Overall, the integer programming method is suit-

able for certain conferences with specific characteristics, while the matheuristic and the

hyper-heuristic methods are suitable for all conferences of any size and for any type of

constraints including both time slot and session level. A potential future work could

include the exploration of the characteristics that make an instance harder to solve

compared to others. For example, ISF22 instance is much harder to solve exactly in

comparison to other instances of similar size. This might be caused by the limited

number of available time slots, however, other characteristics could also play a vital

role.
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Chapter 7

Conclusion

In this chapter, the contributions of this thesis are summarised in section 7.1, new

knowledge and the significance of this research are presented in section 7.2, and potential

directions for future work are suggested in section 7.3.

7.1 Summary of Work

This thesis has successfully provided answers to the research questions that were formed

in chapter 1. Firstly, the approach followed in this research revealed the feasibility of

a generic conference scheduler through the proposal of various modelling formulations

considering common objectives and constraints encountered in conference scheduling.

Secondly, different operations research techniques were investigated to identify their

benefits, drawbacks, and suitability to solve CoSPs, including online and hybrid modes.

Thirdly, the code base of the scheduler has been open-sourced, resulting in the first

open-source solution for conference scheduling. Lastly, the scheduler has already been

used to schedule several conferences, which emphasises the impact of this research and

increases the potential for further impact in the future.

In this paragraph, the main contributions to new knowledge and significance of this

research are outlined. First of all, this research proposed the first generic conference

scheduler that offers a complete solution to many conferences due to its flexible approach.

In addition, this is the first work in which hyper-heuristics have been used to solve CoSPs,

demonstrating their efficiency in solving challenging problems and their suitability in

tackling a wide range of problems. Moreover, this research has proposed a matheuristic

117
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method that achieves near-optimal solutions for CoSPs within a short amount of time.

Furthermore, the code base of this research has been open-sourced, making it the first

open-source code base for conference scheduling that allows its free usage to optimise

schedules for conferences and allows other researchers to contribute to it. Last but not

least, the scheduler has already been used to successfully schedule several conferences,

highlighting the significance and impact of this research. In the following paragraphs,

the contributions per chapter are presented.

In chapter 3, a generic solution approach was presented in which preferences and con-

straints are considered for both low-level and high-level schedules. Additionally, this was

the first work to consider timezone differences when scheduling hybrid and online con-

ferences. We also developed a penalty system to accommodate scheduling preferences

and combined it with the weighted sum method to form the objective function. Lastly,

we considered submissions with multiple time slots in our solution approach.

Next, in chapter 4, an alternative solution approach was proposed, namely a matheuristic

method, to enhance our generic conference scheduler. The proposed method can be

used for cases where the integer programming models fail to return a solution within a

reasonable amount of time. Moreover, this method provides additional flexibility when

handling constraints, allowing easy prioritisation of constraints without requiring any

reformulations.

In chapter 5, a hyper-heuristic algorithm was added to the scheduler to overcome the

need for a commercial solver, which is usually required by the developed mathematical

models for larger CoSPs. In addition, we provided a benchmark dataset along with

benchmarking results that were produced by the hyper-heuristic algorithm.

In chapter 6, we presented extended formulations of mathematical models suitable for

constraints that need to be resolved on time slot level. Moreover, we presented an ap-

proximation model with a simpler, relaxed objective function obtained through transfor-

mations. In addition, we provided a performance comparison of the developed methods

in this thesis by solving the benchmark instances to explore the benefits and limitations

of each method.

Overall, different operations research tools were investigated in this thesis which were

used to create a generic conference scheduler applicable to many conferences. The con-

ference scheduler is freely available at https://github.com/ahmedkheiri/CoSPLib and

is suitable to generate both high and low level optimised conference schedules in an ef-

fortless, autonomous, and fully automated manner. A generic solution approach has

https://github.com/ahmedkheiri/CoSPLib
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been designed to allow the customisation of the scheduler to fit the needs of different

conferences, and a spreadsheet file is used to store input data, which follows a specific

template with the purpose of providing a generic approach suitable for many conference

scheduling problems. The scheduler is also suitable for hybrid and online conferences

where submissions need to be scheduled in appropriate sessions considering timezone

information. It also allows one to select the constraints they are interested in from an

available pool of constraints, and assign a weight for each selected constraint based on

their subjective significance. In addition, it is also possible to select the optimisation

method from a number of different available optimisation methods that will be applied to

the problem at hand. Lastly, upon termination, the scheduler generates an informative

solution file which provides insights to decision-makers regarding the solution quality,

and allows them to manually edit the solution and observe the impact of their changes

on solution quality.

7.2 Lessons learned

In this section, the significance of this research and the newly acquired knowledge, which

may be applicable to other problems and future investigations, are further discussed. An

essential insight gained is the importance of attempting to formulate exactly the prob-

lem at hand, even when it appears intractable. Some researchers bypass this step and

directly attempt a heuristic solution. However, an initial attempt to resolve the problem

exactly provides a deeper comprehension of the problem and associated complexities.

This understanding can facilitate the innovation of more effective solutions. In this

research, I not only managed to formulate the problem exactly, but also solved some

instances exactly. This process inspired me to explore the decomposition of the problem

following a two-phase matheuristic approach, where constraints that are less challenging

to satisfy are solved exactly, while the more complex constraints are addressed heuristi-

cally. Additionally, I enhanced the hyper-heuristic algorithm by incorporating “repair”

low-level heuristics, which focus on refining the most constraint-violated segments of the

solution. As a result of these efforts, I successfully developed a matheuristic approach

that outperforms the other methods in performance across most tested instances. An-

other important lesson is to obtain a deep understanding of the problem. Before starting

developing solutions, it is significant to identify key constraints, objectives, trade-offs and

other specific challenges of a problem. Exploring multiple methods is another key lesson

as no single method would be efficient for every problem. Exact methods are powerful,
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but when facing computational limits, then heuristics are equally powerful and impor-

tant. Testing developed methods on real data is crucial too, as it provides validation

of the developed solutions and might help in identifying hidden or unknown challenges.

Lastly, mathematical models should be preferred as an ideal solution method, however,

developing a generic solution approach for a real-world problem requires scalability and

flexibility to accommodate diverse user needs, which makes heuristic methods more ap-

propriate.

7.3 Future Work

In the next paragraphs some potential directions for future work are discussed. Even

though multiple constraints have been considered in this thesis, there are additional

constraints that could be included to the conference scheduler which are described next:

• Submission’s Relative Order : Submissions should be scheduled with respect to

their specified relative order. The relative order does not imply time slot order.

The submission order currently considered implies time slot order.

• Track’s Relative Order : Tracks should be scheduled with respect to their specified

relative order. This constraint can facilitate requests where some tracks should

not start before some other tracks have been completed.

• Track’s Building : Schedule a track in one building. In some cases (e.g., EURO),

there may be a number of buildings used during the conference. Hence, this

constraint could prevent participants interested in a specific track to move from

one building to another.

• Balance: Submissions should be scheduled in a balanced manner within rooms

across sessions. This constraint could prevent some parallel sessions having differ-

ent number of submissions scheduled (e.g., a parallel session where 4 submissions

are scheduled in one room and 2 submissions scheduled in another room).

• Open Session: A submission is specified whether it can open a session or not.

• Close Session: A submission is specified whether it can close a session or not.

• Different Session: Two or more submissions should be scheduled in different ses-

sions.
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• Same Session: Two or more submissions should be scheduled in the same session.

• Track’s Maximum Number of Days: The maximum number of days that a track

should be scheduled in.

• Tracks Same Room: Some tracks should be scheduled in the same room.

• Tracks Same Building : Some tracks should be scheduled in the same building.

• Preferred Number of Time slots: The preferred number of time slots that should

be scheduled in a session.

Another potential future work could include the exploration of the characteristics that

make an instance harder to solve compared to others. For example, ISF22 instance is

much harder to solve exactly in comparison to other instances of similar size. This might

be caused by the limited number of available time slots, however, other characteristics

could also play a vital role. Furthermore, it could be worth exploring the conference

scheduling problem with more scheduling freedom where conference organisers could

allow certain submissions to be flexible and provide alternative eligible tracks for that

submission. Additionally, conference organisers could allow for changes in the structure

of the schedule by providing different options regarding the number of sessions, and a

range of minimum and maximum number of time slots for sessions. Moreover, sometimes

last-minute changes are required on a schedule that has already been published, which

allows very limited alterations on the schedule. Hence, it could be worth exploring

optimisation techniques that have been successfully applied to minimal perturbation

problems, such as Barták et al. (2003) and Phillips et al. (2017).

Finally, another potential direction is to explore multi-objective approaches other than

the weighted sum approach. Another approach that could be worth exploring is the lex-

icographic approach, where different objectives are categorised into an order of priority

levels. Objectives at lower levels are considered infinitely more important than those

at higher levels. Consequently, the algorithm seeks the optimal solution for objectives

at lower levels before addressing those at higher levels. In the weighted sum approach,

the set of objectives is combined into a single objective by multiplying each objective by

a user-supplied weight. This method is widely used, but determining the appropriate

weights for each objective can be challenging. Typically, weights are assigned in pro-

portion to the relative importance of each objective in the problem. However, one of

the main challenges with the weighted sum method arises in non-convex multi-objective
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problems, where certain Pareto-optimal solutions may be missed. Consequently, further

research could explore alternative methods that may perform better in such cases.
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Johan Springael. A metaheuristic for the school bus routing problem with bus stop

selection. European Journal of Operational Research, 229(2):518–528, 2013.

Alexander Schrijver et al. On cutting planes. Combinatorics, 79:291–296, 1980.

Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and Gunter Dueck.

Record breaking optimization results using the ruin and recreate principle. Journal

of Computational Physics, 159(2):139–171, 2000.

Jorge A Soria-Alcaraz, Gabriela Ochoa, Jerry Swan, Martin Carpio, Hector Puga, and

Edmund K Burke. Effective learning hyper-heuristics for the course timetabling prob-

lem. European Journal of Operational Research, 238(1):77–86, 2014.

Thomas Stidsen, David Pisinger, and Daniele Vigo. Scheduling EURO-k conferences.

European Journal of Operational Research, 270(3):1138–1147, 2018. ISSN 0377-2217.

Gary M. Thompson. Improving conferences through session scheduling. Cornell Hotel

and Restaurant Administration Quarterly, 43(3):71–76, 2002.



Bibliography 131

Robert J Vanderbei. Linear programming: foundations and extensions. Journal of the

Operational Research Society, 49(1):94–94, 1998.

Bart Vangerven, Annette M.C. Ficker, Dries R. Goossens, Ward Passchyn, Frits C.R.

Spieksma, and Gerhard J. Woeginger. Conference scheduling — a personalized ap-

proach. Omega, 81:38–47, 2018. ISSN 0305-0483.

Alexander Veremyev, Oleg A Prokopyev, and Eduardo L Pasiliao. An integer program-

ming framework for critical elements detection in graphs. Journal of Combinatorial

Optimization, 28:233–273, 2014.

H Paul Williams. Integer programming. In Logic and Integer Programming, pages 25–70.

Springer, 2009.

Chirayu Wongchokprasitti, Peter Brusilovsky, and Denis Parra-Santander. Conference

navigator 2.0: community-based recommendation for academic conferences. 2010.
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Appendix A

Conference Scheduler - User

Guides

A.1 Project Description

A.1.1 Overview

The Conference Scheduler is an advanced tool designed to optimise the process of

scheduling conferences in an autonomous, effortless and fully automated manner. This

tool uses Excel, which follows a specific template, to store input data and Python for

the implementation of optimisation algorithms, ensuring that conference schedules are

created efficiently and effectively. The primary goal is to provide a complete solution to

automated conference scheduling that is easily customised to fit the needs of different

conferences.

A.1.2 Key Features

1. User-Friendly Data Input: Users can easily input and manage their data using

Excel. An Excel template along with data examples are provided to standardise

the data entry process, minimise errors and offer flexibility.

2. Automated Scheduling: Automatically assigns tracks to sessions and rooms,

and submissions to sessions, time slots and rooms based on the input data and

optimisation criteria. It also detects and resolves potential conflicts, ensuring a

smooth and conflict-free conference schedule.
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3. Constraints Management: Contains a pool of constraints to select from and

allows weight assignment for each constraint based on user’s preferences.

4. Advanced Optimisation Techniques: Advanced optimisation algorithms are

included in the scheduler to ensure a quick schedule generation, even for large-scale

conferences with thousands of submissions.

5. Hybrid & Online Conferences: Suitable for hybrid and online conferences

where submissions need to be scheduled in appropriate sessions considering time-

zone information.

6. Output and Reporting: Generates comprehensive optimised schedules in Excel

format that can be easily reviewed and shared with stakeholders. The user is not

only able to view a detailed report of violations for each constraint but also can

manually edit the solution and observe the impact of their changes on solution

quality.

A.1.3 Benefits

• Time-Saving: Automates the arduous and time-consuming manual process of

conference scheduling, saving significant time and effort for conference organisers.

• Optimisation: Uses advanced optimisation techniques to deliver high-quality

conference schedules considering numerous preferences and constraints.

• Flexibility: Adaptable to different types of conferences and can handle a wide

range of scheduling requirements.

• Accuracy: Reduces the likelihood of human error through automated checks and

optimisations.

• Scalability: Suitable for managing both small and large conferences.

A.1.4 How It Works

1. Excel file configuration: Users enter their data into the provided Excel tem-

plate, set scheduling requirements and specify preferences (see Section A.2).

2. Optimisation Process: The Excel data is imported into the system and the user

selects their preferred algorithm for scheduling optimisation (see Section A.3).
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3. Review and Adjustments: The system generates the optimised schedule, which

is then exported back into Excel. Users can then easily review the generated

schedule, make any necessary adjustments and observe the impact on the schedule

quality, and finalise the conference plan (see subsubsection A.3.4.2).

A.1.5 Dependencies

• NumPy ≥ 1.24.2

• pandas ≥ 2.2.2

• PuLP ≥ 2.8.0

• Python ≥ 3.8.16

• pytz ≥ 2022.2

A.1.6 Terminology

• Submission: A formal event that requires scheduling at a conference (e.g., paper,

presentation, tutorial, workshop, etc.).

• Track: A group of submissions with similar subject (e.g., stream, subject area,

topic, etc.).

• Time slot: A fixed predefined amount of time available for presentation (e.g., 15

minutes, 20 minutes, etc.).

• Session: A certain time period of the conference that consists of a number of time

slots (e.g., the duration of a session consisting of 4 time slots is 1 hour, assuming

each time slot is 15 minutes).

A.1.7 Constraints Available

Users are able to select the constraints to include during the schedule optimisation

by assigning a weight value to each constraint (see subsection A.2.9). The following

constraints are available to select from:
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• Presenters’ conflicts: In many conferences, authors are allowed to present more

than one submission. This is resolved by either scheduling such submissions within

the same room of a session or within different sessions (or time slots). Users can

select between session or time slot level conflict resolution. (see subsection A.2.1)

• Presenters’ preferences: These are requests received from presenters in which

they either express a preferred session to present their submission or declare their

unavailability to present at specific sessions. (see subsection A.2.1)

• Presenters’ time zones: On the occasion of an online or hybrid conference,

presenters may request the consideration of time zone differences upon scheduling.

(see subsection A.2.1 & subsection A.2.3)

• Rooms preferences: Sometimes presenters may request to present their submis-

sion at a specific room for various reasons. Some examples are that a room may

provide specific facilities which others do not provide, and some rooms may be

easier to access in comparison to others. (see subsection A.2.1)

• Attendees’ conflicts: Some conferences collect preferences from attendees re-

garding which submissions they would prefer to attend. In such cases, an attendee

conflict occurs when two preferred submissions of an attendee are scheduled in

parallel. This is resolved in the same way as presenters’ conflicts and users can

select between session or time slot level conflict resolution. (see subsection A.2.1)

• Rooms capacities: Users can express preferences regarding the scheduling of

tracks into rooms by setting appropriate penalty values. (see subsection A.2.6)

• Similar tracks: Sometimes, conferences have a number of tracks which are similar

with the potential of attracting the interest of the same audience. Users can define

which tracks are similar to avoid having them scheduled in parallel by setting

appropriate penalty values. (see subsection A.2.7)

• Parallel tracks: This constraint avoids scheduling the same track in parallel.

• Session hopping: Having a track scheduled in multiple rooms is inconvenient for

the participants as they would have to switch rooms frequently. This constraint

minimises the number of rooms that each track utilises.

• Track chairs’ conflicts: Tracks are usually chaired by a person who might be also

a presenter and/or an attendee at a conference. A track chair conflict occurs when

either a track chair is responsible for two tracks which are scheduled in parallel
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or a track chair is also a presenter or an attendee of a submission belonging to

another track which is scheduled in parallel. (see subsection A.2.2)

• Tracks’ scheduling preferences: Users can express preferences regarding the

scheduling of tracks into sessions by setting appropriate penalty values. (see sub-

section A.2.5)

• Rooms unavailability: Sometimes, certain rooms might be unavailable for utili-

sation during certain sessions. Users can define which rooms are unavailable during

certain sessions by setting appropriate penalty values. (see subsection A.2.8)

• Consecutive tracks: This constraint aims to schedule tracks in a consecutive

manner.

• Submission’s Order: Users can define the scheduling order of submissions within

their tracks.

A.1.8 Optimisation Methods Available

Users are able to select which optimisation method they prefer to optimise the conference

schedule (see Section A.3). Each optimisation method has its benefits and limitations

which are summarised in Table A.1 The following optimisation algorithms are available:

1. Integer Programming: Two mathematical models are available, an exact model

including basic constraints and an extended model including additional constraints.

For more information see https://doi.org/10.1016/j.ejor.2024.04.001.

2. Matheuristic: A decomposed robust matheuristic solution approach that consists

of two phases. In phase one, an integer programming model is used to build the

high-level schedule by assigning tracks into sessions and rooms. Based on this

solution, the low-level schedule is created where submissions are allocated into

sessions, rooms, and time slots. In phase two, a selection perturbative hyper-

heuristic is used to further optimise both levels of the schedule.

3. Hyper-heuristic: A selection perturbative hyper-heuristic consisting of four low-

level heuristics, specifically two swap heuristics, a reverse heuristic, and a ruin

and recreate heuristic. Its framework involves a two-step iterative process during

scheduling optimisation where, in the first step, a low-level heuristic is selected

randomly and is applied to the schedule. Then, in the second step, if the modified

https://doi.org/10.1016/j.ejor.2024.04.001
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schedule is not worse than the previous, it is accepted. Otherwise, it is rejected

and the previous schedule is restored.

Table A.1: Benefits and Limitations of each Optimisation Method

Method Benefits Drawbacks

Integer Programming Optimal solutions. May fail to return solution.
Best for small to medium
conferences with few con-
straints.

Unsuitable for time slot
level constraints.

Best for instances where
hard constraints can be
satisfied.

Unsuitable for large scale
instances.

Commercial software li-
cence required.

Matheuristic Fast and Decent solutions.
Always finds solutions.
Handles numerous con-
straints.

Sub-optimal solutions.

Suitable for both session
and time slot level con-
straints.

Commercial software li-
cence required.

Suitable for conferences of
any size including large
scale instances.

Hyper-heuristic Decent solutions.
Always finds solutions.
Does not require commer-
cial software licence.
Handles numerous con-
straints.

Sub-optimal solutions.

Suitable for both session
and time slot level con-
straints.

Slower than Matheuristic.

Suitable for conferences of
any size including large
scale instances.

A.1.9 Citation

If you use the Conference Scheduler in your research or conference planning, please cite

the relevant publication as follows:
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Ahmed Kheiri , Yaroslav Pylyavskyy, and Peter Jacko (2024) CSPLib – A Benchmark

Library for Conference Scheduling Problems.

Yaroslav Pylyavskyy, Ahmed Kheiri, and Peter Jacko (2024) A Two-phase Matheuristic

Approach to Conference Scheduling Problems.

Yaroslav Pylyavskyy, Peter Jacko, and Ahmed Kheiri. A Generic Approach to Confer-

ence Scheduling with Integer Programming. European Journal of Operational Research,

317(2):487-499, 2024. ISSN 0377-2217. doi: https: // doi. org/ 10. 1016/ j. ejor.

2024. 04. 001 .

A.1.10 Licensing

The Conference Scheduler code is open-source and is distributed under the MIT License.

By using the Conference Scheduler, you agree to comply with the terms and conditions

of the MIT License.

Please note that in order to use the GUROBI solver, a license is required.

A.1.11 Acknowledgements

The development of the Conference Scheduler has been supported by the UK Research

and Innovation through the Programme Grant EP/V520214/1.

A.2 Data Format

The Excel file containing the input data needs to follow the specific format as described

in the following sections. Many examples are available in the Dataset folder on github

(see https://github.com/ahmedkheiri/CSPLib/tree/main/Dataset). The Excel file

contains the necessary inputs for the Conference Scheduler and allows the user to make

configurations. It consists of the following sheets: submissions, tracks, sessions, rooms,

tracks sessions penalty, tracks rooms penalty, similar tracks, and sessions rooms penalty,

and parameters.

Note that all string type inputs are case sensitive and must exactly match each

other across all over the sheets, otherwise an error is raised. Users are strongly

 https://doi.org/10.1016/j.ejor.2024.04.001
 https://doi.org/10.1016/j.ejor.2024.04.001
https://github.com/ahmedkheiri/CSPLib/tree/main/Dataset
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suggested to avoid using special characters such as -,*,etc. as this may cause

errors.

A.2.1 Submissions

The submissions sheet contains information and constraints for each submission. It

consists of the following fields:

• Reference: Unique name or ID of submission. Each value is case sensitive,

it must be unique and of string type. For example, NEW19A19, submission1,

PaperOne, etc.

• Track: Name of track to which the submission belongs to. It refers to a group

which contains similar submissions. Each value is case sensitive and must be a

string. For instance, Analytics, Optimisation, Big Data and AI, etc.

• Required Timeslots: The number of time slots required for the submission.

Each value must be an integer.

• Order (optional): The order in which submission should be scheduled within its

respective track. Each value must be an integer. If irrelevant, use 0.

• Time Zone: The time zone of the main presenter’s location. The range of GMT

is between -12 to +12 (inclusive) and is used to determine the time zone. Half

hour differences are not supported. For example, if a time zone is GMT+5:30,

then a GMT+6 could be used instead. Each value is case sensitive and must

be in the following string format: GMT+/-#. For instance, GMT+0, GMT+2,

GMT-4, etc. If irrelevant, fill in the time zone of conference’s location.

• Presenters (optional): The author or authors of the respective submission.

Multiple authors can be used. Each value is case sensitive and must be a string.

Note that if multiple authors are used, each author must be separated by a comma

followed by <space>. For example, Author1, Author2, Author3. If irrelevant,

leave empty.

• Attendees (optional): The attendee or attendees of the respective submission.

Multiple attendees can be used. Each value is case sensitive and must be a

string. Note that if multiple attendees are used, each attendee must be sepa-

rated by a comma followed by <space>. For example, Attendee1, Attendee2,

Attendee3. If irrelevant, leave empty.
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In addition to these fields, separate columns must be used for each session followed

by columns for each room as shown in Figure A.1. The next number of columns is

determined by the total number of available sessions, where each column corresponds to

a session (from column H to column K in this example). Under these columns a penalty

value may be set accordingly so as not to schedule the corresponding submission into the

corresponding session. For instance, Submission 7 must be ideally scheduled in Session 1

or in Session 2 so we keep these values empty. Additionally, we do not want to schedule

Submission 7 in Session 3 or Session 4, but if that cannot be fully satisfied then we

prefer Session 3. To do so, we set a penalty value of 1 for Session 3 and a penalty value

of 10 for Session 4.

Then, the number of the remaining columns is determined by the total number of avail-

able rooms, where each column corresponds to a room (from column L to column O in

this example). Within these columns a penalty value may be set accordingly so as not

to schedule the corresponding submission into the corresponding room. For example, if

we want Submission 9 scheduled in Room 2, we penalise all rooms except for Room 2.

Figure A.1: Submissions sheet

A.2.2 Tracks

The tracks sheet contains information for each track and consists of the following two

fields:

• Tracks: Unique name or ID of track which contains submissions of similar subject.

Each value is case sensitive, it must be unique and of string type. For instance,

Analytics, Optimisation, Big Data and AI, etc.
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• Chairs (optional): The chair or chairs of the respective track. Multiple chairs

can be used. Each value is case sensitive and must be a string. Note that if

multiple chairs are used, each chair must be separated by a comma followed by

<space>. For example, Chair1, Chair2, Chair3. If irrelevant, leave empty.

A.2.3 Sessions

The Sessions sheet contains all the necessary information regarding sessions and consists

of the following fields:

• Sessions: Unique name or ID of session. Each value is case sensitive, it must be

unique and of string type. For example, Wed1, MonMorning, Thursday2, etc.

• Max Number of Timeslots: The maximum number of time slots in the respec-

tive session. Each value must be an integer.

• Date: The date that each session corresponds to. Each value must follow the

following format MM/DD/YYYY.

• Start Time: The time at which the session begins. Each value must be in the

following time format HH:MM. For instance, 12:00, 16:30, etc.

• End Time: The time at which the session ends. Each value must be in the

following time format HH:MM. For example, 12:00, 16:30, etc.

A.2.4 Rooms

The Rooms sheet contains the names of the rooms and consists of the following field:

• Rooms: Unique name or ID of room. Each value is case sensitive, it must be

unique and of string type. For example, Room 1, RoomA, etc.
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A.2.5 Tracks-Sessions Penalty

The Tracks-Sessions Penalty sheet is used to define penalty values to avoid scheduling

a specified track into a specified session as presented in Figure A.2. Column A includes

all tracks, and the number of next columns is given by the total number of sessions

available, where each column corresponds to a session (from column B to column E in

this example). Different penalty values can be used to express preferences. Note that

penalty values must be integers. For instance, Track 5 must be ideally scheduled in

Session 3 and/or in Session 4 so we keep these values empty. Additionally, we do not

want to schedule Track 5 in Session 1 or Session 2, but if that cannot be fully satisfied

then we prefer Session 2. To do so, we just set a small penalty value for Session 2 and

a high penalty value for Session 1.

Figure A.2: Tracks-Sessions Penalty sheet
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A.2.6 Tracks-Rooms Penalty

The Tracks-Rooms Penalty sheet is used to control the scheduling process of tracks into

rooms as displayed in Figure A.3. Column A contains all tracks, and the number of next

columns is given by the total number of rooms available, where each column corresponds

to a room (from column B to column E in this example). Different penalty values can be

used to express preferences. Note that penalty values must be integers. For instance,

if we want Track 1 and Track 2 scheduled in Room 4, then we set a penalty value for

all rooms except for Room 4.

Figure A.3: Tracks-Rooms Penalty sheet
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A.2.7 Similar Tracks

The Similar Tracks sheet allows to define which pair of tracks should not be scheduled

in parallel as shown in Figure A.4. Column A includes all tracks, and the number of

next columns is given by the total number of tracks, where each column corresponds

to a track (from column B to column I in this example). Different penalty values can

be used to express preferences. Note that penalty values must be integers. Suppose

Track 3 is similar to Track 6 and Track 8 and we do not want to schedule Track 3 and

Track 6 or Track 3 and Track 8 in parallel. We define this by simply setting a penalty

value for that pairs of tracks.

Figure A.4: Similar Tracks sheet
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A.2.8 Sessions-Rooms Penalty

The Sessions-Rooms Penalty sheet is used to define unavailability of rooms for certain

sessions as presented in Figure A.5. Column A contains all sessions, and the number

of next columns is given by the total number of available rooms, where each column

corresponds to a room (from column B to column E in this example). Different penalty

values can be used to express preferences. Note that penalty values must be integers.

For instance, if Room 3 is unavailable during Session 4, then we add a penalty value for

that session-room pair.

Figure A.5: Sessions-Rooms Penalty sheet
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A.2.9 Parameters

The Parameters sheet includes settings for hybrid or online conferences, and allows to set

weight values for penalties as shown in Figure A.6. Columns A and B are associated with

settings regarding hybrid or online conferences. The local timezone field refers to the

timezone that applies at the location of the conference. Next, suitable scheduling times

fields indicate the ideal scheduling time window for which submissions are not penalised.

Less suitable scheduling times fields create a new time window for which submissions are

slightly penalised, while unsuitable scheduling times are heavily penalised submissions.

All times are converted into local times of online presenters. For instance, a submission

would be penalised by 1 if the converted local time of the presenter is between 7:00 and

9:30 or between 21:30 and 23:00. If the converted local time is between 23:00 and 7:00

then a penalty of 10 will apply, otherwise if the converted local time is between 9:30

and 21:30 then no penalty applies. These settings along with defined session’s start and

end time are used to identify suitable sessions that are convenient for online presenters.

Lastly, columns D and E are used to set the weight values. Setting different weight

values allows the prioritisation of the listed types of penalties. Note that the time zone

field is case sensitive and must be in the following string format: GMT+/-# (e.g.,

GMT+2, GMT-4, etc.), the time field must be in the following time format HH:MM

(e.g., 10:30, 19:15, etc.), and penalty along with weight fields must be integers.

Figure A.6: Parameters sheet
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A.3 Use Cases

The Conference Scheduler consists of the following modules: Main, Optimisation, Pa-

rameters, Problem, Room, Session, Solution, Solver Checker v1.1, Submission, and Track.

To run the solver, the user should open and run the Main.py file. Some examples use

cases are presented in the next sections.

A.3.1 Integer Programming

Two integer programming models are available: an exact model and an extended model.

For best results, we recommend GUROBI solver which requires a licence. Alternatively,

“GLPK CMD” solver can be used which is free (see subsubsection A.3.4.1). Note that

both models only handle constraints on a session level and if any model is infeasible

then either some constraints need to be relaxed or another method should be selected

to schedule the conference.

The exact model handles the following constraints: presenters’ conflicts, presenters’

preferences, presenters’ time zones, rooms preferences, rooms capacities, parallel tracks,

session hopping, tracks’ scheduling preferences, and rooms unavailability.

The extended model includes all the constraints of the exact model and the following

additional constraints: attendees’ conflicts, similar tracks, track chairs’ conflicts, and

consecutive tracks.

A.3.1.1 Schedule N2OR conference using the exact model and print solu-

tion’s information

from Optimisation import *

instance = "N2OR"

f_name = "..\\Dataset\\"+str(instance)+".xlsx"

p = Problem(file_name = f_name)

parameters = p.ReadProblemInstance()

p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = Solution(p)

solver = ExactModel(p, sol)

solver.solve(timelimit = 3600)

print("Objective Value:", sol.EvaluateSolution())
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print("All submissions scheduled?", sol.EvaluateAllSubmissionsScheduled())

sol.printViolations()

A.3.1.2 Schedule GECCO21 conference (online) using the extended model

and save solution in Excel file

from Optimisation import *

instance = "GECCO21"

f_name = "..\\Dataset\\"+str(instance)+".xlsx"

p = Problem(file_name = f_name)

parameters = p.ReadProblemInstance()

p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = Solution(p)

solver = ExtendedModel(p, sol)

solver.solve(timelimit = 3600)

sol.toExcel(file_name = "Solution"+str(instance)+".xlsx")

A.3.2 Matheuristic

The matheuristic algorithm consists of two phases and handles all available constraints

including time slot level. In phase one, an integer programming model is used to build the

high-level schedule by assigning tracks into sessions and rooms (either requires GUROBI

license or see how to configure free solver in subsubsection A.3.4.1). Based on this

solution, the low-level schedule is created where submissions are allocated into sessions,

rooms, and time slots. In phase two, a selection perturbative hyper-heuristic is used to

further optimise both levels of the schedule.

A.3.2.1 Schedule ISF22 conference using the matheuristic with a 300 sec-

onds time limit overall and save solution in Excel file

from Optimisation import *

instance = "ISF22"

f_name = "..\\Dataset\\"+str(instance)+".xlsx"

p = Problem(file_name = f_name)

parameters = p.ReadProblemInstance()
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p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = Solution(p)

solver = Matheuristic(p, sol)

s_time = time()

solver.solve(s_time, run_time = 300)

sol.toExcel(file_name = "..\\Solution"+str(instance)+".xlsx")

A.3.2.2 Schedule OR60 conference using the matheuristic with a 90 seconds

time limit for phase one and 500 seconds time limit overall

from Optimisation import *

instance = "OR60"

f_name = "..\\Dataset\\"+str(instance)+".xlsx"

p = Problem(file_name = f_name)

parameters = p.ReadProblemInstance()

p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = Solution(p)

solver = Matheuristic(p, sol)

s_time = time()

solver.solve(s_time, run_time = 500, timelimit = 90)

A.3.3 Hyper-heuristic

The hyper-heuristic algorithm does not require a software license and it handles all

available constraints including time slot level. It consists of four low-level heuristics,

specifically two swap heuristics, a reverse heuristic, and a ruin and recreate heuristic.

Its framework involves a two-step iterative process during scheduling optimisation where,

in the first step, a low-level heuristic is selected randomly and is applied to the schedule.

Then, in the second step, if the modified schedule is not worse than the previous, it is

accepted. Otherwise, it is rejected and the previous schedule is restored.

A.3.3.1 Schedule GECCO22 conference using the hyper-heuristic with a

3600 seconds time limit and apply ruin and recreate every 600

seconds
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from Optimisation import *

instance = "GECCO22"

f_name = "..\\Dataset\\"+str(instance)+".xlsx"

p = Problem(file_name = f_name)

parameters = p.ReadProblemInstance()

p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = RandomInd(p)

solver = HyperHeuristic(p, sol)

s_time = time()

solver.solve(s_time, run_time = 3600, rr = 600)

print("Objective Value:", sol.EvaluateSolution())

print("All submissions scheduled?", sol.EvaluateAllSubmissionsScheduled())

sol.printViolations()

A.3.4 Additional Use Cases

A.3.4.1 How to configure the “GLPK CMD” free solver in integer pro-

gramming model

To configure the “GLPK CMD” solver follow the next two steps:

Step 1: Open the Optimisation.py file.

Step 2: Go to line 188 and comment it out, then uncomment line 189 as shown next

for the exact model. Similarly, comment out line 492 and uncomment line 493 for the

extended model.

#model.solve(GUROBI(msg = 0, MIPGap = 0, timeLimit = timelimit))

model.solve(GLPK_CMD(msg = 0))

For more information visit https://coin-or.github.io/pulp/guides/how_to_configure_

solvers.html

https://coin-or.github.io/pulp/guides/how_to_configure_solvers.html
https://coin-or.github.io/pulp/guides/how_to_configure_solvers.html
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A.3.4.2 How to manually edit an obtained schedule and observe the impact

on schedule’s quality

Suppose the conference scheduler has generated the N2OR schedule, SolutionN2OR.xlsx,

which is located in Solutions folder. To manually edit the schedule follow the next steps:

Step 1: Open the SolutionN2OR.xlsx file (e.g., Figure A.7).

Figure A.7: N2OR initial schedule
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Step 2: Proceed with editing and save the file. For example, swap the rooms of Ed-

ucation track and Big Data and AI track in session Wed1. Due to this change, the

following submissions must also be swapped rooms: NEW19A3758 and NEW19A3759

with NEW19A3728 and NEW19A3735. This will result in a new schedule as shown in

Figure A.8.

Figure A.8: N2OR edited schedule

Step 3: Open the Solver Checker v1.1.py file, edit as needed and run it to obtain the new

schedule with the updated violations. It is possible to view the impact of the changes

directly by printing on the console or by generating a new Excel file (violations sheet).

Below is the code for the N2OR example.

from Solution import *

p = Problem(file_name = "..\\Dataset\\N2OR.xlsx")

parameters = p.ReadProblemInstance()

p.FindConflicts()

p.AssignTimezonesPenalties(parameters)

sol = Solution(p)

sol.ReadSolution(file_name = "..\\Solutions\\SolutionN2OR.xlsx")

print("Objective Value:", sol.EvaluateSolution())

print("All submissions scheduled?", sol.EvaluateAllSubmissionsScheduled())

print("Is Solution Valid?", sol.ValidateSolution())

sol.printViolations()

sol.toExcel(file_name = "New_Solution.xlsx")
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Scheduling of GECCO2023

Since 1999, the Genetic and Evolutionary Computation Conference (GECCO) has show-

cased the latest high-quality results in genetic and evolutionary computation, covering

topics that range from genetic algorithms to evolutionary machine learning and their

application in real-world problems.

GECCO2023 was held at the Altis Grand Hotel, a landmark venue in Lisbon renowned

for hosting numerous notable events over the years. The conference took place from

July 15 to July 19, 2023, in a hybrid format, and involved 883 registrants (272 on-

line and 611 onsite). The first two days (Saturday and Sunday) focused on Work-

shops, Tutorials, Competitions, and Women+@GECCO, while the remaining three days

(Monday to Wednesday) featured the Opening and Closing ceremonies, Main Tracks,

Keynotes, Poster Sessions, ECiP (Evolutionary Computation in Practice), HOP (Hot

Off the Press), HUMIES (Human-Competitive Awards), and Job Market. The Poster

Sessions included a variety of submissions, such as poster submissions, Late-Breaking

Abstracts (LBAs), and entries from the student workshop and competitions.

The hotel featured a total of 8 rooms spread across four different floors. On the ground

floor, there was 1 room with a capacity of 90. The first floor had 3 rooms, each accom-

modating between 50 and 150 attendees. On the 12th floor, there was another room

with a capacity of 70. The 13th floor housed 3 rooms, with capacities ranging from 60

to 150 attendees. Additionally, the Plenary Room, located on floor -1, was available

exclusively from Monday to Wednesday for events such as Invited Keynotes.

During Saturday and Sunday, a total of 28 sessions were allocated for workshop tracks,

with each workshop lasting between 0.5 to 3 sessions. There were also two additional

153
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sessions reserved for the student workshop. Detailed information for each workshop

included the mode of attendance (online vs. in-person) for speakers and organisers,

time zones for online presentations, constraints for workshops and individual talks, as

well as the preferred order and duration of talks. For tutorial tracks, there were 32

sessions available. Additionally, two sessions were designated for competition tracks.

From Monday to Wednesday, approximately 192 time slots were available for talks.

This calculation was based on having 6 sessions per day over 3 days, with 8 rooms

available and 4 talks per session. Out of 209 submissions, 29 were designated as HOP

submissions. Four sessions were specifically allocated for HOP, with 7-8 time slots per

session. Additionally, there were 26 Best Papers (BPs) to be scheduled.

To generate an efficient schedule for the conference, multiple requirements had to be

considered, which are presented next:

1. Accommodation of speakers who were unavailable during specific sessions, includ-

ing time zone consideration for online speakers. (42 in total)

2. Avoid speakers’ clashes. Each talk could potentially clash with a number of talks,

ranging from 0 to 10.

3. Some talks had to be scheduled in a specific order within their corresponding track.

4. Some tracks were not allowed to be scheduled in specific sessions. (e.g., BP ses-

sions could not be scheduled on Wednesday to allow time for winners certificates

preparation)

5. Allocation of tracks into appropriate rooms by considering expected attendance.

(e.g., BP sessions required large rooms)

6. Avoid scheduling the same track in parallel to ensure participants do not miss their

preferred talk.

7. Some rooms had to be unused during specific sessions. (e.g., During the Job

Market session, the Plenary Room had to be free)

8. Accommodation of speakers who could not present in specific rooms due to acces-

sibility or facility issues.

9. Avoid scheduling some tracks in parallel due to similarity. (e.g., Workshop organ-

isers requested certain workshop and tutorials to not be scheduled in parallel)
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10. Consideration of the number of time slots that were available in each session.

Some flexibility was allowed for certain sessions but the majority of sessions had

to consist of 4 time slots.

11. Sessions that were scheduled at the upper floors had to start later, allowing ade-

quate time for participants to reach the floor due to limited elevators capacity.

12. Onsite and online talks had to be grouped separately to offer a smooth transition

between the two modes to participants.

13. The sessions on Tuesday before lunch had to end at different times to avoid over-

crowding during lunch.

14. Consideration of historical practices and consecutive scheduling of tracks. (e.g., In-

troductory Tutorials had to be scheduled on Saturday before Specialised Tutorials

which had to be scheduled on Sunday)

15. Workshops and Tutorials that were scheduled as first sessions last year were not

allowed to be scheduled again first.

16. Limitation of number of rooms assigned per track to prevent participants from

frequently switching rooms.

17. Consideration of track chair duties to avoid clashes. (e.g., A person being simul-

taneously a track chair in two tracks or being a speaker in another track)

18. Some talks required the usage of multiple time slots to be completely scheduled.

(e.g., Workshops, Tutorials, etc.)

Scheduling effectively the GECCO2023 conference by considering the above require-

ments is not a trivial task, and doing so manually would pose an arduous challenge for

the organisers. Therefore, to facilitate the scheduling process, we used our conference

scheduler which scheduled the conference in an effortless and autonomous manner. Our

algorithm only required an Excel file in which we set all the preferences and require-

ments of the conference. Then, we executed our algorithm to obtain multiple candidate

schedules within a few hours. The algorithm itself uses a selection hyper-heuristic that

incorporates a random selection method with an improve-or-equal move acceptance cri-

terion, which only accepts moves that do not deteriorate the current solution. Our

approach involves simple low-level heuristics, such as: (1) swapping a random talk with

another randomly chosen talk within the same track, (2) exchanging one track with
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another randomly chosen track, and (3) inserting a random talk into a different po-

sition within the same track. Each low-level heuristic is equally likely to be chosen,

with a probability of 1/3. To enhance the exploration of solutions, the algorithm pe-

riodically shuffles the current solution at regular intervals during execution. Thus, our

approach involves running the hyper-heuristic algorithm to support exploitation, fol-

lowed by shuffling the solution to support exploration. This iterative process continues

until a termination criterion is met, with the hyper-heuristic running for another 30 min-

utes after each shuffle, ensuring continuous exploration and exploitation of solutions. To

handle the numerous requirements, we treat each requirement and preference as a soft

constraint and assign a weight to it according to its subjective significance. This results

in the following objective function, a summation of the weighted soft constraints, which

we minimise:

min
∑

wsci × Vsci (B.1)

where wsci indicates the corresponding weight of constraint SCi, and Vsci is the corre-

sponding violated amount of constraint SCi.

We ran the algorithm for a duration of 4 hours, resulting in 8 intervals as we shuffle the

solution every 30 minutes. Note that we scheduled the GECCO2023 Workshop (schedule

for the first two days of the conference) and Main conference (schedule for the last three

days) separately.

The following are the only constraint violations that were identified:

1. Three main tracks were not scheduled in consecutive order. Although this con-

straint was low priority for the main tracks, it was considered high priority for the

Saturday and Sunday schedules.

2. Seven talks were scheduled on days they specified as unavailable. A closer look

revealed that these talks indicated unavailability for the entire days.

3. The Theory track was allocated to two different rooms.

4. The GECH track was assigned to a room with limited seating capacity for its size.

Additionally, the ACO-SI and CS tracks were placed in a room with somewhat

limited seating capacity for tracks of their size.

5. Two online talks were not scheduled during their most preferred time slots based

on their time zones. One was scheduled from 06:00 to 07:30, and another from

21:30 to 23:00.
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6. An online workshop submission was scheduled from 22:00 to 23:50, while the op-

timal slots considering the speaker’s time zone would have been 16:30-18:20 or

18:40-20:30. However, scheduling it in any of these ideal slots would require an-

other online talk in the same workshop to be scheduled from either 03:30-05:20 or

05:40-07:30, which is not ideal.

7. An introductory tutorial is scheduled for the first time slot on Sunday rather than

Saturday. However, the speaker requested their tutorial be scheduled for Sunday.

Additionally, a specialised tutorial is scheduled for the last time slot on Saturday,

but the speakers requested it be scheduled for Saturday.

8. The final constraint violation stems from conflicting availability preferences of au-

thors within the same session. One author for an onsite submission in a particular

workshop expressed unavailability on Saturday, yet the session was scheduled for

that day. Conversely, another author from a different submission in the same ses-

sion is only available on Saturday. This creates a dilemma where satisfying the

constraint for one submission would inevitably violate the constraint for the other.

Overall, our conference scheduler successfully scheduled the GECCO2023 conference in

an effortless and autonomous manner, saving a huge amount of time and effort that or-

ganisers would otherwise had invested if scheduled manually. The conference scheduler

generates a high-level schedule, which determines the time and room allocations for each

track, and a low-level schedule, which assigns individual talks to sessions, rooms, and

time slots. It considers numerous requirements and preferences such as presenter and

attendee preferences, room capacity, room accessibility, and minimising session hopping

(i.e., reducing travel between rooms). In addition, it aims to promote inclusive, acces-

sible, and sustainable events. Examples include scheduling specific talks in rooms that

support advanced accessibility, minimising changeover times for tracks involving sessions

at different locations, and offering flexible options for participants with caring respon-

sibilities or special requirements, such as religious needs, to attend all or part of the

conference. Our conference scheduler is also suitable for other conferences with different

formats, and has been used in the past to schedule the OR Society’s 60th Annual Con-

ference, the New to OR Conference, and the International Symposium on Forecasting

2022, that in addition to GECCOs 2020-2023. Ultimately, we hope that our conference

scheduler will enable academics to maximise their conference experience and alleviate

the scheduling burden on organisers.
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URL

The conference scheduling and various algorithms are available for the research commu-

nity, which can be accessed on the following GitHub repository: https://github.com/

ahmedkheiri/CSPLib.

Images

We may use screenshots from the GECCO Sigevo video, but we do not hold copyright for

the video content: https://www.youtube.com/watch?v=wtTpY9th8HY. Alternatively,

we suggest screenshots of the input Excel file, but these are already available on the

GitHub repository.

https://github.com/ahmedkheiri/CSPLib
https://github.com/ahmedkheiri/CSPLib
https://www.youtube.com/watch?v=wtTpY9th8HY
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Appendix C

In this section, we provide a sample spreadsheet file to demonstrate its usage. The

spreadsheet file consists of the following sheets; Submissions, Tracks, Sessions, Rooms,

Parameters, Tracks-Sessions Penalty, Tracks-Rooms Penalty, Similar Tracks, and Sessions-

Rooms Penalty.

The Submissions sheet includes all the necessary information regarding submissions as

well as submissions related penalties as shown in Figure C.1. Column A contains the

reference name or ID of each submission. Column B indicates the track name of the

corresponding submission. Column C is used to indicate the number of time slots that

each submission requires. Column D is ignored in our model. Column E refers to the

timezone in which the presenters of the corresponding submission are located. Column F

is used to list the presenter or multiple presenters of the corresponding submission. Sim-

ilarly, column G is used to list the attendees. This column may include non-presenters,

such as co-authors, but it may also include presenters. The latter case will be considered

as an attendee conflict during optimisation. The next number of columns is determined

by the total number of available sessions, where each column corresponds to a session

(from column H to column K in this example). Under these columns a penalty value

may be set accordingly so as not to schedule the corresponding submission into the cor-

responding session. For instance, Submission 7 must be ideally scheduled in Session 1

or in Session 2 so we keep these values empty. Additionally, we do not want to sched-

ule Submission 7 in Session 3 or Session 4, but if that cannot be fully satisfied then we

prefer Session 3. To do so, we set a penalty value of 1 for Session 3 and a penalty value

of 10 for Session 4. Then, the number of the remaining columns is determined by the
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Figure C.1: Submissions sheet

Figure C.2: Tracks sheet

total number of available rooms, where each column corresponds to a room (from col-

umn L to column O in this example). Within these columns a penalty value may be set

accordingly so as not to schedule the corresponding submission into the corresponding

room. For example, if we want Submission 9 scheduled in Room 2, we penalise all rooms

except for Room 2.

The Tracks sheet contains information regarding track names and the list of track chair

names as presented in Figure C.2. In column A, the tracks are listed, and column B

contains the names of track chairs for each track. Each track is not limited to only one

track chair, it may have multiple track chairs. A chair conflict is created in case there

are two tracks with the same person as track chair. If any of the track chairs is also a

presenter in another track, then this will be considered as a presenter conflict. Lastly,



Appendix C. 161

Figure C.3: Sessions sheet

an attendee conflict is created when the same person is a track chair and at the same

time is an attendee at a submission that belongs to another track.

Next, the Sessions sheet contains all the necessary information regarding available ses-

sions as displayed in Figure C.3. Column A includes the names of the sessions. Column

B refers to the total number of available time slots per session. Column C indicates the

date for each session, while column D and E are used to set the starting and ending time

for each session respectively.

We skip the Rooms sheet as it simply contains the names of the available rooms. The

Parameters sheet includes settings for hybrid or online conferences, and allows to set

weight values for penalties as shown in Figure C.4. Columns A and B are associated with

settings regarding hybrid or online conferences. The local timezone field refers to the

timezone that applies at the location of the conference. Next, suitable scheduling times

fields indicate the ideal scheduling time window for which submissions are not penalised.

Less suitable scheduling times fields create a new time window for which submissions are

slightly penalised, while unsuitable scheduling times are heavily penalised submissions.

All times are converted into local times of online presenters. For instance, a submission

would be penalised by 1 if the converted local time of the presenter is between 7:00 and

9:30 or between 21:30 and 23:00. If the converted local time is between 23:00 and 7:00

then a penalty of 10 will apply, otherwise if the converted local time is between 9:30

and 21:30 then no penalty applies. These settings are used to identify suitable sessions

that are convenient for online presenters. Lastly, columns D and E are used to set the

weight values. Setting different weight values allows the prioritisation of the listed types

of penalties.

The Tracks-Sessions Penalty sheet is used to define penalty values to avoid scheduling

a specified track into a specified session as presented in Figure C.5. Column A includes

all tracks, and the number of next columns is given by the total number of sessions
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Figure C.4: Parameters sheet

Figure C.5: Tracks-Sessions Penalty sheet

available, where each column corresponds to a session (from column B to column E

in this example). For instance, Track 5 must be ideally scheduled in Session 3 and/or

in Session 4 so we keep these values empty. Additionally, we do not want to schedule

Track 5 in Session 1 or Session 2, but if that cannot be fully satisfied then we prefer

Session 2. To do so, we just set a small penalty value for Session 2 and a high penalty

value for Session 1.

We use Tracks-Rooms Penalty sheet to control the scheduling process of tracks into

rooms as displayed in Figure C.6. Column A contains all tracks, and the number of next

columns is given by the total number of rooms available, where each column corresponds
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Figure C.6: Tracks-Rooms Penalty sheet

Figure C.7: Similar Tracks sheet

to a room (from column B to column E in this example). For instance, if we want Track 1

and Track 2 scheduled in Room 4, then we set a penalty value for all rooms except for

Room 4.

The Similar Tracks sheet allows to define which pair of tracks should not be scheduled

in parallel as shown in Figure C.7. Column A includes all tracks, and the number of

next columns is given by the total number of tracks, where each column corresponds

to a track (from column B to column I in this example). Suppose Track 3 is similar to

Track 6 and Track 8 and we do not want to schedule Track 3 and Track 6 or Track 3

and Track 8 in parallel. We define this by simply setting a penalty value for that pairs

of tracks. Notice that the value of the penalty does not support preferences here among

pairs of tracks because we include this in the model as a hard constraint.

Lastly, we use Sessions-Rooms Penalty sheet to define unavailability of rooms for certain

sessions as presented in Figure C.8. Column A contains all sessions, and the number

of next columns is given by the total number of available rooms, where each column

corresponds to a room (from column B to column E in this example). For instance, if
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Figure C.8: Sessions-Rooms Penalty sheet

Figure C.9: Solution example

Figure C.10: Violations report example

Room 3 is unavailable during Session 4, then we add a penalty value for that session-

room pair.

After the completion of the optimisation, we generate a new spreadsheet file that con-

tains the optimised schedule and the violations report. In Figure C.9, we present a

solution example by solving the N2OR instance with the extended model where the

upper timetable refers to the tracks solution and the lower timetable refers to the sub-

missions solution. The violations report is presented in Figure C.10, where we report

the objective value along with details of the violations.
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Appendix D

In Table D.1, we present the time required to build the mathematical models for each

instance, where tb indicates the time required to build the model, ts indicates the required

time for the solver to terminate, and tt indicates the total time required. All times are

in seconds.

Table D.1: Overall computing time per instance

Exact Model Extended Model

Instance tb ts tt tb ts tt

N2OR 0.1 0.1 0.2 0.1 0.8 0.9
GECCO19 158.9 3,600.0 3,758.9 152.2 57.5 209.7
GECCO20 4.9 8.3 13.2 5.7 51.8 57.5
GECCO21 1.8 19.7 21.5 2.2 20.5 22.7
OR60 143.6 3.6 147.2 151.8 4.8 156.6
OR60F 79.0 13.9 92.9 99.2 3,600.0 3,699.2
OR60F2 272.6 88.9 361.5 344.5 3,600.0 3,944.5
OR60F3 1,072.7 137.4 1,210.1 1,211.8 3,600.0 4,811.8
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