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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition char-

acterised by persistent challenges in social communication and interaction, along-

side restricted and repetitive behaviours. Despite almost a century of research, pre-

cise aetiologies and biomarkers are yet to be elucidated. While metabolic and cir-

cadian dysfunction has been linked to ASD, the exact connection remains elusive.

Additionally, ASD diagnosis remains reliant on qualitative assessments, which are

time-consuming, resource-intensive, and inherently subjective. ASD rates have in-

creased eightfold in the last two decades, underscoring the need for faster, objective

assessments. The absence of an accurate, quantitative diagnostic tool delays early

identification, intervention, and support for children with ASD.

In this work we use time-localised, phase-based, multiscale analysis approaches

to gain diagnostic and mechanistic insights into systems implicated in ASD. Elec-

troencephalographic measurements are inherently susceptible to movement arte-

facts. We demonstrate that phase-based connectivity measures, such as wavelet

phase coherence (WPC) and dynamical Bayesian inference (DBI), can detect interac-

tions between brain regions despite these disturbances. By applying WPC and DBI,

we reveal distinct connectivity patterns in the frontal cortex of young males with

ASD, suggesting a potential biomarker. Circadian dysregulation is also prevalent in

ASD, yet remains poorly understood; time-localised analysis such as wavelet trans-

forms, ridge extraction and harmonic analysis allows us to establish the presence

of behavioural modes and trace their changing frequency content over time. We re-

veal an irregular circadian rhythm that may contribute to disrupted sleep patterns in

ASD. Given the established links between cellular energy metabolism and ASD, we

also propose a simple phase oscillator-based model that simulates altered metabolic

pathways with significantly fewer parameters than mass-based approaches.

Applying physics-based approaches to understand cellular dynamics, electro-

physiology, and circadian regulation, contributes towards a cohesive framework to

understand the multifactorial nature of ASD. Collectively, these findings provide
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mechanistic insights while enhancing diagnostic capabilities through practical guid-

ance on measurement and analysis. By explicitly considering key physical princi-

ples of biological systems, the framework presented can significantly advance the

assessment of ASD and other neurological conditions, such as ADHD, depression

and dementia.
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Chapter 1. Introduction 1

Chapter 1

Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with

heterogeneous aetiologies [1] and diverse clinical presentations [2]. It is charac-

terised by social and communication deficits, as well as restricted and repetitive

behaviours, which are not better explained by intellectual disability or global de-

velopmental delay [3]. While several genetic and environmental factors have been

linked to ASD [4], and its prevalence has risen significantly in recent years [5], the

precise mechanisms underlying the condition remain unclear. Investigating com-

mon comorbidities, such as altered cellular energy metabolism and circadian dys-

regulation, may reveal the putative mechanisms underlying ASD.

The brain is one of the most energetically demanding organs in the body [6]

and, as such, requires highly efficient metabolic processes to sustain its function.

In ASD, evidence suggests that upregulation of the WNT-β catenin pathway may

drive a metabolic shift known as the Warburg effect [7, 8]. This hypothesis is fur-

ther supported by findings of elevated lactate levels and decreased pH in the brains

of individuals with ASD [9, 10, 11, 12]. To better understand these metabolic al-

terations, phenomenological phase-oscillator models can be employed to simulate

metabolic transitions. Applying such models provides mechanistic insights into

how metabolic dysregulation influences brain states in ASD.

Circadian dysregulation is disproportionately prevalent in individuals with ASD

[13, 14], with up to 80% experiencing sleep disturbances [15]. While the canonical

circadian oscillator is well studied, alternative, understudied pacemakers may also

contribute to circadian dysregulation in ASD [16]. To investigate the role of one such

alternative pacemaker, behavioural rhythms in mice were examined across various
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experimental conditions. Our study reveals a time-variable circadian oscillator, the

irregularity of which may contribute to the disrupted sleep patterns frequently ob-

served in ASD [17].

Understanding the metabolic and circadian alterations associated with ASD pro-

vides key mechanistic insight into the underlying biology. These changes have a

direct impact upon neuronal excitability and synaptic function, and therefore affect

the overall connectivity of the brain. While it is vital to understand how metabolic

and circadian mechanisms contribute to, or are influenced by, the condition, they

cannot provide a robust diagnostic framework alone. The changes to brain connec-

tivity, however, represent a measurable characteristic that has been shown to differ

between individuals with ASD and neurotypical controls [18, 19].

Despite decades of research aimed at identifying quantitative biomarkers, the

diagnosis of ASD remains reliant on qualitative assessments conducted by qualified

paediatricians using behavioural questionnaires. Attempts at finding an objective,

quantitative measure of ASD have been obfuscated by a series of experimental re-

sults with conflicting findings. For example, studies have reported both hypercon-

nectivity [20, 21] and hypoconnectivity [22, 23, 24, 25] of brain networks in children

with ASD.

The heterogeneity in the literature may be partially attributed to traditional ap-

proaches not considering time as an explicit physical parameter. Approaches which

average over time can disregard interesting transient phenomena as stochastic [26].

Additionally, shorter measurement intervals will contain fewer cycles of oscillation,

and so less data, to analyse, particularly in lower frequency bands where there are

fewer oscillations in a given measurement interval [27]. Efforts to mitigate move-

ment artifacts, such as segmenting recordings into shorter epochs, can further exac-

erbate this issue by reducing the length of analysable time series. Moreover, such

segmentation risks discarding deterministic dynamics [26].

Rather than treating electroencephalography (EEG) data as intractable due to

participant movement or risk removing hidden determinism via excessive prepro-

cessing, we apply time-localised analysis approaches that are inherently robust against

perturbations. To demonstrate its resilience, wavelet phase coherence is compared

to its amplitude-weighted counterpart [28]. Applying this analytical framework to



Chapter 1. Introduction 3

EEG data from a cohort of young males with ASD and neurotypical controls reveals

theta and alpha connectivity patterns as a promising marker for ASD.

The thesis is structured as follows: The next subsection briefly introduces the

brain and explains how EEG can be used to measure neural activity. This is followed

by an overview of autism spectrum disorder (ASD), including its historical context

and known EEG patterns. The roles of metabolic and circadian systems in ASD are

then explored. Next, the physical characteristics of living systems, which require

special consideration in data analysis, are described. A discussion on modelling

such systems follows, culminating in a summary of time series analysis techniques.

Chapter 2 compares phase oscillator and mass-based models of cellular energy

metabolism. Chapter 3 introduces wavelet phase coherence and contrasts it with

its amplitude-weighted counterpart. Chapter 4 analyses EEG connectivity patterns

in young males with ASD compared to neurotypical controls. Chapter 5 examines

behavioural rhythm data in mice, revealing an irregular, non-canonical circadian os-

cillation. Chapter 6 proposes a phenomenological phase oscillator model replicating

altered metabolic states caused by WNT-β catenin pathway upregulation in ASD.

Finally, Chapter 7 summarises the findings and outlines future research directions.

1.1 The brain

The brain plays a central role in interpreting and responding to environmental stim-

uli. Neurons, which propagate information through electrical signals and chemical

interactions at synapses, are key to this process [29]. However, they depend on a

diverse network of glial cells, which are present in approximately equal numbers

to neurons in the brain [30]. Glial cells do not directly participate in electrical sig-

nalling, instead providing metabolic support [31]. Despite comprising only about

2% of the body’s mass, the brain consumes roughly 20% of circulating oxygen and

calories, highlighting the importance of metabolic support in neural circuitry [6].

The brain is composed of specialised lobes (as indicated in Fig. 1.1) that require

a highly interconnected network to function efficiently. Different regions of the cere-

bral cortex are associated with distinct neural processes. Historically, behavioural

changes following brain injury provided evidence regarding the specific functions
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FIGURE 1.1: The brain at multiple scales. Left: different lobes of the cerebral cortex are
labelled via colour, frontal lobe - dark blue, parietal lobe - light blue, occipital lobe - yellow,
temporal lobe - green. Middle: red blood vessel carry nutrients which are transferred to
the purple pyramidal cells via a light blue astrocyte. Right: synaptic cleft between neurons,
circular vesicles carry neurotransmitters to the cleft, which diffuse across before binding to

receptors on the opposite neuron. Created using BioRender.com

of lobes. For example, when a metal bar shot through the frontal lobe of Phineas

Gage following a mining accident, he subsequently experienced a loss of executive

function [32]. Similarly, damage to the occipital lobe can impair vision [33], while the

temporal and parietal lobes have important functions in memory formation [34], and

sensory information processing [35], respectively. Modern neuroscience has pro-

vided a more comprehensive understanding of these relationships, confirming the

occipital lobe’s role in visual processing and the frontal lobe’s role in higher-order

cognitive functions, thanks to the development of non-invasive devices capable of

monitoring changes in neural state. Despite the brain’s inherent complexity, cer-

tain patterns can be observed using non-invasive technologies to probe underlying

neural activity patterns.

1.1.1 Electroencephalogram

To measure the electrical signals emanating from the cerebral cortex on a macro-

scopic scale, we use electroencephalography (EEG). These signals are generated by

transmembrane ion currents in the pyramidal neurons of the cortex and propagate

to scalp electrodes through the brain, skull, and scalp tissues [36].
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FIGURE 1.2: (A,B) Diagrams representing the 10-20 EEG system. Each probe position is
labelled with reference to the inion and naison in degrees. (A) EEG schematic side profile.
(B) (A) EEG schematic top down. (C) The traditional frequency bands of interest, which
are split into three different ranges with logarithmic frequency spacing. Created in BioRen-

der.com

While EEG has limited spatial resolution [37], often suffering from volume conduc-

tion—where electrical signals propagate across the scalp and are detected by multi-

ple probes [38]— it benefits from high temporal resolution. This makes EEG well-

suited to time-localised analysis approaches. Additionally, EEG is cost-effective,

portable, non-invasive and relatively comfortable making it an ideal tool for assess-

ing neurological conditions. Comfort is a critical factor for EEG devices, especially

for individuals with ASD, who may be predisposed to sensory hyper-responsiveness

[39]. The electrical signal detected from the brain using EEG is relatively strong

compared to external influences, unlike the magnetic field detected by magnetoen-

cephalography, which requires a magnetically shielded room to avoid interference

from the Earth’s magnetic field [40], thereby reducing portability and increasing the

cost of application.

1.1.2 Frequency bands

Brain activity typically occurs at different frequencies depending on subject state

during measurement. In the current work, the traditional five frequency bands have

been consolidated into three, for the following reasons. First, the boundaries be-

tween the traditional bands (delta, theta, alpha, beta, and gamma) are not always
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clearly distinguishable in the power spectra of EEG data, making it difficult to sep-

arate the alpha and theta bands consistently across subjects. Second, it is well-

established that EEG power spectra evolve during childhood development as the

brain matures, with alpha activity increasing from around 6 to 10 Hz during devel-

opment [41]. Finally, prior studies on EEG activity in children with ASD have not

adhered to strict frequency band limits, and no standardised frequency band defini-

tions have been established to date.

Low frequency (0.8 - 3.5 Hz)

Traditionally referred to as delta waves, low frequency oscillations are most preva-

lent during periods of deep sleep and rest [42]. Additionally, delta waves have

been associated with inhibiting sensory interferences and modulating brain net-

works to support focused mental tasks such as working memory, semantic process-

ing, and motor response inhibition [43]. It has also been proposed that reduced

delta power in people with ADHD may be due to hypoactivity in the dopaminergic

reward/reinforcement circuitry [44].

Medium frequency (3.5 - 12 Hz)

The medium frequency range contains the traditional alpha and theta oscillations.

These brain waves are present in wakeful states and are elevated during periods of

relaxation, for example alpha-band amplitude increases when attention is unfocused

or internally focused (e.g. when the eyes are closed) and decreases when attention

is engaged on stimuli in the external environment (e.g. when the eyes are open,

especially if attention is focused on a specific object) [45].

High frequency (12 - 48 Hz)

Beta and gamma waves are higher frequency oscillations. While these waves can be

emblematic of increased concentration and higher states of awareness, they are also

present during bouts of anxiety or restlessness [46].
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1.2 Autism spectrum disorder

Autism spectrum disorder (ASD) is a developmental condition characterised by per-

sistent deficits in social interactions and/or restricted and repetitive behaviours [3].

Although some aspects of the ASD behavioural phenotype may be present during

early development, they may not become fully manifest until social demands exceed

limited capabilities, making early detection difficult [47].

It has been over 80 years since Leo Kanner first described what he termed ’infan-

tile autism’ - a condition characterised by a specific pattern of ’abnormal behaviour’

[48]. Despite Kanners description being used elsewhere in the literature, it took an-

other 37 years for it to be entered into the American Psychiatric Association’s Diag-

nostic and Statistical Manual, DSM III [49]. In the decades since, a wealth of research

has been carried out to understand the multifaceted aetiologies and presentations of

autism spectrum disorder [50]. ASD is now widely accepted as a complex, perva-

sive, heterogeneous condition with multiple aetiologies and developmental trajecto-

ries [2].

Several factors are thought to contribute to the development of ASD. These in-

clude, but are not limited to, environmental factors as diverse as prenatal medication

exposure [51, 52], advanced parental age [53, 54] and nutritional deficiencies [55, 56].

Genetics are also a contributing factor in ASD, demonstrated by the high heritability

(between 40 and 80 percent) of the condition [57], although known genes contribut-

ing to ASD can only account for less than a quarter of cases [57]. The aetiology of

ASD is therefore multifactorial, with several potential environmental [58] and ge-

netic links [59]. Despite decades of research, a theory linking the diverse aetiologies

of ASD to a diagnosis is beyond reach.

Diagnosis of ASD still relies upon the qualitative observation of atypical be-

haviours using questionnaires. While valuable, these assessments are time-consuming,

expensive (with a median cost of around £800 per child) and require assessment

from a multidisciplinary team of healthcare professionals [60]. This process can also

be uncomfortable for children with ASD, who may find interactions with unfamiliar

adults or participation in structured social settings distressing. A quantitative as-

sessment of ASD would decrease the cost and wait times for ASD diagnosis while
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providing an objective evaluation.

1.2.1 The heterogeneity of ASD

While ASD is defined as a complex neurodevelopmental condition involving persis-

tent challenges with social communication and/or restricted interests and repetitive

behaviours [3], individuals with the condition exhibit remarkable phenotypic het-

erogeneity [61]. Presentations can vary widely, including differences in intellectual

functioning (from profoundly low to exceptionally high IQ) [62], atypical sensory

processing such as hyper- or hypo-responsiveness [63], and language impairments

[64], among others. Some individuals with ASD display many of these character-

istics, others few or none, and most present with a unique combination. This vari-

ability is why ASD is considered a spectrum—each individual may exhibit a dis-

tinct neurocognitive and behavioural profile [65]. Such diversity complicates the

development of diagnostic tools, as each phenotype can be associated with different

patterns of underlying neural activity. Future studies should aim to delineate be-

havioural subdomains and map them onto specific electrophysiological signatures,

allowing for assessments that better reflect the complexity of the condition.

Adding further complexity, ASD frequently co-occurs with other neurodevel-

opmental and psychiatric conditions [66]. Most notably, over 50% of individuals

with ASD also meet diagnostic criteria for ADHD [67]. Elevated rates of anxiety

[68], depression [69], and epilepsy—especially in those with co-occurring intellec-

tual disability [70]—have also been consistently reported. These comorbidities are

important to consider when designing electrophysiological assessments for ASD, as

each is known to independently influence EEG patterns [71, 72, 73]. Consequently,

it is essential to control for the effects of these conditions when interpreting EEG

data, to ensure that observed differences are truly reflective of ASD-specific neural

characteristics.

Further challenges arise from the highly heterogeneous developmental trajecto-

ries observed in individuals with ASD [74]. Behavioural characteristics in people

with ASD may shift substantially during development. Although neurotypical chil-

dren also undergo developmental changes in brain function, these trajectories tend
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to be more predictable and less variable than those seen in children with ASD. More-

over, our understanding of the mechanisms driving neurodevelopmental change re-

mains incomplete [75]. These issues hinder efforts to track ASD over time or to eval-

uate the long-term effects of interventions. Longitudinal studies are therefore critical

to disentangle age-related changes from ASD-specific developmental features and to

understand how behaviour and neural activity co-evolve.

ASD is an umbrella term encompassing a diverse range of neurodevelopmental

conditions that were previously diagnosed separately [3]. Recognising and embrac-

ing this complexity is essential to understanding both the heterogeneity of clinical

features and the variability in underlying brain dynamics. Electrophysiological mea-

sures must therefore be interpreted in the context of individual behavioural profiles

and their evolution over time. Explicit consideration of intra-group differences is

vital for identifying reliable neural markers of ASD.

1.2.2 EEG measures in ASD

Over the past fifty years, several potential markers for ASD have been proposed [76].

However, conflicting findings have made it challenging to establish clear generali-

sations [77].

The heterogenous results can be partially attributed to a failure to consider age

groups when comparing studies. EEG activity evolves with age [78], implying the

differences between ASD and neurotypical evaluations of electrical activity are likely

to evolve during development [79]. This is a particularly important consideration

because ASD is a neurodevelopmental condition [80]. To control for developmental

changes, study design should apply narrow age ranges.

Males and females can be reliably distinguished based on EEG data analysis

alone, highlighting the confounding effect of sex [78]. In ASD this is further exacer-

bated as females present differently [81]. In particular, behaviours such as masking

[82] are much more prevalent in females. ASD is currently diagnosed more fre-

quently in males, at a rate between 3:1 and 4:1 [83] and EEG holds promise as an

objective and qualitative tool that could aid in diagnosing the girls overlooked by

traditional diagnostic methods [84]. To develop accurate diagnostic criteria the con-

founding effects of sex differences should be controlled.
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The literature is also confounded by the vast array of different methods and mea-

surement protocols applied to determine power and connectivity. Even within EEG

measures, factors such as the duration of measurement [85], eyes open or eyes closed

participant state [86], and rest vs active state of participants [87] can affect results.

A wide range of analytical methods have been used to extract the power or connec-

tivity from EEG time series [88]. These can produce different results, as we discuss

in depth in Sect. 3. One should not expect the power and connectivity differences

found by different protocols to be the same.

Despite these often contradictory findings, patterns have emerged capable of dif-

ferentiating ASD from neurotypical signatures. Predominantly, the findings can be

split into two types, those related to the connectivity between brain regions and the

power of the EEG signals.

Power in ASD

The literature reports both elevated [89, 90] and decreased [91] spectral power in

ASD relative to controls, and these relationships are also confounded by changing

patterns which depend on age [79, 92]. However the prevailing patterns generally

represent ASD as having what is known as the ’u-shaped distribution’, with elevated

low and high frequency activity, while the medium frequencies are reduced relative

to controls [92, 93].

Connectivity in ASD

Several approaches have been attempted to assess the connectivity between brain

regions using EEG. Similar to the power results, these are varied, however general

trends exist, such as a prevailing tendency for reduced connectivity in ASD, espe-

cially at lower frequencies [19, 22, 94], although this picture is confounded by incon-

sistent findings [95].

The strength of long vs short-range connections is also regularly investigated,

with short-range overconnectivity [96, 97] and long-range underconnectivty [98, 99]

often reported; however, the situation is obfuscated by results which demonstrate

conflicting findings [100, 101]. These discrepancies may stem from methodological

inconsistencies regarding participant age [79], sex [91], analysis approach applied
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and the experimental apparatus used [27, 77, 102]. Given the conflicting results in

the literature, implementing time series analysis methods that are robust to move-

ment artifacts and noise, along with standardised measurement protocols, may offer

a reliable approach to characterising atypical connectivity patterns in ASD compared

to neurotypical controls.

1.3 Metabolism

The body requires a continuous supply of ATP to sustain life, producing nearly

its own weight in ATP daily [103]. ATP is predominantly generated through two

main processes, with oxidative phosphorylation being the most efficient, yielding

28 molecules of ATP for every molecule of glucose oxidised. In contrast, glycolysis

produces only two ATP molecules per glucose molecule [104]. However, glycolysis

can quickly respond to increased energy demand, making it the preferred pathway

in rapidly proliferating cells, such as those in cancer [105, 104]. Neuronal function

would be impossible without the continuous energy production by glial cells such

as astrocytes, which provide essential metabolic support to neurons [106].

The brain is remarkably metabolically demanding and accounts for over a fifth

of the total bodies energy consumption at rest [107, 108]. Due to this extraordi-

nary energy demand, it is perhaps unsurprising that a close relationship between

metabolism and mental health exists [109, 110], and that altered metabolism is

present in depression [111] and generalised anxiety disorder [112]. One of the ear-

liest known altered metabolic states is the Warburg effect, first described by Otto

Warburg in 1923 [113]. This effect details a shift from oxidative phosphorylation

(OXPHOS) to an upregulation of glycolysis, a phenomenon now observed in sev-

eral conditions such as cancer [114]. Metabolic shifts can produce altered levels of

products such as lactate, which can change the PH of the brain [115].

1.3.1 Altered metabolism in ASD

Decades of evidence suggest that ASD may be linked to altered energy metabolism

in the brain [116, 117, 118, 119, 120]. In particular, the Warburg effect has been impli-

cated as encouraging the progression of ASD [121]. Upregulated glycolysis in ASD
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is indicated by elevated lactate levels [10, 11, 120], and mitochondrial dysfunction

[122, 123, 124, 125]. Taken together, there exists strong evidence that metabolic dys-

function plays a significant role in ASD, yet the precise mechanism remains elusive

[126].

WNT-β catenin pathway

One candidate for the mechanism linking metabolic dysfunction with ASD is the

wingless and integration (WNT) β-catenin pathway [7]. The WNT pathway is a

signalling cascade responsible for development, growth, and metabolism [127].

There is a large body of evidence linking WNT-β catenin stimulation to the War-

burg effect [128, 129]. Both the Warburg effect and disruptions to the the WNT-

catenin pathway are implicated in the pathogenesis of several conditions including

cancer [130]. Genetic evidence has also implicated dysregulated WNT pathways

as being present in ASD [131, 132, 133]. Additionally, VPA exposure is known to

stimulate the WNT-β catenin pathway [134] and increases ASD risk [51]. Several

rodent models have also demonstrated that disruptions to the WNT pathway pro-

teins induces ASD-like behaviours [135]. Mice exposed to VPA upregulate proteins

associated with ASD risk and demonstrate impaired social behaviours [136] follow-

ing the activation of WNT pathways [137]. The metabolic reprogramming caused by

this pathway may link the diverse aetiologies and phenotypic heterogeneity in ASD

[138].

1.4 Circadian regulation

To function optimally, human beings are constrained to live within a 24-hour cycle,

dictated by the Earth’s rotation [139]. This circadian rhythm governs many physio-

logical processes via genetically encoded endogenous clocks which temporally regu-

late cellular systems [140]. Disregarding our intrinsic chronobiology leads to disease

[141, 142]. For instance, shift workers have a marked increase in all-cause mortal-

ity [143]. Moreover, heart attack rates spike by 24% following the spring daylight-

saving time adjustment [144], illustrating that even minor disruptions to circadian

rhythms can have profound health consequences.
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Despite consisting of only about 20,000 neurons, the suprachiasmatic nucleus

(SCN) in the hypothalamus of the brain acts as our principle circadian clock [145].

Light is the primary zeitgeber (time giver) in this system allowing the SCN to syn-

chronise with environmental stimuli [146]. Regulation of peripheral clocks via this

central oscillator takes place via neural and humoral signals [147].

In addition to central circadian regulation in the SCN, mammals have two addi-

tional extra SCN clocks, the food entrainable oscillator and methamphetamine sen-

sitive circadian oscillator (MASCO) which can drive physiological responses such

as the sleep-wake cycle [148], autonomic nervous system responses and more [149].

Even though these SCN-independent oscillators have been demonstrated to coor-

dinate the phases of peripheral clocks [149] their exact anatomical loci, biological

mechanisms and influence over behaviour are unknown [16]. Studying the loco-

motor rhythms generated by these understudied circadian regulators may provide

clarity regarding the dysfunctional sleep patterns often reported in people with neu-

rological conditions [150, 151, 152].

1.4.1 Chronobiology, sleep and ASD

The ability to acquire sufficient sleep is essential for proper functioning in the brain

[153]. Changes in circadian regulation disrupt proper sleep-wake cycles and so can

exacerbate pre-existing mental conditions.

Over half of individuals with ASD also present with ADHD [67]. Individuals

with ADHD are known to exhibit significant circadian disruption [154]. This ir-

regular sleep-wake cycle is similar to that observed in rodents when driven by the

methamphetamine sensitive circadian oscillator [155]. A growing body of evidence

suggests circadian irregularities in individuals with ASD [156, 157]. Sleep distur-

bances are common in ASD [17], estimated at between 50 and 80 percent, compared

to less than 30 percent in the general population [158]. Disruptions to circadian

biomarkers such as melatonin [159, 160], cortisol [161, 162, 163] and serotonin [164,

165] have also been identified in ASD. Abnormal circadian regulation also dysregu-

lates the WNT-β catenin pathway [vallee2022wnt].

Non-canonical circadian oscillators have received little attention in the scientific

community [16], and so their potential role in developmental disorders remains to be
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elucidated. Identifying and describing the dynamics of these understudied oscilla-

tors may elucidate the cause of sleep disorders in several conditions. It is important

to underline that the potential mechanistic factors we link here to ASD, from the

cellular to the circadian level, are not specific to the condition. In fact, circadian ab-

normalities are present in almost all diseases [166]. Nevertheless, understanding the

functional importance of the circadian clock in normal and aberrant neurodevelop-

mental processes may provide a novel perspective to understand ASD [167].

1.5 Physical characteristics of living systems

Living systems span a broad spectrum of temporal and spatial scales. Despite their

apparent differences, all organisms share fundamental characteristics that can be un-

derstood within the framework of physics. Biological processes operate across di-

verse timescales, requiring multiscale representations to capture interactions span-

ning a wide range of frequencies. To sustain life, organisms must also exchange

energy and matter with their environment through processes such as consumption

and excretion. These interactions usually take place in a cyclic manner, resulting in

most biochemical processes being oscillatory. Furthermore, biological systems are

inherently time-dependent, continually evolving across the lifespan. Considering

these factors is essential for accurately modelling and analysing living systems.

1.5.1 Nonlinearities

Biological processes are inherently nonlinear, meaning their output is not directly

proportional to their input. Nonlinear dynamics is essential for accurately describ-

ing these systems, which typically consist of interconnected feedback loops that reg-

ulate homeostasis and enable adaptation to environmental changes.

For example, during exercise, chemoreceptors detect a drop in oxygen levels and

signal the medulla oblongata to increase heart rate. Similarly, when blood pressure

falls too low, baroreceptors trigger the medulla to adjust the autonomic nervous sys-

tem, restoring heart rate and blood flow [168]. This dynamic feedback enables the

cardiovascular system to adapt to varying physiological demands, such as exercise,

stress, or rest, ensuring precise regulation and control [169].
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Nonlinear responses also play a crucial role in nerve transmission, which relies

on threshold-dependent activation. A small change in input can lead to a dispro-

portionately large output. Specifically, an action potential—a rapid, all-or-nothing

electrical signal—occurs only if the membrane potential reaches a critical threshold.

Once triggered, the signal propagates along the neuron’s axon [170].

Emergent properties such as the synchronization of metabolic oscillations, car-

diac rhythms, or neural oscillations also cannot be explained by the simple superpo-

sition principles of linear systems. These phenomena arise from the dynamic inter-

actions of highly interconnected nodes within biological networks. Synchronization

is a hallmark of nonlinear systems, reflecting collective behaviour that depends upon

coupling mechanisms [171].

The presence of positive and negative feedback loops ensure biological parame-

ters remain within a healthy range, while also giving rise to rhythmic behaviour.

1.5.2 The rhythms of life

Cycles are ubiquitous in nature, with levels of substrates and products fluctuating

over time. These oscillations are often irregular and time-dependent, and their time-

localised characteristics can reflect states of health or disease. For instance, heart rate

variability, which monitors changes in the time between heartbeats, can measure

fatigue and disease states [172]. However, many analytical frameworks erroneously

treat these systems as isolated or closed, neglecting the crucial influence of their

environment and external factors on their behaviour.

Autonomous systems

As the name suggests, autonomous systems are independent of interaction with

their external environment [173]. From a thermodynamic perspective, they are iso-

lated systems—exchanging neither matter nor energy with their surroundings. This

framework has been used to describe a wide range of phenomena, from the swaying

of footbridges under the influence of crowds [174] to the synchronisation of fireflies

[175]. Autonomous systems can be described by differential equations of the form,
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dx
dt

= f (x(t)), (1.1)

where x represents the state of the system and t denotes time. Crucially, the right-

hand side does not depend explicitly on t; the evolution of the system is determined

solely by x(t).

In the context of living systems, however, the notion of autonomy becomes prob-

lematic [173]. Biological processes are modulated by a range of external factors, in-

cluding hormones, neurotransmitters, and their environment. Given that thermody-

namic openness is a fundamental requirement for life, modelling living systems as

autonomous is both biologically and physically inappropriate [176, 177]. Therefore,

analytical frameworks must account for external influences to accurately reflect the

dynamics of living organisms.

Non-autonomous systems

Non-autonomous systems are influenced by their environment. Thermodynamic

openness is essential for sustaining life, as organisms must constantly exchange mat-

ter and energy with their surroundings to survive [178]. These systems can be rep-

resented by equations of the form,

dx
dt

= f (x(t), t), (1.2)

where, unlike in the autonomous equation of Eq. 1.1, the law governing the state

of the system does not depend solely upon x, but also upon time. This enables time-

dependent couplings to influence the system, representative of external influences.

Far from being an obstacle to understanding these systems, this complexity en-

ables further examination of their dynamical properties that can indicate pathogenic

states. For example, the heart rate variability, a measure of the time between heart-

beats, can fluctuate based on external factors such as physical activity, stress, or dis-

ease. The adaptive nature of non-autonomous systems, capable of continuously re-

sponding to internal and external stimuli, allows for dynamic regulation of systems

in the face of a changing environment. Many traditional physics based approaches
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treat systems as autonomous or isolated from their environment and so are often in-

adequate for describing the complexity of living systems. In this thesis, we present

a fundamentally different approach.

Time as an explicit physical parameter

Given that living systems are generally non-autonomous, averaging over transient

phenomena using traditional analytical approaches risks neglecting valuable infor-

mation. Behaviour such as couplings may come and go over time, and the informa-

tion regarding the duration of events, which may be capable of betraying pathogenic

states [179, 180, 181], will be lost. Averaging across time assumes stationarity, which

may obscure the system’s underlying state and mischaracterise deterministic be-

haviour as stochastic [26]. The presence of time-localised dynamics must therefore

be considered explicitly during analysis.

By combining a multiscale approach with time localisation, one is able to track

the presence and evolution of modes ranging across scales of different orders of

magnitude and uncover previously hidden pockets of determinism. This topic is

further explored, with methodological examples, in Sect. 1.7.

Multiscale oscillations

Biomedical signals typically comprise multiple time-dependent, often self-sustained

oscillations, each corresponding to a distinct biological process and conveying unique

information. For instance, blood flow signals recorded using laser Doppler flowme-

try reveal components related to cardiac, respiratory, myogenic, neurogenic, and

endothelial activity, each operating at different characteristic frequencies within the

same time series [182]. The superposition of such complex multiscale dynamics can

give the false impression that the signal is purely noise-like, leading to a widespread

tendency to filter these signals prior to analysis, discarding potentially deterministic

information [183].

To illustrate how deterministic multiscale dynamics can easily be mistaken for

randomness, consider three non-autonomous oscillatory modes, each defined by:

ω(t) = ωi (1 + Ai sin(ωmodit)) . (1.3)
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The parameters for each mode are provided in Table 1.1. The system was simulated

using a fourth-order Runge-Kutta integration scheme over 400 seconds with a sam-

pling frequency of 200 Hz.

TABLE 1.1: Model parameters across different modes for the time series in Fig. 1.3

ωi ωmodi Ai
Mode 1 6.1 0.015 15
Mode 2 1.25 0.005 2
Mode 3 0.2 0.0025 1

The sum of these three modes, combined with added pink noise to represent mea-

surement noise, yields the time series shown in Fig. 1.3.

FIGURE 1.3: A simulated multiscale deterministic oscillation shown over 20 seconds (left)
and 2 seconds (right).

Despite being composed of just three deterministic modes, the time series in Fig. 1.3

appear complex, and its structure is difficult to discern by visual inspection alone.

In biological systems, the number of such oscillatory components is typically much

greater, and signals are further obfuscated by movement artefacts and measurement

difficulties [28]. Moreover, the characteristic timescales of different modes can vary

by several orders of magnitude, requiring analytical tools capable of simultaneously

resolving oscillations spanning from milliseconds to days.

Cross-frequency couplings also exist—for example, circadian rhythms are known

to modulate cell cycle oscillations [184]. Rather than discarding this complexity

through filtering, the methods presented in this thesis are designed to preserve and

accommodate it. In doing so, this approach retains potentially valuable determin-

istic components that might otherwise be mistaken for noise [26]. A cornerstone of

the approaches presented in this thesis is the maximal preservation of the underly-

ing information.
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1.5.3 Non-equilibrium systems

Life exists in a constant state of flux, with energy and matter continuously exchanged

with the environment to expel waste and absorb nutrients. As discussed above,

characterizing living systems as closed or isolated overlooks critical influences. Tra-

ditionally, many living systems have been described as autonomous (self-contained),

while a more accurate description would be non-autonomous, as they are subject to

external influences. Non-autonomous systems are more common in biology, how-

ever they are often inappropriately treated as autonomous.

Self-sustained oscillations and limit cycles

Self-sustained oscillators can oscillate without any external periodic input and are

characterised by a stable limit cycle in their phase space. A limit cycle is a closed

trajectory in phase space, where at least one neighbouring trajectory spirals toward

it as time progresses toward positive or negative infinity [185]. By attracting nearby

trajectories, limit cycles help maintain system stability, drawing the system back to

its oscillatory characteristics after a perturbation. In living systems, stability is par-

ticularly important, as both the frequency and amplitude of biological oscillations

must remain within a specific range to preserve health. To quantify and visualise

this stability, we can plot the limit cycle of an oscillator. An example of one such

system is the Van der Pol oscillator,

d2x
dt2 − µ

(
1− x2) dx

dt
+ x = 0. (1.4)

Figure 1.4 illustrates the phase space of a Van der Pol oscillator, as the different initial

conditions converge upon a closed trajectory over time.

Autonomous self-sustained oscillators can maintain amplitude stability; how-

ever, both frequency and phase must also remain stable in living systems. There-

fore, to accurately describe biological processes a relatively new class of systems is

required [186].
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FIGURE 1.4: Phase space of a Van der Pol oscillator (Eq. 1.4). The x axis represents position,
while y is the rate of change of x - the velocity.

1.5.4 Chronotaxic systems

The etymology of chronotaxic, with chronos - time and taxis - order, demonstrates the

defining property of this group of systems , the fact they can resist perturbations to

time-varying parameters – specifically their frequencies – over time [186].

Descriptions of stable oscillatory dynamics are often performed using autonomous

self-sustained limit cycles. While this approach provides stable amplitudes - return-

ing to the limit cycle following perturbation, it is easy to disrupt the frequency of os-

cillation by weak external perturbation. In contrast, the amplitude and frequency of

chronotaxic systems is brought back to that of a time-dependent point attractor fol-

lowing perturbation, inducing stability in the time-dependent frequencies of the sys-

tem while allowing it to be open and dissipative. This subclass of nonautonomous

systems are generated by a unidirectional coupling, known as a drive and response

system [187],

ṗ = f(p), ẋ = g(x, p), (1.5)

where the system x can be considered as driven by the system p over time. In both
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Eq. 1.5 and autonomous systems, the amplitude dynamics are stable, as they con-

verge upon a trajectory in the phase space, Γ0, following perturbation. The position

of an oscillator along this cycle - its phase - in autonomous systems does not exhibit

the same stability - instead it is neutral. This means the frequency of the oscilla-

tion can be readily changed by perturbation. Chronotaxic systems can resist these

changes while maintaining a time-varying frequency [188]. This is due to the pres-

ence of a time-dependent point attractor xA(t). This unique steady state is a further

defining property of chronotaxic systems. As time tends towards infinity, all points

are brought towards the point attractor, satisfying the conditions of both forward

and pullback attractors,

lim
t→+∞

∣∣∣x (t, t0, x0)− xA(t)
∣∣∣ = 0,

lim
t0→−∞

∣∣∣x (t, t0, x0)− xA(t)
∣∣∣ = 0,

(1.6)

where x0 is the initial condition of the system at time t0. The phase stability induced

by the time-dependent point attractor ensures that the frequency of oscillation can’t

be easily destabilised by continuous external perturbation. This is a key aspect of

living systems as the frequency of oscillations such as the heart rate is required to

return to resting state values following perturbation. This decay in perturbations

to phase over time can’t be explained by conventional limit cycle models of self-

sustained oscillators. Thus, this non-autonomous and time-dependent system is able

to describe the time-dependent, dissipative and stable oscillators seen throughout

nature. Fig. 1.5 Illustrates these differences graphically.

FIGURE 1.5: Starting from different initial conditions (gray balls) in (A) an autonomous
systems the trajectories will end on the limit cycle but will newer meet (red balls), while (B)

in an non-autonomous system they will all end on the point attractor. [188].
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Although Fig. 1.5A returns to the limit cycle from each of the initial points, their

phases on the cycle remain different. In contrast, the chronotaxic limit cycle in Fig.

1.5B evolves such that the phases converge upon a point attractor over time.

The analysis and modelling approaches throughout this thesis are explicitly de-

signed to accommodate nonlinear, multiscale, time-varying systems open to external

influences from the environment. These physical considerations make them specifi-

cally tailored for interpreting data from living systems.

1.6 Modelling living systems

While the analysis methods applied in this thesis are model-free, it can be helpful to

validate results obtained via experiment with computational models. Not only does

this validate assumptions in the data analysis, but also helps to establish a ground

truth with known parameters.

Self-sustained oscillations are ubiquitous throughout living systems [189]. Bio-

logical oscillators exhibit stability not only in their amplitude dynamics, but also the

variable that parameterises movement along the limit cycle, the phase. In an isolated

system, the instantaneous phase, φ, can be defined using the natural frequency ω0,

of the associated oscillator,

dφ

dt
= ω0. (1.7)

The temporal evolution of phase can reveal insight into the driving forces of a system

[190]. By modelling the interactions between several phase oscillators one may gain

insights regarding if, how and why populations of oscillatory components interact.

1.6.1 The Kuramoto model

The Kuramoto model was first introduced in the 1970s and describes the collective

dynamics of coupled oscillatory systems [191, 192], with a particular focus on syn-

chronization phenomena. Synchronization can occur when a small periodic force

is applied to a self-sustained oscillator. The interaction between an oscillator and
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the external influence is characterised by a coupling function, Q, where the instan-

taneous phase of an oscillator is influenced such that,

dφ

dt
= ω0 + Q(φ, ωt). (1.8)

Additionally, oscillators can interact bidirectionally to change the phases of one an-

other.

dφ1

dt
= ω1 + Q1 (φ1, φ2) ,

dφ2

dt
= ω2 + Q2 (φ2, φ1) . (1.9)

If the couplings between oscillators are sufficiently large, this mutual adjustment of

phases can lead to synchronisation.

Interactions and emergent phenomena

Living systems are characterised by their structure and function. Structure refers to

the morphology and organisation of system components, while function describes

how these components operate dynamically over time. The human body exhibits

a high degree of connectivity and interdependence between components, enabling

complex and coordinated behaviours. This connectivity arises because the emergent

properties of interconnected units often exceed the sum of their individual contribu-

tions. Understanding how these components function as nodes within an intricate

networks requires examining the interactions between them. Synchronization facil-

itates these interactions, ensuring that processes such as signal transmission [193],

metabolic regulation [194], and organ coordination [195] occur seamlessly, allowing

macroscopic behaviours to emerge from microscopic dynamics.

Synchronisation

Synchronization is the process by which oscillators mutually adjust their rhythms

through weak interactions [171]. This interaction facilitates coordinated behaviours,

giving rise to emergent phenomena such as glycolytic oscillations [196] or the steady

heartbeat produced by cardiac pacemaker cells [197].

For systems to synchronise a coupling between them is required [171]. This coupling

can take many forms including chemical [198], photic [199] and mechanical [200].
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FIGURE 1.6: Arnold tongue demonstrating the parameter combinations whereby synchro-
nisation is possible (purple region) (A) autonomous system (B) Non-autonomous oscillator

with time varying frequencies which also exhibits intermittent synchronisation (grey)

The difference in natural frequency of the two systems (∆ω = ω0 −ω) must also be

relatively small compared to the coupling strength ϵ. This leads to the emergence of

the Arnold tongue (Fig. 1.6A), a parameter space where synchronisation is possible

as the coupling strength is greater than the frequency mismatch ϵ > |∆ω| = |ω0 −
ω|. This universal concept is ubiquitous in nature, enabling mutual cooperation of

many individual oscillating units to produce collective behaviour greater than the

sum of its parts [201].

Time-dependent oscillations

Living systems often exhibit frequencies that fluctuate around a central value [202],

partly due to environmental perturbations. Explicitly modelling external influences

on the system as non-autonomous, time-dependent phase oscillators reflect dynam-

ics observed from measured data of living systems. Here, time-dependent frequen-

cies are modulated such that,

ω(t) = ω (1 + A sin (ωmodt)) . (1.10)

Where ωmod represents the modulation frequency, and A is the amplitude of modu-

lation around the central value ω. Somewhat counterintuitively, introducing a deter-

ministic, non-autonomous frequency has been shown to expand regions of stability

and enhance the system’s robustness in the face of environmental changes [178]. The

resulting time-varying frequency mismatch,
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∆ω(t) = ω0 −ω (1 + A sin (ωmod t))

= ∆ω− Aω sin (ωmod t) ,
(1.11)

means that the new synchronisation criteria becomes,

ϵ > |∆ω(t)| = |∆ω− Aω sin(ωmodt)|. (1.12)

As this criterion is time-dependent, a new, transient type of synchronization is intro-

duced. This phenomenon is known as intermittent synchronization (grey region in

the parameter space of Fig. 1.6B) [203].

1.6.2 Extension to networks

Modelling the system as above assumes two single oscillators. In the body, often

there are many oscillators of the same type which operate in networks to produce a

collective oscillation. each oscillator acts as a node of the overall network, and often

a certain density of oscillators is required to produce the collective behaviour [194].

Considering the collective behaviour of oscillatory networks is therefore essential to

categorise their dynamics.

1.6.3 Intranetwork interactions

The phase of each oscillator, θi, is influenced by its natural frequency ωi, and its

interactions with other oscillators and networks. Intranetwork interactions describe

the adjustment of phases due to couplings between oscillators of the same type (here

denoted as network X). The phase dynamics due to intrantwork interactions,

θ̇Xi = ωi +
N

∑
j=1

KX

N
sin

(
θXj − θXi

)
, i = 1, . . . , N (1.13)

depends upon N, the total number of oscillators in the network, and KX, the intranet-

work coupling strength [204]. θXj(t) denotes the phase of the j-th oscillator. As the

coupling strength KX increases, the system undergoes a transition to collective syn-

chronization, characterised by oscillators maintaining a constant phase difference



Chapter 1. Introduction 26

over time. The Kuramoto order parameter, rX, evaluates the degree of synchroniza-

tion achieved within the network,

rXeiΨX =
1
N

N

∑
k=1

eiθXk . (1.14)

A completely ordered system with each oscillator synchronised to each other will

therefore have an order parameter of rX = 1, while a completely disordered one will

have rX = 0. The mean phase of the oscillator network,

ΨX =
1
N

N

∑
i=1

θXi (1.15)

describes the time-dependent behaviour of this collective oscillation.

Internetwork Interactions

The influence from the mean field of another network, ΨY, can also affect the phase

of an oscillator such that,

θ̇Y→Xi = FY→XrY sin (ΨY − θXi) . (1.16)

Here, FY→X represents the internetwork coupling strength from Y to X, and rY is the

Kuramoto order parameter.

The phases of each oscillator are influenced by the natural frequency of the oscil-

lator (ωXi(t)), the intranetwork couplings (θ̇Xi) and internetwork couplings (θ̇Y→Xi ),

such that,

θ̇Xi = ωXi(t) + θ̇Xi − θ̇Y→Xi. (1.17)

In living systems there are often multiple internetwork couplings to consider.

1.7 Analysis of living systems

Before considering which analysis techniques are most appropriate for living sys-

tems, the data measurement procedure must be understood, as it imposes limita-

tions on the analyses that can be performed. The first of these limitations is the
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Nyquist frequency, which restricts the maximum observable frequency in a signal,

Fmax, to half of the sampling frequency, Fs,

Fmax =
Fs

2
. (1.18)

Furthermore, the length of the recorded signal determines the minimum observable

frequency. To reliably detect components within a time series, multiple cycles of os-

cillation must be measured. A minimum of six to ten cycles of the lowest frequency

of interest is required to accurately resolve the power of an oscillation [177].

For coupling analyses, time series consisting of at least thirty cycles of the os-

cillation of interest are necessary to capture the mutual influences between systems

[205]. Elongated time series are also necessary to capture transient phenomena [26].

Clinical trials can be labour-intensive and costly, often resulting in suboptimal

recording durations. Certain measures may also be uncomfortable for participants,

particularly those with ASD who may have sensory hyper-responsiveness [3]. How-

ever, insufficient recording time reduces the amount of useful information that can

be extracted from a time series. Although there is no strict upper limit on record-

ing duration, practical constraints necessitate a compromise when designing exper-

iments.

Once the data has been collected, several approaches can be used to extract in-

sights from the time-series.

1.7.1 Time-domain

As the name suggests, time-domain methods examine changing patterns in the data

across time. These approaches assess the temporal structure of, and potential pres-

ence of interactions between, time series.

Actograms

Actograms plot activity patterns across time. Commonly used in chronobiology

[206], actograms give a three dimensional representation of the amount of activity —

such as locomotor movements, wheel running, or sensor-based motion detection —

at a given time across many days. They can reveal unimodal prominent oscillations,
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such as the circadian oscillation, from a time series due to the regularity of activity

patterns. However, they can’t resolve multiple oscillatory modes simultaneously or

accurately assess changes in frequency over time.

Autocorrelation

Another way to assess periodic activity in a time series is using autocorrelation. This

statistical tool assesses periodicity in data by comparing a time series f1(t) with a

lagged version of itself f1(t + τ) [207]. This generates the autocorrelation function,

φ11(τ) =
1
T1

∫ T1/2

−T1/2
f1(t) f1(t + τ)dt, (1.19)

where, τ is the lag time. Plotting the function revels periodicity in the data by the

presence of peaks at certain time lags. Again however, as this approach assumes

stationarity, it is inappropriate for capturing time varying frequencies.

1.7.2 Frequency-domain

An alternative set of approaches focus on observing the spectral content of a signal,

averaged over time. These approaches demonstrate the frequencies present in a time

series, however they often achieve this via the assumption of stationary dynamics,

which is inappropriate in living systems.

Fourier transform

The Fourier transform reveals the spectral content of a signal by converting a time

series into the frequency domain. It is derived from the Fourier series, which repre-

sents a periodic function as a sum of sine and cosine functions. The Fourier trans-

form extends this concept by assuming the period of the signal, T, approaches infin-

ity [207]. The frequency content is given by,

F(ω) =
1

2π

∫ ∞

−∞
f (t)e−jωtdt, (1.20)
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where F is a continuous function of the angular frequency ω and j is the imaginary

unit. Plotting this function reveals the amplitude of oscillations at different frequen-

cies in the interval over which the time series was measured. While historically

significant and helpful for quickly discovering peak frequencies, this approach has

several drawbacks. In noisy signals, it is easy to disregard the dynamics as lacking

determinism [26], Fig. 1.7 demonstrates that time-varying frequencies can easily be

mistaken for noise given this approach. Additionally, by averaging over time, it is

impossible to say if an oscillation was present transiently or for the entire time series

at a lower power. To address these concerns, the time domain must also be resolved

when analysing signals.

1.7.3 Time-frequency domain

Oscillatory behaviour is often non-stationary, requiring time-resolved methods to

track the temporal evolution of oscillations. However, there are inherent mathemat-

ical constraints that limit the simultaneous resolution of time and frequency. Accord-

ing to the Heisenberg/Gabor uncertainty principle, it is fundamentally impossible

to localise both time and frequency with arbitrary precision, as they are constrained

by a trade-off [208],

∆t∆ f ≥ 1
2

. (1.21)

This fundamental relationship, linking the uncertainty in frequency ∆ f to the un-

certainty in time ∆t, underpins modern communication systems and data analysis

[208]. To understand its significance, consider that increasing the width of a time

window improves frequency resolution by allowing the observation of more cycles.

However, this comes at the cost of diminished time localisation, as the information

is spread over a longer duration. Conversely, using smaller time windows enhances

time localisation, enabling precise identification of when oscillations occur, but re-

duces frequency resolution due to the presence of fewer cycles. This compromise is

fundamental to time-frequency analysis.
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Short-time Fourier transform

The Short-time Fourier transform (STFT) reveals the time-frequency domain by di-

viding a time series into overlapping windows and performing a Fourier transform

on each segment. This approach provides the time-localised frequency content of a

signal, allowing us to track how the frequency content of a signal evolves in time.

However, the STFT has a fixed frequency resolution, which is suboptimal for

analysing signals with varying, multiscale frequency components. As a result, the

choice of window size becomes crucial. A larger window improves frequency reso-

lution by capturing more cycles of oscillation, but at the expense of time localisation.

Conversely, a smaller window enhances time localisation but reduces frequency res-

olution, making it challenging to resolve fine frequency details.

Unlike alternative approaches, which perform multiple transforms at different

scales, the STFT performs a single Fourier Transform for each time, maintaining

uniform resolution throughout the analysis. While this simplicity can make the STFT

computationally efficient and conceptually straightforward, it may not be ideal for

signals with complex, multiscale characteristics. Fig. 1.7D demonstrates how the

higher frequencies are poorly localised in time due to this non-adaptive frequency

resolution.

Wavelet transform

In the short-time Fourier transform, a single window is used to evaluate all frequen-

cies at a given time. Improved multiscale resolution may be achieved by sliding

wavelets of varying scales along the input signal and transforming the overlapping

parts into the frequency domain. This adaptive resolution allows wavelets of op-

timal scale to detect each frequency. Lower frequencies exhibit fewer oscillations

within a given time, necessitating a larger scale to capture the oscillatory activity

effectively. Conversely, higher frequencies require less time to be captured, allowing

the use of a smaller scale. This optimises the trade-off between time localisation and
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frequency resolution, providing greater time-localisation at high frequencies and im-

proved frequency resolution at low frequencies. Additionally, the frequency resolu-

tion can change logarithmically across scales, providing a more balanced distribu-

tion of information across frequency bands [209].

Essentially, the short time Fourier transform is a camera with only one focus,

able to detect the presence of objects both large and small, but with poor resolution.

In contrast, the wavelet transform is able to adjust its focus, stretching to obtain a

sufficient number of oscillations for the observation of low frequency activity and

contracting to better localise high frequency oscillations in time. The wavelet trans-

form was therefore applied in the analyses throughout this thesis, and is defined

by,

WT(s, t) =
∫ L/2

−L/2
Ψ(s, u− t) f (u)d(u), (1.22)

where the mother wavelet Ψ is squeezed and stretched to reveal the presence of

oscillation at each frequency across time (t), L is the signal length and s is the scale.

Different types of wavelet may be applied, each suited to different types of analysis.

For example, the Morlet wavelet,

Ψ(s, t) =
1

4
√

π

(
e

2πiωct
s − e−

2πω2
c

2

)
e−

t2

2s2 , (1.23)

is composed of a sinusoid within a Gaussian envelope. The frequency of the sinusoid

allows the wavelet to be focused upon a certain scale, while the Gaussianity ensures

a smoothly decaying amplitude, improving time-localisation.

1.7.4 Comparing approaches

To highlight the differences between the above analysis approaches, consider a time

series,

x(t) = ω1 (1 + A1 sin(ωmod1t))+ω2 (1 + A2 sin(ωmod2t))+ω3 (1 + A3 sin(ωmod3t))+ η(t),

(1.24)
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consisting of three deterministic time-varying modes and pink noise (η(t)). The pa-

rameters used to generate the time series and modelling approach are outlined in

Tab. 1.3 Both the autocorrelation (Fig. 1.7B) and Fourier transform (Fig. 1.7C) sug-

gest that there may be some oscillatory components, however the number of modes

and their time-varying characteristics remain unclear. Evaluating the time domain

using the STFT (Fig. 1.7D) reveals that the frequencies change over time, but with

poor multiscale resolution. The multiscale, time-resolved (Morlet) wavelet trans-

form is capable of elucidating the dynamic characteristics of this system (Fig 1.7F).

By unlocking the temporal dimension, and applying multiscale adaptive resolution,

a plethora of information is revealed.

1.7.5 Phase extraction approaches

Many of the methods applied in this thesis rely on the identification, isolation and

analysis of phase behaviour in the time/frequency domain. These phases can be

extracted from the time frequency domain by several approaches.

Hilbert transform

Prior to the emergence of the Hilbert transform (HT), the phase of a signal could

only be assessed by interpreting the current point of a cycle in the time domain [210].

While this is possible in regular, relatively noiseless signals of a known construction,

such as the heartbeat, it is not generally applicable. The HT creates a complex val-

ued representation of the original, real signal. The phase information can then be

extracted as the argument of this complex value. However, the HT is only effective

if there is a single oscillatory mode in the frequency band of interest.

Ridge extraction

The underlying oscillatory modes may be harnessed to evaluate their changing power

and phase over time [211]. The first step here is to find the ridge curve; a region in

the time-frequency domain with a series of amplitude/power peaks and their cor-

responding phases. Tracing these modes in the time-frequency domain can reveal

time-localised amplitudes and phases.
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FIGURE 1.7: Analysis approaches applied to a simulated time series (Eq. 1.24). (A) A 50-
second segment of the simulated time series. (B) Autocorrelation of the signal, normalised
between 0 and 1, plotted for the first 12 seconds of lag. (C) Fourier transform of the time
series, highlighting dominant frequency components. (D) Short-time Fourier transform re-
veals the power of the multiscale time-dependent modes. A linear frequency axis is used
to reflect the linear nature of the windowing applied (E) Time-average of the STFT. (F) The
time-resolved power of the oscillatory modes evaluated with a wavelet transform using log-
arithmic frequency resolution. A logarithmic frequency axis is used to reflect this. (G) The

time averaged wavelet transform power.

1.7.6 Harmonic Analysis

Spectral peaks are obtained from a mathematical description of time series and are

not necessarily linked to physical oscillatory systems or modes. In the case of non-

linearities, i.e. when the signal is not of sinusoidal shape, many high harmonic com-

ponents can occur belonging to the activity of a single mode. When the rhythms

are strictly periodic the detection of high harmonics is relatively straightforward be-

cause they appear at commensurate frequencies of the basic frequency. However,

when the rhythms have variable, or non-stationary frequencies, the detection of

high harmonics is more demanding. To determine whether the detected frequency
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peaks correspond to independent modes, or the peaks are in harmonic relationship,

we conduct harmonic analysis [212]. The method evaluates mutual information be-

tween time-localised phases across frequency bands. If sufficient shared phase in-

formation between a fundamental frequency and its harmonics exceeds a surrogate

threshold, then the relationship can be considered as harmonic. For further details

regarding surrogate data analysis, see Sect. 1.7.7 and [213].

To detect harmonics, we first extract the time-localised phases using the wavelet

transform. This information is subsequently split into 24 equally spaced bins which

are compared against each other using an information theoretic approach. First, the

Shannon entropy [214] (H(ϕ1)) of each phase distribution p(ϕ1) is found,

H (Φ1) = −
24

∑
ϕ1=1

p (ϕ1) log2 p (ϕ1) . (1.25)

Following this, we obtain the mean entropy of the conditional distribution, given the

phase distribution p(ϕ2) at a lower frequency evaluated at the same point in time,

H (Φ1∥Φ2) = −
24

∑
ϕ2=1

p (ϕ2)
24

∑
ϕ1=1

p (ϕ1∥ϕ2) log2 p (ϕ1∥ϕ2) . (1.26)

The mutual information of the signals is calculated as the difference between Shan-

non and mean entropy,

M (Φ1, Φ2) = H (Φ1)− H (Φ1∥Φ2) . (1.27)

Mutual information (M) quantifies the mutual dependence between two variables

by measuring the extent to which knowledge regarding the value of one variable

reduces the uncertainty in predicting the other. If the probability distribution p(ϕ1)

provides no information about p(ϕ2), the phases are independent, and the mutual

information is zero (M = 0). Conversely, if p(ϕ2) completely determines p(ϕ1),

then M = 1. Harmonics exhibit the same phase behaviour as their fundamental

frequency in both the time and frequency domains, resulting in high mutual in-

formation values. Surrogate testing is employed to distinguish genuine harmonic

relationships from spurious patterns [213].
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1.7.7 Interactions

Living systems must continually interact with their environment to sustain them-

selves. Coordination between time series suggests the presence of mutual interac-

tion between oscillators; however, this does not necessarily imply they are coupled.

As discussed in Sect. 1.6.1, an adjustment of rhythms between oscillators must be

also present for synchronisation. To reduce the likelihood of detecting spurious in-

teractions, surrogate testing is applied.

Surrogates

Methods that evaluate interactions are liable to detect a certain minimum level, even

in entirely unconnected systems. In order to evaluate whether an interaction is ac-

tually present in a system, we must negate this zero error, this leaves the true - also

known as effective - value of the measurement of interest.

To establish this threshold, we generate surrogate time series. Ideally, these incor-

porate as many features of the dynamical systems under investigation as possible,

but without the aspect being measured. There are many types of surrogate, which

can be generated from a variety of mathematical techniques [213], however inter-

subject surrogates are considered the gold standard as they retain as many statistical

properties of the system as possible.

Intersubject surrogates are generated by assessing interactions between brain re-

gions from different individuals. The connectivity between these regions is minimal,

as they are functionally independent by virtue of originating from separate partici-

pants.

For example, consider investigating the connectivity between two brain regions

corresponding to EEG probe sites, F3 and F4, in subject (S1). The first step is to cal-

culate the raw connectivity between probes. Next, a threshold must be established

to ensure the measured connectivity is not spurious. If the group contains 100 par-

ticipants, the connectivity between S1 at F3 and the corresponding signals at F4 from

the other 99 participants is calculated. Since no genuine connection exists between

these measurements, this dataset is used to establish a baseline threshold, such as
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the 50th percentile of the surrogate connectivity values. Finally, the effective connec-

tivity is assessed as the difference between the raw connectivity and the established

threshold value.

Ce f f ective = Craw − CThreshold (1.28)

Negative values reflect a lack of coherence and so are set to zero.

Functional connectivity

Functional connectivity assesses the statistical dependence of one time series over

another [215]. As previously addressed, this does not imply a coupling between

them, but it can hint at the presence of interactions.

Coherence

Coherence quantifies the phase relationship between a pair of time series measured

concurrently. It has been used across various physics domains and has been respon-

sible for breakthroughs such as Young’s double slit experiment and the detection

of gravitational waves at LIGO. With the advent of modern computational power,

coherence has been applied to detect the putative presence of interactions between

time series.

Traditionally, coherence was developed within the the field of optics, where it

quantified the strength of interaction patterns from two sources of light. The visibil-

ity of each peak v can be determined by the intensity of the light at peaks Imax and

troughs Imin, such that,

v =
Imax − Imin

Imax + Imin
. (1.29)

Where v = 1 indicates maximum interference and v = 0 for no interference. While

helpful for determining interference patterns of light, a modified expression is re-

quired to illustrate the interference of waves of arbitrary amplitude and phase more

generally. The Fourier cross-spectrum can be calculated to assess the degree of in-

teraction between two time series a and b, as
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Sab( f ) = Fa( f )× F∗b ( f ), (1.30)

where the asterisk denotes complex conjugation. However, this similarity measure

remains influenced by the amplitude of the Fourier components. This implies that

even if a dominant oscillation is present in one data series while only background

fluctuations exist in the other, the cross-spectrum will still show a peak at the fre-

quency of that oscillation, as long as some amplitude is present at that frequency

in the second data series. To address this bias, we need to normalise the cross-

spectrum. This is done by defining the Fourier coherence C( f ) as:

C( f ) =
|⟨Sab( f )⟩|

[⟨Saa( f )⟩ × ⟨Sbb( f )⟩]1/2 , (1.31)

where angular brackets indicate a time average of the Fourier autospectra Saa, Sbb

and the Fourier crosspectra Sab while || denotes an absolute value. Similar to the

initial introduction of visibility, this is defined on a scale from zero to one, where one

is complete coherence and zero represents no coherence [216].

By applying wavelets, coherence can be extended to the time frequency domain,

as popularised by Torrence and Webster [217] and then again by Lachaux et al. [218]

who defined it as

CW( f , t) =
|SWab( f , t)|

[SWaa( f , t) · SWbb( f , t)]1/2 , (1.32)

Where SWab are the cross wavelet spectra and SWaa, SWbb are the auto spectra. One

is able to determine the consistency in the phase difference across a window of size

δ using,

SWab( f , t) =
∫ t+ δ

2

t− δ
2

Wa( f , τ) ·W∗b ( f , τ)dτ, (1.33)

where δ = ncy/ f for a given number ncy of cycles at a given frequency f . Using this

approach, one is able to derive a time-localised, multiscale representation of interac-

tions across time. Yet this method does not only compare the consistency in phases

across time, but also similarity in amplitude. One can circumvent this amplitude de-

pendence by explicitly focusing upon the phase dynamics of the two signals across
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time and frequency by applying the approach developed independently by Lachaux

et al. [218] and Bandrivsky et al. [219],

Cθ( f , t) =
1
δ

∣∣∣∣∣
∫ t+ δ

2

t− δ
2

ei(θa( f ,τ)−θb( f ,τ))dτ

∣∣∣∣∣ . (1.34)

This approach is completely independent of amplitude, and so is robust against am-

plitude perturbations such as movement artefacts.

1.7.8 Effective connectivity

Effective connectivity can establish the direction and presence of coupling, thus de-

termining which oscillator is influencing the other. In contrast, functional connec-

tivity methods identify statistical dependences between different brain regions, of-

fering a descriptive measure of common behaviour between two-time series [215].

Functional connectivity methods can therefore reflect external influences rather than

mutual couplings. Effective connectivity explicitly quantifies the influence oscilla-

tors over one another.

Bispectral analysis

Wavelet bispectral analysis enables the detection of nonlinear couplings both be-

tween and within time series data [220]. Autobispectral analysis is applied to inves-

tigate the potential presence of coupling between modes within a single time series,

while cross bispectral analysis can evaluate phase couplings between different time

series [221]. The wavelet bispectrum, BW , quantifies the phase coupling between

modes at scales s1 and s2, as follows:

BW (s1, s2) =
∫

T
WT (s1, τ)WT (s2, τ)W∗T(s, τ)dτ, (1.35)

over a time interval, T , where:

1
s1

+
1
s2

=
1
s

. (1.36)

For a more detailed explanation, refer to [220].
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Dynamical Bayesian inference

Dynamical Bayesian inference (DBI) can also detect phase couplings between os-

cillators. DBI goes beyond traditional functional connectivity measures by recon-

structing coupling functions, which describe the influence of one oscillator’s phase

on another. This information forms the coupling between systems, where the cou-

pling function (CF) defines how information propagates from one oscillator to an-

other [222]. In a unidirectionally coupled phase oscillator, the phase of oscillator X

modulates the phase of oscillator P through a coupling function. This process can

be simulated numerically, for example Fig. 1.8 and DBI successfully reconstruct the

coupling functions across varying coupling strengths, indicating both the shape and

strength of the couplings. Furthermore, DBI captures the directionality of interac-

tions, as demonstrated in Fig. 1.8E, where no information flows from oscillator P to

X in this simulated unidirectional phase oscilator (Eq. 1.37).

ϕ̇X = ωX + η(t)

ϕ̇P = ωP + qP (ϕX, ϕP) = ωP + E cos (ϕX + π/2.5) + η(t).
(1.37)

FIGURE 1.8: Coupling functions from the numerically generated example (Eq. 1.37). (A)
The direction of coupling. (B-D) The coupling from X to P at different coupling strengths.

(E) coupling from P to X, where there is no coupling present.

DBI is based on Bayes’ theorem, incorporating both prior knowledge and current

information to infer the time-evolving dynamics of couplings between signals. By

using a sliding time window, DBI can track whether phase behaviour in one re-

gion influences another, capturing the dynamic evolution of couplings. This method

avoids pitfalls of averaging, which could obscure transient phenomena. Instead, it

uses windows to determine the coupling as it evolves in time. These windows must

be at least the equivalent of ten cycles of oscillation at the minimum frequency of

interest to faithfully recreate the dynamics [223].
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Practical implementation

Applying dynamical Bayesian inference yields a series of phase coupling functions

that represent the influence of one oscillator on another. For EEG data, phases

extracted from the recorded time series serve as the input. To obtain these time-

localised phases, ridge extraction is applied to each signal, as described in Sec-

tion 1.7.5. This approach allows the phase dynamics to explicitly track the temporal

evolution of each mode, while also providing a logarithmic frequency scaling that is

particularly well suited to the analysis of living systems.

Once the phases have been extracted, they serve as input to dynamical Bayesian

inference (DBI), which reconstructs a coupling function over a series of time win-

dows. To introduce an additional temporal dimension, the percentage of time dur-

ing which oscillators remain coupled can be assessed. In practice, this corresponds to

the proportion of time for which the coupling strength exceeds a surrogate-derived

threshold. By proxy, this allows us to estimate the duration over which the phase

dynamics in one brain region influence those in another. The result is a directional,

time-localised representation of how, when, and whether two regions exert influence

over one another.
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1.8 Thesis outline

Here we present a cohesive body of work, organised around four core papers that

contribute to a broad understanding of diverse biological systems and how they

relate to autism spectrum disorder. The analytical approaches applied adhere to the

physical principles of living systems laid out in Sect. 1.5.

First, a comprehensive review of physics based approaches to modelling cellular

energy metabolisms is presented. Coupled phase oscillators are capable of describ-

ing the dynamics of these systems with dramatically fewer parameters than mass-

based models. This review presents an approach capable of representing patholog-

ical metabolic states, which we will later apply specifically to the case of autism

spectrum disorder.

The next chapter delves into wavelet phase coherence, presenting a detailed com-

parison to amplitude-weighted methods. This highlights the advantages and limi-

tations of current functional connectivity approaches. Wavelet phase coherence is

demonstrated, via a series of simulated examples and experimental data, to be more

resilient against amplitude perturbations. Robustness against movement artifacts

is a particularly important property for analytical approaches that use data such as

EEG in children which is prone to amplitude perturbation.

Subsequently, an investigation applying wavelet phase coherence and dynami-

cal Bayesian inference to EEG data from young males with ASD is presented. This

paper identifies unique neural patterns and offers a deeper understanding of the

neural mechanisms involved in ASD. It is hoped that the reduced theta and alpha

connectivity found in young males with ASD provides a promising marker for the

condition.

The fourth paper presented focuses upon the circadian oscillations, which are

severely disrupted in ASD [14, 17, 158, 159, 160]. A particularly understudied aspect

of circadian regulation is the methamphetamine sensitive circadian oscillator [16].

The time-varying circadian oscillation highlighted by methamphetamine adminis-

tration may be partially responsible for disrupted sleep in ASD.

Finally, a model of neuronal energy metabolism is presented. Simulations of

healthy and altered states, induced by upregulation of the WNT-β catenin pathway,
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are compared to evaluate the hypothesis [7] that this pathway may contribute to the

Warburg effect in ASD.

The thesis concludes with a summary of the work presented, highlighting con-

tributions science and suggesting avenues for future research.
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Physics of cellular energy

metabolism

Student contribution:

The student conducted a thorough literature review encompassing both cellular

energy metabolism and the physics-based modelling approaches currently in use.

They designed and implemented comparative analyses between real glycolytic os-

cillations and the outputs of two distinct modelling frameworks. In addition, the

student performed all time-series analyses, curated the experimental and simulated

data, developed the software used for analysis and figure generation, and wrote and

edited the manuscript.

This research is published in Contemporary Physics.

Samuel JK Barnes and Aneta Stefanovska. “Physics of cellular energy metabolism”.
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ABSTRACT
Contributions to the field of cellular energymetabolismhave beendominated by biochemistry. Over
the past decade, however, several physics-based approaches have been introduced. Oscillations are
an intrinsic aspect of all living systems, from fluctuating substrate levels within cells to changes in
electrical potential across membranes. Utilising physics-based approaches to analyse these time-
dependent signals reveals pockets of predictable stability. By embracing the nonlinear, time-varying
and open nature of cellular dynamics, new network-based approaches tomodelling cells are emerg-
ing, capable of effectively replicating measured time-series data. These new approaches promise
to bring greater comprehension of how various illnesses affect the cells, and indeed, to novel
treatments or diagnostic methods.
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1. Introduction

Since the discovery of synchronisation by ChristianHuy-
gens in 1665, examples of this phenomenon in the phys-
ical, chemical, and biological sciences have been studied
extensively [1]. Particular growth came in the early twen-
tieth century, with one notable example being the work
of Van der Pol which explicitly used relaxation oscilla-
tors to model heartbeat [2]. Following this, many other
biological processes were reported as oscillatory, with
the first observation of the glycolytic oscillator – repre-
senting the crucial start point of the central metabolic
pathway – reported in 1957 [3]. Less than a decade
later, Aldridge and Pye reported that glycolysis is depen-
dent upon cell density [4], alluding to the importance
of mutual interaction between oscillators. Many contem-
porary groups have introduced models and attempted
to characterise the nature of these oscillations [5]. Both
Yang et al. [6] and Ganitkevich et al. [7] recently demon-
strated that under certain conditions, glycolytic oscil-
lations drive those in the mitochondria and so dictate
the entire metabolic rhythm. This amplified glycolytic
influence is associated with pathophysiological states.
Downregulation of glycolytic enzymes has consequen-
tially emerged as a therapeutic strategy [8]. Understand-
ing the transition frommitochondrial to glycolytic dom-
inance over cellular energymetabolismmay elucidate the
role of oscillatory processes in pathogenesis. Sustained
oscillatory behaviour has been demonstrated experimen-
tally on both a population level [9] and in individual yeast

CONTACT Aneta Stefanovska aneta@lancaster.ac.uk

cells [10]. In the past few years, there has been further
characterisation of glycolytic oscillation in cellular pop-
ulations, highlighting both partial [11] and permanent
synchronisation [12].

Under healthy conditions, the mitochondria are
responsible for most ATP production in the cell. Mito-
chondrial oscillations were first demonstrated in 1966
when Chance and Yoshioka reported fluctuating ionic
concentrations of potassium and hydrogen in pigeon
heart cells [13]. Fluctuations in the mitochondrial mem-
brane potential have been studied extensively since [14] a
number of models have been introduced to describe the
oscillatory behaviour of the organelle. Particular focus
has been on network dynamics [15] and the spatial dis-
tribution of mitochondria [16]. Recently, computational
models have also been used to demonstrate nonlinear
behaviour in mitochondrial oscillations [17].

Cellular energy metabolism is predominantly con-
trolled by several oscillating processes. Investigating the
synchronisation states between these oscillators can indi-
cate the dominant influences over the system. By observ-
ing time-series data from cells in vitro, and modelling
metabolic processes, a greater understanding of the
changes inflicted upon cells by numerous conditions –
includingCOVID– could be gained [18]. Viral infections
cause a transition between metabolic states within host
cells following infection, and greater knowledge of these
transitions may assist in developing effective antiviral
treatments against such conditions.

© 2022 Informa UK Limited, trading as Taylor & Francis Group
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Throughout this review, we highlight the issues –
and potential solutions – of analysing and modelling
metabolic processes. Synchronisation is introduced fol-
lowing a brief exploration of cellular energy metabolism
and a kinetic model of glycolysis. Non-autonomous
approaches describing both the mitochondrial and gly-
colytic branches of metabolism are also discussed before
finally considering glycolytic oscillations within cellular
populations.

2. Difficulties in modelling biological processes

A long-standing critique of the biological sciences is
the lack of testable theories, unlike the highly successful
equivalents of, for example, quantum theory in physics.
Biological systems are inherently complex, and the open-
ness of these systems often means a variety of factors
can affect outcomes, making realistic modelling diffi-
cult. Intrinsic perturbations have formerly led to the
incorrect assumption that many biological oscillators
are purely stochastic processes [19]. To elucidate the
potential role of physics-based approaches in modelling
metabolic behaviour, one must first introduce the pro-
cesses underlying cellular oscillations.

2.1. Cellularmetabolism in healthy cells

Adenosine Triphosphate (ATP) is an organic compound
used to provide energy for bodily processes, from the
opening of specific ion channels in cell membranes to the
contraction ofmuscles. Humans produce and utilise their
body weight in this molecule daily [20], and therefore, its
method of production is paramount.

Cellular ATP is predominantly generated by oxida-
tive phosphorylation (OXPHOS) in the mitochondria
and glycolysis in the cytoplasm of cells, with these pro-
cesses consuming oxygen and glucose, respectively. In
most healthy cells, the mitochondria should be respon-
sible for the majority of ATP production, whilst cells
relying on glycolysis for this are generally in an undesir-
able state. Fundamentally, within animal cells, this system
can be simplified into four key processes [22]. Glycolysis
is the first stage, converting glucose, ATP and ADP into
nicotinamide adenine dinucleotide (NADH), pyruvate
and ATP. Then, in the mitochondria, the metabolism of
sugars is completed so efficiently that the synthesis of 28
molecules of ATP takes place per glucose molecule oxi-
dised. By contrast, only two ATPmolecules are produced
for each glucose molecule by glycolysis alone. These
mitochondrial processes occur via oxidative phosphory-
lation, which requires theNADHandpyruvatemolecules
produced in glycolysis and an external oxygen supply to
synthesise the additional ATP. The supply of oxygen and

Figure 1. Metabolic pathways inside a cell during cellular energy
metabolism. Arrowsdemonstrate the interactionof various chem-
icals. Phosphofructokinase (PFK) is an essential enzyme in gly-
colysis, while both the Krebs cycle and oxidative phosphoryla-
tion (OXPHOS) take place in the mitochondria, represented by
the organelle on the right. In healthy conditions, mitochondrial
processes produce 28 molecules of ATP per glucose molecule
oxidised, compared to 2 ATP molecules generated by glycolysis.
Reprinted with permission from [21].

glucose to the cells are the final key processes. Figure 1
illustrates the interplay between these interactions.

Oscillatory and non-autonomous behaviour is present
in both glycolytic and mitochondrial pathways due to
their explicit dependencies on time [23]. As indicated by
dashed arrows within Figure 1, excitatory and inhibitory
couplings also exist between these oscillators. In healthy
states, most ATP production occurs during OXPHOS
in the mitochondria. Glycolysis will therefore be sup-
pressed to the low level necessary to provide sub-
strates for mitochondrial reactions, and the mitochon-
dria will drive overall metabolic oscillations. A further
coupling between these oscillators exists in the form of
an ATP/ADP sensing mechanism. If mitochondrial ATP
production decreases, this ratio will also decrease. A
sensing mechanism in the cell then reverses inhibition of
the phosphofructokinase (PFK) enzyme used in glycoly-
sis which leads to an increase in glycolytic ATP synthesis
to meet cellular demand. This transition is a widespread
occurrence in pathogenic cellular states [6, 7]. Under-
standing the nature of this transition may be a crucial
starting point to uncover the nature of certain diseases.

2.2. Biological oscillators

Almost all biological processes include varying levels of
products and substrates. The behaviour of these oscil-
lating quantities can often be analysed to uncover an
underlying order. Changes in these oscillations can indi-
cate alterations in a cell’s function or overall health. The
processes under consideration in this review are micro-
scopic, and their behaviour is analysed by considering
substrates and products utilised in these interactions.
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2.2.1. NADH oscillations
Monitoring levels of NADH enables one to observe alter-
ations in the metabolic pathways of living cells. This
molecule is produced during glycolytic oscillations and
utilised in mitochondrial reactions, so its cellular abun-
dance constantly fluctuates. The study of NADH fluctua-
tions over time may indicate the cell’s prevalence of dif-
ferentmetabolic pathways. It was first shown in the 1960s
that the nicotinamide group within NADHwould absorb
incident ultraviolet light of wavelength 340 ± 30nm,
followed by the emission of a photon with wavelength
460 nm [24]. Measuring variations in the intensity of the
outputted light over time, using modern methods such
as fluorescence lifetime imaging, enables the measure-
ment of fluctuating cellular levels of NADH. Analytical
techniques can then be applied to these time-series to
extract information about underlying dynamics, such as
how oscillation frequency changes over time.

2.2.2. Membrane potential oscillations
The study of the inner mitochondrial membrane poten-
tial can reveal another oscillating quantity. The distribu-
tion of ions across cell membranes can cause a potential
difference between inner and outer cellular regions. A
potential difference is induced in the mitochondria dur-
ing OXPHOS [14] as an uneven distribution of protons
exists in this region. This proton gradient is essential as
the final stage of OXPHOS consists of protons flowing
back into the mitochondrial matrix via an enzyme com-
plex, driving the synthesis of ATP. Therefore throughout
this process, the potential (��m) remains in a state of
flux, which can be measured using the fluorescent dye
3,30-diethyloxacarbocyanine iodide. Similar to the previ-
ously outlinedmethod ofmeasuring glycolysis by observ-
ing NADH levels, measuring variations in fluorescence
may indicate changes in the mitochondrial membrane
potential over time. Using time-series data generated
by observation of NADH oscillations may help indicate
novel findings about cellular dynamics and indeed help
to model these systems.

3. Kinetic model of cellular energymetabolism

Due to the inherent complexity of biological sys-
tems, both modelling and analysing cellular data are
fraught with difficulties. Despite this, severalmodels have
attempted to address the problem. Many of these mod-
els take an autonomous approach tomodelling biological
oscillators [25–28]. One such attempt is the kineticmodel
of Amemiya et al. [5]. This model attempts to describe
the oscillatory glycolytic behaviour previously observed
in HeLa cervical cancer cells [23]. As with all models,
a large amount of simplification must occur, focusing

on the cell’s fundamental glycolytic pathways and trans-
port processes. This approach considers four enzymatic
reactions and three transport processes.

3.1. Transport

To elucidate the interactions between metabolic pro-
cesses in this model, it may be helpful to follow the path
of substrates throughout glycolysis, beginning with the
injection of glucose into the extracellular medium. The
flux of this process, Jin, is given by

Jin =
⎧⎨
⎩

Gi

t2 − t1
, t1 ≤ t ≤ t2,

0 otherwise.
(1)

Here, Gi is the concentration of glucose added to the
extracellular solution and glucose transport takes place
between times t1 and t2. Transportation of glucose from
the extracellular solution across the plasma membrane
occurs with the aid of glucose transporter proteins
(GLUT) [29]. Equation 2 describes the flux of glucose
across the membrane [30]

JGLUT = Vmax
Gex − G

Keq

Kout

(
1 + G

Kin

)
+ Gex

. (2)

Here,Kin andKout are the affinity constants of the enzyme
for both inter and extracellular glucose while Keq is the
equilibrium constant. Vmax is the maximum velocity in
the forward direction. Gex is the extracellular glucose
concentration while G is the concentration within the
cell. Figure 2 further illustrates the interactions between
variables and how they relate to cellular processes.

Figure 2. The glycolytic branch of cellular energymetabolism. (a)
The cellular energy metabolism diagram of Figure 1 is reduced to
show only the glycolytic pathway. Reproduced with permission
from [21]. (b) Schematic diagram illustrating interactions between
parameters in the Amemiya et al. model. X and Y are glycolytic
intermediates, vX represents the enzymatic processes within the
cell, while JX illustrates the respective transport processes. A2 and
A3 represent ADPandATP, respectively. Reprintedwith permission
from [5].
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The final transport process to consider is the flux of
the product, Y , leaving the cell. This flux, JP,Y , is given by

JP,Y = κ (Y − Yex) , (3)

and so is proportional to the concentration of Y inside
and outside (Yex) the cell and a coupling constant κ . κ is
dependent upon both the surface area of the cell, S, cellu-
lar volume, V, and membrane permeability, P, such that
κ = SP

V [31]. The intracellular concentrations of Equa-
tions 2 and 3 change thanks to several chemical reactions
inside the cell.

3.2. Enzymatic processes

ATP is both utilised and produced at different stages of
glycolysis. Initially, two molecules of ATP are consumed
to instigate the reaction before four ATP molecules are
generated at a later stage. This model simplifies the inter-
mediate processes of glycolysis by capturing only the
core glycolytic pathway. The first step to consider is the
consumption of glucose and ATP in the phosphofructok-
inase (PFK) reaction. The rate of this reaction is given
by v1 and represents the initial enzymatic processes in
glycolysis. A Michaelis–Menten-type mechanism [32] is
used to represent both this process and the second reac-
tion. The reaction rate is expressed using the function
f (G,A3) such that

f (G,A3) = A2
m[

1 + A2m
(

1
K1

+ G
K1K3

+ A3
K1K4

)
+ A3m

K2

] ,
v1 = k1GA3f (G,A3) .

(4)

Here, m is the number of PFK enzymes present, G is
the inter-cellular glucose concentration, and K1 and K2
are dissociation constants of PFK-ATP and PFK-ADP
complexes, quantifying the propensity of the two objects
to separate. Similarly, K3 and K4 are disassociation con-
stants for other enzyme-substrate complexes involved at
this stage. ADP is represented by A2 while A3 represents
ATP and the sum of these molecules,A2 + A3 = A0, was
assumed to be constant. These reactions produce pools
of intermediate compounds, labelled X, which are used
as substrates in the second stage.

The pyruvate kinase (PK) reaction is substantially
more straightforward, with only inhibition by ATP being
considered, and so the formulation for v2 ismore concise:

g (X,A3) = 1(
1 + An

3
K5

+ X
K6

+ A2
K7

) ,
v2 = k2XA2g (X,A3) .

(5)

In this case, the number of PK enzymes is given by n,
and K5 is the disassociation constant between pyruvate
kinase and ATP. As before, K6 and K7 are disassociation
constants of subsequent enzyme-substrate complexes.

Finally, v3 represents the consumption of the product
Y in other stages of metabolism, while v4 is the rate of
consumption of ATP within the cell. These are given by

v3 = k3Y ,

v4 = k4A3.
(6)

Here, k1, k2, k3, and k4 are all the respective rate con-
stants. A series of six linear differential equations were
used to simulate the changing levels of various substrates
during these processes which are as follows:

dG
dt

= JGLUT − v1,

dX
dt

= v1 − v2,

dY
dt

= 2v2 − v3 − JP,Y ,

dA3

dt
= −2v1 + 4v2 − v4,

dGex

dt
= Jin − V

Vex
JGLUT,

dYex

dt
= V

Vex
JP,Y.

(7)

The ratio of inter to extracellular volume is given by
V
Vex

. Unlike the real glycolytic oscillator, the oscillations
generated by this model are induced rather than self-
sustained. This enables the system to reproduce certain
experimental conditions; however, it may be ill-suited to
represent the continuous oscillatory behaviour of cells in
vivo. Comparing these induced glycolytic oscillations to
experiment enables the model’s validity to be assessed.
To this end, a time-series of the substrate Y may be con-
sidered as, and directly compared to, observed NADH
oscillations in real cells.

3.3. Experimental evidence

Any model must be compared to actual data to test its
validity, so it is paramount to establish analytical meth-
ods to inspect biological signals. Amemiya et al. tested the
validity of theirmodel bymeasuring a group ofHeLa cells
[5]. Following incubation of the cells for 24 hwithout glu-
cose, adding glucose to the chamber stimulated glycolytic
oscillations. These oscillations continued until the sup-
ply of glucose was exhausted. Figure 3(a) illustrates these
changes by measuring NADH fluorescence over a period
of 800 s. These data are freely available at [33].
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Figure 3. Experimental data (a, c, e) and data obtained from the kinetic model (b, d, f ). The model derived data were obtained with
parameters presented in [23]. (a) Fluctuations in NADH measured via fluorescence. From [23], with permission. (b) Simulated glycolytic
oscillations from the kinetic Amemiya et al. model. Reprinted with permission from [5]. (c) The time-series data in (a) is detrended by
subtractionof a best fit cubic polynomial following removal of the first 50s of data. (d) The time-series data in (b) detrendedby subtraction
of abest fit cubic polynomial after removing thefirst 150s of data. (e)Wavelet transformof the time-series data in (c). (f )Wavelet transform
of the time-series data in (d). All wavelet transforms in this reviewwere generatedwith a frequency resolutionparameter f0 = 1, between
0.01 and 0.1 Hz, and a lognormwaveletwas used. The freely available software packageMODA (Multiscale Oscillatory Dynamics Analysis)
was used to perform the transforms [34, 35].

To highlight the oscillatory behaviour of a time-
series, one must represent the measured data in the
time–frequency domain. To this end, the initial step due
to the sudden availability of glucose in the first 50 s of
measurements was removed. As such, Figure 3(c) repre-
sents the experimental data without this step and another
crucial change, the time-series has also been detrended
by subtraction of a best-fit cubic polynomial [34, 35]. In
a similarmanner, the initial step of the simulated datawas
also removed prior to detrending the signal. in this case,
150 s was removed as the initial spike is more elongated
in time.

The time dependence of the oscillator is illustrated
between 100 and 400 s in Figure 3(e) before vanishing as
the injected glucose is wholly consumed. Following this,
as can be seen in Figure 3(a) and 3(c), the time-series
becomes noise-like, decreasing in NADH amplitude. The
cells then die due to the lack of glucose present, hence the
lack of sustained oscillations. This cessation would not
be the case in actual cells as glucose is continually sup-
plied, enabling the continuation of oscillatory behaviour.
While this model can simulate a reduction in glycolytic
activity over time, and indeed the cessation of glycolytic
oscillations in this in vitro experiment, this is not neces-
sarily the case in vivo. Glucose is continually supplied in
the cell, enabling glycolysis to continue for extended peri-
ods. Induced oscillations cannot represent this sustained

oscillatory behaviour as their amplitude decreases over
time. Modelling approaches that can recreate both these
experimental conditions and sustained glycolytic oscilla-
tions would allow both in vitro and in vivo conditions to
be replicated. The lack of non-autonomous terms in this
modelling approach is highlighted by the smoothness of
Figure 3(b, d, f) and illustrates how autonomous mod-
els can struggle to replicate the constant perturbations
experienced in biological systems.

A wavelet transform (WT) has been performed upon
the time-series to represent the glycolytic oscillations in
time–frequency space. The windowed Fourier transform
(WFT) may also be used to investigate the changing
frequency over time. However, the WT has one partic-
ular key advantage when analysing signals of this type
regarding frequency resolution. The WFT has a linear
frequency resolution, while the WT’s frequency reso-
lution is logarithmic. This enables greater representa-
tion of low-frequency oscillations, and so, in general,
low-frequency oscillations are better represented by the
WT [36].

A total of 22 parameters and six autonomous, linear
differential Equations (7) are required to yield the time-
series represented in Figure 3(b). The implementation
of time-independent equations means the model lacks
the intrinsic time dependence present in many biologi-
cal systems [37]. A nonlinear system in cellular energy
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metabolism has also been replicated using only linear
equations. Various metabolic masses, including the sum
of ATP and ADP, are conserved throughout the system,
and the focus of this investigation is mass. The cell is a
thermodynamically open system, withmatter and energy
constantly being exchanged with the environment. Treat-
ing the system as such would remove the constraint of
conservation of mass and provide a more accurate rep-
resentation of the cell. While the focus here has been the
work of Amemiya and colleagues, this is far from the only
contribution to the field. Various other approaches, such
as the work of Kembro et al., describe metabolic oscilla-
tions [17], as do a series of alternative models that also
assume autonomous dynamics [25–28]. The Amemiya
et al. model provides a point of comparison in this review
as the experimentally derived results provide a valu-
able grounding to compare with theoretically generated
figures.

Synchronisation between biological oscillators can
provide a crucial source of stability in living systems,
which cannot be replicated here as synchronisation is a
purely nonlinear phenomenon. Alternative approaches
to those outlined in this section have been proposed
recently. By focusing upon temporal dynamics and phase
relationships between biological oscillators, the above
imposition of conservation of mass may become unnec-
essary. These new approachesmay enable thermodynam-
ically open, non-autonomous, nonlinear systems to be
treated as such. Utilising this relatively new approach
necessitates an explanation of several key concepts. One
of themost important is synchronisation and the stability
it can induce in dynamic systems.

4. Synchronisation

Synchronisation phenomena are abundant and varied in
the world, from synchronous croaking in groups of frogs
[38] to professional violin players in complex networks
[39]. The etymology of synchronisation comes from the
Greek words syn (same) and chronos (time), and as
this would suggest, it describes two systems with simi-
lar relationships in time. Synchronisation in the sense of
nonlinear dynamics must be differentiated from simple
synchronousmotion, however, as they are not equivalent.
‘Synchronous motion’ implies two or more oscillators
moving coherently in time, that is to say, with a constant
phase difference between them. A common influence,
which may be between a pair of oscillators or an external
driving force, must also be present for synchronisation.

As mentioned earlier, this phenomenon was discov-
ered by Christian Huygens in 1665 when, lying in bed
for several days due to illness, he noticed that two pen-
dulum clocks on the opposite wall, which were attached

by a heavy wooden beam, eventually started to oscillate
with the same amplitude and period in anti-phase to one
another. He observed that this effect had taken place due
to the hardly perceptible motion of the beam and was the
first scientist to observe and record such synchronisation
phenomena.

The two types of synchronisation phenomena which
attract the most attention are phase synchronisation (PS)
and general synchronisation (GS) [40]. Phase synchro-
nisation is a purely temporal relation that describes
a constant phase difference between coupled oscilla-
tors and may be present despite differences in the
amplitudes of a pair of oscillators. Alternately, GS
requires synchronisation in both phase and amplitude
dynamics.

Phase synchronisation can be used to investigate
mutual interaction between various oscillators and the
self-organisation that may follow. Despite initial mea-
surements of many biological systems being seemingly
noise-like and unworkable, by considering synchronisa-
tion states, one may uncover previously hidden pockets
of order and an underlying predictable stability. Thismay
enable the analysis of complex interactions in a variety of
oscillatory systems [41]. The self-organisation that arises
in biological systems thanks to synchronisation provides
a vital source of stability in the face of an ever-changing
world [42–44].

Throughout this review, the term ‘synchronisation’
will refer to PS. This phenomenon relies on the concept
of phase-locking, and so to appreciate PS, an understand-
ing of phase is required. External influences on a system
can modulate the phase and allow frequency locking to
arise. Interacting periodic oscillators can also alter each
other’s phases, leading to synchronisation. Larger net-
work configurationsmay coordinate their oscillations via
intra- and inter-network synchronisation. The synchro-
nisation between non-autonomous systems, both perma-
nent and intermittent, is also discussed. Combining these
approaches illustrates how periodic driving forces, self-
sustained oscillators and noise simultaneously influence
phase dynamics.

4.1. Phase dynamics during oscillation

To understand the concept of synchronisation, one must
first appreciate the variable that enables its emergence,
the phase ϕ. Self-sustained oscillators exhibit periodic
behaviour, and at each point in their respective cycles,
they will have an associated value of phase. This vari-
able may then be used to parameterise the motion along
these cycles [41]. The instantaneous phase may also be
defined using the natural frequency of the associated
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oscillator (ω0)
dϕ
dt

= ω0. (8)

The importance of phase concerning synchronisation is
best outlined using an example. Consider a pair of pen-
dulums. If both are equally displaced from equilibrium
and travelling in the same direction, they can be con-
sidered ‘in phase’ (2π or 0 phase shift between them).
Similarly, if the oscillations are at different points in their
respective cycles, they can be described by the relative
phase difference,�ϕ, which takes a value 0 ≤ �ϕ ≤ 2π .
This difference must be constant over time for synchro-
nisation to occur. In an isolated, autonomous system, the
phase exhibits neutral stability as perturbations encoun-
tered neither grow nor decay over time. This implies
that a series of small perturbations such as an external
periodic driving force or a coupling to another oscillator
can cause significant changes in the phase to occur over
time. Therefore, with a relatively weak driving force act-
ing upon the oscillator, it is possible to adjust the phase
of the system without influencing the amplitude. These
changes are characteristics of phase synchronisation.

4.2. Phase-locking and frequency entrainment

The easiest way to set up a synchronised system is to apply
a periodic force to a self-sustained oscillator. Effects of
such a small forcing will only be on the neutrally sta-
ble phase rather than the amplitude, and so it makes
sense to describe it using a framework known as the
‘phase approximation’. Here, only the dynamics of the
phase are considered [45] using an equation describing
the perturbed phase dynamics

dϕ
dt

= ω0 + εQ(ϕ,ωt). (9)

This describes the simple case of an oscillator driven by
a periodic external influence with amplitude ε, and fre-
quency ω. Q represents the periodic coupling function

between the driving force and the oscillator. Expanding
thisQ function with a Fourier series enables its represen-
tation as slowly varying and quickly oscillating resonant
terms. The former can be written as q(ϕ − ωt) whilst
averaging is applied to the latter to obtain the Adler
Equation (10), which is a fundamental equation for the
dynamics of phase difference

d�ϕ

dt
= −(ω − ω0) + εq(�ϕ). (10)

Here, �ϕ = ϕ − ωt is the difference between the phase
of the oscillator and the forcing on the system. The func-
tion q is periodic. Stable stationary solutions to Adler’s
equation occur for certain values of ω and ε when the
phase change rate is zero. This corresponds to a spe-
cific area on the plane of parameters called the Arnold
tongue, or synchronisation region, which is illustrated in
Figure 4(a).

�ω = ω0 − ω is the frequency mismatch. This value,
alongside the coupling strength ε, determines the sys-
tem’s overall dynamics and stability. The purple region
within Figure 4 meets the synchronisation criteria of
ε > |�ω| and so synchronisation will occur within this
region. Only within this Arnold tongue may phase-
locking – the point at which the phase ϕ starts following
the forcing phase – occur. Therefore, synchronisationwill
not be present within the surrounding white area, where
this condition is not met. These criteria hold in this ide-
alised, autonomous representation; however, as shown
later in this review, slightly more consideration must be
taken when considering non-autonomous systems.

4.3. Interacting periodic oscillators

Just as external periodic forcing can cause synchronisa-
tion to occur in an oscillator, it may also transpire via
couplings between two oscillators of phases ϕ1 and ϕ2. To
account for both oscillators interacting with one another,
the following equation becomes necessary

Figure 4. (a) TheArnold tongue (purple region) is plotted in the plane of parameters for an autonomous system. (b) The parameter space
for a non-autonomous system. The purple region represents permanent synchronisation, while the grey region represents intermittent
synchronisation [46], as discussed in Section 4.4.
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dϕ1

dt
= ω1 + εQ1(ϕ1,ϕ2),

dϕ2

dt
= ω2 + εQ2(ϕ2,ϕ1).

(11)

In this case, ε represents the strength of the couplings
between the systems [47]. Synchronisation implies that
the two oscillators oscillate with a common frequency.
This common value is typically between ω1 and ω2. As
before, phase-locking does not necessitate any restriction
on the amplitude of either oscillator.

The above use of the Kuramoto model allows systems
to be modelled as self-sustained oscillators. This type of
oscillator is found in various living systems and is named
after one of their key characteristics – the ability to con-
tinue oscillating even if isolated. Self-sustained oscillators
provide an excellent way to model living systems, not
just because of their ubiquity across a variety of life [41]
but also thanks to their robustness against perturbation.
These oscillators are often described in terms of their
limit cycles. The limit cycle is the path in phase space
uponwhich self-sustained oscillators converge over time.
Limit cycles, therefore, act as an attractor, with any initial
state of the system converging upon the cycle. This gen-
erates stability in an oscillator’s amplitude; however, as
mentioned previously, the phase exhibits neutral stabil-
ity in isolated, autonomous systems, neither growing nor
decaying once perturbed. This allows oscillators to easily
influence each other’s phases and become synchronised.

This approach contrasts with the type of oscillations
generated by the model in Section 3. Here, oscillations
are induced by the sudden influx of glucose into the
model and continue for a short time before fading away.
While this method can demonstrate oscillations, they are
not self-sustained and may be unable to recreate some
key characteristics of oscillating living systems, such as
synchronisation. Induced oscillatory models would also
be unable to recreate the long-term behaviour of cells
in vivo, where cessation of oscillations does not occur
as glucose supply to the system is continuous. Another
area neglected by the kinetic approach is the intrinsic
time dependence of living systems which can induce
additional stability in their phase dynamics.

4.4. Synchronisation in non-autonomous systems

While the mathematical framework outlined previously
may be sufficient to describe synchronisation in closed
systems shielded from external perturbations; a new
approach must be taken to incorporate the constant
disturbances experienced by living systems. Somewhat
counter-intuitively, the inclusion of terms representing
the perturbations experienced in time-dependent bio-
logical systems has been shown to enlarge regions of

stability and make the system itself more robust in the
face of a changing environment. To demonstrate these
changes, a new framework is introduced. A system sim-
ilar to that of Equation 10 will be used, with the key
difference being the introduction of non-autonomicity by
virtue of a time-dependent frequency term as follows:

ω(t) = ω(1 + A sin(ωmodt)). (12)

Here, ω represents the same driving frequency as
Equation 10 and ω(t) is the new time-dependent driv-
ing frequency, modulated with amplitude A and at fre-
quency ωmod. Implementing this new deterministic non-
autonomous frequency means that the equation for the
frequency mismatch, �ω, must be re-evaluated. There-
fore, so must the criteria for synchronisation and indeed
the Arnold tongue. This new, time-varying frequency
mismatch is given by

�ω(t) = ω0 − ω(1 + A sin(ωmodt))

= �ω − Aω sin(ωmodt). (13)

It is now possible for the synchronisation criteria (ε >

�ω(t)) to only be satisfied at certain times due to the
time-dependent nature of the new frequency mismatch
[48]. This non-autonomicity can lead to a new type
of synchronisation and a new region on the parameter
space. This is known as intermittent synchronisation and
was recently introduced by Lucas et al. [46].

Figure 4(b) highlights the birth of this new region
alongside a crucial implication of its introduction. Both
the size of the white – no synchronisation – and pur-
ple – permanent synchronisation – regions have shrunk.
Initially, this may seem inconsequential as both of the
previous regions have diminished, seemingly cancelling
each other out. However, this is not the case as the inter-
mittent region can also induce stability in the system
overall.

Introducing a relatively new class of non-autonomous
oscillators, known as chronotaxic systems, and observing
their properties may further elucidate the source of the
increased stabilisation granted to a system by intermit-
tent synchronisation. While intermittently synchronised
non-autonomous oscillators are only attracted towards
the moving point attractor at certain times, in chrono-
taxic systems, adjacent trajectories converge upon it at all
times. Figure 5 demonstrates this behaviour with stability
in both phase and amplitude.

The etymology of chronotaxic, with chronos meaning
time and taxis meaning order, demonstrates the defining
property of this group of systems. The fact they can resist
perturbations to time-varying parameters – specifically
their frequencies – over time [44]. These characteristics
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Figure 5. Time evolution of points around a chronotaxic limit cycle over time. The time-dependent point attractor is represented by the
large black disc with red outline, arrows represent velocities and the white dots represent initial points, from which orange trajectories
are followed as time evolves. From [44], with permission.

enable chronotaxic systems to represent thermodynami-
cally open dissipative dynamical systems with an internal
source of energy as they are robust in the face of exter-
nal influences. Following perturbation, the phase will be
drawn back to the point attractor moving along a sta-
ble trajectory. This point will be dependent on time,
and all trajectories are drawn towards it. Figure 5 repre-
sents the behaviour of trajectories in the phase space of
a chronotaxic system as time evolves. The large red cir-
cle represents the motion of the attractor through phase
space while the orange lines track adjacent trajectories
being drawn towards it. In a manner analogous to syn-
chronisation inducing stability in autonomous systems,
chronotaxicity may induce stability in time-dependent
systems.

The introduction of the point attractor provides
another approach to considering intermittent synchroni-
sation. During periods when the synchronisation crite-
rion is fulfilled, ε > �ω(t), the phase exhibits stability
and is drawn towards the moving point attractor, sim-
ilar to the orange trajectories in Figure 5. Meanwhile,
when this criterion is not fulfilled and ε < �ω(t), the
phase demonstrates neutral stability, neither converging
upon nor diverging from the point attractor [49]. Over a
long enough period, the lack of divergence and presence
of convergence is enough to induce stability within the
intermittently synchronised region.

The region of stability may now be considered as the
sum of the permanently and intermittently synchronised
regions. In this way, the new parameter space of the
non-autonomous system has a larger stability region than
the old, illustrating how non-autonomicity can induce
stabilisation at parameter combinations that would for-
merly have been asynchronous. The very survival of liv-
ing systems relies upon robust resistance in the face of
environmental perturbation and intermittent synchroni-
sationmay provide amechanism to increase this stability.

Non-autonomous systems are abundant in nature and
the inherent self-organisation provided by chronotaxic-
ity may be key in maintaining various biological systems
and necessary to sustain life.

Thus far, only small collections of oscillators have
been considered. However, this framework may also be
extended to groups of oscillators that are more rem-
iniscent of the large cellular ensembles seen in living
systems.

4.5. Networks

Synchronisation may occur between oscillators of the
same or different types. Often, many of the same types of
oscillators can coalesce in large network configurations.
Each oscillator becomes a node of a much larger sys-
tem in this arrangement. To describe this system, another
parameter, known as the Kuramoto-order parameter rX ,
is introduced, where

rXei� = 1
N

N∑
k=1

eiθXk . (14)

When rX = 1, a completely ordered system is repre-
sented, with each oscillator of the same type in a network
oscillating with the same phase. When rX = 0 however,
the oscillators are completely disordered [45]. Along-
side the strengths of this approach in theoretical work
and modelling, this order parameter may be used to
express the degree of synchronisation between oscillators
in an experiment. The review byHauser illustrates this by
using the order parameter to indicate the degree of syn-
chronisation in a yeast cell population of intermediate cell
density [12].

A pair of networks may be linked using the mean
phase of the oscillators within a given network. This
parameter,�X , is given for oscillators in a network of size
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N, as

�X = 1
N

N∑
i=1

θXi. (15)

Each oscillator has a phase θXi. This enables inter-
network couplings to be represented [50]. Network-
based approaches more accurately represent metabolic
interactions, where both mitochondria and glycolytic
enzymes synchronise their oscillations [16]. A further
crucial consideration when investigating metabolic pro-
cesses is that they exist in an open system. Indeed, all liv-
ing systems exist in a state of dynamic equilibrium where
both matter and energy must be utilised and excreted
from the cell at different times to maintain life. This
intrinsic thermodynamic openness requires these sys-
tems to be treated as non-autonomous and introduces
several complex factors to consider.

5. Non-autonomousmodelling of cellular
energymetabolism

Several frameworks have been developed using the prin-
ciples laid out in this review. The majority of these meth-
ods focus on either glycolytic [10] or mitochondrial [15]
oscillators alone. However, an approach incorporating
both mitochondrial and glycolytic oscillations has been
established by Lancaster et al. [21]. This approach mod-
els cellular energy metabolism to demonstrate a transi-
tion from predominantlymitochondrial ATP production
to glycolytic dominance. Modelling this switch requires
simplification to the point that only the features required
to detect chronotaxicity are necessary. With this aim,
glycolytic and mitochondrial oscillators were investi-
gated, with simplified metabolic pathways and interac-
tions between them to facilitate the detection of chrono-
taxicity, which in itself will be able to describe subtle
changes in dynamics arising due to alterations in cellular
energy metabolism. Other attempts to model ATP syn-
thesis have also beenmade, with a notable example being
the linear, autonomous model developed by Amemiya
et al. outlined earlier in this review [5] which will act as a
comparison point between approaches.

5.1. Glycolytic andmitochondrial oscillators

Interactions between oscillations in both glycolytic and
mitochondrial oscillators are ever-present in biologi-
cal systems. From viruses hijacking cellular metabolism
to favour their reproduction [51], to the ‘Warburg
effect’ where increased glycolysis assists with cellular
proliferation in cancer cells [52]. In general, when cells

become increasingly reliant on glycolysis for the produc-
tion of ATP, this can be considered a sub-optimal, so-
called altered state. Multiple studies have shown that the
oscillations in glycolysis drive those in the mitochondria
under these conditions [6, 7, 18, 52]. They have further
shown that the production of ATP in the mitochondria
can indirectly influence glycolysis via a sensing mecha-
nism of the cellular ATP/ADP ratio [22]. The lower the
relative proportion of ATP, the increased prevalence of
glycolysis. This process occurs via reversal of PFK inhibi-
tion, an enzyme used in glycolysis. Healthy cellular states
produce the majority of ATP via OXPHOS, a process in
the mitochondria, and glycolysis will occur at a rate suit-
able to produce substrates such as pyruvate and NADH
necessary for the mitochondrial oscillator to function.
Through this, there will still be some influence from gly-
colysis on mitochondrial pathways, but the majority of
ATP production in healthy cells will still occur during
mitochondrial processes. These oscillations have a pro-
found effect on each other; however, external influences
such as the pulsatile supplies of glucose [53], and oxy-
gen [54] must also be considered to model the system
correctly.

5.2. External drivers

A driving influence over oscillators must be present to
describe a system as chronotaxic. There are two main
ways that these driving forces can emerge. The first is
from interactions with external oscillators, where fluctu-
ations in glucose or oxygen available to the cell may drive
the glycolytic or mitochondrial oscillations. Chronotaxi-
city may also arise due to variations in the duration
of various metabolic pathways within the cell, implying
a dependence upon the inner structure of the oscilla-
tor. The experiments by Gustavsson et al. illustrate this
dependence as, despite constant glucose levels, oscilla-
tions were not synchronised, suggesting these dynamics
must be due to internal mechanisms [10].

In the model demonstrated by Lancaster et al. [21],
the supply of glucose and oxygen are considered as the
drivers of theMOandGO,which define, either directly or
indirectly, the chronotaxicity of the system. This is inde-
pendent of the exact mechanisms by which the chrono-
taxicity arises. Sufficient information is acquired using
this approach as alterations in the system chronotaxicity
reflect changes to the underlying metabolic state.

5.3. Phase dynamics

Several parameters are used in this model to demon-
strate the strength of coupling between the various
processes. Continuous interactions between the MO and
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Figure 6. Couplings relevant to the model, ε1 and ε2 represent
repulsive and attractive couplings between oscillators, respec-
tively, whilst ε3 and ε4 represent external drivers. From [21], with
permission.

GO require that they are represented by bidirectionally
coupled oscillators of strength ε1 and ε2 both of which
interact differently. As the effect of mitochondrial ATP
production on glycolysis is inhibitory, ε1 is a repulsive
coupling and so precededwith a positive sign. In contrast,
the excitatory nature of glycolysis on ATP production in
the mitochondria necessitates the negative sign preced-
ing ε2. In different metabolic states, the values of these
couplings can vary. The influence of oxygen and glucose
on the system is represented by unidirectionally coupled
drivers ε3 and ε4. Figure 6 demonstrates the influence of
respective couplings over this model.

Only consideration of phase dynamics is necessary to
describe chronotaxicity in a system, and so any ampli-
tude dynamics, regardless of their complexity, can be
neglected. Therefore, the following coupled phase oscil-
lators are sufficient to model a chronotaxic system

ϕ̇GO = ωGO + ε1 sin (ϕGO − ϕMO)

− ε4 sin (ϕGO − ωGt) + ση(t),
ϕ̇MO = ωMO − ε2 sin (ϕMO − ϕGO)

− ε3 sin (ϕMO − ωOt) + ση(t).

(16)

Here, ϕGO and ϕMO represent the instantaneous phases of
the glycolytic and mitochondrial oscillator, respectively,
ωGO andωMO are their natural frequencies, whilstωG and
ωO are the frequencies of the glucose and oxygen drivers.
The η(t) term represents white Gaussian noise in the sys-
tem, representing natural perturbations in such an open
system while also introducing non-autonomicity.

5.3.1. Possible changes due to infection
As previously discussed, the strengths of the couplings
in the system can be variable, and this variability leads
to different possible outcomes for the system as differ-
ent drivers take prevalence. Figure 7 shows the effects
of varying the coupling strengths between the oscillators
and the different behaviour it produces in the system.
Here, both ε3 and ε4 (which represent the driving influ-
ences of oxygen and glucose respectively) have been kept

Figure 7. Numerical simulation varying coupling strengths
between the mitochondrial and glycolytic oscillators, the colour
key indicates the dominant driving influences in each part of the
figure, referencing Figure 6. ε3 = ε4 = 0.025 whilst ε1 and ε2 vary.
From [21], with permission.

constant at 0.025 whilst the couplings between oscillators
were varied to simulate different metabolic states.

The path indicated in Figure 7 from the D to B zone
describes the cell transitioning between states. Initially,
chronotaxic dynamics are present as the oxygen driver
dominates the metabolism at D. The system then tran-
sitions to a non-chronotaxic region at C, where no oscil-
lators are synchronised. Finally, the system moves onto
the chronotaxic regionB, where glucose oscillations drive
the system. A growing body of evidence suggests a sim-
ilar transition takes place in coronavirus infected cells
[18]. While this transition occurs, the observed cellu-
lar dynamics go from chronotaxic to non-chronotaxic
before returning to a chronotaxic state. This pathway
indicates the transition from healthy to infected cells and
could be observed by monitoring the chronotaxicity of
experimental data or used to model pathogenesis within
cells.

When applying themodel, the strength of the coupling
constants in cells affected by disease must also be consid-
ered. Values of ε may well change as various conditions
alter the body’s ability to provide the correct amounts of
oxygen and glucose to cells by attacking the pulmonary,
circulatory and endocrine systems, altering the values
of the associated coupling. Coupling strengths between
the mitochondrial and glycolytic oscillators may also be
affected by various metabolic conditions [18] and must
be considered before modelling specific disease impact
upon the cell.

5.4. Network-based approaches

While the model outlined above successfully illus-
trates the changes during infection, it lacks several key
properties. Within animal cells, there are on the order
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of thousands of mitochondria and glycolytic sites dis-
tributed throughout the cytoplasm [55] and so only
by considering larger network ensembles can the scope
of interaction truly be appreciated and replicated. Sev-
eral existing models utilise network-based approaches
to replicate the complex dynamic behaviour exhibited
by mitochondrial oscillations [15, 17, 28] however, to
the author’s knowledge, only the following approach can
simultaneously replicate both branches of metabolism
using a non-autonomous network-based approach.

As an extension to the framework presented in the
previous subsection, Rowland Adams and Stefanovska
[56] developed a network-based approach to account for
this difference while applying some other essential alter-
ations which are outlined in this section. The stochas-
tic noise term η(t) previously provided a time depen-
dence, whereas this has been replaced by deterministic
frequency variation. The spatial distribution of oscilla-
tors, as is seen in real cells, could also not be considered
formerly due to the restriction of only having a single
oscillator of each type.

5.4.1. Spatial distribution of oscillators
One area neglected in the Lancaster et al. approach is the
distribution of oscillators throughout the cell. Mitochon-
dria are distributed along the cytoskeleton [57] while gly-
colysis takes place at various sites in the cytoplasm of cells
[55]. Due to this, there are different distances between
any pair of oscillators. Mitochondria, for example, show
intra-network couplings that are dependent upon the dis-
tances between organelles [58]. The spatial arrangement
of organelles intrinsically affects the amplitude of the
inter-network coupling as a pair of mitochondrial oscil-
lators that are close together will have a more significant
influence over each other than a more greatly displaced
pair. To simulate this effect, an all-to-all network config-
uration is used while each organelle is considered a node
on the perimeter of a ring. Adjacent oscillators then will
have a maximum weighting in terms of influence over
one another, while oppositely positioned mitochondria
will have a minimal influence.

Figure 8 illustrates these distances with the length of
the lines between respective nodes. Mathematically, each
oscillator is assigned a number (i), where i, i+ 1 and i−1
are all neighbours. The final, Nth, oscillator is also adja-
cent to the first to create the ring structure of Figure 8.
Using this configuration, each weighting is determined
by the difference in the index of each node, with the dis-
tance separating oscillators being inversely proportional
to the weighting between them. In the case of i being less
than or equal to N

2 , this is accounted for by the following

Figure 8. Visual representation of the distance between oscilla-
tors in the model. The distance between nodes 1 and 6 is the
maximumwhile adjacent nodes areminimally displaced fromone
another. Network of size N = 10 is represented; however, this
parameter may be varied.

equation:

Wij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W
|i − j| , for j ∈

[
1, i + N

2
− 1

]
,

W
|j − N − i| , for j ∈

[
i + N

2
,N
]
.

(17)

Here,Wij is a constant. In the case ofN ≥ i ≥ N
2 , we have

Wij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W
|i − j| , for j ∈

[
i − N

2
+ 1,N

]
,

W
|j + N − i| , for j ∈

[
1, i − N

2

]
.

(18)

Including this weighting factor enables oscillators closer
together in space to interact more strongly and syn-
chronise more readily than their more greatly displaced
counterparts. The inclusion of parameters defining the
weighting of couplings is crucial in mitochondrial net-
works as mitochondria in close clusters oscillate with
the same frequency [16] and in glycolytic networks as
the degree of synchronisation has been shown to depend
upon density [11].

5.4.2. Non-autonomicity
The implementation of a time dependence is also slightly
different. Formerly, a term representing time-dependent
randomness (η(t))was added to the end of phase dynam-
ics equations (16). Here, however, deterministic fre-
quency variation is used to implement non-autonomicity.
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For example, the natural frequency of the glycolytic oscil-
lator is varied in time according to

ωGOi(t) = ωGO + AGO sin (ωGOmt + ti) . (19)

Here, ωGOi(t) is the natural frequency of each oscilla-
tor, which varies over time about a mean frequency ωGO.
The amplitude of this variation is AGO, ωGOm is the fre-
quency of the perturbation while ti takes a random value
between zero and 1

ωGOm
seconds. Implementing time vari-

ation in this way ensures each oscillator has a distri-
bution of frequencies while still maintaining the same
mean frequency for oscillators of the same type (ωGO in
this case). The same approach is taken to generate non-
autonomous frequencies for the mitochondrial oscillator
(ωMOi(t)) and two supply oscillation frequencies (ωOi(t)
and ωGi(t)).

5.4.3. Network configuration
Like the Lancaster et al. model, a supply of oxygen and
glucose is necessary to sustain glycolytic and mitochon-
drial oscillations. A key difference, however, is the num-
ber of these processes. Multiple oscillators of each type
are used here to more accurately replicate cellular net-
work dynamics. The interactions between these oscilla-
tors and networks are given in Figure 9.

This picture is significantlymore complicated than the
former model, so several alterations to the phase dynam-
ics equations were necessary. While before, only the nat-
ural frequency of the substrate supplies and coupling
strengths were considered, other factors must be imple-
mented when employing a network-based approach, one
of which is the spatial distribution of the oscillators
within the cell. As discussed, inter-network synchroni-
sation between the metabolic oscillators will partially be
influenced by a weighting function Wij and they will

Figure 9. Visual representation of the network-based configura-
tion behind the phase-basedmodel. Arrows indicate the direction
of the couplings while a network of size N = 4 is represented.
From [56], with permission.

influence each other such that

ϕ̇GOni = KGO

N

N∑
j=1

Wij sin
(
ϕGOj − ϕGOi

)
,

ϕ̇MOni = KMO

M

M∑
j=1

Wij sin
(
ϕMOj − ϕMOi

)
.

(20)

Here, N and M are the numbers of glycolytic and mito-
chondrial oscillators, respectively, while KX represents
network coupling strength. Intra-network couplings are
not the only influences present, as glycolytic oscilla-
tions can influence mitochondrial and vice versa. As
such, the following inter-network equations must also be
considered,

ϕ̇GOMOi = FGOrMO sin (�MO − ϕGOi) ,

ϕ̇MOGOi = FMOrGO sin (�GO − ϕMOi) ,
(21)

Here, FX is the network coupling strength, and rX is the
Kuramoto order parameter described in Section 3. The
networks are linked using the average phase�X . The final
influence on the system is the driving force due to the
supplies of oxygen and glucose

ϕ̇GOGi = εG sin (ϕGOi − ϕGi) ,

ϕ̇MOOi = εO sin (ϕMOi − ϕOi) .
(22)

Combining all of these influences gives the set of equa-
tions defining the phase of the oscillators

ϕ̇Gi = ωGi(t),

ϕ̇Oi = ωOi(t),

ϕ̇GOi = ωGOi(t) + ϕ̇GOni − ϕ̇GOGi + ϕ̇GOMOi,

ϕ̇MOi = ωMOi(t) + ϕ̇MOni − ϕ̇MOOi − ϕ̇MOGOi.

(23)

As before, a negative sign represents an excitatory cou-
pling, while a positive sign implies an inhibitory effect.
Also, as in the Lancaster model, synchronisation states
can be investigated to probe parameter combinations and
investigate both healthy and altered states.

While the focus of this section has been on mod-
els based on phase dynamics, several other attempts to
model cellular glycolysis have been made, including that
of Amemiya et al. [5]. As previously outlined, amore clas-
sical approach focusing on conservation ofmass has been
taken here, in contrast to the Rowland Adams and Ste-
fanovska model, which instead considers phase dynam-
ics. The next significant difference is that the mass-based
model utilises six autonomous, linear equations. In con-
trast, a fundamental aspect of the phase-basedmodel [56]
is that nonlinear systems are best understood by non-
linear methods and so only require the four nonlinear,
non-autonomous equations (23).
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The kinetic approach also requires 22 parameters
to model only the glycolytic branch. In contrast, the
nonlinear approach can represent both glycolysis and
OXPHOS with only 21 parameters. This demonstrates
a vital strength of the network oscillatory approach, the
ability to cope with complexity, in this case by represent-
ingmore processes using fewer differential equations and
parameters.

5.4.4. Comparing to experimental observations
Figure 10(D) uses a modified version of the Kuramoto
order parameter outlined in Equation (14), which mea-
sures both glycolysis and OXPHOS networks, enabling a
comparison between approaches

sei�GOMO = 1
(N + M)

⎛
⎝ N∑

i=1
eiθGOi +

M∑
j=1

eiθMOj

⎞
⎠ . (24)

This order parameter, s, may be compared to the NADH
fluorescence of Figure 10(c) as NADH production in
the cell is maximised when glycolytic, and oxidative net-
works act coherently. This parametermay then be investi-
gated to discover the dynamics of the system. The overall
trend in NADH fluorescence is not initially replicated by
Figure 10(d) as the focus of this approach is the phase,

rather than amplitude, dynamics. To enable compari-
son between modelling approaches, amplitude modula-
tion was applied to this order parameter to obtain the
time-series of Figure 10(b).

To replicate the experimental conditions, where injec-
tion of glucose followed a period of starvation, the
parameter εG, representing the amplitude of the glu-
cose supply, was kept at zero for the first 50 s. Following
this, εG = 0.25e−

t
10000 , with the exponential decay imi-

tating glucose consumption and causing εG to decrease
over time. These parameters differ slightly from those
used in [56] as the focus here is replicating the time-
frequency domain rather than the amplitude dynam-
ics. The mean frequency of the glycolytic oscillator and
glucose supply used here is ωGO = 0.09π Hz while the
mitochondrial frequency and oxygen supply had a fre-
quency of 0.2π Hz. The modulation frequencies are the
inverse of each of these respective values. The code used
to generate Figure 10(d) is publicly available in [59]. This
model also uses non-autonomous frequencies to replicate
the natural perturbations experienced by living systems,
with the mean frequency values based upon experimen-
tal observation. Data from the experiment carried out by
Amemiya et al. [23], as shown in Figure 10(a), enables the
validity of this model to be assessed.

Figure 10(b, d, e), generated by the model intro-
duced in [56], shares many general features with the

Figure 10. Comparison between experimentally derived data (a, c, e) and the phase dynamics model [56] (b, d, f ). (a) NADH fluores-
cence in a single HeLa cell against time reproduced with permission from the Amemiya et al. experiment [23]. (b) Mean-field amplitude
generated using the nonlinear approach, following amplitude modulation. (c) The detrended amplitude for experimental data. (d) The
order parameter, s over time generated with the phase-based model [56]. (e) and (f ) represent the experimental and model generated
wavelet transforms, respectively.
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experimental data. The initial glycolytic activity and sub-
sequent cessation of oscillations are replicated in this
simulation. It is worth noting, however, that this model is
non-autonomous and somay differ slightly between sim-
ulations, inmuch the sameway that the time-series of the
experimental data differs slightly between cells, while the
general trends remain the same. Figure 3(a) and Figure
10(a) illustrate these slight differences in the experimen-
tal data. As mentioned previously, the experimental data
used to generate 3(a) and 10(a) are available at [33].

Comparing the wavelet transforms of both the exper-
imentally derived and model-based data reveals some
interesting similarities. As before, the frequency resolu-
tion parameter f0 = 1 and a lognorm wavelet was used
to investigate frequencies between 0.01 and 0.1Hz. The
intrinsic non-autonomicity of the nonlinear model used
here is highlighted by the oscillatory frequency varying
slightly over time, behaviour also seen in the experi-
mental data. The peak of the power distribution in this
model occurs around 0.04Hz, again, in agreement with
the experimental observations. The above similarities
demonstrate that this method is capable of simulating
in vitro experiments. The nonlinear approach can also
replicate in vivo conditions. One may recreate sustained
glycolytic behaviour by implementing the supply of glu-
cose as pulsatile rather than decaying over time. There-
fore, these GOs would continue in the same way as in
vivo glycolytic oscillations. The nonlinear model uses
fewer parameters and allows the system to be modelled
as open and dissipative while also accurately reflecting
the oscillating mitochondrial and glycolytic process over
time.

6. Synchronisation in cellular populations

While the phase-based model uses a network-based con-
figuration to model the many glycolytic sites and mito-
chondria within a cell, many other approaches have been
developed that consider oscillations in cell populations.
This section will mainly focus on the work describing
glycolytic oscillations in populations of cells and the cou-
pling that has been shown experimentally to emerge
in these ensembles, giving rise to synchronisation [11].
Kinetic models that have been extended to describe
macroscopic dynamics in collections of cells [12]will also
be discussed.

In general, two main areas need to be focused
upon when considering either the experimental evidence
or attempting to model glycolytic oscillations within
a population of cells. The first involves glycolysis in
individual cells, while the second describes the con-
centration of a messenger molecule in the extracellu-
lar medium. This messenger, called acetaldehyde [60],

enables inter-cellular communication and, in turn, gly-
colytic oscillations to become synchronised. Similar to
spatial differences between cells considered in [56] for a
single cell, one must consider the distance between cells.
Spatial distribution raises a series of questions regarding
the density of cells required to cause synchronisation and
the nature of these oscillations. The intrinsic time depen-
dence of these systems is also highlighted with results
from an investigation into the partial synchronisation of
yeast.

6.1. Modelling cellular populations

A general form of the network-based approach to mod-
elling oscillating populations of cells is given in a recent
review by Hauser [12]. An outline of how to describe
the kinetics of glycolysis in individual cells and a more
extensive network configuration is given. On the level of
a single cell, i, this is illustrated by

∂xi
∂t

= F (xi, pi) − k (xi − X) , (25)

whereX is the concentration of acetaldehyde in the extra-
cellular medium, while xi describes the concentration in
a given cell, and k is the exchange rate of acetaldehyde
through the cell membrane. The vector xi describes the
concentration of various substrates and products within
the cell while pi represents the reaction rates. Using this
approach may then provide a natural extension to the
model introduced in [5]. This yields a bridge between
single-cell mass-based models and cellular populations,
enabling investigation into large ensembles of cells and
their collective dynamics. The concentration of acetalde-
hyde in the extracellular medium, X, changes over time
according to

∂X
∂t

= Nα

( N∑
i
k (xi − X)

)
− JX, (26)

where α is the ratio between cellular and extracel-
lular volume, J is the rate constant of acetaldehyde
decay/consumption and N is the number of cells. The
total number of differential equations needed to model
a population of cells oscillating in this way depends on
the number of differential equations that describe the
intracellular glycolytic reactions, q. The total number of
equations required is given by qN + r, where r is the
number of equations describing the extracellular com-
pounds, like acetaldehyde. Modelling larger populations
can, therefore, be computationally intensive due to this
scaling.

While Equation (26) describes the available concen-
tration of acetaldehyde in the extracellular medium, it
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lacks a term describing the diffusion of this messen-
ger. Therefore, this approach assumes homogeneity of
the acetaldehyde in space. This model is only suitable to
represent stirred solutions or dense populations of cells
where the diffusion of acetaldehyde may be ignored.

To counter the above shortcomings, somemodels have
been built upon the same principles while also incorpo-
rating terms representing the diffusion of acetaldehyde
in the extracellular medium. Fick’s law of diffusion is
used to represent the movement of acetaldehyde in the
work by Iyaniwura and Ward [61]. Here to describe
a population of cells that are randomly distributed in
space, equations analogous to Equation (26) are used
alongside a partial differential equation that describes
the diffusion of the messenger molecule. In this model,
the bulk diffusivity is not taken to be infinite, as this
can only be assumed in well-stirred solutions where the
acetaldehyde concentration is constant. By assessing the
bulk diffusivity as finite, this approach attempts to repli-
cate the effect of spatial diffusion on the cells using a
PDE–ODE model and remove the need for the previous
assumption. However, this model does, in the same way
as the general approach, assume that the concentration

of glycolytic metabolites is homogeneous across the cell
and so only partially acknowledges spatial heterogeneity.
Models of this type also neglect to include the time-
dependent nature of the oscillation frequencies shown in
multiple experiments [11, 23].

6.2. Partial synchronisation in groups of yeast cells

Analysing the state of a large number of cells simultane-
ously to observe changes can be difficult due to the large
numbers of oscillating units. Observing synchronisation
may enable this highly complex system comprising sev-
eral different oscillations to be probed and crucial transi-
tion points to be monitored. A significant level of mutual
interaction exists between cells in the body, so consider-
ing cells on a population level enables an investigation
closer to the conditions in vivo. Recent work by Web-
ber et al. displays how the frequency of the oscillations
produced by these cellular populations changes over time
[11]. Figure 11 illustrates this time dependence using an
experiment where a collection of yeast cells were immo-
bilised, and their synchronisation was measured via the
autofluorescence of NADH. Simultaneously measuring

Figure 11. Synchronisation of several glycolytic oscillators in a cellular population. (a) Time-series of the mean amplitude of a number
of cells at a density of 0.3%. (b) Relative amplitude of each cell as it evolved over time. (c) Evolution of each cell phase. (d) Number of cells
at a given instantaneous frequency. (e) Cells at a given phase difference φi − � from the mean phase�. (f ) Kuramoto order parameter,
as defined in Section 4, describes the presence and time dependence of synchronisation. Reprinted with permission from [11].
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the time-series of fluorescence amplitude for each cell
enabled continuous monitoring of their frequencies and
phases. This allowed the time at which partial synchro-
nisation was achieved to be recorded at different cellular
densities.

This study is carried out at a cell density of 0.3% as,
above this point, cells became utterly, rather than par-
tially, synchronised. Partial synchronisation describes a
state where some of the cells oscillate with a common
phase difference while others do not and is dependent
upon the density of the cells. In this study, the Kuramoto
order parameter R was used to indicate synchronisation
when it had a value between 0.4 and 0.85. The time
dependence of the Kuramoto order parameter is rep-
resented in Figure 11(d). The time dependence of the
frequencies in a majority of cells in the population is
shown in Figure 11(f).

The experimental results presented in Figure 11 high-
light the importance of considering time as a crucial
variable in analysing and modelling such systems. A
time-averaging approach would have neglected the col-
lective macroscopic dynamics of the system. Time is
especially significant when replicating cells in vivo as
the system is significantly open, with matter and energy
constantly being exchangedwith the environment to pro-
vide a constant source of perturbation and intrinsic time
dependence to the system’s dynamics.

The temporal changes mean that the assumptions
of homogeneity and nonautonomicity in the model
described in the previous section may ultimately be
unrealistic. Considering the spatial distribution and
time dependence of models as intrinsic and cru-
cial aspects of the cellular dynamics that cannot be
ignored may assist in bridging the gap between describ-
ing controlled in vitro experiments and real in vivo
measurements.

7. Summary and outlook

In this review, non-autonomous and network-based
models are highlighted that can replicate self-sustained
glycolytic oscillations. These approaches were compared
with experimental data and autonomous approaches to
modelling the same system.

Synchronisation is a ubiquitous phenomenon in
nature, and this purely nonlinear effect is a means by
which organisms may induce stability between interac-
tions. While synchronisation is commonplace in biology,
itmay only occur in simulated systemswhen the coupling
strength and frequency mismatch meet specific criteria.
When these parameters are suitable, however, various
cellular states may be recreated.

We emphasised that while the linear models used
so widely in the field can induce glycolytic oscillations,
they cannot represent synchronisation in self-sustained
oscillators. Non-autonomous, nonlinear models, on the
other hand, are able to replicate the synchronisation
states, which are a defining characteristic of metabolic
interactions. The introduction of time-varying frequen-
cies to the system may, somewhat counter-intuitively,
increase the size of the stabilisation region. This
stabilisation mechanism may prove to be a source
of the inherent stability that helps biological sys-
tems maintain life in the face of an ever-changing
environment.

Extending single oscillator models to include larger
network ensembles may be a vital step in replicating cel-
lular dynamics. As demonstrated by RowlandAdams and
Stefanovska, models may be built upon the principles
of nonlinear network dynamics and non-autonomicity
that replicate glycolytic oscillations. By modelling large-
scale mitochondrial and glycolytic networks capable of
inter and intra-network couplings, interactions between
oscillators may be reproduced and subsequently inves-
tigated. This oscillatory approach has been shown to
demonstrate the complexity of living systems using
fewer parameters and differential equations than previ-
ous autonomous models. Selecting appropriate param-
eters based on experimental evidence to represent the
oscillator’s coupling strengths and natural frequencies
enables time-dependent cellular dynamics to be probed.
The logical next step of this analysis would be to consider
inter-cellular communication in larger network popula-
tions as this may also have significant repercussions for
pathogenesis.

Further expansion of current models to consider
the oscillatory supplies of oxygen and glucose as
nodes of another network may further expand mod-
ern approaches, and represent the fluctuating supply of
oxygen and glucose across the cell membrane. Patho-
genesis is a complex process comprising multiple simul-
taneous, interacting parts. However, applying appropri-
ate parameters derived from experimental observation
to model the cell in both healthy and altered states
may help elucidate the transition from oxidative to gly-
colytic metabolism that often precedes disease. A num-
ber of neurological conditions have also been associated
with altered metabolic states. A model of cellular energy
metabolism capable of replicating in vivo dynamics could
prove to be an important tool in understanding these
conditions.

Living systems are complex, thermodynamically open,
time-dependent and constantly undergoing perturba-
tion. Embracing this inherent complexity rather than
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treating it as unworkable and stochastic may reveal a new
frontier in biomedical physics.

Acknowledgments

The authors would like to thank Marcus J. B. Hauser for per-
mission to reprint Figure 11. We are also grateful to Takashi
Amemiya for sharing the experimental data used to generate
Figure 10(a), Figure 3(a) and the data derived from their model
used to generate Figure 3(b). The authors are particularly grate-
ful to Joe Rowland Adams for many useful discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was funded by the EPSRC grant EP/T518037/1
Quantitative Assessment of Autistic Spectrum Disorder.

Notes on contributors

SamBarnes obtained hisMPhys degree fromLancasterUniver-
sity in 2021 and he is currently pursuing research for a PhD in
Biomedical Physics andNon-linearDynamics at the same insti-
tution. His current research interests include the application of
time-resolved methods to identify differences in the brains of
individuals with autistic spectrum disorder. He is also working
on models of cellular energy metabolism.

Aneta Stefanovska is Professor of Biomedical Physics at Lan-
caster University. Her longstanding interests in the physical
principles of life brought her to the idea that interacting non-
autonomous oscillators operating far from equilibrium are
basic characteristics of life. She is especially interested in pro-
cesses related to energy and information within the human
body, and is focusing on cell energymetabolism, and cardiovas-
cular and brain dynamics. With collaborators, she has created
a set of novel algorithms that can time-resolve the behaviour of
interacting systems acting on multiple time scales.

References

[1] Huygens C. Horologium oscillatorium. Parisiis: Apud F.
Muguet; 1673.

[2] Van der Pol B, Van der mark J. Lxxii. The heartbeat con-
sidered as a relaxation oscillation, and an electrical model
of the heart. Philos Mag. 1928;6:763–775.

[3] Duysens L, Amesz J. Fluorescence spectrophotometry of
reduced phosphopyridine nucleotide in intact cells in the
near-ultraviolet and visible region. BiochimBiophysActa.
1957;24:19–26.

[4] Aldridge J, Pye EK. Cell density dependence of oscillatory
metabolism. Nature. 1976;259(5545):670–671.

[5] Amemiya T, Shibata K, Du Y, et al. Modeling studies of
heterogeneities in glycolytic oscillations in HeLa cervical
cancer cells. Chaos. 2019;29(3):033132.

[6] Yang JH, Yang L, Qu Z, et al. Glycolytic oscillations
in isolated rabbit ventricular myocytes. J Biol Chem.
2008;283(52):36321–36327.

[7] Ganitkevich V, Mattea V, Benndorf K. Glycolytic oscilla-
tions in single ischemic cardiomyocytes at near anoxia. J
Gen Physiol. 2010;135(4):307–319.

[8] Susan WSL, Shi Y. The glycolytic process in endothe-
lial cells and its implications. Acta Pharmacol Sin.
2021;43:251–259.

[9] Danø S, Sørensen PG, Hynne F. Sustained oscillations in
living cells. Nature. 1999;402(6759):320–322.

[10] Gustavsson AK, van Niekerk DD, Adiels CB. Sustained
glycolytic oscillations in individual isolated yeast cells.
FEBS J. 2012;279(16):2837–2847.

[11] Weber A, Zuschratter W, Hauser MJ. Partial synchronisa-
tion of glycolytic oscillations in yeast cell populations. Sci
Rep. 2020;10(1):1–15.

[12] Hauser MJ. Synchronisation of glycolytic activity in yeast
cells. Curr Genet. 2022;68:69–81.

[13] Chance B, Yoshioka T. Sustained oscillations of ionic
constituents of mitochondria. Arch Biochem Biophys.
1966;117(2):451–465.

[14] Aon MA, Cortassa S, O’Rourke B. Mitochondrial oscilla-
tions in physiology and pathophysiology. Adv Exp Med
Biol. 2008;641:98–117.

[15] Kurz FT, Derungs T, Aon MA, et al. Mitochondrial
networks in cardiac myocytes reveal dynamic coupling
behavior. Biophys J. 2015;108(8):1922–1933.

[16] Kurz FT, Aon MA, O’Rourke B, et al. Spatio-temporal
oscillations of individual mitochondria in cardiac
myocytes reveal modulation of synchronized mitochon-
drial clusters. Proc Natl Acad Sci USA. 2010;107(32):
14315–14320.

[17] Kembro JM, Cortassa S, Lloyd D, et al. Mitochondrial
chaotic dynamics: Redox-energetic behavior at the edge
of stability. Sci Rep. 2018;8(1):1–11.

[18] Codo AC, Davanzo GG, Monteiro LB. Elevated glu-
cose levels favor SARS-CoV-2 infection and monocyte
response through a HIF-1α/glycolysis dependent axis.
Cell Metab. 2020;32(3):437–446.

[19] Kiviet DJ, Nghe P, Walker N. Stochasticity of metabolism
and growth at the single-cell level. Nature. 2014;
514(7522):376–379.

[20] Törnroth-Horsefield S, Neutze R. Opening and clos-
ing the metabolite gate. Proc Natl Acad Sci USA.
2008;105(50):19565–19566.

[21] Lancaster G, Suprunenko YF, Jenkins K, et al. Modelling
chronotaxicity of cellular energy metabolism to facili-
tate the identification of altered metabolic states. Sci Rep.
2016;6:29584.

[22] Shrestha B. Single cell metabolism: methods and proto-
cols, New York (NY): Humana Press; 2020. (Methods in
molecular biology; vol. 2064).

[23] Amemiya T, Shibata K, Itoh Y. Primordial oscillations in
life: direct observation of glycolytic oscillations in indi-
vidual heLa cervical cancer cells. Chaos. 2017;27(10):
104602.

[24] Chance B, Schoener B, Oshino R, et al. Oxidation-
reduction ratio studies of mitochondria in freeze-trapped
samples, NADH and flavoprotein fluorescence signals. J
Biol Chem. 1979;254(11):4764–4771.

[25] Cortassa S, Aon MA, Marbán E, et al. An integrated
model of cardiac mitochondrial energy metabolism
and calcium dynamics. Biophys J. 2003;84(4):2734–
2755.



CONTEMPORARY PHYSICS 143

[26] Bertram R, Pedersen MG, Luciani DS, et al. A simplified
model for mitochondrial ATP production. J Theor Biol.
2006;243(4):575–586.

[27] Jacobsen EW, Cedersund G. Structural robustness of bio-
chemical network models – with application to the oscil-
latory metabolism of activated neutrophils. IET Syst Biol.
2008;2(1):39–47.

[28] Kurz FT, Kembro JM, Flesia AG. Network dynamics:
quantitative analysis of complex behavior in metabolism,
organelles, and cells, from experiments to models and
back. Wiley Interdiscip Rev Syst Biol Med. 2017;9(1):
e1352.

[29] Gudas W. How glucose gets into cells. Nutr Rev.
1990;48:357–358.

[30] Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-
Enríquez S, et al. Modeling cancer glycolysis. Biochim
Biophys Acta Bioenerg. 2011;1807(6):755–767.

[31] Wolf J, Heinrich R. Effect of cellular interaction on gly-
colytic oscillations in yeast: a theoretical investigation.
Biochem J. 2000;345(2):321–334.

[32] Michaelis L, Menten ML. Die kinetik der invertin-
wirkung. Biochem Z. 1913;49:333–369.

[33] Amemiya T, Shibata K, Du Y. Glycolytic oscillations in
cervical cancer hela cells; 2019 [cited 2021Mar 11]. Avail-
able from: https://www.research.lancs.ac.uk/portal/en/
datasets/.

[34] Iatsenko D, Lancaster G, McCormack S. MODA (Mul-
tiscale Oscillatory Dynamics Analysis); 2019. DOI:10.52
81/zenodo.3470856.

[35] Newman J, Lancaster G, Stefanovska A. Multiscale Oscil-
latory Dynamics Analysis. v1.01. User Manual; 2018.

[36] Clemson P, Lancaster G, Stefanovska A. Reconstruct-
ing time-dependent dynamics. Proc IEEE. 2016;104(2):
223–241.

[37] Kloeden PE, Pötzsche C. Nonautonomous dynamical sys-
tems in the life sciences. In: Kloeden PE, Pötzsche, C.
editors. Nonautonomous dynamical systems in the life
sciences. Cham: Springer; 2013. p. 3–39.

[38] Ott E, Antonsen Jr TM. Frequency and phase synchro-
nization in large groups: low dimensional description of
synchronized clapping, firefly flashing, and cricket chirp-
ing. Chaos. 2017;27(5):051101.

[39] Shahal S, Wurzberg A, Sibony I, et al. Synchronization
of complex human networks. Nat Commun. 2020;11(1):
1–10.

[40] Stankovski T, McClintock PVE, Stefanovska A. Dynam-
ical inference: where phase synchronization and gen-
eralized synchronization meet. Phys Rev E. 2014;89(6):
062909.

[41] Pikovsky A, Kurths J, Rosenblum M. Synchronization:
a universal concept in nonlinear sciences. Cambridge:
Cambridge University Press; 2003.

[42] Goldbeter A. Dissipative structures in biological systems:
bistability, oscillations, spatial patterns and waves. Phi-
los Trans R Soc A: Math Phys Eng Sci. 2018;376(2124):
20170376.

[43] Haken H. Synergetics: an introduction: nonequilibrium
phase transitions and self-organization in physics, chem-
istry, and biology. Berlin: Springer; 1978.

[44] SuprunenkoYF, ClemsonPT, StefanovskaA. Chronotaxic
systems: A new class of self-sustained nonautonomous
oscillators. Phys Rev Lett. 2013;111:024101.

[45] Kuramoto Y. Chemical oscillations, waves, and turbu-
lence. Berlin: Springer; 1984.

[46] Lucas M, Newman J, Stefanovska A. Stabilization of
dynamics of oscillatory systems by nonautonomous per-
turbation. Phys Rev E. 2018;97:042209.

[47] Strogatz S. Sync: the emerging science of spontaneous
order. London: Penguin; 2004.

[48] Lucas M, Newman J, Stefanovska A. Synchronisation and
non-autonomicity. In: Stefanovska A, McClintock PVE,
editors. Physics of biological oscillators new insights into
non-equilibrium and non-autonomous systems. Cham:
Springer; 2006. p. 85–111.

[49] Newman J, LucasM, Stefanovska A. Stabilization of cyclic
processes by slowly varying forcing. Chaos. 2021;31(12):
123129.

[50] Petkoski S, Iatsenko D, Basnarkov L, et al. Mean-field
and mean-ensemble frequencies of a system of coupled
oscillators. Phys Rev E. 2013;87(3):032908.

[51] Thaker SK, Ch’ng J, Christofk HR. Viral hijacking of
cellular metabolism. BMC Biol. 2019;17(1):59.

[52] Passalacqua KD, Lu J, Goodfellow I. Glycolysis is an
intrinsic factor for optimal replication of a norovirus.
mBio. 2019;10(2):e0052119 e00519 e0052119–
19 .

[53] Satin LS, Butler PC, Ha J, et al. Pulsatile insulin secre-
tion, impaired glucose tolerance and type 2 diabetes. Mol
Aspects Med. 2015;42:61–77.

[54] Formenti F, Bommakanti N, Chen R, et al. Respiratory
oscillations in alveolar oxygen tension measured in arte-
rial blood. Sci Rep. 2017;7(1):1–10.

[55] Cole LW. The evolution of per-cell organelle number.
Front Cell Dev Biol. 2016;4:85–92.

[56] Rowland Adams J, Stefanovska A. Modelling cell energy
metabolism as weighted networks of nonautonomous
oscillators. Front Physiol. 2021;11:1845–1857.

[57] Mirzapoiazova T, Li H, Nathan A, et al. Monitor-
ing and determining mitochondrial network parame-
ters in live lung cancer cells. J Clin Med. 2019;8(10):
1723.

[58] Aon MA, Cortassa S, Marbán E, et al. Synchronized
whole cell oscillations in mitochondrial metabolism trig-
gered by a local release of reactive oxygen species in
cardiac myocytes. J Biol Chem. 2003;278(45):44735–
44744.

[59] Rowland Adams J, Stefanovska A. Metabolism weighted
networks code – frontiers; 2021 [cited 2022 Mar 11].
Available from: https://www.research.lancs.ac.uk/portal/
en/datasets/.

[60] Weber A, Prokazov Y, Zuschratter W, et al. Desynchroni-
sation of glycolytic oscillations in yeast cell populations.
PLoS ONE. 2012;7(9):e43276.

[61] Iyaniwura SA, Ward MJ. Synchrony and oscillatory
dynamics for a 2-D PDE-ODE model of diffusion-
mediated communication between small signaling com-
partments. SIAM J Appl Dyn Syst. 2021;20(1):438–
499.



Chapter 3

Phase coherence - a time-localised

approach to studying interactions

Student contribution:

The student contributed to the conceptualisation of the study and curated portions

of both the experimental and model-derived data. They performed formal analysis

and investigation, comparing two analytical methods to evaluate their respective ad-

vantages and limitations. The student also wrote sections of the manuscript, edited

the overall text, and generated most of the figures presented throughout the paper.

This research is published in Chaos: An Interdisciplinary Journal of Nonlinear Sci-

ence.

Samuel JK Barnes, J Bjerkan, Philip T Clemson, Julian Newman, and Aneta Ste-

fanovska. “Phase coherence—A time-localized approach to studying interactions”.

In: Chaos: An Interdisciplinary Journal of Nonlinear Science 34.7 (2024)




View

Online


Export
Citation

RESEARCH ARTICLE |  JULY 25 2024

Phase coherence—A time-localized approach to studying
interactions
Special Collection: Data-Driven Models and Analysis of Complex Systems

S. J. K. Barnes  ; J. Bjerkan  ; P. T. Clemson  ; J. Newman  ; A. Stefanovska  

Chaos 34, 073155 (2024)
https://doi.org/10.1063/5.0202865

 02 Septem
ber 2024 15:13:01



Chaos ARTICLE pubs.aip.org/aip/cha

Phase coherence—A time-localized approach to
studying interactions

Cite as: Chaos 34, 073155 (2024); doi: 10.1063/5.0202865
Submitted: 7 February 2024 · Accepted: 13 June 2024 ·
Published Online: 25 July 2024 View Online Export Citation CrossMark

S. J. K. Barnes,1 J. Bjerkan,1 P. T. Clemson,1 J. Newman,2 and A. Stefanovska1,a)

AFFILIATIONS
1Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
2Department of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom

Note: This paper is part of the Focus Issue: Data-Driven Models and Analysis of Complex Systems.
a)Author to whom correspondence should be addressed: aneta@lancaster.ac.uk

ABSTRACT

Coherence measures the similarity of progression of phases between oscillations or waves. When applied to multi-scale, nonstationary dynam-
ics with time-varying amplitudes and frequencies, high values of coherence provide a useful indication of interactions, which might otherwise
go unnoticed. However, the choice of analyzing coherence based on phases and amplitudes (amplitude-weighted phase coherence) vs only
phases (phase coherence) has long been seen as arbitrary. Here, we review the concept of coherence and focus on time-localized methods
of analysis, considering both phase coherence and amplitude-weighted phase coherence. We discuss the importance of using time-localized
analysis and illustrate the methods and their practicalities on both numerically modeled and real time-series. The results show that phase
coherence is more robust than amplitude-weighted phase coherence to both noise perturbations and movement artifacts. The results also
have wider implications for the analysis of real data and the interpretation of physical systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0202865

Coherence is a universal principle of interactions between oscilla-
tions and waves. We explain how coherence has been introduced
in physics and review procedures to measure coherence numeri-
cally. We expand the current knowledge by establishing the uni-
versal importance of measuring coherence not only as a static
property but as a property evaluated locally in time. We also com-
pare coherence defined to involve amplitude (the peak-to-peak
height) vs purely the phase (the position in the cycle) by apply-
ing these different approaches to numerically modeled data. We
argue that phase coherence is more robust and less susceptible to
noise, particularly in cases where measurements are influenced by
movement relative to the sensors. We provide an in-depth guide
to the application of methods to measure coherence in data and
demonstrate these points using real-world examples, including
the interaction between the heart and lungs, noisy measurements
of the brain, and the movement of electrons on the surface of
liquid helium.

I. INTRODUCTION
Oscillations and waves are ubiquitous in nature. They occur in

mechanical and dynamical systems in virtually all areas of science:

many physiological processes are oscillatory, such as the beating of
the heart, breathing, or neuronal oscillations in the brain; the ecol-
ogy abounds with seasonal cycles; most dynamical phenomena in
astrophysics and space science are oscillatory, as are geological and
hydrodynamics phenomena, such as ocean waves or earthquakes;
there are business cycles in economy; strings in musical instruments
produce vibrations, as do many man-made devices. Most electronic
devices, the Internet, TV signals, communication systems, and med-
ical imaging, use electromagnetic waves. The study of oscillations
and waves is, therefore, essential for understanding the universe, as
stated by Tesla in the quote: “If you want to find the hidden secrets
of the universe, you must think in terms of energy, frequency, and
vibration.”

While the underlying dynamical system may be very different
in distinct cases, oscillatory processes share two key time-dependent
features: amplitude (associated with the energy of the oscillation)
and phase (associated with the time evolution of the oscillation).
To identify interactions between different parts of a system, we can
calculate the similarity of these features using the physical property
known as coherence.

In this paper, we provide a review of coherence, beginning
in its conceptualization in physics and subsequently evaluating
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relevant numerical methods used to measure coherence. In partic-
ular, we improve current understanding by both establishing the
fundamental importance of taking a time-localized approach to
coherence and comparing a method based on amplitude and phase
to one only using phase information.

In Sec. II, we provide an overview of the development of
coherence in physics and its adoption in time-series analysis. We
also provide a definition of coherence based on the Fourier trans-
form and explain the differences between coherence and the related
concept of synchronization.

In Sec. III, we provide a model for a dynamical system, which is
used to numerically illustrate the differences between the phase-only
and amplitude-weighted methods of measuring coherence when the
system is perturbed by different forms of noise.

In Sec. IV, we introduce wavelet-based coherence and explain
the consequences of moving to the time–frequency domain that
arise from the uncertainty principle. In this section, we also specify
the alternate definitions of coherence in amplitude and phase and,
based on results found using the illustrative model, argue that phase
coherence is more resistant to the effects of noise and particularly
movement artifacts.

In Sec. V, we provide an in-depth guide to the application of
coherence in time-series analysis, including how to identify signifi-
cant coherence.

In Sec. VI, we apply this knowledge and evaluate the two meth-
ods considered by considering four real-world problems, includ-
ing the cardio-respiratory interaction, noisy electroencephalography
(EEG) and functional near infrared spectroscopy (fNIRS) data, and
electron dynamics on the surface of liquid helium.

We conclude in Sec. VII with a discussion of the time-localized
approach to coherence and the impact of using methods based on
only phase to those that rely also on amplitude information.

II. BACKGROUND

A. Physics of coherence
The theory of waves was initially developed by Young, Huy-

gens, and Fresnel.1 Along with providing explanations for phe-
nomena, such as diffraction and refraction, they also studied wave
interference. In this latter case, multiple waves combine to produce
a characteristic pattern of spatially and time-localized maxima and
minima. However, this effect is only seen clearly when the change in
the phase of the waves is the same. It is this property of the waves
that we term coherence.

The study of interference and wave coherence has already led to
many well-known discoveries. These include the Michelson–Morley
experiment, which disproved the existence of the luminiferous
ether.2 Variations of Young’s double-slit experiment have also
played an important role in the understanding of wave–particle
duality.3–5 In addition, the drive to develop a coherent source of
light led to the invention of the laser.6 Subsequent to the devel-
opment of lasers, larger-scale interference experiments have been
possible, which resulted in the discovery of gravitational waves.7

Coherence is now studied across a broad spectrum of domains.
This includes solid state and quantum physics,8–11 remote sensing,12

electrophysiology,13–15 communications,16 and space science.17

B. Coherence in time-series analysis

With the advent of computers, the study of coherence is no
longer restricted to physical experiments. Numerical methods allow
for the analysis of oscillations in recorded data. Using this recorded
data, coherence can be investigated.18 Coherence between different
parts of a dynamical system can result from either synchronization
or from modulation by a common process. While one can sepa-
rately analyze two variables and qualitatively assess the common
features present in each, interactions are often nonlinear in nature
and, hence, difficult to discern. Coherence, therefore, provides a
useful quantitative measure to identify these interactions.

An important aspect of coherence is that it is a time-localized
phenomenon. This makes it particularly useful for analyzing dynam-
ics comprised of oscillations with time-dependent quantitative char-
acteristics. Such dynamics has been modeled using chaotic, stochas-
tic, and non-autonomous systems.19,20 Time-series analysis methods
that give a non-time-dependent representation of a time-series,
such as its histogram or Fourier transform, may yield some insight
into the amplitudes of oscillations present. However, these meth-
ods will generally provide little understanding of phase dynamics if
the quantitative characteristics of the oscillations, or of their inter-
actions with each other, are being modulated over time. In contrast
to this, the time evolution of phases carries a great wealth of infor-
mation about the underlying system when such time modulation
exists.21

Time-evolving time-localized analysis is typically performed
in the time–frequency domain. This type of analysis was originally
developed in quantum mechanics, with the distribution proposed
by Wigner providing the highest possible frequency resolution that
is mathematically possible within the limitations of the uncer-
tainty principle.22 Ville later applied this function in the context
of time–frequency analysis more generally.23 At the same time,
the windowed Fourier transform was also developed,24 and the
field has since been advanced with the introduction of the con-
tinuous wavelet transform.25,26 Time–frequency analysis has been
applied most commonly to deal with simple forms of nonstation-
ary data, with applications in communications, radar, sonar, and
acoustics.27 Recently, it has also been invaluable in the analysis prob-
lems, such as turbulence,28 brain signals,29 blood flow,30 and excited
electron oscillations on liquid helium.31 These systems involve mul-
tiple potentially mutually interacting oscillatory processes that take
place simultaneously across a range of timescales; we refer to such
systems as multi-scale systems.

One specific advantage of the time–frequency methods is that
they, to various degrees, allow for the time-localized extraction of
instantaneous phases over time (see, e.g., Ref. 32). These phases can
be studied further to give insight into the system. This can be seen in
phase synchronization methods, which have been applied to the car-
diorespiratory system.33 Phase differences can also be observed and
point to delays in coupled networks of oscillators, such as those seen
in biology.34 Beyond this, we can estimate coupling functions and
infer the directionality of coupling (see Ref. 35 and the references
therein). In the case of weakly coupled oscillator networks, connec-
tivity can be inferred directly from the phases.36 There are also phase
stability methods, which have been used to find stable oscillations in
the heart rate variability.37
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In the case of coherence represented in the time–frequency
domain, the initial development of the methods was motivated by
applications to biomedical data. Specifically, it has been of great
importance to the mapping of functional connectivity and study of
synchronization in the brain.38–45 At the same time, the develop-
ment of time–frequency coherence has spearheaded investigations
into microvasculature dynamics.46–51 It has since been used in other
biomedical studies and found use as a marker for ageing of the car-
diorespiratory system,52 as well as revealing the relation between
the width of the subarachnoid space and blood pressure.53 More-
over, the generality of time–frequency coherence means that it has
found applicability elsewhere. In particular, these methods have
also been used extensively in the analysis of solar, geophysical, and
meteorological time-series to determine the Earth–Sun dynamical
relationship.54–57 Coherence has also found use in the analysis of eco-
nomic time-series, where it has been used to identify instability and
risk in specific markets as well as the relation between the mon-
etary policy and the macroeconomic activity.58–62 It has also been
applied in the case of cyclo-nonstationarity, where it has been used
to analyze mechanical systems, such as engines and wind turbines.63

Further examples include the evaluation of electron dynamics,31

behavioral rhythms in mice,64 and social networks.65

C. Definition of coherence
The original formulation of coherence was within the field of

optics, where it is used to quantify the degree to which two sources
of light can interfere. It was developed from a similar measure of the
intensity of the interference pattern, or visibility,

v = Imax − Imin

Imax + Imin
, (1)

where Imax is the intensity of the light at the peaks and Imin is the
intensity at the troughs. The value of v is 1 when the interference
is maximized and 0 is the case of no interference (i.e., the intensity
curve of the light is smooth). While this definition is useful from an
empirical standpoint, it is more difficult to use for the mathematical
analysis of waves of arbitrary phase and amplitude. Coherence was,
therefore, developed as a similar measure of the degree of interfer-
ence, but using the phase and amplitude of the interfering waves as
parameters.66

It is worth noting that while interference was originally inves-
tigated in optics, the phenomenon prevails throughout all types of
waves. As such, coherence can also be defined for any type of wave.
A general analytic framework for the study of waves is provided by
the Fourier transform. In this context, we can find a measure of the
similarity between the waves in two data series by computing the
Fourier cross spectrum,

Sab(f) = Fa(f)× Fb(f), (2)

where Fa and Fb are the corresponding Fourier transforms of the
two series and denotes the complex conjugate. However, this sim-
ilarity measure is still proportional to the amplitude of the Fourier
components. This means that if a dominant oscillation appears in
one data series but only background fluctuations are present in the
other, then the cross spectrum will still have a peak at the frequency
of that oscillation as long as there is some amplitude at that frequency

in the other data series. With this in mind, it is clear that we need to
normalize the cross spectrum so that it is not biased by this effect.
The way this is achieved is by defining Fourier coherence as

C(f) =
∣

∣〈Sab(f)〉
∣

∣

[

〈Saa(f)〉 × 〈Sbb(f)〉
]1/2 , (3)

where the angle brackets 〈 〉 denote taking an average value of the
Fourier spectra Sab(f), Saa(f), Sbb(f) computed for different time-
segments of the time-series.66 This defines coherence on a scale
between 0 and 1, making it directly comparable with the interference
visibility shown in (1).

D. Coherence and synchronization
It is worth noting that coherence should not be confused

with synchronization. In terms of dimensionality, synchronization
is defined specifically in the time dimension and, therefore, applies
to the dynamics of oscillations in time. In contrast, coherence refers
to a more general phenomenon, which extends to waves that are
defined across space as well as time.

There are also important differences in the context of time-
series generated by dynamical systems. While many types of syn-
chronization exist, they all result from an interaction between two
or more oscillations.33,67 As such, synchronization refers to a process
of adjustment of rhythms caused by interactions. In contrast, coher-
ence implies that two oscillations are observed to have the same
frequency and frequency modulation, but this does not necessarily
imply that they are coupled.

As examples, consider two linear oscillators with the same fre-
quencies or two autonomous nonlinear oscillators with the same
parameters and initial conditions. In both of these cases, the oscilla-
tions produced by the two systems will be coherent. However, since
the state of one oscillator does not depend on the state of the other,
they are not coupled.

Despite this difference, there is still a strong connection
between coherence and specific types of synchronization. The states
of complete 1:1 synchronization or 1:1 phase synchronization are
more or less the same as coherence as the strength of the interac-
tion reduces to a small value when two oscillators are completely
synchronized. One can also consider indirect synchronization, such
as two non-autonomous oscillators becoming synchronized via the
same time-dependent modulation. In each of these cases, the effect
can be measured directly using coherence.39

III. ILLUSTRATIVE MODEL

A. Poincaré oscillators
In order to illustrate the factors affecting the measurement of

coherence, we consider a pair of time-series, which contain common
oscillations generated by non-autonomous systems with indepen-
dent perturbations. To ensure that we are not biased toward pertur-
bations in amplitude or phase, we consider a system with a separable
amplitude and phase dynamics.
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The Poincaré oscillator is a two-dimensional limit cycle oscilla-
tor, which can be defined in polar coordinates as

dr

dt
= −αr(r − a),

dθ

dt
= ω, (4)

where r is the amplitude and θ is the phase of the oscillator. A stable
limit cycle is defined in state space with radius r = a, with α param-
eterizing the rate at which the trajectory converges to this amplitude.
The phase is neutrally stable and changes with a rate defined by the
frequencyω. A time-series x(t) of the oscillation can be generated by
transforming from polar coordinates by using x(t) = r(t) cos(θ(t)).

The important feature of this system is that r and θ vary inde-
pendently. This means that the amplitude of the oscillator can be
perturbed without affecting the phase and vice versa. However, com-
paring the effect of amplitude and phase perturbations this way
using the current system would not be a fair comparison since r has
a stable point attractor while θ does not. This leads to the perturba-
tions to r being suppressed over time, while perturbations to θ are
integrated over time.37

To resolve this issue, we modify the Poincaré oscillator so that
the form of stability is the same in both amplitude and phase. Unfor-
tunately, we cannot simply copy the function used for dr

dt
to dθ

dt
since

θ will converge to a. For persistent oscillations, θ needs to change
on average monotonically, which is provided by the parameter ω
in the current form. However, we cannot use dθ

dt
= ω − αθ(θ − a)

either as θ is unbounded and limt→∞ [ω − αθ(θ − a)] = −αθ 2,
which results in an unstable trajectory. Instead, we use the following
modification:

dr

dt
= −α(r − a)3 + ξrηr,

dθ

dt
= ω − α(θ − φ)3 + ξθηθ ,

dφ

dt
= ω,

(5)

where φ is an auxiliary dimension, which is left unperturbed and
provides a stable point in phase moving at the same rateω. The cubic
function was chosen because it gives similar scaling of the strength
of attraction to the stable point relative to the distance, but is sym-
metric around the stable point. The terms ξiηi are white Gaussian
noise with a standard deviation specified by ξi.

To generate each time-series, the amplitudes {r1, r2} and phases
{θ1, θ2} of two modified Poincaré oscillators were numerically mod-
eled and summed together in a time-series X(t) = r1(t) cos(θ1(t))+
r2(t) cos(θ2(t)). However, even with perturbations, this time-series
would appear as two noisy sinusoids with approximately station-
ary dynamics. To simulate more realistic nonstationary time-series,
the system was made non-autonomous by modulating the oscillator
frequencies with ω(t) = 2πω0 + A sin(2πωmt). To investigate the
effect of phase differences, the phase offset of the oscillations was
also adjusted by changing the initial value of φ.

In the numerically modeled examples used in Sec. IV, we con-
sidered a high-frequency mode with ω0 = 1, ωm = 0.008, A = 0.8
and a low-frequency mode with ω0 = 0.5, ωm = 0.0055, A = 0.2.
For the other oscillator parameters, we used a = 1 and α = 5 in each
case.

B. Noise
Noise plays a significant role in the evaluation of coher-

ence. Consider two time-series with a single, identical sinusoidal
oscillation with frequency fsin. By analyzing Eq. (3), we can see
that Sab(fsin) ≡ Saa(fsin) and Saa(fsin) ≡ Sbb(fsin), which results in the
expected value C(fsin) = 1. However, since the time-series contain
no other oscillations, this relation holds true not just for fsin but for
all values of f. This means that we might mistakenly believe that
coherent oscillations exist at all frequencies.

Similar behavior is apparent whenever dominant oscillations
are present in both time-series. Without independent fluctuations at
adjacent frequencies, significant coherence will be observed at values
far from the frequencies of the corresponding oscillations.

In most real data, this is not an issue as they are usually influ-
enced by both system noise and measurement noise. We must,
therefore, take care to approximate real-world examples in our
analysis by including noise in the numerical model.

To investigate the effect of both amplitude and phase per-
turbations, two cases were considered. In the first case, each of
the modes was perturbed only by amplitude noise with ξr = 0.5,
ξθ = 0, while in the second case, they were perturbed only by phase
noise with ξr = 0, ξθ = 0.5. We also considered a case with additive
noise to simulate measurement noise and common artifacts in the
time-series. These were generated by adding the same dichotomous
noise, with random abrupt transitions between two states, to both
time-series. This was defined using the time-dependent transition
probabilities,

p0→d(t) = λ1

3
− λ1

3
e−3t,

pd→0(t) = λ2

3
− λ2

3
e−3t,

(6)

where t is the time since the last transition from one state to
another and 3 = λ1 + λ2. The transition rates were chosen as
λ1 = 0.000 01 Hz and λ2 = 0.000 19 Hz, causing a series of spike-
like features with rare 0 → d transitions followed by quicker d → 0
transitions. The amplitude of the spikes was chosen as d = 10. In
addition to these spikes, independent 1/f noise series were added to
each time-series to simulate background fluctuations.

IV. WAVELET COHERENCE

A. Time–frequency analysis
For the analysis of coherence of phases of oscillations in time-

series, the Fourier-based definition of coherence is perfectly valid
when the time-series are stationary. However, for multi-scale, non-
stationary time-series, the dynamics cannot be approximated by
assuming a constant time-averaged phase and amplitude, as is
assumed in the Fourier transform. As discussed in Rowland Adams
et al.,21 such time-series must not be analyzed from the infinite-time,
non-time-evolving framework of analysis that is designed for sta-
tionary time-series—which is precisely the framework within which
Fourier coherence exists—but rather, such time-series need to be
analyzed from within the framework of time-evolving time-localized
analysis of oscillatory characteristics.

Chaos 34, 073155 (2024); doi: 10.1063/5.0202865 34, 073155-4

© Author(s) 2024

 02 Septem
ber 2024 15:13:01



Chaos ARTICLE pubs.aip.org/aip/cha

Accordingly, it is natural to seek a way to compute coher-
ence from time–frequency representations of the data. As already
mentioned, we can compute a time–frequency representation using
an ordinary Fourier transform with a moving window, which is
also known as a short-time Fourier transform. However, as soon
as we do this, we must ask what size of window? A large window
gives us excellent frequency resolution, but then it is more diffi-
cult to determine the time at which oscillation frequencies change.
Similarly, while a small window enables us to track the change in
frequency more precisely, the frequency resolution is lower and
makes it difficult to determine the exact frequencies of oscillations.
These characteristics of the measurement of waves are well known
in quantum mechanics and famously summarized in the Heisenberg
uncertainty principle.

The main limiting factor in the choice of window size is the
lowest-frequency oscillation that we wish to observe. It is necessary
to choose a window that contains enough cycles of this oscillation
to determine its frequency to reasonable precision. However, this
window size is larger than the window needed to have the same
frequency resolution for higher-frequency oscillations. For higher-
frequency oscillations, this window size will represent a slower
timescale than the timescale of these oscillations, making the anal-
ysis effectively equivalent to the kind of long-time-averaging asso-
ciated with the classical non-time-evolving, long-time-asymptotic-
statistics framework designed for stationary time-series described
above.

Therefore, to achieve a time-localized analysis of multi-scale
time-series, we would need to use an adaptive window size to
increase the time resolution at high frequencies while maintaining
an optimal frequency resolution overall.

The difference between this time-localized approach and the
slow-timescale averaging that takes place in the fixed-window-size
approach is illustrated in Fig. 1. Here, time–frequency analysis is
performed on a time-series from the illustrative Poincaré oscilla-
tor model. In this case, the oscillators were not perturbed with
phase noise, and only minimal amplitude noise, ξr = 0.005, was
introduced. In addition, background fluctuations were numerically
modeled by adding independent 1/f noise to each time-series. In
Fig. 1(a), depicting the fixed-window approach, the idea is to char-
acterize all aspects of the dynamics at a given time using the data
in a given window. This means that all of the analysis for every fre-
quency is performed within the same window (note that this window
is shown as rectangular for illustrative purposes only—a Gaussian
window was used in the short-time Fourier transform to enable a
fairer comparison of the two approaches).

By contrast, as depicted in Fig. 1(b), the time-localized
approach uses a variable-sized window depending on which fre-
quency is being analyzed. For the former approach, where at each
time a full-frequency-spectrum Fourier transform is performed
inside a pre-specified window, the result is that the time–frequency
analysis can be optimized around one frequency only. However, in
the time-localized approach, the analysis is centered around each
frequency under analysis, much like adjusting an optical focus. This
means that the time–frequency plots for this latter approach pro-
vide much greater detail across time at high frequencies, as well as
much greater detail across frequency at low frequencies. An alterna-
tive version, with a Fourier transform presented with a logarithmic

scale, is provided in Fig. 1 of the supplementary material. When
comparing the two figures, it is obvious that a logarithmic scale is
disadvantageous for the Fourier transform, which is calculated with
linear frequency resolution.

The time-localized, adaptive window approach is realized by
the continuous wavelet transform26 (which we shall sometimes just
call the wavelet transform, abbreviated WT). This is defined by

W(s, t) = 1

s

∫ T

0
9

(

u − t

s

)

x(u) du, (7)

where x(t) is a time-series of length T; the variable s > 0, called the
“scale,” controls the width of the windowing function, enabling it
to be adapted to the frequency under investigation (as described
shortly); and 9 is a complex-valued function called the mother
wavelet. Using the convolution theorem (or, equivalently, Fourier
isometry), the wavelet transform can be computed in the Fourier
domain by

W(s, t) = 1

2π

∫ ∞

−∞
9̂(sw)x̂(w)eiwt dw,

where

9̂(ω) =
∫ ∞

−∞
9(τ)e−iωτ dτ ,

x̂(w) =
∫ T

0
x(t)e−iwtdt.

An example of a mother wavelet is the Morlet wavelet, which
is approximately a complex exponential function multiplied by a
Gaussian envelope, such that the resulting wavelet transform is
approximately the adaptive-window-width version of the Gaussian-
windowed Fourier transform. Specifically, the Morlet wavelet is
given by

9(τ) = 1√
2π

(

e2π if0τ − e− (2π f0)
2

2

)

e− τ2
2 , (8)

where f0 is a free parameter called the frequency resolution: it can
be changed to adjust the resolution toward greater frequency pre-
cision (higher f0) or time precision (lower f0). The Fourier-domain
representation of the Morlet wavelet9 is given by

9̂(ω) = e− (ω−2π f0)
2

2
(

1 − e−2π f0ω
)

.

Note that 9̂ is a real-valued function; i.e., the Morlet wavelet 9 is a
Hermitian function.

In the wavelet transform, one can adapt the scale s to the fre-
quency f under investigation in such a manner as to give logarithmic
frequency resolution by taking s to be inversely proportional to f.
Specifically, when working with the Morlet wavelet, we take

s = ωmax

2π f
,

where ωmax is the value at which the real-valued function 9̂ is max-
imized. Provided f0 is not too small (larger than about 0.5), ωmax is
almost exactly equal to 2π f0, i.e., s ≈ f0

f
.

Chaos 34, 073155 (2024); doi: 10.1063/5.0202865 34, 073155-5

© Author(s) 2024

 02 Septem
ber 2024 15:13:01



Chaos ARTICLE pubs.aip.org/aip/cha

It is worth noting an issue that arises from the fact that the inte-
gral in Eq. (7) is bounded between 0 and T. This means that when t
is close to one end of x(t), a significant part of the amplitude of the
wavelet function extends beyond the bounds of the integral. This
bounded integral is also equivalent to an unbounded integral where
the ends of x(t) are padded with infinite zeros. This problem is com-
mon among methods using a moving window and other strategies
include using reflected data or predicted data equal to half the length
of the window. However, each of these methods causes boundary
effects that result in errors in the time–frequency representation.68

The other alternative is to not include these regions in the plot.
This results in a cone of influence, which is larger in size at lower

frequencies due to the larger-sized wavelets reaching the ends sooner
than smaller wavelets.

From the wavelet transform, one can extract an instantaneous
amplitude and phase associated to each frequency f at each time
t by expressing W(s, t) = |W(s, t)|eiθ(s,t) and taking |W(s, t)| as the
amplitude and θ(s, t) as the phase.

B. Definition of wavelet coherence
With an optimal time–frequency representation of the time-

series, we can proceed to define the coherence between them.
Following from the original definition in Eq. (3), time–frequency

FIG. 1. Time–frequency analysis illustrated for time-localized vs fixed-window approaches. (a) Generated time-series of Poincaré oscillators as defined by Eq. (5), with
additive 1/f noise and ξr = 0.005. A window of size 12.6s centered at 120s is drawn above the time-series. The arrows above the window illustrate that the window slides
across the time-series when the short-time Fourier transform (STFT) is applied. (b) The same time-series as in (a), with three wavelets with frequency resolution f0 = 2 at
different frequencies (0.5, 1, and 1.7 Hz) drawn above the time-series. The wavelets slide across the time-series when the WT is applied. The dots between the wavelets
illustrate that there is one wavelet for each frequency, in our case 288 wavelets. (c) The STFT amplitude found at 120s. (d) The STFT phase found at 120s projected onto
the frequency-phase plane. (e) The WT amplitude found at 120s. The orange dots correspond to the frequencies of the three wavelets in (b). Note the logarithmic frequency
resolution of the WT. (f) The WT phase found at 120s projected onto the frequency-phase plane. (g) The STFT amplitude for the whole 400s time-series. A line is drawn at
120s. (h) The STFT phase for 10s of the time-series. (i) The WT amplitude for the whole 400s time-series. (j) The WT phase for 10s of the time-series.
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domain coherence between two time-series x(t) and y(t) was orig-
inally popularized by Torrence and Webster69 and then again by
Lachaux et al.38 where it was defined as

CW(f, t) =
∣

∣SWab(f, t)
∣

∣

[

SWaa(f, t) · SWbb(f, t)
]1/2 , (9)

where SWab are the wavelet cross spectra as defined by

SWab(f, t) =
∫ t+ δ

2

t− δ
2

Wa(f, τ) · W∗
b(f, τ)dτ . (10)

Here and in the rest of the text * denotes complex conjugate. δ
defines the length of a moving window in the time domain over
which the cross spectra are averaged. Like wavelets, δ is chosen to
be adaptive in order to maintain an optimal resolution over fre-
quency such that δ = ncy/f, where ncy is the number of cycles at
any given frequency. Values between 6 and 10 for ncy were originally
recommended in the context of data recorded by brain electrodes.38

However, in other applications of time–frequency analysis, ncy = 5
has been used.70

The application of a wavelet-based approach vs a Fourier-based
approach has a significant effect on the information provided by
coherence analysis. This can be seen by comparing the studies of
Karavaev et al.71 and Mizeva et al.,72 both of which consider cardio-
vascular time-series recorded over similar timescales (15 and 20 min,
respectively). In the former study, the macroscopic autonomic con-
trol is characterized by dividing the Fourier coherence into a “high-
frequency” (0.15–0.4 Hz) and “low-frequency” (0.05–0.15 Hz) band.
In the latter study, the wavelet coherence is divided into five sep-
arate frequency bands with ranges 0.6–2, 0.145–0.6, 0.052–0.145,
0.021–0.052, and 0.0095–0.021 Hz, which allows for the character-
ization of both the macroscopic and microscopic dynamics. The
logarithmic scale provided by the wavelet coherence, therefore, acts
much like a telescope or microscope, allowing us to zoom in and out
of all frequencies of interest at every moment in time.

C. Phase coherence
If we use a complex wavelet, such as the Morlet wavelet defined

in Eq. (8), then the cross spectrum in the numerator of Eq. (9) can
be separated into phase and amplitude, with

SWab(f, t) =
∫ t+ δ

2

t− δ
2

|Wa(f, τ)| · |Wb(f, τ)|ei(θa(f,τ)−θb(f,τ))dτ . (11)

Doing the same for the denominator terms, we find

SWaa(f, t) =
∫ t+ δ

2

t− δ
2

|Wa(f, τ)| · |Wa(f, τ)|ei(θa(f,τ)−θa(f,τ))dτ

=
∫ t+ δ

2

t− δ
2

|Wa(f, τ)|2dτ . (12)

Written this way, the coherence defined in Eq. (9) is expressed
as a phasor of the phase difference, ei(θa(f,τ)−θb(f,τ)), multiplied by
the normalized amplitudes. We, therefore, term this definition as
amplitude-weighted phase coherence (AWPC).

However, we can actually remove the influence of the wavelet
amplitude altogether. We can define phase coherence (PC) as

Cθ (f, t) = 1

δ

∣

∣

∣

∣

∣

∫ t+ δ
2

t− δ
2

ei(θa(f,τ)−θb(f,τ))dτ

∣

∣

∣

∣

∣

. (13)

This definition of coherence was developed independently by
Lachaux et al.38 (where it was termed single-trial phase coherence)
and Bandrivskyy et al.46 While Eq. (13) defines PC for a pair of time-
series, it has since been extended to groups of three or more time-
series.73,74

Like Fourier coherence, both PC and AWPC take values
between 0 and 1. Note, however, that for oscillations with time-
dependent characteristics, strong coherence will not typically man-
ifest as a coherence value of 1, but often as distinctly less
than 1.

In the examples shown in this paper, PC was calculated using
MODA—an interactive MATLAB toolbox.75 We also encourage
readers to consult the MODA user guide, which contains prac-
tical information for performing PC and other time–frequency
analyses.76

The differences between PC and AWPC are shown in Figs. 2–4
using the previously defined illustrative Poincaré model. In each
case, the two time-series, their corresponding WT, and the PC and
AWPC plots are shown. The methods were applied using three dif-
ferent time–frequency resolutions by changing the central frequency
f0 of the Morlet wavelet. The effect of adjusting f0 can be seen in the
WT, where the frequency width of the bands corresponding to the
oscillatory modes is decreased with increasing f0. This effect is also
seen for the coherence plots. Here, the darker bands of coherence
reveal the common frequency modulation of the two modes, which
becomes more localized in frequency as f0 is increased.

An additional effect seen when increasing the frequency res-
olution is that the background coherence between the modes also
increases. The reason for this effect is due to the fact that larger
wavelets average over more cycles, leading to extracted wavelet com-
ponents that are more stationary in frequency. These components,
therefore, appear coherent, but only because the rate of change in
frequency converges to the same value (i.e., 0) for all oscillations as
f0 is increased.

Figure 2 shows the effect of amplitude perturbations on the
modes following the two coherence measures. The coherence bands
associated with the modes are lighter and less well-defined in the
case of AWPC, with the effect being greatest for the lowest frequency
resolution. The explanation for this can be found in the indepen-
dent fluctuations seen in the amplitude of the WT. As highlighted
in Eq. (11), AWPC is dependent on the wavelet amplitude, which
means that the amplitude perturbations result in lower coherence.
In contrast, PC is not dependent on the wavelet amplitude and is,
therefore, resistant to such perturbations.

As one might expect, the effect is similar for both approaches
when the perturbations are instead applied to the phase of oscilla-
tions. Figure 3 illustrates the effect of phase perturbations, where PC
and AWPC are affected similarly by the noise due to both methods
being dependent on the phase of the wavelet components.
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FIG. 2. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by amplitude-perturbed Poincaré oscillators as
defined by Eq. (5). (a) and (b) Ten-second segments of the two time-series containing modes with independent perturbations. The second row (c)–(h) presents the WT plots
of the two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f), and f0 = 5 (g) and (h). The time-series in (a) was the input for the transforms (c),
(e), and (g), while (b) provided the input for (d), (f), and (h). The final row (i)–(n) indicates the time-localized coherence for the PC and AWPC methods using the transforms
shown in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).

A significant difference between PC and AWPC can be seen in
the additive noise case shown in Fig. 4. Here, the common dichoto-
mous noise results in time-localized spikes in the time domain.
These can be seen as large cones of amplitude permeating into the

lower frequencies in the WT. In the coherence plots, this effect
has the most significant impact on the low frequencies, as larger
wavelets have a lower time resolution and span across a greater
period. Furthermore, it can be seen that the case for f0 = 5 is most

FIG. 3. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by phase-perturbed Poincaré oscillators as defined
by Eq. (5). (a) and (b) Ten-second segments of the two time-series containing modes with independent perturbations. The second row (c)–(h) presents the WT plots of the
two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f) and f0 = 5 (g) and (h). The time-series in A was the input for the transforms (c),(e) and
(g), while (b) provided the input for (d),(f) and (h). The final row (i)–(n) indicates the time-localized coherence for the PC and AWPC approaches using the transforms shown
in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).
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FIG. 4. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by phase-perturbed Poincaré oscillators as defined
by Eq. (5), with the same dichotomous noise and independent realizations of 1/f noise added to both time-series. (a) and (b) The independently generated time-series. The
second row (c)–(h) presents the WT plots of the two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f), and f0 = 5 (g) and (h). The time-series
in (a) was the input for the transforms (c), (e), and (g), while (b) provided the input for (d), (f), and (h). The final row (i)–(n) indicates the time-localized coherence for the PC
and AWPC approaches using the transforms shown in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).

affected by the amplitude perturbations due to the increased tem-
poral width of the wavelets. Generally speaking, therefore, smaller
values of f0 should be used in cases where extremely time-localized
noise features are present, such as movement artifacts in biomedical
measurements.

Also worth noting in the additive noise example is that even
though the added dichotomous and 1/f noise affect both the phase
and amplitude of the wavelet components, the coherence bands of
the modes are more strongly defined in the PC plots and the low-
frequency coherence is reduced. This is caused by the time-localized
properties of the dichotomous noise, which only affect a relatively
small number of cycles at each wavelet scale. Since the window used
to calculate the coherence averages the phase difference over a rela-
tively large number of cycles, the effect on PC is reduced. In contrast,
as shown in Eq. (11), the phase difference in AWPC is weighted by
the amplitude. This means that even though the noise spikes last
only a small number of cycles, the relative weight to the calculation
of the coherence is increased due to the large associated amplitude.

D. Phase difference
Beyond coherence, it is often useful to extract the instanta-

neous wavelet phase difference (θa(f, t)− θb(f, t)) and analyze this
directly. This has been done in many studies to investigate deter-
ministic phase differences in oscillations from two time-series.77–80

While phase is technically a time-independent measure, the direc-
tion and magnitude of the phase difference are still a valuable
measure that can be used to determine time lags, which provide
weight to statements of causality.

In the studies cited above, analysis of the phase difference
involves extracting individual pairs of instantaneous phases and
examining the change in the phase difference over time. However,
in time-series containing many modes, it is often useful to analyze
the phase differences in the frequency domain. Doing this reveals
the phase relationships present across different timescales of the
dynamics.

To define the time-averaged phase difference, we use

ψ(f) = arg

[∫ T

0
ei(θa(f,t)−θb(f,t))dt

]

. (14)

To be able to take the integral in Eq. (14) over the whole duration
[0, T] of the signal, it would be necessary to add padding to the signal
before time 0 and after time T before computing the WT. If, instead,
one just computes the WT within the cone of influence, then the
time-interval over which the integral in Eq. (14) is taken is the f-
section of the cone of influence—that is, the set of times t over which
W(f, t) has been computed; this is a subinterval of [0, T] that depends
on f: as f decreases, this subinterval becomes narrower.

Note that while this definition of the time-averaged phase dif-
ference correctly identifies the phase differences of the coherent
modes, it does not necessarily provide a meaningful value for areas
of zero coherence. This is because the result will be the argument of
the sum of random phasors. While the amplitude of this sum cor-
rectly gives a value of the time-averaged PC at the background level,
the argument will be a random angle between 0 and 2π . It is, there-
fore, important to assess such a measure of the phase difference in
conjunction with the actual coherence and only to evaluate its values
where the coherence is significant.
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In analogy to the difference between PC and AWPC, it is also
possible to define an overall phase difference using not the time-
averaged phase difference as in (14), but rather the energy-averaged
phase difference,

ψE(f) = arg

[∫ T

0
Wa(f, t) · W∗

b(f, t)dt

]

= arg

[∫ T

0
|Wa(f, t)| · |Wb(f, t)|ei(θa(f,t)−θb(f,t))dt

]

.

In this paper, we use the time-averaged phase difference.

E. Time-averaged coherence
We have defined PC and AWPC as functions of time and fre-

quency since they represent information about the time-localized
frequency content of the pair of signals. When we want an overall
measure of the coherence at each frequency-value, taken over the
whole duration of the signal, there are two approaches that one can
take:

One is simply to take the time-average of the time-localized PC or
AWPC as already defined in Secs. IV B and IV C.
The other is to compute PC or AWPC not over small time-
windows (t − δ

2 , t + δ

2 ) as in Eqs. (10)–(13), but rather over the
whole duration of the signal.

Under the former approach, we have a time-averaged PC given by

C
average
θ (f) = 1

T − δ

∫ T− δ
2

δ
2

Cθ (f, t) dt (15)

and a time-averaged AWPC given by

C
average
W (f) = 1

T − δ

∫ T− δ
2

δ
2

CW(f, t) dt. (16)

Let us recall here that δ itself depends on f, as described in
Sec. IV B. Under the latter approach, we have an over-all-time PC
given by

Coverall
θ (f) = 1

T

∣

∣

∣

∣

∫ T

0
ei(θa(f,τ)−θb(f,τ))dτ

∣

∣

∣

∣

and an over-all-time AWPC given by

Coverall
W (f) =

∣

∣SWtotal
ab (f)

∣

∣

[

SWtotal
aa (f) · SWtotal

bb (f)
]1/2 ,

where SWtotal
ab are the over-all-time wavelet cross spectra as defined

by

SWtotal
ab (f) =

∫ T

0
Wa(f, t) · W∗

b(f, t)dt

=
∫ T

0
|Wa(f, t)| · |Wb(f, t)|ei(θa(f,t)−θb(f,t))dt.

In all four cases, we have given formulas according to the
assumption that the WT is defined over the whole of [0, T]. Once
again, this requires that padding has been added to the signal before

time 0 and after time T; if, instead, the WT has been computed only

over the cone of influence, then the integrals
∫ T

0 or averages 1
T

∫ T

0
taken over the time-interval [0, T] in the above formulas need to be
taken instead over the f-section of the cone of influence.

In this paper, we work with the former of the two approaches,
namely, Eqs. (15) and (16).

V. PRACTICAL ASPECTS
Coherence analysis is restricted by the properties of the mea-

sured data. Each dataset is likely to contain idiosyncrasies that
require specific attention to avoid false representation of the results.
By unlocking the temporal dimension with time-resolved analysis
methods, one may properly view and assess the type of data under
investigation, and once this step is completed, choose and perform
the appropriate analysis. The multi-scale nature of the present anal-
ysis also enables simultaneous observation of the behavior across a
number of frequencies, which in many cases are representative of
various independent behaviors in the system. A review of the sta-
tistical properties of wavelet coherence is provided in Cohen and
Walden.81 However, here, we focus on the practical implementation
and application of these methods.

To demonstrate the nuance required when selecting parame-
ters for analysis, we consider two sets of time-series containing two
common modes. As before, the modes are generated using the mod-
ified Poincaré system and have independent perturbations. The key
difference is that the first set of time-series has modes with frequen-
cies ω0 = 1 and ω0 = 0.2 that are stationary in time, with ωm = 0
(the leftmost set of Fig. 5). In contrast, in the second set of time-
series, the frequency of the modes varies with ωm = 0.016π for the
high-frequency mode andωm = 0.010π for the low-frequency mode
(the rightmost set of Fig. 5).

Importantly, when considering coherence between simultane-
ously measured time-series, one may use two sets of apparatus
with varying sampling frequencies, fs. For the calculation of coher-
ence, a common fs must be established. While it is theoretically
possible to up-sample the data series with the smaller sampling
frequency, this is not recommended as it will not recover informa-
tion regarding higher-frequency oscillations. Instead, the solution
is to downsample the larger time-series so that a common fs is
established.

The value of fs determines the maximum observable frequency,
fmax, because we need at least two points in each cycle to capture an
oscillation. Consequently, the upper-frequency limit, or the Nyquist
frequency, is defined as fN = fs/2. A low value of fmax can introduce
problems when assessing data, as seen in Fig. 5(j). In this case, the
system was simulated with fs = 4 Hz, which means that fmax = 2 Hz is
selected. The coherent mode seemingly passes above fmax, illustrating
the need for a higher fs.

The lowest attainable frequency, fmin, is determined by the
length of the time-series. In the examples demonstrated in this work,
AWPC and PC are evaluated across ten cycles of oscillation at a
given frequency. It follows that the length of the time-series restricts
fmin and that the length must be at least ten times the length of the
minimum frequency of interest. If the interaction is time-varying,
then more cycles are needed to account for the modulation present,
dependent upon the frequency of the modulation. The time-varying
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FIG. 5. Practical aspects to consider when applying phase coherence. Time-series generated from a pair of Poincaré oscillators, as defined by Eq. (5). The time-series
were obtained numerically with fs= 4 Hz and minimal amplitude modulation (ξr = 0.005, ξθ = 0). The frequencies of these modes are unchanging in time for (a) and (b)
and time-varying in (c) and (d). Their corresponding WT (e)–(h) demonstrate these differences. The time-localized phase coherence plots (i) and (j) are generated from the
wavelet transforms (e)–(h). (k) and (l) Time-average values are shown as solid black lines and mismatch surrogate thresholds as dashed lines.

example shown in Figs. 5(c), 5(d), 5(g), 5(h), 5(j), and 5(l) demon-
strates a situation where the simulated mode may be interpreted as
being centered upon a greater frequency (0.25 Hz) than it really is.
Specifically, the mode should be centered upon 0.2 Hz. Due to the
shortness of the recording, the cone of influence contains only the
upper half of the modulation cycle, resulting in an apparently higher
value. In the non-time-varying frequency case, there is no issue, and
the peak coherence is centered around 0.2 Hz.

The presence of oscillatory dynamics can be confirmed by first
considering the time–frequency representation of the data. In addi-
tion, this step will provide information on the frequency range of
interest if this is not known beforehand. Limiting the coherence
analysis to this range will reduce the burden on computational
capacity and save time. The WT will guide the choice of the reso-
lution parameter. However, one must consider that this is always a
trade-off, as discussed in Sec. IV C and seen in Figs. 2–4.

A. Testing for significance
The considerations outlined above will help to reduce false con-

clusions regarding the data. However, to further reduce the chance
of falsely representing spurious coherence as significant, a further
step must be performed.

Even with the existence of independent fluctuations in both
time-series, the interpretation of coherence is not straightforward,
as illustrated by Holm.82 This is because even two completely

independent noise time-series will contain fluctuations that appear
at the same time and frequency, resulting in a non-zero value of
coherence.

We must, therefore, determine whether observed coherence
is significant. This is necessary both for being able to make phys-
ical inferences from the observation of coherence values and for
being able to make physical inferences from phase-shift values ψ(f)
associated with high coherence. Consideration of significance of
coherence values can be divided into two aspects: First, the coher-
ence values themselves need to be statistically significant in terms
of exceeding some critical threshold, i.e., some baseline coherence
value. Second, when one computes the time-averaged phase differ-
ence ψ(f) as a function of f, where there is significant coherence,
one should observe a plateau—i.e., an approximately constant phase
difference—over the frequency range in which the phase-coherent
oscillations manifest in the time–frequency representation. One
should only regard coherence as significant if it is found to satisfy
both of these aspects of testing for significance.

In regard to the first aspect, defining the baseline coherence
value for significance is not trivial, as it is dependent on the nature of
the background dynamics generated by the system under investiga-
tion. For example, in the system described above, the independent
fluctuations generated from perturbations to the phase and ampli-
tude will result in a different level of background coherence to
the case of independent 1/f additive noise. Furthermore, in real
systems, the deterministic dynamics cannot be separated from the
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FIG. 6. (a) Time-localized effective phase coherence generated using the Poincaré oscillator example with amplitude noise and a frequency resolution parameter of f0 = 2.
The 75th percentile of 99 mismatch surrogates was considered as a zero threshold and was subtracted from the original time-localized coherence. Resulting negative values
were set to zero. (b) The time-average of the raw coherence (solid line) and the surrogate threshold (dashed line). (c) The average phase difference across frequency.

noise perturbations, which increases the difficulty of defining a
coherence baseline.

A more formulaic approach is to use a hypothesis test. Specif-
ically, we would like to test a null hypothesis that two time-series
are not coherent at a specific frequency. Such a hypothesis can be
tested through the use of surrogate data.83 Surrogate data are numer-
ically modeled time-series that are designed to preserve all features
of the measured time-series apart from the feature under investiga-
tion. In this method, a set of surrogate time-series is first randomly
generated. The same analysis that is performed on the real time-
series is then performed on the surrogates, with the end result being
the discriminating statistic corresponding to the factor of interest.
This results in a distribution of values for these statistics, which can
then be used to define a specific confidence interval (i.e., the value
of a percentile) for discerning significance and rejection of the null
hypothesis.

The optimal percentile to use in the test varies from case
to case. This can be due to a number of factors. For example, a
high intensity of the difference between the noises affecting the
two time-series will decrease the coherence between the two time-
series to a greater extent than it would decrease the coherence
between surrogates, making a lower percentile for the surrogate
threshold more appropriate. In this paper, we will adopt a 95th per-
centile threshold for most cases. However, in some cases, due to
factors like the one we have just mentioned, we will use a lower
threshold.

One of the most common uses of surrogate data is to test
for nonlinearity, where it is possible to apply methods, such as
amplitude-adjusted Fourier transform surrogates, that preserve only
the linear statistical properties of the time-series (see Ref. 84 for a
review of surrogate data methods). However, in testing for signif-
icant coherence, we must also preserve the effects of nonlinearity
in the surrogate data. Otherwise, even if the surrogates preserve the
linear statistical properties, such as the amplitude probability dis-
tribution and the frequency spectrum, the null hypothesis may still
be spuriously rejected due to increased coherence resulting from
nonlinearity.

Mismatched surrogates, also known as intersubject surrogates
in the context of biomedical data, are one of the simplest ways to

preserve potential nonlinearity in the surrogate data. With this
method, pairs of real measurements of the same system (such as
the human body, measured across different subjects) are separated
and then re-paired with the corresponding time-series from an inde-
pendent measurement (i.e., another subject). This has the advantage
of preserving all properties of the time-series apart from the time-
specific information. However, coherence is not preserved as the
oscillations are no longer ordered in time.

While mismatched surrogates usually apply only to measured
data from real systems, it is still possible to generate time-series
approximating mismatched surrogates with the illustrative model
defined in Sec. III. In this case, we can simply modify the frequency
modulation of the two modes, ω(t) = 2πω0 + A sin(2πωmt + ψ),
where ψ is a phase offset of the modulation. Each pair of surrogate
time-series is then generated using different values of ψ for each
mode, which are uniformly sampled on the interval [0, 2π].

It is also worth noting that surrogate testing is not the only
method for determining significance thresholds for coherence val-
ues. The method proposed by Sheppard et al.85 provide analyti-
cally derived significance thresholds based on higher-order statis-
tics, which was shown to give better performance than amplitude-
adjusted Fourier transform surrogates.

The effect of time-averaged surrogates is illustrated in Figs. 5(k)
and 5(l), which show the 95th percentile of 99 mismatch surro-
gates. These surrogate thresholds give a much clearer indication of
the coherence values that are present in the system vs the spuri-
ous coherence. One may also choose to illustrate the time-localized
effective coherence. This is demonstrated in Fig. 6, with parameters
identical to those in Figs. 2(e), 2(f), 2(k), and 2(l). The threshold
here was chosen as the 75th percentile of 99 mismatch surro-
gates. One can now discriminate the coherence due to the modes
vs the background fluctuations in the time-averaged coherence.
However, many areas of significant coherence still remain in the
time-localized plot distributed away from the modes. This illustrates
the fact that it is easier for spurious significant coherence to occur
in the time–frequency domain, where the testing area is essentially
squared.

The other effect of surrogates can be seen on the effective
coherence of the low-frequency mode, which is much reduced
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compared to the high-frequency mode. This is due to the fact that
spurious coherence between random fluctuations is more likely to
be found since the average coherence is calculated over fewer cycles.
This essentially reduces the observable frequency range, adding to
the effects already caused by the size of the wavelets (parameter-
ized by f0) and the window size used for the coherence calcula-
tion (parameterized by ncy). Taking into account these cumulative
effects, we generally recommend that effective coherence can only
be assessed if a minimum of 30 cycles can be observed, giving the
lowest observable frequency of 30/T.

Now, to illustrate the second aspect of considering signifi-
cance of coherence: In the two frequency bands where Fig. 6(b)
shows coherence values exceeding the surrogate threshold, Fig. 6(c)
shows the phase difference plateauing at about 0.75π . These
plateaus in conjunction with the statistical significance of the
coherence values suggest that the coherence in these two fre-
quency bands is significant. Moreover, as a consequence, we
can conclude that the value 0.75π around which the phase dif-
ference plateaus is the amount by which the first time-series
leads the second, consistent with the numerically modeled input
values.

Therefore, we have seen that the surrogate threshold and the
phase difference are invaluable tools when interpreting coherence;
this will be demonstrated in Sec. VI via a series of examples.

VI. APPLICATIONS

A. Cardio-respiratory coherence
The heart rate is modulated through several processes, with

respiration being an important factor. During inhalation, the heart
tends to beat quicker, and during exhalation, it tends to slow down.
This interaction is known as respiratory sinus arrhythmia.86 Cardio-
respiratory interactions are perhaps one of the most widely studied
interactions. Several methods have been employed,87,88 including
coherence analysis based on the Fourier and wavelet transforms.89,90

Utilizing PC to study cardio-respiratory interactions has also proven
valuable,50 for example, in the context of ageing,52 malaria,91 and
hypoxia.92

In this example, we evaluate cardio-respiratory interactions
based on the simultaneously recorded respiratory effort and the elec-
tric activity of the heart. The 1400 s recordings are taken from a
28-year healthy male participating in the study of ageing,93 where
the sensor/electrode placements are described. A time-insert of res-
piration is shown in Fig. 7(a) and the ECG in Fig. 7(b). The instan-
taneous frequencies of respiration [IRR, Fig. 7(c)] and beating of
the heart [IHR, Fig. 7(d)] are extracted by ridge extraction32 after
the WT was obtained. Two types of interactions are investigated:
(a) between the original respiratory time-series and the IHR and (b)
between both instantaneous rates, IRR and IHR. The PC and AWPC
for both cases are shown in Figs. 7(e), 7(f), 7(i), and 7(j). The sur-
rogate threshold was set to the 95th percentage of 140 intersubject
surrogates, as used in the original study.93 The time-averaged values
of PC and AWPC from the entire 1400 s recordings are shown in
Figs. 7(g) and 7(k) for the cases (a) and (b), respectively. The phase
differences, as a function of frequency, obtained for case (a) and (b),
are shown in Figs. 7(h) and 7(l).

It is clear that both PC and AWPC are much higher for the
respiration-IHR case, compared to IRR-IHR case, and that the high-
est values of coherence are at the frequency of respiration (around
0.2–0.3 Hz), consistent with earlier studies. This indicates that, in the
resting state, the heart rate is strongly modulated by the amplitude
of respiration and to a much lesser extent by the frequency of respi-
ration. In Fig. 7(g), one can see that the PC and AWPC are similar.
The phase difference at the respiration frequency is around 0 rad.

B. Phase coherence and movement artifacts
Coherence analysis is often applied to find common oscilla-

tory behavior between brain signals from different locations. This
can elucidate the functional connectivity of the brain, which is
known to change in various conditions.94,95 Spontaneous activity in
the brain can be measured noninvasively at a relatively low cost
using EEG or fNIRS with minimal discomfort to the subjects. How-
ever, both methods are susceptible to movement artifacts.96 Several
approaches exist to remove these artifacts from the data, although
they often compromise the quality of the data and may additionally
remove information of interest.97,98 As seen in Secs. IV, phase-
based approaches may be more resilient against movement artifacts
and noise and, as such, can circumvent some of the more draco-
nian preprocessing requirements. In this section, we investigate two
examples of movement artifacts, one using EEG and the second
using fNIRS.

1. Autism spectrum disorder
Non-invasive brain activity measurements in children are

fraught with artifacts due to difficulties in keeping younger sub-
jects still for extended periods. Analysis of signals derived from
younger cohorts, therefore, necessitates methods that are robust to
movement artifacts. In addition, when considering the presence of
interactions between time-series, it can be important to assess how
the nature of these interactions changes over time. Time-localized
methods can reveal temporal dependencies in this mutual behavior.
In a wide array of neurological conditions, it is not only the intensity
of interaction between brain regions but the duration of interaction
that is altered.99,100 By observing the time-localized coherence, one
may deduce the regularity and strength of time-varying interactions.

We consider a resting-state measurement with eyes open of
two simultaneously recorded EEG time-series. These data were
measured in a cohort of male children aged 3–5 years old with a
diagnosis of autism spectrum disorder (ASD). The time-series were
captured using a Nicolet cEEG instrument (Viasys Healthcare, USA)
at a sampling rate of 256 Hz. A 20-min recording period was used
to collect the data, and a 180-second interval was analyzed, with
the central 60 s illustrated in Fig. 8 as it contained a clear artifact.
Measurement sites corresponding to F3 and F4 in the international
10–20 system were chosen, as the initial objective of the investiga-
tion was to assess reports of reduced frontal connectivity in children
with ASD.101–104

The effect of the movement artifact is clearly seen in both the
time domain, Figs. 8(a) and 8(b), and the WT, Figs. 8(c) and 8(d),
where at the instance of the movement, all frequencies are present
(around 93 s) in the spectrum. The effect on the coherence is much
stronger and can be seen in Figs. 8(e)–8(g) for the AWPC compared
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FIG. 7. (a) and (b) Time-series of respiration and ECG from a 28-year-old healthy man, shown for 50 out of the 1400 s of recordings. (c) The WT of the time-series in (a).
The solid line is the extracted ridge, giving the instantaneous respiration rate (IRR). (d) The WT of the time-series in (b). The solid line is the extracted ridge, giving the
instantaneous heart rate (IHR). (e) The PC between the respiration and IHR. (f) The AWPC between the respiration and IHR. (g) The time-averaged PC (solid black line) and
AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference at each frequency. A positive value means
that the time-series in (a) is leading. (i) The PC between IHR and IRR. (j) The AWPC between IHR and IRR. (k) The time-averaged PC (solid black line) and AWPC (solid
orange line), with the corresponding surrogate thresholds (dashed lines) for IHR and IRR. (l) The time-averaged phase difference at each frequency. A positive value means
that the IRR is leading. The time-averaged coherence and the phase difference in (g), (h), (k), and (l) is calculated using the whole time-series (1400 s).

to the PC. A threshold of the 75th percentile of 156 intersubject
surrogates was used, leaving only the significant coherence. The
time-localized coherence [Fig. 8(e)] shows that the magnitude and
presence of the interactions vary over time. Both the time-localized,
Figs. 8(e) and 8(f), and the time-average, Fig. 8(g), coherence are
elevated for the AWPC compared to the PC.

2. Chorea in Huntington’s disease
Now, we consider two time-series recorded from the tem-

poral brain areas, in a study that investigated coherence between
neuronal and vascular function.105 These locations often have

artifacts due to movement of the jaw. The data are from a partic-
ipant with a positive genetic test for Huntington’s disease (HD),
who has not yet developed the movement disorder known as
chorea. Still, as chorea is a hallmark of the disease, HD research
would benefit from methods that are resistant to movement
artifacts.

We compared PC and AWPC of two resting-state oxygenated
hemoglobin (oxyHb) time-series measured using a fNIRS device
(NIRScout, NIRx, Germany) with a sampling frequency of 31.25 Hz
over 20 min (for further details on measurements, see Ref. 93). The
measurement sites correspond to T7 and T8 in the international
10–20 system (left and right temporal locations). The resolution
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FIG. 8. Movement artifact represented as a downward spike in the time-series recorded simultaneously at two probes: F3 (a) and F4 (b). Their corresponding WTs [(c) and
(d), respectively], indicate the amplitude perturbation at around 93 s. The effective phase coherence (e) is resilient against this perturbation, while the amplitude-weighted
phase coherence (f) exhibits spurious coherence. In both cases, the surrogate threshold is taken as the 75th percentile of 156 intersubject surrogates. (g) The time-averaged
PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference across frequency.

parameter f0, Eq. (8), was set to 1, as to minimize the spread of an
artifact.

The results are shown in Fig. 9. The time-series contain two
movement artifacts, which appear as high-amplitude cones in the
WT and have the greatest impact at low frequencies. The artifacts
have a very significant impact on the AWPC plot and affect an even
wider area of time and frequency than is visible in the WT plots. This
is a consequence of the moving window used to calculate wavelet
coherence. In the plot of PC. the effect of the artifacts is not obvious.
This illustrates how any simultaneous increase in amplitude, even
if not phase coherent, results in AWPC appearing significant over
large areas of the time–frequency domain. This can also be seen in
the time-averaged coherence plot, where the AWPC (orange line) is

much higher than the PC (black line). The two dashed lines show
the 95th percentile of the 136 intersubject surrogates.

This example illustrates that PC is relatively resistant to arti-
facts, which is beneficial when analyzing time-series from various
non-invasive measurement techniques.

C. Electron dynamics on the surface of liquid helium
Time–frequency and coherence analysis can provide valuable

information about the dynamics of a system. In addition, the phase
difference between oscillations can give information about the direc-
tion of influence. We consider the movement of electrons on the sur-
face of liquid helium at very low temperatures, as discussed in Siddiq
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FIG. 9. (a) and (b) Two fNIRS time-series measured from a participant with Huntington’s disease. The locations of two artifacts are marked on the time-series using red
triangles. (c) The WT of the time-series in (a). (d) The WT of the time-series in (b). (e) The PC of the two time-series. (f) The AWPC plots of the two time-series. (g) The
time-averaged PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference at
each frequency. A positive value means that the time-series in (a) is leading.

et al.31 At very low temperatures, the helium will be a superfluid.
Since such a system can be used for constructing the qubits that are
needed for quantum computers, increasing the understanding of its
dynamics is important.

In the experiments, the electrons were just above the liquid
helium, trapped between the helium and a vacuum. They were in a
perpendicular magnetic field and subjected to microwave radiation
and varying pressing voltage. Current oscillations were recorded
from five electrodes for 60 s at 100 kHz. The full experimental setup
is described in Ref. 31. We chose an example with low electron den-
sity and 4.18 V pressing voltage. Currents measured from electrodes
E4 and C in the time-interval 30–31.4 s were selected for analysis,
and high coherence was obtained as in the original paper.31

Figure 10 shows the PC and AWPC between current oscilla-
tions at the two electrodes. The current signals were first down-
sampled to 20 kHz, as in this example, we will focus on oscillations
around 0.5 kHz. The resolution parameter was set to 3, in line
with the original paper.31 100 iterated amplitude-adjusted Fourier
transform (IAAFT) surrogates were used to calculate the surrogate
thresholds.84

Both PC and AWPC methods pick up a time-varying
coherence following the dominant mode in the WT plots, which
resembles a non-autonomous influence on the system. The time-
averaged PC (black line) and AWPC (orange lines) are similar, with

the AWPC having a slightly higher value at the higher frequencies.
This could indicate that there is some amplitude covariance. The
surrogate thresholds are very similar for both methods. The time-
averaged phase difference is positive, meaning that the oscillation at
E4 is preceding that at C.

The existence of coherence indicates that the electrons are
moving, and the phase difference suggests that they are moving
toward the C electrode from the E4 electrode. This is consistent
with the microwave radiation being applied closer to E4. Further-
more, by studying the time–frequency representations, we see a clear
mode with a time-varying frequency. Using ridge extraction,32 which
essentially tracks the maximum amplitude within a frequency range,
we can extract a time-series of the instantaneous frequency. The WT
of this time-series shows a clear amplitude peak at around 5.2 Hz,
indicating modulation of the electron movement at this frequency.
This was shown to be caused by slow gravity waves on the liquid
helium.31 It is important to note that in the WT of the original cur-
rent data, there is also a peak at around 5.2 Hz. However, this peak is
relatively weak compared to the rest of the spectrum, and, in partic-
ular, compared with the dominant oscillatory component, making
it challenging to observe and identify directly from the frequency
spectrum. This illustrates that time-localized, time–frequency
methods can uncover a great deal of physically meaningful infor-
mation.
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FIG. 10. (a) and (b) Time-series of current oscillations caused by the movement of electrons on the surface of liquid helium. The two electrodes are labeled E4 and C. (c)
and (d) The WT of the time-series in (a) and (b), respectively, with the extracted ridge shown by the solid black line. (e) The PC of the two time-series. (f) The AWPC of the two
time-series. (g) The time-averaged PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged
phase difference at each frequency. A positive value means that the time-series in (a) is leading. (i) The WT of the ridge time-series plotted in (c). (j) The WT of the ridge
time-series plotted in (d).

VII. DISCUSSION AND SUMMARY
The study of coherence has its foundations in physics, where

methods were first developed to measure the coherence between the
phases of waves. It has then been extended to considering coherence
between the phases of more general oscillatory processes occurring
in a wide variety of scientific disciplines; for this, one of the most
fundamental issues is the quantification of such coherence from
measured data. Accordingly, it is a subject particularly treated by
harmonic analysis in mathematics and by signal-processing theory.
We have approached this same question again from a physics per-
spective, but still with this greater generality than the kinds of setup

that initiated the study of coherence—namely, from the perspective
of multi-scale time-dependent oscillatory dynamics.

We have seen that for time-series data recorded from sys-
tems involving interacting oscillations, key information about the
interactions is contained in the time evolution of the phases of
the oscillations. Moreover, we have seen that for the analysis of
systems involving oscillations with temporally modulated quanti-
tative characteristics, such as frequency and amplitude, time-series
analysis methods that are fundamentally designed for time-series
with stationary statistics are inappropriate. For example, the mea-
sure of coherence of phases intended to be revealed by Fourier
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coherence will have little meaning for systems with frequency-
modulated oscillations. Rather, tools designed to extract time-
evolving, time-localized information about systems exhibiting time-
dependent far-from-equilibrium dynamics are needed. In particular,
phase information needs to be extracted in a suitably time-localized
manner.

Such time-localization inherently needs to be understood rel-
ative to the timescale of the dynamical process under investigation,
and therefore, for multi-scale time-series involving oscillations of a
range of frequencies, this time-localization needs to be adaptive to
the range of timescales involved. This has been illustrated in Fig. 1.

In the setting of time–frequency analysis, where the Heisen-
berg uncertainty principle requires a trade-off between precision
in measurements of frequency and precision in location in time,
this multi-scale adaptivity corresponds to a logarithmic frequency
resolution. This is achieved by the continuous wavelet transform,
where the scale variable is taken as inversely proportional to the
frequency under investigation. Accordingly, we have seen that the
wavelet transform is the appropriate tool for extracting phase infor-
mation from multi-scale nonstationary time-series, and in partic-
ular, WT-based coherence analysis is the appropriate approach to
investigating coherence of phases manifesting in such time-series.

In this paper, we have provided an introduction to wavelet-
based coherence analysis and evaluated several related issues—some
already established and others that had not previously been
addressed.

Existing discussions of different approaches to quantify-
ing coherence, and more generally of different approaches
to time–frequency analysis, have mainly treated the different
approaches as if on essentially equal footing, and practical choices,
such as the use of WT over STFT, or of PC over AWPC, are often
treated merely as a matter of quantitative optimization, without the-
oretically reasoned or experimentally explored consideration of the
qualitative impact of such choices on the resulting analysis.

To address this issue, we have provided a systematic explana-
tion of the practicalities and pitfalls of how to carry out wavelet
coherence analysis in practice. In particular, we have provided a
detailed review of the methodology for reliably testing for and
detecting significant phase coherence from measured data.

Since the wavelet transform provides extractable phases and
amplitudes, one can calculate38,46 a measure of coherence indepen-
dent of changes in the amplitude, namely, PC, as well as a measure
of coherence that is weighted in time by amplitude, namely, AWPC.
Prior to this work, an in-depth comparison between AWPC and
PC had not been performed. Perhaps counterintuitively, we found
a consistent difference in the performance of the two definitions of
coherence when applied to noisy time-series. PC is, in general, more
robust to noise and particularly to time-localized perturbations,
meaning that it is affected to a much lesser degree by phenomena,
such as movement artifacts.

Along with the definition of PC, one can also analyze phase
differences in the oscillations present in the pair of time-series
under investigation. This is first needed as one of the aspects of
determining significance of coherence, along with statistical sig-
nificance of the coherence values themselves: the time-averaged
phase difference as a function of frequency needs to have a plateau
in the frequency band where coherent oscillations manifest in

time–frequency representation. Second, where there is significant
coherence, the phase difference can provide indications of which
oscillation is leading.106 However, it is important to note that causal-
ity (i.e., which process is the origin of the common oscillations) is
not always possible to infer from the phase shift. This can be because
the phase shift is wrapped on the interval [−π ,π] or because of the
existence of higher degree interactions, such as node triples.107

This investigation of coherence has revealed the wealth of
information provided by the phase. Part of the utility of phase over
amplitude comes from the fact that phase dynamics is constrained
by the frequency interval within which an oscillation lies. For exam-
ple, each wavelet has a defined frequency response, which limits
the rate at which the phase can change. However, in contrast to
the phase, the amplitude is not bounded to frequency in such a
manner, making the separation of amplitude dynamics from noise
harder to satisfactorily achieve. This is analogous to the advan-
tages of frequency modulation over amplitude modulation in radio
communications.108

The practical implications of the main points highlighted by
our work are effectively illustrated in our analyses of real data
in Sec. VI. In the examples shown in Sec. VI B, the presence of
movement artifacts has a significant effect on the results of any anal-
ysis. Such artifacts usually need to be removed prior to analysis,
which often requires subjective identification. The techniques used
to remove identified artifacts may also introduce artificial manip-
ulations in the data.109 The resistance of amplitude-independent
phase-based methods to these sorts of artifacts allows for the analysis
of noisy data without the need for preprocessing or constraints on
the measurement setup, leading to better research into conditions,
such as HD and ASD.

In the example of electron dynamics on the surface of liquid
helium, using phase coherence analysis, we identified the existence
of gravity waves. Without the time-localized approach, these waves
might not have been detected. This illustrates how the application
of coherence methods and time–frequency analysis can be used to
identify specific properties of a physical system. Thus, we see the
importance of using a time-localized approach instead of an asymp-
totic approach, i.e., infinite-time, non-time-evolving approach. The
wider adoption of explicitly finite-time and time-localized meth-
ods should, therefore, lead to similar discoveries in systems char-
acterized by non-autonomous dynamics involving nonstationary
amplitudes and frequencies.

VIII. CONCLUSION
We review the current understanding of coherence, a universal

phenomenon that can appear between oscillations or waves, irre-
spective of their origin. We start from its definition in physics and
review numerical methods for analyzing coherence from modeled
or real data. We focus particularly on coherence between non-
autonomous oscillatory processes whose oscillations have deter-
ministically time-varying frequencies. For this reason, we apply
wavelet-based, time-resolved coherence analysis. We discuss dif-
ferences between amplitude-weighted phase coherence and phase
coherence. In the former case, time-resolved information includes
both the amplitude and the phase; in the latter case, only the infor-
mation about phase is considered. We illustrate that the amplitudes
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are more readily perturbed than phases by noise or movement arti-
facts, and consequently, that phase coherence provides more robust
information about interacting oscillatory systems. We illustrate this
in relation to several real-world examples.

SUPPLEMENTARY MATERIAL
An alternative to Fig. 1 in the main paper is presented in the

supplementary material. It shows the Fourier transform in a loga-
rithmic scale. By comparing Figs. 1(c), 1(d), 1(g), and 1(h) in the
main text and supplementary Figs. 1(c), 1(d), 1(g), and 1(h), it is
clear that the logarithmic scale is disadvantageous to the short-
time Fourier transform, which is obtained with linear frequency
resolution.
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87M. Bračič Lotrič and A. Stefanovska, Physica A 283, 451 (2000).
88Y. Shiogai, A. Stefanovska, and P. V. E. McClintock, Phys. Rep. 488, 51
(2010).
89G. Stanley, D. Verotta, N. Craft, R. A. Siegel, and J. B. Schwartz, Am. J. Physiol.
Heart Circ. Physiol. 270, H1833 (1996).
90K. Keissar, L. R. Davrath, and S. Akselrod, Phil. Trans. R. Soc. A 367, 1393
(2009).
91Y. A. Abdulhameed, A. G. Habib, P. V. E. McClintock, and A. Stefanovska,
“Phase coherence between cardiovascular oscillations in malaria: The basis for a
possible diagnostic test,” in Physics of Biological Oscillators: New Insights into Non-
Equilibrium and Non-Autonomous Systems, edited by A. Stefanovska and P. V. E.
McClintock (Springer International Publishing, Cham, 2021), pp. 401–419.
92G. Lancaster, T. Debevec, G. P. Millet, M. Poussel, S. J. Willis, M. Mramor, K.
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Spontaneous electroencephalography (EEG) measurements have demonstrated putative variations in the neural connectivity of sub-
jects with autism spectrum disorder, as compared to neurotypical individuals. However, the exact nature of these connectivity differ-
ences has remained unknown, a question that we now address. Resting-state, eyes-open EEG data were recorded over 20 min from a 
cohort of 13 males aged 3–5 years with autism spectrum disorder, and nine neurotypical individuals as a control group. We use time- 
localized, phase-based methods of data analysis, including wavelet phase coherence and dynamical Bayesian inference. Several 3 min 
signal segments were analysed to evaluate the reproducibility of the proposed measures. In the autism spectrum disorder cohort, we 
demonstrate a significant (P < 0.05) reduction in functional connectivity strength across all frontal probe pairs. In addition, the per-
centage of time during which frontal regions were coupled was significantly reduced in the autism spectrum disorder group compared 
to the control group. These changes remained consistent across repeated measurements. To further validate the findings, an additional 
resting-state EEG dataset (eyes open and closed) from 67 individuals with autism spectrum disorder and 66 control group individuals 
(male, 5–15 years) was assessed. The functional connectivity results demonstrated a reduction in theta and alpha connectivity on a 
local, but not global, level. No association was found with age. The connectivity differences observed suggest the potential of theta 
and alpha connectivity as biomarkers for autism spectrum disorder. Additionally, the robustness to amplitude perturbations of the 
methods proposed here makes them particularly suitable for the clinical assessment of autism spectrum disorder and of the efficacy 
of therapeutic interventions.
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Graphical Abstract

Introduction
Altered neural connectivity is a hallmark of autism spectrum 
disorder (ASD).1-7 In general, a prevailing pattern of hypo-
connectivity in the low- and medium-frequency bands, 
alongside over-connectivity in the high-frequency intervals, 
has been observed.8 Concurrently, the role of temporal regu-
lation in maintaining couplings between brain regions has be-
come apparent in a wide range of neurological conditions 
including ASD.9-11 Despite this, previous results exhibit con-
siderable variability.12 Particular inconsistencies pertain to 
the balance between long- and short-range connections in 
ASD,8,13-16 and the relative hyperconnectivity17,18 or 
hypoconnectivity16,19-21 of frontal regions. These discrepan-
cies can be attributed partially to the heterogeneity of ASD po-
pulations,22 variations in measurement approaches23,24 and 
alternative data analysis methodologies.25 Additionally, the 
duration of observation may have been insufficient to reveal 

couplings. Detecting coupled oscillatory behaviour requires 
the observation of at least thirty cycles, and is therefore de-
pendent on the frequency of interest. This requirement is par-
ticularly relevant for EEG data, which is often highly 
nonlinear, non-autonomous, and non-stationary, leading to 
fluctuations in frequency content over time.26

When measuring brain activity in children, movement ar-
tefacts are inevitable and should be anticipated and ac-
counted for. Artefact-resilient approaches are therefore 
necessary for findings to be reliable and appropriate for clin-
ical application. The methods employed in this study focus 
on phase, rather than amplitude, dynamics. By also focusing 
on finite-time dynamics, our approach acknowledges the 
non-autonomous nature of underlying oscillatory modes 
and reduces the effects of amplitude perturbations on mea-
sured connectivity. Additionally, our method detects non-
linear interactions, overlooked by linear, statistical 
approaches.27,28 The wavelet transform enables an optimal 
trade-off between the time-localization and frequency 
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resolution, avoiding the bias in Fourier based approaches.29

Furthermore, our approach26,30 enables the simultaneous 
detection of phase differences across multiple modes within 
a frequency band, in contrast to methods that reduce the 
phase to a single value.31-33 Taken together, these features 
enable the present approach to provide an interpretable 
way of uncovering deterministic oscillations within multi-
scale, nonlinear and time-varying data.

In recent years, there has been a growing emphasis on 
adopting effective connectivity methods for assessing brain 
network dynamics.1,34 Effective connectivity approaches 
can capture the directionality of couplings within the brain 
whilst also enabling the inference of causal relationships be-
tween different regions. In contrast, functional connectivity 
methods may mistake a common external factor for mutual 
interaction.35 Novel approaches that incorporate direction-
ality and infer causality may offer a more comprehensive 
view of the complex interactions occurring within the brain. 
Living systems are inherently non-autonomous. Therefore, 
when evaluating time series of biological origin, time should 
be treated as an explicit physical parameter.36 To account for 
underlying temporal variability, here effective connectivity is 
calculated over a sequence of data windows. The duration of 
couplings may then be calculated to assess their presence 
over a larger time interval. The non-autonomous nature of 
neural couplings, which time-asymptotic approaches would 
disregard,30,37 may thereby be captured.

Individuals with ASD often exhibit deficits in executive 
function (EF), manifesting as several core challenges.21,38-40

Previous research has associated frontal areas of the brain 
with EF,41-43 and ASD individuals exhibit structural differ-
ences in these regions, such as minicolumnar abnormalities44

and brain overgrowth.45,46 Additionally, an imbalance of 
GABA and glutamate has been identified, prompting 
pharmacological interventions that have enhanced prefront-
al connectivity in ASD individuals.47 Multiple studies have 
also reported decreased inter-hemispheric connectivity in 
ASD48-51 particularly in homotopic regions.52

We hypothesize that, using our novel approach to data ana-
lysis, we can quantify the deficits in frontal inter-hemispheric 
connectivity and characterize their time-variations. Our re-
sults demonstrate a significant reduction in alpha and theta 
functional connectivity in children with ASD. It is hoped 
that this approach will provide a valuable tool in the quest 
for quantitative biomarkers characterizing ASD.

Materials and methods
Fourteen males aged 3–5 years with diagnoses of ASD were 
identified through Blackpool Teaching Hospitals NHS 
Foundation Trust’s Child Development Centre. Ethical ap-
proval was obtained from the NRES Committee North 
West — Lancaster REC, reference number: 13/NW/0509. 
Participants’ parents provided informed consent, and the 
clinical study was registered as UKCRN ID14936. Ten age- 
matched neurotypical controls were recruited through 

advertisements at Health and University sites and nurseries. 
One individual in each group was unable to complete the full 
recording. Inclusion criteria were either a clear diagnosis of 
an ASD, confirmed by an Autism Diagnostic Observation 
Schedule (ADOS) assessment; or no concerns about develop-
ment or features of ASD, confirmed by a developmental his-
tory and ADOS assessment. Exclusion criteria were epilepsy 
or undiagnosed seizure episodes; medications known to af-
fect brain function; structural brain abnormalities; chromo-
some abnormalities; and, for the control group only, a 
first-degree relative with ASD diagnosis. Initially, the study 
aimed to recruit a similar number of female participants. 
However, due to the lower incidence of diagnosed ASD in fe-
males, it was not possible to recruit enough girls with an ASD 
diagnosis within the study’s time frame. A small age range 
was selected to control for developmental changes. Based 
upon the sizes of the ASD and CG groups, sensitivity analysis 
was performed using G*Power. Due to the sample sizes used 
in this study, effect sizes of 1.387 were able to be reliably de-
tected. A full summary, including further details of the sensi-
tivity analysis, is given in the Supplementary material. The 
age, ADOS score and hand preference of each participant 
are provided in Table 1.

Data recording
EEG signals were recorded using a Nicolet cEEG instrument 
(Viasys Healthcare, USA) at a sampling rate of 256 Hz, with 
19 probes and one reference electrode placed on the child’s 
scalps using the standard 10–20 configuration. EEG was re-
corded for 20 min while the child was in an eyes-open resting 
condition and sitting on a chair, their stroller, or their par-
ent’s lap. When necessary to maintain a relaxed state, parti-
cipants were presented with soap bubbles or smartphone 
videos. Details for individual participants are provided in 
Table 1. A 3 min segment was selected from the data, based 
on a video of the child recorded during the data collection. It 
was chosen as being the interval where the child appeared to 
move the least. Henceforth, this shall be referred to as the ‘vi-
deo’ segment. As this segment was expected to have minimal 
movement artefacts, it provided a reliable starting point for 
the initial investigation. A retest procedure was employed 
to assess the robustness of the findings and account for the 
real-world conditions encountered in clinical settings. Five 
additional segments, each lasting 3 min, were chosen by vis-
ual inspection of the data, aiming to avoid segments with the 
largest spikes in the time series. Details regarding the pre- 
processing of the data are given in the Supplementary 
material.

Additional dataset
An additional dataset was acquired to further validate the 
results. The Healthy Brain Network (HBN) biobank con-
tains multimodal brain imaging datasets complemented by 
a wide range of phenotypic data.53 The recruitment 
procedure utilized a community-referred model, in which 
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advertisements invited concerned parents and caregivers to 
seek diagnosis and support for their children if needed. 
From this neurodiverse cohort, several children were diag-
nosed with ASD, while a group of individuals were given 
no diagnosis and acted as a control group. Age, gender, IQ 
and handedness were matched between the groups com-
pared. Statistical descriptions of each group’s composition 
are given in Table 2.

The HBN data had been recorded using a 128-channel 
EEG Geodesic Hydrocel System by Electrical Geodesics 

Inc. (EGI) sampled at 500 Hz with a bandpass of 0.1– 
100 Hz. The resting state measurement procedure entailed 
viewing a fixation cross on a computer screen, with eyes se-
quentially opened and closed in 20/40 s repeats.53 The re-
cordings lasted 5 min, and the central 3 min were selected 
for analysis. Except where stated otherwise, the same proce-
dures and analysis were applied to both datasets. The results 
and discussion presented in this paper generally describe the 
Blackpool data, with the HBN dataset being treated as a val-
idation dataset.

Table 1 Participant details

Subjects Age (months) ADOS score Hand
Setting Activity State

ASD Mean: 50 ± 6 Mean: 17.6 ± 3.5

R: 53.8% 
L: 7.7% 
ND: 38.5% Lap Chr Rest Screen BBles Slp Qt SM

1 42 19 ND X X X
2 45 19 ND X X X
3 50 19 R X X X
4 56 11 ND X X X
5 50 22 ND X X X
6 50 20 ND X X X
7 52 20 R X X X
8 47 21 ND X X X
9 56 13 L X X X
10 43 19 ND X X X
11 58 16 R X X X
12 56 18 R X X X
13 58 12 R X X X

CG Mean: 46 ± 7 Mean: 1 ± 1

R: 55.6% 
L: 0% 
ND: 44.4%

1 55 0 R X X X
2 45 2 R X X X
3 53 0 R X X X
4 55 0 ND X X X
5 44 2 ND X X X
6 44 0 R X X X
7 47 1 R X X X
8 36 2 ND X X X
9 36 2 ND X X X

The state of each participant during the measurements for each group. The first four columns give summary data: ASD (autism spectrum disorder) or CG (control group) subject 
number; age in months; ADOS (autism diagnostic observation schedule) score; and right (R) or left (L) or not-defined (ND) handedness. The next two columns show whether the 
participant was sitting on their parents’ lap (Lap) or on a chair (Chr). The next three columns show what the participant was doing during the recording, either at rest (Rest), or 
watching a screen (Screen), or watching bubbles (Bbles). The final three columns indicate their level of activity during the recording, whether sleepy (Slp), quiet (Qt), or exhibiting some 
small movements (SM). All participants were male. Details regarding effect size are given in the Supplementary material.

Table 2 Median values and significances between groups in the HBN data

Groups
ASD (n = 67) CG (n = 66)

Group comparisonMedian SD Range Median SD Range

Age (years) 8.73 2.58 9.61 8.99 2.76 9.95 0.721
IQ 100 17.3 84.0 104 11.8 68.0 0.0517
Handedness 68.4 58.3 198 86.7 51.8 196 0.0529
SRS 85 30.9 114 26 15.8 81 4.07 × 10−19

The median, standard deviation (SD) and range of age, IQ, handedness and social responsiveness score (SRS) in the ASD and CG groups. All participants were male. The Wilcoxon 
rank-sum test was used to evaluate the differences in potentially confounding factors between groups; none of which were significant apart from the SRS. Handedness was evaluated 
using the Edinburgh Handedness Questionnaire, with 100 being right hand dominant, 0 ambidextrous and −100 implying left-hand dominance.
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Frequency bands
For three reasons, we chose to merge the theta–alpha range 
into a single frequency interval (3.5–12 Hz). First, the limits 
of the five traditional frequency bands (delta, theta, alpha, 
beta and gamma) were not clearly distinguishable in the 
power spectra of the EEG data. Thus, it was not possible 
to draw clear boundaries between the alpha and theta bands 
for any given subject without crossing peaks in the spectra of 
other subjects. Secondly, it has been found that EEG power 
spectra evolve during developmental years as children’s 
brains undergo maturation of cellular substrates.54,55

Specifically, alpha activity has been found to occur at lower 
frequencies (∼8 Hz instead of ∼10 Hz) in younger chil-
dren.54,56 Finally, previous studies of EEG activity in chil-
dren with ASD do not use strict limits for their frequency 
bands, and no standard has been established to date.

Data analysis
Rate processes are ubiquitous in nature. From celestial mo-
tion to cellular metabolism, oscillatory behaviour is perva-
sive across all spatial and temporal scales of existence. The 
brain is no different, with electrical activity that propagates 
information between regions, often taking certain character-
istic frequencies dependent on the information it conveys.57

The exceedingly high connectivity between neurons gives rise 
to networks of oscillators. EEG signals are generated by 
transmembrane ion currents in the pyramidal neurons of 
the cortex and are transmitted to electrodes on the scalp 
via volume conduction.58 The nature of these signals is inher-
ently oscillatory. To elucidate their underlying behaviour, we 
focus on time-resolved oscillatory modes present in the re-
corded EEG signals.

Time-frequency representation
The first step in identifying these modes is to explore their 
presence in the time-frequency domain. The wavelet trans-
form can reveal potential non-autonomicity within oscilla-
tions.59 Additionally, the logarithmic frequency resolution 
offered by this method provides a more balanced distribu-
tion of information across frequency bands. The time- 
frequency representation is generated by sliding wavelets of 
varying scales along the input signal and transforming the 
overlapping parts into the frequency domain. Lower fre-
quencies exhibit fewer oscillations within a given time, ne-
cessitating a larger scale to capture the oscillatory activity 
effectively. Conversely, higher frequencies require less time 
to be captured, allowing the use of a smaller scale. This op-
timizes the trade-off between time-localization and fre-
quency resolution, providing greater time-localization at 
high frequencies and improved frequency resolution at low 
frequencies. The wavelet transform was therefore chosen 
for the initial analysis of these signals. It is defined by

WT(s, t) = ∫
L/2

−L/2
Ψ(s, u − t)f (u)du, (1) 

where the mother wavelet, Ψ(s, t), is the object contracted 
and dilated to reveal oscillatory behaviour at various times 
and scales. For the present study, the Morlet mother wavelet 
was used,

Ψ(s, t) = 1
��
π4
√ e

2πiωct
s − e−2πω2

c
2

􏼒 􏼓

e− t2

2s2 , (2) 

which is composed of a sinusoidal wave within a Gaussian 
envelope.60 The frequency of the sinusoid allows one to fo-
cus upon a given scale, while the Gaussianity ensures a 
smoothly decaying amplitude and, therefore, greater time- 
localization. The enhanced temporal resolution, and its com-
mon use in neuroscience,61 motivated the selection of this 
wavelet.

In contrast, linear approaches, such as those based on the 
Fourier transform, often use a fixed window size when evalu-
ating the time-frequency domain. This fixed window length 
leads to suboptimal multiscale analysis. Furthermore, linear 
methods often reduce the amount of information captured 
by averaging over time, or filtering out potentially determin-
istic oscillations that are falsely categorized as noise.30 A 
cornerstone of the present approach is the maximal preserva-
tion of the underlying information.

The wavelet transform generates a complex matrix con-
taining both phase and amplitude information, facilitating 
a comprehensive multiscale analysis across time. This dual 
representation captures the magnitude of specific frequencies 
while also elucidating the temporal evolution of oscillatory 
modes, enabling a more nuanced understanding of the 
underlying dynamics. A simulated example signal (Fig. 1A 
and B) containing two oscillatory modes at different frequen-
cies is analysed in Fig. 1C and D. It is evident that the wavelet 
approach readily elucidates that there are two modes with 
time-varying frequencies representative of alpha and theta 
oscillations. The time-localization and logarithmic fre-
quency resolution reveal the non-autonomous nature of the 
oscillatory modes.

When considering non-autonomous dynamics, time- 
averaged approaches may not always faithfully represent 
the number of oscillatory modes present in the signal. For ex-
ample, Fig. 1D in isolation may naively give the impression 
that additional oscillatory modes are present. The time- 
frequency domain, as illustrated in Fig. 1C, reveals, however, 
that this is not the case. The false identification of modes is a 
common mischaracterization30 resulting from a failure to 
consider the time domain. Once the oscillatory modes have 
been identified, functional connectivity methods may then 
be applied to ascertain dependences between the respective 
oscillators.

Wavelet phase coherence
The wavelet transform assigns phase values to each point in 
the time-frequency domain for the underlying oscillatory 
modes. Following this, wavelet phase coherence (WPC) is 
calculated to determine the interaction between a pair of sig-
nals and how it develops over time.62-65 The consistency of 
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the phase difference between the signals at each point in the 
time-frequency domain is evaluated across several (in the 
present case 10) complete oscillations at a given frequency, f,

WPCt, f = f
10

∫
t+5

f

t−5
f

ei(ϕ1
s,f − ϕ2

s,f )ds

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
. (3) 

Subsequently, a value is allocated between zero (complete 
lack of coherence) and unity (perfect coherence—where the 
difference in the phases (ϕ1

s,f − ϕ2
s,f ) at each point in the time- 

frequency domain remains constant over the time interval). 

The WPC is completely independent of amplitude dynamics 
and depends purely on the phase of the oscillations. By only 
considering phase dynamics, this approach is more resilient 
to movement artefacts and noise than its amplitude-weighted 
counterpart.26

An illustrative example demonstrating time-localized 
WPC is depicted in Fig. 1A–H. Two model time series are re-
presented by the blue and orange lines respectively in Fig. 1A 
and B. Specific details of the modelling procedure used to 
generate these time series are outlined in the 
Supplementary material. To summarize, the orange line 
lacks the high-frequency (HF) mode for the first 200 s (see 

Figure 1 Demonstration of wavelet phase coherence using a pair of simulated time series. (A). A 1s-long window taken from the 
first half of the simulated time series. Further details of the modelling procedure and parameters are given in the Supplementary material. (B) A 
1s-long window taken from the second half of the simulated time series. (C) Time-frequency representation of the warmer coloured (orange) time 
series’ power calculated using the wavelet transform (Morlet wavelet, frequency resolution = 4). (D) Time-averaged power of the warm coloured 
(orange) series. The frequency axes of (C) and (D) are logarithmic. (E–H) A step-by-step evaluation of wavelet phase coherence. (E, F) The phases 
of the time series, calculated at 11 Hz, for intervals corresponding to those in A and B. (G) Time-localized phase coherence between the warm 
(orange) and cooler coloured (blue) time series. The horizontal line at 11 Hz indicates where the phases (E, F) and phase difference (H) were 
evaluated. (H) The phase difference at 11 Hz is almost flat across times that correspond to high time-localized coherence values.
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Fig. 1C for the time-frequency representation of the orange 
line), the blue line is modelled similarly, but with the HF 
mode lasting the entire 400 s. Independent realizations of 
white Gaussian noise were applied to both of the simulated 
signals. Consequently, there is no shared high frequency os-
cillatory component between these signals for the first 200 s, 
resulting in a continuously changing phase difference 
(Fig. 1E). This variability in phase difference is further de-
picted in the time-localized phase coherence in Fig. 1G.

To contrast this inconsistency between the phases of the 
HF mode in the first half of the signal, coherent signals 
were generated in the subsequent half; establishing shared 
behaviour between the time series during this interval. 
WPC detects this shared oscillatory component by examin-
ing the phase difference between the oscillations. The phase 
difference at 11 Hz (Fig. 1H) is constant during intervals of 
high time-localized coherence (Fig. 1G).

Global coherence
The wavelet mean field was used to evaluate global coher-
ence across the brain. For N time series evaluated simultan-
eously at different probe locations, we have,

rσ(t) = (1/N)
􏽘N

n=1

wn,σ(t), (4) 

where,

wn,σ(t) = Wn,σ(t)/

����������������������������������

(1/NT)
􏽘N

n=1

􏽘T

t=1

Wn,σ(t)Wn,σ(t)

􏽶
􏽵
􏽵
􏽴 . (5) 

The corresponding wavelet transforms across time and scale 
are represented as Wn,σ(t), with the overbar denoting com-
plex conjugation. When the time series exhibit similar phases 

at a given time and frequency, the average 
􏽐N

n=1 wn,σ(t) will 
yield a large complex number due to the reinforcement of 
synchronized oscillations. Conversely, when the probe sig-
nals are unsynchronized, the phasors will point in random 
directions in the complex plane and cancel. The degree of 
interaction across the brain is calculated with the mean- 
squared magnitude of the wavelet mean field, 

(1/T)
􏽐T

t=1 |rσ(t)|
2. This takes a value between zero and 

unity, where 1 represents complete synchrony across the 
brain and 0 is perfect desynchronization.66

Dynamical Bayesian inference
Functional connectivity methods, such as those outlined 
above, identify statistical dependences between different 
brain regions.35 While this is helpful in highlighting differ-
ences between groups, it is essentially a descriptive measure 
of the common behaviour between a pair of time series. 
Further, although high values of functional connectivity 
may reflect underlying neural connections, they may also 
arise due to a common external influence. Effective connect-
ivity goes beyond this by explicitly describing the influence 

that one neural region exerts over another. In this way, the 
strength and direction of influence between regions can be 
described and quantified. This information comprises the 
coupling between systems, and the coupling function (CF) 
describes the way in which information is propagated from 
one oscillator to another.67 Dynamical Bayesian inference68

(DBI) was chosen to detect phase couplings between the 
probes. To appreciate the utility of CFs, consider a pair of 
unidirectionally coupled phase oscillators,

ϕX = ωX, (6)
ϕP = ωP + qP(ϕX, ϕP) = ωP + E cos(ϕX + π/2.5), 

where the phase of oscillator X (ϕX) modulates the phase of P 
(ϕP) according to the behaviour of a CF qP(ϕX, ϕP). As an il-
lustration, this system (Fig. 2A) was simulated numerically, 
and DBI was applied to reconstruct the coupling functions 
over a range of coupling strengths. The couplings are repre-
sented in Fig. 2B–E, with varying amplitudes, demonstrating 
that in addition to reconstructing the shape of CFs, DBI can 
also infer the coupling strength. Directionality may also be 
captured using this approach. In Fig. 2E, the coupling func-
tion is almost zero as there is no information flow from P to 
X; thus, via the inference of and comparison between CFs, 
one can also deduce the direction of an interaction. Real 
data are also used to demonstrate the bidirectional nature 
of the couplings under investigation (Fig. 2G–J).

By use of a sliding time window, DBI can evaluate the 
presence and time evolution of couplings between signals, 
and so can detect whether the phase behaviour at one loca-
tion is influencing that at another. DBI is based on Bayes’ the-
orem and so uses prior knowledge of the parameters of a 
system to evaluate its current state. Time-evolving dynamics 
can then be inferred as the information is propagated be-
tween windows. Mathematical details of this approach 
were given earlier.68-70 Importantly, as the coupling is as-
sessed over a sequence of windows, its dynamical evolution 
may be investigated. Even at rest, the influence of brain re-
gions over one another changes with time, so that asymptotic 
approaches may inadvertently average out interesting transi-
ent phenomena. Furthermore, quantifying the coupling 
strength between probes may lead to false conclusions 
when averaging over time. A high coupling strength aver-
aged across the entire interval might lead to the incorrect 
conclusion that the coupling remained consistent through-
out. In reality, it could be attributed to one isolated, excep-
tionally high value in a single window. To avoid this 
problem, we instead measure the percentage of time during 
which probes remain coupled. The dynamical nature of 
this coupling is indicated by Fig. 2L. Here, the dashed lines 
represent the respective intersubject surrogates, while the so-
lid lines represent the coupling strengths of randomly chosen 
CG and ASD individuals. In this way, the amount of time 
spent in a coupled/decoupled state is calculated. In the 
present study, a window size of 3 s was selected, as it con-
tained at least 10 cycles of the slowest oscillation of interest 
(10/3.5 = 2.8). The propagation constant was set at 0.2 to 
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control the information transferred between windows, and 
the overlap parameter was set to unity (no overlap).

Statistical analysis
Testing for significance using surrogate data
Surrogate analysis was used to assess the significance of re-
sults. The underlying goal is to generate a surrogate time ser-
ies with similar statistical properties to the original time 
series, but with randomized phase evolution. Any coherence 
found to be significantly lower than that produced between 
uncorrelated time series is treated as non-significant. A sig-
nificance threshold is set, based on the surrogate values. 
Different types of surrogate data have been discussed.71

For any pair of probes, the time-averaged (mean) coher-
ence was calculated between the respective time series of 
all subjects in each group. For example, in the ASD group, 
for probe pair F3–F4, coherence was calculated between 
the F3 time series of 13 subjects and the F4 time series of 
the same 13 subjects. This results in a set of 13 × 13 overall 
coherence values. The 13 diagonal values were the actual co-
herence values for a given person between the probe pair F3– 
F4, while the remaining 156 were the ‘apparent’ coherence 

between different subjects’ signals (whereas, in reality, there 
could not have been any coherence). First, the mean of the 
156 surrogate coherence values was calculated for each fre-
quency within the frequency band of interest. This was trea-
ted as a threshold and subtracted from the actual coherence 
to give the net, or effective, coherence. Any values below the 
surrogate threshold following this subtraction were set to 
zero. The mean coherence was then calculated as a single va-
lue for each participant and each probe combination. For the 
DBI analysis, the 95th percentile served as a surrogate 
threshold because the results were systematically higher for 
coupling time.

Statistical tests
Following the application of surrogate testing, statistical 
tests were applied. Given that the data did not follow a nor-
mal distribution, non-parametric tests were selected; further 
details of these tests and the rationale for using a non- 
parametric approach are provided in the Supplementary 
material. For groupwise comparisons, the Wilcoxon rank- 
sum test was applied, with a significance threshold set to 
0.05.

Figure 2 Dynamical Bayesian inference applied to a model and measured data. (A) A model of the unidirectional coupling X → P, 
where the coupling functions (q) depend upon the phases (ϕ) of each oscillator. Further details of the modelling procedure and parameters are 
given in the Supplementary material. (B–D) Coupling functions at different strengths (E = 0, 5 and 10, respectively. (E) Coupling in the opposite 
direction (P → X) simulated with E = 10, illustrating the unidirectional nature of the coupling. (F) Bidirectional neural coupling measured between 
two probes, Fp1 and Fp2. (G–J) Time-averaged coupling functions in an individual with autism spectrum disorder (ASD—H, J) and a control group 
individual (CG—G, I). (K) The frontal network couplings evaluated in the present study. (L) An example of the coupling strength from Fp2 to Fp1 
in a randomly selected individual with ASD (cool colour, grey) and a CG participant (warm colour, gold). Surrogate values are indicated by the 
dashed lines (95th percentile, intersubject surrogates).
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Friedman’s test for repeated measures was used to investi-
gate the consistency of results for the same subject across dif-
ferent time intervals. This was done for two reasons: first, to 
establish whether the suggested measures were consistent 
over time, and thus validate their potential as biomarkers; 
and secondly, to assess whether the results can be treated 
as repeated measures. In all groups across both the WPC 
and DBI, the P-value was above 0.05, suggesting that this 
treatment is appropriate. Further details and assessments 
of the repeated measures are presented alongside 
Supplementary Tables 13–16.

In addition, the Kruskal–Wallis test was used to further as-
sess the consistency of results across repeats on an individual 
subject level. Only a single CG individual provided inconsist-
ent results across repeats for the DBI measure, while all were 
consistent for WPC.

Repeated measurements
Alongside the video segments, five sequential measurements 
of 3 min were compared. To ensure that the timing within 
the overall 20 min recording was not a confounding factor, 
the segments were also shuffled. A randomly selected seg-
ment from each subject was chosen, and a rank-sum test 
was used to assess group differences. This process was re-
peated 1000 times, and the percentage of tests yielding sig-
nificant outcomes (P < 0.05) was calculated.

Effect size
Cohen’s d was used to evaluate the effect sizes when compar-
ing the groups.72 Further detail is provided in the 
Supplementary material and Supplementary Tables 1–4. In 
general, an effect size of d = 0.5 is considered medium, while 
d = 0.8 is considered large.

Classification
Following the calculation of coherence and couplings, classi-
fication analysis was performed. A J48 tree classifier 
machine-learning algorithm was used in WEKA.73

Leave-one-out cross validation was performed. Details of 
the classification analysis are presented in the 
Supplementary material.

Results
The Blackpool and HBN data were analysed separately due 
to procedural differences during data collection. In the 
Blackpool data, no significant differences were found in 
the power between groups in the frontal region, over the 
medium-frequency band (3.5–12 Hz), across any of the time- 
segments analysed (Supplementary material Sect. 5.1). 
However, both the amount of time during which regions re-
mained coupled, and the functional connectivity, were re-
duced in the ASD group. First, we will focus on the 
wavelet phase coherence results.

Coherence
Initially considering the video segments in the Blackpool 
data, functional connectivity is significantly (P < 0.05) de-
creased across all frontal probe pairs in the ASD group. 
Figure 3A and B shows the group median coherence for the 
video acquired data in the ASD and CG cases, respectively. 
Figure 3C illustrates the distribution of the data. Probe 
pair Fp1–F4 showed the greatest difference between groups 
(P = 0.005).

To assess repeatability in data more prone to movement 
artefacts, the analysis was performed again in five chrono-
logically selected intervals, each of length 3 min. Figure 3D 
and E shows the median coherence for each subject across 
the six segments analysed. The differences between groups 
in each of these additional segments proved to be significant. 
In addition, the F3–Fp2 connection was significant at the 
Bonferroni adjusted P-value of 0.0125 for all six intervals 
initially analysed. The F3–Fp2 connection also had the lar-
gest effect size (1.55) of the video segments. Further details 
regarding the analysis of each segment, including group me-
dian values, their corresponding violin plots and all effect 
sizes are given in the Supplementary material. The level of 
significance between groups at each frontal probe combin-
ation and across all segments is illustrated by the P-values 
in Table 3.

To ensure that the time at which the recording was taken 
was not a confounding factor, shuffled repeats were assessed. 
All connections for which over half the repeats demonstrate 
significance are plotted in Fig. 4B. The most consistent differ-
ences between groups were found in the frontal network, 
with 100% of shuffled repeats significantly greater for F3– 
Fp2, Fp1–F4 and F3–F4 and 92% for Fp1–Fp2.

For the video acquired segment, functional connectivity 
across the entire head (3.5–12 Hz) was also evaluated, 28 
connections showed significantly increased coherence in 
the controls relative to the ASD group (Fig. 4A). WPC was 
also assessed in the HBN data (Fig. 4C): 28 significant con-
nections were found, with the majority being more posterior-
ly located than in the Blackpool cohort.

Global synchrony demonstrated no significant differences 
in the 3–5 (Blackpool) or the 5–15-year-old (HBN) age 
ranges between the ASD and CG groups (Fig. 4D). 
Regression found no significant association with age in the 
5–15 range for either the ASD or CG groups.

Couplings
Effective connectivity is reduced in the ASD group. Figure 5
illustrates these differences, separated into connections from 
the left to right hemisphere (Fig. 5A–C) and right to left 
(Fig. 5D–F) for frontal areas. Each of the probe combina-
tions demonstrated a significantly reduced (P < 0.05) coup-
ling time in the video acquired segment, except for F3 →  
F4. The violin plots of Fig. 5C and F present the distribution 
of these values, alongside the P-value for each bidirectional 
coupling.
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The analysis was repeated across a series of chronological-
ly derived segments. The violin plots representing the distri-
bution of coupling times found for these intervals are 
illustrated in Supplementary Figs 11–15. Only the couplings 
Fp2 → Fp1 and F4 → Fp1 were significantly reduced across 
all six of the intervals under consideration. The P-values 
for each bidirectional probe combination and across all seg-
ments are illustrated in Table 3, and Fig. 5A, B, D, and E

shows the median time coupled in the video segment for 
the ASD and CG groups, respectively. Although still relative-
ly high, the percentage of shuffled repeats that were signifi-
cant when applying DBI was lower than in the WPC case 
(Table 3). Interestingly, the most repeatable difference be-
tween groups in terms of coupling was Fp2 → Fp3, with 
96% of shuffled repeats demonstrating significance, consist-
ent with the WPC analysis for Fp2–Fp3. The percentage of 

Figure 3 Coherence results across segments. (A) Heatmap showing the group median coherence in the autism spectrum disorder group 
(ASD, N = 13, male), averaged across theta and alpha bands between probes during the video segment. (B) Equivalent heatmap for the control group 
(CG, N = 9, male). (C) Median effective coherence in the frontal network evaluated across the medium-frequency band (3.5–12 Hz) for the video 
segment. Cool coloured (blue) violins represent CG while warm colours (orange) indicates ASD. The median of each distribution is indicated by the 
central circle, and the box indicates the interquartile range. Each filled datapoint represents the mean coherence across the theta and alpha bands for 
each participant. The Wilcoxon rank-sum test was used to evaluate group differences (N = 13 ASD, N = 9 CG). (D, E) The effective coherence 
results between F3 and F4 for the sequential, and video segments, in the ASD and CG groups, respectively. Filled circles indicate that the segment was 
chosen sequentially, while a cross represents a video acquired segment. Each line represents a different participant across repeats (N = 13 ASD, N = 9 
CG for each segment).

Table 3 Reported P-values in the video segments for the WPC (top) and DBI (bottom)

P-values

Shuffled repeats (%)1 2 3 4 5 Video

WPC
Fp1–Fp2 0.038 0.027 0.004 0.027 0.016 0.023 92
F3–Fp2 0.009 0.002 0.006 0.004 0.004 0.009 100
Fp1–F4 0.009 0.011 0.007 0.003 0.009 0.005 100
F3–F4 0.001 0.004 0.003 0.004 0.005 0.016 100

DBI
Fp1 → Fp2 0.081 0.020 0.027 0.026 0.017 0.010 72
Fp1 ← Fp2 0.047 0.003 0.031 0.006 0.014 0.004 84
Fp1 → F4 0.108 0.001 0.030 0.094 0.032 0.003 72
Fp1 ← F4 0.045 0.004 0.032 0.013 0.004 0.028 92
F3 → F4 0.041 0.013 0.123 0.095 0.017 0.344 64
F3 ← F4 0.070 0.003 0.021 0.032 0.131 0.031 60
F3 → Fp2 0.014 0.004 0.065 0.011 0.048 0.007 76
F3 ← Fp2 0.071 0.001 0.008 0.003 0.003 0.004 96

Bold numbers indicate statistical significance (P < 0.05, N = 13 ASD, N = 9 CG) obtained using the Wilcoxon rank-sum test. A hyphen between probes indicates WPC was used, while 
an arrow indicates DBI, with the direction specified. In the WPC group, 24 out of a potential 24 group comparisons proved to be significant. In DBI, 39 out of a possible 48 were 
significant. The final row indicates the percentage of total temporally shuffled datasets that were significant, for 1000 shuffles of the five sequential segments.
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time coupled also exhibited more variability across repeats 
than WPC, as demonstrated by comparing Figs 3D and E
and 5G–J. The Kruskal–Wallis test also revealed that one 
of the CG participants yielded DBI results that were not con-
sistent across time.

Classification
Using the J48 decision tree algorithm in WEKA, 86% accur-
acy was achieved when discriminating between ASD and CG 
in the Blackpool video segment (3–5 years, N = 13 ASD, 
N = 9 CG), and 80% was achieved in the older group of 
the HBN dataset (9–15 years, N = 31 ASD, N = 33 CG). 
Further details, including the parameters used as attributes, 
are provided in the Supplementary material.

Discussion
The results confirm our hypothesis of reduced connectivity in 
the alpha and theta bands for young males with ASD, 

possibly due to the couplings between these areas being 
more transient.

The time-resolved analysis methods used here are based on 
the theory of chronotaxic,74 finite-time dynamics75 and the 
definition of instantaneous phases.76 This approach enables 
the simultaneous detection of multiple deterministic, non-
linear, multiscale and time-varying interactions that may be 
neglected by traditional analysis approaches25,28,29,31-33,77

or treated as stochastic.30

Functional connectivity
The functional connectivity was assessed using phase coher-
ence. The ASD group was shown to have significantly reduced 
MF connectivity. This result was replicated across each of the 
sequential time intervals and also in the HBN data. The largest 
difference between groups in the Blackpool data was F3–Fp2, 
which proved to be significant at the Bonferroni adjusted 
P-value of 0.0125 for all six intervals, and 100% of the 
shuffled repeats. In the HBN data, posteriorly located probe 
combinations demonstrated more significant connectivity 

Figure 4 Coherence differences between autism spectrum disorder (ASD) and control (CG) groups. (A) Coherence differences 
between probes (3–5-year-old, male, ASD: N = 13, CG: N = 9). Probe pairs with significant differences (P < 0.05, Wilcoxon rank-sum test) are 
plotted: cool coloured (blue) lines indicate higher coherence in the CG, and warmer coloured (orange) lines indicate higher coherence in the 
ASD group (B) Headmap of significant (P < 0.05, Wilcoxon rank-sum test) coherence differences from 1000 randomly shuffled repeats for 
the 3–5-year-old male group. The headmap shows the percentage of the 1000 tests yielding significant differences. (C) Coherence differences for 
5–15-year-old males (ASD: N = 67, CG: N = 66), using the same method as in (A). (D) Total global effective coherence in the 3.5–12 Hz frequency 
band for males with and without ASD in both the Blackpool (N = 65 ASD, N = 45 CG) and Healthy Brain Network (N = 67 ASD, N = 66 CG) 
datasets. Each coloured datapoint represents the global effective coherence across the theta and alpha bands for each participant. Regression 
analysis was performed separately for the two datasets. In the Blackpool data for the ASD group, r = −0.013, P = 0.605 and for the CG group r =  
0.078, P < 0.000. In the HBN data for the ASD group, r = 0.004, P = 0.468 and for the CG group r = 0.004, P = 0.408. The data were also pooled 
together. In this case, for the ASD group, r = −0.003, P = 0.355 and for the CG group r = 0.003, P = 0.305.
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differences between groups. This is likely due to eyes-closed 
being used predominantly as the HBN protocol, which is 
known to generate greater occipital alpha band activity.78 In 
addition, the action of opening and closing the eyes periodic-
ally may have induced movement artefacts that confounded 
the connectivity results between frontal probes.

Reduced frontal connectivity in ASD, as found in the 
Blackpool cohort, confirms the results of some earlier stud-
ies,16,19,21,47,49 and may predict subsequent outcomes in 
children as young as three months old.20 The consistency 
of this measure over time probably depends on using a suffi-
ciently large measurement window to capture the underlying 
oscillatory dynamics. Longer windows ensure the capture of 
time-varying behaviour across many cycles of the oscillation 
of interest.

Global coherence demonstrated no significant relationship 
with age in either the 5–15-year-old (HBN) group or the 
3–5-year-old (Blackpool) group. Local coherence differences 
were much more significant and are promising as a potential 
determinant. For both groups, the local functional connectiv-
ity, evaluated with phase coherence, indicated a consistent 
trend towards reduced functional connectivity in ASD.

Despite the strength of this result, it is not possible to infer 
whether it is due to mutual interaction between oscillators, 
rather than to a shared common influence.

Effective connectivity
To assess effective connectivity, the couplings were calcu-
lated using DBI, which was applied to the Blackpool data. 

Figure 5 Coupling time results across segments. (A, B, D, E) Headmaps representing the group median percentage coupling time between 
probes for the video segment in the autism spectrum disorder group (ASD, N = 13, male, warm colours - orange) and the control group (CG, N =  
9, male, cool colours - blue). (C, F) Percentage time coupled between the measured EEG signal locations evaluated across the medium-frequency 
band (3.5–12 Hz) in the video segments, from the left to right (C), and right to left (F) hemisphere. The Wilcoxon rank-sum test was used to assess 
group differences (N = 13 ASD, N = 9 CG). Cool coloured (blue) violins represent the CG while warm colours (orange) indicates the ASD group. 
The Wilcoxon rank-sum test was used to assess group differences. (G–J) The coupling time for each of the sequential, and video, segments. Each 
line represents a different participant across repeats (N = 13 ASD, N = 9 CG for each segment). Filled circles indicate that the segment was chosen 
sequentially, while crosses represent video acquired segments. In this case, the bidirectional coupling between F3 and F4 is illustrated, for the ASD 
(G, I) and (H, J) cases.
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By considering the time over which couplings are significant, 
another temporal dimension is introduced. Using this frame-
work, it was found that the frontal couplings were present 
for shorter times in the ASD group than in the neurotypical 
controls. This reduction in coupling time for ASD indivi-
duals may be symptomatic of a reduction in executive 
function.21,38-40 In each frontal probe combination, a greater 
proportion of the shuffled repeats were significant for WPC 
than for DBI, indicating that DBI, although able to reveal 
more information about the dynamics, may be less repeat-
able than WPC. ASD has been associated with longer dwell 
times in a disconnected state, and our results support this 
conclusion for the frontal region.3 DBI was not assessed in 
the HBN data as the changing measurement condition 
made it inappropriate for evaluation with the Bayesian 
framework.

Recent publications have emphasized the need to shift the 
research focus in ASD from functional connectivity analyses 
to directional, effective connectivity.1 Notably, temporal 
dysregulation has also been identified as a significant factor 
in ASD.3,4 We have presented a method for evaluating the 
duration of coupling between various brain regions. While 
we specifically demonstrate the application of this approach 
in individuals with ASD and within the frontal network, it 
also holds potential for broader implementation across dif-
ferent cohorts, frequency bands and brain regions.

Resilience of the phase-based 
approach
Coherence was reduced in the ASD group for all time inter-
vals investigated across the frontal region. A high level of 
consistency was found with both methods and for both data-
sets, despite the increased presence of movement artefacts 
across the sequentially obtained segments, compared to the 
video segments. WPC was more reproducible than DBI. 
Effective clinical implementations of EEG analysis, particu-
larly in paediatric cases, require methods capable of detect-
ing interactions, even in the presence of amplitude 
perturbations. Evidence regarding connectivity differences 
in the literature remains inconsistent, with both hypercon-
nectivity16,19,21,47,49 and hypoconnectivity16,19-21 being re-
ported in individuals with ASD. These inconsistencies may 
be due in part to amplitude-weighted measures affecting 
the reliability of the results.26 It is hoped that phase-based 
approaches will ameliorate this situation.

Assessing connectivity evaluation 
methods
Direct comparison between the different methods of calcu-
lating connectivity from EEG data is challenging due to the 
variety of measurement protocols used. Factors such as par-
ticipant age, sex and state during recording have been shown 
to influence EEG connectivity.79-81 For example, reduced 
frontal theta/alpha connectivity has been reported82 in 
ASD; however, this finding was based on data collected 

under eyes-closed conditions, using 2s epochs. The 
Blackpool data in the present study consisted of 3 min, 
eyes open EEG recordings, and so one would not necessarily 
expect identical results. A future methodological project to 
benchmark connectivity methods against one another, using 
the ‘same’ dataset in each case, would provide clearer in-
sights into their respective strengths and weaknesses. We em-
phasize, however, that the methods used in the present study 
amount to much more than just another alternative ap-
proach to EEG analysis. As discussed in the Introduction, 
they are the first to be applied that are able to take fully 
into account the inherent non-autonomicity of biological os-
cillators. The advantages and, in many cases, necessity of 
using such an approach are explored and described in detail 
in the papers cited.30,36,83 It is thus to be expected that the 
approach used here should yield more insightful results 
than any of the alternatives.

Feasibility of biomarkers
Given the lack of consensus in the literature, novel analytical 
approaches may play a crucial role in elucidating the under-
lying connectivity differences present in ASD. The brain is an 
incredibly complex organ, and despite a multitude of re-
search into biomarkers for ASD assessment, a single diagnos-
tic test is still beyond reach. Here, by explicit consideration 
of time as a physical parameter during data analysis and con-
sideration of finite-time dynamics, we have paved a way for 
novel biomarkers.

Due to the demand for fast throughput in clinical settings, 
20 min EEG recordings may not always be achievable. 
Additionally, when measuring brain activity in children, 
movement artefacts are inevitable and should be anticipated 
and accounted for. It is therefore crucial to use methods that 
yield reproduceable findings despite the presence of move-
ment artefacts.

Like other dynamical analyses of physiological data, EEG 
investigations are complicated by the thermodynamically 
open nature of biological systems and their inherent fluctua-
tions. The underlying oscillatory processes are consequently 
non-autonomous, exhibiting characteristic frequencies that 
vary in time. This feature must be considered in the data 
analysis36,83 for the results to be reliable. Explicit con-
sideration of recording length is paramount when assessing 
oscillatory neural activity, especially when considering 
interactions.

The vast heterogeneity of ASD means that individuals 
with the condition are highly unlikely to share identical 
EEG signatures. A range of biomarkers, each with their 
own behavioural correlate, may enable a more stringent 
evaluation. Further research considering the putative rela-
tionship between frontal connectivity and restricted and re-
petitive behaviours in ASD across various age ranges, using 
larger cohorts and comparing with behavioural measures 
may elucidate the potential behavioural correlates suggested 
by this investigation. Using a very simple classification meth-
od, a classification accuracy of 86% was obtained.
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In our current approach, we employ the same frequency 
band for both probes in the DBI calculation. However, alter-
native cross-frequency approaches can also be explored. For 
example, one could investigate the influence of delta activity 
in one region on alpha activity in another region.84

Cross-frequency coupling functions have demonstrated 
aberrations in various neurological conditions85 and may of-
fer an additional avenue for assessing ASD.

In isolation, the functional connectivity results may indi-
cate that there is simply a lower, constant, coherence across 
time. The coupling results supplement the WPC by showing 
that the amount of time over which coupling is present is also 
reduced in ASD. By unlocking the temporal dimension in this 
way, additional information about the dynamical nature of 
the couplings is revealed. In combination, both the connect-
ivity strength, and the time over which the regions are 
coupled, are shown to be significantly different in ASD, 
and may provide the basis for a potential biomarker.

Limitations and strengths
Although we report the potential of frontal network con-
nectivity as a biomarker for ASD, more research based on 
larger groups and different age bands would be required to 
ascertain if this outcome can be realized. Additional analyses 
with the same age range and measurement procedure are 
needed to validate the findings.

It is crucial to acknowledge that a comprehensive diagnos-
tic tool would necessitate multiple markers, each capturing 
distinct aspects of the ASD experience. One may argue that 
the observed decrease in frontal connectivity in the 
Blackpool data may be associated with the characteristic re-
stricted and repetitive behaviours exhibited by some indivi-
duals with ASD.38,45,86 However, using the HBN data, we 
show that phase coherence is also a useful marker when 
the measurements are conducted in a different brain state. 
Further investigations could elucidate the origins of other be-
havioural correlates, such as social and communication 
difficulties.

The size of the Blackpool data is relatively small. Several 
arguments indicate, however, that the conclusions are reli-
able. First, as shown in the results section and the 
Supplementary material, the effect size is large. Secondly, 
the Blackpool recordings were sufficiently long to allow for 
six different 3 min segments to be analysed, and thus for 
the reproducibility of the results to be evaluated. The results 
ensured that the inferred interactions were not spurious. The 
additional HBN dataset, coming from a larger cohort with a 
wider age range, provided a further reassuring validation of 
our conclusions.

Only boys were recruited in the present study as the neural 
signatures of ASD are known to vary between the sexes52,80

and a sufficient number of females could not be recruited 
within the time frame of the study to warrant an additional 
investigation.

The effect of volume conduction may have influenced the 
effect sizes of the phase coherence and couplings analyses. In 

the absence of reliable models to take volume conduction 
into account, we have mitigated this problem in several 
ways. It is known that the spatial separation minimizes the 
impact of volume conduction.87 The probe density in both 
datasets is relatively small, hence even the nearest probes 
can be expected to be weakly affected. Next, the probe 
pair F3–Fp2, which are widely separated within the frontal 
network, exhibited the most pronounced differences in co-
herence between groups. Furthermore, as our primary aim 
is to compare coherence and coupling values between ASD 
and neurotypical control groups, it is reasonable to assume 
that volume conduction would likely affect both groups 
similarly.

The use of phase coherence and coupling functions allow 
an investigation of neural dynamics with reduced influence 
from the movement artefacts and noise that can bedevil 
amplitude-based methods. The robustness to amplitude ef-
fects enables the analysis of relatively long segments that 
contain more information than the shorter epochs often in-
vestigated in EEG studies.15,18,19,79,88

Concluding remarks
Despite the condition having been recognized for over a cen-
tury, ASD diagnoses still depend on behavioural tests and in-
terviews. As well as being time-consuming, these assessments 
require certain characteristic features to be apparent, mean-
ing that most children do not receive a diagnosis until age 3/4 
or even later.89 A diagnostic tool that revealed the presence 
of ASD before its behavioural emergence could be useful, 
quite apart from its utility in assessing the response to inter-
vention. Our investigation of electrophysiological signatures 
in ASD and neurotypical children provides a promising step 
towards putative biomarkers for identifying and categoriz-
ing the condition.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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Abstract
Disruptions to circadian rhythms in mammals are associated with alterations in their physiological and mental states. Circadian 
rhythms are currently analyzed in the time domain using approaches such as actograms, thus failing to appreciate their time- 
localized characteristics, time-varying nature and multiscale dynamics. In this study, we apply time-resolved analysis to investigate 
behavioral rhythms in Per1/2/3 knockout (KO) mice and their changes following methamphetamine administration, focusing 
on circadian (around 24 h), low-frequency ultradian (around 7 h), high-frequency ultradian (around 30 min), and circabidian (around 
48 h) oscillations. In the absence of methamphetamine, Per1/2/3 KO mice in constant darkness exhibited a dominant, ∼7 h oscillation. 
We demonstrate that methamphetamine exposure restores the circadian rhythm, although the frequency of the methamphetamine 
sensitive circadian oscillator varied considerably compared to the highly regular wild-type circadian rhythm. Additionally, 
methamphetamine increased multiscale activity and induced a circabidian oscillation in the Per1/2/3 KO mice. The information 
transfer between oscillatory modes, with frequencies around circadian, low-frequency ultradian and high-frequency ultradian 
activity, due to their mutual couplings, was also investigated. For Per1/2/3 KO mice in constant darkness, the most prevalent coupling 
was between low and high-frequency ultradian activity. Following methamphetamine administration, the coupling between the 
circadian and high-frequency ultradian activity became dominant. In each case, the direction of information transfer was between 
the corresponding phases from the slower to faster oscillations. The time-varying nature of the circadian rhythm exhibited in the 
absence of Per1/2/3 genes and following methamphetamine administration may have profound implications for health and disease.

Keywords: circadian rhythms, biological oscillators, time-resolved analysis, multiscale analysis, nonlinear dynamics

Significance Statement

Disrupted circadian rhythms are implicated in several pathologies. This study reveals the time-varying multiscale dynamics under-
lying such rhythms in mice. By analyzing the wheel running activity of mice lacking canonical circadian clocks (Per1/2/3 KO) exposed 
to methamphetamine, which stimulates dopamine signaling, we demonstrate the dynamical characteristics of the methampheta-
mine sensitive circadian oscillator (MASCO). Although the MASCO period coincides with the canonical circadian rhythm, its fre-
quency varies significantly in time. Methamphetamine administration also increased multiscale activity, induced a circabidian 
oscillation, and altered couplings between behavioral modes. The time-varying MASCO may explain the sleep-wake cycle disturban-
ces reported in individuals treated with stimulants, especially those with attention-deficit/hyperactivity disorder (ADHD). This re-
search highlights the importance of time-resolved analysis in revealing previously unexplored aspects of circadian biology.
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Introduction
Periodic activity manifests across all temporal and spatial scales 
throughout nature. One of the most widely recognized cycles is 
the circadian rhythm, which is closely associated with numerous 
pathologies (1–3). In mammals, the circadian rhythm is primarily 
regulated by the suprachiasmatic nucleus (SCN) (4, 5), which 
serves as a central pacemaker entrained to the light/dark cycle 
(6). Additionally, peripheral oscillators are affected by nonphotic 
cues such as restricted feeding (7, 8) and methamphetamine 

administration (9, 10). However, the relationship between canon-
ical circadian oscillators and those influenced by dietary or 
pharmacological interventions remains unclear.

Mammalian circadian rhythms are governed by transcription-
al–translational feedback loops within cells (5, 11, 12). Period (Per) 
genes are known to regulate circadian behaviors (13). The removal 
of these genes disrupts the 24-h timekeeping system, thereby 
eliminating the circadian rhythm (14). Consequently, Per1/2/3 
knockout (KO) mice offer a model to explore alternative 
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pacemakers such as the methamphetamine sensitive circadian 
oscillator (MASCO), which operates independently of canonical 
clock genes (15). This approach avoids the interference from en-
dogenous canonical circadian oscillations that would otherwise 
confound the results.

In addition to circadian oscillations (∼24 h) (16–21), ultradian 
(<24 h) (22) and infradian (>24 h) (23) rhythms coexist, resulting 
from several biological mechanisms. These range from cellular 
dynamics occurring over minutes (24) to elongated multiday peri-
ods (25). Current methods largely analyze behavioral rhythms in 
the time domain using techniques such as actograms (26). 
Recently introduced multiscale analysis methods (27–34), able to 
detect the presence of oscillations and their mutual interactions 
on wide time-scales, promise to advance the study of behavioral 
rhythms. Additionally, they explicitly consider time as a physical 
parameter (35, 36), enabling time-localization. Hence, they are not 
based on time-asymptotic assumptions and therefore enable the 
temporal variability of these oscillations to be explored. In con-
trast, traditional, time-asymptotic analysis approaches may in-
appropriately categorize deterministic oscillations acting on 
multiple scales with time-varying frequency as noise (33).

Although ultradian rhythms are ubiquitous in biological sys-
tems and are found in all organisms from single cells to complex 
multicellular animals, their origin is still unclear (22, 37, 38). 
There is no known environmental signal that synchronizes with 
ultradian rhythms (38). However, it has been shown that ultradian 
rhythms interact with the circadian rhythm and the daily light/ 
dark cycle (39) and that ultradian rhythmicity can persist in the ab-
sence of functional molecular circadian clocks at both behavioral 
and cellular levels (40, 41). Recent study suggests that the balance 
between circadian and ultradian rhythmicity is determined by en-
ergy balance (42). It is also known that there are multiple ultradian 
rhythms of physiological or behavioral origin, and that they can be 
synchronized with each other. However, no central ultradian 
pacemaker has been identified so far (43). Yet, it has been shown 
that among the coupled ultradian rhythms, the hippocampal 
theta wave is phase leading, suggesting a central control of some 
of the ultradian rhythms (43). It has also been shown that striatal 
dopamine exhibits an ultradian rhythm and that its signaling 
manipulation alters ultradian periodicity (44). This suggests 
that dopamine is involved in mediating ultradian rhythms. 
Furthermore, the ultradian feeding rhythm in the common vole 
is known to synchronize between individuals, suggesting that 
some of the ultradian rhythms have functional significance (39).

To investigate the circadian and ultradian rhythms and their 
couplings, the running wheel activity of wild-type mice, heterozy-
gous PER2::LUC knockin mice, and Per1/2/3 KO mice was meas-
ured in several conditions. First, the behavior of a control group 
containing seven heterozygous PER2::LUC knockin Mice and a wild- 
type littermate in constant darkness was established. Then, the be-
havior of Per1/2/3 KO mice in constant darkness with and without 
methamphetamine was evaluated. Lastly, the behavior of Per1/2/3 
KO mice was measured with and without methamphetamine in 
constant darkness and in constant light, as well as in conditions 
of 12 h darkness and 12 h light alternating for several days.

Data were analyzed using novel methods for tracing instantan-
eous frequencies (30) and mutual couplings (32, 45) in time, 
based on the theory for discerning time-resolved oscillatory dynam-
ics (35, 36, 46). Characteristic frequencies of relevant oscillations on 
time-scales between days and minutes were calculated over time 
using the wavelet transform and ridge extraction (28, 30). The fre-
quency content was additionally checked using harmonic analysis 
(47) to establish the presence of modes and distinguish them from 

high harmonic components. Once modes were established, wavelet 
bispectral analysis (32) and dynamic Bayesian inference (DBI) (27, 
31) were used to infer directions of coupling between modes under 
various experimental conditions, as outlined above.

Our results demonstrate that the circadian rhythm is highly sta-
ble in wild-type and PER2::LUC knockin mice. Knocking out Per1/2/3 
genes reduces the power of the circadian rhythm and introduces ir-
regularity. Methampetamine reinstates an irregular, nonstationary, 
circadian rhythm in the absence of canonical clock genes. When 
evaluated using a time-localized approach, there exists clear 
evidence of birhythmicity (48–50) in Per1/2/3 KO mice following 
methamphetamine administration. Additionally, for the first time, 
we demonstrate changes in the coupling between modes following 
methamphetamine exposure. The dynamic, time-varying, charac-
teristics of the MASCO may have implications regarding sleep 
disorders following stimulant exposure (51–54), particularly in 
individuals with attention deficit/hyperactivity disorder (ADHD) 
(55–57), and in several other conditions including schizophrenia, 
Alzheimer’s disease, and autism spectrum disorder (58–63). A clear-
er understanding of the mechanisms behind the irregular nature of 
the MASCO may elucidate dynamic aspects of circadian regulation.

Results
Highly regular circadian oscillations in wild-type 
and PER2::LUC knockin mice
To determine the behavior of the canonical circadian rhythm, wheel 
running activity of a control group containing heterogeneous PER2:: 
LUCIFERASE knockin mice, and one wild-type littermate, was as-
sessed in constant darkness (n = 8). The wavelet transform in 
Fig. 1B  demonstrates highly regular nature of the circadian rhythm 
in this control group. Furthermore, the time-averaged power in 
Fig. 1C demonstrates a sharp peak centered ∼24 h. The average fre-
quency of this oscillation in the control group was 23.9 ± 0.1 h. Two 
cohorts of wild-type mice (n = 5, n = 6) were also measured in con-
stant darkness, over a shorter recording interval (20 and 21 days, re-
spectively). The circadian oscillation was confirmed as being highly 
regular in these mice. Their group median circadian frequencies 
were 23.4 ± 0.2 h and 23.6 ± 0.2 h, respectively. Full details, includ-
ing the frequency of each mode for each mouse and their time- 
localized powers, are given in the Supplementary material. The 
presence of ultradian and high-frequency modes were also detected 
in the heterozygous PER2::LUC knockin and wild-type mice, but at a 
much lower power relative to the circadian rhythm.

Ultradian oscillations are prevalent in Per1/2/3 
knockout mice
Wheel running activity in a cohort of Per1/2/3 knockout mice in 
constant darkness (n = 6, Per1/2/3 KO DD hereafter) demonstrated 
significant changes to the circadian oscillation observed in wild- 
type and heterozygous PER2::LUC knockin mice. Instead of a 
single, nontime-varying mode, an intermittent quasi-circadian 
rhythm appeared around every 22 days, as previously reported 
(41). The average frequency of the most prominent oscillatory 
mode in the Per1/2/3 KO DD group was 7.2 ± 0.9 h, with both the 
large standard deviation (SD), and Fig. 1E highlighting the time 
variability of this mode.

Methamphetamine exposure induces a 
time-varying circadian rhythm
Analysis of wheel running activity in a cohort of Per1/2/3 knockout 
mice in constant darkness with methamphetamine exposure 
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(N = 5, Per1/2/3 KO DD MA) reveals the restoration of the circadian 
rhythm compared to the Per1/2/3 KO DD mice. The wavelet 
transform in Fig. 1H, and the width of the time averaged power 
peak in Fig. 1I illustrate circadian behavior with significant time- 
variability compared to the wild-type and heterozygous PER2:: 
LUC knockin mice. The average frequency of the circadian activity 
was 21.6 ± 2.5 h. Closer inspection of the time-localized power in 
Fig. 1H reveals that the MASCO seems to exhibit birhythmicity, 
seemingly switching between periods greater than and less than 
24 h over time.

To further evaluate the differences following methampheta-
mine exposure, group median power values were compared. 
Figure 1K illustrates theses differences, with the colored circles 
representing the group with a significantly higher power at a given 
frequency (Wilcoxon rank sum test, p < 0.01) while the shaded 
area represents the 25/75th percentile. Circadian and high- 
frequency ultradian power are elevated following methampheta-
mine administration. Additionally, methamphetamine adminis-
tration introduced a significant circabidian rhythm with period 
of around 2 days. A low-frequency ultradian mode was also 

Fig. 1. Multiscale oscillatory activity in heterozygous PER2::LUC knockin, wild-type and Per1/2/3 KO mice with and without methamphetamine 
administration. For all plots, yellow is used for data related to wild-type mice from the group measured for 20 days, purple is used for the wild-type group 
measured for 21 days, green is used for the control group measured for 30 days, blue is used for the Per1/2/3 KO mice measured for 65 days, and red is used 
for the Per1/2/3 KO mice exposed to methamphetamine for 65 days. All mice were in constant darkness. A, D, G) Time-series of wheel rotations per minute 
in the control group, Per1/2/3 KO (Per1/2/3 KO DD) mice, and Per1/2/3 KO with methamphetamine (Per1/2/3 KO DD MA) mice. B, E, H) Time-frequency 
representations of the control group, Per1/2/3 KO DD and Per1/2/3 KO DD MA data. C, F, I) Time-averaged power for each group, respectively. J) Total power 
evaluated between periods of 84 h and 4 min in each condition. The total power between the control group (Ctrl) and Per1/2/3 KO mice is statistically 
significant (P = 0.0047 Wilcoxon rank sum, effect size =2.2, Cohens D. K, L) Group median time-averaged power plot (K) compares the Per1/2/3 KO mice 
with and without methamphetamine, while (L) compares the methamphetamine Per1/2/3 KO mice and the control group. The shading represents the 
25th and 75th percentile while the circles indicate frequencies where there were significant differences between groups, with the color of the circle 
indicating the group with the greater power (Wilcoxon rank-sum test P <0.01). M, O, Q) Group median instantaneous frequencies for the circadian and 
ultradian modes evaluated over time. N, P, R) Time average instantaneous frequencies for the circadian and ultradian modes for each mouse. The 
instantaneous frequency of each mode was obtained using ridge extraction (30).
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present in the Per1/2/3 KO DD MA mice, albeit at a slightly elon-
gated average period of 8.8 ± 1.3 h and reduced power compared 
to the Per1/2/3 KO DD group, as Fig. 1K demonstrates.

Methamphetamine exposure induces a 
time-varying circadian rhythm
The frequencies of the circadian and ultradian modes were ana-
lyzed in two wild-type groups (n = 5 WT, 20-day DD; n = 6 WT, 
21-day DD) to ensure that the luciferase knock-in (30-day control 
group) did not affect the stability of rhythms. Figure 1 demon-
strates the group average (M, O, Q) and time average (N, P, R) fre-
quencies for each mode. All wild-type mice exhibited consistent 
average frequency values across groups. In contrast, Per1/2/3 KO 
mice displayed slightly faster circadian activity and slightly slow-
er high-frequency ultradian activity. The frequencies of each indi-
vidual mouse for the three modes are provided in the 
Supplementary material.

The behavioral dynamics of Per1/2/3 KO mice in 
multiple conditions
The wheel ruining activity of Per1/2/3 KO mice (N = 8) was as-
sessed across a series of conditions. The behavioral rhythms gen-
erally exhibited time-varying frequencies, with the dominant 
oscillation changing dependent upon the experimental condition, 

illustrated in Fig. 2B. Initially, the mice were exposed to light/dark 
cycles (LD, 12 h light and 12 h dark), and they exhibited a stable 
daily rhythm with a period of 24 h. Subsequently, the light periods 
were removed, leaving the mice in constant darkness (DD). In the 
absence of light and with Period genes knocked out, the dominant 
oscillatory mode was at around 7 h. Following administration of 
methamphetamine during constant darkness (MDD), the domin-
ant rhythm is within the circadian range. When exposed to meth-
amphetamine in constant light (MLL), a similar behavior was 
observed, but at a slightly higher frequency. After methampheta-
mine was removed, the mice remained in constant light (LL), 
where the dominant period was around 4 h. When constant dark-
ness was restored (FDD), both a 7 h and circadian mode were pre-
sent. The additional circadian mode, reminiscent of the MDD 
condition, may suggest an enduring effect from methampheta-
mine in the system. The results of Per1/2/3 KO mice both with 
and without methamphetamine were consistent with our previ-
ous findings. The wavelet transforms for each mouse under inves-
tigation are provided in the Supplementary material.

Methamphetamine increases total power
Comparing control group, Per1/2/3 KO DD and Per1/2/3 KO DD MA 
mice revealed that the total power was significantly different 
(Wilcoxon rank-sum, P = 0.0047, effect size = 2.2, Cohen’s D) 

Fig. 2. The effect of different environmental and pharmacological modalities on the locomotor rhythms of Per1/2/3 KO mice. A) time-series recorded for 
139 days under varying conditions. The separate experimental conditions are denoted as follows: LD, light/dark cycles of period 24 h; DD, constant 
darkness; MDD, constant darkness with methamphetamine administration; MLL, constant light with methamphetamine administration; LL, constant 
light; FDD, final condition of constant darkness. B) Time-frequency representation across all conditions. C) The total power evaluated in a central 7 day 
window of each measurement modality across scales with periods between 84 h and 4 min. Circles and dashes on top of the plot denote significant 
differences between conditions (P < 0.05). D) Time-averaged power in the DD (blue) and MDD (orange) modalities. shading denotes the 25th to 75th 
percentiles, the bold line represents the median value across frequency and blue/orange dots represent a significant difference between groups at a given 
frequency (P < 0.05) evaluated using the Wilcoxon rank sum test.
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between the control group and Per1/2/3 KO DD group, but not Per1/ 
2/3 KO DD MA and Per1/2/3 KO DD mice. This was despite a ten-
dency for increased total power in Per1/2/3 KO DD MA mice. 
This is likely due to the reduced statistical strength owing to small 
sample sizes (NCtrl = 8, NDD = 6, NMDD = 5).

Total power results were also calculated in the Per1/2/3 KO 
mice across the different experimental conditions. Only the LD 
condition total power differed significantly from the other condi-
tions (Wilcoxon rank-sum, P <0.05, Fig. 2C).

Harmonic detection
Before considering the presence of mutual coupling between 
modes, the independence of activity in the time-frequency do-
main must be ascertained. Harmonic analysis in Fig. 3A–C demon-
strates the control group, Per1/2/3 KO DD and Per1/2/3 KO DD MA 
data, respectively. The control group mouse has significant evi-
dence for harmonics of the circadian oscillation, indicating that 
the peaks at around 12, 8, and 4 h in the power plots of Fig. 1B 
and C are not independent modes. There was no evidence for har-
monics in the Per1/2/3 KO mice exposed to methamphetamine. 
Notably, the circabidian oscillations present in Per1/2/3 KO DD 
MA mice are independent modes, and not the result of harmonics. 
In contrast, Per1/2/3 KO DD mice demonstrated evidence of a har-
monic in about half of the mice between 7 and 3.5 h. Harmonic 

analysis for each of the mice is presented in the Supplementary 
material.

Couplings change following methamphetamine 
administration
The presence of mutual coupling between modes was evaluated 
using bispectral analysis. Figure 3D–F indicate phase couplings 
between behavioral modes for the control group, Per1/2/3 KO DD 
mice and Per1/2/3 KO DD MA mice, respectively. The control group 
mice were measured for 30 days, hence insufficient data were pre-
sent to consider the couplings to the high-frequency activity. 
Although a number of bands demonstrated traces of significant 
couplings in the control mice, these patterns were not consistent 
across the group (Fig. 3G and Supplementary material). Both Per1/ 
2/3 KO DD, Fig. 3E, and Per1/2/3 KO DD MA, Fig. 3F, reveal the pres-
ence of couplings within the high-frequency ultradian band. In 
the Per1/2/3 KO DD mice, the predominant coupling was between 
the ∼7 h oscillation and higher frequencies. Following metham-
phetamine exposure the coupling between the circadian rhythm 
and high-frequency ultradian activity became dominant.

DBI was employed to further confirm the presence of these cou-
plings and detect the direction of the information flow between 
modes. This metric was evaluated as the percentage time over 
which certain directional couplings were present (Fig. 3G–I). In 

Fig. 3. Harmonic and coupling analysis between the control group (first column), Per1/2/3 KO DD mice (second column), and Per1/2/3 KO DD MA mice 
(third column). Harmonic analysis (A–C) demonstrates pronounced harmonics in the control group, arising from circadian oscillations. The colorful 
peaks indicate the detection of these harmonics. The diagonal line, representing the comparison of the same oscillation to itself, shows high mutual 
information, while off-diagonal peaks signify the presence of harmonics, such as those observed between 24 and 12 h in (A). Bispectral analysis (D–F) 
highlights couplings between oscillatory modes at different frequencies. Similar to harmonics, contoured peaks indicate regions of significant coupling 
between these modes. DBI (G–I) shows the percentage of time during which the oscillatory modes (circadian ≈24 h, low-frequency ultradian ≈7 h, 
high-frequency ultradian ≈30 min remained coupled throughout the time series. Increased color intensity corresponds to a longer duration of coupling 
between specific modes.
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Per1/2/3 KO DD mice, the 7 h mode drove high-frequency activity, 
while in Per1/2/3 KO DD MA mice circadian rhythms became the 
dominant driver (Fig. 3I).

Discussion
Circadian rhythms are a fundamental characteristic of mamma-
lian life. To function optimally, humans are constrained to operate 
within a 24 h cycle. Neglecting our implicit chronobiology may lead 
to mental illness and disease (55–59, 61–64). While many recent 
discoveries have shed light upon the canonical circadian clock, 
less is known about alternative pacemakers which may impact 
these processes (15, 65). A more comprehensive understanding of 
these noncanonical oscillators, such as the MASCO may elucidate 
the mechanisms behind, for example, human sleep disorders (10) 
and addiction to psychostimulants (15).

Time-localized, multiscale analysis approach
Here, we apply time-localized multiscale analysis approaches to 
investigate behavioral dynamics following methamphetamine 
administration in Per1/2/3 KO mice (33, 46, 66). The approach ex-
ploits wavelet analysis to evolve the power and frequency of the 
rhythms over time and allow for studying their nonstationary 
time-variable nature. Wavelets are usually considered as a linear 
method (67). Because of the time evolution they provide, they al-
low for studying the signatures of nonlinearities such as the oc-
currence of high harmonics (47), and their time-variable 
frequencies (68). The time-variable frequencies can then be ex-
tracted using ridge extraction (30) and in this way, frequency 
and phase relationships can be evaluated under different condi-
tions. In particular, couplings between instantaneous frequencies 
and phases can be studied (32, 45). Couplings have been demon-
strated to provide a wealth of information about the state of a sys-
tem in various applications (31, 69). Here, we demonstrate how 
couplings change with Per1/2/3 genes knocked out and in the pres-
ence of methamphetamine. In this way, we add an additional 
approach to studying periodic behavior on multiple scales to the 
existing methods (67, 70, 71).

Behavioral rhythms in PER2::LUC knockin and 
wild-type mice
To understand the effect of methamphetamine on circadian 
oscillations, a series of experiments were conducted. Initially, 
the behavioral rhythms of a control group containing heterozy-
gous PER2::LUC knockin mice and a wild-type littermate in 
constant darkness were established. A circadian rhythm with a 
strong and distinct peak was present at 23.9 ± 0.1 h. Similarly 
stable circadian oscillations were found in two additional cohorts 
of wild-type mice, with periods of 23.4 ± 0.2 h and 23.6 ± 0.2 h 
respectively. The strength of this peak arises for two reasons: 
first, it is dominant compared to the low (5.4–8.0 h) and high 
(0.22–0.37 h) frequency ultradian activity, but more importantly, 
the frequency is highly regular and almost constant over time 
(Fig. 1B).

The effect of Per1/2/3 KO on behavioral rhythms
Wheel running activity in Per1/2/3 KO mice in constant darkness 
was analyzed to elucidate what happens to behavioral rhythms 
when genes responsible for the canonical circadian rhythm are re-
moved. The results revealed that knocking out the Period genes 
significantly altered the circadian rhythm. Per1/2/3 KO DD mice 
exhibited an intermittent quasicircadian oscillation which 

seemed to appear around every 22 days, supporting previous re-
sults from this type of murine sample (41). Due to the intermittent 
and relatively weak nature of the circadian activity, the low- 
frequency ultradian oscillation, which occurred at a frequency 
of 7.2 ± 0.9 h, was dominant, as demonstrated in Fig. 1E.

The impact of methamphetamine exposure upon 
circadian and ultradian dynamics
The effect of methamphetamine upon Per1/2/3 KO mice in constant 
darkness was established. A peak in power around the circadian fre-
quencies was detected. However, while methamphetamine is able to 
reinstate a circadian oscillation, we found several characteristic fea-
tures of the data are altered. The average period of circadian activity 
in the Per1/2/3 KO DD MA group occurred at 21.6 ± 2.5 h, compared 
to 23.9 ± 0.1 h in the control group. The reduced SD in the control 
group indicates a lack of time variability. In contrast, the peak 
MASCO frequency in the Per1/2/3 KO DD MA mice varied significant-
ly over time (Fig. 1H) and was much less regular. Closer inspection 
revealed birythmicity between modes at periods slightly longer 
and shorter than 24 h, in agreement with previous findings 
(9, 49, 72). The ultradian mode present in the Per1/2/3 KO DD mice 
persisted following methamphetamine administration, though 
with reduced intensity, and an elongated period of 8.8 ± 1.3 h. 
Total power indicated that methamphetamine administration 
restored activity levels similar to those observed in the control 
group. Methamphetamine administration also significantly ele-
vated high-frequency ultradian activity compared to both the con-
trol group and Per1/2/3 KO DD mice, suggesting erratic, quick 
bouts of activity, likely associated with methamphetamine-induced 
hyperactivity in mice (73–75). Moreover, methamphetamine expos-
ure induced a circabidian oscillation, a documented behavior in 
rodents (23, 76).

Couplings between circadian and ultradian 
rhythms
Elongated recordings for the Per1/2/3 KO DD mice enabled har-
monic and coupling analyses between modes. Harmonic analysis 
confirmed that the circadian, low-frequency ultradian and high- 
frequency ultradian modes observed were independent. 
Importantly, the circabidian oscillation induced by methampheta-
mine was also confirmed as an independent mode. Bispectral ana-
lysis revealed that a significant coupling existed between the low- 
and high-frequency ultradian activity in the Per1/2/3 KO mice 
without methamphetamine, supporting previous findings (41). 
When Per1/2/3 KO mice were exposed to methamphetamine, the 
significant coupling was instead detected between the circadian 
and high-frequency activity. DBI was subsequently employed to 
confirm the results of the bispectral analysis and determine the 
direction of information flow between the behavioral modes. DBI 
confirmed the presence of couplings. The direction of information 
flow was from the slower to the quicker oscillation in each case. 
These results highlight that not only the presence of modes but 
also the interactions between them are altered following metham-
phetamine administration.

Influence of methamphetamine and light on 
Per1/2/3 KO mice.
Finally, Per1/2/3 KO mice were exposed to a series of different light 
and pharmacological conditions. Following methamphetamine 
exposure in both constant darkness and constant light, an ∼24 h 
periodicity was restored, supporting the findings in Per1/2/3 KO 
DD MA mice reported above. The results also demonstrated that 
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methamphetamine may have long-term effects upon the system 
as the constant darkness condition following drug exposure still 
contained significant evidence of sustained 24 and 7 h oscillations 
(Fig. 2B). It has been previously reported that LL exposure rescued 
the circadian behavioral rhythm in Cry1/2 double knockout mice 
(77, 78). Therefore it is possible that the behavioral circadian 
rhythm we observed in DD is due to LL exposure. While these os-
cillations are known to be present (65, 79), further clarification of 
their duration and intensity may have important implications for 
future experimental designs.

Phenomenological model
A simple phenomenological model was utilized to further validate 
the observed behaviors against a ground truth. Simulating the time 
series as several interacting phase oscillators yielded power results 
strikingly similar to those from the analyzed experimental data. 
Furthermore, altering the coupling strength between oscillators 
yields the same outputs as the experimentally derived coupling re-
sults, as demonstrated in Fig. 4 and the Supplementary material. 
The similarity between experimental and phenomenological mod-
el derived results validates the nonautonomous phase network dy-
namics framework used in the analysis (33, 46), while also verifying 
our interpretation of the results using a ground truth.

MASCO and internal dissociation
Previous studies on humans isolated from social and natural envi-
ronments have demonstrated a phenomenon called internal dis-
sociation, where the sleep-wake cycle shifts to either a longer 
(30-h) or shorter (20-h) rhythm, despite the body’s core tempera-
ture maintaining an ∼24-h cycle (80). Although our study was con-
ducted in mice, the behavioral rhythms observed following 
methamphetamine administration closely resemble those during 
internal dissociation in the human sleep-wake cycle. This similar-
ity suggests that the MASCO may play a crucial role in regulating 
the human sleep-wake cycle (81). The involvement of the 
MASCO may partially explain the sleep disorders frequently re-
ported in individuals treated with stimulants, such as those with 
ADHD (55–57).

Conclusion and future work
Our results suggest that two main factors are crucial for period de-
termination in wheel running activity: the use of time-localized ana-
lysis approaches, which do not average over transient dynamics, 
and the use of extended recording intervals, sufficient to capture 
the inherent time-variability of the MASCO. The instability of the 
MASCO may suggest that Period genes play a crucial role in regulating 
the time-variability of the circadian rhythm, or alternately that the 
MASCO itself is inherently time-variable. Additionally, the multi-
scale nature of the investigation enabled circadian, circabidian 
and ultradian oscillations to be considered simultaneously, whilst 
also being a sufficient length for coupling analysis.

The presence of an additional low-frequency (∼3.5 h) ultradian 
rhythm has been previously reported in Per1/2/3 KO DD mice (41). 
However, in the present study, there was insufficient evidence to 
classify this period as a distinct mode. Future investigations in-
volving mice under varied experimental conditions and extended 
measurement intervals are necessary to confirm or contradict its 
existence.

Future investigations may utilize this approach to evaluate dy-
namical characteristics in different experimental conditions and 
animal populations. For instance, analysis of alternative 

noncanonical oscillators, such as the food-entrainable oscillator, 
and comparison to the MASCO may provide evidence regarding 
a proposed common dopaminergic basis (82). Additionally, inves-
tigating the number of cycles which behavioral patterns persist 
for in the absence of the stimuli that induced them may inform fu-
ture experimental design.

Time-resolved analysis methods offer a wealth of additional in-
formation and insight into the mechanisms of complex behavior, 
unlike detrended fluctuation analysis which provides information 
about the balance between randomness and regularity (70, 71). By 
considering behaviors throughout time, one can observe temporal 
variability that may betray underlying biological implications (83). 
Circadian rhythms are intimately linked to several pathologies, 
both mental and physical (84–86). By applying novel time-series 
analysis approaches one may reveal an abundance of informa-
tion, previously disregarded as stochastic, and move towards a 
more complete description of circadian regulation.

Materials and methods
Animals
All mouse experiments were approved by the Institutional Animal 
Care and Use Committee at UT Southwestern Medical Center 
(Protocol #2013-0035 and #2016-10376-G).

Bmal1 KO mice are commonly used for studying the functional 
significance of the circadian rhythm because this single gene 
knockout can disrupt molecular circadian oscillations entirely. 
However, Bmal1 KO mice have a significantly reduced life span 
and experience premature ageing (87). Therefore, they are in-
appropriate for studies which require long-term behavioral re-
cordings. Although Per1/2/3 KO mice have disrupted molecular 
circadian rhythms, no notable health issues have been reported 
(48), hence their use in this study.

In the initial investigation, N = 8 Per1/2/3 KO mice (Yamazaki 
Lab Experiment #74; 4 males, 4 females; 5–8 months old; C57BL/6J 
or C57BL/6J and C57BL/6N mixed backgrounds (41, 50)) were 
measured in a variety of conditions. Mice were first exposed 
to 12 h light, 12 h dark cycles for 7 days (LD, light intensity 
∼450 lux at cage level) and then kept in constant darkness for 11 
days (DD). Subsequently, methamphetamine was administered 
through drinking water for 26 days while they remained in con-
stant darkness (MDD). The mice were then exposed to constant 
light for 22 days while methamphetamine administration contin-
ued (MLL, light intensity ∼170 lux at cage level). Subsequently, 
methamphetamine was removed while still in constant light for 
54 days (LL, light intensity ∼170 lux at cage level). The final 24 
days of the experiment were conducted in constant darkness for 
24 days (FDD). This group is referred to as “Per1/2/3 KO DD mul-
tiple conditions” throughout the text.

To better understand the multiscale behavioral changes fol-
lowing exposure to methamphetamine across elongated meas-
urement intervals, five additional cohorts of mice were 
investigated. A cohort of heterozygous PER2:luciferase knockin 
mice (n = 7) and one wild-type littermate (n = 1), were used as a 
comparison point (Yamazaki Lab Experiment #17; 5 males, 3 fe-
males; 1.3–9.5 months old; C57BL/6J background (88, 89)). These 
mice were kept in constant darkness for 95 days without metham-
phetamine. General cage activity was recorded with an infrared 
motion detector in the cage without a running wheel for the first 
10 days, then in a cage containing a locked running wheel for 11 
days. After that, the running wheel was unlocked and both gen-
eral activity and wheel running activity were recorded for 20 
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days. The wheel was then locked once again for a further 21 days, 
before being unlocked for the final 30 days. Here, we analyzed the 
last 30 days of running wheel activity. This group is referred to as 
“the control group” throughout the text.

Heterozygous PER2:luciferase knockin mice were used as the 
control group due to their elongated recordings in constant dark-
ness, which enabled coupling analysis. To confirm that the power 
results observed in these knockin mice are consistent with those 
in pure wild-type cohorts, two groups of wild-type mice recorded 
over shorter intervals were analyzed.

In one of these experiments, n = 5 wild-type male mice 
(Yamazaki Lab experiment #17B; 5 weeks old at the beginning of 
the experiment; strain C57BL/6N), were included. Mice were first 

exposed to 12 h light, 12 h dark cycles for 7 days. Subsequently, 
they were kept in constant darkness for the duration of the record-
ings analyzed in the present study. On the 22nd day, the mice were 
moved into cages containing a locked wheel, while remaining 
under DD. On day 33, the running wheels were unlocked and 
the running wheel activity could be measured for the subsequent 
20 days, until they were once again locked. This procedure re-
sulted in a 20 day recording of running wheel activity in wild-type 
mice in DD. The time-localized powers of these mice are summar-
ized in the Supplementary material. This group is referred to as 
“wild-type 20 days.”

Additionally, n = 6 males (Yamazaki lab experiment #20;) were 
analyzed; all mice were between 7 and 8 weeks old at the 

Fig. 4. Comparison between the time and time-frequency domains for evaluating characteristic features of underlying dynamics. Each mouse condition 
is represented by a column; the control group (first column), Per1/2/3 KO DD mice (second column), and Per1/2/3 KO DD mice with methamphetamine 
(third column). A–C) Thirty days of the recorded wheel running activity per minute. D–F) Actograms representing the amount of wheel turns for each 
minute of activity. G–I) Time-frequency representation of each condition. J–L) Extracted ridges for each of the time-frequency representations. In each 
frequency band, the ridges follow a high amplitude peak through time. The phases at each of these points are used in the coupling analysis. M–O) Data 
generated by the phenomenological model which was used to validate conclusions.
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beginning of the experiment; strain: C57BL/6J. The mice were ex-
posed to light/dark 12 h repeats for 7 days. A constant darkness 
protocol was then initiated. After 21 days, the mice were switched 
to a cage with a wheel to measure movement. They remained in 
this cage for another 21 days in constant darkness, and the wheel 
allowed their movement to be tracked during this interval. The 
time-localized power for each of the six mice measured under 
these conditions is shown in the Supplementary material. This 
group is referred to as “wild-type 21 days.”

A cohort of Per1/2/3 KO mice (Yamazaki Lab Experiment #86; 
three males, four females; 3.5–8.5 months old; C57BL/6J back-
ground with cfos-shGFP transgene (90)) were initially exposed to 
constant light (∼220 lux at cage level) for 26 days then kept in con-
stant darkness for 65 days without methamphetamine exposure. 
A male mouse (#2 in the Supplementary material) was excluded as 
the entire recording length was not completed. The 65 days of run-
ning wheel activity in constant darkness were analyzed in this 
manuscript. This group is referred to as “Per1/2/3 KO DD.”

Another cohort of Per1/2/3 KO mice (Yamazaki Lab 
Experiment #54; one male, four females; 4.5–5.5 months old; 
C57BL/6J or C57BL/6J and C57BL/6N mixed background) were 
kept in DD for 27 days without methamphetamine, before 
being exposed to methamphetamine for the subsequent 101 
days. The first 65 days of activity during methamphetamine ad-
ministration was analyzed and is referred to as “Per1/2/3 KO DD 
MA.”

Each mouse was housed individually in a plastic cage (length × 
width × height: 29.5 × 11.5 × 12.0 cm) containing running wheels of 
diameter 11 cm. Wheel revolutions were continuously recorded 
every minute by the ClockLab system (Actimetrics, Wilmette, IL, 
USA). As described above, general cage activity was monitored 
with a passive infrared sensor (product ID 189, Adafruit, 
New York City, NY, USA) placed above the cages without a run-
ning wheel or with locked running wheels, however those data 
were not analyzed in the current study. The cages were placed 
in light-tight ventilated cabinets and the temperature, humidity, 
and light intensity inside the cabinet were recorded every 5 min 
by Chamber Controller software (Actimetrics, Wilmette, IL, 
USA). The white LEDs inside the cabinet were controlled by the 
Chamber Controller software. Cages and water bottles were 
changed once every 3 weeks. An infrared viewer (FIND-R-SCOPE 
Infrared Viewer; FJW Optical Systems, Inc., Palatine, IL, USA) 
was used to perform maintenance in the dark without exposing 
mice to visible light. For methamphetamine administration, 
water bottles were replaced with drinking (tap) water containing 
0.005% methamphetamine (Sigma-Aldrich, St. Louis, MO, USA). 
Water bottles containing methamphetamine were changed once 
every 3 weeks. During the experiment mice had ad liberum access 
to food and regular or methamphetamine water.

Time-series length
Elongated time-series are required to reduce the measurement 
uncertainty for the following reasons. Firstly, time-varying modes 
require many cycles to accurately determine the frequency. In 
addition, it enabled the avoidance of transitory periods when 
switching between measurement conditions. Thirdly, couplings 
between modes require a minimum number of cycles to be de-
tected. Asymptotic approaches treat data as stationary by meas-
uring only a minimal number of cycles and averaging across 
time. In contrast, the approaches presented here harness the 
maximal amount of information by explicit consideration of time- 
localized behavior.

Time-resolved analysis
Evaluating multiscale oscillatory behavior requires methods that 
can effectively extract information across wide-ranging scales 
and time periods (68). Without explicitly considering the time- 
localized, multiscale dynamics, time-series that contain multiple 
deterministic modes might be incorrectly interpreted as noise 
(33). The wavelet transform enables such a representation of the 
data,

WT(s, t) = ∫ L/2
−L/2Ψ(s, u − t)f (u)du, (1) 

where the mother wavelet, Ψ(s, t), is expanded and contracted to 
optimize the trade off between time-localization and frequency 
resolution at a given scale, akin to changing the focus on a camera 
to increase image sharpness. In contrast, Fourier-based ap-
proaches use a single window to obtain information across all fre-
quencies, leading to sub-optimal resolution. Here, the lognormal 
wavelet was used due its superior logarithmic frequency reso-
lution (28). In the frequency domain, it is defined as

ψ̂(ω) = e− ω0 log ω( )
2
/2, where ω > 0, (2) 

where ω0 = 2πf0 is the frequency resolution parameter of the 
wavelet. As log ω is the argument of this wavelet, it is particularly 
well suited to the logarithmic frequency resolution of the 
transform.

The wavelet transform facilitates multiscale evaluation of 
time-series (29). This enables the simultaneous evaluation of os-
cillatory activity taking place over days, hours, minutes, and sec-
onds. In contrast, actograms demonstrate information regarding 
only the most prominent oscillation. As demonstrated in Fig. 4, 
this is helpful for illustrating the highly regular, circadian behav-
ior of the wild-type or heterozygous PER2::LUC knockin mice; how-
ever, this approach is inappropriate when multiple time-varying 
modes are present simultaneously. As such, the time-frequency 
representation unlocks a wealth of information compared to 
purely time domain methods. It also allows for time-localized fea-
tures in the behavior to be identified and evaluated.

Total power
Total power can be thought of as the total energy (E) content in the 
signal (91). In the present investigation, this is defined as

E = 1
T

∫ T

0
∫ 1/2πfmax

1/2πfmin

1
s
|WT(s, t)|2dsdt, (3) 

where T is the total time, and fmin, fmax represent the minimum 
and maximum frequencies used when calculating the wavelet 
transform. The logarithmic frequency distribution resulting 
from the wavelet transform was explicitly considered when per-
forming the integral. When analyzing multiple conditions in the 
same experiment, total power was evaluated across the central 
7 days to reduce edge effects.

Harmonic analysis
Spectral peaks are obtained from a mathematical description of 
time series and are not necessarily linked to physical oscillatory 
systems or modes. In the case of nonlinearities, i.e. when the sig-
nal is not of sinusoidal shape, many high harmonic components 
can occur belonging to the activity of a single mode. When the 
rhythms are strictly periodic the detection of high harmonics is 
relatively straightforward because they appear at commensurate 
frequencies of the basic frequency. However, when the rhythms 
have variable, or nonstationary frequencies, the detection of 
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high harmonics is a demanding task. To determine whether the 
detected frequency peaks correspond to independent modes, or 
the peaks are in harmonic relationship, we conduct harmonic 
analysis (47). This method evaluates mutual information between 
time-localized phases across frequency bands. If sufficient shared 
phase information between a fundamental frequency and its har-
monics exceeds a surrogate threshold, then the relationship can 
be considered as harmonic. For details of the method for surrogate 
data analysis, see below and Ref. (92).

Ridge extraction
The underlying oscillatory modes may be harnessed to evaluate 
their changing power and phase over time (30). The first step 
here is to find the ridge curve; a region in the time-frequency do-
main with a series of amplitude/power peaks and their corre-
sponding phases. Tracing these modes in the time-frequency 
domain can reveal time-localized amplitudes and phases.

Coupling
Once the independent modes are identified, the presence and dir-
ection of their mutual couplings and interactions can be investi-
gated (31). The coupling analyses presented here focuses on 
phase relationships, independent of amplitude dynamics. The 
presence of couplings may be detected by bispectral analysis 
(32), while the direction and duration of coupling can be deduced 
using DBI (31).

Bispectral analysis
Wavelet bispectral analysis facilitates the detection of couplings 
between and/or within time-series (32). Here, we apply autobis-
pecral analysis to ascertain the putative presence of coupling be-
tween modes within a single time series; that derived from the 
wheel running activity of mice. The wavelet bispectrum BW meas-
ures the amount of phase coupling between modes at scales s1 

and s2 as,

BW s1, s2( ) = ∫ TWT s1, τ( )WT s2, τ( )W∗T(s, τ)dτ, (4) 

during a time interval, T (93) where,

1
s1

+ 1
s2

= 1
s
. (5) 

For further details see (32). Surrogate analysis is also applied to 
verify results.

Dynamical Bayesian inference
To ascertain the direction of phase information flow between os-
cillators, we apply DBI (45). This approach infers the coupling 
function between oscillators by applying Bayes theorem and using 
both prior and current information via a windowed approach 
across the time series (27). From the coupling functions, we derive 
coupling strength over several sequential windows. The number 
of windows over which the coupling strength exceeds a predefined 
surrogate threshold defines the coupling time; a metric represent-
ing the duration over which a coupling is present.

Statistical analysis
Due to the non-Gaussian distribution of the data, Wilcoxon rank- 
sum test was used to compare groups. A P-value of 0.05 was used 
as a significance threshold when comparing groups evaluated 
over 6 days, while 0.01 was used as a threshold for the longer re-
cordings as the additional amount of information enabled a re-
duced threshold.

Once the instantaneous frequencies over time were obtained 
using ridge extraction, their mean and SD were calculated. In 
this way, average frequencies and their SD of the individual 
modes for each mouse were obtained. Group averages were ob-
tained as medians of the average instantaneous frequencies and 
as medians of the SD.

Surrogates
To assess whether obtained coupling results are genuine or spuri-
ous, we employ surrogate data (92). Connectivity analyses always 
detect a baseline level of interaction, even between independent 
time-series, especially when the data are short relative to the fre-
quencies of interest. Surrogates help establish a threshold to min-
imize the impact of these spurious measurements. The goal when 
generating surrogates is to maintain the same statistical proper-
ties to measured data, with the exception of the specific charac-
teristic being investigated (92, 94).

The same analysis performed between experimental data is ap-
plied to the generated surrogate data. This establishes a baseline 
of measurement outcomes in the absence of true coupling. The 
process is repeated many times, and a percentile of these surro-
gate outputs is used to set a threshold value. Results exceeding 
this threshold are then considered statistically significant (92).

For DBI, 19 cyclic phase permutation surrogates were gener-
ated to randomize the phase behavior, while for bispectral ana-
lysis 19 iterative amplitude adjusted Fourier transform 
surrogates were used. In both cases, a 95th percentile threshold 
was implemented.
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6.1 Metabolism in the brain

The brain is one of the most metabolically active organs in the body, accounting

for approximately 20% of total energy consumption at rest. Therefore, employing

appropriate pathways to synthesize ATP, the body’s primary energy currency, is

paramount.

In mammals, cellular energy metabolism can be summarized into four key pro-

cesses. The first stage, glycolysis, occurs in the cytoplasm, where glucose is con-

verted into pyruvate. This process produces two molecules of adenosine triphos-

phate (ATP) and reduces nicotinamide adenine dinucleotide (NAD+) to NADH.

Next, in the mitochondria, oxidative phosphorylation (OXPHOS) completes metabolism

so efficiently that 28 molecules of ATP are synthesised per glucose molecule. OX-

PHOS utilises NADH and pyruvate from glycolysis, and oxygen, which diffuses

across cell membranes. Glucose is delivered to the cytoplasm for glycolysis via glu-

cose transporter proteins (GLUTs), which facilitate membrane diffusion [226].

FIGURE 6.1: Simplified model of the interacting components of cellular energy metabolism.
(A) Interactions between the blood vessel (red), neuron (blue) and astrocyte (green). (B)
Schematic representation of the couplings ϵ in the cellular energy metabolism model be-
tween the mitochondrial oscillator (MOn) and glycolytic oscillator in the neuron (GOn) and

the astrocyte (GOa).

In the brain, glycolysis can also take place in glial cells called astrocytes. This pro-

cesses generates lactate, which is shuttled into the neuron to provide an alternative
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fuel source for the mitochondria [227]. Lactate transporter proteins called mono-

carboxylate transporters (MCTs) shuttle this metabolite from the astrocyte to the

neuron, supporting oxidative metabolism. The interplay between these processes

is illustrated in Fig. 6.1.

6.2 Metabolic coupled phase oscillators

Metabolic processes are inherently oscillatory. Mitochondrial function is dictated by

oscillations between an oxidative and reductive environment [228, 229]. These os-

cillations can be measured by the florescence of NADH [230] or the mitochondrial

membrane potential [231]. Furthermore, glycolysis exhibits oscillatory characteris-

tics regulated by several protein complexes [232]. Concentrations of glycolytic inter-

mediates oscillate with a period of a few minutes [189] and produce NADH which is

measured using florescence [233]. When operating optimally, the glycolytic and mi-

tochondrial oscillators synchronise. This enables glycolysis to provide oxphos with

sufficient molecular substrates to enable optimal energy metabolism. Additionally,

the supply of oxygen to the brain is characterised by a baseline level around which

oscillations occur [234]. These dynamics are influenced by changes in the vascular

tone of arterioles and vary with age [235]. The oscillatory nature of cellular energy

metabolism necessitates an approach that explicitly treats each component as such.

6.2.1 Single phase oscillator model

Cellular energy metabolism consists of multiple interacting periodic processes. Sim-

ulating these processes with coupled phase oscillators enables the replication of their

dynamics. Due to the open nature of the system, the frequency of each oscillator

was allowed to vary in time. Additionally, the initial phase, φ0, of each oscillator

was randomised, while maintaining the same average frequency ωmX [183]. The

time-dependent frequency of each oscillator, ωX(t), was modulated such that,

ωX(t) = ωmX + AX sin(ωmodXt + φ0). (6.1)
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The amplitude of frequency modulation, AX, was set to one-third of the mean fre-

quency, while the frequency of modulation, ωmodX, was assigned a value equal to

one-tenth of the mean frequency (Hz). The rates of change of phase of each oscilla-

tor in the model are given by,

φ̇Ox = ωOx + ση(t)

φ̇Glu = ωGlu + ση(t)

φ̇GOa = ωGOa + εMOGOa sin (φGOa − φMO)− εGluGOa sin (φGOa − φGlu) + ση(t)

φ̇GO = ωGO + εMOGO sin (φGO − φMO)− εGluGO sin (φGO − φGlu) + ση(t)

φ̇MO = ωMO − εGOMO sin (φMO − φGO)− εGOaMO sin (φMO − φGOa)

− εOxMO sin (φMO − φOx) + ση(t).
(6.2)

Where ση(t) represents white additive noise. The sign preceding each coupling term

in Eqs. 6.2 indicates the type of coupling: a positive sign denotes repulsive coupling,

while a negative sign represents attractive coupling. For example,

+εMOGO sin (φGO − φMO) models the inhibitory influence of the mitochondrial oscil-

lator on the glycolytic oscillator. This is due to a sensing mechanism that detects the

ATP/ADP ratio. When this ratio decreases below a certain threshold, the PFK en-

zyme is inhibited, causing glycolysis to compensate by increasing its activity. How-

ever, under normal conditions, this ratio remains high as the mitochondria fulfil

cellular energy demands [236, 237].

The Runge-Kutta fourth-order integration scheme was used to compute the phase

values of each oscillator over time. A step size of 0.1 seconds was employed for a

total duration of 2000 seconds. The resulting phase values were subsequently anal-

ysed to determine the presence of synchronization between oscillators.

6.2.2 Network based model

While modelling individual cellular units and their interactions is valuable, it’s im-

portant to recognize that these cells do not exist in isolation in real biological sys-

tems. Networks of oscillators are particularly relevant when modelling cellular en-

ergy metabolism. For example, glycolytic oscillations in yeast have been shown to
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represent a collective phenomenon: isolated yeast cells do not oscillate on their own,

but once a certain cell density is reached, the cells synchronize and oscillate in phase

with one another [238, 239]. To accurately capture the interactions between numer-

ous neurons and astrocytes, it is essential to extend the model to a network-based

framework; The defining equations of which are as follows,

φ̇Glui = ωGlui(t) + φ̇Gluni,

φ̇Oxyi = ωOxyi(t) + φ̇Oxyni,

φ̇GOi = ωGOi(t) + φ̇GOni − φ̇GluGOi + φ̇MOGOi,

φ̇GOai = ωGOai(t) + φ̇GOani − φ̇GluGOai + φ̇MOGOai,

φ̇MOi = ωMOi(t) + φ̇MOni − φ̇OxyMOi − φ̇GOMOi − φ̇GOaMOi.

(6.3)

Where φ̇Xi represents the time derivative of the phase of each individual oscillator

(i) of type X in the network, which is influenced by three factors. Firstly, the time-

varying natural frequency of the oscillator, ωXi, as outlined in Eq. 6.1. Secondly, the

intranetwork couplings between itself and other oscillators (j),

φ̇Xni =
KX

N

N

∑
j=1

sin
(

φXj − φXi
)

, (6.4)

where K is the intranetwork coupling strength and N is the number of oscillators

in the network. Finally, the influence from other oscillator networks, (Y), over the

oscillator X,

φ̇YXi = FYXrY sin (ΨY − φXi) , (6.5)

where FYX is the inter-network coupling strength and ΨY is the average phase of

network Y and r represents the Kuramoto order parameter [192].

The Runge-Kutta fourth-order integration scheme was used to compute the phase

values of each oscillator over time. A step size of 0.1 seconds was employed for a

total duration of 5000 seconds. The resulting mean phase values of each network

were subsequently analysed to determine the presence of synchronization between

oscillators.
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6.2.3 Parameter selection

As little literature exists regarding the exact frequency of metabolic processes in the

brain, the parameter values have been estimated based on known oscillatory fre-

quencies in other cell types. Glycolysis usually takes place on the scale of a few

minutes [240, 241, 189] while oxidative phosphorylation is slightly quicker, with a

period around 100s [242, 229]. Given the lack of literature on the frequency of gly-

colysis in the astrocytes and neurons, they were set to the same value.

Biological correlate Parameter Value (Hz) References
Oxygen supply freq ωox

2π
100 [234]

Glucose supply freq ωGlu
2π
200 [236]

Glycolysis natural freq (neuron) ωGO
2π
200 [240, 241, 189]

Glycolysis natural freq (astrocyte) ωGOa
2π
200 [240, 241, 189]

OxPhos natural freq neuron ωMO
2π
100 [243, 229]

Oxygen→ neuron ϵOx→MO 0.1 [235]
Glucose→ neuron ϵGlu→GO 0.1 [244]

Glucose→ astrocyte ϵGlu→GOa 0.05 [245]
Lactate→ neuron ϵGOa→MO 0.025 [246, 247]

Glycolysis neuron→ oxphos ϵGO→MO range [248]
Glycolysis neuron← oxphos ϵMO→GO range [248]

TABLE 6.1: Table of parameters for the single oscillator model. The arrows indicate the
direction of coupling.

The coupling strengths between oscillators were selected based upon their known

interactions. Both neuronal glycolysis and oxidative phosphorylation require a con-

stant source of glucose and oxygen to function [235, 244], as such this coupling was

relatively high. In contrast, astrocytes have do not need a constant supply, as they

have supplies of glycogen which can be used during periods of high energy de-

mand [245]. Furthermore, astrocytic glycolysis plays only a supporting role to over-

all metabolism [246, 247], hence the coupling from the astrocyte to the neuron is rela-

tively lower. There is evidence to suggest a wide dynamic range in the brains energy

demands from moment to moment [248]. As such, it is likely that the amount of en-

ergy required and so the coupling strength between mitochondrial and glycolytic

oscillators fluctuate over time. Here, the coupling strengths are simulated across a

range of values to demonstrate the dynamic range of interaction.
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Network model parameters

The network based approach requires additional parameters to represent the inter

and intra network coupling strengths.

Biological correlate Parameter Value References
Oxygen→ neuron FOx→MO 0.2 [235]
Glucose→ neuron FGlu→GO 0.2 [244]

Glucose→ astrocyte FGlu→GOa 0.1 [245]
Lactate→ neuron FGOa→MO 0.05 [246, 247]

Glycolysis neuron→ oxphos FGO→MO 0-0.3 [248]
Glycolysis neuron← oxphos FMO→GO 0-0.3 [248]

Intranetwork couplings KX 0.05 [248]
Network size N 4

TABLE 6.2: Table of parameters for the network based model. The angular frequency values
ω are the same as in Table. 6.1

The internetwork coupling strengths are proportional to those implemented in the

single oscillator model. At the current stage of investigation, each of the intranet-

work coupling have been set to 0.05 for simplicity. Conditions such as dementia

may have unsynchronised metabolic networks due to damage to the vasculature

causing metabolic oscillators to desynchronise. Future models describing neurode-

generative diseases should take this explicitly into account. There is little evidence

of desynchronised intranetwork couplings in ASD however, and so this was deemed

an unnecessary level of complexity for the current work. The network size, N, was

set to 4 as the computational load dramatically increases as a function of network

size. In reality, there are thousands of mitochondria in mammalian cells [249].

6.2.4 Metabolic mode

In a healthy, resting brain, oxidative phosphorylation (OXPHOS) is the primary

pathway for energy metabolism in neurons, offering high efficiency with the pro-

duction of 28 ATP molecules for every glucose molecule oxidized. Under aerobic

conditions, glycolysis is reduced to a level that provides just enough substrates for

OXPHOS to proceed. While glycolysis can temporarily become the dominant ATP-

producing pathway during periods of high energy demand, relying on glycolysis for

energy is considered sub-optimal, as it produces byproducts like lactate, which can



Chapter 6. Cellular energy metabolism in ASD 126

shift the brain’s pH [248]. Therefore, under standard conditions, the optimal form of

energy production is primarily via OXPHOS, this is known as the aerobic state.

During periods of heightened neuronal stimulation, however, glycolysis increases

to meet energy demand. Positron emission tomography (PET) studies have shown

that following brain activation, blood flow to a given region increases by about 50%,

with a corresponding rise in glucose consumption. Oxygen uptake, however, only

increases by about 5%, indicating that during periods of high demand, glucose be-

comes the primary energy substrate [250]. Furthermore, a net increase in lactate lev-

els following stimulation suggests that both neuronal and astrocytic glycolysis are

upregulated to meet increased energy demands [251, 252, 253]. Much like in the case

of a sprinter, this adaptation is appropriate for providing increased ATP over a short

period of time, but it is not suitable or sustainable in the long term, and extended

periods in this state may lead to pathogenesis.

A transition takes place between these states, where the synchronisation state is

optimised for neither type of metabolism. This state would be transient as it is inca-

pable of producing sufficient ATP when the mitochondrial and glycolytic oscillators

are not synchronised. By considering the synchronisation states between oscillators

we can deduce whether glycolytic or aerobic processes are more prevalent in the

system for a range of coupling strengths.

6.3 The parameter space

Mapping the specific states of synchronization between oscillators across different

parameter combinations produces the parameter space. By assigning a unique colour

to each distinct regime, these states can be quickly visualised and interpreted. As

we run several simulations across a range of parameter values, a wide variety of

synchronisation states are possible. To illustrate the breadth of possible states, we

begin with the single-oscillator example. Simulating the model using the healthy

parameter values listed in Table 6.1 gives the phases of each oscillator over time. By

analysing the phase differences between oscillators, we can determine the synchro-

nization state associated with each parameter combination. As mentioned in Sect.

1, understanding the synchronisation states of the system enables us to determine
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which factors are influencing it, and so determine whether healthy or altered states

are present. This is visualized in Fig. 6.2, which depicts the parameter space, while

Table 6.3 defines the synchronization state represented by each colour.

FIGURE 6.2: Synchronisation regimes in a neurotypical single oscillator model of neuronal
cellular metabolism. (A) The different synchronisation regimes are all associated with a
colour. The colour bar relates each of these colours to a number. Table 6.3 contains a refer-
ence for which oscillators are synchronised in each of these regimes. (B) The dramatically

greater number of regimes in the network model.

Number Glu - GO GO - MO Oxy - MO GOa - MO Glu - GOa State
0 X X X Transition
1 X X Transition
2 X X X Aerobic
3 X X Transition
4 X Transition
5 X X Transition
6 X X X X Glycolytic
7 X X Glycolytic

TABLE 6.3: Synchronisation states corresponding to Fig. 6.2A. An X in the box corresponds
to synchronisation between the two oscillators. The final column indicates the metabolic

mode for that synchronisation regime.

The synchronisation regimes in Fig. 6.2B are difficult to interpret owing to the large

number of regimes. Accounting for intermittent synchronisation [173] and intra-

network synchronisation upon the introduction of the network approach, as in the

case of Fig. 6.2B increases the number of states to an intractable quantity. Some of

this information is also redundant, as it represents the same overall affect on the

system, which can ultimately fall into one of three types of metabolic mode.

The aerobic state is the standard, healthy configuration of the cell, with the ef-

ficient oxidative phosphorylation responsible for most energy production. Here,
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oxygen supply dominates the system.

Glycolytic states are unfavourable altered metabolic states. They are categorised

as having the glucose glucose supply driving neuronal metabolism.

Finally, there are several transitional states in which neither glucose nor oxy-

gen predominantly drives the metabolic coupling in the neuron. These states are

inherently unsustainable, as the lack of coordinated operation between the key os-

cillatory units compromises the cell’s ability to maintain function. Such transitional

states may occur as metabolism shifts between aerobic and glycolytic pathways or

vice versa.

FIGURE 6.3: each of the synchronisation regimes are categorised into either glycolytic
(green) transition (grey) or aerobic (blue) metabolic modes (A) The single oscillator model.

(B) The same categories applied for the network based model.

By considering the biological relevance of different synchronisation states we can re-

allocate parameter space into one of these three categories. If the supply of oxygen is

driving the metabolic coupling between the mitochondrial and glycolytic oscillators,

then the regime is categorised as aerobic (blue). If glucose is driving the coupling,

the regime is glycolytic (green). If neither oxygen or glucose are driving the system,

the it is a transitional (grey) state. Fig. 6.3 indicates the metabolic mode for each

parameter combination.

6.4 Neuronal cellular energy metabolism in ASD

While there is no known, precise etiology in ASD [254] there are a myriad of fac-

tors linked to increasing the likelihood of ASD which also affect cellular energy
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metabolism [14, 126, 255, 256, 257]. One of the most commonly reported metabolic

abnormalities is mitochondrial dysfunction [124]. Mitochondria are particularly sen-

sitive to environmental factors [256], especially those known to increase ASD risk

[258, 259, 260, 261, 262]. Additionally, abnormal metabolite concentrations have

been reported in ASD [263], including increased lactate [10, 11]. Pharmacological

risk factors, such as prenatal exposure to valproic acid (VPA), significantly increase

ASD risk [51]. VPA stimulates the WNT pathway [134, 261] which is also upreg-

ulated in mouse models of ASD [136]. Upregulation of this pathway increases the

level of glucose transporter and lactate shuttle proteins [264, 8]. This evidence has

led to the hypothesis that disruptions to the WNT/β-catenin pathway may induce

altered metabolism in ASD [265, 7].

The Warburg effect

The Warburg effect is defined as a metabolic shift towards glucose uptake and lac-

tate production, despite the presence of oxygen [114]. Upregulation of glycolysis

is present in many pathologies, such as cardiovascular disease [266], diabetes [267]

and cancer [114]. Increasingly, the Warburg effect has been implicated as a potential

contributing factor towards ASD development [7, 121]. Here, we apply the phe-

nomenological model defined formerly to asses the hypothesis that upregulation of

GLUT and MCT proteins via the WNT/β-catenin pathway triggers the Warburg ef-

fect in ASD [7].

6.4.1 Upregulation of the glucose transporter proteins

Stimulation of the WNT/β-catenin pathway upregulates glucose transporter pro-

teins, which facilitate the diffusion of glucose into the neuron and astrocyte. To

understand what effect this has on possible metabolic states, the coupling parame-

ters corresponding to the link between glucose and the neuron/astrocyte have been

doubled, while the other parameters in Tables. 6.1, 6.2 remain the same. The shift

in the size of the relevant synchronisation states are illustrated in Fig. 6.4A for the

single oscillator model, and Fig. 6.4B for the network based model.



Chapter 6. Cellular energy metabolism in ASD 130

FIGURE 6.4: The parameter space when the couplings associated with glucose transport
proteins is increased. (A) The single oscillator parameter space. (B) The network based

parameter space.

Increasing the couplings associated with the glucose transporter proteins dramati-

cally changes the phase space. The area associated where glycolysis is the predomi-

nant metabolic mode (green) is increased in both the single oscillator (Fig. 6.4A) and

network (Fig. 6.4B) approach, symptomatic of the Warburg effect.

6.4.2 Upregulation of both lactate and glucose transporter proteins

Following stimulation of the WNT/β-catenin pathway, the production of lactate

transporter proteins are upregulated. These proteins shuttle lactate generated by

glycolysis in the astrocyte to the neuron to support metabolism. As such, their up-

regulation is associated to an increase in the coupling from the astrocyte to the mi-

tochondrial oscillators in our model. Fig. 6.5 demonstrates the effect of both GLUT

and MCT upregulation simultaneously.

Again, a clear switch to the Warburg effect is present, revealed by a substantial in-

crease in the size of the glycolytic parameter space. Interestingly, the change is simi-

lar to when only the glucose transporter proteins are upregulated. This may indicate

that increased glucose diffusion, and so glycolysis in the neuron, causes the shift to-

wards glycolysis, while the increase in astrocytes glycolysis plays a supporting role,

corroborating experimental findings [268].
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FIGURE 6.5: The parameter space when accounting for upregulated glucose and lactate
transport proteins. (A) Single oscillator approach. (B) Network based model.

6.5 Conclusion and future work

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition influ-

enced by a combination of genetic and environmental factors that increase suscep-

tibility. Historically, these diverse factors have been considered unconnected. More

recently, efforts to uncover potential links through shared cellular pathways have

emerged. As one of the most metabolically active organs in the body, the brain relies

heavily on efficient ATP production, making cellular energy metabolism a promis-

ing avenue to unify the diverse etiological factors and clinical presentations of ASD.

Notably, the WNT–β-catenin pathway is upregulated in ASD [134, 136, 261]. This

upregulation is associated with increased expression of glucose and lactate trans-

porters, highlighting a potential metabolic mechanism underlying the condition.

Circadian disruption has been implicated in the dysregulation of the WNT/β-

catenin pathway [269], which, in turn, impacts cellular energy metabolism [14].

Moreover, circadian disruption has been associated with ASD [270], with 50–80%

of children with ASD reported to experience disturbed sleep patterns [271]. Addi-

tional factors such as exposure to valproic acid [51, 137, 272], genetic influences [273]

and elevated lactate levels [115, 122] are also all implicated both in upregulation of

the WNT/β-catenin pathway and ASD development. Understanding the connec-

tions between cellular energy metabolism and the diverse factors contributing to

ASD risk may help guide the development of future therapeutic strategies or early

interventions.
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In this work, phenomenological phase oscillator models are introduced to repre-

sent various cellular states. By adjusting the parameters of these models, the impact

of specific changes on cellular behaviour can be considerd. These models enable

the exploration of the hypothesis that upregulation of the WNT–β-catenin pathway

induces the Warburg effect in ASD. Specifically, increasing the associated coupling

of glucose and lactate transporter proteins shifts ATP production towards glycolytic

states, where glycolysis becomes the dominant mode of ATP synthesis.

It has been suggested that the upregulation of neuronal glucose supply, rather

than lactate transport, plays a dominant role in the increased metabolism following

neuronal stimulation. The similar results from Fig. 6.4 and Fig. 6.5 suggest that this

is likely to be true, with the astrocytic shuttle playing a supporting role [268] and not

greatly increasing the glycolytic parameter space.

Little literature exists about the exact frequencies of the metabolic oscillations

in the brain. Here we have used metabolic frequencies corresponding to cell types

from around the body. Further experiments are required elucidate these parameter

values and allow us to apply more specific values for each parameter in the model.

In future, the network based approach may be extended to include networks of

oxygen and glucose supply. This may make the neurovascular unit in conditions like

dementia easier to model, where supply of oxygen and glucose is a key attribute in

disease progression [274].

A network size of N = 4 is applied in the network model, as increasing N dra-

matically increases the computational load. In reality there are thousands of mito-

chondria in mammalian cells [275]. The relatively low network size here may have

impacted the synchronisation states. By introducing parallel processing this can be

dramatically sped up, enabling network sizes more representative of metabolic net-

works.

This model is capable of elucidating which changes to parameters cause shifts

to different metabolic modes in cells. By applying parameters relevant to different

conditions, it is hoped this approach can elucidate the changes they impart upon the

metabolic mode, which can have wide ranging overall consequences to health.
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Chapter 7

Discussion and conclusion

7.1 Summary

Living systems are inherently open to the environment and time-dependent. Ne-

glecting these key aspects of life leads us to reject key deterministic dynamics capa-

ble of revealing states of health and disease. By applying physics-based approaches

that acknowledge and accommodate the complexities of living systems, rather than

treating them as stochastic or intractable, we can gain more accurate and profound

insights. This thesis presents a holistic approach to understanding the underpinning

of ASD, from cellular dynamics to circadian disruption, alongside practical applica-

tion of these methods to real data.

Methodological approaches to the analysis of EEG data may be hampering ef-

forts to categorise the condition. By comparing phase and amplitude based meth-

ods for measuring interactions, we have shown that amplitude effects can confound

evaluation of connectivity, especially in the case of EEG which is particularly suscep-

tible to movement artefacts. Additionally, the neural dynamics measured by EEG

are inherently time-varying and so extended recording intervals are better suited to

capturing their interactions.

It is the hope of the author that by applying a truly multiscale approach - not just

to our analysis but also our overall understanding of ASD - that we can progress

towards a more nuanced understanding of the condition.
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7.2 Original contribution

• Demonstrated that the application of time-varying phase dynamics enables ac-

curate representation of living systems and their dynamic interactions, while

using fewer parameters and requiring less computational capacity than alter-

native approaches.

• Performed a comparison of amplitude-weighted coherence and a purely phase-

based counterpart using both simulated and experimentally derived time-series.

Phase coherence is more robust against perturbations than its amplitude weighted

counterpart, and thus more appropriate for the analysis of noisy data contain-

ing movement artefacts, like EEG.

• Showed that the phase coherence and dynamical Bayesian inference indicate a

reduction in theta and alpha connectivity in children with ASD. Hopefully this

measure will provide the basis of a future quantitive assessment of ASD.

• Showed that the irregularity of the methamphetamine induced circadian oscil-

lator was described using time localised analysis. The birhythmic behaviour

of this oscillator may explain disturbances in the sleep of neurodiverse indi-

viduals.

• Introduced a phenomenological network-based phase oscillator model capable

of describing neuronal energy dynamics, and applied it to demonstrate the

Warbug effect in ASD.

7.3 Future work

Machine learning (ML) may expedite the process of identifying differences in elec-

trophysiology between ASD and neurotypical individuals. However it is unable to

determine why specific differences are present. This is not to say ML will not play a

role in identifying biomarkers in the future, on the contrary, it may serve to greatly

speed up discoveries. This being said, artificial intelligence will only take us so far.

A large number of different potential causes have been identified which may lead to

ASD, and although ML may be able to identify differences between groups, it will
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likely fall short of being able to theorise why these differences exist. For that, natural

intelligence, and methods like those used in this thesis, will be key.

Neuronal energy dynamics is impacted by many of the environmental and ge-

netic correlates of ASD. By modelling the balance between oxidative phosphoryla-

tion and glycolysis in the brain, a picture linking many disparate factors emerges.

Given the importance of energy metabolism in the brain, measurement approaches

that link oxygen supply to electrical activity may be crucial for identifying metabolic

anomalies. The fusion of fNIRS and EEG could play a key role in unveiling addi-

tional markers.

Given the heterogeneity of ASD, it is highly unlikely that a single EEG based

biomarker will suffice for accurate diagnosis. Instead, a spectrum of markers, each

linked to different ASD phenotypes, may provide a more comprehensive assess-

ment. Future studies will require data from large cohorts of individuals with mini-

mal confounding factors such as other comorbidities. By recruiting individuals that

have specific aspects, such as low social communication scores, and matching these

to the underlying electrophysiology, further markers of the condition may be elu-

cidated. By integrating these electroencephalographic signatures, including the one

demonstrated in this paper, with additional measures like fNIRS, the goal of a robust

quantitative assessment of ASD may one day be realised.

Despite a century of research into ASD, the field is still obfuscated by conflicting

results. The application of methods that explicitly account for and accommodate the

physical characteristics of living systems may clarify these inconsistencies and lead

to an accurate quantitative assessment of the condition.
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Here we present an alternative to figure 1 in the main manuscript. Namely, to facilitate the comparison of
both representations, the Fourier transform is now shown in logarithmic scale in figures 1C,D,G,H. By comparing
figure 1 in the main text and supplementary figure 1, it is clear that the logarithmic scale is disadvantageous
to the short-time Fourier transform, which is obtained with linear frequency resolution.

Supplementary Figure 1: Time-frequency analysis illustrated for time-localised versus fixed-window approaches.
(A) Generated time-series of Poincaré oscillators as defined by Eq. (5) in the main manuscript, with additive
1/f noise and ξr = 0.005. A window of size 12.6 s centred at 120 s is drawn above the time-series. The arrows
above the window illustrate that the window slides across the time-series when the short-time Fourier transform
(STFT) is applied. (B) The same time-series as in A, with three wavelets with frequency resolution f0 = 2
at different frequencies (0.5 Hz, 1 Hz and 1.7 Hz) drawn above the time-series. The wavelets slide across the
time-series when the WT is applied. The dots between the wavelets illustrates that there is one wavelet for each
frequency, in our case 288 wavelets. (C) The STFT amplitude found at 120 s. Note the logarithmic frequency
scale. (D) The STFT phase found at 120s projected onto the frequency-phase plane. (E) The WT amplitude
found at 120s. The orange dots correspond to the frequencies of the three wavelets in B. Note the logarithmic
frequency resolution of the WT. (F) The WT phase found at 120s projected onto the frequency-phase plane. (G)
The STFT amplitude for the whole 400s time-series. A line is drawn at 120s. Note the logarithmic frequency
scale. (H) The STFT phase for 10s of the time-series. (I) the WT amplitude for the whole 400s time-series. (J)
The WT phase for 10s of the time-series.
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1 Introduction

This document provides supplementary material for “Frontal connectivity in children with autism spec-
trum disorder”. The procedures and parameters used to generate illustrative models in the paper are
given in section 2. Section 3 describes the preprocessing that was performed on the measured EEG
signals. An example using real data to illustrate why phase, rather than amplitude-weighted, measures
were chosen for the investigation is provided in section 4. In section 5, the statistical methods used, and
the reasoning behind their application, are described. This includes the group medians and Friedman’s
test results, which confirm that there is consistency across the repeats for each person. Additional details
pertaining to the effect sizes are are given in section 6. Section 7 demonstrates the results when control-
ling for relaxation aids in the resting state. The classification analyses performed are described in section
8. Following this, section 9 provides violin plots for each of the repeats to highlight the distribution of
the data across all of the segments in the Blackpool results. Finally, section 10. gives further analysis of
the validation dataset.

2 Model procedure and parameters

Two models were employed to demonstrate the methods used in the paper; they relate to Figs. 1. and
2. of the main text.

2.1 Wavelet phase coherence (WPC) model

Wavelet phase coherence assesses the degree to which a pair of oscillatory processes share a common
phase evolution. To demonstrate cases which display both high and low coherence, a pair of time series
were numerically generated.

The first series, x1(t) contains two time-varying oscillatory modes centred at frequencies ω1 = 5Hz
and ω2 = 9.5Hz. The modulation frequency of these modes is ωm1 = 0.005Hz and ωm2 = 0.015Hz, while
the amplitudes of modulation are A1 = 2, A2 = 8. The following differential equation for the phases of
the system is solved using the fourth-order Runge-Kutta approach (RK4). A total time of 400 seconds
was iterated over, with a time step of 0.005s for each oscillatory mode to determine the phases, αi,
present in the system at each time.

α̇i = ω0i(t) = ωi +Ai sin(ωmit) (1)

These derived phases are then used to generate the signal with two independent modes, such that,

x(t) = 5 cos(α1t) + 5 cos(α2t) + η(t), (2)

where η is an additive pink ( 1f ) noise term. The noise was obtained using the Matlab built-in pinknoise
function, with the output being multiplied by a factor of 150.

The above enables the user to generate a signal with two oscillatory modes. To enable the juxtaposi-
tion of coherence both with and without a constant phase difference, a further time series is needed. As
such, an additional time series was generated, which lacked the high frequency oscillatory mode for the
first 200s. This initial series was subsequently concatenated with another 200s time series, simulated with
both modes. This concatenated time series is represented by the orange lines in Fig.1A, B of the main
text. and is also represented in the time/frequency domain (Fig.1C main text), while its time-averaged
power is given in Fig.1D (main text). The phases of this signal are also represented over a short interval
in the orange lines of Figs. 1E, F in the main text.

To evaluate the time/frequency representation of Fig. 1C, a Morlet wavelet was used with a frequency
resolution parameter of F0 = 4. The wavelet transforms of both the aforementioned signals served as
inputs to the coherence calculation.

2.2 Dynamical Bayesian inference (DBI) Model

While the WPC model as outlined above only needed to demonstrate the presence of oscillatory modes,
the DBI model needed to illustrate a coupling between time series. A total period of 1000 seconds were
simulated across with a time step of 0.03s using RK4 to find the phases of a pair of unidirectionally
coupled phase oscillators. The frequencies of these modes do not vary in time and ω1 = 6Hz, ω2 = 9Hz,
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ϕ̇1 = ω1 + η(t),

ϕ̇2 = ω2 + q2 (ϕ1, ϕ2) = ω2 + E cos (ϕ1 + π/2.5) + η(t).
(3)

Where the noise η, in this case, is white Gaussian and applied to the instantaneous frequency, imple-
mented using the built-in wgn Matlab function. In the above example, E, is the coupling strength
between the oscillators and can be varied to increase or decrease the amount of information transfer
between the systems. This is shown in Fig. 2 of the main text.

Once this ground truth had been established, the couplings were verified using dynamical Bayesian
inference. The parameters applied for the DBI are as follows: window size = 100s, propagation constant
= 0.2 and the overlap parameter = 1 (no overlap between windows).

3 Signal preprocessing

During the collection of the Blackpool data, two different reference electrode positions were used. To
account for the resultant bias in recording, the data were re-referenced to the common average. This
involved subtracting the average sum of all 19 electrodes from each individual probe’s time series. The
equations describing this procedure are:

VCA =
1

N

N∑

i

Vi, (4)

V ′
i = Vi − VCA, (5)

where VCA is the common average, Vi is the time series for the individual probes, V ′
i is the rereferenced

time series, andN is the total number of electrodes (N = 19). After the time series were rereferenced, they
were bandpassed with a Butterworth filter of order proportional to the frequency band of interest, and
then detrended by subtracting the 3rd order polynomial. This was done using the MATLAB functions
bandpass and detrend respectively.

4 Movement artefacts and amplitude weighting

The methods used throughout this investigation are independent of amplitude and instead, focus solely
on phase dynamics. Alternative measures that also incorporate amplitude information are frequently
employed to evaluate functional connectivity. Among these measures, one of the most extensively utilised
is amplitude-weighted phase coherence (AWPC) [6, 7]. This method considers both the amplitude and
phase at each point in the time/frequency domain to calculate coherence. For a pair of time series AWPC
is defined as the normalised wavelet cross-spectrum at each point in time and frequency [6],

AWPC(t, f) =
|W12(t, f)|

[W11(t, f) ·W22(t, f)]
1/2

. (6)

Where W12 is the wavelet cross-spectrum, and W11, W22 are the auto-spectra. As before, a value of
1 is found for perfect coherence, while 0 represents a complete lack of coherence. The key distinction
between these approaches is that a simultaneous amplitude change for a pair of time series will cause an
increase in the AWPC, but not in the WPC [1, 5]. This makes WPC more resistant to sudden amplitude
perturbations – such as those arising from movement artefacts – than AWPC [1].

Data containing a clear movement artefact were analysed to illustrate the differences between these
methods. These time series were selected by visual inspection of the large amplitude spike, which was
concurrently present across all probes. This spike is likely unrelated to the underlying neural dynamics,
and so obfuscates approaches that incorporate amplitude information.

Despite the pervasive effect of the movement artefact on the data, Fig. 1. illustrates that WPC
remains resilient as a representation of shared phase information between the signals. In contrast, the
amplitude dependence of AWPC suffers a significant susceptibility to simultaneous amplitude changes,
exhibiting a peak at around 90 seconds that coincides with the mutual spike. In addition, EEG data are
particularly affected by noise and amplitude effects due to, for example, differential signal attenuation
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Figure 1: Movement artefact present the ASD time series (subject 4, segment 3). A pair of EEG
time series from probes F3 (A) and F4 (B), each containing a large artefact. Their respective wavelet
transforms (C, D) further indicate a multiscale spike in power. Both wavelet transforms (C, D) serve
as inputs for the respective coherence calculations (E, F). The time-localised phase coherence (E) is
fairly resilient against this perturbation when compared to its amplitude-weighted counterpart (F). The
time-localized coherence was calculated by subtracting the 50th percentile of intersubject surrogates (72
for the control group and 156 for the ASD group). Any coherence values that fell below this threshold
were set to zero.

arising from the varying separations of EEG electrodes from the cortical surface. The relative resilience of
WPC to amplitude effects suggests that it may provide a more appropriate approach for the investigation
of functional connectivity.

A Morlet wavelet with a frequency resolution parameter of F0 = 2 was used. The mean value of 156
intersubject surrogates at each point in the time/frequency domain was used to reduce the amount of
spurious time-localised coherence that was detected. Despite this, a larger degree of seemingly coherent
behaviour is present in the AWPC compared to the PC, due to the amplitude weighting, which detects
a simultaneous spike in both data. Phase coherence is robust against this perturbation.

5 Statistical tests

An assumption of normally distributed data is needed when using parametric approaches; however, the
results were generally not normally distributed. Given this lack of Gaussianity, non-parametric tests
were applied to compare differences between and within groups.

5.1 Wilcoxon rank-sum test

To assess differences between the groups while acknowledging the non-normal distribution of the data, the
Wilcoxon rank-sum test was used. The null hypothesis was that there was no difference in connectivity
between the CG and ASD groups.

All of the results from the ASD and CG groups were first ranked. The summation of all the ranks for
each group was then calculated. The difference between these sums was then used to assess the statistical
significance of any difference between groups. A p-value could then be calculated, and if this fell below
0.05, then we were able to reject the null hypothesis.
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5.2 Friedman’s test for repeated measures

Friedman’s test serves as a non-parametric alternative to the repeated measures ANOVA, aiming to
uncover variations among the same subjects over multiple time points. Here, we utilise this test to
assess the consistency of results for all subjects across different time intervals, ensuring that results are
consistent across repeats. This consistency is vital for two reasons. First, in the context of diagnostic
tests, biomarkers must be stable regardless of when a measurement is taken; our analysis seeks to assess
this required consistency. Secondly, this approach allows us to see if we can treat the results as repeated
measures.

As with the Wilcoxon test outlined above, the data are ranked. In this case, however, they were
ranked across the repeats at a given probe pair for each subject. The sum of each column, corresponding
to the rank-sum of each repeat, is then taken. These rank-sums are then compared to assess whether
there are significant differences at different measurement times.

6 Effect sizes

A post hoc analysis was conducted to determine the effect size using Cohen’s d [2]. This metric relies on
the means of the two groups being compared, denoted as m1 and m2, along with the pooled standard
deviation sd which is calculated as

sd =

√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2
, (7)

where n1 and n2 represent the sample sizes of the two groups, and SD1 and SD2 denote their respective
standard deviations. Cohen’s d is then computed from the formula:

d =
m1 −m2

sd
. (8)

In general, an effect size of d = 0.5 is considered medium, while d = 0.8 is considered large.

6.1 Study sensitivity

The study’s sensitivity was assessed using G*Power [3], with a screenshot of the test being presented in
Fig. 2. The analysis incorporated a power of 0.5, a significance level of 0.05, and the sample sizes (13
ASD and 9 CG) utilized in the investigation as input parameters.

As depicted in Fig. 2, the exploratory nature of this study resulted in a large effect size of 1.387,
due to the modest sample sizes. However, as demonstrated later, many of the repeats surpassed this
threshold.

6.2 Wavelet phase coherence effect size

Effect sizes for WPC were initially calculated using the Blackpool dataset. Specifically, the analysis
focused on four probe pairs that demonstrated the most significant differences between groups. These
probe pairs were evaluated across the six data segments, yielding Cohen’s d values ranging from 1.051
to 1.884, with a mean of 1.393. All observed effect sizes in the frontal network exceeded 1 and are shown
in Tab. 1.

Table 1: Effect sizes for all segments in the inter-hemispheric frontal network evaluated across the medium
frequency band (3.5-12 Hz) between groups. The numbered sections 1-5 were found chronologically, while
the video segment reflects data intervals selected for their relative lack of movement artefacts.

From/To Effect sizes
1 2 3 4 5 Video

Fp1 - Fp2 1.051 1.295 1.133 1.182 1.191 1.232
F3 - Fp2 1.376 1.884 1.476 1.587 1.502 1.554
Fp1 - F4 1.273 1.227 1.232 1.630 1.239 1.266
F3 - F4 1.357 1.534 1.526 1.883 1.492 1.311
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Figure 2: Screenshot of the G*power software demonstrating the input and output parameters used.
Given an input of 9 control group individuals and 13 participants with autism spectrum disorder and
a two tailed distribution. The parent distribution is set to min ARE (minimum asymptotic relative
efficiency) to optimise the analysis. The alpha error probability (α err prob) was set to 0.05; this is the
significance level of the test. The power, 1–beta error probability (1-β err prob) is the probability of not
detecting a true effect and was set to 0.8 (meaning there is an 80 % chance of detecting a true event if
one exists). For our purposes, the important output is the effect size, d, which indicates the value that
effect sizes must be larger than given the sample sizes and singnificance level.
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Effect sizes from the HBN network data were also calculated. For reasons explained in section 10.2, the
entire age group (5-15) and older age group (9-15) were considered separately. Tab 2 presents the effect
sizes for each probe pair that exceeded a significance threshold of 0.01 in the older group when applying
the Wilcoxon rank-sum test.

Table 2: Effect sizes for all segments in the Healthy Brain Network evaluated across the medium frequency
band (3.5-12 Hz) for the older (9-15 years-old) group. The probe pairs indicated here all had a p-value
less than 0.01 from a Wilcoxon rank-sum test.

C3-PZ F3-O1 F3-O2 F3-T3 F3-T6 O1-P4 O2-P3
0.63 0.70 0.86 0.69 0.79 0.70 0.65

O2-T3 O2-T4 P3-P4 P-3PZ P3-T4 P3-T6 T3-T4
0.78 0.86 0.69 0.65 0.80 0.71 0.75

As elaborated upon in section 10.2, there was more significance in the older group, likely due to their
increased ability to tolerate a more demanding measurement protocol. Coherence between probe pair
O2-T4 demonstrated the largest effect size (0.86 in the older group). Interestingly however, significance
was retained when considering the 5-15 years-old group. Tab. 3 demonstrates the effect sizes in this
case.

Table 3: Effect sizes for all segments in the Healthy Brain Network evaluated across the medium frequency
band (3.5-12 Hz) for the older (5-15 years-old) group. The probe pairs indicated here all had a p-value
less than 0.01 from a Wilcoxon rank-sum test.

F3-O2 F7-O2 F7-Pz O2-T3 O2-T4 O2-T6
0.48 0.44 0.49 0.46 0.62 0.27

6.3 Dynamical Bayesian inference effect size

For the DBI, eight directional probe pairs in the frontal network were evaluated across six time segments.
The range of Cohen’s d -values spanned from a minimum of 0.554 to a maximum of 2.18, with a mean
value of 1.17. These are presented in Tab. 4

Table 4: Effect sizes across retests for frontal networks evaluated across the medium frequency band
(3.5-12 Hz) between groups. The numbered sections, 1-5, were found chronologically, while the video
segment reflects data intervals selected for their relative lack of movement artefacts.

From/To Effect sizes
1 2 3 4 5 Video

Fp1 → Fp2 0.834 1.318 1.312 1.027 1.126 1.165
Fp1 ← Fp2 0.690 1.273 1.187 1.344 1.450 1.519
Fp1 → F4 0.772 1.664 1.178 0.783 1.081 1.473
Fp1 ← F4 1.025 1.507 1.081 1.175 1.326 1.118
F3 → F4 1.115 1.170 0.750 0.966 0.852 0.554
F3 ← F4 0.817 1.481 1.023 1.068 0.766 0.958
F3 → Fp2 1.119 1.654 0.993 1.262 1.033 1.333
F3 ← Fp2 0.848 2.178 1.377 1.614 1.542 1.664

Despite the relatively modest sample sizes employed in this study, the observed differences, as indicated
by Cohen’s d, were fairly large. This also motivates further exploration of the suggested electroencephalo-
graphic measures with larger sample sizes to enhance the validity of findings.

7 Controlling for relaxation aids in resting state measurements

In this study, a resting-state paradigm was employed. Some participants occasionally found it difficult to
maintain an eyes-open, restful state during measurements. To help them remain relaxed, either bubbles
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or a smartphone were used as a focus, with these aids used slightly more often in the ASD group than in
the control group (46% in ASD vs. 22% in CG). To ensure these interventions did not bias the results,
the analysis was repeated after controlling for this factor. Specifically, ASD participants 12, 11, and
10 (who used the screen) and participant 2 (who used bubbles) were excluded from the analysis. This
adjustment resulted in 9 participants per group, with no bubbles used in either group and both groups
having 22% of participants using the screen in the resting state. The same analysis was performed as in
the main manuscript.

Figure 3: Coherence results across all segments when controlling for resting state relaxation aids (A)
Headmap representing the group median coherence averaged across the theta and alpha bands following
the subtraction of intersubject surrogates between probes for the video segment in the autism spectrum
disorder (ASD, N = 9, male) group (B) and the control group (CG, N = 9, male). (C) Median effective
coherence between the measured EEG signal locations evaluated across the medium frequency band
(3.5-12 Hz) in the video segment. Blue violins represent CG while red indicates ASD. The median of
each distribution is indicated by the white circle and the box indicates the interquartile range. Each
coloured datapoint represents the mean coherence across the theta and alpha bands for each participant.
The Wilcoxon rank-sum test was used to evaluate the p-values (N = 9 ASD, N = 9 CG). (D) The
effective coherence results for each of the sequential, and video, segments. Filled circles indicate that the
segment was chosen sequentially, while a cross represents video acquired segments. Each line represents
a different participant across repeats (N = 9 ASD, N = 9 CG for each segment). In this case, the probe
pair F3-F4 is illustrated, for the ASD (D) and CG (E) cases.

The same pattern was observed in the coherence results as had been obtained when using relaxation
aids as described in the main manuscript; and the same was true for the dynamical Bayesian inference re-
sults (Figs. 3 and 4 respectively). To ensure the results were consistent across the segments investigated,
this analysis was repeated.
The same pattern, with significance regardless of the time measurements were conducted, were found
when the relaxation states were matched. The slightly lower p-values (Tab. 5 for coherence and Tab. 6
for Bayesian) are likely due to the reduced statistical power as we have decreased the size of the ASD
group.

Bayesian results followed the same trend. With slightly lower significance likely due to the reduced
sample size, but the same patterns identified. Effect sizes were subsequently checked for both analysis
approaches and across the segments (Tab. 7 and 8).
Generally, our results were very similar, indicating that the resting state paradigm made little difference.
The small changes to p-values can be explained as the smaller groups hold less statistical strength.
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Figure 4: Absolute and p-values for the dynamical Bayesian inference coupling time in the groups con-
trolling for resting state. (A, B, D, E) Headmaps representing the group median percentage coupling time
between probes for the video segment in the autism spectrum disorder (ASD, N = 9, male participants)
group (orange) and the control group (CG, N = 9, male participants) (blue). The 95th percentile of
intersubject surrogates was applied to remove the effect of spurious interactions. (C, F) Percentage time
coupled between the measured EEG signal locations evaluated across the medium frequency band (3.5-12
Hz) in the video segments, from the left to right (C), and right to left (F) hemisphere. The Wilcoxon
rank-sum test was used to assess group differences (N = 9 ASD, N = 9 CG). Blue violins represent
CG while red indicates ASD. The Wilcoxon rank-sum test was used to evaluate the p-values. (G-J) The
coupling time for each of the sequential, and video, segments. Each line represents a different participant
across repeats (N = 9 ASD, N = 9 CG for each segment). Filled circles indicate that the segment
was chosen sequentially, while crosses represent video acquired segments. In this case, the bidirectional
coupling between F3 and F4 is illustrated, for the ASD (G, I) and (H, J) cases.
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Table 5: p values for all segments in the inter-hemispheric frontal network evaluated across the medium
frequency band (3.5-12 Hz) between groups when the resting state relaxation aids are matched. The
numbered sections 1-5 were found chronologically, while the video segment reflects data intervals selected
for their relative lack of movement artefacts.

From/To p-values
1 2 3 4 5 Video

Fp1 - Fp2 0.024 0.014 0.024 0.014 0.006 0.008
Fp1 - F4 0.014 0.024 0.019 0.008 0.024 0.006
F3 - Fp2 0.050 0.011 0.014 0.011 0.008 0.024
F3 - F4 0.094 0.011 0.019 0.024 0.031 0.04

Table 6: p-values across retests for frontal networks evaluated across the medium frequency band (3.5-
12 Hz) between groups when the resting states are matched. The numbered sections, 1-5, were found
chronologically, while the video segment reflects data intervals selected for their relative lack of movement
artefacts.

From/To p-values
1 2 3 4 5 Video

Fp1 → Fp2 0.052 0.012 0.008 0.012 0.011 0.007
Fp1 ← Fp2 0.057 0.001 0.020 0.006 0.013 0.001
Fp1 → F4 0.098 0.0002 0.029 0.037 0.023 0.001
Fp1 ← F4 0.072 0.001 0.065 0.009 0.013 0.052
F3 → Fp2 0.095 0.004 0.141 0.042 0.141 0.001
F3 ← Fp2 0.098 0.0004 0.020 0.004 0.005 0.003
F3 → F4 0.248 0.007 0.197 0.183 0.013 0.541
F3 ← F4 0.0.197 0.001 0.052 0.037 0.141 0.015

Table 7: Median effect sizes for all segments in the inter-hemispheric frontal network evaluated across the
medium frequency band (3.5-12 Hz) between groups when the resting states are matched. The numbered
sections 1-5 were found chronologically, while the video segment reflects data intervals selected for their
relative lack of movement artefacts.

From/To Effect sizes
1 2 3 4 5 Video

Fp1 - Fp2 1.283 1.643 1.430 1.505 1.539 1.679
F3 - Fp2 1.116 1.624 1.335 1.440 1.392 1.490
Fp1 - F4 1.198 1.147 1.132 1.405 1.069 1.287
F3 - F4 1.096 1.408 1.366 1.651 1.249 1.254

Table 8: Dynamical Bayesian inference effect sizes across retests for frontal networks evaluated across the
medium frequency band (3.5-12 Hz) between groups when the resting states are matched. The numbered
sections, 1-5, were found chronologically, while the video segment reflects data intervals selected for their
relative lack of movement artefacts.

From/To Effect sizes
1 2 3 4 5 Video

Fp1 → Fp2 0.998 1.523 1.462 1.219 1.343 1.382
Fp1 ← Fp2 0.775 1.430 1.477 1.578 1.601 2.110
Fp1 → F4 0.850 2.281 1.226 1.312 1.355 2.279
Fp1 ← F4 0.992 1.863 0.924 1.249 1.091 1.131
F3 → F4 0.756 1.294 0.668 0.835 0.821 0.511
F3 ← F4 0.587 1.564 0.893 1.039 0.686 1.373
F3 → Fp2 0.774 1.688 0.822 1.030 0.781 1.635
F3 ← Fp2 0.782 3.349 1.212 1.544 1.370 1.834
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8 Classification

To asses the strength of this approach to discriminate between groups, a simple classification was per-
formed using the J48 decision tree algorithm in the Waikato Environment for Knowledge Analysis
(WEKA) software [4].

In the Blackpool data video segment a classification accuracy of 86% was achieved using only F3-F4
coherence and the coupling Fp2→ F3 as attributes and leave one out cross validation. Table 9 indicates
the confusion matrix for this case.

Table 9: Confusion matrix for for Blackpool video segment (ASD=13, CG=9). The columns indicate
what the rows were classified as, for example, 8 CG participants were correctly classified as CG, while
one was incorrectly classified as ASD via this approach.

CG ASD
CG 8 1
ASD 2 11

The same attributes were used in the other segments to yield confusion matrices for each of the segments
investigated (Tab. 10).

Table 10: Confusion matrix for Blackpool sequential segments (ASD = 13, CG = 9). The columns
indicate what the rows were classified as.

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5
CG ASD CG ASD CG ASD CG ASD CG ASD

CG 9 0 8 1 9 0 8 1 8 1
ASD 5 8 2 11 3 10 6 7 6 7

In the Healthy brain network case the data was split into a younger (5-9) and older (9-15) year-old age
range groups, for reasons explained in Section 10.2. Classification analysis was subsequently performed
on the older age group, with an accuracy of 80% achieved using only coherence between F3-O2, T3-T4
and T3-F3 as attributes. Table 11 indicates the confusion matrix for this case.

Table 11: Confusion matrix for for Blackpool video segment (ASD = 31, CG = 33). The columns indicate
what the rows were classified as, for example, 29 CG participants were correctly classified as CG, while
four were incorrectly classified as ASD.

CG ASD
CG 29 4
ASD 9 22

9 Additional results

While the main results pertaining to the p-values are given in the main paper, the associated violin plots
and group medians are given below to indicate the distributions of the data for each of the sequential
time intervals. Additionally, the results of the power analysis are presented.

9.1 Power

While the focus of this investigation was on the connectivity of the frontal region, a preliminary analysis
was also performed to assess the differences in power between groups using the wavelet transform, as
outlined in the main body. The differences between groups are presented via the p-values generated with
the Wilcoxon rank-sum test, analogous to Tab. 3 in the main manuscript.

As demonstrated in Tab. 12, none of the power analyses yielded significant differences, this is in
contrast to the consistent variations in connectivity found across the frontal region. The movement
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Table 12: Reported p-values for power differences between groups across all segments in the frontal
electrodes evaluated across the medium frequency band (3.5-12 Hz). The numbered sections 1-5 were
found chronologically, while the video segment reflects data intervals selected for their relative lack of
movement artefacts. Bold values indicate a p-value < 0.05.

Probe Power p-values
1 2 3 4 5 Video

F3 0.893 0.593 0.593 0.317 0.285 0.640
F4 0.841 0.285 0.689 0.125 0.256 0.385
Fp1 0.423 0.947 0.548 0.548 0.689 0.463
Fp2 0.463 0.504 0.548 0.463 0.640 1.000

artefacts that often bedevil EEG measurements may be responsible for this, as they have a substantially
greater affect on amplitude than phase-based measures.

The power measurements also demonstrated far less consistency across repeats, as demonstrated in
Fig. 5.

Figure 5: The significant (p < 0.05, Wilcoxon rank-sum test) coherence (top row) and power (bottom
row) differences between groups (ASD = 13, CG = 9) across the sequential and video segments. The
columns are in order, so that the first column corresponds to the first segemnt etc, until the sixth column,
which represents the video segment.

In each of the repeats, the frontal network demonstrated greater coherence in the video group. In contrast,
although the control group generally expressed greater power than the ASD group, the locations of the
probes that were significantly different between groups were not consistent across repeats.

9.2 Wavelet phase coherence

Before presenting the violin plots of each segment, the median effective coherence values and associated
Friedman test p-value for given probe pairs are indicated. The control group data are given in Tab. 13
and, for comparison, those for the ASD group are given in Tab. 14.

Table 13: Median effective coherence values for all segments in the inter-hemispheric frontal network
evaluated across the medium frequency band (3.5-12 Hz) for the CG. The numbered sections 1-5 were
found chronologically, while the video segments reflect data intervals selected for their relative lack of
movement artefacts. The final column gives the Friedman test results.

From/To Median effective coherence Friedman test
1 2 3 4 5 Video p-value

Fp1 - Fp2 0.608 0.630 0.628 0.626 0.642 0.635 0.763
F3 - Fp2 0.210 0.245 0.224 0.215 0.270 0.205 0.570
Fp1 - F4 0.186 0.178 0.202 0.188 0.196 0.181 0.968
F3 - F4 0.187 0.204 0.213 0.215 0.204 0.196 0.490
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At no point did the p-value from the Friedman test fall below the threshold of 0.05, ensuring that,
subject-wise, these measures were consistent across the sequential measurements.

Table 14: Median effective coherence values for all segments in the inter-hemispheric frontal network
evaluated across the medium frequency band (3.5-12 Hz) for the ASD group. The numbered sections
1-5 were found chronologically, while the video segment reflects data intervals selected for their relative
lack of movement artefacts. The final column gives the Friedman test results.

From/To Median effective coherence Friedman test
1 2 3 4 5 Video p-value

Fp1 - Fp2 0.449 0.406 0.399 0.414 0.383 0.403 0.899
F3 - Fp2 0.050 0.078 0.073 0.057 0.054 0.086 0.967
Fp1 - F4 0.034 0.040 0.044 0.047 0.042 0.037 0.791
F3 - F4 0.069 0.058 0.099 0.089 0.053 0.099 0.370

The distributions of the data for each of the sequential segments are given in Figs. 6 - 10.

Figure 6: Effective coherence values between the measured EEG signal locations for the first sequential
segment. The Wilcoxon rank-sum test was used to assess coherence differences between groups (N =
13 ASD, N = 9 CG). Orange violins represent the ASD group, while blue indicates CG. The white
circles illustrate group median values, while the coloured dots represent the effective coherence for each
participant in the theta and alpha band between the indicated probe pair.
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Figure 7: Effective coherence values between the measured EEG signal locations for the second sequential
segment. Wilcoxon rank-sum test was used to assess coherence differences between groups (N = 13 ASD,
N = 9 CG). Orange violins represent the ASD group, while blue indicates CG. The white circles illustrate
group median values, while the coloured dots represent the effective coherence for each participant in
the theta and alpha band between the indicated probe pair.

Figure 8: Effective coherence values between the measured EEG signal locations for the third sequential
segment. Wilcoxon rank-sum test was used to assess coherence differences between groups (N = 13 ASD,
N = 9 CG). Orange violins represent the ASD group, while blue indicates CG. The white circles illustrate
group median values, while the coloured dots represent the effective coherence for each participant in
the theta and alpha band between the indicated probe pair.

Figure 9: Effective coherence values between the measured EEG signal locations for the fourth sequential
segment. Wilcoxon rank-sum test was used to assess coherence differences between groups (N = 13 ASD,
N = 9 CG). Orange violins represent the ASD group, while blue indicates CG. The white circles illustrate
group median values, while the coloured dots represent the effective coherence for each participant in
the theta and alpha band between the indicated probe pair.
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Figure 10: Effective coherence values between the measured EEG signal locations for the fifth sequential
segment. Wilcoxon rank-sum test was used to assess coherence differences between groups (N = 13 ASD,
N = 9 CG). Orange violins represent the ASD group, while blue indicates CG. The white circles illustrate
group median values, while the coloured dots represent the effective coherence for each participant in
the theta and alpha band between the indicated probe pair.

9.3 Dynamical Bayesian inference

As with the WPC, we also illustrate the median values of the coupling time between probes. First we
consider the control group (Tab. 15) and then the ASD group (Tab. 16).

Table 15: Median coupling duration across retests for frontal networks evaluated across the medium
frequency band (3.5-12 Hz) for the control group. The numbered sections 1-5 were found chronologically,
while the video segment reflects data intervals selected for their relative lack of movement artefacts. The
final column indicates the Friedman test p-values, none of which were significant

From/To Coupling duration (%) Friedman test
1 2 3 4 5 Video p-value

Fp1 → Fp2 98.2 98.2 98.2 98.2 96.5 98.2 0.782
Fp1 ← Fp2 98.2 96.5 98.2 100 96.5 98.2 0.478
Fp1 → F4 22.8 33.3 33.3 33.3 31.6 38.6 0.896
Fp1 ← F4 29.8 28.1 22.8 29.8 22.8 22.8 0.800
F3 → F4 24.6 24.6 19.3 21.1 24.6 14.0 0.360
F3 ← F4 12.3 22.8 24.6 21.1 22.8 26.3 0.999
F3 → Fp2 22.8 29.8 14.0 26.3 28.1 15.8 0.793
F3 ← Fp2 29.9 43.9 33.3 35.1 35.1 47.4 0.732

At no point did the p-value from the Friedman test fall below the threshold of 0.05, ensuring that,
subject-wise, these measures were consistent across the sequential measurements.
The average time coupled between frontal probes in the ASD group was consistently reduced in each
sequential segment. As such, the rank-sum test was employed to assess if the difference was statistically
significant across the couplings investigated. Figs. 11 - 15 give this p-value for each segment. A table
containing all p-values is given in the main text. The violin plots also demonstrate the distributions of
the data.
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Table 16: Median coupling duration across retests for frontal networks evaluated across the medium
frequency band (3.5-12 Hz) for the ASD group. The numbered sections 1-5 were found chronologically,
while the video segment reflects data intervals selected for their relative lack of movement artefacts. The
final column indicates the Friedman test p-values, none of which were significant

From/To Coupling duration (%) Friedman test
1 2 3 4 5 Video p-value

Fp1 → Fp2 57.9 50.9 61.4 70.2 59.6 54.4 0.332
Fp1 ← Fp2 71.9 70.2 63.2 66.7 61.4 66.7 0.612
Fp1 → F4 8.77 5.26 12.3 8.77 5.26 7.02 0.622
Fp1 ← F4 12.3 7.02 8.77 7.02 8.77 10.5 0.811
F3 → F4 12.3 8.77 14.0 12.3 10.5 12.3 0.835
F3 ← F4 7.02 8.77 12.3 15.8 12.3 8.77 0.834
F3 → Fp2 14.0 10.5 8.77 12.3 12.3 10.5 0.795
F3 ← Fp2 14.0 8.77 8.77 8.77 8.77 10.5 0.520

Figure 11: Percentage time coupled between EEG probes in the first sequential segment. Wilcoxon rank-
sum test was used to assess coupling time differences between groups (N = 13 ASD, N = 9 CG). A)
Signals from the left to the right hemisphere. B) Signals from the right to the left hemisphere. p-values
indicating differences between the groups are indicated in the figures. Blue violins represent CG while
orange indicates ASD. The white circles illustrate group median values, while the coloured dots represent
the coupling time for each participant in the theta and alpha band between the indicated probe pair.
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Figure 12: Percentage time coupled between EEG probes in the second sequential segment. Wilcoxon
rank-sum test was used to assess coupling time differences between groups (N = 13 ASD, N = 9 CG). A)
Signals from the left to the right hemisphere. B) Signals from the right to the left hemisphere. p-values
indicating differences between the groups are indicated in the figures. Blue violins represent CG while
orange indicates ASD. The white circles illustrate group median values, while the coloured dots represent
the coupling time for each participant in the theta and alpha band between the indicated probe pair.
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Figure 13: Percentage time coupled between EEG probes in the third sequential segment. Wilcoxon
rank-sum test was used to assess coupling time differences between groups (N = 13 ASD, N = 9 CG).
A) Signals from the left to the right hemisphere. B) Signals from the right to the left hemisphere. p-
values indicating differences between the groups are indicated in the figures. Blue violins represent CG
while orange indicates ASD. The white circles illustrate group median values, while the coloured dots
represent the coupling time for each participant in the theta and alpha band between the indicated probe
pair.
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Figure 14: Percentage time coupled between EEG probes in the fourth sequential segment. Wilcoxon
rank-sum test was used to assess coupling time differences between groups (N = 13 ASD, N = 9 CG). A)
Signals from the left to the right hemisphere. B) Signals from the right to the left hemisphere. p-values
indicating differences between the groups are indicated in the figures. Blue violins represent CG while
orange indicates ASD. The white circles illustrate group median values, while the coloured dots represent
the coupling time for each participant in the theta and alpha band between the indicated probe pair.
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Figure 15: Percentage time coupled between EEG probes in the fifth sequential segment. A Wilcoxon
rank-sum test was used to assess coupling time differences between groups (N = 13 ASD, N = 9 CG). A)
Signals from the left to the right hemisphere. B) Signals from the right to the left hemisphere. p-values
indicating differences between the groups are indicated in the figures. Blue violins represent CG while
orange indicate ASD. The white circles illustrate group median values, while the coloured dots represent
the coupling time for each participant in the theta and alpha band between the indicated probe pair.
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10 Healthy Brain Network

Additional analysis performed on the Healthy Brain Network (HBN) dataset is provided here, including
regression and further comparisons across narrow age ranges. Details of the measurements, including
inclusion criteria are also outlined. The statistical breakdown of age, IQ and handedness in the ASD
and control groups are given in Tab. 2 of the main text.

10.1 Inclusion criteria

As the data were derived from an external source, a number of checks were necessary prior to analysis
to ensure they were of sufficient quality. First, the wavelet transforms of each time series recorded, from
each probe of interest, were calculated for each individual. This step identified measurement errors that
had occurred during data collection. The subsequent corrupted datasets were disregarded.

An example of a clearly nonphysical measurement is illustrated in Fig. 16. The average power was
orders of magnitude greater when measurement errors had taken place, and so this was selected as the
primary exclusion criterion.

Figure 16: EEG data where measurement errors had taken place. A) Time series of the data recorded
over 5 minutes. B) Time frequency representation of an EEG signal from the measured data. C) Time-
averaged power.

Finally, the groups were selected to ensure IQ, age and handedness were matched so that there were
no significant differences (p < 0.05) between groups following the application of a Wilcoxon rank-sum
test. A statistical breakdown of the phenotypic data within the HBN groups is given in Tab. 2 of the
main text.
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10.2 Splitting the age groups

The size of the HBN dataset enabled further analysis between two cohorts; one younger (5-9 years) and
one older (9-15 years). Here, we compare both the global and local coherence across various age ranges.
For comparison, additional analysis of the 5-15 group is also presented.

Figure 17: Total global coherence for the 5-15 age range. (A) Median total global coherence for the
ASD (orange) and CG (blue) individuals. Shaded areas represent the 25th and 75th percentiles, while
the solid lines indicate group medians.The Wilcoxon rank-sum test was applied between the groups at
each frequency (N = 67 ASD, N = 66 CG). Black lines plotted above the medians indicate a p - value
less than 0.05. In this case, there were no significant differences at any frequency. (B) Violin plot of
the mean global coherence across the medium frequency (3.5-12 Hz) region. The median is given by
the white circle while the grey box illustrates the interquartile range. Wilcoxon rank-sum test found no
significant difference between groups, with p = 0.0641

Despite the CG group coherene being higher on average in the MF region, and significantly so at certain
frequencies as depicted in Fig. 17A, a rank-sum test across the entire MF band failed to exceed the
significance threshold (p = 0.0641). The global coherence was also not significantly different (p = 0.601)
for the 5-9-year-old group (Fig. 18).

There is, however, a significantly greater global coherence in the medium frequency region for the
9-15-year-old age group (p = 0.029, Fig. 19).
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Figure 18: Total global coherence for the 5-9 age range. (A) Median total global coherence for the ASD
(orange) and CG (blue) individuals. the shaded areas represent the 25th and 75th percentiles while the
lines indicate group medians. groups were assessed at each frequency bin using the Wilcoxon rank-sum
test (N = 37 ASD, N = 33 CG). Black lines plotted above the medians indicate a p- value less than
0.05. (B) Violin plot of the average value across the medium frequency (3.5-12Hz) region. the median
is given by the withe circle and the box illustrates the interquartile range. A Wilcoxon rank-sum test
found no significant difference between groups, with p = 0.601

Figure 19: Total global coherence for the 9-15 age range. (A) Median total global coherence for the ASD
(orange) and CG (blue) individuals. the shaded areas represent the 25th and 75th percentiles while the
lines indicate group medians. groups were assessed at each frequency bin using the Wilcoxon rank-sum
test (N = 31 ASD, N = 33 CG). Black lines plotted above the medians indicate a p- value less than
0.05. (B) Violin plot of the average value across the medium frequency (3.5-12Hz) region. the median is
given by the withe circle and the box illustrates the interquartile range. AWilcoxon rank-sum test found
a significant difference between the groups, with p = 0.029

Considering the above results there seems to be a dependence upon age regarding the level of global
coherence. As this data was collected externally, it is possible that the younger children were less able
to tolerate the battery of tests. As participants must remain still and follow experimental instructions,
it is possible that the older group were better able to tolerate the procedure. This may be responsible
for the differences in the groups. The 9-15 group comparison supports the conclusion of decreased global
connectivity across the entire brain for the medium frequency region.

In the 5-9 group there are also very few local connectivity differences (Fig. 20A). In contrast, both
the 5-15 (Fig. 20B) and 9-15 (Fig. 20C) age ranges have many significant differences, with more in the
latter (18 and 25 percent of possible connections, respectively). This may be further evidence that the
data in the 5-9 age group are obfuscated by a reduced ability to tolerate the measurement procedure.
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Figure 20: Local coherence differences between ASD and CG groups in various age ranges. A Wilcoxon
rank-sum test was performed to compare coherence between groups p-values are plotted when the thresh-
old of 0.05 is exceeded. Orange indicates ASD > CG while blue indicates CG > ASD. (A) The 5-9 age
range (N = 37 ASD, N = 33 CG), only 2 connections were significantly different, meaning 1.3 % of
possible probe pairs. (B) The 5-15 age range (N = 67 ASD, N = 66 CG), 28 connections were signifi-
cant, 18 percent of the possible combinations. (C) The 9-15 age range (N = 31 ASD, N = 33 CG), 38
connections were significant, 25 percent of the possible combinations.
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1. Introduction47

This document provides the supporting information for ‘Methamphetamine alters the circadian oscillator and its couplings on48

multiple scales in Per1/2/3 knockout mice’. Six different cohorts of mice were analysed during the experiments. Details of each49

group are given in Tab. S1.50

Group Strain Analysis length Methamphetamine Age Sex

Heterozygous
PER2::LUC KI and
wild-type littermate

C57BL/6J, N = 7 Per2:luciferase
knockin, N = 1 wild-type litter-mate

30 days No 1.3-9.5 months
5 male,
3 female

Per1/2/3 KO DD
C57BL/6J background with cfos-
shGFP transgene

65 days No 3.5-8.5 months
3 male,
4 female

Per1/2/3 KO DD MA
C57BL/6J or C57BL/6J and
C57BL/6N mixed

65 days Yes 4.5-5.5 months
1 male,
4 female

Per1/2/3 KO multiple
conditions

C57BL/6J or C57BL/6J and
C57BL/6N mixed

139 days Yes - in part 5-8 months
4 male,
4 female

WT 20 day C57BL/6N 20 days No 1.25 months 5 male

WT 21 day C57BL/6J 21 days No 2 months 6 male

Table S1. Details pertaining to each group of mice analysed in the present study. WT = wild-type, KO = knockout, KI = knockin MA implies
methamphetamine administration and Per1/2/3 KO refers to the knocked out Period genes.

Thorough descriptions of each experiment are given in the materials and methods section of the main manuscript. With the51

exception of the ‘multiple conditions’ group, all results presented were measured in constant darkness. Coupling analyses were52

not performed upon the multiple conditions group or the 20, 21 day wild-type groups due to insufficient duration of recording.53

In section 2, actograms representing wheel running activity in all groups are illustrated. Time/frequency representations of54

the same data are illustrated in section 3, revealing multiscale and time-localised behaviour. Section 4 contains the time-averaged55

frequencies of each of the modes observed in all measured mice, detected via ridge extraction. In section 5, the results of56

harmonic analysis are presented for the 30 day heterozygous PER2::LUC knockin and wild-type littermate control group and57

65 day Per1/2/3 KO mice. Section 6 provides the results of bispectal analyses. Finally, the procedures and parameters used to58

generate the phenomenological model used in this paper are given in section 7.59
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2. Actograms60

Actograms of all mice analysed in this study are presented in this section.61

A. Heterozygous PER2::LUC knockin and wild-type littermate 30 day. Here we present the actograms for the heterozygous62

PER2::LUC knockin and wild-type littermate mice in constant darkness for 30 days.63

Fig. S1. Actograms for mouse 1 (A) and mouse 2 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Fig. S2. Actograms for mouse 3 (A) and mouse 4 (the wild-type littermate (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.
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Fig. S3. Actograms for mouse 5 (A) and mouse 6 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Fig. S4. Actograms for mouse 7 (A) and mouse 8 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Samuel J.K. Barnes, Mansour Alanazi, Shin Yamazaki and Aneta Stefanovska 5 of 53



A.1. Full length IR actogram examples. The endogenous circadian rhythm reported for the WT 30 day mice (23.9 ± 0.1 hrs) is64

slightly longer than those typically reported in laboratory mice. This is likely due to the extend amount of time over which65

the mice were exposed to constant darkness. As indicated in the materials and methods section, this group was in constant66

darkness for 65 days before the wheel was released for a final 30 day recording. Infrared motion detectors recorded activity67

throughout, as the actograms of Fig. S5 demonstrate.68

Fig. S5. Actograms from infrared recordings for mouse 3 (A) and mouse 4 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

The initial free-running period of PER2::LUC heterozygous knock-in mice was approximately 23.7 hours, which is consistent69

with typical values observed in C57BL/6 mice. However, in constant darkness, the circadian period of some mice lengthened to70

around 24 hours during the final 30 days. For instance, mouse 3, as shown in Fig. S5, exhibited a modest elongation from an71

initial period of approximately 23.7 hours to 23.8 ± 0.1 hours. Other mice in this group, such as mouse 4 (Fig. S5), displayed a72

more considerable elongation in circadian period to 24.0 ± 0.1 hours.73
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B. Per1/2/3 KO DD. Here we present the actograms for the Per1/2/3 KO DD mice in constant darkness for 65 days.74

Fig. S6. Actograms for mouse 1 (A) and mouse 2 (B) in the Per1/2/3 KO DD group.

Fig. S7. Actograms for mouse 3 (A) and mouse 4 (B) in the Per1/2/3 KO DD group.
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Fig. S8. Actograms for mouse 5 (A) and mouse 6 (B) in the Per1/2/3 KO DD group

Fig. S9. Actogram for mouse 7 in the Per1/2/3 KO DD group
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C. Per1/2/3 KO DD MA. Here we present the wavelet transforms for the Per1/2/3 KO DD MA mice in constant darkness for 6575

days.76

Fig. S10. Actograms for mouse 1 (A) and mouse 2 (B) in the Per1/2/3 KO DD MA group.

Fig. S11. Actograms for mouse 3 (A) and mouse 4 (B) in the Per1/2/3 KO DD MA group.
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Fig. S12. Actogram for mouse 5 in the Per1/2/3 KO DD MA group.

D. Multiple conditions. The actograms from Per1/2/3 KO mice in multiple conditions are presented here.77
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Fig. S13. Actograms for mouse 1 (A) and mouse 2 (B) in the multiple conditions group. The separate modalities are denoted as follows: LD = light/dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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Fig. S14. Actograms for mouse 3 (A) and mouse 4 (B) in the multiple conditions group exposed to methamphetamine. The separate modalities are denoted as follows: LD =
light/dark cycles of period 24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine
administration, LL = constant light, FDD = final condition of constant darkness.
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Fig. S15. Actograms for mouse 5 (A) and mouse 6 (B) in the multiple conditions group. The separate modalities are denoted as follows: LD = light/dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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Fig. S16. Actograms for mouse 7 (A) and mouse (8) in the multiple conditions group. The seperate modalities are denoted as follows: LD = light/dark cycles of period 24 hours,
DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant light,
FDD = final condition of constant darkness.

E. Wild-type 20 day. Here we present the actograms for the wild-type mice in constant darkness for 20 days.78
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Fig. S17. Actograms for mouse 1 (A) and mouse 2 (B) in the wild-type 20 day group.

Fig. S18. Actograms for mouse 3 (A) and mouse 4 (B) in the wild-type 20 day group.
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Fig. S19. Actogram for mouse 5 in the wild-type 20 day group

F. Wild-type 21 day. Here we present the actograms for the wild-type mice in constant darkness for 21 days.79

Fig. S20. Actograms for mouse 1 (A) and mouse 2 (B) in the wild-type 21 day group.
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Fig. S21. Actograms for mouse 3 (A) and mouse 4 (B) in the wild-type 21 day group.

Fig. S22. Actograms for mouse 5 (A) and mouse 6 (B) in the wild-type 21 day group.
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3. Wavelet transforms80

In the main text, specific wavelet transforms (WTs) are illustrated to convey the message. As there is not sufficient space to81

include all WTs, the remainder of them are presented here.82

A. Heterozygous PER2::LUC knockin and wild-type littermate 30 day. Here we present the wavelet transforms for the heterozygous83

PER2::LUC knockin and wild-type littermate mice in constant darkness for 30 days.84

Fig. S23. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 1. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.

Fig. S24. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 2. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.
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Fig. S25. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 3. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.

Fig. S26. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 4. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.
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Fig. S27. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 5. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.

Fig. S28. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 6. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.
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Fig. S29. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 7. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.

Fig. S30. Multiscale oscillatory activity in the heterozygous PER2::LUC knockin and wild-type littermate group, mouse 8. (A) Time-series of wheel rotations per minute (B)
Wavelet transform of the data in (A). (C) Time-averaged power from the wavelet transform.
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B. Per1/2/3 KO DD. Here we present the wavelet transforms for the Per1/2/3 KO DD mice in constant darkness for 65 days.85

Fig. S31. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 1. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S32. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 2. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform. This mouse was not included in the group average calculations as the full 65 day duration of recording was not completed. Nevertheless, it is
included here for completeness and to demonstrate that the same pattern was followed for the duration which was recorded.
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Fig. S33. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 3. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S34. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 4. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.
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Fig. S35. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 5. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S36. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 6. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.
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Fig. S37. Multiscale oscillatory activity in Per1/2/3 KO DD mouse 7. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

C. Per1/2/3 KO DD MA. Here we present the wavelet transforms for the Per1/2/3 KO DD MA mice in constant darkness for 6586

days.87

Fig. S38. Multiscale oscillatory activity in Per1/2/3 KO DD MA mouse 1. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.
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Fig. S39. Multiscale oscillatory activity in Per1/2/3 KO DD MA mouse 2. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S40. Multiscale oscillatory activity in Per1/2/3 KO DD MA mouse 3. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.
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Fig. S41. Multiscale oscillatory activity in Per1/2/3 KO DD MA mouse 4. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S42. Multiscale oscillatory activity in Per1/2/3 KO DD MA mouse 5 exposed to methamphetamine. (A) Time-series of wheel rotations per minute (B) Wavelet transform of
the data in (A). (C) Time-averaged power from the wavelet transform.
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D. Multiple conditions. Here we present the WTs for the Per1/2/3 knockout (KO) mice recorded for 139 days across varying88

conditions.89

Fig. S43. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 1). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The separate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.

Fig. S44. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 2). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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Fig. S45. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 3). (B) Time/frequency representation
across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period 24 hours, DD = constant darkness, MDD = constant darkness with
methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant light, FDD = final condition of constant darkness.

Fig. S46. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 4). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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Fig. S47. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 5). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.

Fig. S48. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 6). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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Fig. S49. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 7). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.

Fig. S50. The effect of different environmental and pharmacological modalities on on the locomotor rhythms of Per1/2/3 KO mice (mouse 8). (A) Time-series recorded for 139
days under varying conditions. (B) Time/frequency representation across all conditions. The seperate modalities are denoted as follows: LD = Light/Dark cycles of period
24 hours, DD = constant darkness, MDD = constant darkness with methamphetamine administration, MLL = constant light with methamphetamine administration, LL = constant
light, FDD = final condition of constant darkness.
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E. Wild-type 20 day. Here we present the wavelet transforms for the wild-type mice in constant darkness for 20 days.90

Fig. S51. Multiscale oscillatory activity in wild-type (20 day) mouse 1. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A). (C) Time-averaged
power from the wavelet transform.

Fig. S52. Multiscale oscillatory activity in wild-type (20 day) mouse 2 from experiment 17B. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in
(A). (C) Time-averaged power from the wavelet transform.
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Fig. S53. Multiscale oscillatory activity in wild-type (20 day) mouse 3 from experiment 17B. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in
(A). (C) Time-averaged power from the wavelet transform.

Fig. S54. Multiscale oscillatory activity in wild-type (20 day) mouse 4 from experiment 17B. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in
(A). (C) Time-averaged power from the wavelet transform.
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Fig. S55. Multiscale oscillatory activity in wild-type (20 day) mouse 5 from experiment 17B. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in
(A). (C) Time-averaged power from the wavelet transform.

F. Wild-type 21 day. Here we present the wavelet transforms for the wild-type mice in constant darkness for 21 days.91

Fig. S56. Multiscale oscillatory activity in wild-type (21 day) mouse 1 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.
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Fig. S57. Multiscale oscillatory activity in wild-type (21 day) mouse 2 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.

Fig. S58. Multiscale oscillatory activity in wild-type (21 day) mouse 3 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.
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Fig. S59. Multiscale oscillatory activity in wild-type (21 day) mouse 4 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.

Fig. S60. Multiscale oscillatory activity in wild-type (21 day) mouse 5 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.
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Fig. S61. Multiscale oscillatory activity in wild-type (21 day) mouse 6 from experiment 20. (A) Time-series of wheel rotations per minute (B) Wavelet transform of the data in (A).
(C) Time-averaged power from the wavelet transform.

4. Ridge extraction92

To determine the time-localised frequencies within each band, ridge extraction was performed. The mean of the resultant93

frequencies were then calculated. The standard deviations across time were also calculated. Tabs. S2-S6 indicate the value of94

each mean frequency of the mode over time, and their variability.95

A. Heterozygous PER2::LUC knockin and wild-type littermate group, 30 day. For the heterozygous PER2::LUC knockin and96

wild-type littermate 30 day group, the group median circadian period was 23.9 ± 0.1 hours, the group median low frequency97

ultradian period was 6.5 ± 0.7 hours and the group median high frequency ultradian period was 0.35 ± 0.26 hours.98

Mouse
Circadian (27-
11hrs)

Low frequency
ultradian(11-
4hrs)

High frequency
ultradian (4-
0.04hrs)

1 23.8 ± 0.2 5.7 ± 0.7 0.35 ± 0.20
2 23.9 ± 0.1 5.4 ± 0.6 0.25 ± 0.16
3 23.8 ± 0.1 7.3 ± 0.8 0.26 ± 0.16
4 24.0 ± 0.1 6.6 ± 0.8 0.35 ± 0.26
5 23.8 ± 0.1 7.9 ± 0.1 0.37 ± 0.31
6 23.9 ± 0.2 6.6 ± 0.9 0.36 ± 0.33
7 24.0 ± 0.1 6.5 ± 0.8 0.36 ± 0.27
8 23.8 ± 0.1 6.0 ± 0.4 0.31 ± 0.25

Table S2. Ridges extracted for each mouse in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group. The reported value
is the mean ± the standard deviation.

B. Per1/2/3 KO DD. For For Per1/2/3 knockout mice, the median circadian period was 18.6 ± 2.2 hours, the median low99

frequency ultradian period was 7.2 ± 0.9 hours and the median high frequency ultradian period was 0.71 ± 0.14 hours.100

Mouse
Circadian (27-
13hrs)

Low frequency
ultradian(11-
4hrs)

High frequency
ultradian (4-
0.04hrs)

1 18.6 ± 2.1 6.9 ± 0.8 0.76 ± 0.15
2 18.7 ± 1.9 7.4 ± 1.0 0.67 ± 0.16
3 18.3 ± 2.4 6.4 ± 0.8 0.56 ± 0.11
4 20.7 ± 2.3 6.9 ± 0.9 0.55 ± 0.09
5 19.1 ± 2.3 8.8 ± 0.8 0.81 ± 0.17
6 18.8 ± 2.1 7.6 ± 1.0 0.87 ± 0.12

Table S3. Ridges extracted for each mouse in the Per1/2/3 KO DD group. The reported value is the mean ± the standard deviation.
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C. Per1/2/3 KO DD MA. For Per1/2/3 knockout mice exposed to methamphetamine, the median circadian period was 21.6 ±101

2.5 hours, the median low frequency ultradian period was 8.8 ± 1.3 hours and the median high frequency ultradian period was102

0.78 ± 0.16 hours. Fig. 1 in the main text contains violin plots of each of the measured frequencies.103

Mouse
Circadian (27-
11hrs)

Low frequency
ultradian(11-
4hrs)

High frequency
ultradian (4-
0.04hrs)

1 21.6 ± 1.7 7.9 ± 1.1 0.83 ± 0.17
2 19.2 ± 2.5 8.8 ± 1.4 0.67 ± 0.16
3 20.8 ± 3.5 8.8 ± 1.0 0.89 ± 0.16
4 22.2 ± 3.3 8.5 ± 1.3 0.59 ± 0.15
5 22.4 ± 1.8 8.8 ± 1.3 0.78 ± 0.18

Table S4. Ridges extracted for each mouse in the per KO DD MA group. The reported value is the mean ± the standard deviation.

D. Wild-type 20 day. For the 20 day WT DD mice, the median circadian period was 23.4 ± 0.2 hours, the median low frequency104

ultradian period was 6.9 ± 1.0 hours and the median high frequency ultradian period was 0.32 ± 0.21 hours.105

Mouse
Circadian (27-
13hrs)

Low frequency
ultradian(13-
4hrs)

High frequency
ultradian (1.8-
0.04hrs)

1 23.5 ± 0.1 6.2 ± 0.8 0.32 ± 0.25
2 23.2 ± 0.4 6.9 ± 1.1 0.25 ± 0.19
3 23.4 ± 0.2 8.0 ± 1.1 0.37 ± 0.20
4 23.4 ± 0.3 7.3 ± 1.0 0.37 ± 0.23
5 23.6 ± 0.2 6.3 ± 0.9 0.26 ± 0.21

Table S5. Ridges extracted for the wild-type mice recorded in constant darkness for 20 days. The reported value is the mean ± the standard
deviation.

E. Wild-type 21 day. For the 21 day WT DD mice, the median circadian period was 23.6 ± 0.2 hours, the median low frequency106

ultradian period was 6.7 ± 0.8 hours and the median high frequency ultradian period was 0.31 ± 0.19 hours.107

Mouse
Circadian (27-
11hrs)

Low frequency
ultradian(11-
4hrs)

High frequency
ultradian (4-
0.04hrs)

1 23.5 ± 0.2 6.1 ± 0.8 0.28 ± 0.19
2 23.6 ± 0.2 7.4 ± 0.8 0.31 ± 0.20
3 23.7 ± 0.5 6.2 ± 0.5 0.22 ± 0.16
4 23.6 ± 0.2 6.2 ± 0.7 0.36 ± 0.18
5 23.5 ± 0.3 7.1 ± 1.5 0.35 ± 0.19
6 23.7 ± 0.3 8.0 ± 0.9 0.31 ± 0.20

Table S6. Ridges extracted for the wild-type mice recorded in constant darkness for 21 days. The reported value is the mean ± the standard
deviation.
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5. Harmonic analysis108

Here we present the harmonic analysis from each mouse analysed. due to the shortness of recordings, harmonic and coupling109

analyses were not attempted in the multiple condition, or wild-type 20 and 21 day datasets. As opposed to the other plots in110

this supporting information, we have represented the additional harmonic plots in continuous, rather than contour, format.111

This is to retain signatures of smaller harmonics that may be difficult to discern following the application of contour lines.112

A. Heterozygous PER2::LUC knockin and wild-type littermate group, 30 day. Here we present the harmonic analysis for each of113

the mice in the heterozygous PER2::LUC knockin and wild-type littermate group. There is clear evidence of a harmonic relation114

from the circadian rhythm. Therefore the activity at 12, 8 and 6 hours is unlikely to be a wholly independent oscillation.115

Fig. S62. Harmonic analysis for mouse 1 (A) and mouse 2 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.
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Fig. S63. Harmonic analysis for mouse 3 (A) and mouse 4 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Fig. S64. Harmonic analysis for mouse 5 (A) and mouse 6 (B) in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.
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Fig. S65. Harmonic analysis for mouse 7 (A) and mouse 8 (B)in the heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

B. Per1/2/3 KO DD. Here we present the harmonic analysis for each of the mice in the 65 day Per1/2/3 KO DD group. There is116

some evidence of a harmonic between 7 and 3.5 hours.117

Fig. S66. Harmonic analysis for mouse 1 (A) and mouse 2 (B) in the Per1/2/3 KO DD group.
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Fig. S67. Harmonic analysis for mouse 3 (A) and mouse 4 (B) in the Per1/2/3 KO DD group.

Fig. S68. Harmonic analysis for mouse 5 (A) and mouse 6 (B) in the Per1/2/3 KO DD group.
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Fig. S69. Harmonic analysis for mouse 7 in the Per1/2/3 KO DD group.

C. Per1/2/3 KO DD MA. Here we present the harmonic analysis for each of the mice in the 65 day Per1/2/3 KO DD MA mice.118

There was no consistent evidence of harmonic relations between the oscillatory modes.119

Fig. S70. Harmonic analysis for mouse 1 (A) and mouse 2 (B) in the Per1/2/3 KO DD MA group.
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Fig. S71. Harmonic analysis for mouse 3 (A) and mouse 4 (B) in the Per1/2/3 KO DD MA group.

Fig. S72. Harmonic analysis for mouse 5 in the Per1/2/3 KO DD MA group.

6. Bispectral analysis120

Bispectral analysis was applied to the 30 day wild-type, Per1/2/3 KO DD and Per1/2/3 KO DD MA groups to uncover the121

presence of phase couplings between modes.122

A. Heterozygous PER2::LUC knockin and wild-type littermate 30 day group, 30 day. As the Heterozygous PER2::LUC knockin123

and wild-type littermate 30 day group mice were only recorded for 30 days, their was insufficient information to observe124

couplings to the entire high frequency band. Although some evidence of coupling was found in the other frequency bands, this125

was not consistent throughout mice.126
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Fig. S73. Bispectral analysis for mouse 1 (A) and 2 (B) in the 30 day heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Fig. S74. Bispectral analysis for mouse 3 (A) and 4 (B) in the 30 day heterozygous PER2::LUC knockin and wild-type littermate 30 day group.
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Fig. S75. Bispectral analysis for mouse 5 (A) and 6 (B) in the 30 day heterozygous PER2::LUC knockin and wild-type littermate 30 day group.

Fig. S76. Bispectral analysis for mouse 7 (A) and 8 (B) in the 30 day heterozygous PER2::LUC knockin and wild-type littermate 30 day group.
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B. Per1/2/3 KO DD. In the Per1/2/3 KO DD group there was clear evidence of a coupling between high frequency activity and127

the around 7 hour oscillation in all of the mice. Some circadian to high frequency coupling was also seemingly present, but did128

not constitute the dominant coupling and was not consistent throughout all mice. Mouse 2 was not evaluated as it did not129

complete the full recording length.130

Fig. S77. Bispectral analysis for mouse 1 (A) and mouse 3 (B) in the Per1/2/3 KO DD group.

Fig. S78. Bispectral analysis for mouse 4 (A) and mouse 5 (B) in the Per1/2/3 KO DD group.
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Fig. S79. Bispectral analysis for mouse 6 (A) and 7 (B) in the Per1/2/3 KO DD group.

C. Per1/2/3 KO DD MA. For the Per1/2/3 KO DD MA group a strong coupling between the MASCO and high frequency131

activity was present across all the mice. Some mice also had traces of a coupling from around 7 hours to the higher frequencies,132

but the MASCO coupling was dominant and reflected a switch in the behavioural mode driving the high frequencies.133

Fig. S80. Bispectral analysis for mouse 1 (A) and 2 (B) in the Per1/2/3 KO DD MA group.
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Fig. S81. Bispectral analysis for mouse 3 (A) and 4 (B) in the Per1/2/3 KO DD MA group.

Fig. S82. Bispectral analysis for mouse 5 in the Per1/2/3 KO DD MA group.
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7. The model134

Coupled phase oscillators were used to model the oscillatory modes and couplings found in the behavioural data. In this way, a135

ground truth with known parameters can be established to compare the results of the experimental investigation against.136

A. Per1/2/3 KO mice. The general structure of the model for the Per1/2/3 KO DD mice with and without methamphetamine137

administration consisted of three main oscillators, one high frequency, one at around seven hours and a roughly circadian138

oscillator. As in the real data, the time step was set to 1 minute and time series length was 65 days. The coupling parameters139

were chosen to reflect the observed dynamics. The coupled phase equations for Per1/2/3 KO DD mice are as follows140

ϕ̇1 = ω1

ϕ̇2 = ω2,

ϕ̇3 = ω3 + E1 cos (ϕ1 + π/2.5) + E2 cos (ϕ2 + π/2.5) ,

[1]141

Where E represents the coupling strength and ϕi are the phases of each oscillator, which are subsequently added together142

following Runge-Kutta 4-step numerical integration to produce a time-series,143

X(t) = A1 cos(ϕ1(t)) + A2 cos(ϕ2(t)) + A3 cos(ϕ3(t)). [2]144

The amplitudes, A, were selected to be the best recreation of the observed power spectra. The natural frequencies changed145

over time to allow us to represent the time-variability witnessed in the experimental results,146

ωi(t) = ωi0 + Ampisq(ωivar ∗ t), [3]147

where ωi0 is the natural frequency, sq represents a square wave, and Ampi is the amplitude of the frequency variation.148

B. Wild-type mice. For the wild-type mice, there seemed to be several coupled modes present, with the circadian clearly the149

most dominant. As such, multiple phase oscillators were used150

ϕ̇1 = ω1 + E1 cos (ϕ6 + π/2.5) ,

ϕ̇2 = ω2,

ϕ̇3 = ω3 + E2 cos (ϕ2 + π/2.5) ,

ϕ̇4 = ω4 + E3 cos (ϕ3 + π/2.5) ,

ϕ̇5 = ω5 + E4 cos (ϕ4 + π/2.5) ,

ϕ̇6 = ω6 + E5 cos (ϕ4 + π/2.5) + E6 cos (ϕ1 + π/2.5) ,

[4]151

The parameters for each of these configurations are as follows152

Parameters Wild-type Per1/2/3 KO DD
Per1/2/3 KO DD
MA

ω10 (Hz) 24 20 22
ω20 (Hz) 7.2 7.5 8
ω30 (Hz) 6 0.5 0.5
ω40 (Hz) 3 NA NA
ω50 (Hz) 1.25 NA NA
ω60 (Hz) 0.75 NA NA
ϵ1 0.1 0.05 0.2
ϵ2 0.1 0.2 0.05
ϵ3 0.1 NA NA
ϵ4 0.1 NA NA
ϵ5 0.1 NA NA
ϵ6 0.1 NA NA
A1 1.5 0.8 0.85
A2 0.25 0.3 0.3
A3 0.25 0.85 0.8
A4 0.5 NA NA
A5 0.65 NA NA
A6 0.3 NA NA

153
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Parameters Wild-type Per1/2/3 KO DD
Per1/2/3 KO DD
MA

ω1var (Hz) 0.0000025 0.00025 0.00025
ω2var (Hz) 0.0005 0.0003 0.0003
ω3var (Hz) 0.001 0.1 0.1
ω4var (Hz) 0.0025 NA NA
ω5var (Hz) 0.05 NA NA
ω6var (Hz) 0.015 NA NA
Amp1 0.000000000001 0.0005 0.0005
Amp2 0.00001 0.0015 0.0015
Amp3 0.0005 0.125 0.125
Amp4 0.000001 NA NA
Amp5 0.0001 NA NA
Amp6 15 NA NA

154
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C. Recreating Fig.1. To demonstrate the feasibility of the model, here we recreate the figures from the main paper, using the155

simulated data. Despite being a phase based model, the powers are able to be reproduced.156

Fig. S83. A model simulated to recreate the multiscale oscillatory activity in wild-type and Per1/2/3 KO mice with and without methamphetamine administration. (A, D, G)
Time-series of wheel rotations per minute the wild-type, Per1/2/3 KO DD MA, and Per1/2/3 KO DD mice. (B, E, H) Time/frequency representations of the wild-type, Per1/2/3 KO
DD MA and Per1/2/3 KO DD data. (C, F, I) Time-averaged power for each group, respectively. (J) Total power evaluated between periods of 84 hours and 4 minutes in each
condition. (K,L) Group median time-averaged power plots. (K) Compares the Per1/2/3 KO mice with and without methamphetamine, while (L) compares the Per1/2/3 KO DD
MA and wild-type mice. The shading represents the 25th and 75th percentile while the circles indicate frequencies where there were significant differences between groups,
with the colour of the circle indicating the group with the greater power (Wilcoxon rank-sum test p < 0.01).

Using coupled phase oscillators we are able to reproduce the time-localised power behaviour in a manor reminiscent to that157

in the real results. The use of square waves for the varying oscillator frequencies enabled the accurate representation of the158

experimental data.159
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D. Recreating Fig.3. Fig. S84 Demonstrates a switch in the primary coupling from 7 hours driving the high frequency activity160

to a circadian oscillation being the dominant coupled oscillator. This was achieved by simply changing the degree of phase161

coupling in the model. The purpose of this illustrative example is to show that the system may be described as coupled phase162

oscillators, and that the results in the main body are due to a changing in the coupling strength between components.163

Fig. S84. Model replication of Fig. 3 from the main text. Harmonic and coupling analysis between wild-type (first column), Per1/2/3 KO DD mice (second column), and Per1/2/3
KO DD MA (third column). (A - C) Harmonic analysis. Bispectral analysis (D - F) demonstrates couplings between modes at different oscillatory frequencies. Dynamical
Bayesian inference (G - I) reveals the percentage time over which oscillatory modes were coupled throughout the time-series.

This simple change was sufficient to replicate the dynamics. By use of coupled phase oscillators we are able to recreate the164

observed experimental behaviour. Thus providing evidence that the analysis framework used here, which assumes that the165

system is composed of a number of time-varying oscillatory components, was appropriate.166
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