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Abstract 

 

Studying electron transport properties in molecular junctions, comprising a molecule as the 

scattering region coupled to metallic electrodes is critical for nano- and molecular-scale 

applications. This thesis focuses on the thermoelectric properties of a specific type of two-

terminal molecular junction involving gold electrodes, forming gold-molecule-gold structures. 

The investigation into these molecular junctions' electrical and thermoelectric behaviour relies 

on theoretical approaches detailed in Chapters 2 and 3. Chapter 2 introduces the principles of 

density functional theory DFT, while Chapter 3 provides an overview of transport theory, 

emphasizing Green's function formalism. Chapter 4 examines the electron transport properties 

of cross-linked molecular junctions, consisting of a dimer formed by two OPE3 molecules 

connected through two different bridges. These junctions feature six connection points with 

thiol groups (SH). To validate the findings, three theoretical approaches are employed: the 

orbital product rule OPR, the tight-binding model TBM, and density functional theory DFT 

calculations. Additionally, these cross-linked systems' electrical conductance and Seebeck 

coefficient are analysed using DFT simulations. Chapter 5 explores the impact of the bridge 

type on electron transport properties by studying another two different bridge configurations 

in the junctions. Finally, this thesis is concluded with a summary and future works in chapter 

6.  
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Chapter 1 

Molecular electronics 

1.1 Molecular electronics and thermopower 

Moore’s Law has stimulated thousands of studies to reduce the size of electrical 

components since 1965. Over the years, electronic components, notably transistors, have 

progressively reduced in size, nearing the nano or molecular scale. To continue this trend, 

molecular electronics (ME) has developed as a scientific field that explores the electronic 

and thermal transport characteristics of circuits built with individual molecules or 

assemblies as the foundational units [1-3]. This involves utilising either individual 

molecules or combinations of molecules as the fundamental units for creating electrical 

components or devices [4]. These devices involve a range of functionalities, including 

transistors [5], sensors [6, 7], memories [8], current rectifiers [9], and photovoltaics [10]. 

The idea of driving single-molecule electronics involves crafting and engineering 

molecules to form complex structures, functional components, and interconnecting 

pathways. With its potential for sub-10nm electronic switches and rectifiers, as well as its 

ability to provide sensitive platforms for detecting single molecules, molecular electronics 

holds significant promise in the field of nanoscale electronics [11]. Additionally, there is 

interest in exploring the capability of these systems to investigate quantum properties at the 

molecular level, particularly at room temperature, involving phenomena such as quantum 

interference [12] and thermoelectric effects [13, 14].  

 

1.2 History of molecular electronics 
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In 1974, Aviram and Ratner proposed a downsizing of electronic components by upholding the 

replacement of silicon chips with molecules [15]. Their proposal laid the groundwork for the 

evolution of molecular electronics. Subsequently, collaborative efforts from experts across 

various disciplines, integrating both experimental and theoretical approaches, have 

significantly broadened the scope of this field. A notable advancement has been creating 

computational and modelling tools capable of producing theoretical outcomes closely aligned 

with experimental observations. Recent experimental methods, like scanning tunnelling 

microscopy (STM) and break junctions, have further enhanced our capabilities in this area [16, 

17]. Advancements in nanofabrication techniques and the refinement of quantum theories 

related to electronic transport over the past few decades have enabled researchers to explore 

and comprehend the fundamental characteristics of electrical circuits employing molecules as 

crucial building blocks. These studies have revealed how a range of molecular features affect 

electron transport, including molecular conformation [18], heteroatom substitution [19],  Fermi 

energy tuning [20] and molecular orientation [21, 22].  

Developing single-molecule devices is a complex task due to various difficulties and 

constraints. The challenges faced by single-molecule electrical systems can be summarised as 

follows: 

• The small size of molecules makes it challenging to maneuver them into nanogaps directly. 

Instead, molecular interaction with the electrode is necessary to position the molecule within 

the gap. 

• Ensuring that only one molecule is inserted into each functional device becomes more 

complex, especially when electrodes are considerably more significant than the molecules. 

• Additionally, stability, uniformity, and scalability challenges further complicate the 

development process. 
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One of the essential challenges in molecular electronics is creating device platforms and 

understanding the mechanisms controlling molecular charge transport within them [23-25]. 

The most common platform involves molecules between two electrodes, serving as the 

quintessential molecular electronics device and a widely adopted method for examining 

molecular characteristics [23, 26, 27]. Theoretical approaches have progressed alongside 

experimental frameworks [28]. With advances in calculating molecular electrical properties, 

researchers can now handle more intricate molecules and achieve closer alignment between 

their calculations and real-world observations. Density functional theory DFT has become 

highly trusted and extensively utilised in theoretical research to analyse atomic structure's 

electronic configuration and predict charge flow in complex systems. 

Additionally, tight-binding models TBMs offer a straightforward approach to simulating 

quantum transport in smaller systems [29-31]. These models simplify the understanding of the 

fundamental properties of molecules and examine their potential as active components in nano 

applications. By integrating DFT, utilised in the SIESTA code [32], and TBMs, alongside a 

Green's function formalism for electron transport found in the Gollum code, researchers have 

been able to elucidate fundamental principles in quantum transport theory necessary for 

describing essential characteristics of molecular junctions at the nanoscale. In contrast with the 

model of incoherent transport used by Aviram and Ratner [33], one of the surprising 

discoveries during the past decade was that transport through molecules can be phase coherent, 

even at room temperature, so that electron transport can be controlled by a range of room-

temperature interference properties [34]. The theory used to describe these interference effects 

is based on theories derived in the 1990s to describe interference effects are mesoscopic 

superconductors[35-37], which occur at much lower temperatures. These techniques have been 

used to describe a range of interference effects, including conductance oscillations in atomic 

chains [38]  and carbon nanotubes [39, 40], Seebeck oscillations thermoelectric voltage 
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periodic oscillations in the stacked molecular junctions [41]  and electron transport through 

molecular-scale junctions formed from graphene electrodes [42-44]. Recently, such studies 

have been extended towards new designs for nanotube-based sensors [45-47]. 

This thesis investigates the use of cross-linking to improve the on-off ratio in molecular 

junctions. It focuses on applying renormalization principles to enhance the electrical 

conductivity of individual molecules. 

 

1.3 Molecular junctions 

 

 

 

 

 

 

The term "molecular junction" refers to the configuration where a molecule is positioned 

between two metal electrodes, forming an extended metal-molecule-metal system. This 

structure includes left and right electrodes, linkers or anchor groups, and the central molecule, 

as shown in Figure 1. 1. One of the key factors in creating functional contact between the 

molecules and the electrodes is the selection of the electrode material. As noted above, 

Figure 1. 1: Schematic representing a molecular junction comprising (a) left and right 

electrodes, (b) core molecule, and (c) linker. In this example, the electrodes are gold; the 

central molecule is oligo (Phenylene-ethylene) (OPE), and methyl sulfur is employed as the 

anchor group. 
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graphene, a non-metallic material, is a promising candidate for electrodes in molecular 

junctions and has been widely studied in organic electronics [42-44, 48]. 

The most commonly used electrode material in junctions is gold (Au), because it is the highest 

conductor of electricity among metals and is chemically stable. This ensures effective charge 

transfer across the junction, minimising energy loss and boosting the performance of electronic 

devices. Moreover, gold has well-established methods for self-assembling with molecules[49, 

50], making it highly suitable for such applications. On account of these beneficial properties, 

gold (Au) has been selected as the electrode material in this study and for this purpose, a range 

of anchor groups have been developed. An anchor group is a functional group that links an 

organic molecule to a metal surface, facilitating strong and stable binding between the two. It 

works to stabilise the junction and efficient electronic communication between organic 

molecules. The anchor atoms play a role in mediating electron transport between the organic 

molecule and the metal electrode. The most common anchor groups for binding to gold are 

amines (-NH₂), thioacetate (SAc) (–SCOCH₃), methylation (SMe) (–SCH₃), and thiols (-SH). In 

this thesis I use a thiol as the anchor group [51-54].  

In what follows, I will explore the molecular designs to increase the on/off conductance ratio 

of molecular switches and improve the thermoelectric performance of molecular-scale 

materials at room temperature, building upon recent progress in this direction [55-65]. For 

example is has been shown that where one anchor group binds much more strongly to the 

electrodes than the other, the thermoelectric behaviour of the molecular junction is primarily 

influenced by the more substantial anchor group [60]. Similarly, destructive quantum 

interference DQI is known to significantly suppress charge transport and lowers conductance 

in meta-connected molecules. 
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Interestingly, adding a bridging carbonyl group nearly eliminates DQI, creating a cross-

conjugated fluorenone with enhanced conductance. This behaviour contrasts with other π-

systems, like para-connected anthraquinone, where cross-conjugation still leads to low 

conductance [61]. This effect was also highlighted in research by Alaa A. Al-Jobory and Ali 

K. Ismael, which revealed that substituting a conjugated bridging atom with a non-conjugated 

one switches the conductance from constructive CQI to destructive quantum interference DQI, 

effectively toggling the on/off state. This switching behaviour suggests that molecules with 

alternating conjugated and non-conjugated structures could enhance thermo-voltage in 

nanoscale thermoelectric devices when deposited on a metal surface [62]. Numerous studies 

have demonstrated that the electron pathway gives rise to two types of quantum interference: 

constructive quantum interference CQI and destructive quantum interference DQI [63-66]. 

This phenomenon forms the central focus of this thesis. 

 

1.4 Thesis Outline 

This thesis will provide theoretical simulations focusing on nanoscale electron transport and 

molecular electronics. Chapter 2 displays a brief survey of density functional theory DFT, a 

fundamental theoretical method used in this research to explore and comprehend the electronic 

characteristics of single-molecule junctions. Chapter 3 provides information related to single-

particle transport theory, discussing the Landauer formula, Green's functions applicable to 

different transport scenarios derived from scattering theory, and examples illustrating the 

computation of transmission coefficients for various systems utilising the Hamiltonian and 

Green's functions. Following establishing the using of nanoscale transport modelling 

techniques, I will examine theoretical investigations of specific molecular junctions. This work 

dedicates two chapters to exploring the electrical and thermal characteristics of the molecules 
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under study. Chapter 4 analyses the transport properties within cross-linked 1 (C-L1) OPE3 

dimer analysis and cross-linked 2 (C-L2). In contrast, Chapter 5 investigates the transport 

properties within another OPE3 dimer with different bridges, cross-linked 3 (C-L3) junctions 

and cross-linked 4 (C-L4). Chapter 6 will provide conclusions drawn from the study and offer 

recommendations for future research endeavours. 
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Chapter2 

 

Density functional theory (DFT) 

 

This chapter provides a concise overview of density functional theory DFT and its application 

through the SIESTA (Spanish initiative for electronic simulations with thousands of atoms) 

code. It outlines fundamental concepts and practical uses of SIESTA in analysing electronic 

structure properties across various systems. This theoretical approach serves as the primary 

method in our research, enabling the examination of isolated molecule Hamiltonians, wave 

functions, geometry optimisation, bond energies, and electron transport phenomena in 

nanoscale structures or single molecules linked to electrodes. To gain structural and electronic 

insights, I will extract the Hamiltonian from DFT calculations for the target system and utilise 

it to explore molecular junction transport properties, a topic delved into further in Chapter 3. 

 

2.1 Introduction 

Theoretical condensed matter physics aims to uncover the electronic behaviour of materials by 

studying how electrons interact with nuclei. This discipline is handling the difficulties affected 

by intricate interactions and computational challenges. Over the past five decades, approaches 

like molecular dynamics MD, density functional theory DFT, and tight binding theory TB have 

been developed, each offering different balances of accuracy and computational efficiency [1, 

2]. Understanding electron behaviour in molecular wires provides insight into their electrical 

characteristics, serving as a key example in molecular electronics. DFT is an effective method 

for understanding structural and electronic properties, especially for nanoscale simulations [3]. 

Also, DFT is a powerful tool for predicting electronic configurations in atoms, molecules, and 
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crystals, with broad applications in physics, chemistry, and materials science. Its methodology 

centres on electron density functionals, tracing its origins to the work of Thomas and Fermi in 

the 1920s, who linked total energy to density-derived functionals [3, 4]. 

Modern DFT is grounded in the Hohenberg-Kohn theorems (1964) and the Kohn-Sham method 

[4], which efficiently calculates the ground state energy of many-particle systems. Then, it 

explores the Born-Oppenheimer approximation concerning nuclei, followed by the Hohenberg-

Kohn theorem, and further extends to the influential Kohn-Sham theorem, notable for its 

effectiveness in describing the ground state properties of quantum systems. These principles 

underlie tools like the SIESTA code, which I used extensively during my PhD research [5]. 

DFT allowed me to investigate molecular architectures, charge densities, and band structures 

both qualitatively and quantitatively, providing key insights into electronic properties. 

 

2.2 The Schrödinger equation and variational principle 

The Schrödinger equation used to describe non-relativistic multi-particle system by using the 

time-independent, non-relativistic Schrödinger equation, as stated in equation (2.1) 

 

𝐻 𝜓𝑖(𝑟1 , 𝑟2 , … , 𝑟𝑁 , �⃗⃗�1 , �⃗⃗�2 , …… , �⃗⃗�𝑀 ) = 𝐸𝑖𝜓𝑖(𝑟1 , 𝑟2 , … , 𝑟𝑁 , �⃗⃗�1 , �⃗⃗�2 , …… , �⃗⃗�𝑀 ) (2.1) 

Where 𝜓𝑖 is the wave function of the state of the system, and 𝐸𝑖 is the numerical value of the 

energy of the ith represented by 𝜓𝑖. 𝐻 represents the Hamiltonian operator of a system 

consisting of N-electrons and M-nuclei that contain the interaction of particles with each other. 

 The position of the electrons and nuclei are denoted as 𝑟𝑖 and �⃗⃗�𝑛respectively, and ∇2 is the 

Laplacian operator, in Cartesian coordinates, is defined as,  
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∇2=
𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 (2.2) 

However, solving the Schrödinger equation for many-body systems with many electrons is 

computationally challenging. To tackle this issue, various approximations, such as those 

introduced by Max Born and J. Robert Oppenheimer in 1927, are employed [6, 7]. 

 

2.3 Born- Oppenheimer approximation 

The Born-Oppenheimer approximation is a method commonly used to simplify the 

Schrödinger equation (2.1), which becomes intractable for systems with more than a few 

electrons. Since the nuclei are much heavier than electrons, their motion is significantly slower, 

allowing us to neglect their kinetic energy and treat them as classical particles with fixed 

external potentials. Consequently, we consider the electrons as quantum particles influenced 

by this potential, if the nuclear wave function does not depend on electron positions [8-10]. We 

derive the electron behaviour from solving the Schrödinger equation under these conditions. 

Thus, the Hamiltonian for electrons can be expressed as: 

𝐻 = 𝑇𝑒 + 𝑉𝑒 +∑𝑉𝑒𝑥𝑡(𝑟𝑖)

𝑖

 (2.3) 

Where 𝑇𝑒  =  −
ℏ2

2𝑚𝑒
∑  𝛻𝑖

2
𝑖   ,which is the kinetic energy of all electrons, 𝑉𝑒 = 

1

8𝜋𝜀𝑜
 ∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗  

which represents the interaction between electrons, and Vext is the external potential arising 

from the interaction between nuclei and electrons, along with any additional external fields. 

Then the Schrödinger equation can be written as: 

 𝐻 𝜓𝑖(𝑟1 , 𝑟2 , … , 𝑟𝑖. . ) = 𝐸𝑖𝜓𝑖(𝑟1 , 𝑟2 , … , 𝑟𝑖. . ) (2.4) 
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Despite the simplification achieved by this approximation, solving the Schrödinger equation 

remains challenging. DFT offers a solution by expressing physical properties in relation to the 

ground-state electron density, 𝜌𝑜(𝑟). The initial method to tackle this is the Hohenberg-Kohn 

theorem [11]. 

 

2.4 Density functional theory 

Density functional theory DFT is an essential theoretical description of nanoscale simulations 

of electronic structure properties of atoms and molecules. It is a first-principles technique to 

predict a material's properties with as few approximations as appropriate. It can be applied to 

find highly accurate results on smaller systems [12]. 

The Hohenberg-Kohn theorem, established in 1964, is a fundamental principle within DFT 

because its ability to characterise properties of the ground-state of interacting electrons is a 

unique function of the electronic electron density 𝜌(𝑟) system [13]. In 1965 the Kohn and 

Sham method stand out as the most effective approach for investigating DFT [14]. It is a 

method to provide information related to the ground state with interacting particles to a non-

interacting particle system through their charge density. These methods are described in the 

following two sections. 

 

2.4.1 The Hohenberg- Kohn theorems 

The Hohenberg-Kohn theorem HK is the cornerstone of  DFT [13]. It applies to many-electron 

systems interacting with an external potential V (r), defining a functional that minimises the 

total energy with the electron density as the ground state. The HK theorem validation is most 

effectively demonstrated through two compelling propositions. 
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1- In any interacting system subjected to an external potential 𝑉𝑒𝑥𝑡(r⃑), this potential is uniquely 

dictated given that 𝑉𝑒𝑥𝑡(r⃑)  fixes the system's Hamiltonian, 𝐻, by the ground-state density 

𝜌𝑟 [13, 15]. 

2-The total energy of the system 𝐸𝐻𝐾  is minimised to attain the accurate ground-state energy, 

dependent on the electron density in its ground state 𝜌𝑟. Assume that the two external potentials 

provide the same ground-state density 𝜌𝑟 . In essence, DFT offers a way to address quantum 

many-body problems by concentrating on the electron density 𝜌𝑟  instead of dealing directly 

with the complex many-body wavefunction. These potentials correspond to two separate 

Hamiltonians designated by �̂�1 and �̂�2 and the ground-state wavefunctions, 𝜓1 and 𝜓2. 

Therefore, we have 

�̂�1 𝜓1 = 𝐸1 𝜓1  

�̂�2 𝜓2 = 𝐸2 𝜓2  

Where  𝜓2  is not the ground state wavefunction of �̂�1 

 

                                   𝐸1 = ⟨𝜓1|�̂�1|𝜓1⟩ < ⟨𝜓2|�̂�1|𝜓2⟩                                      (2.5) 

and similarly: 

 

𝐸2 = ⟨𝜓2|�̂�2|𝜓2⟩  < ⟨𝜓1|�̂�2|𝜓1⟩ (2.6) 

 

Assuming non-degenerate ground states, we can rewrite the equation (2.6)  
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⟨𝜓2|�̂�1|𝜓2⟩ = ⟨𝜓2|�̂�2|𝜓2⟩ + ⟨𝜓2|�̂�1 − �̂�2|𝜓2⟩ 

= 𝐸2 + ⟨𝜓2|𝑉𝑒𝑥𝑡(1)(𝑟) − 𝑉𝑒𝑥𝑡(2)(𝑟)|𝜓2⟩ 

                                  = 𝐸2 +∫𝑑𝑟 [𝑉𝑒𝑥𝑡(1)(𝑟) − 𝑉𝑒𝑥𝑡(2)(𝑟)] 𝜌𝑜(𝑟)          (2.7) 

   Additionally, assuming that |ψ1⟩ has the same density ρo(r) as |ψ2⟩  

⟨𝜓1|�̂�2|𝜓1⟩ = 𝐸1 +∫𝑑𝑟 [𝑉𝑒𝑥𝑡(2)(𝑟) − 𝑉𝑒𝑥𝑡(1)(𝑟)] 𝜌𝑜(𝑟)                                (2.8) 

 

Adding together the two equations (2.7) and (2.8) guide to a contradiction 

𝐸1 + 𝐸2 < 𝐸1 + 𝐸2  (2.9) 

 

Thus, it follows that the two differing external potentials cannot yield the same ground state 

density.  

The second theorem is proved by minimisation of the ground state functional, which can be 

written as  

𝐸[𝜌] = 𝑇[𝜌] + 𝐸𝑖𝑛𝑡[𝜌] + ∫𝑑𝑟 𝑉𝑒𝑥𝑡 (𝑟) 𝜌(𝑟)                            (2.10) 

 

The kinetic term (𝑇) and the internal electron-electron interaction  (𝐸𝑖𝑛𝑡) is the universal 

energy of the electron density. 

 

 

 



20 

 

2.4.2 The Kohn-Sham theorem 

By acquiring the ground-state density, we can calculate the ground-state energy, and it is 

theoretically possible to compute the ground-state energy by from the ground-state density 

[16]. However, the kinetic energy term and the internal energy of the particles interacting with 

each other, as represented in equation (2.10), remain elusive and typically cannot be 

represented simply as a density function. Kohn and Sham investigated a solution method that 

achieves consistency by producing identical ground-state densities for any given system of 

interacting particles [17]. According to Kohn and Sham, the original Hamiltonian can be 

replaced with an effective Hamiltonian of non-interacting particles with a real external 

potential having the same ground-state density as the original system [18, 19]. 

The form of the energy functional of the Kohn-Sham is: 

 

𝐸𝐾𝑆  (𝜌) = 𝑇𝐾𝑆 (𝜌) + ∫𝑑𝑟 𝑉𝑒𝑥𝑡 (𝑟) 𝜌(𝑟) + 𝐸𝐻 (𝜌) + 𝐸𝑥𝑐 (𝜌)                 (2.11) 

 

Here, (𝑇𝑘𝑠 ) is the kinetic energy of the non-interacting system, while (𝑇) in equation (2.10) is  

the kinetic energy for the interacting system (𝐸𝐻) represents the classical electrostatic 

energy (Hartree energy), which describes the electron-electron interaction of the classical 

charge distribution, which has the following form using the Hartree-Fock method: 

                𝐸𝐻 [𝜌(𝑟)] =
1

2
∫
𝜌(𝑟) 𝜌(�́�)

|𝑟 − �́�|
 𝑑𝑟 𝑑�́�                                                           (2.12) 
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Here, (𝐸𝑥𝑐 )is the exchange-correlation functional accounts for the disparities between the 

specific and approximate solutions of both the kinetic energy and electron-electron interaction 

term it’s defined: 

 

𝐸𝑥𝑐 [𝜌(𝑟)] = (𝐸𝑖𝑛𝑡 (𝜌) − 𝐸𝐻 (𝜌)) + ( 𝑇 (𝜌) − 𝑇𝐾𝑆 (𝜌))                                        (2.13) 

The single-particle Hamiltonian can be described using the effective potential for a single 

particle ( 𝑉𝑒𝑓𝑓) which is described by taking the functional derivatives of the last three terms 

of equation (2.11) as: 

             𝑉𝑒𝑓𝑓 (𝑟) = 𝑉𝑒𝑥𝑡 (𝑟) + 
𝜕

𝜕𝜌
 (𝐸𝐻 [𝜌(𝑟)] + 𝐸𝑥𝑐 [𝜌(𝑟)])                   (2.14) 

 

Therefore, the Hamiltonian can be expressed as: 

              𝐻𝐾𝑆 = 𝑇𝑘𝑠[𝜌] + 𝑉𝑒𝑓𝑓                                                        (2.15) 

 

Next, the Kohn-Sham equation can be derived by utilising the single Hamiltonian, which is 

formulated as: 

𝐻𝐾𝑆  𝜓
𝐾𝑆 = 𝐸 𝜓𝐾𝑆  (2.16) 

That is, despite decades of investigation, there is no exact remedy. The next section discusses 

several excellent approximations that have been developed.  

 

2.5 The exchange correlation functional 
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Various alterations to the exchange and correlation of energy have been documented in 

scientific literature. The local density approximation LDA achieved the initial effective 

formulation [17, 20]. The dependence simply on density characterises it as locally functional. 

Subsequently, the generalized gradient approximation GGA marked the subsequent 

advancement [21-24]. A more complex form that also includes the derivative of the semi-local 

density is known as the GGA [27-28]. 

The following sections will briefly discuss the LDA and the GGA.  

2.5.1 Local density approximation 

The local density approximation LDA stands as an early and basic approximation, relying on 

the local density. It is anticipated to yield favourable outcomes for systems exhibiting generally 

smooth local density distributions. Notably, it demonstrates accuracy in scenarios like 

graphene and carbon nanotubes, where electron density changes occur gradually. However, its 

efficacy is reduced in systems heavily influenced by electron-electron interactions. Despite its 

simplicity, LDA serves as an active function for numerous systems. 

 

2.5.2 Generalized gradient approximation  

As the electron density experiences rapid fluctuations within natural inhomogeneous systems, 

the LDA becomes unsuitable, particularly for heavier atoms. Therefore, there's a need to 

request an alternative approximation that accounts more accurately for the gradient of electron 

density, leading to the generalized gradient approximation GGA. 

GGA extends beyond LDA by incorporating density derivatives into the functional expression 

of exchange and correlation energies [5, 22]. Although the GGA lacks a closed form for the 

exchange term of the functional, the exchange contribution, along with the correlation 
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contribution, has been estimated using numerical methods. For the approximation of exchange-

correlation energies in the DFT, LDA and GGA are two of the most widely utilised 

approximations. Several functionalities beyond LDA and GGA are also provided. 

 

2.6 SIESTA 

SIESTA is a computational tool rooted in density functional theory DFT. It facilitates 

electronic structure computations and molecular dynamics simulations for both molecules and 

solids [25, 26]. The DFT module within the SIESTA code, which was utilised to showcase the 

electronic properties of optimised structures, was employed for all computations presented in 

this thesis. Designed to handle efficient calculations on extensive systems comprised of 

thousands of atoms, it offers substantial computational capability. 

 

2.6.1 The pseudopotential approximation 

In the previous section, we discussed how the Kohn-Sham approach simplifies complex 

interactions among many particles into a large but non-interacting system. However, dealing 

with systems involving numerous atoms leads to intricate and computationally intensive 

calculations. To mitigate this challenge, Fermi introduced pseudopotentials in 1934 [27]. These 

pseudopotentials aim to reduce the number of core electrons in atoms, thereby streamlining the 

computational process. Over time, this method has evolved from initially creating somewhat 

unrealistic empirical pseudopotentials [28] these pseudopotentials have progressed to become 

more realistic ab-initio versions over time [29, 30]. This approximation assumes the presence 

of two distinct types of electrons in atoms: core electrons, staying in filled atomic shells, and 

valence electrons, occupying partially filled shells. When atoms come together, only valence 
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electrons contribute to the formation of molecular orbitals. This is because core electrons are 

spatially localised around the nucleus, and their electronic states overlap. To simplify 

computations, pseudopotentials are employed by replacing the core electrons.  

2.6.2 Basis sets 

Basis sets are a key component utilised by SIESTA in its calculations. Diagonalising the 

Hamiltonian to determine wavefunctions involves handling a large matrix, and the 

computational time increases with the number of non-zero elements.  

SIESTA employs a linear combination of atomic orbitals LCAOs basis set. These basis 

functions are confined to zero beyond a specified cut-off radius and are computed using the 

orbitals of the atoms involved. Basis sets are crucial because the Schrödinger equation cannot 

usually be solved exactly. They provide a practical way to approximate wavefunctions in a 

form that can be handled computationally [31, 32]. Consequently, as the overlap of basic 

functions diminishes, the Hamiltonian takes a sparse form. This allows even a minimal-sized 

basis set to closely approximate the properties of the systems being studied. The construction 

of basic functions involves utilising numerical radial and spherical harmonic components. 

Which is followed by:  

 

𝜓𝑛𝑙𝑚(𝑟) = 𝜙𝑛𝑙
1 (𝑟) 𝑌𝑙𝑚(𝜑, 𝜗)                                           (2.17) 

 

In this context, 𝜙𝑛𝑙
1 (𝑟) represents the radial wavefunction and 𝑌𝑙𝑚(𝜑, 𝜗) represents a spherical 

harmonic wavefunction. Here, (𝑙) denotes the orbital angular momentum, (m) indicates the 

magnetic quantum number, and (𝑛) suggests that multiple orbitals may share the same angular 

momentum numbers. The most basic form of an atomic basis set is the single- 𝜁 set, where 
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each electron orbital corresponds to one basis function. For higher accuracy, multiple- 𝜁 sets 

are used, involving additional radial wavefunctions for each atomic orbital. Even greater 

precision is achieved with multiple- 𝜁  polarised sets, which incorporate wavefunctions with 

different angular momenta corresponding to unoccupied orbitals in the atom. 

 

2.6.3 Binding energy using the counterpoise method 

As previously mentioned, the DFT approach is employed to compute the ground-state energy 

for various system configurations and to determine the binding energy between different 

components of a system. However, the accuracy of these calculations is compromised by the 

localised nature of the LCOA basis sets, which are centred on the nuclei. When atoms come 

into proximity, their basis functions overlap, leading to what is known as the basis set 

superposition error BSSE. This error escalates as atoms orient themselves closer together, 

resulting in an effectively changing basis set with varying interatomic distances [33]. If we 

designate two molecular systems as (𝐴) and (𝐵), the energy of their interaction can be 

formulated as: 

                                ∆𝐸(𝐴𝐵) =  𝐸𝐴𝐵 − (𝐸𝐴 + 𝐸𝐵)                                                       (2.18) 

where (𝐸𝐴𝐵) is the total energy for the dimer systems (𝐴) and (𝐵), ( 𝐸𝐴) and (𝐸𝐵) are the 

energies of the isolated systems (𝐴) and (𝐵). It is important to note that in SIESTA, the 

counterpoise correction involves employing ghost states, which represent regions devoid of 

nuclei and electrons but contain empty basis set functions centred on them. These ghost states 

are utilised to compute the total energy of isolated systems (𝐴) or (𝐵) in the dimer basis, while 

maintaining identical basis sets for all three energy evaluations [34, 35]. 
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               ∆𝐸(𝐴𝐵) = 𝐸𝐴𝐵
𝐴𝐵 − (𝐸𝐴

𝐴𝐵 + 𝐸𝐵
𝐴𝐵)                                               (2.19) 

The notation  (𝐸𝐴
𝐴𝐵) and (𝐸𝐵

𝐴𝐵) represent the energies of systems (A) and (B) evaluated in the 

basis of the dimer, where the superscript (𝐴𝐵) indicates the utilisation of the entire basis set, 

and the subscripts denote the respective geometries. This method is crucial for eliminating the 

basis set superposition error BSSE and ensuring the reliability and realism of results across 

various systems [36]. 

 

2.7 Conclusion 

This chapter has illustrated the fundamental principles of density functional theory DFT, 

starting with the Schrödinger equation and progressing through the Hohenberg-Kohn theorems 

and the Kohn-Sham formalism. Furthermore, it has explored the functional expressions of 

exchange and correlation energies within both the local density approximation LDA and the 

generalized gradient approximation GGA, along with their integration into the SIESTA 

framework, which was introduced, along with some fine details of the calculations, such as the 

use of pseudopotentials and binding energy. 
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Chapter 3 

 

Theory of single electron transport 

 

 

In Chapter 2, we explored density functional theory DFT, which is a technique used to 

determine the electronic structure of an isolated molecule, is known as a close system. The 

subsequent step involves connecting this isolated molecule to semi-infinite leads and 

calculating the transmission coefficient across the system. My approach utilises Green's 

function scattering formalism, which is discussed in this chapter and applied throughout the 

thesis. 

By integrating scattering theory with Green's functions, we can describe the electrical and 

thermoelectric properties of nanoscale systems placed between multiple macroscopic 

electrodes. 

 

3.1 Introduction 

Molecular electronics aims to explore the electrical behavior of molecular junctions where a 

molecule or similarly small structure is connected to bulk electrodes, enabling ballistic 

transport through its energy levels. This setup, where a nanoscale device is created by placing 

a molecule or another phase-coherent structure between electrodes to conduct current in or out 

of the device, is known as an open system [1-3]. 

The coupling strength between the leads and the molecule is generally weaker than the bond 

strengths within the electrodes or the molecule. This leads to scattering events as electrons 
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move between the electrodes and the molecule. Therefore, a comprehensive approach is 

necessary to comprehend and compute these scattering processes effectively. 

The transport theory for single-molecule junctions relies on scattering theory and the Landauer 

formula. Although there are multiple ways to examine the electronic properties of these 

junctions, this thesis focuses mainly on the Green's function formalism. Both analytical and 

numerical techniques are employed to explore the electronic transport properties of single 

molecules.  

The first goal of this chapter is to begin with a brief overview of the tight-binding model TBM 

for the description of quantum systems. TBM is a mathematical approach used to describe the 

movement of electrons in an organic molecular as well in my study, to introduce theoretical 

approaches for addressing problems in various structured systems. These solutions illustrate 

fundamental concepts like the Schrödinger wave equation and its common use in calculating 

the eigenfunctions and eigenvalues of the Hamiltonian matrix, applied to different types of 

one-dimensional crystalline chains, such as infinite linear chains, finite linear chains. The 

second goal is to provide an overview of scattering theory and its relation to transport properties 

and Green's function, exploring different transport regimes and the intriguing features based 

on the Landauer formalism for estimating the electrical conductance properties of materials. 

 

3.2 Tight-binding model 

One of the simplest approaches for quantum transport modelling in small systems uses tight-

binding models TBMs, which describe the wave function as a linear combination of atomic 

orbitals LCAO of localised states. The TBM investigates electronic transport properties by 

using a Hamiltonian belonging to a finite set of atomic orbitals. This approach assumes that 
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tightly bound electrons within a molecule primarily interact with the nearest neighboring 

atoms. Solving the Schrödinger wave equation exactly for eigenstates and eigenvalues becomes 

feasible for systems with a small number of electrons, such as the hydrogen atom. TBMs are 

valuable in developing essential concepts of quantum transport that are also applicable to more 

material-specific models based on density functional theory DFT [4, 5]. The time-dependent 

Schrödinger equation is expressed as follows: 

𝐻(𝑥) 𝛹(𝑥, 𝑡) = 𝑖ħ 
𝜕

𝜕𝑡
 𝜓 (𝑥, 𝑡) 

(3. 2) 

 

where 𝛹 represents the wave function of the quantum system, ħ is the reduced Planck constant 

ħ =
ℎ

2 𝜋
 , and 𝐻 is the Hamiltonian, which is given by: 

                           𝐻(𝑥) =  
− ħ2

2 𝑚
 ∇2 + 𝑉(𝑥)  

                                              

(3. 3) 

 

We assume that the eigenstate of energy 𝐸 can be expressed as a product of spatial and time-

dependent components. 

𝛹(𝑥, 𝑡) =  𝛹(𝑥) 𝜃(𝑡) (3. 4) 

 

The Schrödinger equation is subsequently transformed into two ordinary differential equations. 

1

𝜃(𝑡)

𝑑

𝑑𝑡
 𝜃(𝑡) =

−𝑖 𝐸

ħ
 

(3. 5) 

and 

𝐻 𝛹(𝑥) = 𝐸 𝛹(𝑥) (3. 6) 

The solution to equation (3.1) is 
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𝛹(𝑥, 𝑡) =  𝛹(𝑥) 𝑒
− 𝑖 𝐸 𝑡
ħ           

(3. 7)  

This solution can be written as a linear combination of basic functions in the form: 

𝛹(𝑥, 𝑡) =  ∑ 𝜓𝑗  ∅𝑗(𝑥) 𝑒
−𝑖𝐸𝑡
ħ

𝑗
 

(3. 8) 

The wave function 𝛹(𝑥) can be written as a linear superposition of the form: 

𝛹(𝑥) =  ∑ 𝜓𝑗(𝑡) ∅𝑗(𝑥)
𝑗

 
(3. 9) 

In a TBM, ∅𝑗 (𝑥) represents a localised basis function on a probability site 𝑗  and 𝜓𝑗(𝑡) is the 

time-dependent amplitude of the wavefunction on site 𝑗. In a TBM, for convenience, the 

overlap between the basis functions is ignored, and the probability of finding an electron on 

site 𝑗 is |𝜓𝑗(𝑡)|
2
. 

The Hamiltonian matrix elements can be expressed as: 

𝐻𝑖 𝑗 = ⟨∅𝑖(𝑥)|𝐻|∅𝑗(𝑥)⟩ =  ∫𝑑𝑥 ∅𝑖
∗(𝑥)𝐻 ∅𝑗(𝑥) 

(3. 10) 

 

The following section describes the model of chains, with a single orbital on each atom. Since 

the electrons interact with their nearest neighbour sites, all terms⟨∅𝑖|𝐻|∅𝑗⟩ with |𝑖 − 𝑗| > 1 are 

small, and therefore neglected. 

Picking a particular atom on site 𝑗, the time- dependent Schrodinger equation is then given by: 

𝑖ħ
𝜕𝜓𝑗(𝑡)

𝜕𝑡
=  𝜀𝑗 𝜓𝑗 − 𝛾𝑗  𝜓𝑗+1(𝑡) − 𝛾𝑗

∗ 𝜓𝑗−1(𝑡) 
 

(3. 11) 

 

where 𝜀𝑗 = 𝐻𝑗𝑗  is the on-site energy of atomic orbital 𝑗, 𝐻𝑗,𝑗+1 = −𝛾𝑗 is the coupling between 

sites 𝑗 and 𝑗 + 1, and  𝐻𝑗,𝑗−1 = −𝛾𝑗
∗ is the coupling between sites 𝑗 and 𝑗 − 1. To move from 
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time-dependent to time-independent, you typically assume a separable solution of the form: 

For the latter 𝜓𝑗(𝑡) = 𝜓𝑗  𝑒
−𝑖𝐸𝑡

ħ , where 𝜓𝑗 is independent of time. 

𝑖ħ
𝜕

𝜕𝑡
𝜓𝑗  𝑒

−𝑖𝐸𝑡
ħ = 𝜀𝑗 𝜓𝑗  𝑒

−𝑖𝐸𝑡
ħ − 𝛾𝑗  𝜓𝑗+1 𝑒

−𝑖𝐸𝑡
ħ − 𝛾𝑗

∗ 𝜓𝑗−1 𝑒
−𝑖𝐸𝑡
ħ  

Now cancel out the common exponential factor  𝑒
−𝑖𝐸𝑡

ħ  on both sides: 

𝐸 𝜓𝑗 = 𝜀𝑗 𝜓𝑗 − 𝛾𝑗 𝜓𝑗+1 − 𝛾𝑗
∗ 𝜓𝑗−1 

 

3.3 The Landauer formula 

To describe transport phenomena of non-interacting electrons using the Landauer formula as a 

theoretical standard model [6-9]. It links the electron's transmission coefficient 𝑇(𝐸) to the 

electronic conductance through one-dimensional structures with two terminals. 

To clarify this, consider a mesoscopic scatterer connected to two ideal ballistic leads 

functioning as electron reservoirs, as illustrated in Figure 3. 1. The system consists of a 

scattering region linked to two leads, each of which is connected to an electron reservoir. These 

left 𝐿 and right 𝑅 reservoirs are assigned chemical potentials 𝜇𝐿 and 𝜇𝑅, temperatures 𝑇𝐿 and 

𝑇𝑅. 

 

 

 

 

 

Figure 3. 1: A generic scattering region is connected to two ballistic leads with the chemical 

potentials μL, and μR, respectively, where 𝑟 is the amplitude of the reflected wave due to an 

incoming wave from the left and 𝑡 is the amplitude of the transmitted wave. 
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The electron current (𝐼) and can be described as follows:        

                     𝐼 = 2𝑒
ℎ⁄ ∫ 𝑑𝐸 𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]

∞

−∞
 (3. 12) 

 

where: 𝑇(𝐸) represents the transmission probability of an electron travelling from the left lead  

to the right lead through the molecule, e denotes the electron charge, and 𝑓L(E) , 𝑓𝑅(E) are the 

Fermi-Dirac distribution functions for the left and right reservoirs, respectively, defined as:                               

           𝑓𝑙𝑒𝑓𝑡 (𝐸) = [𝑒
(𝐸−𝐸𝐹

𝐿)

𝐾𝐵𝑇 + 1]

−1

,         𝑓𝑟𝑖𝑔ℎ𝑡 (𝐸) = [𝑒
(𝐸−𝐸𝐹

𝑅)

𝐾𝐵𝑇 + 1]

−1

 

 

(3. 13) 

 

Here, 𝑇 denotes the temperature, 𝑘𝐵 is the Boltzmann constant, and [ Ef
L = 𝜇𝐿 , Ef

R = 𝜇𝑅] are 

the Fermi energies of the left and right reservoirs, respectively. The electrical conductance can 

be determined at zero voltage and a finite temperature by averaging 𝑇(𝐸) over an energy 

window of width 𝑒𝑉 centred around the Fermi energy [10]. The electrical conductance, 

represented as 𝐺 = 𝐼 𝑉 ⁄ , at zero voltage and finite temperature, is expressed as 

                         𝐺 = 𝐺0  ∫ 𝑑𝐸 𝑇(𝐸) (−
𝑑𝑓(𝐸)

𝑑𝐸
⁄ )

∞

−∞

                             
 

(3. 14) 

 

where G0 is the quantum of conductance is equal to 2 𝑒
2

ℎ⁄ = 77.4 × 10−6𝑠 = 77 𝜇𝑠 

(
− 𝑑𝑓(𝐸)

𝑑𝐸
⁄ ) is the probability distribution with a width of approximately 𝑘𝐵𝑇.            

The electrical conductance is proportional to the transmission coefficient in the limit of zero 

voltage and zero temperature, the Landauer formula is as follows: 

                                                    𝐺 = 𝐺𝑜𝑇(𝐸𝐹)                                                    (3.14) 
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3.4 Green’s functions 

Green's functions are useful for calculating the transmission and reflection coefficients of 

various nanoscale structures. This section will thoroughly explain the methods used, starting 

with Green's functions for different nanoscale systems. First, the form of Green's function of a 

doubly infinite chain will be discussed. Then, the form of Green's function of a semi-infinite 

linear chain will be studied. Finally, the form of Green’s function of a finite one-dimensional 

chain will be discussed. Overall, Green's functions of the systems are essential for bridging 

theoretical predictions with experimental observations in systems involving wires, leads, etc. 

 

3.4.1 Green’s functions of a doubly infinite chain 

Consider a doubly infinite chain as depicted in Figure 3. 2. It consists of infinite atoms, each 

with a single orbital of energy (𝜀0). Additionally, there is a site (𝑗) between two atoms that 

facilitates 'hopping energies' couplings with the nearest neighbour, denoted by (𝛾) and(𝑘) is 

the wave vector [11, 12]. 

 

 

 

 

 

For an eigenstate of energy 𝐸, the wavefunction amplitudes are of the form 𝜓𝑗(𝑡) = 𝜓𝑗  𝑒
−𝑖𝐸𝑡

ħ , 

where 𝜓𝑗 is independent of time and the time-independent Schrödinger equation takes the form 

Figure 3. 2: Representation of tight binding model of one-dimensional infinite chain with 

on-site energies εo and couplings −γ. 
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More compactly, this can be written 

 

                   (𝐸 − 𝐻)|𝜓⟩ = 0       →     𝐻𝜓 = 𝐸𝜓                                               (3. 15) 

 

The Green's function 𝐺(𝐸), which is described by the Hamiltonian 𝐻, is defined to satisfy: 

                          (𝐸 − 𝐻)𝐺(𝐸) = 𝐼                                                        (3. 16) 

 

Here 𝐼  is the identity matrix. 

Where Gjp can be chosen as the retarded Green's function [1], which describes the system's 

response at point 𝑗 to a source at point 𝑝. To clarify the relationship between Green's functions 

and the wavefunctions generated by a source, it is helpful to use the following notation. 

𝐺𝑗𝑝 = 𝜓𝑗
(𝑝)

 (3. 17) 

 

where 𝐺𝑗𝑝 is the element of Green's matrix located in the  pth column and  jth row, and 𝜓𝑗
(𝑝)

 

is the amplitude of the column vector 𝜓(𝑝) at site 𝑗. 

In general, equation (3.16) can be expressed as follows: 

∑ (𝐸 − 𝐻) 𝐺𝑗𝑝(𝐸) = 𝛿𝑗𝑝
∞

𝑝
 

 

(3. 18) 

 

or equivalently  
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∑ 𝐻𝐺𝑗𝑝(𝐸) = 𝐸𝐺𝑗𝑝(𝐸) − 𝛿𝑗𝑝
∞

𝑝=−∞
 

 

(3. 19) 

 

Here, δjp is the Kronecker delta, which satisfies.  

𝛿𝑗𝑝 = {
1             𝑖𝑓        𝑗 = 𝑝
0           𝑖𝑓        𝑗 ≠ 𝑝

                                              

Now, we can substitute the equation (3.17) into equation (3.19) we obtain  

∑  𝐻𝑗𝑝  𝜓𝑗
(𝑝) = 𝐸𝜓𝑗

(𝑝) − 𝛿𝑗𝑝
∞

𝑝=−∞
 

(3. 20) 

 

This is quite similar to the Schrödinger equation, except for the Kronecker delta on the right 

side. Thus, we can substitute the Hamiltonian equation into equation (3.20):  

                     𝜀𝑜 𝜓𝑗
(𝑝) − 𝛾 𝜓𝑗−1

(𝑝) − 𝛾 𝜓𝑗+1
(𝑝) = 𝐸 𝜓𝑗

(𝑝) − 𝛿𝑗𝑝                                 (3. 21) 

 

The solution to equation (3.21) can be represented as: 

              𝜓𝑗
(𝑝)
= ∅𝑗 = 𝐴 𝑒

𝑖𝑘𝑗𝑓𝑜𝑟              𝑗 > 𝑝 (3. 22) 

                                  𝜓𝑗
(𝑝)
= 𝑓𝑗 = 𝐵 𝑒

−𝑖𝑘𝑗 𝑓𝑜𝑟           𝑗 < 𝑝                     (3. 23) 

 

❖ For 𝑗 = 𝑝 + 1, equations (3.21) and (3.22) result in: 

       𝜀𝑜 𝜙𝑝+1 − 𝛾 𝜓𝑝
(𝑝) − 𝛾 𝜙𝑝+2 = 𝐸 𝜙𝑝+1      (3. 24) 

 

Since 𝜙𝑗  satisfies equation (3.20) for all values of 𝑗, we can derive:  

𝜀𝑜 𝜙𝑝+1 − 𝛾 𝜙𝑝 − 𝛾 𝜙𝑝+2 = 𝐸 𝜙𝑝+1 (3. 25) 

 

By comparing equations (3.24) and (3.25), we obtain 
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                            𝜓𝑝
(𝑝)
= 𝜙𝑝                                                 (3. 26) 

 

❖ For 𝑗 = 𝑝 − 1, the identical process is applied, leading to: 

                            𝜓𝑝
(𝑝) = 𝑓𝑝                                                 (3. 27) 

 

 

Therefore, equations (3.26) and (3.27) give rise to the following: 

                                                    𝜓𝑝
(𝑝) = 𝜙𝑝 = 𝑓𝑝                                                                                  (3. 28) 

 

𝐴 𝑒𝑖𝑘𝑝 = 𝐵 𝑒−𝑖𝑘𝑝 where  𝐴 = 𝐶 𝑒−𝑖𝑘𝑝 and 𝐵 = 𝐶 𝑒𝑖𝑘𝑝 , hence  

→ ∅𝑗 = 𝐴 𝑒
𝑖𝑘𝑗      ∴ ∅𝑗 = 𝐶 𝑒

−𝑖𝑘𝑝 𝑒𝑖𝑘𝑗                                          (3. 29) 

 

                                      𝜙𝑗 = 𝐶𝑒
𝑖𝑘(𝑗−𝑝) and 𝑓𝑗 = 𝐶𝑒

−𝑖𝑘(𝑗−𝑝) (3. 30) 

 

where 𝐶 is a constant. By incorporating these equations with equations (3.22) and (3.23) we 

obtain: 

                          𝜓𝑗
(𝑝) = 𝐶𝑒𝑖𝑘|𝑗−𝑝| (3. 31) 

where 

𝐶 =
1

2𝑖𝛾 𝑠𝑖𝑛 𝑘
=

1

𝑖ℏ𝑣(𝐸)
 

 

(3. 32) 

 

Here 𝑣(𝐸) is the group velocity. Thus, the Green's function for an infinitely long chain in both 

directions is:  

𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝) =

𝑒𝑖𝑘|𝑗−𝑝|

𝑖ℏ𝑣(𝐸)
 

Hence, the most general solution is: 
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                             𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝) =

𝑒𝑖𝑘|𝑗−𝑝|

𝑖ℏ𝑣(𝐸)
+ 𝐴𝑒𝑖𝑘𝑗 + 𝐵𝑒−𝑖𝑘𝑗                          

 

(3. 33) 

 

By selecting arbitrary constants 𝐴 and 𝐵 as 𝐴 =  −
𝑒𝑖𝑘(𝑗−𝑝)

𝑖ℏ𝑣
 and 𝐵 = −

𝑒−𝑖𝑘(𝑗−𝑝)

𝑖ℏ𝑣
, the Green's 

function is derived, known as the advanced Green's function (the complex conjugate of the 

retarded Green's function). 

𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝) = −

𝑒−𝑖𝑘(𝐸)|𝑗−𝑝|

𝑖ℏ𝑣(𝐸)
                                        

 

(3. 34) 

 

 

3.4.2 Green’s functions of a semi-infinite linear chain 

Here, this system resembles the previous one, with the exception that one lead extends 

infinitely in one direction and is finite in the opposite direction, as depicted in Figure 3. 3.[11, 

13, 14]. 

 

 

 

 

Considering the semi-infinite chain depicted in Figure 3. 3, with site energies εo  and hopping 

elements −γ, where the chain ends at site 𝑗 = 𝑙, where 𝑙 ≥ 𝑝, however, the site 𝑗 = 𝑙 + 1 is 

missing results in the following boundary condition. 

Figure 3. 3: Representation of tight binding model of semi-infinite linear chain with site 

energies εo and hopping elements −γ, which terminates at site 𝑗 = 𝑙. 
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                                                     𝜓𝑙+1
𝑝
= 0                                                             (3. 35) 

 

As depicted in Figure 3. 3, when the incoming plane wave 𝑒𝑖𝑘𝑗 strikes the end of the chain, a 

reflected plane wave 𝑒−𝑖𝑘𝑗 is generated, a reflected wave 𝑅𝑗 = 𝐵𝑒
−𝑖𝑘𝑗. Consequently, this 

reflected wave is incorporated into the retarded Green's function. 

𝐺𝑗𝑝(𝐸) = 𝑒
𝑖𝑘(𝑗−𝑝) + 𝐵 𝑒−𝑖𝑘𝑗     if we choose the site  𝑗 = 𝑙 + 1, from (3.35). 

𝐺𝑗𝑝(𝐸) = 𝑒
𝑖𝑘(𝑙+1−𝑝) + 𝐵 𝑒−𝑖𝑘(𝑙+1) = 0      →     𝐵 𝑒−𝑖𝑘(𝑙+1) = −𝑒𝑖𝑘(𝑙+1−𝑝)     

𝐵 = −𝑒𝑖𝑘(𝑙+1−𝑝). 𝑒𝑖𝑘(𝑙+1)          →          𝐵 = −𝑒𝑖𝑘(2𝑙+2−𝑝)            (3. 36) 

 

From equation (3.36) into the retarded Green’s function of a semi-infinite linear chain is 

𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝)
=
𝑒𝑖𝑘(𝐸)|𝑗−𝑝| + 𝐵 𝑒−𝑖𝑘(𝐸)|𝑗|

𝑖ℏ𝑣(𝐸)
 

𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝)
=
𝑒𝑖𝑘(𝐸)|𝑗−𝑝| − 𝑒−𝑖𝑘(𝐸)|𝑗|𝑒𝑖𝑘(𝐸)|2𝑙+2−𝑝|

𝑖ℏ𝑣(𝐸)
 

                                                          𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝)
=
𝑒𝑖𝑘(𝐸)|𝑗−𝑝|−𝑒−𝑖𝑘(𝐸)(𝑗+𝑝−2𝑙−2)

𝑖ℏ𝑣(𝐸)
 

(3. 37) 

 

This satisfies, 𝜓𝑙+1
𝑝 = 𝜓𝑗

𝑙+1 = 0. Likewise, if the chain terminates at site 𝑙 ≤ 𝑝, the first missing 

site is 𝑗 = 𝑙 − 1 and the boundary condition becomes 𝜓𝑙−1
𝑝 = 0. This leads to Green’s function: 

𝐺𝑗𝑝(𝐸) = 𝜓𝑗
(𝑝) =

𝑒𝑖𝑘(𝐸)|𝑗−𝑝| − 𝑒𝑖𝑘(𝐸)(𝑗+𝑝−2𝑙+2)

𝑖ℏ𝑣(𝐸)
                                    

 

(3. 38) 

 

Consider that in both cases, Green’s function on the terminal site 𝑗 = 𝑝 = 𝑙 is 

𝐺𝑙𝑙(𝐸) = −
𝑒𝑖𝑘(𝐸)

𝛾
  

 

(3. 39) 
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This is referred to as the surface Green's function. 

 

3.4.3 Green’s function of a finite one-dimensional chain 

To derive the Green's function for a finite one-dimensional chain, consider a linear chain 

consisting of 𝑁 tight-binding sites with free-end boundary conditions, as depicted in Figure 3. 

4. Consequently, the Green's function should be zero at site 𝑗 = 0 𝑎𝑛𝑑 𝑗 = 𝑁 + 1. [11, 15] 

 

 

 

 

 

 

To achieve this, Green’s function should be expressed as follows: 

𝐺𝑗𝑝(𝐸) = {
𝐴 𝑠𝑖𝑛 𝑘𝑗 ,                                  𝑗 ≤ 𝑝

𝐵 𝑠𝑖𝑛 𝑘[𝑗 − (𝑁 + 1)],           𝑗 ≥ 𝑝
 

 

(3. 40) 

 

This ensures that the boundary conditions are met, and that continuity is maintained at 𝑗 = 𝑝 

yields. 

𝐴 𝑠𝑖𝑛 𝑘𝑝 = 𝐵 𝑠𝑖𝑛 𝑘[𝑝 − (𝑁 + 1)]                                                  

The constants 𝐴 and 𝐵 must be selected as: 

𝐴 = 𝐶 𝑠𝑖𝑛 𝑘[𝑝 − (𝑁 + 1)] 𝑎𝑛𝑑 𝐵 = 𝐶 𝑠𝑖𝑛 𝑘𝑝 (3. 41) 

Here 𝐶 is a constant.  

Hence, equation  (3.40) can be rewritten as: 

Figure 3. 4: A finite one-dimensional chain with on-site energies 𝜀0 and hopping elements 

−𝛾. 
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𝐺𝑗𝑝(𝐸) = {
𝐶 𝑠𝑖𝑛 𝑘[𝑝 − (𝑁 + 1)] 𝑠𝑖𝑛 𝑘𝑗,              𝑗 ≤ 𝑝

𝐶 𝑠𝑖𝑛 (𝑝) 𝑠𝑖𝑛 𝑘[𝑗 − (𝑁 + 1),               𝑗 ≥ 𝑝
 

 

(3. 42) 

 

Then 𝐶 can be determined as: 

𝐶 = 1 𝛾 𝑠𝑖𝑛 𝑘 𝑠𝑖𝑛 𝑘(𝑁 + 1)                                              ⁄  (3. 43) 

 

From equation (3.42), it is evident that Green’s function diverges when sin 𝑘(𝐸)(𝑁 + 1) = 0, 

meaning 𝑘(𝐸) = 𝑛 𝜋 (𝑁 + 1)⁄ , where 𝑛 is an integer. At the gap center 𝐸 = 0, where 𝑘 = 𝜋 2⁄ , 

𝐶 diverges when 𝑁 is odd. For even 𝑁 (i.e., 𝑁 = 2𝑛), the magic number table can be 

represented as: 

𝑀𝑗𝑝 =
𝐺𝑗𝑝(0)

𝐶
 

∴  𝑀𝑗𝑝 = {
(−1)𝑛+1 𝑠𝑖𝑛

𝜋 𝑗

2
𝑐𝑜𝑠

𝜋 𝑝

2
,                𝑗 ≤ 𝑝

(−1)𝑛+1 𝑠𝑖𝑛
𝜋 𝑝

2
𝑐𝑜𝑠

𝜋 𝑗

2
,                𝑗 ≥ 𝑝

 

 

 

(3. 44) 

 

 This implies that 𝑀𝑗𝑝 = 0 if both 𝑗 and 𝑝 are either odd or even. Additionally, for 𝑗 ≤ 𝑝, 𝑀𝑗𝑝 =

0 if 𝑗 is even or 𝑝 is odd, and for 𝑗 ≥ 𝑝, 𝑀𝑗𝑝 = 0 if 𝑝 is even or 𝑗 is odd. Otherwise, |𝑀𝑗𝑝| = 1. 
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3.5 Scattering matrix 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5 shows the system encompasses a scattering region with 𝑁 sites (𝑗 = 1,2, … .𝑁), 

connected to one-dimensional leads from both left and right sides through matrix elements 

(−𝛼,−𝛽). The right lead includes sites (𝑁 + 1,𝑁 + 2,… . . ∞), while the left lead includes sites 

(−1,−2,… .−∞). Here, −𝛾𝑅 𝑎𝑛𝑑 − 𝛾𝐿represents the nearest coupling on the right and left 

sides, respectively. Understanding the transmission coefficient described in the equations 

mentioned above requires the computation of the scattering matrix. This matrix characterises 

the connection between incoming and outgoing waves and their dependence on the electron's 

energy 𝐸. To derive this, we examine the solution of the time-independent Schrödinger 

equation for an electron within the left and right electrodes in one dimension [11, 16]. The 

eigenstate of the electron within the left electrode can be expressed as: 

𝜓𝑗 = 
𝐴

√𝑣𝑙
𝑒𝑖𝑘𝑗 + 

𝐵

√𝑣𝑙
𝑒−𝑖𝑘𝑗                 

(3. 45) 

 

 

 

In this context, 𝑣𝑙 presents the group velocity within the left electrode, and 𝐴 and 𝐵 denote the 

amplitudes of the incoming and outgoing waves traveling from the left to the right. The current 

per unit energy of the eigenstate is given by: 

Figure 3. 5: Illustrates a system comprising a scattering region leads attached 

to two distinct semi-infinite.  
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𝐼𝑙𝑒𝑓𝑡 = |𝐴
2| − |𝐵2| (3. 46) 

 

Similarly, for the right electrode, the eigenstate of the electron can be expressed as: 

    𝜙𝑗 = 
𝐶

√𝑣𝑟
𝑒𝑖𝑘𝑟𝑗 + 

𝐷

√𝑣𝑟
𝑒−𝑖𝑘𝑟𝑗   

(3. 47) 

 

The current per unit energy is determined as follows:      

𝐼𝑟𝑖𝑔ℎ𝑡 = |𝐶
2| − |𝐷2| (3. 48) 

 

where 𝐶 and 𝐷 represent the amplitudes of the two incoming and outgoing waves traveling to 

the right and left, respectively. Given that the currents adhere to the relationship 

𝐼𝑙𝑒𝑓𝑡 = 𝐼𝑟𝑖𝑔ℎ𝑡 

|𝐴| − |𝐵| = |𝐶| − |𝐷| (3. 49) 

Hence,   

                       |𝐴2| + |𝐵2| = |𝐶2| + |𝐷2|               (3. 50) 

 

Because the incoming current equals the outgoing current, the wave functions for both 

electrodes are correspondingly interconnected. 

                            𝜓𝑗 = 𝐴𝑒
𝑖𝑘𝑗 + 𝐵𝑒−𝑖𝑘𝑗   (3. 51) 

                        𝜙𝑗 = 𝐶𝑒
𝑖𝑘𝑗 + 𝐷𝑒−𝑖𝑘𝑗 (3. 52) 

 

Since the scattering matrix represents the connection between incoming waves and outgoing 

coefficients, and it conforms to: 

                                                    (
𝐵
𝐶
) = (

     𝑆11         𝑆12 
   𝑆21         𝑆22

) (
𝐴
𝐷
) 

 

(3. 53) 
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𝐵 =  𝑆11 𝐴 + 𝑆12𝐷 

 

(3. 54) 

 

   𝐶 =  𝑆21 𝐴 + 𝑆22𝐷 

 

(3. 55) 

 

In this context, 𝐵 and 𝐶 represent the amplitudes of incoming plane waves carrying the 

electrons through the scatterer, while 𝐴 and 𝐷 represent the amplitudes of outgoing waves. To 

understand the components of the scattering matrix, two scenarios are examined. In the first 

case, where 𝐴 = 1 and 𝐷 = 0, 𝐵 = 𝑟 and 𝐶 = 𝑡, where 𝑟 is the amplitude of the reflected wave 

resulting from an incoming wave from the left, and 𝑡 is the amplitude of the transmitted wave. 

                                    (
𝐵
𝐶
) = (

  𝑆11   
 𝑆21   

)                   

 

(3. 56) 

In this case, 𝑆11 and S21represent the reflection (𝑟) and the transmission (𝑡) respectively, 

related to an incident wave from the left. In the second scenario, where 𝐴 = 0 and 𝐷 = 1, then: 

    (
𝐵
𝐶
) = (

  𝑆12   
 𝑆22   

)  

 

 

 

(3. 57) 

𝑆12and 𝑆22denote the reflection (𝑟) and transmission (𝑡) coefficients, respectively, 

corresponding to an incident wave from the right. In summary, the transmission and reflection 

coefficients are expressed as elements of the scattering matrix, which is given by:  

𝑆 = (
𝑟       𝑡′

    𝑡        𝑟′      
 

) 
 

(3. 58) 

 

It is important to note that the matrix 𝑆 is a unitary matrix, meeting the condition: 

𝑠𝑠−1 = 𝑠𝑠ϯ = 1 (3. 59) 

 

This implies that the current conveyed by incoming waves equals the current conveyed by 

outgoing waves. Consequently, the sum of transmission and reflection probabilities amounts 

to unity. 
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                                                       |𝑡|2 + |𝑟|2 = 1  

                                                                                  

𝑇(𝐸) + 𝑅(𝐸) = 1    (3. 60) 

                                                           

                                           
Here, 𝑡 represents the amplitude of transmitted wave functions, 𝑟 denotes the amplitude of 

reflected waves, 𝑇(𝐸) stands for the transmission coefficient, and 𝑅(𝐸) signifies the reflection 

coefficient. 

 

3.6 Transmission coefficient of an arbitrary scattering region 

 

 

 

 

 

 

 

 

To derive a general formula for the transmission coefficient within any arbitrary scattering 

region, we examine the configuration illustrated in Figure 3. 6. This setup comprises two semi-

infinite chains, where the site energies and hopping elements in the left (right) lead are denoted 

as εL(εR) and −γL(−γR) respectively. These leads are linked to the scattering region at sites 1  

and 𝑁 by couplings −𝛼 and −𝛽, respectively [11, 17, 18]. 

Our objective is to find a solution to the Schrödinger equation. 

Figure 3. 6: Illustrates a system comprising a scattering region leads attached 

to two distinct semi-infinite.  
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∑ 𝐻𝑗𝑙𝜓𝑙 = 𝐸𝜓𝑗
∞

𝑙=−∞
 

The amplitudes of the eigenvectors ψj for the left lead, ϕj for the right lead, and fj for the 

scattering region are considered, where the plane waves are normalised to unit current. 

                                         𝜓𝑗 =
1

√𝑣𝐿
 [𝑒𝑖𝑘𝐿𝑗 + 𝑟𝑒−𝑖𝑘𝐿𝑗 ]                                          (3. 61) 

                                          

𝜙𝑗 =
1

√𝑣𝑅
 [𝑡𝑒𝑖𝑘𝑅𝑗 ] 

(3. 62) 

 

The Schrödinger equation is expressed as follows: 

   𝜀𝐿𝜓𝑗 − 𝛾𝐿𝜓𝑗−1 − 𝛾𝐿𝜓𝑗+1 = 𝐸𝜓𝑗            for     𝑗 < 0  (3. 63) 

 

𝜀𝐿𝜓𝑜 − 𝛾𝐿𝜓−1 − 𝛼𝑓1 = 𝐸𝜓𝑜        for  𝑗 = 0                                   (3. 64) 

 

∑ 𝐻𝑗𝑙𝑓𝑙 − 𝛼𝜓𝑜𝛿𝑗1 − 𝛽𝜙𝑁+1𝛿𝑗𝑁 = 𝐸
𝑁
𝑙=1 𝑓𝑗              for      1 ≤ 𝑗 ≤ 𝑁                   (3. 65) 

 

𝜀𝑅𝜙𝑁+1 − 𝛾𝑅𝜙𝑁+2 − 𝛽𝑓𝑁 = 𝐸𝜙𝑁+1           for     𝑗 = 𝑁 + 1                 (3. 66) 

 

             𝜀𝑅𝜙𝑗 − 𝛾𝑅𝜙𝑗+1 − 𝛾𝑅𝜙𝑗−1 = 𝐸𝜙𝑗                  for     𝑗 > 𝑁 + 1 (3. 67) 

 

 

Equation (3.65) could be rewritten as: 

                                       |𝑓⟩ = 𝑔|𝑠⟩                         (3. 68) 

where, 

 𝑔 = (𝐸𝐼 − 𝐻)−1 

g: represents the Green's function of an isolated scatterer. |s⟩ denotes the source, which is a 

zero vector with non-zero elements only at the connection points (at site 𝑗 = 1 and 𝑗 = 𝑁). 
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                |𝑓⟩ =

(

 
 

𝑓1
𝑓2
.
.
𝑓𝑁)

 
 

                                            |𝑠⟩ =

(

 
 

−𝛼𝜓𝑜
𝑜
𝑜
𝑜

−𝛽𝜙𝑁+1)

 
 

 

 

For the junction depicted in Figure (3.5), the state |f⟩ is characterised by only two non-zero 

elements because of the source. Consequently, equation (3.68) can be expressed as follows: 

                   (
𝑓1
𝑓𝑁
) = (

𝑔11 𝑔1𝑁
𝑔𝑁1 𝑔𝑁𝑁

) (
−𝛼𝜓𝑜
−𝛽𝜙𝑁+1

)                       
 

(3. 69) 

 

          g̃−1 (
f1
fN
) = (

−αψo
−βϕN+1

)                     
 

(3. 70) 

 

 

 g̃−1 represents the inverse of the 2×2 submatrix of the Green's function. By applying the 

recurrence relation, we derive the following: 

  𝛾𝐿𝜓1 = 𝛼𝑓1 

      𝛾𝑅𝜙𝑁 = 𝛽𝑓𝑁 

Based on equations (3.61) and (3.62), we obtain: 

                        𝜙𝑁+1 = 𝜙𝑁𝑒
𝑖𝑘𝑅                       (3. 71) 

 

𝜓1 =
1

√𝑣𝐿
[2𝑖 𝑠𝑖𝑛 𝑘𝐿] + 𝜓𝑜𝑒

−𝑖𝑘𝐿                         
(3. 72) 

 

Hence, 
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(
−𝛼𝜓𝑜
−𝛽𝜙𝑁+1

) = 𝛴 (
𝑓1
𝑓𝑁
) + (

𝛼 𝑒𝑖𝑘𝐿

√𝑣𝐿
[2𝑖 𝑠𝑖𝑛 𝑘𝐿]

0
)  

 

(3. 73) 

where  

𝛴 =  (
𝛴𝐿 𝑂
𝑂 𝛴𝑅

) 

ΣL =
−α2eikL

γL
  ,  ΣR =

−β2eikR

γR
 .  These are the self-energies corresponding to the left and right 

leads, respectively. By substituting equation (3.73) into equation (3.70), we get: 

((�̃�)−1 − 𝛴 ) (
𝑓1
𝑓𝑁
) = (

𝛼 𝑒𝑖𝑘𝐿

√𝑣𝐿
[2𝑖 𝑠𝑖𝑛 𝑘𝐿]

0
)                                

 

(3. 74) 

Thus,   

(
f1
fN
) = G(

α eikL

√vL
[2i sin kL]

0
)                

 

(3. 75) 

where   

                G = ((g̃)−1 − Σ )−1 = (
G11 G12
GN1 GNN

)                                    
 

(3. 76) 

 

From equation (3.75), 

𝑓𝑁 = 𝐺𝑁1  
𝛼𝑒𝑖𝑘𝐿

√𝑣𝐿
 [2𝑖 𝑠𝑖𝑛 𝑘𝐿] =

𝛾𝑅
𝛽
 𝜙𝑁                        

(3. 77) 

 

Since   ∅N =
1

√vR
 [teikRN ], ℏvR = 2γR sin kR and ℏvL = 2γL sin kL, we obtain the following: 

𝑡 = 𝑖𝐺𝑁1𝛼 𝛽𝑒
𝑖𝑘𝐿√

2𝑠𝑖𝑛 𝑘𝐿
𝛾𝐿

   √
2 𝑠𝑖𝑛 𝑘𝑅
𝛾𝑅

    𝑒−𝑖𝑘𝑅 𝑁                          

 

(3. 78) 
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𝑇(𝐸) = | 𝑡 |2 = 4 [
𝛼2 𝑠𝑖𝑛 𝑘𝐿
𝛾𝐿

] [
𝛽2 𝑠𝑖𝑛 𝑘𝑅
𝛾𝑅

]  |𝐺𝑁1|
2 

 

(3. 79) 

 

Since                                      |𝐺𝑁1|
2  = |

𝑔𝑁1

∆
|
2

 

where            ∆= 1 − 𝑔11 𝛴𝐿 − 𝑔𝑁𝑁 𝛴𝑅 + 𝛴𝐿 𝛴𝑅[𝑔11  𝑔𝑁𝑁 − 𝑔1𝑁 𝑔𝑁1] 

 

Therefore, the most general formula used to calculate the transmission probability of any 

scattering region connected to various one-dimensional leads [1] is as follows: 

𝑇(𝐸) = | 𝑡 |2 = 4 [
𝛼2 𝑠𝑖𝑛 𝑘𝐿
𝛾𝐿

] [
𝛽2 𝑠𝑖𝑛 𝑘𝑅
𝛾𝑅

]  |
𝑔𝑁1
∆
|
2

                      
(3. 80) 

 

3.7 Thermoelectricity 

In the 19th century, Seebeck, Peltier, and Thompson discovered the relationships between heat, 

current, temperature, and voltage [1]. The Seebeck coefficient 𝑆(𝐸𝐹) is defined as the voltage 

difference ∆𝑉 = 𝑉1 − 𝑉2 generated by a temperature difference ∆𝑇 = 𝑇1 − 𝑇2 between two 

electrodes connected to hot and cold reservoirs, respectively [7, 19]. In the following 

discussion, the sign of the Seebeck coefficient is analysed based on whether the transmission 

is dominated by the HOMO or LUMO peak.  
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3.7.1 The sign of Seebeck coefficient 𝑺(𝑬𝑭) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7 illustrates the energy level alignment in molecular devices consisting of two 

electrodes connected to reservoirs labelled 𝐿 and 𝑅, along with a single molecule. The 

reservoirs are characterised by voltages and temperatures denoted as 𝑉𝐿, 𝑇𝐿 and  𝑉𝑅, 𝑇𝑅 , 

respectively. Let the voltage difference be ∆𝑉 = 𝑉𝐿 − 𝑉𝑅 and the temperature difference be 

∆𝑇 = 𝑇𝐿 − 𝑇𝑅. The chemical potentials are defined as 𝜇𝐿 = 𝐸𝐹 + 𝑒𝑉𝐿 and 𝜇𝑅 = 𝐸𝐹 + 𝑒𝑉𝑅, 

where 𝑒 = −|𝑒|, and their difference is ∆𝜇 = 𝜇𝐿 − 𝜇𝑅 = 𝑒 ∆𝑉. 

Figure 3. 7: The Seebeck coefficient displays different signs depending on whether the system 

is dominated by the LUMO (a, b) and HOMO-dominated (c, d) transport. Transport dominated 

by the LUMO results in a negative Seebeck coefficient, whereas HOMO-dominated transport 

produces a positive Seebeck coefficient. 
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The steady-state particle current 𝐽1 represents the rate at which electrons move from reservoir 

𝐿 to reservoir 𝑅 through the scattering region. In contrast, 𝐽2 represents the reverse flow from 

𝑅 to 𝐿. The net particle current, 𝐽, is given by 𝐽 = 𝐽1 − 𝐽2, and the corresponding electrical 

current is 𝐼 = 𝑒 𝐽, with 𝑒 = −|𝑒|. 

 

In Figure 3. 7b and Figure 3. 7d), the Seebeck coefficient, 𝑆(𝐸𝐹), is defined as 𝑆 = −
∆𝑉

∆𝑇
|
𝐼=0

 

where ∆𝑉 = 𝑉𝐿 − 𝑉𝑅 is the open-circuit voltage generated by a temperature difference ∆𝑇 =

𝑇𝐿 − 𝑇𝑅.To determine the sign of the Seebeck coefficient 𝑆(𝐸𝐹), begin with the equilibrium 

condition where 𝛥𝑉 = 0 and 𝛥𝑇 = 0 Figure 3. 7a. Now consider what happens when the 

temperature 𝑇𝐿 of the left reservoir is raised, increasing the proportion of higher-energy 

electrons in reservoir 𝐿 compared to reservoir 𝑅. If these higher-energy electrons are more 

likely to pass from reservoir 𝐿 to 𝑅 than lower-energy electrons, 𝐽1 will increase, as shown in 

Figure 3. 7b for LUMO-dominated transport. 

To maintain steady-state conditions 𝐽 = 0, the chemical potential 𝜇𝑅 must rise, increasing 𝐽2. 

This shows that when 𝑇𝐿 > 𝑇𝑅, 𝜇𝐿 < 𝜇𝑅. Therefore, if ∆𝑇 > 0, ∆𝜇 < 0, ∆𝑉 > 0, and 𝑆 < 0. 

This behaviour occurs when the Fermi energy is within the HOMO-LUMO gap of a single 

molecule and closer to the LUMO, where the electron transmission coefficient increases with 

energy. A similar situation arises when the Fermi energy is within the band gap of a 

semiconductor and closer to the conduction band. 

Conversely, when the Fermi energy is closer to the HOMO or the valence band Figure 3. 7c, 

higher-energy electrons have more difficulty passing from reservoir 𝐿 to 𝑅 than lower-energy 

electrons. In this case, increasing 𝑇𝐿 relative to 𝑇𝑅 reduces 𝐽1, leading to 𝑆 > 0, as illustrated in 

Figure 3. 7d [20]. 
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3.8 Conclusion 

In summary, I discussed a theory of single particle transport, which is the primary numerical 

tool for studying charge transport through molecules. I explained the theoretical basis for 

calculating electronic transport and provided a simple derivation of the Landauer formula. 

Additionally, the transport was described, including Green’s function methods for obtaining 

the transmission coefficient of semi-infinite leads connected to a scattering region. Therefore, 

the transmission coefficient has been computed using Green's functions and transport through 

an arbitrary scattering region. Finally, the sign of the Seebeck coefficient 𝑆(𝐸𝐹), was explained. 
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Chapter 4 

 

Tunnelling quantum interference through molecular junctions formed from cross-linked 

OPE3 dimers 

 

4.1 Introduction 

This research was conducted in collaboration with Prof. Nicholas Long’s group (Department 

of Chemistry, Imperial College London), who suggested the studied molecules used in this 

work. I performed the theoretical analysis at Lancaster. The study was published under the title: 

"Tuning quantum interference through molecular junctions formed from cross-linked OPE3 

dimers." 

Authored by Bashayr Alanazi, Asma Alajmi, Alaa Aljobory, Colin J. Lambert, and Ali Ismael. 

 

This chapter aims to investigate the impact of quantum interference (QI), in multipath 

molecules more precisely cross-linked (C-L), using gold as the top and bottom electrodes to 

introduce symmetry in a single-molecule junction. The structures consist of dimers formed by 

cross-linking molecular wires, such as oligo phenylene-ethylene (OPE)-based dimers, which 

feature varying contacts between the molecules and electrodes. OPE derivatives are composed 

of phenyl rings linked by triple bonds. I demonstrate that the appearance of destructive or 

constructive quantum interference (DQI and CQI respectively), in cross-linked OPE-based 

dimers is independent of the nature of the molecular cross-link. Instead, the type of interference 

is controlled by the connectivity to external electrodes and is determined by the presence or 
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otherwise of meta-connected phenyl rings in the transport path. This opens the way to a novel 

strategy for memristive switching. 

 

4.2 Motivation 

Numerous studies have investigated the phenomenon of quantum interference (QI), employing 

a variety of approaches to explore its effects. These approaches include investigations based 

on π-stacked systems [1], analyses of para- and meta-connectivities considered individually[2], 

studies combining multiple connectivities within a single molecule [3], examinations of fused 

molecular structures with multiple connectivities [4], and methodologies involving 

electrochemical oxidation [5]. Despite the diversity of these methodologies, a common focus 

across all studies has been the evaluation of on-off ratios, which consistently fall within a range 

of approximately three orders of magnitude. The design of molecular materials studied in this 

chapter contains oligo phenylene-ethylene OPE3, alkane chain, and phenylene ethynylene 

chains. Achieving a fundamental understanding of electronic transport through metal-

molecule-metal junctions is one of the essential challenges in the molecular electronics field. 

To increase this understanding, my aim is to understand the molecule deeply, especially the 

base of molecule OPE3, the bridge including alkane chain, phenylene ethynylene chain, and 

the role of its anchor group (i.e., thiol) in binding to metal electrode, as pointed out in Figure 

4. 1. OPEs are structurally unique building blocks in terms of molecular shape versatility, which 

contain organic molecules composed of repeating units of oligo (phenylene ethynylene) chain. 

In this study, three benzene rings (phenylene) connected by ethynylene (-C≡C-) linkages [6-

11]. The triple bonds in OPEs allow the formation of shape-persistent chromophores by 

imparting rigidity to the molecules, avoiding the rotational freedom resulting from π-

conjugated analogues. 
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Moreover, the extended π-system of OPEs allows charge transport, which is essential in 

molecular electronics [6, 12-14]. In contrast, alkanes, also called “Cycloalkanes” with a single 

ring, follow the general formula 𝐶𝑛𝐻2𝑛, in contrast to the formula for acyclic alkanes, 𝐶𝑛𝐻2𝑛+2. 

Cycloalkanes have two fewer hydrogen atoms than acyclic alkanes because an additional 

carbon–carbon bond is required to form the ring structure. The smallest cycloalkane consists 

of two carbon atoms; the other formula is 𝐶2𝐻4. However, this study chose alkane, which has 

four carbon atoms, 𝐶4𝐻8, this indicates a single pathway for electron flow. This compound is 

called butene by chemists [15-19]. While in a benzene ring, there are two pathways for electron 

flow. 

In this chapter, the calculations focus on studying the conductance of cross-linked molecules 

with different bridges. Each molecule possesses four thiol terminal end-groups (SH), as shown 

in Figure 4. 3, and is formed from one or more of the building blocks shown in Figure 4. 1. 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) 

Figure 4. 1:Chemical structures of building blocks used to create OPE3 dimers. (1) OPE3, 

(2) alkane, and (3) phenylene ethynylene chain. 
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4.3 Optimised DFT structures of isolated molecules 

In this chapter, I will investigate two different cross-linked molecules, which differ according 

to their bridges. To form a cross-linked dimer, I started with the OPE3 molecular; then I linked 

two OPE3s together by bridges formed from either an alkane chain to create 1 or a benzene 

ring to make 2, for both OPE3 molecules cross-linked the same anchor groups, which involves 

thiol terminal end-groups (SH) [14, 20]. 

To accurately determine the molecular electronic properties of the molecular junction. I shall 

start with the theoretical simulations using the density functional DFT code SIESTA. As 

discussed in Chapter 2, density functional theory DFT calculations played a crucial role in 

gathering information on these properties, particularly regarding ground-state electron density. 

The optimal geometries (i.e., ground-state Hamiltonian) of the isolated molecules were 

obtained by relaxing the molecular structures, these were calculated self-consistently using the 

DFT code SIESTA [21-23], which applies Troullier-Martins pseudopotentials to account for 

core electrons and uses a local atomic-orbital basis set to construct the valence states [24, 25]. 

The optimised geometries of isolated cross-linked dimers were obtained by relaxing the cross-

link dimers until the forces on all atoms were reduced to less than 0.01 eV/Å [23], as illustrated 

in Figure 4. 2. I used a double-zeta plus polarization (DZP) orbital basis set, which provides 

an improved description of the electronic wave functions compared to minimal basis sets. In 

this approach, each atomic orbital is represented by two basis functions (zeta functions) rather 

than one, allowing for greater flexibility in capturing the shape and variation of orbitals during 

bonding., norm-conserving pseudopotentials, the local density approximation (LDA) 

exchange-correlation functional, and a 250 Rydberg energy cut-off to define the real space grid 

were employed. Additionally, I also computed results using the generalised gradient 

approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) parameterisation and found that 
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the resulting electronic properties were comparable with those derived from LDA [26, 27]. The 

electronic properties of the cross-linked (C-L) dimers were modelled using a combination of 

DFT and quantum transport theory.  

 

 

 

 

 

 

The following two molecular structures were the two OPE3s linked together by bridges formed 

from either an alkane chain to create C-L1 or a highly conjugated phenylene ethynylene chain 

to create C-L2, and then allowing the system to become fully relaxed to form cross-linked 

dimers as shown in Figure 4. 3. 

 

 

 

 

 

 

 

 

Figure 4. 3: Schematic illustrations of two OPE3 molecules bridged by 1 and 2 components 

(see Figure 4. 2), to form cross-linked dimers: (C-L1) and (C-L2). 

 

 

 

Figure 4. 2: Fully relaxed isolated molecules of three single components, OPE3 and 1-2 

components.  
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4.4 Frontier orbitals for the studied molecules 

To better understand the electronic properties of the studied molecular structures shown in 

Figure 4. 3, the methods introduced in Chapter 2 have been employed. Initially, the frontier 

orbitals of all the gas-phase molecules were examined. Plots of the frontier orbitals for the OPE 

molecule and cross-linked dimers are given in Figure 4. 4 and Figure 4. 5, which show the 

highest occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO), 

(HOMO-1), and (LUMO+1), (HOMO-2), and (LUMO+2) along with their energies. The blue 

and red colours represent regions of positive and negative orbital amplitudes. In the C-L1 and 

C-L2, each degenerate pair is weakly coupled, and the degeneracy is slightly lifted. 

Consequently, as shown in Figure 4. 4 and Figure 4. 5, the LUMO and LUMO+1 of each 

dimer is almost degenerate, and similarly, the HOMO and HOMO-1 are almost degenerate. It 

should be noted that both C-L1 and C-L2 have degeneracies in their HOMO and LUMO levels.    

4.4.1 Cross-linked molecule C-L1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EF= - 3.23 eV 

HOMO= - 4.32 eV                                     LUMO= - 2.21 eV                 

(a) 
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4.4.2 Cross-linked molecule C-L2 

 

                   

 

                        

 

 

 

 

EF= - 3.58 eV 

HOMO-1= - 4.33 eV                                     

HOMO-2= - 4.84 eV                                  LUMO+2= - 1.33 eV                                                            

(c) 

Figure 4. 4: Wave function for cross-linked C-L1. Top panel: fully optimised geometry of 

C-L1. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1, HOMO-2, LUMO+2 of cross-

linked 1, along with their energies. 

LUMO+1= - 2.20 eV                                                          
(b) 
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LUMO+1= - 2.22 eV                                                                                                        HOMO-1= - 4.33 eV                                      

(b) 

LUMO+2= - 2.00 eV                                                                                                 HOMO-2= - 4.40 eV                                   

(c) 

Figure 4. 5: Wave function for cross-linked C-L2. Top panel: fully optimised geometry 

of C-L2. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1, HOMO-2, LUMO+2 of 

cross-linked C-L2, along with their energies. 

HOMO= - 4.32 eV                                  LUMO= - 2.24 eV                                                                                                 

(a) 
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4.5 Orbital product rule (OPR) 

The orbital product rule OPR is a concept used to predict quantum interference effects in 

molecular systems, particularly in molecular electronics. A deeper understanding of the 

relationship between molecular orbitals and electron transport through a molecule can be 

obtained by evaluating whether the orbitals' phases contribute to constructive CQI or 

destructive DQI quantum interference [28, 29]. It is worth mentioning that the studied 

molecules possess four potential contacting points (1, 2, 3 and 4), as shown in Figure 4. 6 

below. 

 

 

 

 

 

 

 

 

 

To understand the relationship between molecular orbitals (MOs) and electrical conductance, 

we need to understand the electronic structure of a molecule. Electrical conductance depends 

on the availability of orbitals that electrons can occupy and move through and how easily 

electrons can transition between these states. We can estimate the electrical conductance (𝜎𝑖𝑖′) 

Figure 4. 6: A C-L2 representation and frontier molecular orbitals of C-L2 (Note: Au electrodes 

added here just to show the contacting points).  



66 

 

as shown in the equation (4.1), if the current enters at the point (𝑟𝑖) and exits at the point (𝑟𝑖′), 

as shown in Figure 4. 6 above. 

 

𝜎𝑖𝑖′ ∝ (𝜓(𝑟𝑖)
𝐻 𝜓(𝑟

𝑖′
)

𝐻 )2 (4. 1) 

 

𝜓(𝑟𝑖)
𝐻 , 𝜓(𝑟

𝑖′
)

𝐻  : are the amplitude of the MO at both the entry and exit points, respectively. 

For a single-orbital molecule, (e.g., containing a HOMO only) the electrical conductance (𝜎𝑖𝑖′) 

is proportional to (𝑔𝑖𝑖′)
2, where: 

𝑔𝑖𝑖′ = 𝐶𝐻𝜓(𝑟𝑖)
𝐻 𝜓(𝑟

𝑖′
)

𝐻  (4. 2) 

 

𝐶𝐻: is a constant of proportionality and the quantity 𝑔𝑖𝑖′ is a Green’s function of our fictitious 

single-orbital molecule. Quantum interference QI between molecular orbitals becomes 

important when a molecule containing two or more orbitals (e.g., a HOMO and a LUMO) is 

positioned in a junction, allowing electrons to pass through it from one connection point to 

another (i.e., 𝑟𝑖 and 𝑟𝑖′). If the molecules possess only a HOMO and a LUMO, then 

 

𝑔𝑖𝑖′ = 𝐶𝐻𝜓(𝑟𝑖)
𝐻 𝜓(𝑟

𝑖′
)

𝐻 + 𝐶𝐿𝜓(𝑟𝑖)
𝐿 𝜓(𝑟

𝑖′
)

𝐿  (4. 3) 

 

In this case, if the HOMO product 𝜓(𝑟𝑖)
𝐻 𝜓(𝑟

𝑖′
)

𝐻 is negative, whereas the LUMO product 

𝜓(𝑟𝑖)
𝐿 𝜓(𝑟

𝑖′
)

𝐿  is positive, this connectivity corresponds to constructive inter-orbital QI and the 

conductance  𝜎𝑖𝑖′  will be high. However, if the HOMO product 𝜓(𝑟𝑖)
𝐻 𝜓(𝑟

𝑖′
)

𝐻  is negative and the 

LUMO product 𝜓(𝑟𝑖)
𝐿 𝜓(𝑟

𝑖′
)

𝐿 is also negative. Hence, this connectivity corresponds to destructive 

inter-orbital QI and  (𝜎𝑖𝑖′)  will be low. For example, as shown in Figure 4. 6. The HOMO 
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product 𝜓(2)
𝐻 𝜓(3)

𝐻 is negative, whereas the LUMO product 𝜓(2)
𝐿 𝜓(3)

𝐿  is negative, so this 

connectivity corresponds to destructive inter-orbital QI. In other words, the conductance is 

predicted to be low. 

In this study, after calculating wavefunction plots for the two cross-linked dimers, as shown in  

Figure 4. 4 and Figure 4. 5. In this section, I will apply the orbital product rule on them. To 

use the OPR rule, two contact points are needed, however, in our case there are many pairs and 

as follows: 1-3, 2-4, 1-2, 3-4, 1-4, and 2-3. These six pairs of contacting points are shown in 

Figure 4. 7.  

 

 

 

 

 

 

 

 

 

Table 4. 1 illustrates the orbital product rule predictions for the two studied molecules: cross-

linked 1 and cross-linked 2 (C-L1 and C-L2).  The product rule applies to the six contact points 

to determine whether the quantum interference is constructive CQI or distractive DQI. The 

OPR predicts a constructive quantum interference CQI for the contact points 1-3, 2-4, 1-2 and 

3-4. On the other hand, it predicts destructive quantum interference DQI for the contact points 

1 

2 

3 
4

Figure 4. 7: Schematic illustration of a cross-linked (C-L), wire with four possible contact 

points (1-4). The Four contact points lead to 6 pair of contacting points 1-3, 2-4, 1-2, 3-4, 1-4, 

and 2-3.    
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1-4, and 2-3. These predictions for the cross-linked 1 and the cross-linked 2 are presented in 

the second and third rows of Table 4. 1. 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Renormalisation method 

The renormalisation method is introduced and explained to analyse the electron's behaviour 

within the ring. In 1872, Kekulé proposed the first structure for benzene molecule, which was 

made up of a six-membered ring where single and double bonds alternate between the carbon 

atoms, with each carbon atom bonded to one hydrogen. When two substituents that indicate 

when the part of a molecule that we change is a specific atom or molecular fragment [9, 30, 

31] are present on a benzene ring, as shown in Figure 4. 8, three possible constitutional isomers 

can form. The positions of the substituents can be identified either by numbering the carbon 

atoms in the ring or by using the terms “ortho, meta, and para”. These substituent effects refer 

to the changes in a reaction or property of the unchanged part of a molecule that occurs due to 

variations in the substituent. The 1,2-positions correspond to ortho, 1,3-positions to meta, and 

Table 4. 1: Orbital Product rule predictions of six contact points 1-3, 2-4, 1-2, 3-4, 1-4, and 2-

3, for cross-linked dimers C-L1 and C-L2 (Note: C for constructive and D for destructive QI). 

 

Cross-linked 

 

Contact points 

 

OPR prediction 

 

wavefunction plot 

Figure  
 

 

C-L1 

 

1-3, 2-4 

1-2, 3-4  

1-4, 2-3 

 

C, C 

C, C 

D, D 

 

Figure 4. 4(a) 

Figure 4. 4(a)       

Figure 4. 4(a) 

  
 

 

C-L2 

 

1-3, 2-4 

1-2, 3-4  

1-4, 2-3 

 

C, C 

C, C 

D, D 

 

Figure 4. 5(a) 

Figure 4. 5(a) 

Figure 4. 5(a) 
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1,4-positions to para. These substituents can be utilised to control chemical reactions and 

properties predictably. 

 

 

 

 

 

4.6.1 Ortho-connected 

 

 

 

 

 

 

 

Figure 4. 9 shows the ortho connectivity is defined by injecting electrons at atom number 1 

and collecting electrons at atom number 2. The two substituents are attached to adjacent carbon 

atoms. This means they are right next to each other on the ring. Ortho substituents can donate 

electron density, as these positions experience enhanced electron density through resonance 

[31-34]. In ortho-connected molecules, the anticipated quantum interference QI is predicted to 

be constructive quantum interference CQI. 

 

 

Figure 4. 8: Structural diagram illustrating the benzene ring. 

Figure 4. 9: Schematic of the structure of the benzene ring with ortho connectivity. 
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4.6.2 Meta-connected 

 

 

 

 

 

 

Figure 4. 10 shows that the meta connectivity occurs when electrons are injected into atom 

number 1 and collected in atom number 3. The substituents are separated by one carbon atom 

(i.e., atom number 2). In this arrangement, they are one carbon apart on the ring. Meta positions 

are usually preferred when the substituent is an electron-withdrawing group, as they are less 

influenced by electron-donating resonance effects [9, 32-34]. In meta-connected molecules, the 

type of quantum interference QI that will occur can be predicted to be destructive quantum 

interference DQI. 

 

4.6.3 Para-connected 

 

 

 

 

 

 

  Figure 4. 11 shows that parity is defined by injecting electrons at atom number 1 and 

collecting them at atom number 4. The substituents are located on opposite sides of the ring, 

Figure 4. 10: Schematic of the structure of the benzene ring with meta connectivity. 

Figure 4. 11: Schematic of the structure of benzene ring with para connectivity. 
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directly across from each other, with two carbon atoms in between (i.e., 2 and 3). Para positions 

are often more reactive when the substituent can donate electrons [9, 32-34]. The expected 

quantum interference QI can be predicted for para-connected molecules as constructive 

quantum interference CQI. 

 

 

4.7 Binding energies 

In order to examine the OPR predictions, we need to attach the isolated cross-linked dimers to 

two metal electrodes to calculate the conductance and compare it against the OPR predictions. 

First, I need to determine the distance between the isolated molecule and the electrodes. To 

calculate the distance between two objects, I need to find the binding energy, defined as the 

optimum distance between two objects. The binding energy is calculated using the DFT 

method, which is required to calculate the ground state energy of the total system. Using DFT 

code more precisely SIESTA, these types of calculations are subject to errors [35-37]. A major 

problem with this kind of simulations is that the interaction energies in closing atoms due to 

the overlap of their basic functions, which affects the system's total energy. These errors can 

be eliminated by applying the counterpoise (CP) correction. A possible explanation is 

calculating the energy in the same total basis set (𝑨𝑩) by removing the numerical errors using 

the “ghost” states (basis set functions with no electrons or protons) in SIESTA [23]. Thus, the 

following equation can express the total energy of the systems (𝑨) and (𝑩) on the dimer basis. 

                                   

 Binding Energy = EAB
AB − EA

AB − EB
AB                (4. 4) 

 

 

The optimised geometries of the isolated molecules were obtained in the earlier study to model 

the electrode configuration. These molecules were then attached to a gold electrode at the 

anchor groups. Considering the nature of the binding, which depends on the structure of the 
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gold surface, the binding to an Au on the surface has been determined, with the anchor atom 

binding at a “top” site, and subsequently varied the binding distance (𝒅). This section 

calculates the binding energies to determine the optimal distance between the Au electrode and 

the anchor groups (S) for each configuration (refer to Figure 4. 12). For more details about 

calculating the binding energy please see section (2.6.3) in chapter 2. 

 

4.7.1 Au-S 

In this section, Figure 4. 12, 𝐵. 𝐸 represents the binding energy between the thiol anchor group 

(SH) and the gold lead; 𝑑 is 2.4 Å, at approximately −0.94 𝑒𝑉. This result is in agreement with 

the literature review; it should be noted that the SH group cleaves when this group is brought 

close to the Au metal to form the S-Au bond [38, 39]. 

 

 

 

 

 

 

 

 

 

Figure 4. 12: Right panel: represents OPE3 molecule binding to a gold atom. Left panel: 

Binding energy as a function of the optimum binding distance 𝑑, where 𝑑 is found to be 

approximately 2.4 Å, and binding energy 𝐵. 𝐸 =  0.94 𝑒𝑉. 
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4.8 Cross-linked dimers in Au-Au junction 

Using the optimised structures and geometries for the compounds obtained as described above, 

I employed the SIESTA code to calculate self-consistent optimised geometries, ground state 

Hamiltonians and overlap matrix elements for the studied molecules. This study aims to 

compute the electrical conductance of these OPE3 dimers (1-2) when only two of the four thiols 

are connected to two metal electrodes as shown in Figure 4. 14 and Figure 4. 15 allowing the 

current to flow from one electrode to the other through the dimer. In this section, I have selected 

the C-L2 as an example to illustrate the pathways of electron transport leading to quantum 

interference, as shown in Figure 4. 13, the C-L2 with six different possible options for thiol 

pair including 1-3, 2-4, 1-2, 3-4, 1-4, and 2-3 and labelled (a-f). To anticipate the role of 

quantum interference, I note that the triple bond labelled ‘a’ is para-connected to triple bond 

‘b’, and following the discussion in section 4.6, since para connectivity corresponds to 

constructive quantum inference CQI, electrons travelling from thiol 1 to thiol 3 are expected to 

experience CQI and the corresponding electrical conductance is expected to be high (please 

see Renormalisation section). Similarly, since triple bond ‘e’ is para-connected to triple bond 

‘f’, electrons travelling from thiol 2 to thiol 4 (or from thiol 1 to thiol 3), are expected to 

experience CQI, resulting in high electrical conductance. On the other hand, triple bond ‘a’ is 

ortho-connected to triple bond ‘c’, and triple bond ‘e’ is meta-connected to triple bond ‘d’. 

Since meta-connectivity corresponds to destructive quantum interference DQI, electrons 

travelling from thiol 1 to thiol 2, (or from thiol 3 to thiol 4) are expected to experience DQI, 

leading to a low electrical conductance. It should be noted that electrons travelling from thiol 

1 to thiol 2 pass through the ortho path ‘a’- ‘c’ and the meta path 'd’- ‘e’. Similarly, from thiol 

3 to thiol 4, there is ‘a’ meta path ‘b’- ‘c’ and an ortho path ‘d’- ‘f’. Since the meta paths lead 

to DQI, the conductance of molecules connected to electrodes via the thiol pairs 1-2 or 3-4 is 

expected to be low up to this point. Four thiol pairs are explored: 1-3, 2-4, 1-2, 3-4, and the 



74 

 

predicted trend is either CQI (1-3 and 2-4) or DQI (1-2 and 3-4). Next, I consider the electrical 

conductance when electrodes are connected to thiols 1 and 4 or 2 and 3. Since the 1-4 path 

includes ortho ‘a’- ‘c’ and ortho ‘d’- ‘f’, we expect it to exhibit CQI and high electrical 

conductance. In contrast, the 2-3 connectivity to electrodes involves the meta-connected paths 

‘e’- d’ and ‘c’- ‘d’, leading to DQI and therefore, low electrical conductance is anticipated. For 

more information about para, meta and ortho behaviour in terms high or low conductance 

please see section (4.6).   

Also, in this section, the studied systems are sandwiched between two gold electrodes for 

molecules C-L1 and C-L2 with six different options for thiol pair including 1-3, 2-4, 1-2, 3-4, 

1-4, and 2-3 and labelled (a-f) as shown in Figure 4. 14 and Figure 4. 15, for the two cross-

linked dimers (1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 13: Schematic illustration of the six different contact points: (1-3), (2-4), (1-2), (3-4), 

(1-4), and (2-3). 
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  4.8.1 Cross-linked (1) possible contact points                                            

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4. 14: Schematic illustration of the Au/C-L1/Au junctions in six different contact points: 

a (1-3), b (2-4), c (1-2), d (3-4), e (1-4), and f (2-3). 

e f 

d c 

b 
a

s  
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4.8.2 Cross-linked (2) possible contact points 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4. 15: Schematic illustration of the Au/C-L2/Au junctions in six different contact 

points: a (1-3), b (2-4), c (1-2), d (3-4), e (1-4), and f (2-3). 

e f 
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b a
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Now, after presenting the possible contact points for both cross-linked molecules, I shall 

examine the orbital product rule OPR, first by a tight binding model TBM, then by DFT 

simulations.   

4.9 Tight binding model (TBM) 

Here, I construct a Huckel (i.e., tight binding, TB) Hamiltonian [40-49], which characterises 

the two-contact points dependence of the conductance for the two cross-linked dimers on their 

connectivity to metal electrodes as shown in Figure 4. 14 and Figure 4. 15 (Note: In the tight-

binding model TBM, the electrodes are represented by carbon chains, whereas in the DFT 

calculations, the electrodes are modeled as gold (Au)). The Hamiltonian matrix comprises of 

diagonal elements 𝐻𝑗𝑗 = ɛ𝑗, which describe the energy ɛ𝑗 of an electron on-site 𝑗 and nearest 

neighbour off-diagonal elements 𝐻𝑖𝑗, which include hopping integrals between neighbouring 

sites 𝑙 and 𝑗. All other matrix elements are set to zero. If all the sites were identical, the simplest 

model would be obtained by setting all ɛ𝑗 = 0 (which defines the zero of energy) and all nearest 

neighbour coupling equal to −1, which sets the energy scale. Such a Hamiltonian is a simple 

connectivity table whose entries 𝐻𝑖𝑗 are equal to −1 when two atoms 𝑖 and 𝑗 are connected and 

are zero otherwise.  

 

 Figure 4. 16 to Figure 4. 21 represents the transmission coefficient 𝑇(𝐸), for cross-linked C-

L1, obtained using the TBM. Similarly, Figure 4. 23 to Figure 4. 28, show the 𝑇(𝐸) for cross-

linked C-L2. The Figure 4. 22 and Figure 4. 29 illustrate similar behaviours, with three 

junctions resulting in CQI; on the other hand, the remaining junctions result in DQI (the other 

3 junctions). 
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When semi-infinite one-dimensional crystalline leads are linked to sites 1 and 3 (or 2 and 4), 

the 𝑇(𝐸) is shown as the red-solid/-dotted curves in Figure 4. 22 and Figure 4. 29, which 

clearly demonstrates a constructive quantum interference CQI. On the other hand, when 

crystalline leads are coupled to sites 1 and 2, the green-solid curve is produced. It possesses a 

DQI signature (i.e., dip) [43, 45, 50-54]. Similarly, coupled to sites 3 and 4 exhibit DQI as 

indicated by the green-dotted curve. Moving to sites 1 and 4, the purple-sold curve is produced 

and possesses no DQI signature (i.e., CQI), whereas, in sites 2 and 3, the light, green-sold curve 

is produced and possesses a DQI dip. These results for the alkane chain bridged (i.e., dimer 1). 

Tight binding transmission coefficients of cross-linked dimers 1 and 2 demonstrate that the 

bridging linker does not influence the transmission curve behaviour, as the two dimers exhibit 

roughly the same curves at the six different pairs of contacts. 

4.9.1 TBM transport simulation for cross-linked (1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 16: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in (1-3) 

contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-1/1D lead 

junctions against electron energy 𝐸.  
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Figure 4. 17: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in 

(2-4) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-

1/1D lead junctions against electron energy 𝐸. 

Figure 4. 18: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in (1-

2) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-1/1D 

lead junctions against electron energy 𝐸. 
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Figure 4. 19: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in (3-

4) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-1/1D 

lead junctions against electron energy 𝐸. 

Figure 4. 20: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in (1-

4) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸)of 1D lead/C-1/1D 

lead junctions against electron energy 𝐸. 
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Figure 4. 22: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in six 

contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Tight binding transmission 

coefficient 𝑇(𝐸) of 1D lead/C-1/1D lead junctions against electron energy 𝐸. 

Figure 4. 21: Right panel: Schematic illustration of the 1D lead/C-1/1D lead junctions in (2-

3) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-1/1D 

lead junctions against electron energy 𝐸. 
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4.9.2 TBM transport simulation for cross-linked (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4. 23: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in (1-3) 

contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-2/1D lead 

junctions against electron energy 𝐸. 

Figure 4. 24: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in (2-

4) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸)of 1D lead/C-2/1D 

lead junctions against electron energy 𝐸. 
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Figure 4. 25: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in 

(1-2) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-

2/1D lead junctions against electron energy 𝐸. 

Figure 4. 26: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in (3-

4) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-2/1D 

lead junctions against electron energy 𝐸. 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 27: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in (1-4) 

contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-2/1D lead 

junctions against electron energy 𝐸. 

Figure 4. 28: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in 

(2-3) contact points. Left panel: Tight binding transmission coefficient 𝑇(𝐸) of 1D lead/C-

2/1D lead junctions against electron energy 𝐸. 
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Table 4. 2 demonstrates the transmission functions for the studied molecules, which are cross-

linked 1 and 2 (C-L1 and C-L2), using TBM. The calculations were performed at the one-

dimensional lead (1D), contact connected to the anchor across six points to determine whether 

the quantum interference is constructive CQI or distractive DQI. 

Figure 4. 29: Right panel: Schematic illustration of the 1D lead/C-2/1D lead junctions in six contact 

points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). contact points. Left panel: Tight binding 

transmission coefficient 𝑇(𝐸) of 1D lead/C-2/1D lead junctions against electron energy 𝐸. 
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Table 4. 2: TBM results for cross-linked 1 and 2, in six different contact points (Note: C for 

constructive and D for destructive QI). 

 

 

 

 

 

 

 

 

 

 

4.10 DFT transport simulation in Au-Au junction  

In the following transport calculations, the transmission coefficient curves 𝑇(𝐸) will be 

obtained using the Gollum transport code [41], which utilises the ground state Hamiltonian and 

the optimised geometry of each compound was obtained using the density functional theory 

DFT code, that to compute transport properties of a wide variety of nanostructures by 

employing theoretical models described in chapter 3[8]. The transmission coefficient 𝑇(𝐸) is 

computed, and I can calculate the zero-bias electrical conductance 𝐺 using the Landauer 

formula (Chapter 3). The transmission coefficients 𝑇(𝐸) were calculated for the studied 

structures of C-L1 and C-L2 shown in Figure 4. 14 and Figure 4. 15. The Fermi level is chosen 

to be (𝐸 − 𝐸𝐹
𝐷𝐹𝑇 = 0𝑒𝑉) of the electrode for these twelve junctions. The transmission 

coefficients 𝑇(𝐸) for cross-linked 1 are shown in Figure 4. 30 to Figure 4. 35. While Figure 

4. 37 to Figure 4. 42 are showing the transmission coefficients 𝑇(𝐸) for cross-linked 2.    

Cross-linked  Contact point TBM results 

 

Transmission Figures 

 

C-L1 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

C, C 

D, D 

C, D 

 

Figure 4. 16-Figure 4. 17 

Figure 4. 18-Figure 4. 19 

Figure 4. 20-Figure 4. 21 

 

C-L2 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

C, C 

D, D 

C, D 

 

Figure 4. 23-Figure 4. 24 

Figure 4. 25-Figure 4. 26 

Figure 4. 27-Figure 4. 28 

 



87 

 

Changing the path of electrons between source to drain leads to a change in the transmission 

coefficient 𝑇(𝐸) from a constrictive to a destructive curve, as in the present study. Figure 4. 

36 and Figure 4. 43 show zero bias transmission coefficient 𝑇(𝐸), obtained from density 

functional theory, for six different electrode connectivities to dimers C-L1 and C-L2. These 

figures display six transmission coefficients; three of them show CQI. On the other hand, the 

other three show DQI. In this section, I shall calculate the transport in gold junctions as follows:    

 

4.10.1 Transport simulation in Au-Au junction for cross-linked (1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 30: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (1-3) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L1/Au junctions against 

electron energy 𝐸. 
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Figure 4. 31: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (2-

4) contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L1/Au junctions 

against electron energy 𝐸. 

Figure 4. 32: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (1-2) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L1/Au junctions against electron 

energy 𝐸.  
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Figure 4. 34: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (1-4) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸)  of Au/C-L1/Au junctions against electron 

energy 𝐸. 

Figure 4. 33: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (3-4) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L1/Au junctions against electron 

energy 𝐸.  
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Figure 4. 35: Right panel: Schematic illustration of the Au/C-L1/Au junctions in (2-3) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L1/Au junctions against electron 

energy 𝐸. 

Figure 4. 36: Right panel: Schematic illustration of the Au/C-L1/Au junctions in in six contact 

points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Transmission coefficients 𝑇(𝐸) of 

Au/C-L1/Au junctions against electron energy 𝐸. 
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4.10.2 DFT transport simulation in Au-Au junction for cross-linked (2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 37: Right panel: Schematic illustration of the Au/C-L2/Au junctions in (1-3) 

contact points.  Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au junctions 

against electron energy 𝐸. 

Figure 4. 38: Right panel: Schematic illustration of the Au/C-L2/Au junctions in (2-4) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au junctions 

against electron energy 𝐸. 



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 39: Right panel: Schematic illustration of the Au/C-L2/Au junctions in (1-

2) contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au junctions 

against electron energy 𝐸. 

Figure 4. 40: Right panel: Schematic illustration of the Au/C-L2/Au junctions in (3-

4) contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au junctions 

against electron energy 𝐸.  
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Figure 4. 41: Right panel: Schematic illustration of the Au/C-L2/Au junctions in 

(1-4) contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au 

junctions against electron energy 𝐸. 

Figure 4. 42: Right panel: Schematic illustration of the Au/C-L2/Au junctions in (2-3) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L2/Au junctions against 

electron energy 𝐸. 



94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 3 illustrates the transmission functions for the studied molecules, which are cross-

linked 1 and cross-linked 2 (C-L1 and C-L2). The calculations were conducted at the lead 

contact linked to the anchor across six points to determine whether the quantum interference is 

constructive CQI or distractive DQI. As shown below, this DFT results agree partially with the 

orbital product rule and align well with the TBM results. 

 

Figure 4. 43: Right panel: Schematic illustration of the Au/C-L2/Au junctions in in six 

contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Transmission 

coefficients 𝑇(𝐸) of Au/C-L2/Au junctions against electron energy 𝐸. 
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Table 4. 3: DFT results for cross-linked 1 and 2, in six different contact points (Note: C for 

constructive and D for destructive QI). 

 

 

 

 

 

 

 

 

 

 

4.11 TBM versus DFT  

To compare the results of TBM, I performed DFT transport simulations for the C-L1 and C-

L2 dimers, each with six different pairs of electrode contacts. TBM curves are in qualitative 

agreement with the DFT transmission coefficients 𝑇(𝐸) of the C-L1 and C-L2, as shown in  

Figure 4. 44 and Figure 4. 45. Both TBM and DFT approaches illustrate that in the presence 

of the 1-3,2-4 and 1-4 connectivities, there is no signature of a DQI (i.e., dip). However, the 

identical dimers with 1-2, 3-4 and 2-3 conductive switch from CQI to DQI regardless of the 

bridging linker chemical structure. The main qualitative difference between the DFT results 

and the TBM results arises from the fact that the tight-binding model is a nearest-neighbour 

bipartite lattice, in which atoms can be labelled, such that odd-numbered atoms interact with 

even-numbered atoms only and vice versa. This chiral symmetry guarantees that the 

transmission coefficient is a symmetric function of the electron energy 𝐸.  

In summary, using density functional theory and a tight-binding model, I have demonstrated 

that the appearance of destructive or constructive quantum interference in cross-linked OPE-

Cross-linked  Contact point DFT result 

 

Transmission Figures 

 

C-L1 

 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

 

C, C 

D, D 

C, D 

 

Figure 4. 30-Figure 4. 31 

Figure 4. 32-Figure 4. 33 

Figure 4. 34-Figure 4. 35 

 

C-L2 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

C, C 

D, D 

C, D 

 

Figure 4. 37-Figure 4. 38 

Figure 4. 39-Figure 4. 40 

Figure 4. 41-Figure 4. 42 
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based dimers is independent of the nature of the molecular cross-link. Instead, the nature of the 

interference is controlled by the connectivity to external electrodes. It is determined by the 

presence or otherwise of meta-connected phenyl rings on the transport path. This is expected 

to be an essential design feature when synthesising molecules with cross-links of different 

stiffnesses because the stiffness and phonon transport properties can be tuned whilst 

maintaining CQI or DQI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  DFT 

(a) 

(b)  TMB 

Figure 4. 44: (a): Schematic illustration of the Au/C-L1/Au junctions in in six contact points: 

(1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). (b): Tight binding transmission coefficients 𝑇(𝐸) of 

1D lead/C-1/1D lead. (c): Transmission coefficients 𝑇(𝐸) by DFT of Au/C-L1/Au junctions 

against electron energy 𝐸. 
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(c)    DFT 

(a) 

(b)    TBM 

Figure 4. 45: (a): Schematic illustration of the Au/C-L2/Au junctions in in six contact points: 

(1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). (b): Tight binding transmission coefficients 𝑇(𝐸) 

of 1D lead/C-2/1D lead. (c): Transmission coefficients 𝑇(𝐸) by DFT of Au/C-L2/Au 

junctions against electron energy 𝐸. 
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4.12 Checking OPR predictions by both DFT and TBM 

 

Table 4. 4: Orbital product rule predictions for cross-linked 1 and 2, against the DFT and TBM 

results (Note: ✓: OPR and DFT agree while x: OPR and DFT don’t agree).    

 

 

Based on the results presented in Table 4. 2 and Table 4. 3, the findings indicate a complete 

(100%) agreement between the tight-binding model calculations and the density functional 

theory results, demonstrating the reliability and accuracy of the TBM in describing the system. 

However, the agreement with the product rule is only partial, at 50%, as shown in Table 4. 4. 

This discrepancy suggests that while the TBM effectively captures the electronic structure and 

behaviour predicted by DFT, it may not fully align with the simplifications or assumptions 

inherent in the product rule. These dimers clearly display a degeneracies in both their HOMOs 

and LUIMOs levels. For example, in the case of C-L1, 𝐸𝐻𝑂𝑀𝑂  =  −4.32 and 𝐸𝐻𝑂𝑀𝑂−1 =

 −4.33 𝑒𝑉, 𝐸𝐿𝑈𝑀𝑂 = −2.21 and 𝐸𝐿𝑈𝑀𝑂+1 = −2.20 𝑒𝑉 as shown in Figure 4. 4 and in the 

case of C-L2, 𝐸𝐻𝑂𝑀𝑂  =  −4.32 and 𝐸𝐻𝑂𝑀𝑂−1 = −4.33 𝑒𝑉, 𝐸𝐿𝑈𝑀𝑂 = −2.24 and 𝐸𝐿𝑈𝑀𝑂+1 =

 −2.22 𝑒𝑉 as shown in Figure 4. 5. 
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4.13 Seebeck coefficient 𝑺(𝑬𝑭) 

The measurement of the Seebeck coefficient 𝑆(𝐸𝐹) in molecular junctions offers 

complementary information to conductance measurements and is becoming essential for 

understanding transport processes at the nanoscale. In this section, the thermoelectric properties 

of the molecules discussed in section (3.7), cross-linked 1 (C-L1) and cross-linked 2 (C-L2), 

are examined theoretically.  

 

4.13.1 Thermopower calculations 

In the previse section, the electronic transmission coefficient 𝑇(𝐸) function for the cross-linked 

junctions was computed. In the subsequent step, Seebeck coefficients   𝑆(𝐸𝐹) will be calculated 

as described in Chapter 3. To calculate the thermopower of the studied molecular junctions, it 

is helpful to introduce the non-normalised probability distribution 𝑃(𝐸) defined by  

𝑃(𝐸) = −𝑇(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
 

(4. 5) 

 

 

where 𝑓(𝐸) represents the Fermi-Dirac distribution function and 𝑇(𝐸) represents the 

transmission coefficients and whose moments 𝐿𝑖 are denoted as follows 

𝐿𝑖 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑖 

(4. 6) 

 

where 𝐸𝐹 is Fermi energy. The Seebeck coefficient, 𝑆(𝐸𝐹) , is then given by  

                                       𝑆(𝑇) = −
1

𝑒𝑇

𝐿1

𝐿0
 (4. 7) 
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where 𝑒 represents the magnitude of the electronic charge. It is apparent that the Seebeck 

coefficient is proportional to the slope of the logarithm of the transmission coefficient at the 

Fermi level. In general, depending on the sign of the slope of the transmission function at the 

Fermi energy 𝐸𝐹, the value of 𝑆(𝐸𝐹) can either be positive or negative. This arises from the 

nature of the charge carriers: a positive 𝑆(𝐸𝐹)  indicates that holes dominate transport. At the 

same time, a negative 𝑆(𝐸𝐹) signals that transport is primarily due to electrons [38, 55]. 

Figure 4. 46 shows the Seebeck coefficient 𝑆(𝐸𝐹) evaluated at room temperature for different 

ranges 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 for C-L1, while Figure 4. 48 for C-L2. 

By using DFT combined with the quantum transport code Gollum, the Seebeck coefficient 

𝑆(𝐸𝐹) has been calculated. Figure 4. 47  and Figure 4. 49 show the corresponding 𝑆(𝐸𝐹) as a 

function of the Fermi energy 𝐸𝐹 . The thermopower has been calculated for the twelve junctions, 

where the 𝐸𝐹 = 0. 
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4.13.2 Seebeck coefficient for cross-linked molecule C-L1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 46: Seebeck coefficient of the Au/C-L1/Au junctions in in six contact points (a) (1-

3), (b) (2-4), (c) (1-2), (d) (3-4), (e) (1-4), and (f) (2-3). 
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Table 4. 5: Seebeck coefficient 𝑆(𝐸𝐹) at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for C-L1. 

 

 

 

 

 

 

 

 

Compound 

 

𝑆 (𝜇𝑉 𝐾−1) 
 

 

Seebeck plot 

Figures 

 

1-3 95.9 

 

Figure 4. 46 (a) 

2-4 78.3 

 

Figure 4. 46 (b) 

1-2 215 

 

Figure 4. 46 (c) 

3-4 260 

 

Figure 4. 46 (d) 

1-4 330 

 

Figure 4. 46 (e) 

2-3 390 

 

Figure 4. 46 (f) 

Figure 4. 47: Right panel: Schematic illustration of the Au/C-L1/Au junctions in in six 

contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Seebeck coefficient 

𝑆(𝐸𝐹) of Au/C-L1/Au junctions against electron energy 𝐸. 
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4.13.3 Seebeck coefficient for cross-linked molecule C-L2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 48: Seebeck coefficient of the Au/C-L2/Au junctions in in six contact points (a) (1-

3), (b) (2-4), (c) (1-2), (d) (3-4), (e) (1-4), and (f) (2-3). 
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Compound 

 

𝑆 (𝜇𝑉 𝐾−1) 
 

 

Seebeck plot 

Figures 

 

1-3 34 

 

Figure 4. 48 (a) 

2-4 45 

 

Figure 4. 48 (b) 

1-2 181 

 

Figure 4. 48 (c) 

3-4 241 

 

Figure 4. 48 (d) 

1-4 151 

 

Figure 4. 48 (e) 

2-3 177 

 

Figure 4. 48 (f) 

Table 4. 6: Seebeck coefficient 𝑆(𝐸𝐹) at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for C-L2. 

 

Figure 4. 49: Right panel: Schematic illustration of the Au/C-L2/Au junctions in in six contact 

points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Seebeck coefficient 𝑆(𝐸𝐹) of 

Au/C-L2/Au junctions against electron energy 𝐸. 
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Table 4. 5 shows the Seebeck coefficient values at the DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 =

0 𝑒𝑉 for the C-L1 with six different options for thiol pair including 1-3, 2-4, 1-2, 3-4, 1-4, and 

2-3. These are in the range between 78.3 and 390 (𝜇𝑉 𝐾−1) for 2-4 ‘para-para’ and 2-3 ‘meta-

meta’. For 2-4 with ‘para-para’ connectivity, the conductance 𝐺 is high, but the Seebeck 

coefficient 𝑆(𝐸𝐸) is low. On the other hand, for 2-3, if the connectivity is ‘meta-meta’ the 

conductance is low, but the Seebeck coefficient is high. Table 4. 6 shows the Seebeck 

coefficient values at the DFT-predicted Fermi energy 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for the C-L2 with six 

different options for thiol pair including 1-3, 2-4, 1-2, 3-4, 1-4, and 2-3 which are in the range 

between 34  and 241(𝜇𝑉 𝐾−1) for 1-3 ‘para-para’ and 3-4 ‘meta-ortho’. On the other hand, 

1-3 if the connected ‘Para-Para’ leading to high conductance, but a low Seebeck coefficient. 

On the other hand, for 3-4, which is connected meta-ortho 𝐺 is high conductance, and the 

Seebeck coefficient is high.  

 

For the connectivity meta-meta, meta-ortho, the high Seebeck coefficient in this configuration 

arises from the stronger energy-dependent transmission near the Fermi level compared with 

the meta-meta or meta-ortho connections. This could be due to the molecular orbital alignment 

and the asymmetry introduced by the meta-ortho contact points, which enhance the 

thermoelectric response. For the connectivity para-para, this configuration might correspond 

to symmetry or constructive quantum interference in the electronic coupling, leading to a lower 

thermopower. The small value suggests a flatter energy dependence of the transmission near 

the Fermi level. These variations highlight how the quantum interference and contact geometry 

influence the thermoelectric properties of the molecule. 
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4.14 Conclusion 

In this chapter, using both density functional theory and a tight-binding model, I have 

shown that the occurrence of destructive quantum interference DQI or constructive 

quantum interference CQI in cross-linked OPE3-based dimers is influenced by the way 

they are connected to external electrodes and depends on the pathway connectivity; in 

particular on whether meta-connected, para-connected or ortho-connected phenyl rings 

are present along the transport pathway. The transition from high to low electrical 

conductance when the connectivity to electrodes is switched is accompanied by an on-

off ratio that can reach up to six orders of magnitude, as illustrated in Figure 4. 44 and 

Figure 4. 45. 

In the case the Seebeck coefficient, which reflects the degree to which the transmission changes 

with energy, I conclude that configurations with higher asymmetry or destructive quantum 

interference tend to increase 𝑆(𝐸𝐹), while symmetric or constructive interference 

configurations result in lower 𝑆(𝐸𝐹). 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

4.15 Bibliography 

 

[1] X. Li, Y. Zheng, Y. Zhou, Z. Zhu, J. Wu, W. Ge, Y. Zhang, Y. Ye, L. Chen, J. Shi, 

Supramolecular Transistors with Quantum Interference Effect, Journal of the American 

Chemical Society, 145 (2023) 21679-21686. 

[2] A. Alanazy, E. Leary, T. Kobatake, S. Sangtarash, M.T. González, H.-W. Jiang, G.R. 

Bollinger, N. Agräit, H. Sadeghi, I. Grace, Cross-conjugation increases the conductance of 

meta-connected fluorenones, Nanoscale, 11 (2019) 13720-13724. 

[3] C. Tang, L. Huang, S. Sangtarash, M. Noori, H. Sadeghi, H. Xia, W. Hong, Reversible 

switching between destructive and constructive quantum interference using atomically 

precise chemical gating of single-molecule junctions, Journal of the American Chemical 

Society, 143 (2021) 9385-9392. 

[4] S.-X. Liu, A.K. Ismael, A. Al-Jobory, C.J. Lambert, Signatures of room-temperature 

quantum interference in molecular junctions, Accounts of chemical research, 56 (2023) 322-

331. 

[5] V.M. García-Suárez, C.J. Lambert, D.Z. Manrique, T. Wandlowski, Redox control of 

thermopower and figure of merit in phase-coherent molecular wires, Nanotechnology, 25 

(2014) 205402. 

[6] Z. Wei, T. Li, K. Jennum, M. Santella, N. Bovet, W. Hu, M.B. Nielsen, T. Bjørnholm, 

G.C. Solomon, B.W. Laursen, Molecular junctions based on SAMs of cruciform oligo 

(phenylene ethynylene) s, Langmuir, 28 (2012) 4016-4023. 

[7] Y.-Y. Sun, Z.-L. Peng, R. Hou, J.-H. Liang, J.-F. Zheng, X.-Y. Zhou, X.-S. Zhou, S. Jin, 

Z.-J. Niu, B.-W. Mao, Enhancing electron transport in molecular wires by insertion of a 

ferrocene center, Physical Chemistry Chemical Physics, 16 (2014) 2260-2267. 

[8] L.A. Zotti, T. Kirchner, J.C. Cuevas, F. Pauly, T. Huhn, E. Scheer, A. Erbe, Revealing the 

role of anchoring groups in the electrical conduction through single‐molecule junctions, 

small, 6 (2010) 1529-1535. 

[9] Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang, D.R. Bowler, T. Miyazaki, 

L. Xiang, Y. Asai, Gate controlling of quantum interference and direct observation of anti-

resonances in single molecule charge transport, Nature materials, 18 (2019) 357-363. 

[10] C. Jia, M. Famili, M. Carlotti, Y. Liu, P. Wang, I.M. Grace, Z. Feng, Y. Wang, Z. Zhao, 

M. Ding, Quantum interference mediated vertical molecular tunneling transistors, Science 

advances, 4 (2018) eaat8237. 



108 

 

[11] Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity 

in molecular junctions, Nature nanotechnology, 9 (2014) 881-885. 

[12] A. Ismael, X. Wang, A. Al-Jobory, S. Ning, T. Alotaibi, B. Alanazi, H. Althobaiti, J. 

Wang, N. Wei, C.J. Ford, Tuning the electrical conductance of oligo (phenylene-ethynylene) 

derivatives-PbS quantum-dot bilayers, J Mater Chem C, 12 (2024) 14004-14012. 

[13] C. Thiele, L. Gerhard, T.R. Eaton, D.M. Torres, M. Mayor, W. Wulfhekel, H. v 

Löhneysen, M. Lukas, STM study of oligo (phenylene-ethynylene) s, New journal of physics, 

17 (2015) 053043. 

[14] L.J. O'Driscoll, M.R. Bryce, A review of oligo (arylene ethynylene) derivatives in 

molecular junctions, Nanoscale, 13 (2021) 10668-10711. 

[15] Y. Yang, A.L. Boehman, J.M. Simmie, Uniqueness in the low temperature oxidation of 

cycloalkanes, Combustion and Flame, 157 (2010) 2357-2368. 

[16] S. Dooley, J. Heyne, S.H. Won, P. Dievart, Y. Ju, F.L. Dryer, Importance of a 

Cycloalkane Functionality in the Oxidation of a Real Fuel, Energy & fuels, 28 (2014) 7649-

7661. 

[17] V. Dragojlovic, Conformational analysis of cycloalkanes, ChemTexts, 1 (2015) 14. 

[18] C. Jia, I.M. Grace, P. Wang, A. Almeshal, Z. Huang, Y. Wang, P. Chen, L. Wang, J. 

Zhou, Z. Feng, Redox control of charge transport in vertical ferrocene molecular tunnel 

junctions, Chem, 6 (2020) 1172-1182. 

[19] A.K. Ismael, C.J. Lambert, Single-molecule conductance oscillations in alkane rings, J 

Mater Chem C, 7 (2019) 6578-6581. 

[20] V. Obersteiner, D.A. Egger, E. Zojer, Impact of anchoring groups on ballistic transport: 

single molecule vs monolayer junctions, The Journal of Physical Chemistry C, 119 (2015) 

21198-21208. 

[21] D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: from concept to 

function, Chemical reviews, 116 (2016) 4318-4440. 

[22] E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. 

Ordejón, J.M. Pruneda, D. Sánchez-Portal, The SIESTA method; developments and 

applicability, Journal of Physics: Condensed Matter, 20 (2008) 064208. 

[23] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, 

The SIESTA method for ab initio order-N materials simulation, Journal of Physics: 

Condensed Matter, 14 (2002) 2745. 



109 

 

[24] E. Engel, A. Höck, S. Varga, Relativistic extension of the Troullier-Martins scheme: 

Accurate pseudopotentials for transition-metal elements, Physical Review B, 63 (2001) 

125121. 

[25] P. Bugnion, P. López Ríos, R. Needs, G. Conduit, High-fidelity pseudopotentials for the 

contact interaction, Physical Review A, 90 (2014) 033626. 

[26] I.L. Herrer, A.K. Ismael, D.C. Milán, A. Vezzoli, S. Martín, A. González-Orive, I. 
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Chapter 5 

 

Influence of the linking bridge in cross-linked OPE3 dimers 

 

5.1 Introduction 

This research was conducted in collaboration with Prof. Nicholas Long’s group (Department 

of Chemistry, Imperial College London), who suggested the studied molecules used in this 

work. I performed the theoretical analysis at Lancaster. The study will be submitted soon. 

This chapter is an extension to chapter 4. In this chapter, I am going to include two more bridges 

donated 3 and 4 in Figure 5. 1, to form cross-linked molecules C-L3 and C-L4 shown in Figure 

5. 2. I Consider the role of linker 3, which is called oligophenylene vinylene[1, 2] and 4, which 

is called 2,6-bis (2-pyridyl) benzene [3], obtained by inserting thiophenes into the bridges of 

C-L1 and C-L2, respectively, as shown in Figure 5. 1 to examine the effect of introducing 5-

membered rings, which break the bipartite nature of dimers C-L1 and C-L2 in chapter 4. The 

density functional theory DFT-based transport simulations were investigated to analyse the 

electrical conductance exhibited by two cross-linked OPE3 dimers (i.e., C-L3 and C-L4). To 

identify specific connectivity configurations conducive to high conductance and those leading 

to lower levels of electrical conductivity (CQI and DQI). I aim to examine whether different 

types of bridges have cross-linked impact transport properties. Figure 5. 1 shows the fully 

relaxed isolated structures of the three building blocks, OPE3 and 3, 4. 
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The two molecular structures C-L3 and C-L4 were cross-linked by connecting components 3 

and 4 with OPE (as depicted in Figure 5.1), and subsequently, the system was allowed to relax 

fully, resulting in the formation of cross-linked dimers, shown in Figure 5. 2. 

 

 

 

 

 

 

 

 

 

 

 

 
3 4 

OPE3 
 

 

Figure 5. 1: Fully relaxed isolated molecules of three single components, OPE3 and (3) 

oligophenylene vinylene, (4) 2,6-bis (2-pyridyl) benzene. (Note: see 1 and 2 bridges in 

chapter 4). 

Cross-linked 4 

      (C-L4) 

 

Cross-linked 3 

(C-L3) 

Figure 5. 2: Schematic illustrations of two OPE3 molecules bridged by 3 and 4 components 

(Figure 5. 1), to form cross-linked dimers C-L3 and C-L4, respectively. 
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5.2 Frontier molecular orbitals 

I repeated the same procedures mentioned in section (4.4), to better understand the electronic 

properties of the studied molecules Figure 5. 3 and Figure 5. 4. First, the frontier orbitals were 

investigated for all the gas-phase molecules. Their highest occupied molecular orbitals 

(HOMO) and lowest unoccupied orbitals (LUMO), (HOMO+1), and (LUMO-1), in addition 

to (HOMO+2) and (LUMO-2), along with their energies were computed. The plots below show 

iso-surfaces of the HOMO, LUMO, HOMO-1, LUMO+1 HOMO-2 and LUMO+2 of isolated 

monomer and dimer molecules. I applied the orbital product rule OPR in the next section. 

Typically, the Fermi energy 𝐸𝐹 falls within the energy gap between the highest occupied 

molecular orbital HOMO and the lowest unoccupied molecular orbital LUMO of the molecule. 

This positioning allows for certain simplifications that would not apply if 𝐸𝐹 were aligned with 

either the HOMO or  energy levels[4, 5]. Later on, I shall check this OPR prediction against 

the DFT results. It should be noted that both C-L3 and C-L4 have degenerate HOMO and 

LUMO levels, as we also noted for C-L1 and C-L2 in chapter 4 (see Figure 4. 4 and Figure 4. 

5).    

  

5.2.1 Cross-linked molecule C-L3 

 

 

 

 

 

 

 

 

 

EF= - 2.86 eV 
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HOMO= - 4.56 eV                                          

 

 

LUMO= - 2.16 eV                                                                                   

(a) 

 

HOMO-1= - 4.57 eV                                

 

LUMO+1= - 2.05 eV                                                                    

 

(b) 

 

LUMO+2= - 1.50 eV      

 

HOMO-2= - 4.74 eV                                

 

(c) 

 

 

Figure 5. 3: Wave function for cross-linked 3. Top panel: fully optimised geometry of C-L3. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1, HOMO-2, LUMO+2 of cross-linked 3, 

along with their energies. 
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5.2.2 Cross-linked molecule C-L4 

 

  

           

            

                                                          

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

EF= - 4.69 eV 

 

(a) 

 HOMO= - 4.70 eV                                      

 

 

LUMO= - 2.33 eV                      

 

 

LUMO+1= - 2.11 eV                                                                                                                    

LUMO+2= - 1.54 eV                                                                                                        HOMO-2= - 4.82 eV                                        

(c) 

 

Figure 5. 4: Wave function for cross-linked 4. Top panel: fully optimised geometry of C-

L4. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1, HOMO-2, LUMO+2 of cross-

linked 4, along with their energies. 

HOMO-1= - 4.72 eV                                                                                                                                                        

 

(b) 
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5.3 Orbital product rule (OPR) 

This section aims to examine the electrical conductance of a novel dimer, where a source 

electrode is connected to one thiol group and a drain electrode to another. These C-L dimers 

involve four terminal thiol end-groups. The orbital product rule shall be employed to predict 

the quantum interference properties for six distinct electrode contact configurations for the two 

cross-linked dimers in Figure 5. 3 and Figure 5. 4. 

To apply this rule, two contact points are considered as follows: 1-3, 2-4, 1-2, 3-4, 1-4, and 2-

3. These six pairs of contacting points are shown in Figure 5.5 [6-11]. It is worth mentioning 

that the studied molecules possess four contacting points (1, 2, 3 and 4), as shown in Error! R

eference source not found. below. 

 

Table 5. 1 illustrates the orbital product rule predictions for the two studied molecules: cross-

linked 3 and cross-linked 4 (C-L3 and C-L4).  The product rule applies to the six contact points 

to determine whether the quantum interference is constructive (CQI) or distractive (DQI). The 

OPR predicts a constructive quantum interference (CQI) for the contact points 2-3, 2-4, 1-2 

and 3-4. On the other hand, it predicts a destructive quantum interference (DQI) for the contact 

points 1-3, 1-4, and 3-4. These predictions for the cross-linked 3 and the cross-linked 4 are 

presented in the second and third rows of Table 5. 1. 
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Table 5. 1: Orbital product rule predictions of six contact points 1-3, 2-4, 1-2, 3-4, 1-4, and 2-

3, for cross-linked dimers C-L3 and C-L4 (Note: C for constructive and D for destructive QI).  

 

 

 

 

 

 

 

 

 

5.4 Cross-linked dimers in Au-Au junction 

Starting from the optimised structures and geometries for the compounds shown in Figure 5. 

2. The tight-binding model TBM will be applied to the C-L3 and C-L4 illustrated in Figure 5. 

5 and Figure 5. 6 to evaluate whether the results are consistent with the product rule outlined in 

Section 5.5. In addition, the SIESTA code was employed to compute self-consistent optimised 

geometries, ground-state Hamiltonians, and overlap matrix elements [12-14]. Subsequently, 

the Gollum quantum transport code was utilised to calculate the transmission coefficient, as 

detailed in Section 5.6. The final parameter to be calculated is the Seebeck coefficient, 𝑆(𝐸𝐹), 

for the gold-molecule-gold junction, as described in detail in Section 5.7. This section includes 

C-L3 and C-L4, with SH as the anchor group. For more information about all studied 

components, see Chapter 4. 

 

 

 

Cross-linked Contact points OPR prediction 

 

Wavefunction plot 

Figure  

C-L3 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

D, C 

C, D 

D, C 

Figure 5. 3 (a) 

Figure 5. 3 (a) 

Figure 5. 3 (a)  

C-L4 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

D, C 

C, D 

D, C 

Figure 5. 4 (a) 

Figure 5. 4 (a) 

Figure 5. 4 (a) 
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5.4.1 Cross-linked 3 possible contact points 
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Figure 5. 5: Schematic illustration of the Au/C-L3/Au junctions in six different contact points: 

a (1-3), b (2-4), c (1-2), d (3-4), e (1-4), and f (2-3). 
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5.4.2 Cross-linked 4 possible contact points 
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Figure 5. 6: Schematic illustration of the Au/C-L4/Au junctions in six different contact 

points: a (1-3), b (2-4), c (1-2), d (3-4), e (1-4), and f (2-3). 
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5.5 Tight binding model (TBM) 

To investigate the quantum interference predictions mentioned above, I develop a Hückel 

(tight-binding, TB) Hamiltonian model [15-21]. As discussed in the previous chapter, section 

(4.9). Figure 5. 7 and Figure 5. 8 show the transmission coefficient 𝑇(𝐸) for cross-linked C-

L3 and the 𝑇(𝐸) for cross-linked C-L4, respectively. Illustrate similar behaviours, with three 

junctions resulting in CQI; on the other hand, the remaining junctions result in DQI (dimers 1 

and 2 display the same behaviour, see section 4.9 in chapter 4). 

 

The first set of results involves coupling semi-infinite one-dimensional crystalline leads to sites 

1 and 3 or 2 and 4, producing the red solid and dotted curves in Figure 5. 7 and Figure 5. 8, 

respectively. These curves clearly indicate constructive quantum interference CQI. Conversely, 

when leads are connected to sites 1 and 2 in the second set, the green solid curve is observed, 

showing a signature transmission dip, indicating destructive quantum interference DQI. 

Similarly, coupling to sites 3 and 4 yields the green dotted curve, also indicative of DQI. When 

leads are attached to sites 1 and 4, the purple solid curve is generated, showing no DQI 

signature (it reflects CQI). In contrast, coupling to sites 2 and 3 produces the light green solid 

curve, which displays a DQI dip. The tight-binding transmission coefficients for cross-linked 

dimers 3 and 4 reveal that the nature of the bridging linker has no significant impact on the 

transmission curves, as all four dimers exhibit similar behaviour across the six different contact 

pairings. (Note: at the TBM level). 

 Table 5. 2 presents the TBM results, which reveal that the occurrence of destructive quantum 

interference DQI is independent of the type of bridging linker. Additionally, the results confirm 

that the 1-3, 2-4, and 1-4 connectivities display high conductance, attributed to constructive 

quantum interference CQI, while the 1-2, 3-4, and 2-3 connectivities exhibit low conductance 
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due to the presence of DQI. Now, to have a full comparison, meaning include dimers 1 and 2 

(studied in chapter 4), the only difference one could notice is that the transmission curves of 

dimers (1 and 2) are symmetric, whereas (3 and 4) are asymmetric. I attribute that to the fact 

that (1 and 2) are bipartite molecules while (3 and 4) are not (please compare Figure 4. 22 and 

Figure 4. 29 against Figure 5. 7 and Figure 5. 8).           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7: Right panel: Schematic illustration of the Tight binding transmission coefficients 𝑇(𝐸) 

of 1D lead/C-3/1D lead, in six contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: 

Transmission coefficients 𝑇(𝐸) by TBM of Au/C-L1/Au junctions against electron energy 𝐸.  
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Table 5. 2: TBM results for cross-linked 3 and 4, in six different contact points (Note: C for 

constructive and D for destructive QI). 

. 
 

Cross-linked  

 

Contact point 

 

TBM results 

 

TBM Figures 

 

 

 

C-L3 

 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

 

C, C 

D, D 

C, D 

 

Figure 5. 7 

Figure 5. 7 

Figure 5. 7 

 

 

 

C-L4 

 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

 

C, C 

D, D 

C, D 

 

Figure 5. 8 

Figure 5. 8 

Figure 5. 8 

 

Figure 5. 8: Right panel: Schematic illustration of the tight binding transmission coefficients 𝑇(𝐸) 

of 1D lead/C-4/1D lead in six contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: 

Transmission coefficients 𝑇(𝐸) by TBM of Au/C-L1/Au junctions against electron energy 𝐸. 
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5.6 DFT transport simulation in Au-Au junction  

As described in section (4.10) of chapter 4, I started with the wholly optimised gas-phase 

molecules to investigate the transmission coefficient. Then, I constructed the junctions by 

attaching the molecules via the thiol anchor group to gold. Similar to the computations shown 

in Chapter 4, the transmission coefficient 𝑇(𝐸) will be investigated by DFT. The ground state 

Hamiltonian and optimised geometry of each compound were obtained using the density 

functional theory DFT code and combined with the Gollum transport code [22, 23]. Section 

(5.6.1) will show the results of C-L3, while section (5.6.2) will show the C-L4 results.  The 

transmission coefficients 𝑇(𝐸) for cross-linked 3 are shown Figure 5. 9 to Figure 5. 14. 

Meanwhile, Figure 5. 16 to Figure 5. 21 show the transmission coefficients 𝑇(𝐸) for C-L4. 

 

5.6.1 Transport simulation in Au-Au junction for cross-linked (3)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 9: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (1-3) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸)  of Au/C-L3/Au junctions against electron 

energy 𝐸. 
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Figure 5. 10: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (2-4) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L3/Au junctions against electron 

energy 𝐸. 

Figure 5. 11: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (1-2) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L3/Au junctions against electron 

energy 𝐸. 
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Figure 5. 12: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (3-4) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L3/Au junctions against 

electron energy 𝐸. 

Figure 5. 13: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (1-4) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L3/Au junctions against 

electron energy 𝐸. 
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Figure 5. 14: Right panel: Schematic illustration of the Au/C-L3/Au junctions in (2-3) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L3/Au junctions against electron 

energy 𝐸. 

Figure 5. 15: Right panel: Schematic illustration of the Au/C-L3/Au junctions in in six 

contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Transmission coefficients 

𝑇(𝐸) of Au/C-L3/Au junctions against electron energy 𝐸. 
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5.6.2 Transport simulation in Au-Au junction for cross-linked (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 16: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (1-3) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against electron energy 

𝐸. 

Figure 5. 17: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (2-4) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against 

electron energy 𝐸.  
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Figure 5. 18: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (1-2) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against 

electron energy 𝐸. 

Figure 5. 19: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (3-4) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against 

electron energy 𝐸. 
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Figure 5. 20: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (1-4) contact 

points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against electron 

energy 𝐸. 

Figure 5. 21: Right panel: Schematic illustration of the Au/C-L4/Au junctions in (2-3) 

contact points. Left panel: Transmission coefficient 𝑇(𝐸) of Au/C-L4/Au junctions against 

electron energy 𝐸. 
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Table 5. 3 shows the DFT results indicate that the occurrence of destructive quantum 

interference DQI remains unaffected by the type of bridging linker. They also confirm that the 

1-3, 2-4, and 1-4 connectivities exhibit high conductance due to constructive quantum 

interference CQI, whereas the 1-2, 3-4, and 2-3 connectivities show low conductance because 

of the presence of DQI [23-28]. 

 

 

 

Figure 5. 22: Right panel: Schematic illustration of the Au/C-L4/Au junctions in in six contact 

points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Transmission coefficients 𝑇(𝐸) 

of Au/C-L4/Au junctions against electron energy 𝐸. 
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Table 5. 3: DFT results for cross-linked 3 and 4, in six different contact points (Note: C for 

constructive and D for destructive QI). 

 

 

5.7 TBM versus DFT  

To compare the outcomes of the tight-binding model, I conducted density functional theory 

DFT transport simulations for the C-L3 and C-L4 dimers, considering six different electrode 

contact pairs for each. The TBM curves qualitatively align with the DFT-derived transmission 

coefficients, 𝑇(𝐸), for C-L3 and C-L4, as illustrated in Figures 4.44 and 4.45. Both methods 

indicate that in the cases of 1-3, 2-4, and 1-4 connectivities, there is no evidence of destructive 

quantum interference, as no dip is observed. Conversely, for the 1-2, 3-4, and 2-3 

connectivities, the dimers consistently switch between constructive quantum interference CQI 

and DQI, irrespective of the chemical structure of the bridging linker. A key qualitative 

difference between the DFT and TBM results arises from the nature of the TBM, which for C-

L1 and C-L2 is based on a nearest-neighbor bipartite lattice. In this lattice, atoms are arranged 

so that odd-numbered atoms interact exclusively with even-numbered atoms, and vice versa. 

This inherent chiral symmetry ensures that the transmission coefficient is symmetric with 

respect to the electron energy 𝐸. 

 

Cross-linked  

 

Contact point 

 

DFT results 

 

Transmission Figures 

 

 

 

C-L3 

 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

 

C, C 

D, D 

C, D 

 

Figure 5. 9-Figure 5. 10 

Figure 5. 11-Figure 5. 12 

Figure 5. 13-Figure 5. 14 

 

 

 

C-L4 

 

1-3, 2-4 

1-2, 3-4 

1-4, 2-3 

 

C, C 

D, D 

C, D 

 

Figure 5. 16-Figure 5. 17 

Figure 5. 18-Figure 5. 19 

Figure 5. 20-Figure 5. 21 
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(a) 

(b)    TBM (c)    DFT 

Figure 5. 23: (a): Schematic illustration of the Au/C-L3/Au junctions in in six contact points: 

(1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). (b): Tight binding transmission coefficients 𝑇(𝐸) of 

1D lead/C-3/1D lead. (c): Transmission coefficients 𝑇(𝐸) by DFT of Au/C-L3/Au junctions 

against electron energy 𝐸. 
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(a) 

(b)    TBM (c)    DFT 

Figure 5. 24: (a): Schematic illustration of the Au/C-L4/Au junctions in in six contact points: (1-3), 

(2-4), (1-2), (3-4), (1-4), and (2-3). (b): Tight binding transmission coefficients 𝑇(𝐸) of 1D lead/C-

4/1D lead. (c): Transmission coefficients 𝑇(𝐸) by DFT of Au/C-L4/Au junctions against electron 

energy 𝐸. 
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5.8 Checking OPR predictions by both DFT and TBM 

 

 

 

 

The results presented in Table 5. 1 and Table 5. 3 show a perfect 100% agreement between 

the tight-binding model TBM calculations and the density functional theory DFT results, 

highlighting the TBM's reliability and accuracy in modelling the system. However, as indicated 

in Table 5. 4, the agreement with the product rule is only partial, with less than 50% 

consistency. It should be noted that the OPR is not expected to work if there is a degeneracy in 

the energy levels. These dimers clearly display a degeneracies in both their HOMOs and 

LUIMOs levels. For example, in the case of C-L3, 𝐸𝐻𝑂𝑀𝑂  =  −4.56 and 𝐸𝐻𝑂𝑀𝑂−1 =

 −5.57 𝑒𝑉, 𝐸𝐿𝑈𝑀𝑂 = −2.16 and 𝐸𝐿𝑈𝑀𝑂+1 = −2.05 𝑒𝑉 as shown in Figure 5. 3 and in the 

case of C-L4, 𝐸𝐻𝑂𝑀𝑂  =  −4.70 and 𝐸𝐻𝑂𝑀𝑂−1 = −4.72 𝑒𝑉, 𝐸𝐿𝑈𝑀𝑂 = −2.33 and 𝐸𝐿𝑈𝑀𝑂+1 =

 −2.11 𝑒𝑉 as shown in Figure 5. 4. 

Table 5. 4: Orbital product rule predictions for cross-linked 3and 4, against the DFT and TBM 

results (Note: ✓: OPR and DFT agree while x: OPR and DFT don’t agree).      
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1-3, 2-4 
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1-4, 2-3 

 

D, C 

C, D 
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C, C 

D, D 

C, D 

 

 

x, ✓ 

x, ✓ 
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Figure 5. 3(a) 

Figure 5. 3(a) 

Figure 5. 3(a) 

 

 

C-L4 

 

1-3, 2-4 

1-2, 3-4  

1-4, 2-3 

 

D, C 

C, D 

D, C 

 

C, C 

D, D 

C, D 

 

 

x, ✓ 

x, ✓ 

x, x   

Figure 5. 4(a) 

Figure 5. 4(a) 

Figure 5. 4(a) 
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5.9 Seebeck behaviour of Au-dimer-Au junctions   

The measurement of the Seebeck coefficient 𝑆(𝐸𝐹) in molecular junctions offers 

complementary information to conductance measurements and is becoming essential for 

understanding transport processes at the nanoscale. In this section, the thermoelectric properties 

of the molecules discussed in section (3.7), cross-linked 3 (C-L3) and cross-linked 4 (C-L4), 

are examined theoretically. 

 

As note in chapter 4, the Seebeck coefficient is directly related to the slope of the logarithmic 

transmission coefficient at the Fermi level. In essence, the sign of the Seebeck coefficient 

𝑆(𝐸𝐹) depends on the transmission function's slope at the Fermi energy 𝐸𝐹. When 𝑆(𝐸𝐹) is 

positive, it indicates that holes are the main charge carriers in transport. Conversely, a negative 

𝑆(𝐸𝐹) suggests that electrons are primarily responsible for transport [29, 30]. 

 

Figure 5. 25 shows the Seebeck coefficient 𝑆(𝐸𝐹) evaluated at room temperature for different 

ranges 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 for C-L3, while Figure 5. 26. By using DFT combined with the quantum 

transport code Gollum, the Seebeck coefficient 𝑆(𝐸𝐹) has been calculated. Figure 5. 27 and 

Figure 5. 28 shows how 𝑆(𝐸𝐹) varies as a function of the Fermi energy 𝐸𝐹 . The thermopower 

has been calculated for the twelve junctions, where the 𝐸𝐹 = 0. 
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5.9.1 Seebeck coefficient for cross-linked molecule C-L3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 25: The Seebeck behavior of the Au/C-L3/Au junctions in in six contact points (a) (1-3), (b) 

(2-4), (c) (1-2), (d) (3-4), (e) (1-4), and (f) (2-3). 
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5.9.2 Seebeck coefficient for cross-linked molecule C-L4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 26: The Seebeck behavior of the Au/C-L4/Au junctions in in six contact points (a) (1-

3), (b) (2-4), (c) (1-2), (d) (3-4), (e) (1-4), and (f) (2-3). 
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Figure 5. 27: Right panel: Schematic illustration of the Au/C-L3/Au junctions in in six contact 

points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Seebeck coefficient 𝑆(𝐸𝐹) of Au/C-

L3/Au junctions against electron energy 𝐸. 

Figure 5. 28: Right panel: Schematic illustration of the Au/C-L4/Au junctions in in six 

contact points: (1-3), (2-4), (1-2), (3-4), (1-4), and (2-3). Left panel: Seebeck coefficient 

𝑆(𝐸𝐹) of Au/C-L4/Au junctions against electron energy 𝐸. 
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Table 5.5 shows the Seebeck coefficient values at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for 

the C-L3 with six different options for thiol pair including 1-3, 2-4, 1-2, 3-4, 1-4, and 2-3 which 

are in the range between 92.2  and 390 (𝜇𝑉 𝐾−1) for contact point 2-4 ‘Para-Para’ and 

contact point 2-3 ‘meta-meta’. The 2-4 ‘Para-Para’ connectivity produces high conductance 

and low Seebeck coefficient, whereas the 2-3 ‘meta-meta’ connectivity produces low 

conductance, and a high Seebeck coefficient.  Table 5.6 shows the Seebeck coefficient values 

at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for the C-L4 with six different options for thiol 

pair including 1-3, 2-4, 1-2, 3-4, 1-4, and 2-3 which are in the range between 101 and 

340 (𝜇𝑉 𝐾−1) for 2-4 ‘para-para’ and 2-3 ‘meta-meta’. For the 2-4 ‘para-para’ connectivity, 

the conductance corresponds is high and the Seebeck coefficient is low, whereas for the 2-3 

‘meta-meta’ connectivity, the conductance is low and, the high Seebeck coefficient is high.   

So, the ‘meta-meta’ connectivity involves more significant asymmetry or destructive quantum 

interference effects, enhancing the Seebeck coefficient. The higher value indicates stronger 

energy dependence of the transmission function near the Fermi level. The ‘para-

para’ connectivity might correspond to constructive quantum interference or better symmetry 

in the electronic coupling, leading to a lower Seebeck coefficient. The small value suggests a 

flatter energy dependence of the transmission near the Fermi level. These variations highlight 

how the quantum interference and contact geometry influence the thermoelectric properties of 

the molecule. 
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Table 5. 5: Seebeck coefficient 𝑆(𝐸𝐹) at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for C-L3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

𝑆 (𝜇𝑉 𝐾−1) 
 

 

Seebeck plot 

Figures 

 

1-3 167 

 

Figure 5. 23 (a) 

2-4 92.2 

 

Figure 5. 23 (b) 

1-2 208 

 

Figure 5. 23 (c) 

3-4 225 

 

Figure 5. 23 (d) 

1-4 303 

 

Figure 5. 23 (e) 

2-3 390 

 

Figure 5. 23 (f) 

Table 5. 6: Seebeck coefficient 𝑆(𝐸𝐹) at DFT-predicted Fermi 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉 for C-L4. 

 

Compound 

 

𝑆 (𝜇𝑉 𝐾−1) 
 

 

Seebeck plot 

Figures 

 

1-3 114 

 

Figure 5. 24 (a) 

2-4 101 

 

Figure 5. 24 (b) 

1-2 270 

 

Figure 5. 24 (c) 

3-4 160 

 

Figure 5. 24 (d) 

1-4 190 

 

Figure 5. 24 (e) 

2-3 340 

 

Figure 5. 24 (f) 
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5.10 Conclusion 

In this study, I investigated the influence of bridge on electronic transport, using the product 

rule, tight-binding model TBM, and density functional theory DFT calculations. In total, I have 

employed four different linker bridges (1-4), which involve linear chain (alkane), six-

membered rings (benzene ring), 2(five-membered rings) with linear chain (oligophenylene 

vinylene), and 2(five-membered rings) with benzene ring (2,6-bis(2-pyridyl) benzene). I have 

found that the interference behaviour is mainly dictated by the connectivity to external 

electrodes rather than the bridge and depends on whether meta-connected phenyl rings are 

present in the transport pathway. This insight is expected to be a critical design consideration 

when synthesising molecules with cross-links of varying stiffness, as it allows the stiffness and 

phonon transport properties to be adjusted while preserving either constructive or destructive 

quantum interference. 

 

I have also found that the quantum interference effects, contact geometry, and the alignment of 

molecular orbitals with the Fermi level strongly influence the Seebeck coefficient. 

Configurations that induce destructive interference or asymmetry tend to increase the Seebeck 

coefficient, while configurations with stronger symmetry or constructive interference reduce 

it. These results indicate that the specific nature of the cross-linking bridge does not 

significantly affect the observed outcomes. Instead, the connectivity, particularly the electron 

pathway from one electrode to the other, plays a crucial role in governing the system's 

behaviour. 
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Chapter 6 

 

Summary and future works  

6.1 Introduction 

This thesis has investigated electron transport through cross-linked OPE3 dimers, employing 

several theoretical techniques and methods such as the orbital product rule OPR, tight binding 

model TBM and density functional theory. The latter has allowed me to utilise the 

counterpoised method CP and examine frontier molecular orbitals (FMOs). Using density 

functional theory DFT, in combination with Green’s function scattering techniques, their 

electrical conductance (𝐺) and the Seebeck coefficient (𝑆) have been evaluated with the aim of 

understanding fundamentals of their transport properties, which may underpin future designs 

for high performance thermoelectric materials. This thesis is composed of the following 

chapters: 

Chapter 1 provided a brief overview of molecular electronics, incorporating a discussion on 

molecular junctions and outlining the structure of the thesis. 

Chapter 2 introduced general concepts of density functional theory, its implementation of the 

SIESTA code, and the exchange correlation functional to analyse the electrical properties. 

Chapter 3 described the single electron scattering theory equilibrium Green's functions, and 

relating topics such as Landauer formalism, with examples of calculating the transmission 

coefficient for different systems using the Hamiltonian and Green's functions. 

Chapter 4 studied symmetric dimer molecules to demonstrate a general principle for 

molecular-scale quantum transport (QI), which opens up new material design and discovery 

routes. 
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 The density-functional theory was used to model the transport properties of the two molecular 

junctions. I investigated the charge transport properties of the SH-anchored molecular 

junctions, starting with the electronic structure properties involving the wave function plots 

and the binding geometry. 

The two compounds, C-L1 and C-L2, each have six connection points organised into two 

groups based on their connectivity patterns. These groups are defined as follows: 

• CQI Group: the constrictive quantum interference group includes connections along the 

pathways 1-3, 2-4, and 1-4. 

• DQI Group: the distractive quantum interference group includes connections along the 

pathways 1-2, 3-4, and 2-3. 

This arrangement classifies the structural connectivity of C-L1 and C-L2 into these two distinct 

categories, CQI and DQI, based on their respective connection patterns. 

Chapter 5 studied two new compounds, C-L3 and C-L4. I found that the type of cross-linking 

bridges had no impact; however, the connectivity itself did influence the results.  

6.2 Future work 

This thesis used many theoretical methods to predict the electrical properties of different cross-

linked dimers attached to gold leads. One may consider expanding these results in various 

directions for future work. One interesting study would be an assessment of transport properties 

when the cross-linked OPE3 dimers are terminated by other anchor groups such as pyridyl 

(PY), methyl sulphide (SMe), or amine (NH2). Secondly, it would be interesting to examine the 

electronic properties of different electrodes such as cross-linked OPE3 dimers linked to a 

graphene lead. 
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Another suggestion for this chapter is to change the molecular core structure of the cross-linked 

dimer to have different contact connectivities; more specifically with a mixture of paras, metas 

and orthos pathways. For example, Figure 6. 1 below, suggests four dimers (b-e), and 

elucidates how they differ from the origin dimer (a). These different mixtures of paras, metas 

and orthos pathways shall result in different values of on/off ratios which are necessary 

designing different types of memristives.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
(c) 

(a) 

(e) (d) 

Figure 6. 1: (a) Schematic illustration of a dimer in six different contact points. (b, c, d, and e) new 

suggested dimers with different mixture of paras, metas and orthos pathways. 
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Figure 6. 1 shows the future work (a)Schematic illustration of a dimer in six different contact 

points. (b) the case when the thiol group connects to atom 2 instead of atom 1, it changes from 

a para position to a meta position. (c) when the triple bond labelled 'd' shifts to position 6 

instead of 5, it will yield a new outcome. (d) when the triple bond labelled 'e' shifts to position 

2 instead of 1, it will result in new connectivities. In this study, I initially have three symmetric 

cases: para-para, meta-meta, and ortho-ortho, along with one asymmetric case, meta-ortho. 

However, with these changes, two additional asymmetries, para-ortho and para-meta, will 

emerge. Specifically, when electrons travel from position 1 to thiol 2, this corresponds to a 

para-ortho asymmetry. On the other hand, if electrons travel from thiol 2 to thiol 3, it results 

in a para-meta-asymmetry. (e) when the triple bond labelled 'a' shifts to position 6 instead of 

1, and the triple bond labelled 'e' shifts to position 2 instead of 1, it will result in a new 

configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 2: (a) Schematic illustration of Cross-linked with Azobenzene. (b) Schematic 

illustration of cross-linked after rotation. 

(a) (b) 

Light 
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Furthermore, the molecular in Figure 6. 2 was conducted in collaboration with Prof. Nicholas 

Long’s group (Department of Chemistry, Imperial College London), who suggested the studied 

molecules used in this work. I performed the theoretical analysis at Lancaster. Since the 

position between the two benzene rings has an important influence on the electron transport 

due to quantum interference effects, I think that adding two nitrogen atoms (Azobenzene), may 

enhance the QI via an azobenzene bridge. Azobenzene is an organic compound consisting of 

two phenyl rings (benzene rings) connected by a central azo (-N=N-) group. It has the chemical 

formula 𝐶12𝐻10𝑁2. Azobenzene is a well-studied compound in chemistry, mainly because of 

its photoisomerization properties, which make it a key player in materials science and 

molecular [1-4]. In addition to the above future work relating to electron transport, it would 

also be of interest to study how the above molecular features affect phonon transport, since 

there is a strong correlation between mechanical forces in molecular junctions and electrical 

conductance [5]. Based on theories of phonon transport in disordered solids [6], a DFT-based 

theory of phonon transport through molecules was developed recently and shown to be in 

excellent agreement with experimental measurements of single-molecule thermal transport [7]. 

Like DQI for electrons, theory suggests that phonon interference effects can be used to suppress 

phonon transport [8],which would be useful for increasing thermoelectric figure of merit 𝑍𝑇 for 

molecular-scale junctions, which is proportional to the inverse of the thermal conductance. 
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