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Abstract—The increasing integration of electric vehicles (EVs)
and photovoltaic (PV) generation introduces significant uncer-
tainty into modern distribution grids. This paper presents a dual-
stage, AI-driven framework for resilient energy management that
combines machine learning-based forecasting with generative
modelling for scenario-based control. The first stage uses a
hybrid forecasting architecture: long short-term memory (LSTM)
and convolutional LSTM (ConvLSTM) models for EV demand
prediction and eXtreme gradient boosting (XGBoost) for PV
generation forecasting. The second stage employs a generative
adversarial network (GAN) to produce realistic EV and PV
scenarios, capturing both typical variability and a wide range of
operating conditions. The framework is validated on a modified
IEEE 33-bus distribution system with integrated EV charging
and stationary storage. Results show that the dual-model fore-
casting approach achieves high accuracy across diverse temporal
patterns, while GAN-based scenario generation improves the
adaptability of control decisions. Scenario-based optimisation
enhances performance under uncertainty, especially at high-
variance nodes, and offers greater flexibility than deterministic
control in balancing energy cost and demand satisfaction.

Index Terms—Electric vehicles, Photovoltaic, Machine learn-
ing, Generative adversarial networks, Forecasting, Optimisation

I. INTRODUCTION

Electric vehicles (EVs) offer a promising pathway to decar-
bonise transportation, while photovoltaic (PV) systems repre-
sent a clean, renewable source of energy [1]–[3]. However,
their increasing presence introduces significant operational
challenges to power systems due to the stochastic and often
uncoordinated nature of their energy profiles. EV charging
is influenced by highly variable user behaviour, including
unpredictable arrival and departure times as well as clustering
in charging demand [4]. Similarly, PV generation depends
heavily on environmental conditions such as solar irradiance,
which are inherently uncertain and variable [5].

Traditional power systems, designed for centralised, pre-
dictable loads, are ill-equipped to manage the dynamic, dis-
tributed, and inverter-based nature of modern resources like
EVs and PVs [6]. This shift underscores the need for advanced
forecasting and control strategies to maintain grid reliability
amid high penetrations of such uncertain and variable tech-
nologies.

Data-driven methods have become prominent for short-term
forecasting due to their adaptability and ability to capture
complex nonlinear patterns. For PV generation, models such
as gradient boosting (GB), support vector machines (SVM),
and deep neural networks, including long short-term memory
(LSTM), are widely used [5]. Forecasting EV charging de-
mand is more challenging due to behavioural and spatiotem-
poral variability. Deep learning models like LSTM, convo-
lutional LSTM (ConvLSTM), and bidirectional ConvLSTM
(BiConvLSTM) have proven effective for modelling these
dependencies [4]. Hybrid frameworks that combine machine
learning with heuristic optimisation have also been proposed
to enhance prediction accuracy and inform charging station
siting and resource planning [7], [8]. However, most existing
forecasting approaches treat EV and PV systems in isolation,
ignoring their interactive effects on grid dynamics. Conven-
tional model-based methods also struggle to represent the
complex nonlinear and spatial interactions introduced by these
distributed resources.

Beyond point forecasts, there is a growing need to anticipate
rare or adversarial events, such as atypical weather condi-
tions or abrupt demand spikes, that are poorly represented
in historical data. Generative adversarial networks (GANs)
have emerged as a powerful tool for uncertainty-aware mod-
elling [9]. By learning underlying data distributions, GANs
can generate diverse and realistic synthetic scenarios that en-
hance decision-making under uncertainty. Recent applications
include coordinated management of PV-integrated EV park-
ing lots [10], explainable EV energy profiling using ensem-
ble learning [11], and uncertainty-aware microgrid schedul-
ing [12]. However, many existing GAN-based approaches
model EV and PV behaviours independently and often struggle
to preserve temporal realism, particularly under edge case
conditions, leading to scenarios that may compromise control
performance.

Building on these developments, this paper introduces a
dual-stage, AI-driven framework that integrates short-term
forecasting with uncertainty-aware control. The first stage
employs LSTM and ConvLSTM models for forecasting EV



charging demand and eXtreme gradient boosting (XGBoost)
for PV generation prediction. The second stage uses GANs
to generate realistic and diverse scenarios, including rare and
adversarial events, which are then incorporated into a scenario-
based control strategy for resilient energy management.

The remainder of the paper is structured as follows: Section
II details the machine learning models used for forecasting
EV charging and PV generation. Section III presents the
GAN-based scenario generation and the control optimisation
strategy. Section IV describes the case study setup and eval-
uates the forecasting accuracy, scenario realism, and control
performance. Finally, Section V concludes the paper.

II. FORECASTING WITH MACHINE LEARNING

Forecasting models for EV charging and PV generation
are constructed using historical and contextual features. Let
B denote the set of buses in the distribution network. The
forecasting task is to learn two distinct mapping functions:{

P̂EV,b(t+ τ) = FEV
(
xEV
b (t), . . . ,xEV

b (t−∆+ 1)
)

P̂PV,b(t+ τ) = FPV
(
xPV
b (t), . . . ,xPV

b (t−∆+ 1)
) , b ∈ B (1)

where PEV,b(t) and PPV,b(t) represent the actual EV charging
and PV generation power (in kW) at bus b and time t, and
P̂EV,b(t+τ), P̂PV,b(t+τ) are their predicted values at horizon
τ , while FEV and FPV denote the respective forecasting mod-
els (e.g., LSTM/ConvLSTM and XGBoost), applied to input
feature sequences of length ∆. Here, t ∈ Z denotes discrete
time steps (e.g., hourly intervals), and τ ∈ {1, 2, . . . ,H}
is the forecast horizon in discrete units. Each input vector
x
(·)
b (t) ∈ Rn represents recent history, temporal features (e.g.,

hour of day, day of week), and exogenous variables (e.g.,
temperature, irradiance). The model uses a lookback window
of length ∆ to forecast over a horizon H ≪ T , where
T = {1, 2, . . . , T} represents the total time horizon. This
corresponds to a lookback window spanning from t−∆+ 1
to t, comprising exactly ∆ discrete time steps.

A. EV/ESS load forecasting

To forecast EV and ESS load, an LSTM-based recurrent
neural network is employed, well-suited for modelling time
series with long-range dependencies due to its internal gating
mechanisms that regulate information flow across time steps.

The training dataset is constructed by applying a sliding
window of length ∆ over T EV

train ⊆ T , extracting overlapping
input-output pairs. For each EV-enabled bus b ∈ BEV ⊆ B, this
results in T−∆−H+1 training samples. Each sample consists
of an input sequence of contextual features over the past ∆
time steps and a target sequence of future EV charging power
over the forecast horizon H . These samples are aggregated
across all relevant buses to form the complete training set.

Let the input sequence for bus b at time t be defined as:

XEV
b (t) = [xEV

b (t−∆+ 1), . . . ,xEV
b (t)] ∈ R∆×n, (2)

where each feature vector encodes the observed EV charging
power and associated contextual variables at time t as below:

xEV
b (t) =

[
PEV,b(t), t

EV(t), w(t), e(t)
]
, (3)

with tEV(t) ∈ Rnt being temporal features (e.g., hour of day,
weekday), w(t) ∈ Rnw containing weather variables, and
e(t) ∈ Rne capturing event-based indicators. The full input
dimensionality is n = 1 + nt + nw + ne.

The model learns a function to map these sequences to
future EV charging forecasts P̂EV,b(t + 1 : t + H) =
LSTMθEV(X

EV
b (t)), where P̂EV,b ∈ RH is the predicted EV

power profile over H future time steps and θEV represents the
complete set of learnable parameters (e.g., recurrent weights,
biases, and output layer parameters). The LSTM update at each
time step t is given by (ht, ct) = LSTMCell(xt,ht−1, ct−1),
where the gating operations are:

ψ
(g)
t = σ(Wgxt +Ught−1 + bg), g ∈ {f, i, o}
c̃t = tanh(Wcxt +Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(4)

where g ∈ {f, i, o} denotes the forget, input, and output gates,
σ is the sigmoid function, ⊙ denotes element-wise multipli-
cation, and {W,U,b} are learnable weights and biases.

When multiple EV charging stations (EVCSs) at different
buses exhibit spatial dependencies, a ConvLSTM is used. The
input becomes a 3D tensor X(t) ∈ R∆×H×W , where H ×
W encodes the spatial layout. The cell operations now use
convolution [4]:

Ψ
(g)
t = σ(Wg ∗Xt +Ug ∗Ht−1 + bg), g ∈ {f, i, o}
C̃t = tanh(Wc ∗Xt +Uc ∗Ht−1 + bc)

Ct = ft ⊙Ct−1 + it ⊙ C̃t

Ht = ot ⊙ tanh(Ct)

(5)

where ∗ denotes the convolution operator.
The model is trained to minimise a composite loss function

that combines mean absolute error (MAE) and mean squared
error (MSE) across all buses and forecast steps as below:

L(PEV, P̂EV) =
1

|B|H
∑
b∈B

H∑
τ=1

[
α1 ·

∣∣∣PEV,b(t+ τ)− P̂EV,b(t+ τ)
∣∣∣

+ α2 ·
(
PEV,b(t+ τ)− P̂EV,b(t+ τ)

)2
]

(6)
where α1 and α2 are non-negative weighting coefficients.

Algorithm 1 outlines the training process, which proceeds
over multiple epochs. In the LSTM model, the final hidden
state h∆ is passed through a fully connected layer to produce
the forecast. In ConvLSTM, the spatiotemporal hidden state
H∆ is decoded via a convolutional output layer, preserv-
ing spatial relationships across EVCS nodes (buses). Model
parameters θEV are updated via gradient descent using the
θEV ← θEV − ℓEV · ∇θEVL to minimise the loss in Eq. (6),
with learning rate ℓEV. After each epoch, validation loss Lval
is computed for model selection and early stopping. The final
trained model, LSTMθEV or ConvLSTMθEV , maps historical
inputs to forecasts P̂EV,b(t + 1 : t +H) ∈ RH for each EV-
enabled bus b ∈ BEV.
B. PV generation forecasting

XGBoost is employed for PV generation forecasting due to
its efficiency and accuracy on structured data. Its suitability



Algorithm 1 EV/ESS load forecasting using LSTM or ConvLSTM

1: Input: Training data {X(t), PEV(t)}Tt=1, validation set, window size ∆, forecast
horizon H , learning rate ℓEV, max epochs E

2: Initialise: Model parameters θEV, best validation loss Lbest ←∞
3: for epoch e = 1 to E do
4: for each time step t ∈ [∆, T −H], where T = |T | do
5: if LSTM then
6: Extract input window Xt−∆+1:t ∈ R∆×n

7: Initialise hidden states h0, c0 ← 0
8: else if ConvLSTM then
9: Extract input tensor Xt−∆+1:t ∈ R∆×H×W

10: Initialise hidden states H0,C0 ← 0
11: end if
12: for each time index k = 1 to ∆ do
13: if LSTM then
14: Compute gates ψ(g)

k , c̃k using Eq. (4)
15: Update states ck, hk using Eq. (4)
16: else if ConvLSTM then
17: Compute gates Ψ

(g)
k , C̃k using Eq. (5)

18: Update states Ck, Hk using Eq. (5)
19: end if
20: end for
21: Generate forecast:

LSTM: P̂EV(t+ 1 : t+H) = MLP(h∆)
ConvLSTM: P̂EV(t+ 1 : t+H) = ConvOutput(H∆)

22: Compute training loss L(PEV, P̂EV) using Eq. (6)
23: Update model: θEV ← θEV − ℓEV · ∇θEVL(PEV, P̂EV)
24: end for
25: Evaluate model on validation set:
26: Lval ← ValidationLoss(θEV)
27: if Lval < Lbest then
28: Save current model; Lbest ← Lval
29: end if
30: if early stopping condition met then
31: break
32: end if
33: end for
34: Output: Trained model LSTMθEV or ConvLSTMθEV , mapping input XEV

b (t) to
forecast P̂EV,b(t+ 1 : t+H)

for short-term prediction stems from its ability to capture
nonlinear relationships in environmental and temporal features
such as irradiance, temperature, and time-of-day.

The training dataset for each PV-enabled bus b ∈ BPV ⊆ B
is constructed as a set of independent samples:

XPV
b =

{(
xPV
b (t), PPV,b(t+ τ)

)}
t∈T PV

train

(7)

where xPV
b (t) ∈ Rn is the input feature vector at time t,

and PPV,b(t+τ) is the target PV output at the desired forecast
horizon τ . Each input vector xPV

b (t) consists of:
xPV
b (t) =

[
firr(t), Tamb(t), t

PV(t)
]
, (8)

where firr(t) is the solar irradiance (kW/m2), Tamb(t) is
the ambient temperature (°C), and tPV(t) ∈ Rnt encodes
temporal attributes (e.g., hour of day, day of year, seasonal-
ity). The model learns a mapping function P̂PV,b(t + τ) =
XGBoostθPV(x

PV
b (t)), where θPV denotes the set of learned

parameters across the ensemble of decision trees.
The XGBoost model is trained to minimise the MAE over

the training samples, along with a regularisation term Ω(θPV)
that penalises model complexity (e.g., number of leaves, tree
depth):
L(PPV, P̂PV) =

1

|M|
∑

(t,b)∈M

∣∣∣PPV,b(t+ τ)− P̂PV,b(t+ τ)
∣∣∣+Ω(θPV),

(9)
The loss is evaluated over samples (t, b) ∈ M, with M ⊆
T PV

train × BPV.

Algorithm 2 PV generation forecasting using XGBoost

1: Input: Training data
{(

xPV
b (t), PPV,b(t+ τ)

)}
t∈T PV

train, b∈BPV
; validation set;

learning rate ℓPV; max boosting rounds R; tree depth; regularisation weights
2: Initialise: Model parameters θPV; best validation loss Lbest ←∞
3: for round r = 1 to R do
4: Sample minibatch

{(
xPV
b (t), PPV,b(t+ τ)

)}
(t,b)∼M

5: Predict: P̂PV,b(t+ τ) = XGBoostθPV

(
xPV
b (t)

)
6: Compute training loss L(PPV, P̂PV) using Eq. (9)
7: Update θPV ← θPV − ℓPV · ∇θPVL(PPV, P̂PV)
8: Evaluate on validation set:
9: Lval ← ValidationLoss(θPV)

10: if Lval < Lbest then
11: Save current model; Lbest ← Lval
12: end if
13: if early stopping condition met then
14: break
15: end if
16: end for
17: Output: Trained model XGBoostθPV , mapping xPV

b (t) to forecast P̂PV,b(t+ τ)

Algorithm 2 describes the XGBoost training process for PV
forecasting. The model learns from feature-target pairs based
on historical irradiance, temperature, and temporal variables.
Each boosting round fits a regression tree to the residuals,
iteratively updating parameters θPV to minimise the regularised
loss in Eq. (9). Validation loss is monitored to enable early
stopping, and the final model is selected based on the lowest
error. The trained model maps inputs xPV

b (t) to forecasts
P̂PV,b(t+ τ) for each PV-enabled bus b ∈ BPV.

III. FORECAST-AWARE CONTROL WITH GAN-BASED
SCENARIO GENERATION

To model the stochastic variability of future power profiles,
separate GANs are trained for EV demand and PV generation.
Each GAN consists of a generator G(·)θ and a discriminator
D(·)
ϕ , where (·) ∈ {EV,PV} indicates the domain. The

generator maps a latent input z ∼ p(z) (e.g., a multivariate
Gaussian) to a synthetic spatiotemporal trajectory:

P̃(·) = G(·)
θ (z) ∈ R|T |×|B|, (10)

where P̃(·) represents the generated EV or PV power profile
across time T and network buses B.

The discriminator is trained to distinguish real from gener-
ated samples, and both networks are optimised via the standard
adversarial loss [10]:

min
θ(·)

max
ϕ(·)

[
EP(·)∼pdata

[logD(·)
ϕ (P(·))] + Ez∼p(z)[log(1−D(·)

ϕ (G(·)
θ (z)))]

]
(11)

Once trained, the generator produces multiple forecast tra-
jectories {P̃(κ)}Kκ=1, each representing a plausible realisation
of future EV or PV power. These trajectories serve as input
scenarios for a stochastic control optimisation, enabling robust
decision-making under uncertainty.

Let {u(t)}t∈T denote the sequence of control decisions
(e.g., EV charging rates and ESS dispatch). For each scenario
κ = 1, . . . ,K, let P̃ (κ)

EV,b(t) and P̃
(κ)
PV,b(t) be the forecasted EV

load and PV output at bus b, respectively. We define:

P̃
(κ)

EV (t) = {P̃ (κ)

EV,b
(t)}b∈B, P̃

(κ)

PV (t) = {P̃ (κ)

PV,b
(t)}b∈B. (12)



The objective is to minimise the expected cost across all
scenarios, combining energy supply costs (net of PV genera-
tion) with penalties for unmet EV charging demand:

min
{u(t)}

1

K

K∑
κ=1

∑
t∈T

[
λ1 ·

∑
b∈B

cb(t) ·
(
ub(t)− P̃

(κ)
PV,b(t)

)
︸ ︷︷ ︸

net energy cost

+ λ2 ·
∑
b∈B

max
{
0, P̃

(κ)
EV,b(t)− ub(t)

}
︸ ︷︷ ︸

unmet EV demand penalty

] (13)

where ub(t) is the control action at bus b, and cb(t) is the
local energy cost. The λ1 and λ2 are weighting coefficients.

All control decisions u(t) must satisfy a few constraints
across network elements. Firstly, each bus b ∈ B is subject to
local device capacity limits as 0 ≤ ub(t) ≤ P

(b)
EV,max +P

(b)
ESS,max,

where ub(t) denotes the combined control action (e.g., EV
charging plus ESS dispatch), and P

(b)
EV,max, P

(b)
ESS,max are the

respective rated capacities at bus b.
Secondly, the energy state of each storage unit s ∈ S,

whether stationary or mobile, evolves according to:

SoCs(t+1) = SoCs(t)+η ·P charge
s (t) ·∆t−

1

η
·P discharge

s (t) ·∆t, (14)

subject to the operational bounds SoCmin ≤ SoCs(t) ≤
SoCmax, where η ∈ (0, 1] is the round-trip efficiency and
∆t is the time step duration (in hours). It should be noted
that Eq. (14) assumes a simplified linear charging/discharging
model with constant round-trip efficiency η, which does not
account for practical constraints such as dynamic charging
profiles (e.g., constant-current or constant-voltage), charger
power limitations, temperature effects, or battery degradation.

Thirdly, PV generation is constrained by both inverter limits
and environmental availability:

0 ≤ PPV,b(t) ≤ min
(
P

(b)

PV,max, firr(t) ·Ab · ηPV

)
, (15)

where Ab is the PV panel area and ηPV is the power conversion
efficiency.

Finally, the forecasting and optimisation models operate on
a short-term horizon τ ∈ {1, 2, . . . ,H} to support real-time
operational tasks such as scheduling and energy dispatch.

The complete control procedure is summarised in Algo-
rithm 3. The optimisation is formulated as a linear programme
with a linear objective and piecewise-linear penalties repre-
sented via auxiliary slack variables. All operational constraints
are linear. To enhance tractability, binary constraints (e.g.,
charging/discharging exclusivity) are relaxed, allowing con-
tinuous control within [0, 1], which accelerates solution time
at the expense of some modelling precision. A rolling-horizon
strategy is employed: at each timestep, new GAN-based fore-
casts {P̃ (κ)

EV , P̃
(κ)
PV } are generated, the linear programme is

solved, the first control action u(t) is applied, and the process
repeats to adapt to real-time conditions.

IV. CASE STUDY AND RESULTS

The proposed framework is validated on the IEEE 33-
bus distribution system using data from MATPOWER. Static
EVCSs are located at Buses 9, 17, and 32 with rated loads of

Algorithm 3 Scenario-based rolling optimisation under forecast
uncertainty

1: Input: Trained GAN generators GEV
θ ,GPV

θ , H , K, λ1, λ2, {cb(t)}
2: for each time step t ∈ T do
3: Generate scenarios:
4: for κ = 1 to K do
5: Sample latent vector z(κ) ∼ p(z)
6: P̃

(κ)
EV (t : t+H)← GEV

θ (z(κ)), P̃
(κ)
PV (t : t+H)← GPV

θ (z(κ))
7: end for
8: Solve optimisation:
9: Compute control sequence {u(t), . . . , u(t+H)} by solving linear programme

using all K scenarios
10: Implement control: Apply first-step decision u(t)
11: end for
12: Output: Control trajectory {u(t)}t∈T

30 kW, 50 kW, and 60 kW, respectively. Dynamic EV demand
is synthesised using the NREL commercial fleet dataset and
VISTA travel data, generating 100 mobile EV agents randomly
assigned across Buses 2-33 based on stochastic availability
[13], [14]. Stationary storage systems are installed at Buses
7, 19, and 29 with capacities between 30-40 kWh and peak
power support of 200 kW during 17:00-21:00. PV systems are
installed at Buses 5, 11, and 24 with 40 kW inverters.
A. Forecasting accuracy evaluation

Short-term forecasts of EV charging demand and PV gen-
eration are evaluated over a 24-hour horizon. Fig. 1 presents
forecasting results for representative EV and PV buses (9, 17,
and 32 for EV; 5, 11, and 24 for PV). Fig. 1a compares
actual and predicted EV charging profiles using LSTM and
ConvLSTM models. The selected buses exhibit different tem-
poral profiles: Bus 9 shows a pronounced evening peak, Bus
17 a delayed morning ramp, and Bus 32 minimal demand
variation. ConvLSTM consistently outperforms LSTM, par-
ticularly under high-variability conditions, owing to its ability
to capture spatiotemporal patterns across distributed EVCS
nodes. Table I summarises the one-hour-ahead MAE for each
method. For example, at Bus 9, ConvLSTM reduces the MAE
from 1.62 kW (LSTM) to 1.28 kW, with similar improvements
across other EV buses. For PV forecasting, XGBoost achieves
high accuracy, with MAE values consistently below 0.25 kW
across all evaluated nodes. Fig. 1b shows the distribution
of PV forecast residuals at Buses 5, 11, and 24. The tight
interquartile ranges and lack of significant outliers confirm
the robustness of the XGBoost model under stable weather
conditions. Forecast performance is further evaluated across
multiple prediction horizons τ ∈ {1, 2, 3, 4} using normalised
root mean square error (NRMSE) as a scale-independent
metric. Fig. 1c shows that forecast error increases with horizon
length due to growing uncertainty. EV buses with higher
volatility (e.g., Bus 9) exhibit the steepest increase in NRMSE,
while smoother profiles (e.g., Bus 32 and PV buses) maintain
relatively low errors even at 4-hour horizons.
B. GAN scenario generation and validation

To evaluate the realism and statistical validity of the GAN-
generated scenarios, key properties of synthetic EV charging
demand profiles are compared against real data. Validation fo-
cuses on static EVCS nodes (Buses 9, 17, and 32), which serve



TABLE I. ONE-HOUR-AHEAD MAE (KW) ACROSS
REPRESENTATIVE BUSES

Bus LSTM ConvLSTM XGBoost (PV)

Bus 9 (EV) 1.62 1.28 –
Bus 17 (EV) 1.15 0.94 –
Bus 32 (EV) 0.88 0.79 –
Bus 5 (PV) – – 0.23
Bus 11 (PV) – – 0.21
Bus 24 (PV) – – 0.19

as control points for scheduling. As shown in Fig. 2, the time-
varying mean and variance (capturing behavioural diversity
and temporal uncertainty across scenarios) of GAN-generated
trajectories closely match those of the real data. Notably, the
evening peak around 18:00 is accurately reproduced in both
magnitude and variability.
C. Scenario-based control performance

The scenario-based optimisation problem is implemented
in MATLAB using the linprog solver from the Opti-
misation Toolbox. Fig. 3a illustrates the control trajectories
at three representative buses under both scenario-based and
deterministic strategies. The red solid line denotes the average
control action across multiple forecast scenarios, while the
shaded region represents the 90% confidence interval (CI),
reflecting the variability of responses to forecast uncertainty.
The blue dashed line corresponds to the deterministic control
based on a single-point forecast. Compared to the deterministic
baseline, the scenario-based strategy dynamically adjusts both
the timing and magnitude of actions to account for uncertainty,
particularly at Buses 17 and 32, which experience higher tem-
poral variability in EV demand. Fig. 3b evaluates the impact
of the number of forecast scenarios K on control performance.
As K increases, both average energy cost and unmet demand
decrease due to improved uncertainty representation. However,
performance gains plateau beyond K = 15, indicating a
practical trade-off between accuracy and computational cost.
Fig. 3c presents a contour plot of the total objective cost as
a function of the weighting parameters λ1 (energy cost) and
λ2 (unmet demand penalty) in Eq. (13). A clear trade-off
is observed: increasing λ1 favours cost minimisation, while
higher λ2 emphasises demand satisfaction. The optimal trade-
off occurs near λ1 = 2, λ2 = 3.

V. CONCLUSIONS

This paper proposed a dual-stage, AI-driven framework for
resilient energy management in distribution networks with
high EV and PV penetration. The approach combines short-
term forecasting, via LSTM/ConvLSTM for EV demand and
XGBoost for PV generation, with GAN-based scenario gener-
ation to support robust, uncertainty-aware control. Case studies
on the IEEE 33-bus system demonstrate improved forecasting
accuracy, realistic scenario generation, and enhanced control
adaptability under uncertainty. ConvLSTM effectively captures
spatiotemporal EV patterns, while XGBoost provides reliable
PV predictions. GANs enable scenario-based strategies that
outperform deterministic baselines, especially under volatile

(a) EV charging forecasts using LSTM and ConvLSTM models at
three buses with distinct demand patterns (Bus 9: peak, Bus 17:
delayed, Bus 32: minimal).

(b) Distribution of PV forecast residuals using the XGBoost
model across PV buses.

(c) Normalised RMSE (%) for EV charging and PV generation
forecasts across multiple prediction horizons.

Fig. 1. Forecasting accuracy evaluation for EV and PV models.

conditions. A trade-off between energy cost and demand
satisfaction was observed, emphasising the need for balanced



Fig. 2. Comparison of time-varying mean and variance between real
and GAN-generated EV demand samples at EVCS buses (9, 17, 32).

parameter tuning. While the framework shows strong per-
formance, practical deployment requires addressing training
costs, data infrastructure, and real-time integration. Future
work will explore lightweight models, online adaptation, and
integration with distribution automation systems.
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