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Abstract 19 

Human activities have a strong impact on global climate and natural ecosystems, 20 

yet the extent of their influence on long-term natural erosional processes remains poorly 21 

determined. A quantitative analysis is needed. The Ayeyarwady River, renowned for its 22 

large sediment flux ranking second in Asia, provides a compelling case study. We here 23 

show that extensive alluvial mining in the Ayeyarwady catchment has strongly 24 

accelerated erosion rates compared to natural benchmark levels, thereby contributing 25 

to its high sediment discharge. To highlight this point, we assessed present-day erosion 26 

rates in diverse catchments by comparing gauged sediment fluxes with long-term 27 



 

 

natural erosion rates derived from detrital-apatite fission track (AFT) and cosmogenic 28 

10Be data. Our findings reveal a stark contrast. Long-term natural erosion rates were 29 

notably higher in the Upper Ayeyarwady (0.06-0.34 mm/a) than in the Upper Chindwin 30 

(0.02 ± 0.005 mm/a), whereas present-day erosion rates are three times higher in the 31 

Upper Chindwin (0.63 ± 0.05 mm/a) than in the Upper Ayeyarwady (0.19 ± 0.02 mm/a). 32 

Particularly noteworthy are the Upper Chindwin and Mu drainages, where erosion rates 33 

are calculated to have increased by more than an-order-of-magnitude relative to long-34 

term natural background rates. Such a striking increase in erosion rate correlates 35 

positively with the spatial distribution of alluvial mining, suggesting that anthropogenic 36 

activities represent an important contributor to the sediment discharge of the modern 37 

Ayeyarwady River, especially for the Upper Chindwin catchment. The observed 38 

increases in sediment fluxes from long-term to present-day timescales across the 39 

Chindwin, Upper Ayeyarwady, and entire Ayeyarwady catchments may also be 40 

attributed to by land-use expansion related deforestation, and intensified precipitation 41 

in the 20th-century. These results underscore how human activities can drastically 42 

accelerate erosional processes, thus exerting a dramatic impact on natural systems. 43 

Plain Language Summary 44 

Human activities are known to significantly affect global climate and natural 45 

ecosystems, but their impact on long-term erosional processes remains to be 46 

quantitatively assessed. In this study, we show that extensive alluvial mining in the 47 

Ayeyarwady catchment has strongly accelerated erosion compared to natural 48 

background levels, thereby contributing to its very high sediment discharge. By 49 

comparing modern erosion rates with long-term natural erosion rates, we discovered a 50 

major discrepancy. Natural erosion rates were much higher in the Upper Ayeyarwady 51 

basin than in the Upper Chindwin basin. But, in stark contrast, present-day erosion rates 52 

are three times higher in the Upper Chindwin than in the Upper Ayeyarwady. The 53 

erosion rates in the Upper Chindwin and Mu drainage basins are calculated to have 54 

increased by more than one order of magnitude relative to past natural erosion rates. 55 



 

 

These findings reveal a strong link between mining and increased sediment discharge, 56 

with land-use expansion related deforestation, and increasing precipitation in the 20th-57 

century making contributions to all Ayeyarwady sub-catchments. This study shows that 58 

human activities can dramatically accelerate erosion, strongly impacting sediment 59 

discharge, natural landscapes, and ecosystems. 60 

Key Points 61 

⚫ Long-term natural erosion rates were higher in the Upper Ayeyarwady than in the 62 

Upper Chindwin (0.06-0.34 mm/a vs. 0.02 mm/a) 63 

⚫ Present-day erosion rates are higher in the Upper Chindwin (0.63 ± 0.05 mm/a), 64 

where they increased by more than one order of magnitude 65 

⚫ Anthropogenic activities represent an important contributor to sediment discharge 66 

of the modern Ayeyarwady River 67 

Key words: Anthropocene, Human impact, Long-term erosion rates, Present-day 68 

erosion rates, Ayeyarwady 69 

1. Introduction 70 

Human activities can significantly influence erosion at decadal to annual 71 

timescales thus accelerating sediment production in river catchments by deforestation 72 

(e.g., in the southern Ecuadorian Andes; Vanacker et al., 2007), agricultural land use 73 

(e.g., Sri Lanka; Hewawasam et al., 2003), and alluvial mining (e.g., global tropical 74 

rivers; Dethier et al., 2023). Recent remote-sensing research has shown that alluvial 75 

mining has notably increased sediment load in tropical drainages since 1990 (Dethier 76 

et al., 2023). Human impact on sediment production began 3000 years ago and 77 

markedly accelerated in the last thousand years (Best, 2018; Syvitski and Kettner, 2011). 78 

Remote-sensing techniques, however, were able to detect such changes only since the 79 

1980s and quantifying the extent of accelerated erosion and sediment discharge relative 80 

to natural background fluxes remains a challenge despite such recognized impacts (Best, 81 

2018; Lindert, 2000). 82 



 

 

The Ayeyarwady (Irrawaddy) River, draining most of Myanmar, ranks second in 83 

Asia in terms of sediment fluxes (Figure 1a); flux is particularly high in the Upper 84 

Chindwin catchment, a major tributary of the Ayeyarwady (Figure 1b). Previous studies 85 

estimated that the Chindwin River contributes more than half of the Ayeyarwady 86 

sediment load despite covering only ~26% of the total catchment area (Garzanti et al., 87 

2016). Such a high sediment contribution was primarily ascribed to the higher 88 

erodibility of siliciclastic rocks widely exposed in the Chindwin catchment (Garzanti 89 

et al., 2016). However, the potential impact of anthropogenic activities such as 90 

extensive jade and gold mining (Shrestha et al., 2020) was not considered. To 91 

investigate the potential anthropogenic impact, a combined approach is here applied to 92 

quantify the human-induced increment of sediment production relative to natural 93 

background values by comparing present-day to long-term natural erosion rates. 94 

Present-day erosion rates were calculated directly from gauged suspended-load and 95 

reported modeled bedload data wherever available (Cohen et al., 2022), combined with 96 

forward mixing modeling (Garzanti et al., 2012) in sub-catchments where gauged data 97 

are unavailable. Long-term natural erosion rates were inferred from both numerical 98 

inversion of detrital AFT ages (million-year timescale) and cosmogenic 10Be (thousand-99 

year timescale). The comparison of these independent datasets highlights how the very 100 

high present-day sediment fluxes in the Ayeyarwady River largely result from anthropic 101 

activities. This study thus underscores the impact that human activities may have on the 102 

acceleration of erosion and on sediment fluxes in large river systems. 103 

2. The Ayeyarwady River 104 

The Ayeyarwady River (drainage basin ~430,000 km2) flows southward across 105 

Myanmar for ~2170 km and forms a large delta distributary network before discharging 106 

into the Andaman Sea. The Upper Ayeyarwady originates from the confluence of the 107 

Nmai and Mali headwater branches, both sourced from high mountain glaciers in 108 

northernmost Myanmar, ~280 km southeast of the eastern Himalaya syntaxis (Figures 109 



 

 

1a and 1b). The Upper Ayeyarwady upstream of the Chindwin confluence is joined from 110 

north to south by the Taping, Shweli and Myitnge left-bank tributaries, and farther 111 

downstream by the Mu River near Sagaing. The principal tributary by far is the 112 

Chindwin River, which runs southward along the eastern edge of the Indo-Myanmar 113 

Ranges, receives its left-bank Uyu and right-bank Myitha tributaries, and finally joins 114 

the Ayeyarwady River to the southeast of Mandalay. Only minor tributaries contribute 115 

to the Lower Ayeyarwady between the Chindwin confluence and the sea. 116 

2.1. Hydrology and sediment flux 117 

Most of the Ayeyarwady basin is dominated by the southwest Asian monsoon and 118 

thus characterized by tropical monsoonal climate, with most precipitation and discharge 119 

between June and September (Zaw et al., 2017). Rainfall varies markedly across the 120 

basin, from ~500 mm in central areas to 4,000 mm in northern mountainous regions 121 

(Sirisena et al., 2021) (Figure 1c). Average and maximum water discharge are estimated 122 

to be 12,000 m3/s and 42,100 m3/s, respectively (Baronas et al., 2020). 123 

The Ayeyarwady River is less regulated compared to other major rivers in Asia, 124 

such as the Yangtze, Mekong, or Salween (Wang et al., 2011; Dethier et al., 2022). 125 

There are no large dams on the main river and only small dams exist on a few tributaries 126 

(Schmitt et al., 2021). The annual suspended-load flux of the Ayeyarwady River at Pyay 127 

was estimated as 326
+91 

-70 million tons (Mt) in 2017-2019 (Baronas et al., 2020), 128 

consistent with previous estimates of 325 ± 57 Mt (Furuichi et al., 2009) and 364 ± 60 129 

Mt (Robinson et al., 2007). Notably lower figures (265 Mt) were estimated in the 130 

nineteenth-century (Gordon, 1885). The two main branches, the Chindwin and the 131 

Upper Ayeyarwady, contributed annually ~120 Mt at Kalewa over the period 1991-2010 132 

(Sirisena et al., 2021) and ~64 Mt at Sagaing (International Finance Corporation (IFC), 133 

2017), between 1990 and 2010.  134 

2.2. Geological background 135 

The Ayeyarwady catchment can be subdivided into four main geological domains 136 



 

 

(Figure 1b): the Indo-Myanmar Ranges (IMR) in the west, the Central Myanmar Basin 137 

(CMB), the Mogok Metamorphic Belt (MMB) in the north, and the Shan Plateau in the 138 

east. The IMR, located to the west of the Kabaw Fault, is a Mesozoic-Cenozoic 139 

accretionary prism (Betka et al., 2018), comprising Triassic schists, Jurassic ophiolites, 140 

and Cretaceous sedimentary rocks in the IMR core (Brunnschweiler, 1966; Suzuki et 141 

al., 2004), Eocene sedimentary rocks in the Inner IMR (Mitchell, 1993; Naing et al., 142 

2014), and Neogene strata in the Outer IMR (Allen et al., 2008). The CMB hosts a ≥ 143 

10-km-thick Cretaceous to Quaternary forearc and backarc basin succession 144 

accumulated in various depocenters separated by the mid-Cretaceous-Miocene 145 

Wuntho-Popa Arc (Kyaw Linn et al., 2015; Licht et al., 2020). The MMB is an 146 

elongated domain of up to high-grade metamorphic rocks and Permian to Miocene 147 

granitic intrusions, separated by the ophiolite-bearing belt from Precambrian 148 

metamorphic basement and Triassic turbidites of the Katha Gangaw Range in the west 149 

(e.g., Mitchell et al., 2012) (Figure 1b). The easternmost domain, the Shan Plateau, 150 

exposes Neoproterozoic-Paleozoic sedimentary rocks intruded by Cambrian to 151 

Mesozoic granitoids (Bender, 1983).  152 

3. Sampling and methods 153 

In 2013 and 2020, fifteen fine to medium sand samples were collected from active 154 

fluvial bars along the Ayeyarwady River and its major tributaries from northern 155 

Myanmar headwaters to the Ayeyarwady Delta. Sampling sites were selected away 156 

from the tributaries conference and urban or village areas to make samples 157 

representative. Prior to collection, the top 10 cm of surface sand was removed to 158 

minimize wind disturbance effects. Ten new sand samples were analyzed for framework 159 

petrography and heavy minerals, while five headwater samples, previously analyzed by 160 

Garzanti et al. (2016), were also included. Additionally, thirteen samples were selected 161 

for detrital apatite fission track (AFT) analysis, and nine were used for cosmogenic 10Be 162 

measurement. Full information on sample locations is provided in Supporting 163 



 

 

Information S2, Tables S1. 164 

3.1. Petrography and heavy minerals analysis 165 

Ten sand samples (seven from the mainstem and one each from the Chindwin, Mu, 166 

and Yaw rivers) were analyzed for petrography and heavy minerals to calculate a 167 

provenance budget (Supporting Information S2, Tables S2, S3). From each sand sample, 168 

a quartered fraction of the 63-2000 μm class obtained by wet sieving was impregnated 169 

with araldite epoxy and cut into a standard thin section. Petrographic analyses were 170 

carried out by counting more than 400 points on each thin section according to the 171 

Gazzi-Dickinson method (Ingersoll et al., 1984). Sand classification was based on the 172 

relative abundance of the three main framework components quartz (Q), feldspars (F), 173 

and lithic fragments (L), considered if exceeding 10% QFL (Garzanti, 2019).  174 

 From a split aliquot of the 32-500 μm size window obtained by wet sieving, heavy 175 

minerals were separated by centrifuging in Na-polytungstate (2.90 g/cm3). More than 176 

200 transparent heavy minerals (tHM) were point-counted at appropriate regular 177 

spacing to minimize overestimation of smaller grains (Garzanti and Andò, 2019). 178 

Dubious grains were checked by Raman spectroscopy (Andò and Garzanti, 2014). The 179 

source rock density (SRD; g/cm3) index is the weighted average density of terrigenous 180 

grains calculated from point-counting mineralogical data. According to the transparent-181 

heavy-mineral concentration (tHMC) in the sample, tHM suites are defined as very 182 

poor (tHMC < 0.5), poor (0.5 ≤ tHMC < 1), moderately poor (1 ≤ tHMC < 2), 183 

moderately rich (2 ≤ tHMC < 5), rich (5 ≤ tHMC < 10) or very rich (tHMC ≥ 10) 184 

(Garzanti and Andò, 2007). The complete dataset is provided in Supporting Information 185 

S2, Tables S2, S3.  186 

3.2. Apatite fission track (AFT) analysis and calculation of erosion rates 187 

at million-year timescale 188 

Detrital AFT analyses were performed on thirteen sand samples using the LA-ICP-189 

MS method (Hasebe et al., 2004). Polished mounts embedded with apatite grains were 190 



 

 

etched in 5 M HNO3 at 20°C for 20 s to reveal spontaneous fission tracks (Barbarand 191 

et al., 2003). Fission-track counting was carried out using a Zeiss Axio Imager M2m 192 

microscope. Stacks of high-resolution digital images of each selected grain were then 193 

captured by TrackWorks with a ×100 dry objective under both transmitted and reflected 194 

light using a highly-sensitive and fast iDS camera at Nanjing University. Track counting 195 

was performed manually in FastTracks using the coincidence mapping technique 196 

(Gleadow et al., 2009). The etch pit diameter (Dpar) of selected grains was also 197 

determined. Uranium concentration in each counted grain was determined by LA-ICP-198 

MS using an Agilent 8900 ICP–QQQ with an ESI New Wave NWR 193UC (TwoVol2) 199 

laser ablation system at the Beijing Quick-Thermo Science & Technology Co., Ltd. 200 

NIST SRM 612 glass was used to calibrate trace elements using calcium as internal 201 

standard. Reference materials were analyzed twice, before and after each analytical 202 

session, each time including 8 spots. Ablation on selected grains and reference materials 203 

was carried out for 30 s after ~10 s baseline signal collection, using a 30 μm or 40 μm 204 

diameter beam size according to apatite grain size, operated at ∼3 J/cm2 fluence with 5 205 

Hz repetition rate. Because of large uncertainties, apatite grains with uranium 206 

concentration < 2 ppm were excluded from further analysis. In this study, 1,270 single-207 

grain AFT ages were obtained from 13 samples (Figure 3); 35 grains were excluded 208 

from age calculations because of their low uranium concentration (< 2 ppm) and 209 

consequently high age uncertainties. The complete datasets are provided in Supporting 210 

Information S2, Tables S4. 211 

3.3. Calculation of catchment-wide erosion rates at million-year 212 

timescales from detrital cooling ages 213 

Million-year timescale exhumation rates were obtained from inversion modeling 214 

of detrital AFT ages based on age-elevation relationship. Fission-induced damage 215 

tracks in apatite are annealed at temperatures over 60-120°C (Gallagher, 1998), so that 216 

fission-track ages reflect cooling associated with exhumation from crustal depths of 2–217 

5 km. We employed a Bayesian estimation of erosion model implemented with 218 



 

 

MATLAB (Avdeev et al., 2011), which has been shown to efficiently invert temporally 219 

variable erosion histories from detrital dates. The applied approach relies on the primary 220 

assumption that sands were derived from a catchment with a monotonic positive 221 

thermochronological age-elevation (or depth) relationship. Based on this assumption 222 

and using a detritus sampling function, a distribution of detrital dates can be predicted. 223 

To compare predictions against observations, the goodness of the assumed age-224 

elevation (or depth) relationship was evaluated and optimized through computational 225 

iterations. Finally, a catchment erosional history was derived from the slopes of the 226 

optimal age-elevation (or depth) relationship, as illustrated in previous studies (Ye et 227 

al., 2022; Zhuang et al., 2018). 228 

We assumed a vertical exhumation pathway and a flat closure isotherm, so that, 229 

bedrock ages are a function of elevation only (Duvall et al., 2012). This allows us to 230 

infer the age-elevation relation of source catchment from detrital ages [ i.e., for the 231 

observed detrital ages ti (i = 1,2,3…p), we retrieved the elevations zi (i = 1,2,3…p) in 232 

the source area]. The elevation points were sampled by the MCMC (Markov chain 233 

Monte Carlo) algorithm (e.g., Avdeev et al., 2011, Duvall et al., 2012). According to 234 

each t–z path, the detrital ages can be converted into elevation points, allowing the 235 

derivation of its probability distribution function.  236 

For N detrital ages, we assume that these particles are uniformly distributed across 237 

the watershed. Therefore, the elevation distribution of these particles should represent 238 

a sample chosen from the overall watershed elevation data (i.e., the elevation 239 

distribution of the particles and the watershed elevations are assumed to be independent 240 

and identically distributed). Consequently, we selected N elevation samples from the 241 

watershed and assigned age values to these samples based on their elevation in 242 

increasing order, thus obtaining the age-elevation curve. To determine whether the CDF 243 

(cumulative probability function) of these chosen points matches that of the source 244 

catchment hypsometry, we turned to the two-sample Kuiper test that is (relatively to the 245 

Kolmogorov-Smirnov test) insensitive to the tails of the distribution and guarantees 246 



 

 

equal sensitivities to all variable values (Kuiper, 1962; Vermeesch, 2007). We used the 247 

Kuiper test at the 95% significance level (Ruhl et al., 2005; Vermeesch, 2007) and chose 248 

the most proper t–z path that the best collapse the CDF of the source catchment. 249 

Accordingly, the slope of the t–z path is the erosion rates of the source area. We choose 250 

the last stage slope of the t–z path as the million-year erosion rates. Because the 251 

monotonic positive thermochronological age-elevation relationship assumption is not 252 

valid for the Chindwin basin, the western margin of which consists of a thrust belt (the 253 

Kabaw Fault in Figure 1b, Burma Earth Sciences Research Division, 1977), we applied 254 

this approach only to the upper Ayeyarwady catchment. 255 

3.4. 10Be-derived basin-averaged erosion rates at thousand-year 256 

timescales 257 

Quartz grains were separated from the 125-500 μm size window of nine sand 258 

samples following standard magnetic, heavy-liquid, and acid dissolution procedures at 259 

the University of Melbourne (Schaefer et al., 2022). The 10Be concentrations were then 260 

measured by accelerator mass spectrometry (AMS) at the Australian National 261 

University. Erosion rates were calculated according to Zhang et al. (2017). In a steadily 262 

eroding landscape with rock density ρr (calculated according to point-counting data), 263 

the catchment-averaged erosion rate (ε) is: 264 

    ε = (PavgΛ) / (Nρr)                              (1) 265 

where N is the 10Be concentration in sediment, Pavg is the average production rate 266 

within the catchment, and Λ is the production attenuation scale in rock (~160 g cm-2) 267 

(Lal, 1991). Solving equation (1) for ε requires estimates of Pavg. Using the Microsoft 268 

Excel calculator Cosmocalc (Vermeesch, 2007), we scaled the cosmogenic nuclide 269 

production rates for each pixel (~30m × ~30 m) from SRTM-DEM data for both 270 

elevation and latitude to obtain the catchment-averaged production rate (Lal, 1991; 271 

Stone, 2000). The shielding factor related to catchment topography was calculated with 272 

the algorithm of Codilean (2006). Results are reported in Supporting Information S2, 273 



 

 

Tables S6. 274 

3.5. Calculation of present-day erosion rates 275 

Present-day erosion rates can be directly calculated from sediment fluxes, 276 

catchment areas, and average density of source rocks (SRD index obtained from 277 

quantitative mineralogical data in the absence of hydraulic-sorting effects; Garzanti and 278 

Andò, 2007). For sub-catchments where gauging data were not available, we 279 

partitioned gauged sediment fluxes in the mainstem by forward mixing modeling based 280 

on integrated petrographic and heavy-mineral data (Garzanti et al., 2012). The forward 281 

mixing model assumes that the compositional signature of detritus derived from each 282 

end-member source is known accurately, then the relative amount of sediment 283 

contributed by diverse tributaries or distinct geological domains (endmembers) can be 284 

quantitatively assessed by independent forward-mixing calculations. For each river 285 

basin, the composition of detritus (petrography and heavy minerals) derived exclusively 286 

from each single geological unit was considered as an endmember.  287 

After the relative contributions from different parent sources (e.g., catchments) to 288 

a daughter sediment were calculated using the mixing model, they are partitioned 289 

among the different sources according to the sediment flux (Mt/a), and a sediment 290 

budget is obtained. The average density (g/cm3) of the exposed source rocks was 291 

calculated according to sand mineralogy (SRD index of Garzanti and Andò, 2007). 292 

Erosion rates for each source (mm/a) can be finally calculated as the ratio between the 293 

sediment yield and the average density of exposed rocks (g/cm3). Detailed method, 294 

rationale, and endmember choices for forward mixing modeling are described in full in 295 

Supporting Information S1, Text S2. The sediment yield is the sum of bedload and 296 

suspended load normalized by dividing by the upstream drainage area. Bedload fluxes 297 

were adopted from literature modelling data calculated using the WBMsed model 298 

(Cohen et al., 2022). 299 



 

 

4. Results 300 

4.1. Petrography and heavy minerals 301 

Upper Ayeyarwady sand is feldspatho-quartzose with plagioclase > K-feldspar, 302 

minor phyllite, schist, and felsitic volcanic rock fragments, and abundant mica (mostly 303 

biotite). The rich transparent-heavy-mineral (tHM) suite is dominated by hornblende 304 

and epidote, with minor garnet, pyroxene, kyanite, and Cr-spinel (Figure 2). The 305 

Chindwin River, by contrast, carries feldspatho-litho-quartzose sand with more quartz 306 

and lithic fragments (shale, sandstone, chert, felsitic and microlitic volcanic, 307 

phyllite/schist, and serpentine-schist types), and less mica. The moderately rich tHM 308 

suite consists of amphibole, clinopyroxene and epidote, with subordinate garnet, 309 

kyanite, minor zircon, rutile, enstatite, and rare apatite. 310 

The Mu River draining the CMB and the Wuntho-Popa Arc carries litho-311 

feldspatho-quartzose sand with abundant felsitic volcanic and sedimentary rock 312 

fragments, and rare metamorphic rock fragments. The moderately poor tHM suite 313 

includes mainly amphibole and epidote, with subordinate garnet, kyanite, pyroxene, 314 

and minor zircon, rutile, and apatite. The Yaw River draining the IBR and CMB carries 315 

feldspatho-litho-quartzose sand with plagioclase ≈ K-feldspar. Felsitic volcanic and 316 

metavolcanic, shale, sandstone, and chert rock fragments are common; mica is rare. 317 

The moderately rich, amphibole-dominated tHM suite includes clinopyroxene, epidote, 318 

garnet, and minor zircon, titanite, and apatite.  319 

Lower Ayeyarwady feldspatho-litho-quartzose sand is compositionally similar as 320 

Chindwin sand (Figure 2) and contains more plagioclase than K-feldspar, mainly pelite, 321 

sandstone, slate, phyllite, schist, felsic volcanic, and minor serpentinite-schist lithics, 322 

and common mica (mostly biotite). The moderately rich tHM suite mainly consists of 323 

amphibole and epidote, with garnet, pyroxene, and minor kyanite, Cr-spinel, zircon, 324 

titanite, and apatite.  325 



 

 

4.2. Detrital AFT results 326 

The Upper Ayeyarwady is characterized by notably younger detrital AFT ages than 327 

the Chindwin River (Figure 3), consistent with thermochronological ages of bedrock 328 

sources (Figure 1e). In the Upper Ayeyarwady (samples A, B, C, D), single-grain AFT 329 

ages range from 538 Ma to 1.8 Ma, with the main peak at ~9 Ma (Figure 3; Supporting 330 

Information S2, Tables S5). More than 90% of the grains are younger than 30 Ma, half 331 

being younger than 10 Ma. 332 

In the Upper Chindwin River, detrital AFT ages (samples L and G) range from 549 333 

to 3.2 Ma, with major peaks around 10 Ma and 19 Ma, and minor peaks at 33, 59, and 334 

77 Ma. About one-third of the ages are younger than 15 Ma and another third older than 335 

30 Ma. A similar distribution of AFT ages, ranging from 84.4 to 4.4 Ma with the main 336 

peak at ~19 Ma and minor peaks at ~28, ~40, and ~58 Ma, characterizes the Yaw River 337 

in the south (sample H; Figure 3). Apatite in the Myitha River (sample M) yielded even 338 

older ages, with the main peak at ~19 Ma. A similar distribution of AFT ages, ranging 339 

from 97.5 to 7.1 Ma, with the main peak at ~16 Ma and a minor peak at ~30 Ma, 340 

characterizes the Mu River (sample E).  341 

The Ayeyarwady River shows more AFT ages older than 20 Ma (~35%) 342 

downstream of the Mu confluence (sample F). Downstream of the Chindwin confluence 343 

(samples I, J, K, Figure 3), the detrital AFT age distribution becomes similar as that 344 

characterizing the Chindwin River, with ages ranging from 127 to 1.4 Ma, the main 345 

peak around 13-17 Ma and minor older peaks. 346 

4.3. Million-year timescale erosion rates 347 

Erosion rates at the million-year timescale of Upper Ayeyarwady catchments were 348 

obtained through numerical inversion of detrital AFT ages. Since the Chindwin River, 349 

draining the IMR, has the bimodal detrital AFT signature, which reflects the activations 350 

of different sub-units of IMR (the 19 Ma population from the Paleogene IBR and the 351 

10 Ma population from the IMR core according to Najman et al., 2020, 2022). We only 352 

applied inversion modeling method on two small Ayeyarwady tributaries (samples A, 353 



 

 

B), and two Upper Ayeyarwady samples C and D (see Figure 1b). 354 

 The Nmai sub-catchment exhibits the highest rate (0.34
+0.04 

-0.03 mm/a; Figures 4a), 355 

followed by the Mali sub-catchment (0.10 ± 0.01 mm/a; Figures 4b). Lower rates are 356 

inferred for the Upper Ayeyarwady mainstream (0.06-0.07 mm/a; Figures 4c and 4d).  357 

4.4. 10Be results 358 

The 10Be concentration in quartz grains across the Ayeyarwady catchment ranges 359 

from (2.9 ± 1.0)×104 atoms/g to (15.2 ± 3.0)×104 atoms/g, with highest values recorded 360 

in the Upper Chindwin (Supporting Information S2, Tables S6). As for AFT data, 10Be-361 

derived erosion rates (Figure 5) indicate higher denudation in the Upper Ayeyarwady 362 

(from 0.06 mm/a to 0.26 ± 0.06 mm/a) than in the Chindwin catchment (from 0.02 ± 363 

0.005 mm/a to 0.12 ± 0.04 mm/a), with highest rates in the Nmai (0.26 ± 0.06 mm/a) 364 

and Mali catchments (0.12 ± 0.03 mm/a) and lowest rates in the Upper Chindwin (0.02 365 

± 0.005 mm/a) and Mu catchments (0.05 ± 0.01 mm/a) (Figures 5, 6b). The 10Be-366 

derived basin-wide erosion rate calculated here for the entire Ayeyarwady (0.10 ± 0.03 367 

mm/a) is slightly lower than a previous 10Be-derived estimate (0.19 ± 0.03 mm/a) 368 

(Wittmann et al., 2020), and much lower than the neighboring Brahmaputra (1.0-1.1 369 

mm/a) (Lupker et al., 2017) and Ganga rivers (0.7-1.2 mm/a) (Lupker et al., 2012) 370 

draining the Himalayan Range (Figures 5, 6b). 371 

5. Discussion 372 

5.1. Long-term natural erosion rates 373 

Natural erosion rates at the million-year and thousand-year timescales are broadly 374 

consistent in the Upper Ayeyarwady catchment (0.06-0.34 mm/a vs. 0.06-0.24 mm/a). 375 

Within this catchment, the Mali and Nmai drainages have the highest erosion rates at 376 

both million-year (0.10-0.34 mm/a) and thousand-year timescales (0.12-0.26 mm/a). 377 

The Upper Ayeyarwady exhibits higher rates than the Upper Chindwin catchment in 378 

thousand-year timescale, as indicated by 10Be data (0.06-0.26 mm/a vs. 0.02 ± 0.005 379 



 

 

mm/a) (Figures 5, 6a, and 6b). The erosion rate in the Upper Chindwin catchment is the 380 

lowest (0.02 mm/a) of all locations studied at the thousand-year timescale, while the 381 

Lower Chindwin shows higher erosion rates (0.12 mm/a).  382 

These spatial variations in the long-term erosion rates show no significant—and 383 

even a slightly negative—correlation with lithological erodibility (p = 0.08, Figure 7c), 384 

indicating that high sediment fluxes cannot be entirely related to source-rock erodibility 385 

as previously hypothesized (Garzanti et al., 2016). However, the erosion rates can be 386 

adequately explained by climate, topography and tectonics. Long-term natural erosion 387 

rates exhibit a positive correlation with catchment-averaged precipitation (R2 = 0.46, p 388 

= 0.01, Figure 7b). They also show a weak positive correlation with drainage area 389 

weighted average ksn values of bedrock rivers (R2 = 0.34, p = 0.1, Figure 7a; river 390 

morphometry analysis is provided in Supporting Information S1, Text S1 and results 391 

are listed in Supporting Information S2, Table S8), intimately associated with 392 

topography and regional tectonics. Our calculated timing and extents of erosion are 393 

compatible with the tectonic history of the region. The Mogok Metamorphic Belt, 394 

located in the northeastern part of the Irrawaddy catchment (represented by the Nmai 395 

and Mali rivers), has experienced exhumation in the Late Oligo-Miocene as determined 396 

from mica Ar-Ar dating (Bertrand et al., 2001). This is consistent with the timing of 397 

exhumation shown for the region of the Mali River catchment as determined through 398 

inversion modelling of our detrital AFT data (Fig 4b, increase from 0.03 to 0.10 mm/a 399 

at 24 Ma). Little low temperature thermochronological data are published for the region. 400 

However, Lei et al., (2006) show apatite fission track data from adjacent Yunnan that 401 

may be consistent with the younger rapid exhumation we calculate through inversion 402 

modelling of our detrital AFT data from the Nmai catchment (increase from 0.14- to 403 

0.34 mm/a) at 9.9 Ma (Figures 4a, 6a). By contrast, the Chindwin catchment lies 404 

outwith the region of the Mogok Metamorphic Belt, and the lower 10Be-derived 405 

thousand-year erosion rates of the upper Chindwin reflect this. The higher values of the 406 

lower Chindwin likely reflect input from the Myitha River draining the western Indo-407 



 

 

Myanmar Ranges (erosion rates in thousand-year timescale 0.11 mm/a; Figure 6b), 408 

although it has previously been calculated that this river only contributes 5% of 409 

sediment to the modern Chindwin River (Garzanti et al., 2016).  410 

5.2. Present-day erosion rates 411 

The composition of Ayeyarwady sand changes significantly downstream of the 412 

Chindwin confluence (Figure 2), indicating prominent sediment supply from the 413 

Chindwin River. Forward-mixing calculations based on integrated bulk-petrography 414 

and heavy-mineral data indicate that sediment in the Lower Ayeyarwady is contributed 415 

38±6% by the Upper Ayeyarwady, 9 ± 7% by the Mu River, and 53 ± 7%, by the 416 

Chindwin River. These results are consistent with previously calculated contributions 417 

of 45 ± 17% from the Upper Ayeyarwady and of 55 ± 17% from the Chindwin River 418 

(Garzanti et al., 2016). The Myitha River is estimated to supply only ~5% of Chindwin 419 

River sediments, and the Yaw River to make negligible contributions to the Lower 420 

Ayeyarwady.  421 

The suspended sediment flux calculated using forward mixing modeling is similar 422 

to the gauged sediment flux in the Upper Chindwin (120 ± 9 Mt/a vs. 164 ± 51 Mt/a) 423 

but higher than the gauged data in the Upper Ayeyarwady (123 ± 40 Mt/a vs. 64 ± 5 424 

Mt/a). Additionally, suspended sediment fluxes calculated by forward mixing 425 

modelling are coherent with WBMed modeling results (Cohen et al., 2022), indicating 426 

that our calculations are reliable (Supporting Information S2, Tables S7).  427 

Present-day erosion rates thus calculated are 0.19 ± 0.02 mm/a for the Upper 428 

Ayeyarwady, 0.58 ± 0.48 mm/a for the Mu River, 0.63 ± 0.05 mm/a for the Chindwin 429 

River upstream of the Myitha confluence, 0.58 ± 0.18 mm/a for the entire Chindwin 430 

catchment, and 0.29
+0.08 

-0.06 mm/a for the entire Ayeyarwady catchment. Similar rates are 431 

estimated for the Shweli (0.18 ± 0.05 mm/a) and Taping (0.26 ± 0.03 mm/a) tributaries 432 

to the Upper Ayeyarwady (Figures 5, 6c).  433 



 

 

5.3. Present-day vs. long-term natural erosion rates 434 

In the Upper Ayeyarwady catchment, the long-term natural erosion rates at 435 

million-year and thousand-year timescales are broadly consistent (Figure 7e), but for 436 

the entire Ayeyarwady catchment, present-day erosion rates have increased drastically 437 

and by different degrees in different sub-catchments (Figure 7f). The strongest increase 438 

is displayed by the Upper Chindwin catchment, where present-day erosion rates are 439 

calculated to have risen by a factor of 32 (from 0.02 ± 0.005 mm/a to 0.63 ± 0.05 mm/a) 440 

relative to the long-term erosion rate. An increase by a factor of five is recorded for the 441 

entire Chindwin catchment (from 0.12 mm/a to 0.58 mm/a), and by a factor of three for 442 

the Upper Ayeyarwady (from 0.06 mm/a to 0.19 mm/a). The present-day rate trebled 443 

also for the entire Ayeyarwady (0.29
+0.08 

-0.06 mm/a) compared to the 10Be-derived long-term 444 

rate (0.10 ± 0.03 mm/a) (Figures 5, 6b, 6c). Most noteworthy, present-day erosion rates 445 

are three times higher in the Upper Chindwin (0.63 ± 0.05 mm/a) compared to the 446 

Upper Ayeyarwady (0.19 ± 0.02 mm/a), marking a clear reversal compared to long-447 

term erosion patterns (Figures 5, 6b, 6c).  448 

Thus, in contrast with the long-term erosion patterns, the Chindwin River has 449 

presently replaced the Upper Ayeyarwady as the major sediment contributor to the 450 

Lower Ayeyarwady. Whilst we acknowledge that different approaches have been used 451 

to calculate the erosion rates over the different timescales, we do not consider that 452 

differences of approach can explain the variation we record. Different approaches have 453 

been used over various time scales to calculate erosion in fluvial catchments in the 454 

Himalaya, and they show little variability between long-term and present-day erosion 455 

rates (Lenard et al., 2020; Vance et al., 2003). Furthermore, large basins exhibit broad 456 

similarity in sediment discharge recorded by the gauge-derived and cosmogenic 457 

radionuclide-derived sediment loads from global compilations of literature data 458 

(Covault et al., 2013; Wittmann et al., 2020). This suggests that erosion rates across 459 

different timescales can be comparable in active orogens like the Ayeyarwady 460 

catchment. For instance, in the adjacent Ganges-Brahmaputra (983.9 ± 209 vs. 1037 461 



 

 

Mt/a) and Mekong (54.8 ± 6.4 vs. 78 Mt/a) systems—located west and east of the 462 

Ayeyarwady, respectively—cosmogenic and gauge-derived sediment loads show close 463 

agreement (Wittmann et al., 2020). Thus we consider that the variations we record are 464 

not an artefact of the different measuring approaches we use for different timescales. 465 

This inversion in the scale of erosion between the Chindwin and Upper 466 

Ayeyarwady catchment cannot be ascribed to climatic factors, because present-day 467 

erosion rates do not significantly correlate with precipitation (p = 0.59, Figure 7d). 468 

Moreover, the source-rock lithologies likely remained broadly unchanged over this 469 

relatively short timescale, indicating that lithological differences are not responsible for 470 

the sharp increase in present-day sediment fluxes of the Chindwin River. Whilst we 471 

cannot totally rule out the potential effects of neotectonics in this poorly-mapped region, 472 

we argue below that anthropogenic influence is a major contributing factor. 473 

5.4. Accelerated erosion by anthropogenic activities 474 

Previous research has shown how modern sediment yields may increase by one or 475 

even two orders of magnitude relative to long-term cosmogenic-derived sediment 476 

yields if river catchments are affected by profound changes in land use (Hewawasam, 477 

2003; Vanacker et al., 2007). This appears to be the case for the Ayeyarwady catchment, 478 

and here we emphasize that anthropogenic activities represent an important factor 479 

driving the sharp recent acceleration in sediment production. 480 

Firstly, alluvial mining, which is affecting no less than one-third of the river length 481 

in Myanmar (Figure 6c, Dethier et al., 2023; Shrestha et al., 2020). Satellite imagery 482 

reveals that mining areas in Myanmar have expanded rapidly over the last 13 years 483 

(Connette et al., 2016). Landsat data from 1985 to 2020 reveal that mining has 484 

significantly increased suspended sediment concentrations (SSC) in 23 trunk and 485 

tributary rivers of the Chindwin and Upper Ayeyarwady (Dethier et al., 2023; 486 

Supporting Information S1, Figure S1). Notably, SSC in the Chindwin River has risen 487 

more than tenfold, with the Uyu River—an eastern tributary—experiencing increases 488 

of over two orders of magnitude relative to pre-mining levels (Figure 8; Figures S2-S3). 489 



 

 

Sediment fluxes and present-day erosion rates correlate strongly with the proportion of 490 

land impacted by mining (Figures 9a and 9b). Alluvial mining is most widespread in 491 

the Upper Chindwin catchment, which also shows the greatest increase in sediment 492 

discharge. Mining-affected areas in the Upper Chindwin (16‰ , ~1869 km2) far 493 

exceeds those in the Upper Ayeyarwady (1‰, ~74 km2); correspondingly, present-day 494 

erosion rates are three times higher in the Upper Chindwin River (0.63 ± 0.05 mm/a) 495 

than in the Upper Ayeyarwady (0.19 ± 0.02 mm/a) (Figures 6c, 9a-9b). 496 

Secondly, additional anthropogenic factors likely also contributed to enhanced 497 

erosion rates. Forest loss has been particularly severe in the Lower Ayeyarwady and 498 

delta regions due to cropland expansion, with mean annual deforestation rates reaching 499 

1–2% (Table 1, Figures S4d). In the Upper Chindwin and Upper Ayeyarwady 500 

catchments, forest cover has declined by 21% and 23%, respectively (Table 1; 501 

Supporting Information S1, Figures S4a-S4d), potentially contributing to the observed 502 

sediment flux increases in similar trend. However, the increase in sediment flux in the 503 

Upper Chindwin (~30-fold) far exceeds that of the Upper Ayeyarwady (~3-fold), 504 

indicating that deforestation alone cannot account for the difference. In the Chindwin, 505 

mining activity—often linked to deforestation itself—likely plays a dominant role 506 

(Figures S4d, S5d–S5e; McGinn et al., 2021). Other land-use changes, such as 507 

settlement expansion, have also contributed to landscape disturbance. Conversely, 508 

agricultural land use likely does not explain the increase in Chindwin sediment fluxes, 509 

as cultivated area decreased by ~20% between 1999 and 2019 (Table 1). Agriculture is 510 

more concentrated in the central and lower plains, including the Mu River basin and 511 

Lower Ayeyarwady (Li et al., 2024), and may instead contribute to sediment increases 512 

there. 513 

Thirdly, climatic factors such as increased precipitation and temperature—linked, 514 

at least in part, to 20th-century global warming—may further enhance erosion in all 515 

Ayeyarwady sub-catchments. Between 1981 and 2015, both parameters rose across the 516 

Ayeyarwady catchment (Sein et al., 2018), while Southeast Asia experienced more 517 



 

 

frequent extreme monsoon floods (Loo et al., 2015). These climatic trends may have 518 

amplified sediment fluxes in both the Upper Ayeyarwady and Chindwin. 519 

Other anthropogenic influences appear limited. Large dams are absent from the 520 

main Ayeyarwady, and only small dams exist on select tributaries, suggesting minimal 521 

hydrological disruption from damming (Schmitt et al., 2021).  522 

In summary, alluvial mining is the primary driver of elevated sediment fluxes in 523 

the Upper Chindwin, with deforestation providing additional impact. In the Upper 524 

Ayeyarwady, both deforestation and mining contribute to increased sediment yields. In 525 

contrast, cropland expansion and associated deforestation are the main factors behind 526 

increased sediment fluxes in the Lower Ayeyarwady. Intensifying precipitation and 527 

more frequent monsoon floods may further augment sediment flux across all sub-528 

catchments. The rapid acceleration in anthropogenic-related erosional processes greatly 529 

increased the concentration of suspended sediment (Dethier et al., 2020), resulting in 530 

degraded water quality and threats to the life cycles of riverine and riparian flora and 531 

fauna (Azevedo-Santos et al., 2021; Keovilignavong, 2019) and to natural equilibria as 532 

far as the Ayeyarwady Delta (Chen et al., 2020). 533 

6. Conclusions 534 

Long-term natural erosion rates calculated from apatite fission-track ages and 10Be 535 

concentration in quartz grains were much higher in the Upper Ayeyarwady (0.06-0.34 536 

mm/a) than in the Upper Chindwin (0.02 ± 0.005 mm/a) derived by 10Be and controlled 537 

by tectonic forcing and climate. Gauged sediment fluxes testify to a drastically different 538 

modern scenario. Present-day erosion rates have increased by more than an order of 539 

magnitude in the Upper Chindwin and Mu catchments, enough to reverse erosion 540 

patterns: despite a three-fold increase in the Upper Ayeyarwady, erosion is now notably 541 

faster in the Upper Chindwin (0.63 ± 0. 05 mm/a) than in the Upper Ayeyarwady (0.19 542 

± 0.02 mm/a). Such a recent drastic change in erosion patterns underscores a profound 543 

impact by anthropogenic activities, and especially by extensive alluvial mining for jade 544 



 

 

and gold in the Upper Chindwin catchment. The expansion of land use related 545 

deforestation, and global warming in the 20th century increasing in precipitation and 546 

extreme flooding events likely also contributed to increased sediment fluxes in both the 547 

Chindwin and Upper Ayeyarwady catchments. Accelerated erosion and consequently 548 

increased sediment yield by anthropogenic activities have reduced water quality and 549 

changed the natural equilibrium in the Ayeyarwady delta. 550 
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Figure Captions 565 

Figure 1. The Ayeyarwady drainage basin. a) Suspended sediment flux of large Asian 566 

rivers: Ayeyarwady (2017-2019, Baronas et al., 2020); Mekong (1993-2018, Sok et al., 567 

2021); Ganges-Brahmaputra (pre-1990, Islam et al., 1999); Salween (2017-2019, 568 

Baronas et al., 2020); Yangtze (2021, Chinese Hydrological Yearbooks 2021); Yellow 569 



 

 

River (2021, Chinese Hydrological Yearbooks 2021); Indus (1993-2003, Inam et al., 570 

2007); Red River (2000-2008, Dang et al., 2010); Pearl River (2021, Chinese 571 

Hydrological Yearbooks 2021). b) Geological map and sampling sites (modified from 572 

Geological Map of Myanmar, 1977; scale 1:1,500,000). c) Gauge station precipitation 573 

data derived spatial distribution of annual precipitation between 2001 and 2010 after 574 

Sirisena et al., (2018). d) Channel steepness (ksn). River morphometry analysis is 575 

provided in Supporting Information S1, Text S1. e) Bedrock thermochronology from 576 

literature data (sources of original data are compiled in Supporting Information S2, 577 

Tables S9). AFT-apatite fission track; AHe-apatite (U-Th)/He; ZFT-zircon fission track; 578 

ZHe-zircon (U-Th)/He. 579 

Figure 2. Petrographic composition and heavy-mineral suites of Ayeyarwady River 580 

sands. Q = quartz; F = feldspars; L = lithic fragments (Lv = volcanic; Lm = 581 

metamorphic; Ls = sedimentary, compositional fields after Garzanti et al., 2016); Amp 582 

= amphibole; Grt = garnet; Ep = epidote-group; ZTR = zircon + tourmaline + rutile; Px 583 

= pyroxene; Ol = olivine; Sp = Cr-spinel; Cld = chloritoid; St = staurolite; And = 584 

andalusite; Ky = kyanite; Sil = sillimanite. Grey shaded ovals indicate the cluster of 585 

Lower Ayeyarwady. Capital letters refer to sample sites (see Fig 1b). 586 

Figure 3. Kernel Density Estimates of measured AFT age distributions plotted with 587 

DensityPlotter (Vermeesch, 2012).  Pie charts represent relative abundances of 588 

different age groups (see legend). 589 

Figure 4. Numerical modeling results. Bedrock exhumation history is derived from 590 

detrital AFT data under different erosion models. 591 

Figure 5. Comparison of erosion rates at different timescales.  592 

Figure 6. Erosion rate maps of the Ayeyarwady drainage at different timescales. a) 593 

million-year timescale rate based on detrital AFT numerical modeling; b) thousand-594 

year timescale rate based on 10Be concentration in quartz grains; c) present-day rate 595 

based on gauged sediment fluxes combined with forward mixing modeling. Remote 596 



 

 

sensing data on alluvial mining (Maus et al., 2022) and mining-affected drainages 597 

(Dethier et al., 2023) are highlighted in red. Sources of gauged sediment data: Upper 598 

Chindwin at Kalewa (1991-2010) (Sirisena et al., 2021); Upper Ayeyarwady at Sagaing 599 

(1990-2010, IFC, 2017); Upper Shweli and Upper Taping from Chinese Hydrological 600 

Yearbooks (1958-1987). 601 

Figure 7. Correlations between erosion rates at different timescales and their potential 602 

controls with 95% confidence band in grey. (a-b) Long-term natural erosion rates versus 603 

catchment-average ksn and precipitation. (c) Long-term natural erosion rates versus 604 

lithological erodibility (rock erodibility index from Moosdorf et al., 2018). (d) Present-605 

day erosion rate versus precipitation. (e) 10Be-derived versus AFT-derived erosion rates. 606 

(f) 10Be-derived versus present-day erosion rates (capital letters in key denote sample 607 

sites as per Fig 1b). 608 

Figure 8. Expansion of river mining activities has led to increased suspended sediment 609 

concentration in the Chindwin and Uyu rivers. (a) Representative images from Google 610 

Earth Pro from 1988. 1998, 2008 and 2020, show expansion of river mining activities 611 

in the Uyu River drainage. White arrows show the river direction. White boxes refer to 612 

location of data shown in b. (b) Average river true color obtained through Landsat 613 

imagery (Landsat 5 and Landsat 7), from 1984 to 2020 in December using the average 614 

red-green-blue (RGB) reflectance method (Dethier et al., 2022). The color gradient, 615 

ranging from blue to yellow, indicates increasing suspended sediment concentration. 616 

The bar numbers in (b) correspond to the locations shown in the first image of (a). 617 

Figure 9. Erosion rates increment positively correlated to the proportion of mining area. 618 

(a) Present-day erosion rates increase with the mining area proportion expanding. (b) 619 

Erosion rates increment positively correlates with mining area proportion increasing. 620 

Erosion rates increment = 100 × (present-day erosion rates - long-term erosion rates) / 621 

long-term erosion rates erosion rate. 622 

Table 1. Table 1 Ayeyarwady catchments land use and land cover changes. 623 
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Table 1 Ayeyarwady catchments land use and land cover changes

Land type Catchment
Previous 

area (km2)
Recent 

area (km2)
Changes 

(%) Period References

Uyu -8.90 1999-2019 McGinn et al. (2021)

Upper Chindwin 636000 500000 -21.38 1988-2017 Yang et al. (2019)

Lower Chindwin 4.60 1999-2019 McGinn et al. (2021)

Chindwin 8804521 8576294 -2.59 1999-2019 McGinn et al. (2021)

Upper 
Ayeyarwady 210700 162400 -22.92 1988-2017 Yang et al. (2019)

Lower 
Ayeyarwady 54000 20100 -62.78 1988-2017 Yang et al. (2019)

Total Myanmar 391705 381648 -2.57 1990-2020 Li et al. (2024)

Uyu 1.00 1999-2019 McGinn et al. (2021)

Lower Chindwin -10.40 1999-2019 McGinn et al. (2021)

Chindwin 1229445 985161 -19.87 1999-2019 McGinn et al. (2021)

Total Myanmar 152687 153117 0.28 1990-2020 Li et al. (2024)

Forestry 
Coverage 

Agriculture 
Coverage
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