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Abstract

Network data arises through the observation of relational information between a collection
of entities, for example, friendships (relations) amongst a sample of people (entities). Tra-
ditionally, statistical models of such data have been developed to analyse a single network,
that is, a single collection of entities and relations. More recently, attention has shifted to
analysing samples of networks. A driving force has been the analysis of connectome data,
arising in neuroscience applications, where a single network is observed for each patient in
a study. These models typically assume, within each network, the entities are the units
of observation, that is, more data equates to including more entities. However, an alter-
native paradigm considers relations—such as edges or paths—as the observational units,
exemplified by email exchanges or user navigations across a website. This interaction net-
work framework has generally been applied to single networks, without extending to the
case where multiple such networks are observed, for instance, analysing navigation patterns
from many users. Motivated by this gap, we propose a new Bayesian modelling framework
to analyse such data. Our approach is based on practitioner-specified distance metrics be-
tween networks, allowing us to parameterise models analogous to Gaussian distributions in
network space, using location and scale parameters. We address the key challenge of defin-
ing meaningful distances between interaction networks, proposing two new metrics with
theoretical guarantees and practical computation strategies. To enable efficient Bayesian
inference, we develop specialised Markov chain Monte Carlo (MCMC) algorithms within
the involutive MCMC (iMCMC) framework, tailored to the doubly-intractable and discrete
nature of the induced posteriors. Through simulation studies, we demonstrate the robust-
ness and efficiency of our approach, and we showcase its applicability with a case study on
a location-based social network (LSBN) dataset.
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rithm, involutive MCMC.
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1 Introduction

Network data, defined to be information regarding relations amongst some collection of
entities, can appear in various guises. Each form of network data comes with subtle id-
iosyncrasies, warranting particular methodological considerations. This work considers the
intersection of two such sub-types of network data. On the one hand, we consider when a
sample of independent networks is observed. Such data, often assumed to be drawn from
a population of networks, is becoming increasingly prevalent in the neuroscience literature
(Behrens and Sporns, 2012; Chung et al., 2021), and has motivated recent methodological
developments on multiple-network models (Lunagémez et al., 2021; Le et al., 2018; Durante
et al., 2017). On the other hand, we assume that paths or edges represent the units of
observation within each network. Typically referred to as interaction networks, work has
similarly been done towards defining methodologies suitable to their analysis, most notably
with the proposal of so-called edge-exchangeable models (Crane and Dempsey, 2018; Cai
et al., 2016; Caron and Fox, 2017). As far as we are aware, the intersection of these two
cases, that is, where one observes multiple independent interaction networks, is yet to be
considered in the literature.

As a motivating example, consider the Foursquare check-in dataset of Yang et al. (2015).
Foursquare is a location-based social network (LSBN) where users share places they have
visited with their friends by ‘checking-in’ to locations they visit, such as restaurants or
music venues. The dataset of Yang et al. (2015) contains historical check-ins of users in
New York and Tokyo. Consider a single user. Notice one can see a day of check-ins as a
path through the set of venue categories, as illustrated in Figure 1. Over an extended time
period, we expect to observe check-ins on multiple days, leading to a series of paths being
observed. In other words, the data of a single user can be seen as an interaction network,
so that data on multiple users can thus be seen as a sample of interaction networks.

With a single observed network, we are typically interested in analysing its structure.
When faced with an independent sample of networks the following more familiar statistical
questions are raised

(a) What is an average network?
(b) How variable are observations about this average?

(c) Is there heterogeneity in the observations?

These questions are consistent with those arising more generally in object-orientated
data analysis (Marron and Dryden, 2021), which considers the statistical analysis of popu-
lations of complex objects. In this work, we focus on (a) and (b) in particular.

1.1 Related Work

We now review closely related work appearing in the literature. Firstly, there has been work
on models suitable for multiple-network data, where observations are typically represented
via graphs. Here, Lunagémez et al. (2021) construct models through graph distances, using
the Fréchet mean and entropy as notions of the mean and variance respectively. Le et al.
(2018), Peixoto (2018) and Newman (2018) propose measurement error models which view
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Figure 1: Data of a single user from the Foursquare dataset (Yang et al., 2015). Going from
left to right, the first five subplots show the observed interactions sequence S, with
each path representing a single day of check-ins, whilst the final plot visualises
the aggregate multigraph Gs, where the thickness of an edge is proportional to
the number of times it appears in Gs.

observed networks as noisy realisations of an unknown ground truth. Along similar lines,
Mantziou et al. (2021) and Young et al. (2022) have recently extended the measurement error
models to capture heterogeneity, providing model-based approaches to clustering networks.

Others have considered adapting models originally proposed to analyse a single network.
This includes the latent space model (LSM) (Hoff et al., 2002), which has been extended by
Sweet et al. (2013), who assume a hierarchical model in which each observation is drawn
from an LSM with its own parameter, with these parameters being linked via a prior, Gollini
and Murphy (2016), who assume observations share the same latent coordinates, and Du-
rante et al. (2017), who take a non-parametric approach, using a mixture of LSMs combined
with shrinkage priors which induce removal of redundant components and unnecessary di-
mensions in latent coordinates. The random dot product graph (RDPG) model (Young and
Scheinerman, 2007) has also been extended. Here Levin et al. (2017) assume observations
are drawn i.i.d. from the same RDPG model, whilst Nielsen and Witten (2018), Wang et al.
(2019) and Arroyo et al. (2021) consider relaxing this i.i.d. assumption, constructing their
models to permit variation in the RDPG parameters across observations, better-capturing
heterogeneity. The exponential random graph model (ERGM) (Holland and Leinhardt,
1981; Frank and Strauss, 1986) has similarly been extended, where Lehmann and White
(2021) consider a hierarchical model (in similar spirit to Sweet et al., 2013), whilst Yin
et al. (2022) consider a finite mixture of ERGMs. Finally, others have adapted the stochas-
tic blockmodel (SBM) (Nowicki and Snijders, 2001), with Sweet et al. (2014) building upon
their earlier work (Sweet et al., 2013), assuming a hierarchical model where each observa-
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tion is drawn from an SBM with its own parameterisation, whilst Stanley et al. (2016) and
Reyes and Rodriguez (2016) consider mixtures of SBMs.

There has also been work on hypothesis testing for network-valued data (Ginestet et al.,
2017; Durante and Dunson, 2018; Ghoshdastidar et al., 2020; Chen et al., 2021), where we
note in particular Ginestet et al. (2017) make use of a distance between graphs, in similar
spirit to this present work.

All of these works are connected by a desire to answer standard statistical questions in
the context of network-valued data. However, none consider paths to be the units of obser-
vation within each network. Instead, all are designed to analyse network data represented
via graphs. As such, to analyse data which is truly path-observed, their use would require
first aggregating observations to graphs in a pre-processing step; an operation which will
often not be injective and hence lead to a potential loss of information.

In another direction, there is related work which has considered edge or path-observed
network data. In particular, there has been recent developments of so-called edge-exchangeable
network models (Cai et al., 2016; Crane and Dempsey, 2018; Williamson, 2016; Ghalebi
et al., 2019b,a). Of these, we note that only Crane and Dempsey (2018) allow paths as
observational units. Closely related to the edge-exchangeable models are those based on
exchangeable random measures (Caron and Fox, 2017; Veitch and Roy, 2015). These two
streams of work are connected in so far as they deviate from more traditional models which
are based upon assumptions of vertex exchangeability, and in doing so produce graphs which
exhibit sparsity and heavy-tailed degree distributions; features often observed empirically.
In another direction, others have considered models based upon higher-order Markov chains
(Scholtes, 2017; Peixoto and Rosvall, 2017), where in line with this present work Scholtes
(2017) considered paths as the units of observation.

The common theme in all these works is a focus on models which can capture a particular
structure within a single network, such as sparsity, heavy-tailed degree distributions or high-
order dependence in paths or edges. They are not, however, designed to analyse multiple
observations. As such, they can only provide answers to (a)-(c) via post-hoc analysis of
parameters inferred for each observation.

1.2 Summary of Contributions

In the literature, it appears there is a present lack of methods to analyse samples of interac-
tion networks which fully respect the structure of the data; either one converts observations
to graphs, possibly disregarding information, or one chooses to model each observation in-
dividually. We look to address this gap. To this end, we propose a new Bayesian modelling
framework. Using a practitioner-specified distance metric between interaction networks,
we construct families of models via location and scale parameters, akin to a Gaussian dis-
tribution. The location parameter, itself an interaction network, admits an interpretation
analogous to the mean, whilst the scale parameter can be seen as a notion of variance or
precision. Conducting inference of these parameters thus provides a reasoned approach to
answering questions (a) and (b).

Our methodology is intended to work with any choice of distance, leading to a flexible
framework which can be tailored to suit different questions of interest. However, the problem
of measuring the distance between interaction networks has not yet been explicitly addressed
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in the literature. As such, we propose two distance measures, borrowing ideas from the wider
literature. For each distance, we prove conditions under which they will be distance metrics,
and provide details on how they can be computed.

Procedures for posterior inference are also developed, where we propose specialised
Markov chain Monte Carlo (MCMC) algorithms (Robert et al., 1999; Fearnhead et al., 2025).
These are required to sample not only from posterior distributions over model parameters
but also the models themselves. This is particularly challenging for two prominent reasons.
Firstly, it requires sampling from distributions over the space of interaction networks; a
non-trivial discrete space containing objects of differing dimensions. Secondly, our posterior
distributions require the evaluation of intractable normalising constants that depend on the
model parameters, making them doubly intractable (Murray et al., 2006). As a solution,
we combine the exchange algorithm of Murray et al. (2006) with the involutive MCMC
(iIMCMC) framework of Neklyudov et al. (2020); the former circumvents issues pertaining
to the double-intractability of our posterior distributions, whilst the latter provides added
flexibility in proposal generation, aiding navigation of the sample space. The result is a
generalisation of the exchange algorithm that we refer to as the iExchange algorithm.

The remainder of this paper will be structured as follows. In Section 2, we provide
background details regarding the data structure and notation. In Section 3, we formally
introduce our proposed models, before detailing our proposed distances measures for use
therein in Section 4. In Section 5, we outline our Bayesian scheme, discussing prior specifica-
tion, stating our assumed hierarchical model and detailing our proposed MCMC algorithms.
In Section 6, we detail simulation studies undertaken to confirm the efficacy of our method-
ology and posterior inference scheme, whilst in Section 7 we illustrate its applicability via
an analysis of the Foursquare check-in data. We finalise with conclusions and discussion in
Section 8.

2 Data Representation

Due to the nature of the data, observed paths often arrive in a known order and, depending
on the questions one would like to ask, it may or may not be desirable to encode this in our
representation. For example, consider question (a) of Section 1. When looking to find an
average, do we want to take the observed order into account, finding an average sequence
of paths? Or do we want to disregard the order information, and instead find an average
set of paths? To cover both situations, we propose two data representations which will be
used within our framework: interaction sequences and interaction multisets, covering the
ordered and un-ordered cases respectively.

In setting up our data representation, we build upon that used by Crane and Dempsey
(2018). The collection of entities under consideration are denoted via a vertex set V, as-
sumed to be some discrete set (typically the set of integers V = {1,...,V}) where we let
V = |V| denote the number of vertices. For example, in the Foursquare check-in data
(Figure 1), V would represent the venue categories. Given a vertex set V, an interaction
sequence will be denoted as follows

S=(Th,...,In)
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where the Z; will be referred to as interactions. We consider the case where interactions are
represented via paths, that is

Zi = (i1, - s Tin,)

where z;; € V, and thus S is a sequence of paths. Returning to the Foursquare example,
Z; would denote a single day of check-ins, where this user started at a venue of category
;1 then moved to category x;o and so on, with S denoting all the observed check-ins of a
single user over some fixed time period. Furthermore, the ordering of interactions reflects
the order in which they were observed, for example, Z; appears before Zo and so on.

When the order of interaction arrival is not of interest, we instead represent the data via
an interaction multiset. A multiset is a set with multiplicities, that is, a set where elements
can occur more than once, and is the natural order-invariant generalisation of a sequence.
An interaction multiset will be denoted as follows

E=1{T1,....In),

where the {} parenthesis signify this is a multiset, where Z; similarly denote paths. For
example, regarding the Foursquare data, this would simply represent the collection of ob-
served check-ins for a single user, with the order of interactions as written above implying
nothing with regards to the order of interaction arrival, for example, Z; was not necessarily
observed before 7. Note also this interaction multiset representation is very similar to that
adopted by Crane and Dempsey (2018): what they define as an interaction network can be
seen as a countably infinite interaction multiset.

Since both interaction sequences and multisets represent collections of interactions among
a given vertex set, we will refer to them collectively as ‘interaction networks’. In this way,
they are seen as two alternative representations, albeit with an interaction sequence con-
taining slightly more information through its encoding of order.

As alluded to, this work considers the case when multiple interaction networks are
observed. For example, in the Foursquare dataset, we have check-in information on a
sample of users, and thus observe a sample of interaction networks (one for each user).
Representing the ith observation via a interaction sequence S or multiset £, and letting
n denote the sample size, we therefore observe

S .8 o gD gl

where the choice of representation depends on the interest in order. Our methodology will
provide a means to analyse such samples of data.

We finish this subsection by discussing aggregation. Both representations of interaction
networks can be aggregated to form graphs, and the use of any currently proposed multiple-
network methodology would actually necessitate this as a pre-processing step. A graph
G = (&g, Vg) consists of a set Vg of vertices and a set £ of edges where e = (i,j) € &g
if there is an edge from vertex ¢ € Vg to j € Vg. Graphs can be un-directed, where
(i,7) € & < (j,i) € &g, or they can be directed, where (i,j) € & need not imply
(j,i) € & (and vice versa). A slight generalisation that will be useful is that of a multigraph,
which is a graph wherein edges can occur more than once. The definition is almost identical
to a graph, only that the edge set £ is assumed to be a multiset, rather than a set.
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Considering first aggregating an interaction sequence, one can convert any S over vertices
V to a directed graph Gs = (€s,V) as follows: let (i, ) € Es if the traversal from vertex i to
vertex j was observed at least once in S, that is, if zy = 7 and x4y for some 1 <k < N
and 1 <[ < ng. Moreover, a traversal between two vertices may occur more than once in
a given interaction sequence. Thus one can also aggregate to form a directed multigraph
Gs = (€s,V) by including the edge (7, j) each time the traversal from vertex i to vertex j
is observed, or more formally one can construct a multiset as edges via

s = {(CL’kl,l‘k(H_l)) c1<EkE<N,1<I< (nk—l)},

for example, an aggregate multigraph obtained from the Foursquare check-in data of a single
user can be seen in Figure 1.

An interaction mutliset £ over vertex set V can be aggregated in a similar manner.
Letting S be an interaction sequence obtained by placing the paths of £ in arbitrary order,
then we let

Ge =Gs = (E5,V),

which applies equally to the definition of the graph or multigraph, where in the former case
&g will be a set of edges, whilst in the latter it will be a multiset of edges.

We finalise this section by noting the process of aggregation outlined above is not in-
jective, that is, one may have S # S’ (respectively & # £’) whilst Gs = Gs/ (respectively
Gs = Ggr). For interaction sequences, a trivial case would be a re-ordering of paths. How-
ever, this is not the only example, and there can instead be interaction sequences or multisets
which are structurally dissimilar but nonetheless have equivalent aggregate graphs. In this
way, aggregation incurs a loss of information that will be avoided with our methodology, as
the interaction sequences and multisets we be handled directly.

3 Metric-Based Interaction-Network Models

In this section, our proposed models for interaction sequences and multisets will be intro-
duced. The core idea behind both is an assumption that observed data points are ‘noisy’
realisations of some (unknown) ground truth, where quantification of this noise is facilitated
via a pre-specified distance metric. Equivalently, they can be seen as Gaussian-like distribu-
tions over their respective discrete metric spaces, controlled by a location parameter, itself
an interaction sequence or multiset, and a real-valued scale parameter.

3.1 Model Definitions

Starting with our model for interaction sequences, let 8* denote the infinite discrete space
containing all interaction sequences over a fixed vertex set )V (for a formal definition, see
Appendix A). Towards eliciting a probability distribution over the sample space S8*, we
first endow it with a distance metric dg : & x §* — Ry, which takes as input two
interaction sequences and returns a measure of their dissimilarity. Making use of two model
two parameters, (i) an interaction sequence 8™ € 8%, referred to as the mode, and (ii) v > 0,
referred to as the dispersion, we define a family of probability distributions as follows.
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Definition 1 (Spherical Interaction Sequence Family). For a given distance metric dg(-,-)
on 8%, a mode 8™ € 8" and a dispersion parameter v > 0, the probability of observing S
s given by

p(S[S8™,7) o exp{—vds(S,S™)}, (1)

and we write

S ~ SIS(S™, ) (2)

if we assume S was sampled via (1). This we refer to as the Spherical Interaction Sequence
(SIS) family of probability distributions over 8* with parameters S™ and ~y.

We defined an analogous family of models for interaction multisets as follows. In this
case, we let £* denote the space containing all interaction multisets over the fixed vertex
set V (for a formal definition, see Appendix A). To elicit a distribution over the sample
space £* we again endow it with a distance metric dg : £€* x € — R, measuring the
dissimilarity of any two interaction multisets. With similar model parameters (i) the mode
E™ € €%, in this case an interaction multiset, and (ii) the dispersion v > 0, we define a
family of probability distributions as follows.

Definition 2 (Spherical Interaction-Multiset Family). Given a distance metric dg(-,-) on
E*, a mode E™ € E*, and a dispersion parameter v > 0, the probability of observing £ is
given by

p(E|E™,7) o exp{—dp(E,E™)}, (3)

and we write
E ~ SIM(E™,7) (4)

if we assume € was sampled via (3). This we refer to as the Spherical Interaction-Multiset
(SIM) family of probability distributions over £* with parameters E™ and 7.

3.2 Discussion

Intuitively, the SIS and SIM models can be seen as Gaussian-like distributions over the space
of interaction sequences and multiset, respectively. The mode 8™ (resp. £™) plays the role
of the mean, controlling the center of the distribution, whilst the dispersion ~ controls the
scale.! The role of v can also be formalised through its impact on the entropy, which can
be shown to be monotonic in v (see Supplement S2).

Observe in both (2) and (4) no reference is made to dg(-,-) or dg(,-), even though the
respective distributions clearly depend on them. The reasoning here is these values are not
intended to be model parameters but instead subjective choices made by the practitioner
prior to any analysis.

This naturally raises the question of specifying distances dg(-,-) or dg(-,-), for which
there appear no immediate candidates in the literature. This problem will be dealt with in
the next section, where two such distances will be proposed. Example networks sampled
from the models defined via these distances will also be provided, giving some intuition for
the nature of such distributions.

1. In analogy with the Gaussian distribution, v functions like the inverse of the variance, often referred to
as the precision.
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Observe both distributions were presented in unnormalised form. Taking the SIS model,
for example, its distribution can be normalised as follows

p(S|S™, ) = Z(S™, ) exp{—ds(S, ™)} (5)

where

Z(S8™ ) =Y exp{—vyds(S,8™)}
Ses*

is the normalising constant, often referred to as the partition function. In general, this
summation is intractable, which will come into play significantly when considering com-
putational aspects in later sections. In fact, with 8* being infinite, there is no guarantee
that (3.2) will even exist for a given ~, and thus for some parameterisations (5) may be an
improper distribution. This has pragmatic implications, motivating our recommendation to
work with constrained sample spaces in practice, as defined in Appendix A.2. For further
elaboration on this recommendation, see Supplement S3.

3.3 Relations to Literature

We finalise this section by relating the proposed models to others appearing in the literature.
As already mentioned, Lunagdémez et al. (2021) proposed a model for graphs which makes
analogous use of distance metrics, though there are also examples beyond the networks
literature. Most notably the Mallows model (Vitelli et al., 2018), appearing in the context of
preference learning, and the complex Watson distribution (Mardia and Dryden, 1999), used
in shape analysis. All these models combine the use of an exponential kernel with a notion of
distance to define distributions over objects, as similarly done here. The differential factor,
however, is the underlying space, be that the space of graphs (Lunagémez et al., 2021),
ranks (Mallows model), shapes (complex Watson model), or as in this work, interaction
networks.

Though in theory, these models are immediate extensions of one another, the different
spaces typically bring their own challenges, both methodological and computational. A
notable difference with our models are the flexible assumptions made regarding the size of
interaction networks being considered: we do not assume observations have a fixed number
of interactions, or that interactions have a fixed length. As we will see, this raises compu-
tational challenges when it comes to designing algorithms to sample from these models or
conduct parameter inference. More immediately, this has consequences for the elicitation
of distance measures.

4 Distances

The models proposed in Section 3 require the specification of a distance between interaction
networks, represented either as sequences or multisets of interactions. Given such a problem
has not been dealt with explicitly in the literature, in this section two such distances will
be proposed, for the comparison of interaction sequences and multisets, respectively.

As will be seen, these two distances are closely related, both borrowing ideas from the
wider literature to elicit a measure of dissimilarity in terms of an optimal pairing of paths.
Their evaluation, which requires solving an optimisation problem, will be outlined. In
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addition, their theoretical properties will be stated and proved, including conditions under
which both distances will be metrics. Finally, to illustrate how these distances can be used
within the models of Section 3 example networks sampled from our models will be presented.

4.1 Comparing Interaction Multisets

Starting with a distance to compare interaction multisets £ and £, we propose the matching
distance. At a high level, this seeks the ‘best’ pairing of interactions from £ with those from
&', in particular, one which minimises some notion cost associated to each pairing. The
distance between £ and £’ is then given by the cost of this best pairing. In this way,
the matching distance judges the dissimilarity based on an optimal relation between the
interactions of either multiset.

Towards defining this distance, it is necessary to more formally define a pairing of
interactions. For this, we use the notion of a matching. A matching between £ and &’
(Figure 2a) is simply a multiset of pairs

M={T,T):T€& T &}

such that each Z € £ is matched to at most one Z' € &', and wvice versa. Observe by
definition one must have 0 < |M|< min(|€[, |€']), that is, we can match at most the number
of interactions in the smaller multiset. A matching which achieves this upper bound we
say is complete. For example, the matching of Figure 2a is complete. We also define the
restriction of M to £ as follows

Mg:={T €& 3T €&, with (,T) € M}

so that Mg C & denotes the elements of £ which are included in the matching M. We also
introduce the shorthand Mg := £ \ Mg to denote the elements of £ not included in the
matching M. With these components, the matching distance can be defined as follows.

To define the matching distance, it will be necessary to have a notion of cost for each
matching. For this, it will be assumed one has access to a distance between interactions
d;(Z,7") > 0, quantifying how dissimilar a given pair of interactions Z and Z’ are. In
addition, a penalty function 4(-) must be specified, with 6(Z) > 0 denoting the cost incurred
when interaction Z is left unmatched. Examples of such distances and penalties will be
provided in subsequent sections, but in principle, any choices thereof can be made. With
these elements, the matching distance can be defined as follows.

Definition 3 (Matching Distance). Given a distance di(-,-) between interactions and a
penalty function § : T — Rsg for unmatched interactions, the matching distance between
E and &' is given by

dyi sy (E,€) == min Yo di(Z I+ Y D+ > (T

MEMEE) | (2. yem TeMs TeM:,
where M(E,E") denotes the set of matchings between £ and &'.

10



MODELLING POPULATIONS OF INTERACTION NETWORKS

(a,b,b, a) (e.fe,f)  (a,b,b,a) (e, fre, f)
(c,d,c) (£, 1, ) (c,d,c) (£ £, )
(e. fre. f) (a,b,a,b) (e, f.e, f) (a,b,a,b)

(c,d, c,d) (c.d, c,d)
(a) general matching (b) monotone matching

Figure 2: A comparison of matchings. In both (a) and (b) we have two interaction se-
quences displayed top-down. Here (a) shows a general matching, where any two
interactions can be paired together, whilst (b) shows a monotone matching of
interactions, where the order is preserved.

Notice, as claimed earlier, the matching distance dyy 5.y is defined by finding a matching
M with minimum cost. The cost of M consists of (i) distances between matched interac-
tions, and (ii) penalties for the interactions of £ or £ left unmatched.

Though well-defined, the question of how to compute of dygs.) remains, which will
require finding an optimal matching. Noting this is essentially an assignment problem,
one can appeal to solvers thereof, such as the Hungarian algorithm (Kuhn, 1955). Further
details can be found in Supplement S4.1, where we show how to set up a suitable assignment
problem to be solved. In general, this involves (i) evaluating all pairwise distances between
& and &' and (ii) solving an assignment problem via a chosen solver. This leads to a
computational complexity of O(N - M + f(N,M)), where N and M denote the number
of paths in & and &', respectively, and f(-,-) is a solver-dependent term. For example, if
optimising over complete matchings via the Hungarian algorithm one will have f(N, M) =
max(N, M)3 (see Supplement S4.1.2).

Regarding the wider literature, Ramon and Bruynooghe (2001) and Eiter and Mannila
(1997) have proposed similar distances, both considering the problem of comparing sets
within a metric space, defining distances via optimal relations between set elements. In
fact, the vernacular and notion of matchings we have adopted was inspired by Ramon and
Bruynooghe (2001). However, both consider comparing sets, whilst we consider multisets.
In addition, both assume a particular form of penalty for unmatched elements. Instead
of this, we define our distance in terms of a general penalty function. As will be outlined
later, we also provide conditions on this penalty function which ensure the resulting distance
satisfies certain theoretical properties.

4.2 Comparing Interaction Sequences

Turning now to the comparison of interaction sequences S and S’, we propose the edit
distance. Unlike when comparing multisets, there is now an ordering which must be taken
into account. For this, one can naturally adapt the rationale of the matching distance:
find an optimal matching which preserves order, or what we call a monotone matching

11
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(Figure 2b). As with the matching distance, the cost associated with this optimal monotone
matching can then be taken as a measure of dissimilarity between the two interaction
sequences.

Intuitively, a monotone matching of two sequences is one in which no lines cross when
this matching is drawn, as in Figure 2b. Towards a more formal treatment, recall from
Section 2 that we write interaction sequences as

S=(Zi,....,In) S =(T,...,Ty),

such that, for example, Z; is observed before Z;1 1. In this way, the indices of interactions
encode an ordering. As for multisets, matching between the sequences S and S’ is a multiset
of pairs M = {(Z,7') : Z € S, 7' € §'} such that each entry of either sequence is paired
with at most one from the other. Here, one can also consider whether order is preserved by
the matching. In particular, if for any (Z;,,Z} ) € M and (Z;,,Z},) € M we have

277772
11 < 19 <:>j1<j2,

which describes formally the intuition that no lines cross when the matching is drawn.
A matching satisfying this condition is said to be monotone. Using this notion, the edit
distance can be defined as follows.

Definition 4 (Edit Distance). Given a distance di(-,-) between interactions and a penalty
function § : T — R for unmatched interactions, the edit distance between S and S’ is given

by

dgs5(y(S,S) = min Yo AT+ ) D+ > AT

MEM 1 (8,8") (TIVeM Tems TeMs,
where M, (S, S") denotes the set of monotone matchings of S and S’.

Notice Definition 4 is more-or-less identical to the definition of the matching distance
(Definition 3); the difference being that M, the matching over which one is optimising,
must be monotone. Again, one is free to choose d;(-,-) and J(-), each defining a different
edit distance.

Computation of dgg.) also requires solving an optimisation problem. In this case,
the task turns out to be slightly less computationally costly, being possible via dynamic
programming with complexity O(N - M). Further details can be found in Supplement S4.2.

In regards to the wider literature, the edit distance can be seen as an adaptation of
the string-edit distance proposed by Wagner and Fischer (1974); though our presentation
via monotone matchings does differ. The string-edit distance was originally proposed to
compare categorical sequences, but has since been applied in other contexts (including the
present work). Most notably, with the geometric edit distance (Gold and Sharir, 2018; Fox
and Li, 2019), which adapts the string edit distance for the comparison of time series.

A final point to note is the edit distance (Definition 4) and matching distance (Defi-
nition 3) are themselves closely related: the latter is essentially an unordered version of
the former. As far as we are aware, this observation, which follows naturally due to our
definition of both distances via matchings, has not been noted in any other applications.

12
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4.3 Comparing Interactions

Both distances defined in Sections 4.1 and 4.2 require a distance between interactions to be
specified. In this section, examples of two such distances will be given. Since interactions
are assumed to be paths, this simplifies to the problem of measuring the distance between
two paths, denoted as follows

T=(z1,...,2n) and Z'= (Y1, Ym)-

A natural approach is to consider how much Z and Z’ have, or do not have, in common. In
particular, common subpaths and subsequences, as illustrated in Figure 3. A subpath of Z
from index ¢ to j is given by the following

Ii:j = ($l’, . ,.CE]')

where 1 < i < j <n (Figure 3a). More generally, assuming v = (v1,...,vs) with 1 < v <
<o+ < vg < n, then a subsequence of 7 is obtained by indexing with v as follows

I’U = (xvp"'?x’l}s)

which will be of length s (Figure 3b). Given two paths, one can then consider common
subpaths and subsequences. A common subpath of Z and Z’ occurs when we have

Lij =T}y,

for some 1 <7 < j<nand1l <! <k < m, whilst a common subsequence of Z and 7'

occurs when
/
I, =1,

forsomel < vy < -~ <wvs<nmnandl<wuy < - < us <m. The more similar 7 and
7' are, the longer we expect their common subpaths or subsequences to be. Following this
rationale, a distance can be defined by finding mazimal common subpaths or subsequences,
that is, ones for which there exist none of larger size. This leads to the following

dLSP(Za I/) =n+m — 20sp and chs(I, I,) =n+m — 2008
where
dpsp = max{|i: j|=|l: k|: Z;;; = 1;;,} and dpcs := max{|v|= |u|: T, =1, }

denote the maximum size of a common subpath and subsequence between the two paths.
Intuitively, these distances count the number of entries of Z and Z’ not included in the
common subpath or subsequence, that is, the underlined entries in Figure 3. For example,
since the subpaths and subsequences in Figure 3 are maximal, we have dysp(Z,Z') = 7 and
dycs(Z,Z') =5 in this case.

Computation of these distances necessitates finding maximal common subsequences or
subpaths, much like for the matching and edit distances themselves. In both cases, this can
be achieved by dynamic programming with a complexity of O(n - m), details of which can
be found in Supplement S4.3.
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[a[b[afb]a] [a]b[afb]a]

[cld]afbafc]ald] [cld]afblafc]ald]

(a) Common subpath (b) Common subsequence

Figure 3: A comparison of common subsequences and subpaths. Here (a) and (b) show
the same pair of paths, with (a) highlighting a common subpath, as indicated by
shaded (green) entries, whilst (b) shows a common subsequence. In both cases,
these are maximal.

4.4 Theoretical Properties

In this section, the theoretical properties of the aforementioned distances will be discussed.
In particular, we will consider the notion of a distance metric, providing conditions under
which the proposed distances will be classified as such. In a general sense, a distance metric
is defined as follows.

Definition 5 (Distance Metric). A function d : X x X — R is a distance metric over
the space X if, for any x,y,z € X, the following conditions are satisfied

(i) d(z,y) =0 < x =y (identity of indiscernibles);
(it) d(z,y) = d(y,z) (symmetry);
(111) d(z,y) < d(z,z)+d(z,y) (triangle inequality);
with the pair (X, d) being referred to as a metric space.

Notice this definition applies naturally to all distances presented in previous sections;
between sequences or multisets of interactions, or between interactions themselves. Regard-
ing why such properties are desirable, aside from being somewhat natural, recall the reason
for introducing such distances: use within the models proposed in Section 3.1. From this
point of view, conditions (i) and (ii) will be a strict requirement. Without (i), the resultant
model is likely to be unidentifiable, making parameter inference more challenging. Without
(ii), the model definitions would depend on which way round the metric is called in the
probability mass functions (1) and (3), introducing some unnecessary complication. The
need for (iii) is arguably less strict but is nonetheless a somewhat intuitive and natural
property for a distance function.

One can show that both the matching distance dy; 5.y and the edit distance dg 5(.) are
distance metrics, provided the penalty function J(-) satisfies certain conditions and the
distance between interaction dy(-,-) is also a metric. This is summarised with the following
result, proved in Supplements S5.1 and S5.2.

Proposition 6 (Matching and Edit Distances are Metrics). Both the matching distance
dys(y and the edit distance dg sy are distance metrics, provided dr(-,-) is also a distance
metric and the penalty function §(-) satisfies the following conditions:
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® 5(Z)>0 forallZ € Z, and

o |6(Z) —0(Z)|< di(Z,T') for allI,T' €T

Examples of two penalty functions which satisfy the required conditions are as follows:
1. Fixed penalty: let §(Z) = p, where p > 0 is a constant;

2. Distance-based penalty: let §(Z) = d;(Z, A) where A is the null interaction.

Note with interactions being paths, we let A denote the empty path. In this case, typically
dr(Z, A) will denote the size of Z, for example, with the LSP distance dysp(Z, A) = n where
n is the length of Z.

Although both induce valid distances, we find the fixed penalty results in distances
which are not suitable for use with the models proposed in Section 3.1. For a justification
of this claim, see Supplement S1. Instead, as will be seen in later sections, we turn to
the distance-based penalty. For brevity, the short-hand notation dy(+,-) and dggis(+, ) will
be adopted for the matching distance and edit distance with the distance-based penalty,
respectively.

Proposition 6 additionally relies on the assumption that the interaction distance dj (-, -)
is itself a distance metric. This raises the question of whether the two distances proposed
in Section 4.3 satisfy this requirement. As we detail in Supplement S5.4, it can be shown
that both the LCS and LSP distances are indeed metrics.

4.5 Tllustrative Model Samples

Supposing either of the previous two distances has been assumed within our models, it is
natural to ask what are the features of the resulting probability distribution over the space
of interaction networks. To provide some intuition in this regard, this section presents some
example samples drawn from our models with different distance and parameter specifica-
tions. In particular, we will (i) illustrate the role of v in controlling the level of noise,
(ii) contrast the SIS and SIM models, showing how the assumptions regarding the order
of paths manifests itself in observations, and (iii) compare models with different distance
specifications.

Figure 4 summarises these sampled observations, presented via two tables, showing
samples from SIS and SIM models respectively. These are further divided, showing samples
from each model with different assumed distances. In particular, the edit distance dgrq;; and
matching distance dy; were used for the SIS and SIM model respectively, with dics and
disp as the interaction distances, as indicated in Figure 4 via the left-hand tabs. Within
each cell, we show three samples from the associated model with increasing values for the
dispersion, that is, for the SIS model we show samples Si,S2, S3 where S; ~ SIS(S™,;),
whilst for the SIM model we show &1, &>, 3 where & ~ SIM(E™,~;), where the v; were
increasing. The mode parameter for these models was fixed throughout and is shown
at the top of Figure 4, that is, S™ = ((1,1,1),(2,2,2),(3,3,3)) for the SIS models and
Em=4{(1,1,1),(2,2,2),(3,3,3)} for the SIM models. The vertex set was also assumed to
be V = {1,...,7}. Finally, entries have been highlighted to show how observations are
associated with the mode. In particular, shaded entries indicate those shared with the
mode, whilst underlined entries represent errors. These were obtained from the optimal
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matchings and common subsequences or subpaths found when evaluating the distance of
these samples to the mode.

Considering first the role of v in controlling noise, this can be observed through the
presence of a larger number of underlined entries for observations drawn with lower -y
values, that is, those towards the bottom of each cell. Notice how this follows from the
location and scale structure of the model, as discussed in Section 3.1: as v decreases the
probability becomes less concentrated about the mode, leading to a higher probability of
entries not being shared.

Notice also, that for all models, each sampled observation contains paths with shaded
entries that can be matched with exactly one in the mode. Take, for example, the sample at
the very bottom. Here the second path has three shaded entries (1, 1, 1) which one can see is
equal to the first path of the mode. Similarly, the fourth and fifth paths of this observation
can be matched with the second and third of the mode. This feature, whereby paths in the
observations are matched with a path of the mode, is a consequence of using the edit and
matching distances, which, as seen in Sections 4.1 and 4.2, are defined by such matchings.

Turning now to comparing the SIS and SIM models, notice how the SIS model preserves
the order of paths in the mode, that is, they feature in the same order in sampled observa-
tions (albeit with some noise). In contrast, with the SIM model, the order of paths within
sampled observations is not necessarily consistent with the mode, for example, in the top
observation in the lowest cell. Notice this is expected, since for the SIM model, being a
distribution over multisets, two samples equal up to a permutation of path order would be
considered the same.

A final point of note regards how the choice of distance, and the modelling assumptions
this implies, manifests itself. Comparing samples drawn from both the SIS and SIM mod-
els with different choices for the distance between interactions, one can observe different
structures in the error or noise, particularly evident as v decreases. In particular, when
di,cs is assumed the paths of the mode appear as subsequences of those in the sampled
observations, whilst when dy,gp is assumed they instead feature as subpaths.

Now, observing the features outlined above will alter the interpretation of model pa-
rameters in each case, most notably the mode. In particular, by the reasoning above, in
using the edit and matching distances, the paths of the mode will each be related to at most
one path within each sample. With SIS model these paths appear (with noise) in the same
order in the observed samples as they do in the mode, whilst in the SIM model the order of
the mode and the samples need not be congruent. As such, for the SIS model 8™ represents
a sequence of paths often appearing in the observations, whilst for the SIM model £ rep-
resents a collection of paths often appearing in the observations (in any order). Moreover,
with dpcg as the distance between paths, the paths of the mode represent subsequences
appearing within the samples, whilst if using the dygp they will represent subpaths. These
imply a different role and interpretation for the mode in each case.

5 Bayesian Inference

Given an assumed model, the goal of inference is to discern which parameters are likely
to have generated the observed data, which in our case amounts to inferring the mode
and dispersion parameters. We adopt a Bayesian perspective, using a specialised MCMC
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Mode: [1]1]1][2]2]2][3]3]3]

SIS Model
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Figure 4: Example samples drawn from our models. Each table cell visualises three ran-
domly drawn samples from a given model with the dispersion parameter v varying,
where a higher v means a more concentrated distribution, that is, less noise. A
common mode was used for each model, as displayed at the top. The edit and
matching distances were assumed, for the SIS and SIM models, respectively, with
different choices of path distance, as indicated on the left-hand tabs. For each
sample, shaded entries indicate those matched with the mode, as implied by the
optimal matchings and maximal common subsequences or subpaths found when
evaluating the distances, whilst underlined entries indicate unmatched entries.
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algorithm to obtain samples from the joint posterior of the mode and dispersion parameters,
upon which we base our inference. In this section, details regarding this approach will be
provided.

For brevity, only details regarding inference for the interaction-sequence models (Defi-
nition 1) will be provided here, delegating details for the interaction-multiset models (Def-
inition 2) to Supplement S9. Furthermore, what follows will be mostly descriptive, with
theoretical justifications found in the supplementary materials. In addition, details and
guidance regarding the computational cost and mixing of our proposed algorithms can be
found in Supplement S6.

5.1 Priors, Hierarchical Model and Posterior

In specifying a prior for the mode we follow Lunagémez et al. (2021) and assume it was
itself sampled from an SIS model, that is

S™ ~ SIS(So,v0) (6)

where (Sp,70) are specified hyperparameters. For the dispersion v we simply require a dis-
tribution p(7) whose support is a subset of the non-negative reals. For example, we typically

take v ~ Gamma(ayg, By) with (ag, 5p) being hyperparameters. Given these specifications,

an observed sample {S (@) © , is thus assumed to be drawn via

SO | 8™~ SIS(S8™,y) (fori=1,...,n)
8™ ~ S15(80,70) (7)
v~ p(7).
The likelihood of the sample {S(®17 | is given by

n

SV} 18™,y) = [[ (8P 8™, 7)

=1
=Z(S8™,v) " exp {—’7 > ds(S(i),Sm)} ,
i=1

and we have the following posterior, up to a constant of proportionality
p(8™, 7 [{8D}y) o p({SWYy [ 8™, 7)p(S™)p(7)

X Z(S™,7) " exp {—Vzds(s(i)ﬁm)} (®)

=1

x exp{—0ds(S™, So) }p(7).

5.2 Sampling from the Posterior

To sample from the posterior (8), we use a component-wise MCMC algorithm which alter-
nates between sampling from the two conditional distributions

p(S™ [ ASV}Ly) and p(v| 8™ {SVYLy). (9)
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w.p. B8
/ \
(S, 7i) (87, v) — — (871, 7i41)
iExchange - Path
wp. (1-8) Insertion & Deletion 7
P (Sections 4.4 & 4.5.2)
Target = p(S™ [, {8 }1,) Target = p(y|S™, {SW}iy)

Figure 5: Summary of our MCMC scheme to sample from the SIS posterior. We first
update the mode via the iExchange algorithm, doing an edit allocation move
with probability 8, or a path insertion and deletion move otherwise. We then
update the dispersion via the exchange algorithm.

Since the normalising constant Z(S™, ) depends on the parameters of interest this implies
(8) is doubly intractable (Murray et al., 2006). Such terms will also persist in both con-
ditionals above, making them also doubly intractable. This precludes the use of standard
MCMC algorithms such as Metropolis-Hastings and necessitates the use of the exchange
algorithm proposed by Murray et al. (2006).

A high-level summary of our scheme is visualised in Figure 5. For the dispersion condi-
tional, being a distribution over the real line, we can apply the exchange algorithm directly.
In contrast, the mode 8™ is a discrete object, the dimensions of which can vary both in
terms of the number of paths and their lengths. This makes the sample space for the mode
conditional far less trivial, and so we consider merging the exchange algorithm with the
involutive MCMC (iMCMC) framework of Neklyudov et al. (2020); defining what we call
the iExchange algorithm. To fully explore the sample space, we mix together two iExchange
moves. In particular, with probability £, we enact a move perturbing the paths currently
present, whilst with probability (1 — §) we attempt a move which varies the number of
paths.

5.3 Updating the Dispersion

Here we outline our MCMC scheme to sample from the dispersion conditional. In this
instance, we suppose 8™ is fixed and ¢(v/|y) is some proposal density. In a single iteration,
given current state v we do the following

1. Sample a proposal v/ from ¢(v'|7)
2. Sample an auxiliary dataset {S}! ; of size n (same as observed data) where
s: b sis(sm, ),
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3. Evaluate the following probability

- {1’ i(vwsm, (SO )pUS! Vi IS™ e ) } (10)

(VS™ ASOH)PUS; H 1S™, 4 )a (v )

4. Move to state 4/ with probability «(y,7’), staying at v otherwise.

For the proposal ¢(v'|y) we consider sampling 4" uniformly over a e-neighbourhood of ~
with reflection at zero. More specifically, we first sample v* ~ Uniform(y — ¢,y + ¢) and
then let v/ = v* if v* > 0 and let v = —7* otherwise.

This is a direct application of the exchange algorithm (Murray et al., 2006) and as such
the resultant Markov chain admits p(y|S™, {S®}7_,) as its stationary distribution. More-
over, this is what one might call an “exact-approximate” MCMC algorithm, in the sense
that (asymptotically) samples drawn thereof will be distributed according to the desired
target, meaning that one could in theory obtain exact samples given infinite resources. A
closed form of (10) and derivation thereof can be found in Supplement S8.1.

5.4 Updating the Mode

We now outline our MCMC scheme to sample from the mode conditional. The key difference
here is in the proposal generation mechanism, which follows the iMCMC algorithm (Nek-
lyudov et al., 2020) in using a combination of random sampling and deterministic maps.
Here we assume the dispersion v is fixed and 8™ denotes our current state. Instead of
specifying a proposal density, one defines auxiliary variables u € U, a deterministic function
f 8" xU — 8 xU and a conditional distribution g(u|S™) over auxiliary variables.
The function f must also be an involution, meaning that it acts as its own inverse, that is,
f~! = f. A single iteration now consists of the following

1. Sample u ~ q(u|S™)
2. Invoke involution f(S™,u) = ([S™]’,u), obtaining proposal [S™]
3. Sample auxiliary dataset {S;}7; of size n where

s R s1s(is )

4. Evaluate the following probability

om0 1 SOV p(S Y, [S™ a1 S™))
(8™ 1571 = {1’ PE™ 17 ASOY (ST, 11577, )a(u] 57) } )

5. Move to state [S™]" with probability a(S™,[S™]'), staying at S™ otherwise.

Much like the proposal density of a Metropolis-Hasting or exchange algorithm, the wu,
f(8™, u) and g(u|S™) represent free choices. We consider mixing together two such speci-
fications, details of which we provide in the next section.
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sm= |a]bafbla] [c[dfc]d[c] [afb]cfd[c] [a|b[b]a]
af

d
[ 1]

s7'= [d]afbfa]  [cfe]dfc] [blcfajd]efc] [a]b]b]a]

Figure 6: Illustrating the edit allocation move. Shaded entries indicate deletions and in-
sertions, whilst bars visualise the allocation of edits to paths. Bar height is
proportional to the number of edits allocated to a path z, whilst the green (top)
portion of the bar denotes the number of insertions a and the pink (bottom)
portion represents the number of deletions d.

This scheme represents an instance of what we call the iExchange algorithm (Algo-
rithm 1, Supplement S7). As shown in Supplement S7, this can be seen as a special case of
the iMCMC algorithm. As such, this represents an exact-approximate MCMC algorithm
with the resultant Markov chain admitting p(S™ |y, {S®¥}%,) as its stationary distribution.
Note the iExchange algorithm as defined in Supplement S7 includes a Jacobian term in the
acceptance probability which we do not include above. The reasoning is that since both &*
and U are discrete spaces and f(S,u) is a one-to-one function (since it is invertible) such
terms are not required.

5.5 Mode Update Moves

We now give details regarding two iExchange specifications for the mode conditional up-
dates. In the first, we keep the number of paths fixed, varying only the path lengths or
what we call the inner dimension. For example, in the context of the Foursquare data, this
would amount to altering a particular sequence of check-ins. In the second, we look to vary
the number of paths or what we call the outer dimension. For example, in the Foursquare
data, this would equate to introducing or removing a whole day of check-ins.

5.5.1 EDIT ALLOCATION

Supposing 8™ = (71, ...,Zy) is our current state, the main idea of this move is to allocate a
number of “edits” to each path in ™. These edits consist of inserting and deleting entries,
where if the number of insertions and deletions are unbalanced, paths of smaller or larger
sizes relative to the current state will be proposed, thus varying the inner dimension. For
an illustration, see Figure 6.

We now give descriptive details of this proposal generation mechanism and show how it
can be cast in the light of IMCMC. First, we specify the total number of edits to be made,
denoting this § € Z>;. Next, we specify an allocation of these edits to the paths of S™,
denoting this z = (z1, ..., zn), where z; € Z>( denotes the number of edits allocated to the
1th path such that Zfil z; = 0. For example, in Figure 6 we have 6 = 7 and z = (3,1, 3,0).
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Given z; we edit the ith path Z; to obtain a corresponding proposal Z! in the following
manner. First, we partition the z; edits between deletions and insertions, letting d; €
{0,...,min(n, z;)} denote the number of deletions, where n; denotes the length of the ith
path, with a; = z; — d; then denoting the number of insertions. Note, we cannot delete
more entries than are present, hence the restriction d; < min(n;, z;).

The penultimate step is to specify which entries to delete and where to insert new

entries, which we denote via subsequences. Introducing the notation [n] = (1,...,n), we
define subsequence of [n] of size m to be a vector v = (v1,...,vy) such that 1 < v} <
vy < -+ < vy < n. Now, we let v; be a subsequence of [n;] of size d; denoting the entries

of Z; to be deleted, whilst v} is subsequence of [m;] of size a;, denoting the location of
entries to be inserted in Z}, where m; = n; — d; + a; denotes the length of Z/. For example,
considering the first path in Figure 6 we have 7 = (a,b,a,b,a) and Z| = (d,a,b,a) with
v1 = (4,5) and v] = (1) indexing the deletions and insertions respectively. The final step is
to specify entries to insert, which we denote y; = (yi1, . - ., Yia;) Where y;; € V. For example,
in Figure 6 we have y; = (d).

Given the information above, one can enact the specified deletions and insertions, map-
ping to a proposal [S™]' = (Z1,...,Z}y). This can be viewed in the iIMCMC framework as
follows. First, collate all this information into the auxiliary variable u = (9, z,u1,...,uyn)
where u; = (d;, vi, v}, yi). Now, if we write the required involution as follows

f(’vau) = (fl(vau)va(’vau)) = ([Sm],vul)7

then in enacting the specified edit operations, we have effectively defined the first component
f1(8™,u) = [S™]. Specification of the second component is more involved, and so we
delegate these details to Supplement S8.3. Regarding the auxiliary distribution g(u|S™),
we consider the following

§ ~ Uniform{1,...,veq}
z |0 ~ Multinomial(6; 1/N,...,1/N)
d; | zi ~ Uniform{0, ..., min(z;,n;)} (fori=1,...,N)

whilst v; and v} are drawn uniformly and the entry insertions y; are assumed to be sampled
from some general distribution ¢(y;|Z;), which we typically take to be the uniform distri-
bution over V. The only tuning parameter here is vq, which controls the aggressiveness of
proposals, with larger values leading to more edits being attempted on average.

Further details, including full definition of the involution f, examples of possible inser-
tion distributions ¢(y;|Z;) and derivations of key terms appearing the acceptance probability
(11), can be found in Supplement S8.3.

5.5.2 PATH INSERTION AND DELETION

With this move we look to vary the outer dimension, that is, the number of paths. Similar
to Section 5.5.1, we consider doing so by random deletion and insertion. The difference in
this case is that we delete and insert whole paths (see Figure 7).

In particular, with 8™ = (Zy,...,Zy) denoting our current state, we first choose a
total number of insertions and deletions € € Z>;. Next, we partition these, letting d €
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{0,...,min(N,e)} denote the number of deletions, leaving a = £—d insertions. For example,
in Figure 7 we have ¢ = 3, d = 2 and @ = 1. Next, we choose locations of deletions and
insertions. In particular, we let v be a length d subsequence of [N] denoting which paths
of 8™ are to be deleted, whilst v’ is a length a subsequence of [M], where M = N —d + a,
denoting where inserted paths will be located in our proposal [S™]’. For example, in Figure 7
we have v = (2,4) and v’ = (3). Finally, for each ¢ = 1,...,a we choose some path Z} to
insert into entry v} of [S™]. For example, in Figure 7 we have a single path Z} = (¢, b,b, a)
which we insert into the third entry.

As in Section 5.5.1, given the information above we can insert and delete the cor-
responding paths to obtain a proposal [S™]. Collating this into the auxiliary variable
u = (e,d,v,v',I{,..., ) this can similarly be seen as defining the first component of
the required involution, with details of the second component found in Supplement S8.4.
Regarding sampling of auxiliary variables we consider the following

e ~ Uniform{1, ..., 11q}
d|e ~ Uniform{0, ..., min(N,e)}

whilst we sample v and v’ uniformly and assume path insertions Z; are drawn from some
general distribution over paths ¢(Z|S™). This leaves two tuning parameters, ryq and
q(Z|S™), which in combination facilitate control over the aggressiveness of proposals. In
particular, 14q controls the number of deletions and insertions attempted, whilst ¢(Z|S™)
affects the impact of each insertion and deletion. Again, further details can be found in
Supplement S8.4.

5.6 Sampling Auxiliary Data

Both algorithms to target the conditionals outlined in Sections 5.3 and 5.4 require exact
sampling of auxiliary data from appropriate interaction-sequence models. Unfortunately,
we cannot do this in general. Instead, we consider replacing this with approximate samples
obtained via an iMCMC algorithm.

In particular, suppose we would like to obtain samples from an SIS(S™, ) model. As-
suming that & denotes the current state, and auxiliary variables u, involution f(S,u) and
auxiliary distribution ¢(u|S) have been defined, in a single iteration we do the following

1. Sample u ~ q(u|S)

2. Invoke involution f(S,u) = (S, u')

sm= [a|bfa]bfa] Jc]d]c]d]c] [afb]cfd]c| [a[b]b]a]

o7y = GIoalels] Glelale] [[o[o]s]

Figure 7: Hlustrating path insertion and deletion move, where given the current state S™
the proposal [S™]’ is obtained by deleting and inserting the highlighted paths.
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3. Evaluate the following probability

a(8,8') = min {1 p(S'|8™, )| S') }

(S 1S, 7)q(u] S) (12)

4. Move to state S’ with probability «(S,S’), staying at S otherwise.

where p(S|S™, ) denotes the likelihood as given in (1). Towards specifying u, f(u,S) and
q(u|S), we now recycle the moves of Section 5.4, again mixing these together with some
proportion 8 € (0,1). Note, as in Section 5.4, we omit the Jacobian term in the acceptance
probability above since we are working with discrete spaces.

In sampling auxiliary data in this manner, we now have two MCMC-based elements:
what one might call the outer MCMC algorithm, navigating the parameter space, and
the inner MCMC algorithm, sampling auxiliary data. We note this approach has been
considered by others. In particular, Liang (2010) proposed the so-called double Metropolis-
Hastings algorithm which replaces the exact samples of the exchange algorithm with those
obtained via a Metropolis-Hasting scheme. The difference in our case is the use of the
more general IMCMC framework, be that in the outer MCMC scheme (as in the iExchange
algorithm), or the inner MCMC scheme (as outlined above).

A consequence of using approximate auxiliary samples within the algorithms of Sec-
tions 5.3 and 5.4 is the resulting schemes will become approximate, as opposed to exact-
approximate. That is to say, even in the theoretical limit, samples will not necessarily be
distributed according to the desired target but instead an approximation thereof. How-
ever, as the auxiliary samples look more like an i.i.d. sample one will get closer to the
respective exact-approximate algorithm. Thus, one can in theory get arbitrarily close to an
exact-approximate scheme by taking steps to reduce the bias of the MCMC-based auxiliary
samples, such as introducing a burn-in period or taking a lag between samples.

6 Simulation Studies

In this section, simulation studies undertaken to confirm the efficacy of the proposed
methodology and inference scheme will be outlined. In the first two, the posterior con-
centration is examined, exploring how this is affected by the variability of observed data
and structural features of the mode. In the third, convergence of the posterior predictive
is assessed via a missing data problem. In each, we will be working with the interaction-
sequence models.

6.1 Posterior Concentration

Given the observed data were generated by an SIS model at known parameters, one expects
the posterior to concentrate on these values as the sample size grows, that is, the posterior
should be consistent. The next two simulation studies will serve to not only confirm this
but also, in assuming the given posterior is indeed consistent, confirm the efficacy of our
proposed MCMC algorithms at approximating this posterior. In addition, we explore what
can impact the rate of posterior convergence, considering both the variability of the observed
data and features of the true underlying mode parameter.
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A summary of our first simulation (Section 6.1), where the top plot visualises the
scale of the SIS model used therein, in particular, for different values of v it shows
{ds(SW, S )00 where SO) ~ SIS(S™.., ), sampled via the iMCMC scheme
of Section 5.6. The remaining two plots summarise simulation outputs for each
pair (Yrue, 7), Where the middle shows distributions of d, the average distance to
the true mode, whilst the bottom shows (¥ — 7true), the bias of the dispersion
posterior mean relative to the truth.
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The high-level approach is the following. Given true mode S{%

e and dispersion erye,
we draw a sample {SW}7_, where

S(Z) ~ SIS(StTuev ’Ytrue)

before obtaining samples {(SI",v;)}7, from the posterior p(S™,v[{SW}7,). We then
assess the behaviour of these samples via the following summary measures

m

- 1 1
di= 3 ds(SISth)  T= D

i=1 i=1

where ideally d should be close to zero and ¥ & 7rue. By repeating this a number of times
for different n and evaluating these summaries we can thus get a sense of how the posterior
is concentrating on the true parameters.

Now, recall the dispersion works inversely to the variance, in that lower values lead to
more variable data (Figure 8, top). Intuitively, when the data is more variable it will be
harder to discern the true mode S/, and thus we expect d to decrease more slowly for
lower values of Y ue. Alternatively, as can be seen in Figure 8, when ~tue is smaller the
difference of their parameterised distributions (as described by the distribution of distances
to the mode) becomes more marked relative to neighbouring values. As such, we might also
expect smaller values for the dispersion to be easier to recover.

To explore for such properties, we varied iy and n whilst keeping S{7%,. fixed. In
particular, we considered e = 3.5,3.7,4.0,4.3,4.6,4.9 (highlighted in Figure 8, top) and
n = 25,50,75,100. The distance we took to be dg = dgg;; with d;j = dr,cs between paths.
We fixed V' = 20 and constrained the sample space as defined in Appendix A.2, assuming
at most L = 20 paths in any observation, with each path being at most length K = 10.

The mode S, of length NV = 10 we fixed throughout, sampled from the Hollywood
model of Crane and Dempsey (2018). In particular, we drew S . ~ Hollywood(a, 6, v)
where

a=-0.3 6=0.3V v="TrPoisson(3,1, K),

where TrPoisson (A, a,b) denotes a truncated Poisson distribution with A > 0 the parameter
of a standard Poisson, whilst 0 < a < b < oo are the lower and upper bounds. This set-up
for the Hollywood model, with @ < 0 and 6 = —V«, corresponds to the finite setting,
implying the sampled interaction sequences will have at most V vertices.

Regarding priors, we considered an uninformative set-up with (Sp,70) = (5 ,0.1) where

n

S := argmin Zd%(S(i),S)
Se{SWL, =1

denotes the sample Fréchet mean, whilst we took v ~ Uniform(0.5,7.0). Here we note the
sample {S (i)}’;:l used to obtain & will be different in each repetition of the simulation, and
consequently so will S.

Now, for each pair (Ytrue,m) we (i) sampled n observations from an SIS(S{%.e, Vtrue)
model, using the iMCMC scheme outlined in Section 5.6, with a burn-in period of 50,000
and taking a lag of 500 between samples (ii) obtained m = 250 samples from the posterior
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using the component-wise MCMC scheme of Section 5.2, with a burn-in period of 25,000
and taking a lag of 100 between samples? (iii) evaluated summary measures d and 7.

We repeated (i)-(iii) 100 times in each case, the results of which are summarised in
Figure 8. Consulting the middle plot, we observe that d decreases with n across all cases,
indicating a concentration of the posterior about the true mode. Furthermore, this decrease
is more gradual for lower values of Vi, agreeing with intuition. Turning to the bottom plot,
the most obvious feature is bias in % relative to the truth. Note this is expected since we
have used approximate MCMC samples within our component-wise scheme of Section 5.2.
We do, however, see a reduction in this bias as the sample size grows. Furthermore, for the
larger values of n we begin to see a clearer difference in the variance of 4 across different
values of v¢rye. In particular, the variance appears to be smaller for lower values of ~irye,
agreeing with the intuition that these are easier to estimate.

6.2 Effect of Mode Structure

Here we explored whether structural features of the mode might impact its inference. Adopt-
ing the same modelling set-up as the previous simulation, but in this case fixing the true
dispersion to vue = 4.5, we re-sampled the mode in each repetition via

Strue ~ Hollywood(a, —aV, v)

where we again take V' = 20 and v = TrPoisson(3, 1, K), whilst a < 0.

The key idea underlying the Hollywood model is a ‘rich get richer’ assumption made
when sampling vertices. This results in o admitting an interpretation regarding the heavy-
tailed nature of vertex counts. In particular, for a given interaction sequence S and vertex
v € V one can define an analogue of the vertex degree (often defined for graphs) as follows

ks(v) := # times v appears in S,

which thus implies, for each S, a sample {ks(v) : v € V, ks(v) > 0}, similar in spirit to the
degree distribution. Now, a can be seen to control the heavy-tailedness of this distribution
(see Figure 9), whereby when « is low one tends to see vertices appearing a similar number of
times, whilst when « is larger these counts become disproportionately focused on a smaller
subset of vertices.

In this simulation, we considered a = —& where & = 1.35,0.75,0.35,0.12,0.06, 0.03, 0.01
and n = 25,50,75,100. Details on how these « values were chosen can be found in
Supplement S10. For each pair («a,n), in a single repetition we (i) sampled Sgrye ~
Hollywood(a, —a'V, v), (ii) sampled n observations from an SIS(Siue, Ytrue) model (iii) ob-
tained m = 250 samples from the posterior, and (iv) evaluated summaries. For (ii) and (iii)
we used exactly the same MCMC set-up as in the previous simulation.

Figure 10 summarises the output of 100 repetitions for each pair (a,n). For each «,
we see values for d closer to zero as n grows, indicating concentration about the true
mode. Furthermore, a shows no clear sign of impacting this concentration. Regarding the
dispersion posterior mean %, as in the previous simulation, we observe bias relative to the
truth, with this bias reducing as n grows. Furthermore, this is the same across all «, with
no clear sign that « affects the inference of these values.

2. One must also parameterise the MCMC algorithm used to sample the auxiliary data. These were tuned
by considering acceptance probabilities observed when sampling from an SIS(S{T,e, Verue) distribution.
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st

a=-0.5 a=-0.1

Figure 9: Visualising the role of a in the Hollywood model. Each plot shows an ag-
gregate multigraph Gs where § ~ Hollywood(a, —aV,v) with V = 10, v =
TrPoisson(3, 1, 10) and « varying. Edge thickness reflects edge multiplicity, whilst
vertex size is proportional to ks(v).

A0 =
L L oddbhd sibgebs
LT SO ITRRSEIID

Figure 10: Summary of our second simulation (Section 6.2), where for each pair (a,n) the
top subplot shows the distribution of d, the average distance to the true mode,
whilst the bottom shows the distribution of 7, the posterior mean dispersion.
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6.3 Posterior Predictive Efficacy

A desirable feature of the posterior predictive is a growing resemblance of the true data-
generating distribution as the sample size increases. In this simulation, we considered
exploring such behaviour in the context of a missing data problem.

Suppose we have an observation & in which a single entry is missing, for example

S=1((1,2,1,0),(2,3,4,3),(1,2,2,1,2,3))

with e denoting the unknown entry. Towards predicting its value, let S, denote the obser-
vation obtained by taking this entry to be x € V, that is

S$ = ((17 27 17x)7 (27 37 47 3)7 (17 27 27 17 27 3))7

and consider assigning a probability to each z € V of being the true entry. If one knew
S ~ SIS(8™,7), then such a distribution could be obtained by comparing the relative
probability of S, for each x € V, in particular, we could consider

1

p(z|S™, v, S=g) == 28 7.5)

exp{—vds(S;,8™)}

with Z(S™,v,5-2) = > _4cyp exp{—7ds(Sz,S™)} the normalising constant, where we intro-
duce the notation S_; to indicate that we are conditioning on the other known entries (and
implicitly also on the dimensions of the observation). We refer to this as the true predictive
forx e V.

In practice, with the true distribution unknown, one can instead leverage an observed
sample {S (i)}?zl by averaging with respect to the posterior as follows

pal{SYYL, 8 0) = Y /Rp(w!Sm,%S—x)p(Sm,71{8(“}?:1)61%
SmeS* Ut

defining the posterior predictive for x € V, which itself can be approximated using a sample
{(S, 7))} from the posterior via

m

A~ n 1 m
p(CC|{S( )}izlvsfiﬂ) = E Zp($|81 ,’W,ng;), (]-3)

=1

a derivation of which can be found in Appendix B. To now predict x, one can for example
take the maximum a posteriori (MAP) estimate

& = argmax p(z|{SW}I,, S_,).
€V
In this simulation, we considered assessing the agreement of the true and posterior predictive
as n grows by examining how often their predictions were equal. We adopted the same
modelling set-up as Section 6.1, jointly varying the dispersion and sample size, in this case
considering Yirue = 3.7,4.2,4.5,4.9 and n = 25,50, 75,100. However, in a slight deviation,
we here re-sampled the mode in each repetition from a fixed Hollywood model.
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Figure 11: Summary of posterior predictive simulation (Section 6.3). Here we summarise
the proportion of times the true and posterior predictions coincided when pre-
dicting missing entries of sampled test data, with boxplots showing the distri-
bution of these proportions over 100 repetitions.

For a given pair (7irue,n) and a pre-specified number of test samples nyest, in a sin-
gle repetition we (i) sampled mode Siye ~ Hollywood(a, —aV,v), with a = —0.35 (V
and v as in Sections 6.1 and 6.2) (ii) sampled training and testing data {S()}/F/ et
from an SIS(Strue, Verue) model, (iii) obtained a sample {(S/™,7;)}7, from the posterior
p(S™, y{SW}_,), that is, using the n training samples, (iv) for each i = n+1,..., 74 Nges
and for each entry of S®) (that is, each entry of each interaction) we assumed it to be
missing and obtained predictions with both p(z|{S®1?_ |, S_,) and p(z|S™,S_,) via MAP
estimates, and finally (v) returned the proportion of times these predictions were equal.’
For (ii) and (iii) we used the same MCMC schemes as previous simulations.

Figure 11 summarises the output of 100 repetitions for each pair (7Yirye, n), With ngesy =
100 in each repetition. For each iy, we see the predictions of the posterior predictive
are more often in accordance with those of the true predictive distribution as the number
of training samples increases. Moreover, when  is lower, that is, the observed data is
more variable, the discrepancy between the true and posterior predictive tends to be larger.
Observe this is expected, given the observed behaviour of the first posterior concentration
simulation (Section 6.1), wherein the posterior concentrated more slowly when v was lower.
In summary, the posterior predictive appears to better resemble the true data-generating
distribution as the sample size grows, as was expected.

7 Data Analysis

In this section, the applicability of the proposed methodology will be illustrated via an
example analysis of the Foursquare check-in data of Yang et al. (2015). As mentioned in
Section 1, an alternative approach to ours is to first aggregate observations to form graphs
before applying a suitable graph-based method. As such, we compare our inference with

3. Note both the true and posterior predictive can have multiple values achieving the maximum defining
the MAP estimate. To test for equality in these scenarios we thus compared the set of values achieving
this maximum, whereby the two predictions would be considered equal if these sets were equal.

30



MODELLING POPULATIONS OF INTERACTION NETWORKS

some graph-based estimates. Note that in aggregating observations to form graphs one
implicitly assumes that the order of interaction arrival is irrelevant. Hence, for fairness, we
opt to make this comparison with our SIM model.

7.1 Data Background and Processing

For this analysis, we consider a version of the Foursquare data containing check-ins for users
from New York and Tokyo, focusing in particular on those in New York.* From there, we
took a month of check-ins, over the period from 12 April to 12 May 2012. Each check-in
event consists of a (i) user id, identifying which user enacted the check-in (anonymised) (ii)
venue id, unique to each venue, (iii) venue category, (iv) latitude and longitude, and (v)
timestamp.

As discussed in Section 1, we view this as interaction network data by seeing a day of
check-ins for a single user as a path through the venue categories. Note the venue category
labels have a hierarchical structure, with those given by Yang et al. (2015) being the low
level. For example, the category “Jazz Club” is a subcategory of “Music Venue”, which
is itself a subcategory of “Arts & Entertainment”. In this analysis, we opted to use the
highest-level venue categories; “Arts & Entertainment”, in the given example.

Before proceeding with our analysis, we further filtered the data. Firstly, we ignore any
days when a user checks into a single venue. Since our analysis is based on interaction
multisets and concerns the movements of users between venue categories, such observa-
tions provide little information. They would also be disregarded when aggregating to form
graphs, and therefore would not feature in any of the graph-based approaches with which
we intend to compare. To further ensure each observation contained enough information,
we considered only users with at least 10 observed days of check-ins. This left a total of
402 observations, from which we extracted a subset of 50 to analyse, using a criterion based
upon the distance metric used in our model fit (details in Supplement S11.1). In this final
sample, the number of paths within each observed network ranged from 10 to 17, with a
mean of 13.44, whilst the path lengths within each network ranged from 2 to 11, with a
mean of approximately 2.97.

7.2 SIM Model Fit

n

Following data processing, we were left with a sample of multisets {€ (i)}izl, where each

' ) (i)
gl — {Iy v T
of their check-ins. Recalling the inferential questions of interest outlined in Section 1, we
now use our methodology to obtain (a) an average multiset of paths, and (b) a measure of

variability.

} denotes the data of the ith user, with IJ@ denoting a single day

In particular, using the Bayesian inference approach outlined in Supplement S9, we fit
our SIM model to these data. For our distance, we made use of the matching distance dy,
with the longest common subpath distance dypgp between paths. Consequently, our inferred
mode will contain paths often appearing as subpaths in the observed data, as discussed in
Section 4.5. For our priors, we assumed & ~ SIM(é,ZS.O), with & denoting the sample
Fréchet mean of the observed data {£® ? 1, whilst we assumed v ~ Gamma(5,1.67).

4. See here https://sites.google.com/site/yangdingqi/home/foursquare-dataset.
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Via our MCMC scheme, we then obtained a sample {(™,7;)},, from the posterior
p(E™, V\{g(i)}?zl), obtaining a total of 100,000 samples. In each iteration, when sampling
the 50 auxiliary data points, we took a lag of 50 between and discarded the first 4,000 as
burn-in. From the 100,000 posterior samples, we discarded the first half as burn-in, and
took a lag of 50 between samples, leaving a final M = 1000 samples.

The total run time for obtaining these posterior samples was approximately 18 hours,
corresponding to an average of around 0.65 seconds per sample. This was implemented on
a Dell Latitude 5440 laptop, with a 13th Gen Intel Core i7-1370P processor and 64 GB
of RAM. As discussed in Supplement S6, a major contributor to this cost is the sampling
of auxiliary data. In this present analysis, after discarding 4,000 burn-in samples and
applying a thinning lag of 50, we obtained 6,500 auxiliary samples per iteration. A time
of 0.65 seconds to obtain 6,500 auxiliary samples would equate to 0.1 seconds to generate
1,000 auxiliary samples, which is consistent with the results reported in Supplement S6.2,
where, on the same machine, we studied the time to obtain 1,000 samples from our SIM
model in a setup similar to this current analysis.

Given the posterior sample {(£/,7;)}},, we obtained point estimates (ém, ¥), with the
mode estimate £™ functioning as our desired average, and 4 a measure of data variability.
In particular, we considered the following

M | M
™ = argmin Zd%/l(é'[n,z‘:) ‘y:—Z%
eef{ermt, i M=

that is, the Fréchet mean for the mode and the arithmetic mean for the dispersion, both
obtained from their respective posterior samples.

As mentioned, due to our choice of distance, the inferred mode Em represents a collection
of pathways frequently seen together in the observed data. To illustrate this, one can plot
the paths of Em alongside those of its two nearest observations. Supposing the data points
have been labelled such that £1) and £® denote the first and second nearest neighbours
of £™ with respect to dyr, writing these as follows

gr={ap,.ap) 0=l Q) e@ =L 1),

Figures 12 to 14 visualise the paths of Em &M and €@ alongside one another. In each, the
paths of €M) and €@ have been aligned in accordance with the optimal matching found
when evaluating their distance from E™ via dy. In particular, in the jth row we plot i';”
alongside I](.l) and IJ(?), denoting the paths matched to fjm when evaluating dM(ém,E(l))
and dM(ém,E(Q)), respectively. The paths of £ and £® not matched to any of £™ are
then shown in the remaining rows.

Here one can observe paths of E™ do indeed appear as subpaths within those of ()
and €@, In fact, in first two rows of Figure 12, all are equivalent, that is f}” = Ij(l) = IJ@),
whilst for the remaining rows of Figure 12 and those of Figures 13 and 14 we begin to see
differences in the observed paths relative to those of the estimated mode, however, in almost
all cases, the paths in the mode ZA'Jm continue to feature as subpaths of both IJ(-l) and I](Q).

Note also that no paths in E™ are of length greater than two, and we even uncover paths of
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length one. The general pattern here is that food venues seem to be a frequent appearance
in many daily check-ins within this sample of data. In some cases, this is followed by a
subsequent check-in to another food venue, or a shopping venue (length two paths). In
other cases, the visit to a food venue appears somewhere within a series of check-ins (length
one paths).

For the dispersion, we have 4 ~ 2.68, with a trace-plot of the posterior samples {v;}},
from which this estimate was obtained shown in the left-hand plot of Figure 15. To aid the
interpretation of 4, the right-hand plot of Figure 15 visualises the distribution of dy; (€&, é’m)
where £ ~ SIM(ém,fy) for different values of v, each boxplot summarising 1,000 samples
drawn from the respective multiset model via our iMCMC algorithm (Supplement S9.5). A
comparison with our estimate 4 shows that we expect the distance of samples to the mode
to be around 25 (from v = 2.7), which, since we used the matching distance, can be seen as
the average number of edit operations required to transform the mode into an observation.
Considering the estimated mode has 16 entries in total (6 paths of length two, 4 of length
one), this implies a reasonable amount of variability in the observed data.

7.3 Comparison with Graph-Based Inferences

As alluded to already, one can analyse these data via current network-based methods by
first converting observations to graphs, before applying suitable graph-based approaches.
As such, we consider striking a comparison between this approach and ours. The intention
here is twofold. On one hand, to sanity-check our estimate, by confirming the graph-
based inferences are not too dissimilar from ours. Whilst on the other, to illustrate how
our approach can go beyond these graph-based methods, particularly in regards to the
conclusions one can reasonably draw.

Given the observed sample {€ (i)}?zl, one can obtain a sample of graphs {g<i>};;1 via
aggregation, namely, by letting gl = Gei), the graph obtained by aggregating the paths
of £ as outlined in Section 2. In the same way that our estimate E™ summarises the
sample {& (@) * ., one can now consider obtaining a graph G which summarises the sample
{Q(i)}?zl. This can be achieved through a variety of different approaches, the choice of
which will depend on whether the G are graphs or multigraphs. We will consider both
cases here. In each instance, the output summary G will be either a graph or a multigraph.

To aid this exposition, we will make use of the graph adjacency matriz. For a graph
G = (£,V), where V = {1,...,V}, its adjacency matrix A9 € {0,1}V*V is the binary
matrix with

e {1 if (i,7) € €
0 else,

whilst if G = (£, V) is a multigraph its adjacency matrix AY € Z‘;gv, is defined by letting
A% equal the number of times (7, j) appears in £. Note there is a one-to-one correspondence
between graphs and adjacency matrices, and as such they can be used interchangeably for
convenience.

In the case where each G is a graph, and thus each A9 is a binary matrix, a simple
model-free summary is the majority vote, which we denote C;Mv, where we include an edge if
it was observed in at least one-half of the observations. More formally, QMV can be defined
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Figure 12: A subset of paths from our point estimate E™ for the F oursquare data, alongside
those of €M) and £®) its two nearest neighbours. Paths are aligned according
to the optimal matching found when evaluating dy (€™, @) for each neighbour

EW . For each observed path I](-i) , dashed pink edges and pink vertices indicate

differences with f}”, with edges labels indicating the order of vertex visits. The

remaining paths can be seen in Figures 13 and 14.
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Figure 13: Paths of our point estimate E™ for the Foursquare data, alongside those of
EW and £@), its two nearest neighbours. The remaining paths can be seen in

Figures 12 and 14.
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Figure 14: Paths of our point estimate E™ for the Foursquare data, alongside those of
EM and €@, its two nearest neighbours. The remaining paths can be seen in
Figures 12 and 13.
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Figure 15: Summary of inference for the dispersion for the Foursquare data. Left shows a
trace-plot of the posterior samples {7;}/,, whilst the right plot summarises the
distribution of distances to the inferred mode for different values of ~, aiding
interpretation of our estimate 4.
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in terms of its adjacency matrix as follows

APV = 1(4;; > 0.5),

where A is the real-valued matrix with entries f_lij = %Zzzl A%<k), that is, the entry-
wise average of the observed adjacency matrices. As a model-based alternative, we turn
to the centered Erdos-Rényi (CER) model of Lunagémez et al. (2021). Using the notation
G ~ CER(G™, «) when a graph G was drawn from the CER model with mode G™ (a graph),
and noise parameter 0 < a < 0.5, we assumed the following hierarchical model

GW g™ o~ CER(G™,a) (fori=1,... n)
G™ ~ CER(Go, ap)
a ~ 0.5 - Beta(f1, f2)

where Gy (a graph), 0 < ap < 0.5, 1 > 0 and B2 > 0 denote hyperparameters. For this
analysis, we let Gy = QMV and ag = 0.5, leading to a uniform distribution over the space
of graphs for the prior on G, whilst we took 81 = B2 = 1, similarly leading to the uniform
distribution over the interval (0, 0.5) for the prior on a.. Following the scheme of Lunagémez
et al. (2021), we drew a sample {(G™, a;)}M, from the posterior p(G™, a[{GW}™ ) via
MCMC, obtaining the desired summary via the sample Fréchet mean

Gopr = argmin > d? (G,G")
ge{gr} ; H

where dyy denotes the Hamming distance between graphs (Lunagémez et al., 2021; Donnat
and Holmes, 2018). Figures 16a and 16b show these two un-weighted summaries, Gepr and
Guv, respectively, for the Foursquare data, where it transpires that QCER = Gmv.-

In the case where each G is a multigraph, and thus each A9 is a matrix of non-
negative integers, an analogous model-free summary can be obtained by rounding the entries
of A to the nearest integer. Referring to this as the rounded mean estimate and denoting
it QRM, it can be defined formally via its adjacency matrix as follows

AT = | Ay |+ 1(Ay — | Ay) 2 0.5),

where the notation |z for x € R denotes the floor function. As a model-based approach,
we consider using the SNF models proposed by Lunagémez et al. (2021). Though originally
proposed to model graphs, they can be readily extended to handle multigraphs (see Supple-
ment S11.2). Use of the SNF, like our models, requires the specification of a distance metric
between multigraphs. We considered taking the absolute difference of edge multiplicities,
or alternatively, the adjacency matrix entries, that is

gl
©(G.9) = | 4G - a7,
’]

which can be seen as the generalisation of the Hamming distance to multigraphs. Adopting
the notation G ~ SNF(G™, ) when a graph G is drawn from the SNF model with mode G
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(a multigraph) and dispersion v > 0, we assumed the following hierarchical model

G®|G™ v ~SNF(G™,v) (fori=1,...,n)
g™ ~ SNF(Go,0)
v ~ Gamma(a, f)

where Gy (a multigraph), v90 > 0, @ > 0 and § > 0 are hyperparameters. For this analysis,
we took Gy to be the sample Fréchet mean of the observed multigraphs {g@')};;l with
respect to the distance dy, whilst we let 79 = 0.1, o= 3 and § = 1. Again, we obtained a
sample {(G",7:)}M, from the posterior p(G™, yl{g ? ;) via MCMC, before invoking the
sample Fréchet mean to obtain the desired summary

n

QSNF = argmin Zd%(g,g{”).
Ge{gWir =1

Note that the posterior here will be doubly intractable, necessitating the use of a specialised
MCMC algorithm. Lunagémez et al. (2021) adopted the algorithm of Mgller et al. (2006),
however, since here we consider multigraphs, we cannot apply their scheme directly. Instead,
we took an alternative approach via the exchange algorithm (Murray et al., 2006), details of
which can be found in Supplement S11.2. Visualisations of these two multigraph summaries,
C;SNF and QRM, can be seen in Figures 16c and 16d, respectively.

Comparing the graph-based methods amongst themselves, we see a slight variation in the
signal they uncover. For example, in taking edge multiplicities into account, the multigraph-
based estimate Gry introduces edges which did not appear in either of the graphs Gay and
GCER, generally 1nvolv1ng the node corresponding to food venues. Conversely, the SNF-
based estimate Gsnp appears to instead disregard edges which appear in Gerr and Gy .

Nonetheless, a common theme does seem to appear: visits to food venues feature
strongly, often followed or preceded by a visit to another food venue or some other venue
category, with shopping venues being a prevalent choice. We observe that this overarching
pattern is also in line with that implied by our estimate ™ where we also uncovered the
centrality of food venues and their precedence of visits to shopping venues.

Naturally, one might ask, if our estimate E™ is not too dissimilar to those obtained via
graph-based methods, then what is gained by taking our approach? The crucial point here
is that our inferred object (a multiset of paths) is more complex, and consequently contains
more information. Graphs by construction represent only second-order information, for
example, “user x moved from venue A to venue B.” In contrast, our representation can
represent higher, or oven lower, orders of information, for example, via paths of length
greater or less than two,

Indeed, recall in the present analysis (Figures 12 to 14), we uncovered paths of length
one, highlighting how food venues often appeared within chains of check-ins. Such observa-
tions cannot be made with a graph-based approach. More subtly, consider the CER-based
summary Gepg of Figure 16a, where we see the following two edges

e1 = (recreation, food) ez = (food, shops).
This could imply at least two things: (a) many users went from a recreation venue to a

food venue, and separately, that is, on a different day, from a food venue to a shopping
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Figure 16: Visualisation of graph-based inferences, as alternatives to ours in Figure 12.
Note that (a) and (b) are graphs, whilst (c¢) and (d) are multigraphs, with edge
thickness proportional to their weight.

venue, or (b) many users traced the path recreation — food — shops in a single day. From
a graph-based summary, it is not possible to distinguish between these two possibilities.
However, with our estimate, such distinctions can be made. For example, in this analysis,
appears (a) is the case, since no paths within E™ are of length greater than two.

8 Discussion

In this paper, we have motivated and instantiated the study of multiple interaction-network
data. We have proposed a flexible Bayesian modelling framework capable of analysing
such data without the need to perform any aggregation of observations. Two distances
for comparing interaction networks have also been proposed, for use within these models.
Each distance is shown to be a metric, under certain conditions, and methods for their
computation have been discussed. To facilitate parameter inference, specialised MCMC
schemes have also been proposed. Through simulation studies, we have confirmed the
efficacy of our approach and inference scheme, whilst the applicability of our methodology
has been illustrated by an analysis of Foursquare check-in data, where we illustrated how
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our methodology can be used to answer inferential questions (a) and (b) posed in Section 1.
Moreover, in comparing with graph-based methods, we highlighted the extra information
one subtly gains by taking our approach.

Regarding future work, there are a few ways one might consider building upon what
has been proposed here. Firstly, a natural extension of our models is to consider a mixture
model, with our SIS or SIM models functioning as mixture components, which would allow
one to capture heterogeneity in the observations, opening the door to answering question
(c) of Section 1. Secondly, on a more pragmatic note, one could also take steps to scale up
our approach computationally. For example, one might be able to circumvent the need to
use the exchange algorithm if the normalising constant for a particular distance metric was
derived, as was the case for the CER model in Lunagémez et al. (2021). Finally, if one is
able to make an exchangeability assumption for each observation, that is, the order in which
paths arrive is not of interest, then a slightly modified model structure could be considered,
reminiscent of the latent Dirichlet allocation (LDA) model (Blei et al., 2003). Namely, one
could assume each observation was drawn from some mixture distribution over paths, with
mixture components being shared between observations but mixture proportions differing.
This would also have a natural non-parametric extension via the hierarchical Dirichlet
process (HDP) (Teh et al., 2006). It would be interesting to see how the inferences from
such an approach compare with ours, at least qualitatively, and whether any computational
benefit would be achieved.

More tangentially, one could also follow the path laid in the wider literature on multiple
networks and consider extending models designed to analyse a single interaction network,
for example, the models of Crane and Dempsey (2018) or Williamson (2016).

Finally, it could be interesting to consider the situation where one has access to covariate
information at the level of observations. For example, considering the Foursquare data, one
might have additional information for each user, such as their occupation or country of resi-
dence. Interest might then be in defining a modelling framework which could be invoked to
examine for a relationship between covariates and observed data. Such developments would
mirror those in the wider literature on multiple-network data, such as work on hypothesis
testing (Ginestet et al., 2017; Durante and Dunson, 2018; Ghoshdastidar et al., 2020; Chen
et al., 2021).
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Appendix A. Sample Spaces

In this section, we formally define the sample spaces of the SIS and SIM models introduced
in Section 3.1. In addition, we define the some finite versions thereof obtained by bounding
dimensions, which we recommend working with in practice. For further elaboration on this
recommendation, including justifications of the rationale, an outline of how to alter our
MCMC algorithms to ensure the bound constraints are met, and discussions on how to
choose the bounds in practice, see Supplement S3.

A.1 Infinite Spaces

Recall from Definitions 1 and 2 that the SIS and SIM models define distributions over the
spaces of all interaction sequences and multisets, respectively. Given the vertex set V we
first define the space of all interactions, that is, paths, as follows

T ={(x1,...,xy) : & € V,n > 1},
with which we can define the space of interaction sequences &* in the following manner
S ={(Z7y,....,.In) : , € ZT*,N > 1},

moreover, with £s denoting the multiset obtained from the sequence S by disregarding the
order of paths therein, the space of interaction multisets £€* can be defined as follows

Er={&s : S8}
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where here we abuse notation slightly, since we can have s = g for S # S’ (when equal
up to a permutation of interactions), but we just assume such values have been included
once and so £* is a set and not a multiset.

Note that £* also admits another interpretation as a partitioning of 8* into equiv-
alence classes. To see this, first define an equivalence relation on 8* via permutations,
in particular we write S £ &’ if there is some permutation ¢ such that 8’ = S?, where
S = (Ig(l), o Ty N)) is the interaction sequence obtained by permuting the interactions
of § via 0. Now, observe that each £ € £* can be seen as an equivalence class of interaction
sequences obtained via £, that is

E={Se8 :8LS

where S denotes some arbitrary ordering of the interactions of £. Thus, £* is in a sense
the union of such sets and partitions S*.

A.2 Bounded Spaces

In this section, we define bounded analogues of the infinite spaces introduced the in preced-
ing section. With regards to the objects we consider, there are two things we can bound:
(i) the size of paths and (ii) the number of paths. Referring to these as the inner and outer
dimensions respectively, we specify two integers K and L bounding their values and define
our sample spaces accordingly. Assuming that the vertex set V is fixed, and K € Z>; we
let

Ty ={(z1,...,2n) : z; €V, 1 <n <K}

denote the space of paths up to length K, and then with L € Z>; we let
S;(',L = {(Il,...,IN) L EI;(,I <N L},

denote the space of interaction sequences with at most L paths of length at most K. The
analogous bounded space of interaction multisets in then given by

Ekr =18 : S€ Sk},

where as in the definition of £* in Appendix A.1 one can have s = Es/ for S # &', but we
here just assume such values have been included once, and so € ; is indeed a set, not a
multiset.

Appendix B. Posterior Predictive Approximation

Here we show how one can obtain an approximation for the missing-entry posterior predic-
tive using a sample from the posterior, as used in Section 6.3, Equation (13). First, observe
that any sample {(S/",~;)}/*, from the posterior implies the following atomic approxima-

tion thereof
~rom )\ n 1 % m m
pS™ AHSIYL) = — D S =87 8y — %) (14)

=1

where §(-) is the Dirac delta function, and 1(-) is the identity function.
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As in Section 6.3, with S, denoting the observation with missing entry filled in to be x,
then given some parameters (S™, ) we have the true predictive for = given by

1

p(x|8™,, S—s) == 287 7.8 )

exp{—vds(S,,S8™)}

with
Z(8™7,8-2) = Y exp{—yds(Sz,S™)}

eV

the normalising constant. The posterior predictive is now obtained by averaging with respect
to the posterior

pa{SV}y,80) = Y /R 2|S™, 7, 8-2)p(S™ A HS VYL )dy,

SmeS*

which we can now approximate by substituting in (14) as follows

PSSOV, 8 )= Y / (2lS™, 7, S_)P(S™ A SOV )y
SmeS*
Z/ $|Sm77< le ) 6(y — %))dv
SmES*

721) .Cl?‘ 7’72

which is exactly as stated in Section 6.3.
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Supplementary Material

S1 Unsuitability of Fixed Penalties

In Section 4.4 we claimed the use of a fixed penalty within the edit and matching distances
was a bad idea (when using them in our models). In this section, we provided a justification
for this claim. We will here consider the case of the SIS model and the edit distance, noting
a similar argument can be used regarding the matching distance and its use within the SIM
model.

Suppose we have assumed the edit distance dg ) as defined in Section 4.2, with a
penalty function given by §(Z) = p, where p > 0 is a fixed constant. Suppose also the
mode 8™ = (77, ... ,I]’%;) and dispersion v have been fixed. Now, consider an observation
S =(Zy,...,Zy) drawn from the SIS model with these parameters, that is S ~ SIS(S™, 7).
Moreover, assume S is such that N > N,,, that is, & has more paths than the mode. Since
S has more paths, at least one of these must be unmatched when evaluating dg 5. (S, ™).
Now, we assume that the ¢th path in S is such an unmatched path, and consider the
conditional distribution of this path given the others. In particular, letting

SI = (Ilv-" 7Ii—171.71:i+17' o 7IN)

denote S with the path Z in the ith entry we would like the conditional distribution of Z
given the other paths, that is

p(Z|S—i, 8™, 7)

where here we use the notation S_; to denote all the paths of § excluding the ¢th. This is
a distribution over the space of paths and can be obtained directly from the probability of
S7 implied by the model, namely

p(I | S*iv Sma 7) X eXp{_rydE,d(J (SZa Sm)}
x exp{—7-90(Z)}
= exp{—p}
ox 1

(15)

where here we use the fact that since Z is not included in the matching it features in
dg,5(.)(S,8™) only via its penalty.

Now, assume we are considering the bounded case as defined in Appendix A.2, restricting
the sample space to include observations with paths in Z7, that is, paths with length at
most K. With this, (15) implies Z is equally likely to be any path in this space. Though
this may seem innocuous, observe that a uniform distribution over Z7 places a higher
probability to paths of longer length, by virtue of their prevalence. In particular, if Z is
equally likely to be any path in Z7 then we will have

#paths of length n

P(Z has length n) = T
K

oc V7
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recalling that V' = |V| is the size of the vertex set, that is, the probability that Z is of length
n grows exponentially.

This is a very odd assumption to make and unlikely to hold in practice. Moreover, if
we consider the infinite case K — oo this will result in degenerative behaviour similar to
that observed when sampling from the infinite versions of our model with very low values of
the dispersion, as illustrated in Supplement S3. In particular, if one tried sample from such
models via our MCMC algorithms then one is likely to see a divergence in path lengths.

For these reasons we recommend to not use a fixed penalty within the edit or matching
distances, opting instead for one which somehow takes the size of the path being penalised
into account, such as the choice §(Z) = d;(Z, A) mentioned in Section 4.4. This way, the
distribution of probability in the underlying space can be better controlled by the induced
distance, avoiding the undesirable properties illustrated above.

S2 Montonicity of the Entropy

As alluded to in Section 3.1, for both the SIS and SIS models, the dispersion v admits
an interpretation analogous with the precision in a Gaussian distribution. The impact
of this model parameter can be illustrated more formally through its control of entropy.
Considering the SIS model, the entropy is defined as follows

H(8™,7) == —E[logp(S[S™,7)], (16)

quantifying how evenly the distribution p(S|S™, ) allocates probability over the sample
space, whereby larger values of H(S™, ) imply this distribution is ‘more uniform’ over 8*,
with a minimum value of H(S™,~) = 0 attained by a pointmass.

The entropy also has an interpretation with regards to randomness or variance, whereby
distributions with a higher entropy are more random, that is more variable. As will be
shown, with any dg(-, -) and 8™, the entropy H (8™, ) is a monotonic function of -y, agreeing
with the intuition that + controls the variability of the distribution. This holds similarly for
the SIM model. We note a similar result was shown by Lunagdémez et al. (2021) (Proposition
3.3, proved pages 41-43 of Supplementary Material).

For the SIS model, recall the entropy is given by

I{(Sm7 ,Y) — —E[logp(S]Sm, '7)}
_ Z log <eXP{_’YdS(S,Sm)}> eXp{_’Yds(S,Sm)}

. Z(8™,~) Z(8™,7)
ez 5 )
=" (Sg ds(S,Sm)eXp{Z‘giﬁ)‘gm)v +log Z(8™,7)

= 7 x E[ds(S,8™)] +log Z(S™, 7).
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Unfortunately, as was the case for the normalising constant Z(S™, ) (Section 4.5), since
S* is infinite we have no guarantee that H(S™,) will exist. However, what we can say
is that, when H(S™,~) exists, it is monotonic in . To show this, we first differentiate
H(S™,~) with respect to

0 0 0
—H(S™ =—F m E m —log Z(S™
5 H(8".7) = 5 Elds(8.5™)] + Elds(S.8™)] + 5 log Z(5™.7)

where one has
H2(S™ )
Z(8™,7)

Ses*

)
Zlog Z(8™, ~) =
9 %% (8™, )

1 0 m
= m Z aexp{—vds(S,S )}
Ses*

1

~Z(8m9) S;fdﬂs’gmn exp {—7ds(S,8™)}

=D ds(S,8™) (Sm Z(om ) P (-7ds(5.8™)}
Ses*

= —Elds(5,8™)],

(17)

thus implying
0 0
—H(S™,v)=—E ™).

Now, we have

0 my O 1 m

a*VE[dS(S,S )] = oy (Z(Sm 3%;* ds(S,8™) exp{—ds(S,S )}>
o) m

_ 52 (2 5(S. 8™ exp{—ds(S. 8m>})

Z(sm, 7) SeS8*

Sm,7 (Z ds(S,8™ exp{—'yds(S,Sm)}>

Ses*
BZ(S’" ) m
W (Z ds(S,8™) exp{—vds(S,S )}>

Ses*

1 - i
287 (Sg*ds(s’s )2 exp{—ds (S, >}>

27(8
- (S(m;) Elds(S,S™)] — Elds(S,8™)?] (18)
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= E[ds(S,8™)) ~ E[ds(S,S™)?] (19)
— Var[ds(S, ™)),

where (19) follows from (18) by applying (17). Now, observe that if %H (8™, v) > 0
this implies H(S™,~) is monotonic in +, as desired. This is equivalent to saying we have
montonicity provided Var[dg(S,S8™)] > 0. This result, much like that of Lunagémez et al.
(2021), essentially says we have monotonicity of the entropy with respect to v provided our
distribution is not a point mass.

Similar derivations can be obtained for the SIM model (Definition 2) by a simple change
of notation. We do not repeat this for brevity.

S3 Bounding Dimensions

As mentioned in Section 3.1, in practice we recommend constraining the sample space to
be finite, as defined in Appendix A.2. In this section, we will illustrate why this recom-
mendation was made. We will also elaborate on how one might go about choosing the
necessary bounds and discuss how our MCMC algorithms can be slightly altered to respect
the imposed dimension constraints.

To illustrate the need for constraining the sample space we will show via simulation
what can go wrong. In particular, we will show that one can, in certain scenarios, observe
a divergence in dimension when sampling from models over an infinite space. We note the
following will regard the SIS model, but analogous behaviour will be observable for the
infinite version of the SIM model. Suppose we would like to sample from the SIS model of
Definition 1 over the infinite space 8* of all interaction sequences. As we have mentioned
in Section 5.6, we cannot do this exactly, but we can obtain approximate samples via
the iMCMC algorithm proposed therein. With this, for a given mode &™ and dispersion
v, we can obtain a chain (Si)i]‘il approximating a sample from the SIS model with these
parameters, that is, a chain targeting the following distribution

p(SIS™,7) oc exp{—ds(S,5™)}, (20)

over the infinite space 8* of all interaction sequences over a fixed set of vertices. Figure 17
summarises three such chains drawn with different values for the dispersion, where for each
sample §; = (Il(l), e ,I](\g) we plot the number of paths IN;, or what we call the outer
dimension. In each case, we initialised the chains at the mode &™, with a lag of 1 between
samples and no burn-in. Here one can clearly see the dimensions of samples tends to be
larger as v decreases. Moreover, when v = 3.5 the dimension appears to diverge, showing a
clear upward trend.

Why does this happen? Observe that as v goes to zero p(S|S™, ) of (20) will converge
to the uniform distribution over the space 8*. Though this might seem innocuous, one must
remember that there are far more interaction sequences with large dimensions. For example,
if S has n entries in total across all its paths, then there are V™ possible choices thereof.
As such, with a uniform distribution over &*, the probability of sampling observations with
large dimensions will be higher relative to those with smaller dimensions, leading to the
observed divergence.
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Figure 17: Illustrating divergence in dimension for the SIS model over an infinite space.
Each trace summarises an MCMC chain sampling from an SIS(S™,~) model
over the space 8* with the dispersion v set at different values. Here we observe,
for v low enough, the dimensions of samples diverges.

This implies there is always a chance, if v is low enough, that the dimensions will
diverge. This will inevitably cause computational issues when sampling from these models
via our iMCMC algorithm. Even if one does not first run out of memory, the cost of
evaluating the distance dg(S, ™) is very likely to grow with the dimension of S, significantly
slowing down the sampling time. This becomes ever more significant in the context of the
algorithms we proposed to sample from the posterior in Section 5. Recall that in updating
the dispersion (Section 5.3) we must sample auxiliary data from the model at v and 7/,
a current and proposed value for the dispersion, which we do via our iMCMC algorithm
as above. Consequently, there is a chance, either for « or 4/, the dimension will blow-up
when sampling auxiliary data. Moreover, obtaining such samples will generally be more
computationally cumbersome, increasing the time taken to obtain the auxiliary data, in
turn slowing down the time taken to obtain the posterior samples. Ultimately, the result
will be a posterior sampling scheme which is unstable and unpredictable in terms of run
time.

This motivates our recommendation to constrain the sample space. In particular, one
can instead assume the sample space is given by 8}7 1 € 87, as defined in Supplement S3,
where K and L represent the maximum path length (inner dimension) and number of paths
(outer dimension) respectively. This effectively places a lid on the possible dimension of
observations, removing the possibility of divergence in dimensions. Note to sample from
models over such constrained spaces we can use the exact same MCMC algorithms used in
the infinite case. All one must do is set the probability of values outside of S ; to zero,
that is for each S € 8* let

(SIS™ ) exp{—vds(S,8™)} ifSe SkiL
’ 0 if S ¢ Sk,

defining a distribution over the infinite space 8* which we can target with our MCMC
algorithm. Observe that, within the MCMC algorithm, if we are currently at state S € S }{ I
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any proposal S’ ¢ S’ 1, will always be rejected, since its acceptance probability will evaluate
to zero. Hence we will obtain only samples from the constrained space, as desired.

With the recommendation of bounding the sample space in this manner comes the
question of how to choose bounds K and L. Observe this is only a question of interest when
one is considering inference.® In this case, we will have observed a sample

which we assume was drawn i.i.d. via
S ~ SIS(S™,7)

where 8™ and « are some unknown model parameters. Notice assuming bounds K and
L implies we must have S®) ¢ S 1, for each of the observed samples. In this way, this
informs the following thresholds for possible choices of K and L

K > max max n(,z) L > max N®
i=1,..,n j=1,.,NO 7 i=1,..,n

where N is the number of paths in the ith observation and ng-i) is the length of the jth
path in the ith observation. As such, we recommend choosing bounds either at or close
these thresholds, and indeed this is what we did for the data analysis of Section 7.

We finalise these discussions by noting that in constraining the sample space one can
actually alter the interpretation of 7y in the resulting model, in the sense that draws from the
model with the same value of v but different choices for K and L can look quite different in
terms of the samples they generate. Though this might seem problematic, we note that the
same applies to different choices of distance dg(-,-), the flexibility of which is a key feature
of our proposed methodology. In this way, one must accept that the interpretation of ~ is
context-dependent. However, as was shown in Section 7.2, it is possible to simulate from
the model as a means to interpret such inferred values.

S4 Distance Computation

This section contains details regarding the computation of the distances defined in Section 4.
All involve setting-up and solving some form of optimisation problem. Guidance on both
steps will here be provided.

S4.1 Matching Distance

As mentioned in Section 4.1, evaluating dy;s.)(€,€’) (Definition 3) requires finding an
optimal matching. As outlined therein, we consider casting this as an assignment problem.
Consequently, one can appeal to known solvers, such as the Hungarian algorithm (Kuhn,
1955), to find an optimal solution.

5. One may instead be simply sampling from the model, for example, to examine the behaviour of the
model with a particular distance dg(-,-). In such cases, the bounds can be set to personal preference, or
the infinite space assumed with the awareness that dimensions could diverge.



MODELLING POPULATIONS OF INTERACTION NETWORKS

The assignment problem is as follows. Supposing that one has two sets
A=A{a,...,an} and B={b1,...,by},

both of size n, one considers pairing elements of set A with those of set B in an ‘optimal’
way, where the objective is defined by assigning a cost to each possible pairing. Note the
labelling of elements here is arbitrary but will serve a purpose in what follows, allowing us
to index set elements. The cost of all possible pairings is summarised via the n x n matrix
C, where Cj; > 0 denotes the cost incurred when a; € A is paired with b; € B. A specific
pairing of set elements can be encoded via a permutation o € S,,, where S, denotes the set
of all permutations on n symbols, with ¢ (i) = j implying that a; € A has been paired with
b; € B. With this, the assignment problem seeks a permutation with minimal cost, that is

n
min 2 Cio(i)s
the solution of which may not be unique. Observe that though A and B are typically
assumed to be sets, this formulation works equally well if they are multisets (as we will
consider).

Towards evaluating the matching distance, we set-up a cost matrix C' such that the
optimal solution found via the Hungarian algorithm coincides with an optimal matching in
accordance with Definition 3. Here we consider two scenarios. In the first, more general
case, we will optimise over all matchings (including those which match nothing). In the
second scenario, we will optimise over only complete matchings. The second case is a
smaller optimisation problem, making it easier to solve and thus preferable. However, it is
not guaranteed that an optimal matching will be complete. Thus the former will work in
all cases, but the latter may result in a sub-optimal solution in some scenarios. To guide
this, we provide a result which says when it is okay to use the latter approach.

S4.1.1 OPTIMISING OVER ALL MATCHINGS

Suppose we have two interaction multisets
E={T1,...In} & ={Th.... Thy}

and we are seeking to evaluate dyy 5.y (E,&’). If we see £ and £’ as the sets of the assignment
problem, it is somewhat natural to represent the matching of set elements: we let o (i) = j
if (Ii,IJ‘) € M. However, we also need to encode the possibility for an element of either set
to be left unmatched. This can be handled by effectively augmenting each set with some
dummy elements which, if paired to, will represent an interaction being unmatched. Using

the notation above we would assume
A:{al,...,an} B:{bl,...,bn}
={Zi,....In, A, ... A} :{I{,...,IM,A,...,A}
M N

where A represents a dummy element, so that, if say Z; is paired with a A this will be
interpreted as Z; being unmatched, and the same for elements of £’. Notice also with A
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there are M dummy elements added to &, so that all M elements of & could in theory
be matched with a dummy element, that is, all elements of £ could be left unmatched.
Similarly, in B there are N dummy elements added to &£, so that all elements of £ could
be unmatched. Moreover, with this both A and B are now of the same size n = N + M, as
required for the assignment problem.

With this, the interpretation of a permutation o € S;, in terms of a matching between
& and &' is a follows

o If o(i) = j < M for i < N then Z; € £ has been matched with Z} € &';
o If o(i) > M for i < N then Z; € £ has been unmatched;
o If 0(i) =j < M for i > N then I} € £ has been left unmatched;

o If 0(i) > M for ¢ > N then an dummy element has been paired with a dummy
element.

With this, each o encodes a matching M, of £ and £ given by the following
M, ={(Z;, Z,)) : 1 <i < N, o(i) < M}

With the sets to be paired defined, all that remains is to lay out the correct (N + M) x
(N + M) cost matrix, which in this case is defined as follows

dr(Z;,T}) ifi < Nandj<M

O — 6(Z%) ifi>Nandj<M
Y 6(m) if i <Nandj>M
0 ifi>Nand j > M

where dj(-,-) is the chosen ground distance and §(-) the chosen penalty term for unmatched
elements. Notice the cost of pairing two dummy elements is zero. To see why C' takes this
form, consider the cost it implies for a given matching M, that is

N+M

Cost(M Z Ci o)
= }: d(Z,T)+ > () > ()

(Z,27)eM, Te(Mo)E I/e(Ma)g,

where we have simply applied the definition of C as above. Comparing this with Definition 3,
one can see that C' encodes the required matching cost to be minimised when evaluating
dyr,s5()- Thus, if every matching is represented by every pairing of A and B, and the costs
are equivalent, then the optimal solutions will coincide. This means any optimal ¢* found
for the given C' will define an optimal matching M+ which can be used to evaluate dyy .-
With this, the steps to evaluate dy5(.)(€,€’) are: (i) construct C' as above, (ii) pass C' to
a solver, such as the Hungarian algorithm, returning an optimal permutation ¢* and then
finally (iii) translate o* to an optimal matching M« to evaluate the distance.
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S4.1.2 OPTIMISING OVER COMPLETE MATCHINGS

In the previous section, we set-up an assignment problem which optimise over all match-
ings, including those which match no elements. However, there are scenarios where this is
unnecessary. In some cases, one actually needs to only optimise over complete matchings.
This is a slightly easier optimisation problem, which will typically be quicker to solve.

Recall, a matching M of the two multisets £ and £’ is complete if all elements of the
smaller set are included, that is, if |[M|= min(|€[, |€’]). The main motivation for this second
evaluation approach is the following result.

Proposition 7. Given two interaction multisets £ and &', if the following holds
8(ZI) +6(T") > di(Z,T)

for allT € € and T' € &', then there exists a complete optimal matching achieving the
optimum defining the matching distance dy; 5.y (Definition 3).

A proof of Proposition 7 can be found in Supplement S5.3. This result implies, if the
conditions therein are satisfied, to compute the matching distance it suffices to find an
optimal complete matching. As such, in what follows we show how an assignment problem
can again be set up to enact this optimisation.

Suppose that, without loss of generality, the two multisets to be compared

82{11,...,IN} and S/Z{I{,,IEW}

are such that N < M, that is, £ is the smaller of the two (when they are of different size).
As such, a complete matching between £ and £ will match all elements of £ to a unique
element of £, whilst some elements of £ may be left unmatched. With this, we set-up the
following sets for the assignment problem

A:{ah"'aan} B:{blv’bn}
Ty I A N = (T T
~——
M—-N

where A represents a dummy element such that I]( € &’ being paired with A is interpreted
as this interaction being left unmatched. Observe that in comparison with the set-up of
Supplement S4.1.1, we need only augment the smaller of the two multisets with dummy
variables. Notice again we have A and B being of the same size, in particular n = M, that
is, the size of the larger multiset. In this case, the interpretation of a permutation o is as
follows

o If o(i) = j for i < N then Z; € £ has been matched with Z; € &";
o If o(i) = j for i > N then 7} € &' has been left unmatched.
which again encodes a matching M, of £ and &’ given by the following

which in this case will be complete, since all elements of £ are included in M,.
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In this case, we construct the M x M cost matrix as follows

o d[(IZ',IJI-) ifi <N
Y ifi >N

where dj(+, -) is the chosen ground distance and J(-) the penalty for unmatched interactions.
Notice, as in Supplement S4.1.1, this cost matrix C' is such that

M
Cost(My) = Z Ci o)
i—1

= Y AT+ D), (I,

(Z,7')eM, T'e(Mo)S,

which, since M, is complete, is in accordance with the cost function being minimised in
evaluating dy5()(E,€’). Thus any optimal o* found for cost matrix C' of this form will
map to an optimal complete matching M+ which can be used to evaluate the matching
distance, provided the conditions of Proposition 7 hold. With this, the steps to evaluate
di,5()(E,E") (when the necessary conditions hold) are: (i) construct C' as above (ii), pass C
to a solver, returning an optimal permutation ¢*, then (iii) map ¢* to an optimal complete
matching M« to evaluate the distance.

We finalise these details by noting when the conditions of Proposition 7 will hold for
the example penalty functions provided in Section 4.1. In particular, we have

e Fixed penalty: if 6(Z) = p for some constant p > 0, then when comparing two
multisets £ and &’ the conditions will hold provided

1
> - d;(Z,T
P=3 (Ie?%')ésf 1, ))’

thus placing a lower bound of p values which will result in complete matchings;

e Distance-based penalty: if §(Z) = d;(Z, A), where A represents the null interaction,
then the conditions will always hold since

di(Z,A) +d;(A,Z') > di(Z,T),
following since dj(-, -) satisfies the triangle inequality, as it is a distance metric.

This implies, when looking to evaluate the matching distance, if using a distance-based
penalty, one only needs to optimise over complete matchings, whilst for the fixed-penalty,
optimisation over complete matchings is only valid if the above bound is satisfied.

S4.2 Edit Distance

The edit distance (Definition 4) can be seen as a special case of the string edit distance
introduced by Wagner and Fischer (1974). Consequently, it can be evaluated using the
same dynamic programming algorithm proposed therein.

10
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Suppose we have two interaction sequences
S=(,...,Iy) and S =(T},...,Ty)

and are seeking to evaluate dE75(_)(8,S’). Introducing the notation Si; = (Zy,...,7;),
the approach is to incrementally evaluate dEﬁ(,)(Sl;i,S{:j), that is, the distance between
truncations of S and &', repeating this until ¢ = |S| and j = |S’|. This is done via the
following recursive result

dg,5()(S1:(i-1), S1.5) + 6(Z;)
dE,(s(.)(Sl:i,S{;j) = min dE,5(~)(812i7 Si;(j_1)> + 6(13/) (21)
A 5() (S1ii-1): Sy 1)) + di(Zs, Ij),

which relates the distance between Si.; and S{:j to distances between slight truncations
thereof. The key point here is this recursive result comes straight from the definition of
the edit distance, where the three cases correspond to three different scenarios: (i) the ith
entry of S is unmatched, (ii) the jth entry of &’ is unmatched, and (iii) the ith entry of S
is matched with the jth entry of S’.

Letting C;; = dEy(g(,)(Slz(i_l),Si:(j_l)), incremental evaluation of (21) can be seen as
filling up an (N +1) x (M + 1) matrix C either row-by-row or column-by-column according
to the following formula

Clit1y(+1) = min ¢ Cipry; + 6(Z5)
Cij +di(Z;, I3),

where the final entry C(y1)(ar41) corresponds to the desired distance. Note the first column
and row can be specified as follows

Ci1 = di 5)(S1::S10)  C1j = ds(.)(S10,S1.)

= 4(T) = 8T
k=1

k=1

fori=2,...,N and j = 2,..., M, which follow by seeing S;.¢ and Sj., as empty sequences,
so that when measuring the distance of these to Sj.; and S1; (respectively) all entries thereof
will be left unmatched, since there are no entries to be matched to. Finally, when both ¢ =1
and j = 1 we will have C1; = dE75(_)(81:0,S{:0) = 0, since we can see this as the distance
of the empty sequence to itself. All together, these represent initial conditions from which
repeated application of (21) will take us to the desired result.

Algorithm 4 outlines pseudocode to evaluate dg, 5(.)(S,S’) by filling the matrix C' in this
manner. However, observe that when updating a row (or column) of C' one only needs to
know the previous row (or column). As such, we only need to store the current and previous
row (or column), leading to an algorithm which uses less memory and is typically faster.
Pseudocode of this light-memory alternative is given in Algorithm 5.

11
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S4.3 Path distances

The LCS distance drcsg, like the edit distance (Supplement S4.2), is a special case of the
string edit distance proposed by Wagner and Fischer (1974). Thus, the dynamic program-
ming algorithm proposed therein can be applied, in this case at a complexity O(n-m) where
n and m are the lengths of the paths being compared.

In particular, suppose we are comparing Z = (z1,...,x,) and Z' = (y1,...,ym). Using
the subpath notation Zy; = (xg,...,x;), to compute the LCS distance we incrementally
evaluate di,cs (IM,I{J), that is, the LCS distance between truncations of the two paths,
until ¢ = n and j = m. This is done via the following recursive formula

dLCS(Ilz(i—lﬁl'{:j) +1
dLCS(II:ZHIi;j) = min dLCS(IlziaIL(j_l)) +1
dLCS(Ilz(i—l)aI{:(j_l)) +2- 1w # yj)a

where 1(-) is the identity function, which follows directly from the definition of the LCS
distance. Letting

Cij = dLCS(Ih(z‘—l)aI{;(j_l))

this equates to filling up an (n + 1) x (m + 1) matrix C via the following formula

Cigj+1) +1
C(Z'Jrl)(jJrl) = min C(l-‘rl)J + 1
Cij + 2 L(zi # yj),

where the distance is then given by drcs(Z,Z') = Ciuq1)(m+1), that is, the final entry
of the constructed matrix. For pseudocode of the resulting algorithm to compute drcs
see Algorithm 6, with a lighter-memory version outlined in Algorithm 7, which essentially
stores only the current and previous rows of C.

Note, in Wagner and Fischer (1974) they set-up the problem in terms of substitution
costs, whereby v(a — b) denotes the cost of substituting entry a for b, whilst v(a — A)
denotes the cost of deleting a, with A denoting the null entry, so that similarly v(A — a)
denotes the cost of insertion. In this notation, the LCS distance as we define it equates to

0 ifa=b
Ma=0) = {2 otherwise
whilst y(a — A) = y(A — a) =1 for all entries a.

The approach we use to evaluate dpgp is slightly different, though its complexity con-
tinues to be O(n - m). In this case, we essentially scan over Z = (z1,...,2,) and 7' =
(y1, ..., ym) and keep track of the common subpaths seen. Formally, we construct an n x m
matrix () incrementally via the following recursive formula

Qij+1 ifx; =y,
Qi+1)(j+1) = 0

. )
otherwise

12
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where when common subpaths appear between Z and Z’ one will see increments in
diagonally. The maximum length of a subpath can thus be obtained by taking the element-
wise maximum of @, that is dpgp = max;; Q;;, which can then be used to evaluate dysp (see
definition in Section 4.3). We summarise this in Algorithm 8, where we keep track of the
maximum in @ as it is filled. A lighter-memory algorithm is also outlined in Algorithm 9,
making use of the fact we only need to know the current and previous rows of Q.

S5 Distance Proofs

In this section, theoretical properties of distances introduced in Section 4 will be proved.
These mostly regard showing they are distance metrics (Definition 5). The proofs will follow
a similar structure, proving each metric condition in turn.

S5.1 Matching Distance is a Metric

This section contains a proof that the matching distance (Definition 4) is a metric, provided
that certain conditions on the penalty function and the distance between interactions are
satisfied. This represents one half of Proposition 6.

Proof To aid this exposition, write dM75(_)(5 , &) in terms of its cost function as follows

Aoy (E,E") = Merj{l/ti& e Cost(M)

where

Cost(M) = > d(Z.Z)+ Y 6@+ > (@),

(I.17')eM TeMS T'EMS,

denotes the cost of the matching M. We first show metric condition (i) (identity of indis-
cernibles) holds. If we assume £ = £’ then one can construct a matching M* by pairing
equivalent elements of £ and £’, leading to the following upper bound

dars()(€,E") < Cost(M™)
= Z dI(I7 I/>

(Z,T')eM*
=0

where the second line follows since M* includes all elements of £ and &’ and thus no penalty
terms will appear, whilst the third line follows since M™* matches equivalent elements and
hence, using the fact d;(-, -) satisfies the identity of indiscernibles, all pairwise distances will
be zero. Now, since dy(-,-) > 0 and 6(-) > 0 by assumption, dy 5(.)(E,&’) is a sum of positive
values, implying also that dy;s.)(€,E’) > 0. Together these imply dy; 5. (€, &) = 0.
Conversely, assume that dygs.y(€,&") = 0. This implies both the sum of pairwise dis-
tances and penalisation terms must be zero. Since by assumption §(Z) > 0 this implies
there must be no penalty terms, that is, all elements of £ and £ must be included in the

13
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matching. Thus, with M* the optimal matching, we have

dyvo(E,E)= Y di(T,T)
(Z.INeM

= 07
which, since dj(-, ) is non-negative, implies

d(Z,T)=0 VY(I,T)e M*,

which in turn implies

I=1T VY(I,T)e M",

since dj(-, ) satisfies the identity of indiscernibles. Hence, we have & = £’ thus confirming
that dyps(.) satisfies metric condition (i).

The symmetry condition (ii) follows trivially from the symmetry of d;(-,-) (since it is a
metric) and the penalisation terms.

Finally, we prove that dys(.) satisfies metric condition (iii) (triangle inequality). As-
suming we have three multisets

Ex=1{T",.... T} & ={T0,.... TV} &7 ={17,....T? }

s Fnx ' Fny s Fny

we seek to show that

das() (Ex,Ey) < das)(Ex:E2) + dms() (Ez, Ey).

Let M%, and M7,y denote optimal matchings for dys(.)(Ex,E7) and dyi 5.)(Ez, Ey) re-
spectively, so that

da sy (Ex,E7) = Cost(Myz)  das()(Ez,Ev) = Cost(Mzy)
and observe these induce a matching M xy of £x and &y as follows
Mxy = {(T%,TV) : (TX,T%) € M%, and (T7,TY) € M3y for some I7 € £4}

that is, we pair elements of £x and &y if they were paired to the same elements of £7. For
example, Figure 18 shows two cases of optimal matchings MY% , and M7, along with the
matching M xy they induce (which turns out to be the same in both cases). Notice by
definition of dyy 5.y we have

das()(Ex, Ey) < Cost(Mxy),
and so the triangle inequality will follow if we can show the following holds
Cost(Mxy) < dns() (Ex,E2) + dns() (€z,&). (22)

To prove (22) we show every possible term on the LHS is less than or equal to some
unique terms appearing on the RHS. The key terms appearing on the LHS are (i) pairwise
distances for matched elements (ii) penalisation of unmatched elements.

14
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Considering first (i), by definition of Mxy each pair (IX ,IY) € Mxy is associated
with some unique (IX,Z%) € M%, and (I?,IY) € M3y, that is, there is some element
T7 € £z which both ZX and I are matched to. Furthermore, since dg(-,-) is a distance
metric it satisfies the triangle inequality, and so

dp(ZX, 1Y) < dp(Z%,7%) + d; (77, 1Y),

and thus each pairwise distance of matched elements on the LHS of (22) is less than or
equal to some unique terms on the RHS.

For (ii) consider first the penalisation terms for elements of £x not included in the
matching Mxy, that is §(Z%) for Z% € (Mxy)%. We now seck to show that each §(Z%)
is less than or equal to some unique terms appearing on the RHS of (22). For ZX to not
be in M xy one of two things must have happened

Case 1: As illustrated in Figure 18a, one may have (ZX,7Z%) € M%, for some 77 € £; with
(Z%,1Y) ¢ M3,y for any IV € &y

— a term on the RHS of d;(Z%,Z%) + §(Z%)

which will also be unique to the pair (ZX,Z%). Now, since by the assumption |§(ZX)—
S(ZV)|< dr(ZX,ZTY) for all ZX, 7Y € Z, we have that

§(T%) < dr(TX,77) + 6(Z%)
as desired;

Case 2: Alternatively, as shown in Figure 18b, we might have (I%,Z%) ¢ M%, for any
7% e &y
—> a term on the RHS of §(Z°),

and thus in this case we trivially have

5(T%) < 6(T%).

In both cases, we have a term on the LHS of (22) which is less than or equal to some unique
terms on the RHS. Notice this argument can be applied similarly to the penalisation terms
for elements of & not in the matching M xy. For brevity we will not repeat this here, and
henceforth assume all penalisation terms for & are less than or equal to some unique terms
on the RHS of (22).

All together, we have every term on the LHS of (22), both pairwise distances and penal-
ties, being less than or equal to some unique terms on the RHS, proving the inequality holds.
As a consequence, dy 5.y satisfies the triangle inequality. This completes the proof that if
dy(-,-) is a distance metric and the penalty 0(-) satisfies the conditions of Proposition 6 then
the matching distance will be a metric. |

15
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Mxy Mz M7y

X gy X g% &g* gy

L i

O o—0 O

5(%) dr(zX,1%) 5(Z%)

(a) An element of Ex is left unmatched in Mxy (induced matching) because the element
it was matched with in £z was left unmatched in M zy-.

Mxy Mz Mzy

X Y

. EX £z &% ey
oS
. @@

O O

5(7%) 5(7%)

(b) An element of Ex is left unmatched in M xy (induced matching) because it was also
unmatched in Mxz.

Figure 18: Examples of (a) Case 1 and (b) Case 2 appearing when proving that dy s,
satisfies the triangle inequality. In each subfigure, we have three matchings of
the multisets £x, &y and £z, where the two right-most matchings are example
optimal matchings which induce the left-most matching of £x and &. In both
cases, an element of £x is left unmatched in the induced matching.
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S5.2 Edit Distance is a Metric

This section contains a proof that the edit distance (Definition 4) is a metric, given certain
conditions on the penalty function are satisfied. This represents one half of Proposition 6.

Proof To aid this exposition, write dEV(;(.)(S ,&’) in terms of its cost function as follows

des)(S.5) = | _min_  {Cost(M)}

where

CostM)= Y &(@.T)+ Y 6@+ Y &),

(Z,77)eMm TeMg T'eMyg,

denotes the cost of the matching M. First we consider metric condition (i) (identity of
indiscernibles). Supposing we have S = (Z,...,Z,) and S’ = (Z1,...,Z],) with § = &',
this implies that n = m and

I, =1, fori=1,...,n

(]

that is, all interactions are equal. As such, we can trivially construct a monotone matching
M* by pairing equivalent interactions, that is

M = {(Ilazi)va(znaz’:z)L (23)
which leads to the following upper bound
ClE’(;(,)(S,S/) < COSt(M*)

=> di(T;,T)) = 0.
=1

Now, since dj(-,-) is a metric we have d;(Z,Z") > 0, whilst §(Z) > 0 also by assumption,
which together imply d 5.)(S,S") > 0 for any sequences S and &’. These two bounds
combine to imply that when & = &’ we have des5)(S ,8’) = 0, proving one direction of
metric condition (i).

For the converse case, we first assume that dg 5. (S, §’) = 0, which implies both the sum
of pairwise distances and penalisation terms must be zero (since all are sums of non-negative
values). Moreover, since §(Z) > 0 this implies there must be no penalty terms. Thus if M*
is an optimal monotone matching then it must contain all entries of S and §’. Observe this
also implies S and &’ must be of the same length. Furthermore, the only possible monotone
matching which includes all entries of both sequences is that defined in (23), which implies

dg, 5(1(S,S") = Cost(M™)
=> d/(ZL;, ) =0,
=1

where we have applied the definition of dEyg(.)(S,S/ ) directly, using the fact that since
M* is the only possibly monotone matching of S and &’ it must be optimal. Now, since
dr(Z,7") > 0 (since dj(-,-) is a metric), this implies

dr(Z;,Z)) =0 fori=1,...n,

17
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and since dg(+, ) itself satisfies the identity of indiscernibles, this implies
I,=1I/ fori=1,...,n

from which we can conclude & = S§’. This proves the converse case, confirming that dg s(.)
satisfies metric condition (i).

The symmetry condition (ii) follows trivially from the symmetry of d;(,-) and the
penalisation terms.

Finally, we confirm metric condition (iii) (triangle inequality) is satisfied. The approach
is almost identical to that applied in the proof of Supplement S5.1 (matching distance
is a metric; the other half of Proposition 6) with one key difference: we must ensure all
matchings are monotone. Given three interaction sequences

Sx = (I%,....,TX) Sy=(T),....1Y) Sz=(I¢,...,I?)

'y Fnx ’Fny s ny

we seek to show that

dg,s()(Sx,Sy) < dg 51 (Sx,Sz) + dp 5()(Sz, Sy).

With M, and M7, denoting optimal monotone matchings for d, 5.y (Sx, Sz) and dg 5. (Sz, Sy)
respectively, that is

dg 5()(Sx,Sz) = Cost(MXz) dgs()(Sz,Sy) = Cost(Mzy)
observe these induce a matching M xy of Sx and Sy as follows
Mxy ={(Z*, 7)) : (I;*,I¥) € M%y and (I, I)) € My for some I} € Sz}

that is, we match entries of Sx and Sy if they were matched to the same entry of Sy.
We now confirm M xy is a monotone matching. Recall that M xy is monotone if for
any pairs (Z;X,Z)) and (ZX,ZY) in Mxy we have

117771 1277772
11 <1y <= J1 < Ja2.

To show this holds, observe by definition of M xy there exists IkZl and I/,CZ2 in Sz such that

(I¥, ) e My, (I{.I)) € My

(I3, I¢) € My (If,,I)) € My
Furthermore, since MY% , and M7, are monotone we have

11 <i9 <= k1 < ko and k1 < ko <= 71 <jo

which therefore implies

11 <i9 <= k1 < ko <= j1 < jo,

as required. Hence M xy is also monotone. With the induced matching being monotone,
observe that by definition of dg 5.y we have the following

dg,s5()(Sx,Sy) < Cost(Mxy)

18
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which implies the triangle inequality will hold if we can show the following inequality is
satisfied

Cost(Mxy) < dE75(.)(Sx, Sz) + dE,g(.)(Sz, Sy). (24)

Observe this is almost identical to the scenario appearing in Supplement S5.1, where the
inequality of (22) was shown to hold to prove that dy; s satisfied the triangle inequality.
Since the induced matching here is the same used therein, albeit applied to sequences rather
than multisets, an identical argument can be used show that (24) holds. For brevity, we will
not repeat these steps here, assuming henceforth that (24) holds, implying d 5. satisfies
the triangle inequality and completing the proof. |

S5.3 Completeness of Matchings

This section contains a proof of Proposition 7, which gives conditions under which there ex-
ists a complete optimal matching between two interaction multisets (as obtained to evaluate
the matching distance between them).

Proof Given two interaction multisets £ and &', in accordance with Proposition 7, it will
be assumed that

0(I) +6(Z') = dr(Z,7')

for all Z € £ and 7' € &'. To aid this exposition, write dyg.)(€,€’) in terms of its cost
function as follows

his(EE) = | min {Cost(M)}

where

Cost(M)= Y &(T.T)+ D o@D+ Y. &T),

(Z,77)em TeMsg T'eMg,

denotes the cost of the matching M. Towards proving this result, assume that any matching
M* for which

Cost(M*) = | min {Cost(M)} = duy5(,(&,€'),

is not complete, seeking a contradiction. There may be more than one such matching, so
without loss of generality, let M* denote any one of these optimal matchings. Since M* is
not complete, there must be a currently unmatched pair, that is, (Z,Z’) such that Z € &
and 7/ € & but 7 ¢ Mg and 7' ¢ M%,. One can now define a new matching M** by
augmenting M* as follows

M = M*U{(Z,T)}
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for which
Cost(M™) = > d(Z,T)+ Y. D)+ > &),

(Z7I/)€M** IE(M**)E I/E(M**)gl

= > dEZI)+d(Z.I)+ D D+ > 4Z)
(T,7)eM* Te(M*)g T'e(M**)g,

< D) dETIT)+D)+5TN+ D> D+ D, sT) (25
(T,7)eM* Te(M**)g T'e(M*)g,

= Y 4T+ Y D+ D> 4T
(Z,7)eM* Te(M*)g T'e(M*),

= Cost(M™)

where in the third line we invoke the assumption that
o) +6(T') = di(Z,T)

forall Z € £ and 7’ € £’. Since M* was optimal, we must also have Cost(M*) < Cost(M)
for all matchings M, which combined with (25) implies Cost(M**) = Cost(M*), that is,
M** is also an optimal matching. Moreover, we have |[M**|= | M*|+1. Now, either (i) M**
is complete, or (ii) we can repeat this augmentation, increasing the matching cardinality un-
til it is complete. Either way, we arrive at a matching which is both optimal and complete,
contradicting our assumption that all optimal matchings were not complete. Consequently,
by contradiction, there must exist at least one optimal matching that is complete. |

S5.4 Path Distances are Metrics

This section contains a proof that both the interaction distances introduced in Section 4.3,
namely, the longest common subpath distance, denoted dpsp, and the longest common
subsequence distance, denoted di,cg, are distance metrics.

Proof This a proof that drgsp and dygp are both distance metrics. Let us first prove that
dpcs is a metric. Recall the LCS distance (defined in Section 4.3) between paths Z and 7
is given by

drcs(Z,T') = n+m — dics

where n and m are the lengths of Z and Z’, and dr,¢g is the maximum length of a common
sequence between them. Consider now the first metric condition (i) (identity of indis-
cernibles). Here we will use the following fact: dpcs < n and dpcs < m, following since
a common subsequence cannot include more entries than are present in either path. Now,
assuming that

drcs (I, Il) =n+m—20cs =0 (26)

we claim this implies n = m. To see this, notice if we assume n < m this implies n + m >
2n > 2601,cs where we have used the fact d,cg < n. Notice this contradicts (26). A similar
contradiction will be found if we assume n > m, and consequently we must have n = m.
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Substituting this into (26) leads to dpcs = n = m which implies that Z and Z’ share a
common subsequence of the same length as themselves, that is Z = Z’. This proves one
direction. For the converse case, if Z = 7’ then it should be clear that the maximum
common subsequence will be that including all their entries, that is dpcg = n = m and
hence

chs(I,I’) =n-+m — 2i,c5 =0,

thus proving condition (i) holds for the LCS distance.

It should be clear the symmetry condition (ii) follows trivially from the inherent sym-
metry in the definition of a common subsequence.

Finally, we turn to the triangle inequality (iii). Assume we have three paths

X = (X1, 2n) ¥ = (Y1, -+ Ym) 77 = (21, -+, 2K)
and that dxy, dzy and dxy are such that

dLCS(ZX,IY) =n+m—20xy chs(ZX,ZZ) =n+k—20xz
drcs(ZZ, 1Y) =m +k — 207y

then, if the triangle inequality holds, we have
dres(ZX,TY) < dies(TY,77) + dres(Z7,1Y)
which is equivalent to the following
n+m—2xy <(n+k—20xz)+ (m+k—20zy)
which is true if and only if (by rearranging terms)
oxz +dzy —k < dxv, (27)

thus, if we show (27) holds the implications will trace back to show the the triangle inequality
also holds. Towards doing so, we consider a finding the common subsequence between ZX
and Z¥ induced by that between ZX and ZZ and between ZY and ZZ, which will allow us
to obtain the desired lower bound.

To aide this exposition we introduce some notation. In particular, for two subsequences
v and u of [n] = (1,...,n) we can extend the notion of unions and intersections used for
sets, that is v Uu and v N u respectively, where if w = v N u then each entry w; appears
in both v and w, whilst if w = v U u then each w; appears in at least one of u and v. For
example, if we have n = 5 and v = (1,3,5) and v = (1,2,5) then u Nwv = (1,5) whilst
uUwv = (1,2,3,5). Moreover, with |v| denoting the length of subsequence v, the following
will hold

o+ ful—lv N ul= v Uul,

which can be seen as analogous to the inclusion-exclusion identity for sets.
Now suppose that we have indexing subsequences uxz, vxz, uzy and vzy such that
X =172 1Z =1Y

VXZ uxz vzy uzy
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with |uxz|= |[vxz|= 0xz and |uzy|= |vzy|= dzy, that is, these index maximal common
subsequences. Observe the intersection uyxy N vzy defines a subsequence of ZZ which is
shared with both ZX and ZY, and consequently, if we let vyy and wxy denote indices of
the associated subsequences of ZX and ZY, respectively, we have

X =1F

VXY uxy

that is, these index a common subsequence of ZX and ZY. Moreover, if we let
*
6" = |vxy|= |luxy|= luxz Nvzyl,

denoting the size of this induced common subsequence, then by the inclusion-exclusion
identity above we have

dxz+0zy — 0" = |uxz|+|vzy|—|luxz Nvzy|=|luxz Uvzy|< k

where the inequality here follows since uzx Uwvzy is an indexing subsequences of Z7Z, which
is of length k. This rearranges to the following

dxz+0zy —k <07,

and finally, using the fact that 6* < dxy by definition of dxy as the mazimal length of a
common subsequence between ZX and Z", we thus have

d0xz+0zy —k <dxy,

confirming (27) holds, as desired. Consequently, the LCS distance satisfies metric condition
(iii). This completes the proof that dycg is a distance metric.

We now consider proving digp is also a distance metric. Firstly, regarding the identity of
indiscernibles (i), one can use exactly the same argument as for the LCS distance above. For
brevity, we will avoid repeating this and henceforth assume this condition holds. Similarly,
the symmetry condition (ii) again follows trivially from the symmetry of common subpaths.

To show dpgp satisfies the triangle inequality (iii) we can use almost the same argument
outlined above for the LCS distance. In particular, one can show that (27) holds, where in
this case dxz, dzy and dxy denote maximal subpath sizes. A key difference here is that we
must obtain an induced subpath rather than subsequence. If we introduce the shorthand
notation (i : j) = (i,...,7) where 1 < i < j < n, denoting the subpath of [n] from ¢ to j
(notice this is consistent with notation used in Section 4.3), then as with subsequences we
can define natural generalisations of the interaction and union of two subpaths, in particular

(t:75)N (1 : k) = (max(i,l) : min(j, k)) (i:4)U(: k)= (min(s,1) : max(j, k)),

and moreover if |(i : j)|= j — i+ 1 denotes subpath length we will again have the following
inclusion-exclusion identity

@ DI R)=[G ) N (@ k)= (@ g) U (LR

With these, one can directly adapt the argument used to show drcg satisfied the triangle
inequality. In particular, any two optimal common subpaths between ZX and ZZ and
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between 7% and ZY will induce a common subpath between ZX and ZV, in turn providing
the required bound. For brevity, we do not repeat this here, assuming henceforth that
metric condition (iii) holds.

In summary, above it has been shown that metric conditions (i) to (iii) hold for both
the LCS and LSP distances, completing the proof that both are indeed distance metrics. B

S6 Guidance on MCMC Scaleability and Mixing

In this section, we provide some further details and guidance regarding our MCMC scheme
outlined in Section 5. In particular, we elaborate on the scaleability of our algorithms,
highlighting the key features that will impact their computational cost, and discuss their
mixing, illustrating how certain tuning parameters can be used to maximise efficiency.

S6.1 Posterior Sampling Cost

The details here will concern inference for the SIS model, as outlined in Section 5. However,
all the points highlighted will apply equally in the context of the SIM model and its inference
scheme outlined in Supplement S9. Suppose we have observed a sample of n interaction
sequences

which we assume were drawn via the hierarchical model (7). This implies a posterior
distribution p(S™,y|{S®1}2_,) as stated in (8) which we propose to sample from via our
component-wise MCMC algorithm (Section 5.2), returning a sample {(S™,~;)}*, where
M is a specified desired number of posterior samples. Considerations of scaleability thus
becomes a question of how long it will take to obtain these samples, and what can affect
this.

For us, of most interest are cases where we evaluate ds(-, ), the chosen distance metric.%
Naturally, it makes sense to think of the what happens in a single iteration. For our MCMC
algorithm, there are two key elements where distance evaluations appear, featuring both in
updates for the dispersion (Section 5.3) and the mode (Section 5.4), namely

1. Likelihood evaluations - these arise when evaluating acceptance probabilities, as
seen in the closed forms for the dispersion update (37) and mode update (40). In
particular, we have terms of the following form

st ),8™) and ngs* S™)

representing evaluations on observed data {8 ', and auxiliary data {S]}"_,, re-
spectively;

2. Auxiliary data sampling - both updates for the dispersion and mode require sam-
pling a single auxiliary dataset {S}" ; (of the same size as the observed data) at

6. Of course, there are other computations and operations involved, but in general those involving dg will
contribute most to the overall computational cost.
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the proposed parameters. Recall these we sample via MCMC (Section 5.6), wherein
distance evaluations will occur during computation of the associated acceptance prob-
abilities.

Given these two elements, the question is what can affect their cost? In this regard, the
following three aspects will come into play:

e The computational cost of the distance metric dg(-,-) - a more costly distance will
necessarily lead to more expensive likelihood evaluations and auxiliary sampling, in
turn leading to longer posterior sampling times;

e The number of observed data points n - this will increase the number of terms in
the likelihood and require sampling of more auxiliary data, both pushing up the
computational cost;

e The dimensions of observed data {S(i) . - recall that generally one expects the
cost of evaluating dg to grow with the size of interaction sequences being compared,
for example, the edit distance dg 5(.) has a cost O(N - M) where N and M are the
number of paths in § and &', respectively (see Section 4.2). This implies both the
cost of likelihood evaluations and auxiliary sampling will grow with the dimension of
observed data. The former should be evident, the latter, however, is somewhat subtle.
This follows since we expect the sampled auxiliary data to resemble the observed data.”
In particular, we expect {S}}" ; and {S (i)}?zl to be of similar dimension. Moreover,
samples of larger dimension will in general take longer to obtain, since they will involve
distance evaluations between larger interaction sequences, thus driving up the cost of
auxiliary sampling.

S6.2 Auxiliary Sampling Cost

As noted in the previous section, sampling of auxiliary data is a key computational elements
of our proposed posterior sampling algorithm. As such, we here elaborate further on its
cost. Firstly, we show it is highly likely to make-up the majority of the computational cost
of the overall posterior sampling algorithm, often requiring far more distance evaluations
than the likelihood terms. We then go on to discuss how the nature of the distribution
being targeted will alter the cost required to obtain the desired samples.

As we mention at the end of Section 5.6, one will typically want to introduce some
burn-in period b and lag [, that is, dropping the first b samples and taking every [th sample
thereafter. The hope is this will reduce the correlation in the chain, leading to samples
which look more like an exact draw from the model, as required for the exchange and
iExchange algorithms. However, doing so will clearly increase the cost of obtaining the
auxiliary samples. To be more precise, since each accept-reject step involves two distance
evaluations (for the current state and the proposal), the total number of evaluations involved
in sampling the auxiliary data will be given by

2(b+1(n —1) +1), (28)

7. To see this, observe one expects the posterior samples to concentrate around parameter values which
would generate data resembling that which was observed. Since auxiliary data is sampled at such
parameter values, this implies we would expect the auxiliary and observed data to have some resemblance.
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where n is the number of observed data points. Thus, as we increase b and [ the cost of
obtaining these samples will grow. Moreover, this will typically be much larger than the
number of distance evaluations arising during evaluation of the likelihood terms, as outlined
in the previous section. In particular, notice the likelihood terms appearing in the dispersion
conditional (37) require 2n distance evaluations, whilst those in the mode conditional (40)
require 2(n 4 1) distance evaluations, where the latter includes both likelihood evaluations
and terms from the prior. Both will be dwarfed by (28) when b and [ are of reasonable size.
This leads to a key point worth emphasis: the overall cost of posterior sampling is likely to
be driven predominantly by the cost of auxiliary sampling.

One might now ask what can impact the cost of auxiliary sampling? This reduces to
the question of how long it takes to sample from our SIS and SIM models via the proposed
MCMC algorithms. The answer: it depends on the model parameters (and the underlying
distance being used). To see this, suppose we have sampled a chain (S;)}, targeting an
SIS(S™, ) distribution via our MCMC algorithm (Section 5.6). Observe this implies we
have evaluated

ds(Si, S™)

for each sample in the chain (when evaluating acceptance probabilities). Recall that in
general we expect dg to be more costly to evaluate on larger interaction sequences. As
such, these evaluations will be slowed down if (i) S™ is large, or (ii) the samples S; are
large. Observe both will depend on the model parameters: clearly (i) depends on the mode
8™, whilst (ii) will depend on dispersion 7 since, as seen in Supplement S3, as vy decreases
the resulting distributions will tend to focus higher probability on interaction sequences of
larger size. This argument applies equally to the SIM model.

As empirical evidence, in Figure 19 we summarise the timings of samples drawn from
the SIS and SIM models at different parameterisations. These simulations were run on a
Dell Latitude 5440 laptop, with a 13th Gen Intel Core i7-1370P processor and 64 GB of
RAM; the same machine used for the model fit of Section 7.2. With M = 1000 we timed
how long it took to sample a chain.

o (S)M, targeting an SIS(S™, ) distribution, with distance dp.s5()5
e (&)M, targeting an SIM(E™, ) distribution, with distance drs()s

where we considered different combinations of §™, £€™ and 7. In each case, for a single
sampled chain, we plot (N, t) where ¢ is the time (in seconds) taken and N = 4 Zf\i 1 Vi is
the average outer dimension of the samples, where here N; is the number of paths in the ith
sample, that is §; for the SIS model and &; for the SIM model. Model parameters were here
chosen as follows. We let S™ = (Z7", ... ,I;\f;) and &M = {ZI7",... ,I}g} for N = 2,4,6,8, 10,
leading to 5 different modes, where the paths Zi" were fixed and of equal length. For each
mode, we considered a range of v values which led to samples with a < N < b, taking
a =15 and b = 35 in this case.

Consulting Figure 19, for both models one can clearly see a positive correlation between
the dimension of samples and the time taken. However, there is a difference in the nature
of this relationship between the two models. This can be explained via the complexity of
the underlying distances as follows
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Figure 19: Examining the cost of sampling from the SIS and SIM models via our MCMC
algorithms. In (a) and (b) a single data point (N, #) summarises a single MCMC
chain drawn from the respective model, where ¢ is the time taken to sample this
chain and NN is the average number of paths within the samples, or what we call
the outer dimension. To highlight choices for N, the number of paths in the
mode, markers have been colored and sized proportionally.

e For the SIS model, dg 5.)(S,S™) has a complexity O(N - N), where N and N are the
number of paths in § and §™ respectively. This explains the linear relationship with
respect to N and changes in slope with N;

e For the SIM model, dy;s.)(E,E™) has a complexity O(max(N, N)? + N - N), where
N and N are the number of paths in & and £™ respectively. Notice for the parame-
terisations above we expect N > N, so the complexity becomes O(N?3 + N- N). With
the N3 term likely to dominate, this explains the non-linear relationship with respect
to N and the absence of any relationship with respect to N.

S6.3 Mixing

In this section, we discuss the mixing of our proposed MCMC algorithms, highlighting how
certain tuning parameters come into play. We will first discuss the mixing of our model
sampling algorithms, as used to sample auxiliary data, before going on to discuss the mixing
of our posterior sampling algorithms.

S6.3.1 MODEL SAMPLING

We will here discuss sampling from the SIS model, but note what follows will apply readily
in the context of the SIM model and the MCMC algorithm proposed to sample from it. As
outlined in Section 5.6, we propose an iMCMC algorithm which mixes together two moves

(a) Edit allocation move - keeps the number of paths fixed, editing to those currently
present. This has the tuning parameter voq € Z>1 representing the maximum number
of edits in total;
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(b) Path insertion and deletion move - varies the number of paths by simultane-
ously deleting and inserting paths. Here we have the tuning parameter g € Z>;
representing the maximum number of paths to be inserted and deleted;

where we do (a) with probability § and (b) with probability (1 — ), where g € (0,1) is
further tuning parameter.

Both veq and 14q serve to control the aggressiveness of proposals, with larger values
resulting in proposal which are ‘more different’ than the current state, on average. The
suitability of choices thereof will depend on the nature of the target distribution

p(S|S™,7) o< exp{—vds(S,8™)}

where if v is large, so that p(S|S™,~y) will be highly concentrated about S™, smaller values
of veq and 1q will be appropriate, whilst as v gets smaller, and p(S|S™,~y) becomes less
concentrated about 8™, it is likely that larger values for v.q and ryq would be required to
ensure sufficient exploration of the space.

We illustrate this empirically with a small simulation study. Here we consider two
scenarios, one where + is large and one where it is small. In each scenario, for a grid of veq
and g values we sample an MCMC chain (Si)ij\il via out iMCMC algorithm targeting the
respective distribution, before evaluating their mixing. In particular, we consider evaluating
the integrated autocorrelation time (IACT) of the real-valued series (z;)M, where z; :=
ds(S;,8™), where 8™ is the mode of the distribution being sampled from. For a series of
real-valued random variables X7, Xo,... the IACT is defined to be

oo
IACT :=1 —}—22%
i=1
where , is the lag k correlation, that is, the correlation between X; and X, . Typically, we
cannot evaluate the IACT exactly, but given the finite realisation (z;)}, it can be estimated
via

K
IACT~1+2) 4 (29)
i=1
where 4 are estimates of the lagged correlations obtained from the sample (z;)M, and
K < o0 is some chosen truncation. The TACT is an often-used measure of efficiency for
MCMC chains, since the presence of correlation within the chain is known to increase the
variance of any estimates computed with its samples. In this way, a lower IACT is better,
since it implies a more efficient use of the MCMC samples.

Figure 20 summarises the results. In each subfigure, for each pair (veq,1q) we plot
estimates of the TACT, obtained via (29) with K = 50, for a single chain sampled with
these hyperparameters. Alongside, we also plot the observed acceptance probability, that
is, the proportion of proposals that were accepted. Note there is some noise in the TACT
values, evident particularly in Figure 20a, which is to be expected since these are estimates.
Here we also let g = 0.5, attempting either move with 50-50 probability in each iteration.
As expected, the concentration of the distribution influences which hyperparameters are
most suitable. In particular, we can see from Figure 20a that when ~ is high the lower
values for veq and g lead to the lowest IACT values, whilst from Figure 20a we can see
that when ~ is low it is larger values thereof that result the best values of the TACT.
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Figure 20: Comparing the TACT for MCMC chains sampled with different choices of hyper-
parameters veq and r4q when targeting an SIS(S™, ) model. In the right-hand
subplots we show also the observed acceptance probability of each MCMC chain.
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Figure 21: Illustrating how e impacts mixing of v when sampling from the posterior
p(S™, v{SW}™_,). Here one can see when ¢ is too small or too large the corre-
lation in the resultant chain increases.

S6.3.2 POSTERIOR SAMPLING

In this section, we discuss the mixing of our MCMC algorithm proposed to sample from
posterior for the SIS model, as outlined in Section 5, again noting all points made will apply
equally to our scheme for the SIM model. Recall we propose to sample from the posterior
p(S™, y{SW}1_,) via a component-wise MCMC algorithm (Section 5.2 and Figure 5), al-
ternating between sampling from (i) p(S™|y, {S¥W}2,), a distribution over 8* (or Sk
if constraining the sample space), as detailed in Section 5.4, and (ii) p(y|S™, {S® ),
a distribution over R,, outlined in Section 5.3. As such, when it comes to assessing the
mixing in this context, one can consider two elements

(i) Mixing of 8™ in 8* given veq and viq;
(ii) Mixing of v in Ry given e.

Considering (i), observe we will generally expect the posterior to concentrate as the num-
ber of observations n increases, as confirmed in our simulations of Section 6. This implies
in practice we are likely to be in a scenario reminiscent of sampling from the model with
a high value of «, that is, the second simulation scenario considered in Supplement S6.3.1,
summarised in Figure 20b. As such, one will typically want to choose v.q and viq to be very
low. Moreover, we expect acceptance probabilities to be low, and thus the introduction of a
lag between samples would be appropriate, as was done in the simulation studies (Section 6)
and data analysis (Section 7).

Considering (ii), the influence of ¢ is much like the scale parameter of a proposal within
the familiar random-walk Metropolis-Hastings algorithm. We illustrate this with some
simulated examples, shown in Figure 21. These show, for the same posterior but different
choices of €, marginal samples (%’)i]\il obtained via our component-wise MCMC algorithm
(Section 5.2), that is, by sampling from the joint and keeping only those samples for the
dispersion. For each chain (v;)M, we also report the IACT estimated via (29) with K = 20
and the observed acceptance probability. Here one can observe when ¢ is low the correlation
is high, since moves are not aggressive enough, whilst if ¢ is high many proposals are
rejected, leading to periods ‘stuck’ at certain values, similarly pushing up the correlation.
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To maximise efficiency one must therefor find a sweet spot between these two extremes, for
example, taking € = 0.4, as shown in the middle subfigure of Figure 21, appears to strike a
good balance.

S7 The iExchange Algorithm

In this section, we outline the iExchange algorithm (Algorithm 1), a generalisation of ex-
change algorithm (Murray et al., 2006) obtained by incorporating the proposal generating
mechanism of the IMCMC algorithm (Neklyudov et al., 2020). As we show, the iExchange
algorithm is itself an iMCMC algorithm (with a particular form of involution), providing the
necessary theoretical justification. For completeness, we give background details regarding
both the exchange and iMCMC algorithms, before showing how they can be combined.

Algorithm 1: Involutive exchange (iExchnage) algorithm
Input: target density p(0|x) o p(0)y(x|0)/Z(0)
Input: auxiliary density g(u|6)
Input: involution f(6,u), i.e. f=1(0,u) = f(0,u)
initialise 6
fori=1,...,ndo

sample u ~ q(u|0)

invoke involution (¢',u') = f(x,u)

sample y ~ p(y|¢')

i {1 2O 0000101
evaluate a(0,6') = min {1, B GRC

o — 0’ with probability «(6,6")
" 16 with probability 1 — a(6,6’)

of(0,u)
0(0,u)

j

end

Let us first set the context. We have some data x which is assumed to have been drawn
via a model p(x|@), where § denote parameters, taking the following form

(x19)
Z(0)

p(x[0) = (30)
where Z() = [~(x|f)dx denotes its normalising constant, assumed to be intractable. If
one is taking a Bayesian approach to inference and has specified a prior p(f), this leads to
the following posterior

p(x[0)p(8)

p(x)
where p(x) = [ p(x|0)p()df is the marginal probability of the data, which in most cases
is also intractable. Due to these two elements of intractability, such posteriors are often
referred to as doubly-intractable (Murray et al., 2006). For example, the posteriors resulting
from both our SIS and SIM models are doubly-intractable.

A typical approach to circumvent the intractability present in Bayesian posterior dis-
tributions is to use MCMC algorithms to sample from them, with the Metropolis-Hastings

p(lx) = (31)
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(MH) algorithm being a prevalent choice. However, for doubly-intractable posteriors, many
standard MCMC algorithms are not feasible. To illustrate, consider using the MH algo-
rithm. Here, with 6 the current state and ¢(6'|6) some proposal density, in a single iteration
one would sample proposal €' from ¢(#'|) and accept this with the following probability

) p(9’\X)Q(99’)}
" p(Olx)q(0']0)
_ mm{l ’Y(X’9/)/Z<9/)P(9/)Q(9’9/)}
T (x(0)/Z(0)p(0)q(0’]6) |

so that, starting from some initial state §y one obtains a sample {6;}!", which is (approx-
imately) distributed according to p(f|x). However, though the marginal probability p(x)
cancels out in (32), the normalising constants Z(6) and Z(#") do not. Moreover, since
these are by assumption intractable, «(6,6’) cannot be evaluated, ruling out use of the MH
algorithm.

This necessitates the proposal of specialised MCMC algorithms to sample from doubly-
intractable posterior distributions, and herein lies the motivation for the exchange and
iExchange algorithms.

a(0,0') = min { )

S7.1 Exchange Algorithm

In this section, we give a high-level overview of the exchange algorithm (Algorithm 2),
proposed by Murray et al. (2006). This is similar in structure to MH algorithm, but with
some extra sampling in each iteration. Namely, one samples so-called auziliary data, which
subsequently appears in the acceptance probability, inducing cancellation of intractable
normalising constants. Effectively, it targets an augmented distribution which admits the
posterior of interest as its marginal (Murray et al., 2006).

As in the MH algorithm, we have some proposal distribution ¢(6'|6) which is pre-
specified. We also introduce an auxiliary dataset y which lies in the same space as the
observed data x. Now, given current state 6 a single iteration consists of the following

1. Sample proposal ¢’ via ¢(0'|0)
2. Sample auxiliary data y | 0" via p(y|60) of (30) (sample from the model)

3. Evaluate acceptance probability

N — min 1 PO1X)a(016")p(y16)
a(0.0) = min {1, ) )
i {1 p(el)’Y(X\9/)7(}”9)(1(9|9/)}
" p(0)(x10)y(y10")q(0']0)

4. With probability «(6,6’) we move to state €', otherwise we stay at 6.

Observe the absence of normalising constants here makes «(6,6’) tractable. Repeating
this a number of times, as summarised in Algorithm 2, produces a Markov chain admitting
p(0]x) as its stationary distribution (Murray et al., 2006). An alternative justification to
that given by Murray et al. (2006) comes by viewing this as an instance of iMCMC, which
we detail in the next section.

31



BorLr, LUNAGOMEZ AND NEMETH

Algorithm 2: Exchange algorithm
Input: target density p(6|x) x p(0)y(x|0)/Z(0)
Input: proposal distribution ¢(6'|9)
initialise 6;
fori=1,...,ndo
sample 6’ via q(¢'|0)
sample y via p(y|#’) (from the model)
evaluate 04(0, 9/) — min {1’ P(Q,)V(xw/)’Y(y‘0)(1(9‘9/)}

PO (X0 (y[0) (07 [0)
9. — 0’ with probability «(6,6")
" 16 with probability 1 — «(6,6’)

end

Output: sample {6;}",

S7.2 Involutive MCMC (iMCMC)

The iMCMC algorithm of Neklyudov et al. (2020) considers the problem of sampling from a
general target distribution p(z) over some space X, for example, this might be our posterior
from (31) (replacing x with €). Like all MCMC algorithms, it does so by sampling a Markov
chain admitting p(x) as its stationary distribution, using in particular a combination of
random sampling and involutive deterministic maps. The result is a very general framework
which includes many well-known MCMC algorithms as special cases.

As the name suggests, IMCMC uses a particular type of deterministic function know as
an involution. This is a function which serves as its own inverse, that is, if f : X — X then
one has f~1(x) = f(x). Equivalently, a composition f with itself leads to the identity

f(f(z)) = .

Towards targeting p(x) one introduces auxiliary variables v € U with conditional density
¢(ulx) over an auxiliary space Y (which need not be equal to X'), augmenting the target as
follows

p(z,u) = p(x)q(ulz)

which is now a distribution over X x Y. Observe this admits p(x) as its marginal and hence
one can obtain samples thereof by targeting p(x,u) and disregarding the u samples. To do
so, suppose an involution f : & x U — X x U has been specified along with the auxiliary
distribution g(u|z). In structure reminiscent of the MH algorithm, a single iteration consists
of the following. With current state (z,u), an auxiliary variable v € U is first drawn from
q(ulz), before the involution f is invoked to get a proposal (a',u') = f(x,u), which is
subsequently accepted with the following probability
;o : Of(x,u)
a((:x,u),(x,u))—mm{l, e }

p(f(z,u))
p(x,u)
_ mm{l p(a)q(u'|z") ‘3f(w7u)
" p(x)g(ulz) | O(z,u)

b
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leading to a Markov chain admitting p(z, u) as its stationary distribution (Neklyudov et al.,
2020, Proposition 2).

Observe that since auxiliary variables u are re-sampled in each iteration they do not
need to be stored, and can instead be discarded as the algorithm proceeds. In this way, one
may also drop their reference in the acceptance probability denoting this simply a(z, ).
This leads to the algorithm to target p(z) as outlined in Algorithm 3.

Algorithm 3: Involutive MCMC (iMCMC)

Input: target density p(z)

Input: auxiliary density q(u|z)
Input: involution f(x,u)

initialise x;

fori=1,...,ndo

sample u ~ q(u|x)

invoke involution (z/,u’) = f(x, u)

p(a')a(od |2)
L S @eln)
/

a2’ with probability a(z,z’)

of (z,u)
O(z,u)

}

evaluate a(x, ') = min {

T =
’ x  with probability 1 — a(x,2")

T4 xT;

end

Output: sample {z;}!" ;

As mentioned, many known MCMC algorithms can be written in this form. For example,
if one assumes U = X, with ¢(2/|z) the auxiliary distribution and f(z,2’) = (2/,z) the
involution defined by swapping entries, then one obtains the Metropolis-Hastings algorithm
with proposal distribution ¢(2'|x). Further examples of MCMC algorithms which can be
cast in the IMCMC framework are given in Neklyudov et al. (2020), Appendix B.

Another iMCMC special case which is of relevance to us is the exchange algorithm. To
see this, we let u = (¢',y), where y denotes the auxiliary data, as seen in Supplement S7.1.
Moreover, we define our involution as follows

f(@, u) = (0/7 (07 y))7

that is, we simply swap 6 <> #’. Observe we have

FOF0,u) = f(f(0,(0,y))

f(0',(0,y))
,(0,y))
)

= (6
= (0

so that f is indeed an involution. We now derive the Jacobian term. For convenience, drop
the inner parenthesis and write (6,u) = (6,6',y), for which we have f(6,60',y) = (¢,6,y).
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Now, we have

% gﬁ % 00" 90" 20"
0 0’ y 00 00" Oy 01 0
/
0f(0.0y) _|op on op| _ oo o 2| _|{ o o
200 v, — |0 o0 dy|= | oo oy | =
( 9 7y) 0 O 1
Ofs Ofs Ofs 9y Oy Oy
50 000 Oy 96 007 Oy

and taking determinants

0f0.0.y)| _, [0 1
000,0.y) | 10

'-I—O—i—O:l.

Finally, with ¢(#'|#) denoting the proposal density of the exchange algorithm, define the
auxiliary distribution as follows

q(ulf) = q(0'10)p(y|0")

where p(y|@') is the likelihood of auxiliary data y under the assumed model (30). With
these elements, an iMCMC algorithm targeting p(6|x) would (i) sample u from ¢(u|@), which
amounts to first sampling ¢’ from ¢(#'|0), before drawing y from p(y|¢’), and (ii) accept 6’
with probability

0y )

w)

/ P& X)p(219) 016,
a0.0) =min 1.0 G | 0
(x|

u)

:mm{ p(0")y(x]0")v(y[0)q(0]6")

" p(0)y(x]0)v(y]0")a(6'10)

:mm{ p(0)y(x(0)y (ylé’)q(9!9’)}
p(0)(x[0)v(y|6)q(6"|0)

which is nothing more than the exchange algorithm (Algorithm 2).

S7.3 Defining the iExchange Algorithm

We now define our extension of the exchange algorithm. We will assume that an iMCMC
scheme to target p(6|x) has been defined, that is, auxiliary variables u, involution f(0,u) =
(0',u') and conditional distribution ¢(u|@) have all been specified. When the posterior is
doubly-intractable, in general one will not be able to implement this algorithm due to the
intractability of the acceptance probability. However, in spirit of the exchange algorithm,
we can choose auxiliary variables and their conditional distribution to induce cancellation
of normalising constants in the acceptance probability.

In particular, we let @ = (u,y), where y denotes an auxiliary dataset lying in the same
space as x. Now, writing f(0,u) = (f1(0,u), f2(6,u)) = (¢',u') we define an involution
g(0, 1) as follows

9(0,a) = g(0, (u,y)) = (f1(0,u), (f2(0,v),y))
= (0, (,y))
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for which we have
g(g(ﬁ, 'l])) = 9(9/7 (ulv Y))
fi( ',1/),(]5(9',u/),y))
(

that is, g is indeed an involution. Now, as in Section S7.3, drop the inner parenthesis and
write (0,4) = (0, u,y). The Jacobian is now given by

991 9g1  9q1 on o 9N ofi o

i 20 Bu Dy 0 Ou Oy 20 o0 O
09(0,0) _ 99(0,u.y) _ \ogs 03 00| _ |0f op 92| _ |op op |
8(9, ﬂ) 6(9, u, Y) 00 ou Oy 00 ou Oy 00 ou
993 Ogs  Ogs Ofs  Ofs Ofs 0 0 1
o0 ou oy 00 ou oy

and taking determinants we get the following

- 0 0
dg(0, 1) & 9 Cosoo |2
(0. 7) op of: =000 |

The final element to define is the auxiliary distribution. Given current state 6 we
consider sampling @ = (u,y) as follows: (i) sample u from ¢(u|f), then (ii) sample y from
p(y|€’) (the model) where ' = f1(0,w). This leads to the following auxiliary density

q(ald) = q(ul@)p(y|0").

All the elements of an iMCMC algorithm have now been defined, a single iteration of which
consists of the following. Given current state 6, we first sample u = (u,y) via q(u|f) as
above. We then invoke involution g(6,a) = (¢, ~’) = (¢, (v,y)), generating a proposal 6’
which we accept with the following probability

a(h,0) = min{l pg(0,a)) | 0g(0, @)

P00 |20 |

— uin {1, 2P0 |3
RaG19) | 20

— an {1, 2R it 016 }
POX)a(ul0)p(y 1) | 900,

— o {1, ARG 57100 |
POy (<101 (y1)a(ul0) | (6, u)

where as in the exchange algorithm we observe cancellation of normalising constants thanks
to the introduction of auxiliary data. Note the Jacobian term here concerns the involution
of the original iMCMC scheme to sample from p(6|x), and thus the key difference here

is the introduction of auxiliary data. The result is what we call the iExchange algorithm
(Algorithm 1).
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S8 Bayesian Inference: Extra Detalils

In this section we provide extra details concerning our MCMC scheme for the interaction-
sequence models outlined in Section 5, including explicit specification of proposal distribu-
tions, involutions and auxiliary distributions, derivations of closed-form acceptance proba-
bilities and pseudocode.

S8.1 Dispersion Conditional

The dispersion conditional can be obtained directly from (8) by conditioning on the mode
S™ . in particular we have

p(VS™ ASWYL)) o Z(8™,7) exp{ st sW,8m) } p(y)- (34)

To target (34) we use the exchange algorithm of Murray et al. (2006) (see Supplement S7.1
for background details). As a proposal ¢(v/|y) we consider sampling 4" uniformly over a e-
neighbourhood of v with reflection at zero, this is, we first sample v* ~ Uniform(y—e,y+¢)
and then let 7/ = v* if v* > 0 and let 7/ = —* otherwise. The density is thus given by the
following (for v > 0)
3+ ify>0andy+v >¢
a'|y) = % ify>0and v+ <e (35)

0 ify <o.
whilst g(7/|y) = 0 for v < 0. Observe this proposal is symmetric, in that ¢(7'|v) = q(v|y)-

Now, a single iteration consists of the following. Assuming + is our current state, we
first sample proposal 4/ from ¢(7'|y). Next, we sample auxiliary data {Sf}! ; i.i.d. from
the appropriate model, namely

SF ~SIS(S™,7) (fori=1,...,n),
which we note implies

p({SY 1| 8™, ) = Z(S™,+ exp{ st (SF Sm}

Finally, we accept this proposal with the following probablhty

O‘(77 ’7,) = min {L H(7> '7/)} (36)
where
o PSS p({S7 3 18™, %) a(v]Y)
M) = s (ST} b (1S i |77 a(]7)

(37)

n /
—exp{—(+ — ) st 5O s~ 3 dg(s7, ™) | L)
— p(7)
where we note normalising constants of the (conditional) posterior and auxiliary data cancel
one another out, whilst the proposal density terms cancel due to its symmetry. This is
summarised in Algorithm 11, which details a single accept-reject step for updating the

dispersion.

36



MODELLING POPULATIONS OF INTERACTION NETWORKS

S8.2 Mode Conditional

By conditioning on « in (8) we get the following form for the mode conditional posterior

p(S™ Y, {SWY) o Z(S™,7) " exp {—7 D dg(SW,8™) = yods(S™, 50)} , (38)
i=1

which as outlined in Section 5.4 we target via the iExchange algorithm (Algorithm 1). For
further details on the iExchange algorithm, including justification as an instance of iMCMC,
please see Supplement S7.

Supposing that auxiliary variables w, involution f(S8™,u) and auxiliary distribution
¢(u|S8™) have all be specified, a single iteration of the iExchange algorithm in this case
consists of the following. With ~ fixed and 8™ denoting our current state we first sample
auxiliary variable u according to ¢(u|S™). We then invoke the involution f(S™,u) =
([S™],u'), which generates our proposal [S™]. Next, we sample auxiliary data {S;}I",
i.i.d. where

;' ~ SIS([S™]', 7).
Finally, we accept [S™] with the following probability
o (8™, (™)) = min {1, H(S™, [} (39)
where

pUS™ 17 ASD L)) pUSTH 18™,7) a(w![[S™])
p(S™ |7 ASDYL,) PUSTIE: 1\[8’”] 7)) q(u|S™)

— exp { —y (Z ds(8D,[™) =3 ds<s<i>,sm>)
= =1

-7 (Z ds(S;,8™) =Y ds(S;, [8’”]’))
=1

q(u'[[S™)
q(ulS™)

H(S™,[8™) =

(40)

— 0 (ds([S™]', So) — ds(S™, So)) }

where the ratio g(u' | [8™])/q(u|S™) is move-dependent. Again, we have the normalising
constants of the conditional posterior and auxiliary data cancelling one another out.

S8.3 Edit Allocation Move

Supposing that S™ = (Zi,...,Zx) denotes the current state, recall that for this move we
have an auxiliary variable given by

u:(5,z,u1,...,uN)

where (i) § denotes the total number of edits (entry insertions and deletions), (ii) z =
(z1,...,2n) denotes the allocation of edits to paths, that is, z; € Z>¢ is the number of edits
allocated to the ith path, where Zf\il z; = 0, and (iii) u; = (d;, v;, v}, y;) describes the edits
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to the ith path, where d; is the number of deletions, v; and v are subsequences indexing
entry insertions and deletions and y; denotes entries to be inserted.

We now define the involution of this iIMCMC move. Writing the required involution as
follows

f(vau) = (f1(8m7u)7 fQ(vau)) = ([’Sm]/?u/)

as outlined in Section 5.5.1 in enacting the operations parameterised by u we define the first
component f1(S™,u) =[S8™) = (Z},...,Z)). The second component we define as follows

f2(S™ u) = (32,0, i)
where
u; = (Zi — di7 ’U’/p Vi, (IZ)'U'L) (41)

where (Z;)y, = (iv,, - - -, Tin,. ) is the subsequence of Z; indexed by v; = (v1,...,vg,). On an
intuitive level, u/ parameteri%es the edits to the ¢th path Z; which are exactly the opposite
of those parameterised by u;, namely we delete z; — d; entries indexed by v}, then insert
entries (Z;),, at locations indexed by v;. In this way, enacting the operations parameterised
by ' will take us back to 8™, that is

fl([Sm:I/’u/) — Sm7
furthermore observe that reapplying the operations of (41) to w] itself takes us back to u;
(Zi - (Zi - dl)a Vi, ’U;a (Iz/)'ui) = (divvivvquvyi) = Uy

where y; = (Z7), since v} indexed where there entries y; were inserted in Z/. This implies
3

f([S™ ) = (6, z,u1, ..., un)

and hence
FUF(S™ u) = (IS, u) = (8™, u)

so that f(S8™,u) is indeed an involution.
Turning now to the auxiliary distribution ¢(u|S™), recall the following assumptions
stated in Section 5.5.1

0 ~ Uniform{1, ..., veq}
z |0 ~ Multinomial(é; 1/N,...,1/N)
d; | zi ~ Uniform{0,...,min(z;,n;)} (fori=1,...,N),
whilst we sample indexing subsequences v; and v} uniformly. Regarding this latter assump-
tion, recall that v; is a length d; (number of deletions) subsequence of [n;] (n; is the length

of Z;), whilst v} is a length a; := z; — d; (number of insertions) subsequence of [m;], where
m; = n; — d; + a; (length of the ith proposed path Z}). Thus sampling these uniformly

implies , ,
n; B m; B
q(vild;) = <d> q(vild;, ;) = (a.> :
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Finally, regarding sampling entry insertions we for now assume these are drawn via some
general distribution which may be dependent on the current state, namely we assume each
y; was drawn via q(y|Z;). Together this implies the following closed form for the auxiliary
distribution

=

q(ulS™) = q(6)q(=|9) | | a(di)q(vildi)q(vildi, 2:)q(yi|Z:)

i=1
11\ 1 - - @
L7 m;
Ved (N) E min(ni, ZZ) +1 <d2> <a1> q(y | )
whilst if ([S™]',u') = f(8™,u) has been obtained by the involution above we have
N
q(/|[S™)) = q(8)a(216) [ [ a(ai)a(vilai)a(vilai, 2)a((Z)w, | T})
i=1
11\ 1 1\ )
mi n;
=— (= ’ ‘ T)w, | T7).
Ved (N) g min(mi,zi) +1 <a1> <dz> Q(( ) Z| Z)
Taking the ratio of (43) and (42) leads to the following
nsmy N oin(n. 2 : 1
G/ S™) _ { mintos ) + L a((T)u ) »

min(m;, z;) + 1 q(yi|Z:)

which is the key term appearing in the acceptance probability of this move, as seen in (40).

We finalise these details on the edit allocation move with a discussion on entry insertion
distributions. The simplest option here is to sample entries uniformly over the vertex set
V. In this case, with V = |V|, we have

iz = () ()

any of which can be plugged into (44).

As an alternative choice, one can consider informing the entry insertions from observed
data. This approach is based on the following assumption: If two vertices have been observed
in the same path across many observations then the probability of proposing one given the
other is already present should be higher within the MCMC algorithm.

To reflect this assumption in a proposal, we first extract the necessary information from
the observed data. Letting

which implies

denote the observed sample we construct a co-occurrence matriz A € Z;/g\/’ defined as

follows
A, = #observations with an interaction containing both v and v’

= |{k : 3T € 8® with v,0' € T}
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where v # v/, whilst for v = v" we let

A, = Fobservations with an interaction containing v at least twice

= |{k : 37 € 8® with v € T at least twice}],

which can be seen as the adjacency matrix of a weighted graph describing the co-occurrence
structure observed in the data. Now, given A we construct a probability matrix P € RV*V
by normalising the rows, that is

va’ = Avv’/Zv

where Z, = Zv’ev A, is the normalising constant of the vth row. Intuitively, the entry
P, can be seen as the probability of observing v’ in an interaction given v is known to
already be present. We consider using P to inform entry insertions as follows. Suppose
that Z; = (241, . .., Tin,) denotes the path being edited, with v; denoting the subsequence of
[n;] indexing which entries are to be deleted. Introduce the notation v§ for the complement
of v;, which is the subsequence of [n;] containing the entries not in v;. For example, with
v = (1,2,5) € [5] we would have v° = (3,4). Now, observed that (Z;),c denotes the entries
of Z; not being deleted, that is, those being preserved. Our approach is to now propose
entries which have often been observed in the data alongside those being preserved. Since
each unique preserved entry has an associated distribution over V given by the respective
row of P, we can consider mixing these distributions together with equal weight to form an
entry proposal distribution. In particular, we sample entry insertions for the ¢th path i.i.d.

via the following
q(y|Z;) o Z Pyy.
VE(Z;) pe e

One can also introduce a tuning parameter to control the extent to which proposals are
informed by the data. In particular, with a > 0 first alter the probability matrix as follows

Py, x P,y +a

which normalises to

o Py +a

14+ Ve’

for which P%, — 1/V as a@ — oo, that is, the rows converge to the uniform distribution
over V. We can now define an analogous insertion distribution

W) < > Py,

VE(Z;) e e

e}
P,

where as a — oo this will converge to a mixture of uniform distributions over V, that is,
also a uniform distribution. In this way, one has a proposal which is informed by the data,
but becomes less informed as the tuning parameter oo — oo.

We finish with a note regarding evaluation of (44) for this informed proposal. Supposing
that Z/ is sth path in the proposal [S™]" (obtained by deleting d; entries of Z; indexed by v;,
and inserting entries y; at locations indexed by v;), then observe we have (Z;)ve = (I}) (1)
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(preserved entries) which thus implies ¢4 (y|Zi) = ¢a(y|Z]). Consequently we can write the
following
4o((Zi)v:|Z5) _ qa((Zi)w; | Z:)
9o (Yi|Ti) o (YilZi)
and hence only the single mixed distribution ¢, (y|Z;) needs to be constructed. This is
helpful to bare in mind when evaluating (44).

S8.4 Path Insertion and Deletion Move

Supposing that 8™ = (Zi,...,Zx) denotes the current state, recall that for this move we
have an auxiliary variable given by

/ * *k
u=(eg,d,v,v,I{,..., ;)

where (i) € denotes the total number of paths to be inserted or deleted, (ii) d denotes the
number of paths to be deleted, implying a = ¢ — d insertions, (iii) v and v" denote sub-
sequences indexing path deletions and insertions respectively, and (iv) (Z7,...,Z}) denote
the paths to be inserted.

We now define the involution of this iMCMC move. As outlined in Section 5.5.2, if we
decompose the the involution as follows

F(8™ u) = (fu(S™ 1), fo(S™, u) = ([S™], )

then enacting the path insertions and deletions parameterised by u defines the first compo-
nent fo(S8™,u) = [8™]". The second component we define a follows

[2(8™u) = (5,6 —d, v, v, Ty, ..., 1,)

which intuitively parameterises the exact opposite set of operations to u, namely where we
make ¢ total insertions and deletions but instead delete € — d = a paths indexed by v/,
before inserting the paths (Z,,,...,Z,,) (of S™) into locations indexed by v. As such, we
have the following

fl([Sm]/, U/) — Sm
furthermore, reapplying the second component just defined leads to
RAS™ ) = (22 = (e = )00, Ty, Ty )
= (e,d,v,v",I7,...,I})
using the fact that Z!, = Z7, since by definition Z;} was inserted to the (v;)th entry of [S™]".
Altogether this implies
FFSE™ ) = f([S™ ) = (8™, u)

that is, f(S™,w) is an involution.
Regarding the auxiliary distribution ¢(u|S™), recall the following assumptions stated in
Section 5.5.2
e ~ Uniform{1,...,14q}

d|e ~ Uniform{0,... , min(N,e)}

41



BorLr, LUNAGOMEZ AND NEMETH

whilst we sample indexing subsequences v and v’ uniformly and assume path insertions a
drawn via some general distribution ¢(Z|S™). In this instance, recall that v is a subsequence
of [N] of size d, whilst v’ is a subsequence of [M] of size a, where M = N — d + a is the
length of [S™]'. Sampling these uniformly thus implies

i = (V) awea = ()

leading to the following closed form

q(ulS™) = q(e)a(dle)a(v|d)a(v'le, d) [ [ a(ZIS™)

=1
1 1 N -1 M -1 a -
:utdmmm,em(d) () gq@w )

whilst, if ([S™]',«’) = f(8™,u) has been obtained by the involution above, we have

d
q('[S™]) = a(e)alale)q(v'|a)g(v]e,a) | [ a(Zu|[S™))
=1

:1m(Ml)+1(M) 1(5)_1}5[1qzvir[SM1’>

Taking the ratio of these leads to the following

g(/|[S™])) _ min(N,e) +1 [T, ¢(Z,[[S™])
a(lS™) ~ min(M,e) +1 I, a(Z,|S™)

(46)

which can be substituted into (40) to evaluate the acceptance probability of this move (here
we again use the fact 7/, = 7).

We finalise by discuésing possible choices for the path insertion distribution. The sim-
plest approach is to combine a distribution on path length with uniform sampling of entries.
In particular, to sample some path Z = (z1,...,x,,) we (i) sample its length m via some
distribution ¢(m) (ii) sample entries z; uniformly from V. This implies

(s = 1) = a(m) ()

where V' = |V|, which can be substituted into (46).
One can also consider informing entry insertions from observed data. With

a sample, for each v € V we let

=|{k : 37 € 8¥ with v € T}|
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denote the number of observations with at least one path containing the vertex v. Normal-

ising this leads to
Cy

dv e Ve,

which can be seen as the probability a randomly selected observation contains v. Introducing
the parameter a > 0 we let

Dy =

Ga(v) X py + &

which normalises to

Ga(v) = Pyt a
¢ 1+aV’
One can now use this to sample path entries, namely to sample Z = (z1,...,Z;,) we (i)

sample length m via some g(m), (ii) sample entries x; via ¢o(z;). Observe that if o« = 0 we
have ¢, (v) = py, and the entry insertion distribution is fully informed by the data, whilst
as o — 0o we have go(v) — 1/V, and we recover uniform entry insertions.

S8.5 Model Sampling

In this section we provide supporting details regarding our iMCMC algorithm to sample
from the SIS models outlined in Section 5.6. Recall that for the SIS model (Definition 1)
the (normalised) probability of observing S is given by

exp {—vds(S,8™)}
Z(8™,5) '

implying the following closed form for the acceptance probability (12)

p(SIS8™,7) =

a(S,8') =min{1,H(S,S")} (47)
where
p(S'I8™, ) ¢(W'|S")
p(SIS™,7) q(ulS)
q(u'|S")

— exp {_7<ds(3’,5m) - ds(""sm))} ald)

where the value of ¢(u/|S")/q(u|S) will depend on the iIMCMC specification.

As mentioned in Section 5.6, we consider re-using the iIMCMC moves of our iExchange
scheme used to sample from the mode conditional (Supplements S8.3 and S8.4). For ease
of reference, we summarise the corresponding ratios for each move:

H(S,S) =

e Edit allocation - suppose that u, f(u,S) and ¢(u|S) are defined as in Supple-
ment S8.3 (replacing ™ with S and [8™]) with &’) with a uniform entry inser-
tion distribution (45). With & = (Zi,...,Zy) the current state, supposing u =
(0,z,u1,...,uy) has been sampled via ¢(u|S) mapping to (S',u') = f(S,u) with
S’ = (11, ...,T)) we will have

’|S’ N min(n;, z;) +1 (1\™" ™
H min(mg, z;) + 1 <V> (48)

=1

where n; and m; denote the lengths of the ith path in 8™ and [S™]' respectively;
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e Path insertion and deletion - suppose that u, f(u,S) and ¢(u|S) are defined as
in Supplement S8.4 (again using S and S’ instead of 8™ and [S§™]). With § =
(Z1,...,Zn) the current state, supposing u = (&,d, v, v, Z}, ..., Z}) (where a = ¢ — d)

has been sampled via ¢(u|S) mapping to (S, ') = f(S,u) with 8’ = (Z1, ..., Z},) we
will have

q('|S')  min(N,e) + 1 [, ¢(Z,]S)
q(ulS) — min(M,e)+1 [, ¢(Z/,|S)"

(49)

As mentioned in Section 5.6, we follow the approach used for the posterior mode con-
ditional and consider mixing together these two iMCMC moves with some proportion
B € (0,1), left as a tuning parameter. Pseudocode of the resultant algorithm can be
found in Algorithm 13.

S9 Bayesian Inference for Multiset Models

Here we detail the approach to inference for the interaction-multiset models (Definition 2).
This is very similar to the interaction-sequence models outlined in Section 5, with priors,
hierarchical model and posterior are all being essentially the same (albeit with different
notation). Computationally, we again use MCMC to sample from the posterior, adapting
the scheme proposed for the interaction-sequence models.

S9.1 Priors, Hierarchical Model and Posterior

To specify priors, we follow Section 5.1 and assume the mode was itself sampled from an
SIM model, namely

g™ ~ SIM(&,70)
where (&y,y) are hyperparameters, whilst we assume the dispersion was drawn from some

distribution p(y) whose support is a subset of the non-negative reals. Given these specifi-
cations, an observed sample {€ () i, is assumed to be drawn via

EW 1M ~ ~ SIM(E™,5) (fori=1,...,n)
E™ ~ SIM(&o,v0)
v ~ p()-

The likelihood of {17 is given by

pUEDY 1€™ ) =[] €D €™,7)
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which implies a posterior given by
p(€™, 7 [{EV Y1) oc p({ED Yy [ €™, 7)p(E™ )p(7)

= Z(E™ ) exp{ ZdE (ED g™ } (50)
exp{—0dg(E™ »50)}}7(7)-

S9.2 Posterior Sampling

As for the interaction-sequence models, we consider sampling from the posterior (50) via
component-wise MCMC algorithm, alternating between sampling from the two conditionals

pE™ |7 AED}L,) and p(y|E™{EV}L)

in both of which the normalising constant of (50) will persist, making them doubly in-
tractable (Murray et al., 2006) and motivating the use of the exchange and iExchange
algorithms.

There are two key differences here compared with the setting of Section 5. Firstly, the
mode in this instance is a multiset, implying the mode conditional is a distribution over
multisets rather than sequences. Secondly, to induce the required cancellation of normalising
constants, sampling of auxiliary data in the exchange (or iExchange) algorithms must be
from the multiset models.

In both cases, the challenge lies in sampling from distributions over multisets (of paths).
As will be seen in subsequent sections, a solution can be found by first extending these to
distributions over sequences, before using the iMCMC-based algorithms proposed for the
interaction-sequence models (Section 5 and Supplement S8) to target them.

S9.3 Dispersion Conditional

Conditioning on £™ in (50) we have the following

p(Y[EMAEDY) o Z(E™,7) exp{ ZdE gv Em} p(7)

which to target we follow Section 5.3 and Supplement S8.1 and use the exchange algorithm
(Murray et al., 2006). For the proposal ¢(7'|y) we again consider sampling +" uniformly
over a e-neighbourhood of v with reflection at zero (see Supplement S8.1). With this choice
of proposal, a single iteration consists of the following. Assuming ~ is the current state, we
first sample proposal 7' via ¢(7'|7). Next, we sample auxiliary data {£}" ; i.i.d. from the
appropriate multiset model, namely

EF ~SIM(E™, ) (fori=1,...,n),

for which we have
pUE N1 E™ ) = Z(E™ )~ eXp{ — ZdE (&™) }
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Finally, we accept this proposal with the following probability

a(y,7') = min{1, H(y,7")} (51)
where

p( 1€ AED Y IpUE Y 1€ ) arlY)
ply[Em (€W )({5* Ly 1€ a(v')

= ex B . gm) r(v)
= p{ Y =) (ZdE ZdEf: £ )}m),

where, as in Supplement S8.1, normalising constants of the (conditional) posterior and
auxiliary data cancel one another out, whilst the proposal density terms cancel due to its
symimetry.

H(v,y) =

S9.4 Mode Conditional

Conditioning on ~ in (50) we have the following

p(gm ’ v {g(l)};;l) X Z(gm7 eXp { Z dE g(z Sm FYOdE(gma 50)} ) (52)

which is a distribution over £*, that is, the space of multisets. To re-use the iExchange
scheme of Section 5.4 we instead need a distribution over the space of interaction sequences
S*. To this end, we extend (52) to a distribution over interaction sequences.

Consider the general problem of extending some distribution 7(€) over £* to one over
S*. Firstly, observe each £ is associated with a set of sequences, obtained by placing the
interactions of £ in different orders. More formally, £ can be seen as equivalence class of
sequences (see Appendix A). As such, one can consider assigning equal probability to each
unique ordering of £. In particular, for S € 8* we let

where £ is the multiset obtained from S by disregarding the order of interactions, and A(E)
denotes the number of unique orderings of the paths in &£.

The form of A(€) can be obtained as follows. Suppose that £ consists of N paths, with
M < N unique paths. Without loss of generality label the unique paths 1 to M and let
w; denote the multiplicity of the ith path. Now, if each path of £ is different there are V!
possible ways to order them. However, if there are repeated paths this will include double
counting. Therefore, in general we must further divide by (w;)! leading to the familiar
multinomial term

N N!
A€) = <w1,...,wN> wy!cwn! (53)
Through this reasoning we can extend (52) as follows
BS™ |7 AEDYL)) = ——p(€™ [ 7, {EDYy) (54)
’ =1 A(Em) ’ =1
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where now S € §* and £™ is the multiset obtained from 8™ by disregarding the order of
paths.

We can now re-use the iExchange algorithm of Section 5.4 and Supplement S8.2 to
target (54). However, note the normalising constant appearing in (52), and hence also in
(54), is that of an SIM model. Thus, for the iExchange algorithm to induce the necessary
cancellation auxiliary data must be sampled from an SIM model.

A single iteration of the resultant algorithm consists of the following. Suppose that £™
denotes our current state and v is fixed. We first construct an interaction sequence 8™
by placing the interactions of £ in an arbitrary order. Now, assuming u, ¢(u|S™) and
f(8™, u) is some iIMCMC specification as used in Section 5, we sample auxiliary variables
u via ¢(u|8™), before invoking the involution to obtain ([S™),v') = f(S8™,u), where [S™]
denotes our proposal. By now disregarding the order of interactions in [S™]', we obtain a
proposal [€]'. We then sample auxiliary data {£f}? ; i.i.d. where

& ~ SIM([E™]',7)

which implies

pUE L [[E™)v) = Z(IE™] v eXp{ 'YZdE }

before accepting [£™] with the following probability
a(E™,[E™)) =min {1, H(E™, [E™])} (55)
where

o RIS AEDY) p{EY [E77) a [[S™])
HE ) = S T (€0,) (€T, [E7T ) alu]S™)

7([5”}) (€™ 17 AEDYL) p(iEr e, 1€m,9) a('|[S™])
A€ 7 {EDY,) p(E T IET) a@lsm)

_WQXP{“y(;dE(g()’[g ]);d}z(é’(),é’ )) (56)

—4 (Z dp(E,E™) = 3 du(E]. [8’”}'))
=1 =1

q(u'|[S™])
q(u|S™)

— 0 (de([E™], &) — de(E™, &)) }

where here 8" and [S™]’ correspond to those used above to generate the proposal [£™]'.
Again, we observe cancellation of normalising constants due to the introduction of auxiliary
data. We also see the introduction of a combinatorial term, namely

A(E™)  NUY(wi!---wip!)
A([E™])) — M (wq!- - wp!)

(57)

47



BorLr, LUNAGOMEZ AND NEMETH

where N and M are the cardinalities of £™ and [E™] respectively, w; is the multiplicity of
the ith unique path in €™ and w] is the multiplicity of the ith unique path in [£™]".

Clearly, this all depends on a particular iIMCMC specification (auxiliary variables, in-
volution and auxiliary distribution). For this we can use the edit allocation (Section 5.5.1
and Supplement S8.3) and interaction insertion and deletion (Supplement S8.4) moves,
which we again mix together with proportion g € (0,1), left as a tuning parameter. A
pseudocode summary of the resulting algorithm to update the mode can be seen in Algo-
rithm 16.

One pragmatic note to be made here is that computationally it is often easier to work
with sequences than multisets, since the former can be stored as a vector. To this end,
one can store observations as sequences of paths but interpret them as multisets of paths.
Furthermore, we can take the order in which they are stored as the ‘arbitrary order’ referred
to in Algorithm 16, and in this way the whole algorithm can be enacted on vectors of paths,
simply interpreting the output samples as multisets of paths.

S9.5 Model Sampling

The exchange-based algorithms to update £™ and v both require exact sampling of auxiliary
data from the SIM models. As for the interaction-sequence models (Section 5.6), this is
not possible in general. As such, we replace this with approximate samples obtained via an
MCMC algorithm.

Towards proposing a suitable MCMC algorithm, we follow the reasoning of Supple-
ment S9.4 and extend the target distribution (over multisets of paths) to one over sequences
of paths, before appealing to the iMCMC scheme proposed to sample from the SIS models
(Section 5.6 and Supplement S8.5). Recalling that for the SIM model (Definition 2) the
(normalised) probability of observing £ € £* is given by

1
p(EIE™,v) = ———exp{—vdg(E,E™)},
(E1E7.9) = g el (€. £7))
we can assign any S € 8* the following probability

1

p(SIE™,y) = mp(

ElE™, ) (58)

where £ is multiset obtain from S by disregarding order, and A(E) is as defined in (53),
thus defining an extended distribution over S*.

We can now target (58) via iMCMC as in Section 5.6. In particular, suppose that one
would like to sample from an SIM(E™,v) model. With u, ¢(u|S) and f(S,u) some iMCMC
specification as used therein, and £ the current state, a single iteration of will consist of the
following

1. Construct interaction sequence S by placing the paths of £ in an arbitrary order
2. Sample u ~ q(ulS)
3. Invoke involution f(S,u) = (S',u)

4. Disregard order in S’ to obtain proposed multiset &’
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5. Evaluate the following probability

(59)

(€, €') = min {1 H(S'IE™, ) q(u'|S) }

T P(SIE™, ) q(ulS)
6. Move to state & with probability a(€, '), staying at £ otherwise.

Clearly, this is conditional upon the choice of iMCMC specification. Here, we follow
Section 5.6 and recycle the edit allocation (Section 5.5.1 and Supplement S8.3) and path
insertion/deletion moves (Section 5.5.2 and Supplement S8.4), again mixing them together
with proportion § € (0, 1), left as a tuning parameter.

A closed form for (59) can be derived as follows. Writing «(&,&’) = min{1, H(E,&')}

we have
p(S'IE™, ) q(u'|S")

(SlE™ ) a(ulS)
A(lg/)p(g'lé’m, 20) q(u/’S/)
o pEIET ) aulS)
~ ey { o (dmtenem) e UG

A(€) NI (wi!---wh!)

A((‘:/) N M! (wl'wM')

with N and M the cardinalities of £ and &’ respectively, w; the multiplicity of the ith
unique path in £ and w] the multiplicity of the ith unique path in £. As when sampling
from the interaction-sequence models (Supplement S8.5), the ratio ¢(v'|S")/q(u|S) will be
move dependent and identical to those appearing in Supplement S8.5, namely (48) for the
edit allocation move and (49) for the path insertion/deletion move. The whole procedure
to sample from the SIM models is summarised in the pseudocode of Algorithm 17.

Finally we note that, as for the interaction-sequence models, by using approximate
as opposed to exact sampling in the exchange-based algorithms of Supplement S9.3 and
Supplement S9.4 we will no longer target the true posterior, but instead an approximation
thereof. This approximation can be improved, however, by obtaining samples which look
‘more exact’, often achievable by increasing the burn-in period and/or introducing a lag
between samples (b and [ of Algorithm 17).

H(EE) =

=1

AN

where

S10 Simulation Study Parameter Choices

This section, we discuss how parameters were chosen for the simulation of Section 6.2.
Recall in this case we re-sampled the true mode via

Strue ~ Hollywood(a, —aV, v)

where V' = 20 and v = TrPoisson(3,1,10), whilst & < 0 we varied. Here we will discuss
how such values for a@ were chosen.

As mentioned in Section 6.2, the parameter « can be seen to control the tail of the
vertex count distribution. As such, rather than choosing « on an even grid we instead
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Figure 22: Summary of Hollywood model simulation used to select parameters for simula-
tion of Section 6.2. Plot shows simulated mean degree distribution 95% quantiles
for Hollywood(a, —a'V, v) model, where V' = 20, v = TrPoisson(3, 1,10) and «
varies. Via linear interpolation (dashed line), we choose a values (crosses) to
get an even spread over the expected degree distribution quantiles.

consult a summary measure quantifying the ‘heavy-tailedness’ of the degree distribution,
before choosing values so as to evenly represent different structures for Sirue, as quantified
by this degree distribution.

For a given observation S, recall the following definition

ks(v) := # times v appears in S,

which for each S implies a sample {ks(v) : v € V, ks(v) > 0}, similar to the degree
distribution. Now, the summary measure we considered was the 95% quantile of this sample.

Through simulation, we examined how « controls the expected value of this 95% quantile
(expected since S is sampled randomly from a Hollywood model). In particular, for a range
of a values, we (i) drew a sample {S® ?_,, from a Hollywood(c, —aV, v) model, taking v
and V' as above, drawing a total of N = 10 paths in each case, then (ii) fori =1,...,n we
evaluated the 95% quantile of the sample {kg) (v) : v € V, kg (v) > 0}, before returning
the mean value of these quantiles.

Figure 22 summarises the output with n = 1000 samples, where circular markers show
the mean quantiles. Towards choosing simulation parameters, we then used linear inter-
polation to construct a function mapping all & < 0 to an expected quantil, as shown in
Figure 22 by the dashed lines. With this, we selected « values (red crosses) providing an
even spread of expected degree-distribution 95% qauntiles.

S11 Real Data Analysis

In this section, we provide details supporting the data analysis of Section 7. This includes
further details on the data and how it was processed, and extra information regarding the
integer-weighted extension of the SNF model (Lunagémez et al., 2021) used in Section 7.3.
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S11.1 Foursquare Data Processing

The data analysed in Section 7 was obtained from the New York and Tokyo dataset of Yang
et al. (2015), which contains a total of 10 months of check-in activity (from 12 April 2012 to
16 February 2013). Each check-in has an associated time stamp, GPS location and venue
category information. In particular, for each city, there is a tsv file containing the following
columns

1. User ID - unique identifier for the user, e.g. 479
2. Venue ID - unique identifier for the venue, e.g. 49bbd6c0£f964a520f4531fe3

3. Venue category ID - unique identifier for the venue category, e.g.
4bf58dd8d48988d127951735

4. Venue category name - name for venue category, e.g. Arts & Crafts

5. Latitude & longitude - geographical location for venue, e.g. (40.41,-74.00)

6. UTC time - time of check-in, to the second, e.g. Tue Apr 03 18:00:09 +0000 2012
7. Time zone offset - the offset of local time from UTC for venue (in minutes), e.g. -240

As outlined in Section 1, we converted this raw data to a sequence or multiset of paths.
In particular, we let the vertices V denote venue categories with a path then representing
a day of check-ins for a given user. Notice, not all of the information above is required to
enact this operation. In particular, all one requires are user IDs, venue category names (or
IDs) and local time (a function of UTC and time zone offset).

S11.1.1 VENUE CATEGORY HIERARCHY

As discussed in Section 7, the venue categories have a hierarchical structure. For example
a venue of category “Tram Station” is a sub-category of “Train Station”, which is itself
a sub-category of “Travel & Transport”, implying a hierarchical label given by “Travel
& Transport > Train Station > Tram Station”. As it comes, the dataset of Yang et al.
(2015) uses low-level category names (“Tram Station”), whilst we consider the highest-level
(“Travel & Transport”). However, we do note that Yang et al. (2015) do not appear to
have used the lowest level in all cases.

To get the hierarchical category names we made use of information on the Foursquare
site (see here). Note that since the release of this dataset it appears that Foursquare have
changed how they label venues, thus there is another set of venue category names (see here).
However, the dataset of Yang et al. (2015) appears to be congruent with the former. Using
this information we were able to essentially ‘fill-in’ the higher-level category labels for each
category name appearing in the dataset of Yang et al. (2015), mapping their low-level labels
to top-level ones.

S11.1.2 DATA FILTERING

As mentioned in Section 7, we analysed only a subset of 50 interaction networks. This
was due to issues causes by the presence of outliers. In particular, it was seen that the
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inclusion of a few observations of significantly different size, for example, with many more
interactions, or observations which shared little in common with the others, could result
in an inferred mode that was empty, that is, an interaction network with no interactions.
Clearly, such an inference provides little insight, making this an undesirable scenario. In
addition, the MCMC scheme in such cases often showed poor mixing. In this subsection,
we outline exactly how this subset of data points was chosen.

Following processing of the raw data and some initial filtering, including the removal of
all length one paths and observations with less than 10 paths, we were left with a sample of
interaction multisets {£®}7_, with n = 402, from which we now select a subset. This we
did using a given distance dg(-,-) between interaction multisets. In particular, a subset of
size m was chosen as follows: find the data point which has the smallest total distance to its
m nearest neighbours, taking this neighbourhood as the subset. More formally, introducing
the notation N,, (&) for the indices of the m nearest neighbours of £ with respect to dg in
the sample, we let

£ = agmin | S du(€,6D)|,
EEDNy | ieNm(E)

with the desired subset then being given by {£®},¢ N (€%)-

Regarding the choice of distance dg, we took that used in the model-fit, that is, the
matching distance with an LSP distance between paths. Moreover, since the observations
were of quite different sizes, it made sense to also normalise this distance. In particular,
took the following

(&, &) = 2d\(E,E)

dm(€,0) + du(€',0) + du(E, €7
where here () denotes the empty multiset, which functions as our reference element in the
space of interaction multisets. This transformation appears in Donnat and Holmes (2018),
where it is also referred to as the Steinhaus transform, and Deza and Deza (2009), who refer
to it as the biotope transform metric (Section 4.1 therein).

Note that dyi(€, D) is equivalent to the sum of path lengths in &, since each path Z in &
is un-matched and hence penalised by drgp(Z,A), where A denotes empty path, which for
the LSP distance is equivalent to the the path length. It can be shown that for this new
distance one has 0 < dy(€,E’) < 1, where dy(€,E’) = 1 implies € and € are more-or-less
completely different.

To see why using this normalised distance is sensible an example is helpful. Consider
comparing £ = {(1,1,1)} with the following two observations

EW ={(2,2,2)} €% ={(1,1,1),(2,2,2),(2,2,2)}.

Observe that £ shares nothing in common with £ whilst £ and & share a common path,
namely (1,1,1). As such, intuitively we might say £ is more similar to £ than £ is,
that is, its distance should be lower. However, in this case we will have

dv(E,EM) =6 dyu(E,EP) =6

which appears to contradict this intuition. The problem here is the difference in the obser-
vation sizes; though & ) is more similar to & it is also larger, hence pushing up its distance.
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However, by taking sizes into account, the normalised distances evaluate to

_ 2% 6 - 2x6
1y _2%x6 @y_ _2%X6
(&, E7) 31346 du(€, ) 31916
2

which better agrees with the intuition that £® is closer to €. As such, if we use the
normalised distance we are likely to select a sample of data which share things in common,
hence providing an underlying signal which our method can uncover. If we instead used the
regular distance it is possible we may choose a sample of data which has no such common
signal, causing our method to output inferences of little interest.

S11.2 Multigraph SNF Model

Here we provide extra details regarding the generalisation of the SNF models (Lunagémez
et al., 2021) used in Section 7.3. In particular, we extend the SNF to model multigraphs.
Let V ={1,...,V} denote the fixed set of vertices, and let G = (V, ) denote a multigraph
(directed or un-directed, and possibly with self-loops), where £ is a multiset of edges, so
that an edge (4, j) can appear more than once in £. A multigraph G can also be represented
uniquely by its adjacency matrix A9 € Z‘;SV, where Aigj € Z>( denotes the multiplicity of
the edge (i,7) in &. N

To define a model, we place a probability distribution over all multigraphs (over the ver-
tex set V). This space, which we denote ¢, can be defined via the one-to-one correspondence
with adjacency matrices as follows

G ={G: A9 czL;V},

so that we seek to assign each G € ¢ a probability. Following the same rationale as the
SNF models (and the models of this paper), we construct this model via location and scale.
Moreover, this is done with the use of distance metrics, this time between multigraphs. We
have two parameters, the mode G™ € ¢ (location) and the dispersion v > 0 (scale). We also
assume that a distance metric has been pre-specified dg (G, G'), quantifying the dissimilarity
of any two multigraphs G and G’. Given this, we assume the probability of G € ¢ is, up to
proportionality, the following

p(G1G™,7) o exp{—yd(dc(9,9™))} (60)

where ¢(-) is a non-negative strictly increasing function with ¢(0) = 0. The notation
G ~ SNF(G™,~) is used when G is assumed to have been sampled from this probability
distribution. The normalising constant of (60) is given by the following

Z(gmv 7) = Z exp{—vgb(dc(g, gm))}’

Gevy

which, with ¢ being an infinite space, will in general be intractable.

Note this is more-or-less identical the SNF models seen in Lunagémez et al. (2021),
Definition 3.4. The only differences being (i) the sample space ¢ is now all muligraphs over
V, and (ii) the distance metrics dg (-, -) are between multigraphs.
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Supposing that a sample of multigraphs {g@') ", has been observed, as discussed in
Section 7.3, we can use this mutligraph-based SNF to construct the following hierarchical
model ‘

GW ~ SNF(G™,~) (fori=1,...,n)
G™ ~ SNF(Go, o)
v~ p(v)

where Gy € ¢ and 7 > 0 are hyperparameters, and p(y) denotes a prior for the dispersion.
The goal of inference is to now estimate G and -+, representing notations of average and
precision, respectively, and can be achieved by sampling from the posterior via MCMC. The
posterior in this case is given by the following

PG AHGOYL,) o (Hp<g<">\gm,v>> p(G™)p(7)
=1

=Z(G", ) "exp {—7 > dlda(6?, gm))}
=1

x exp {—70¢(da(G™,Go))} p(7),

which, since Z(G™,) is intractable and depends on the parameters being sampled, is
doubly-intractable (Murray et al., 2006). As such, to sample from it one must use a spe-
cialised MCMC algorithm. Since we are dealing with multigraphs, we cannot apply the
scheme proposed by Lunagémez et al. (2021) directly, and instead propose an alternative
approach via the exchange algorithm (Murray et al., 2006). In particular, we considered
a component-wise MCMC algorithm which alternates between sampling from the two con-
ditionals (i) p(y|G™, {GW}r,), and (i) p(G™|7y,{GP}™,). For (i) we apply the exchange
algorithm directly, whilst for (ii) do an exchange-within-Gibbs step, updating each edge in
turn in a single repetition.

We first outline the procedure to update the dispersion. Assume that ¢(7'|y) denotes
a suitable proposal density. With G™ fixed and current state «, first sample proposal ~/
from ¢(7'|7). Next, sample auxiliary data {G/}? ; i.i.d. where G ~ SNF(G™,~’) and then
accept 7/ with the following probability

s pIgm GO T, p(GE19™ A)a(r 1)
) = 17 - n
1> mm{ POIG™ G [Ty P(GT1G™ 2 Yol 1)
=min {1, H(,7)}

where

i=1 =1

H(Y,y) = exp { -(y =) (Z $(da(GW,6™) =Y d(da(G}, Qm))) }
(61)

p(y) ¢('1v)

For the proposal ¢(+'|y) we consider sampling uniformly over a e-neighbourhood of ~ with
reflection at zero, as defined in (35), for which one has ¢(v'|v) = q(~v|7).
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To update the mode, we consider a exchange-within-Gibbs scheme, whereby we scan
through all edges, propose new multiplicities and accept these with some probability. As-
sume one has defined a proposal ¢(z'|z), which proposes a new edge multiplicity 2’ € Z>
given current value x € Z>o. With v fixed and current state G, with A™ its adjacency
matrix (abbreviating notation for readability), we first generate proposal G™' by proposing
a new multiplicity for (i,7). More precisely, letting x = Agj’? denote the current multiplic-

ity, we sample 2’ from ¢(z’'|x), then construct proposal g™ via its adjacency matrix A",

defined to be

m' _ ! if (k7l) = (17])

M v else
that is, A™ is equal to A™ with the (ij)th entry altered from x to 2. Note this step will
alter if we are considering un-directed graphs, where we must let A%‘/ = A;’;' = a/, since
the adjacency matrices must be symmetric. Here we will assumed graphs to be directed.
Given proposal G™ | we next sample auxiliary data {G/}, iid. where G ~ SNF(Qm/, v)
and then accept G™ with the following probability

a(G™,G™) = min {1 p(G™ [, GV ) T p(GF1G™, 7)q (]’ }

PG, AGD L) TS p(GF1G™  7)a( |2)
= min {1, H(Qm/, gm)}

where

H(G™,G™) = exp { — (Z $(dc(GD,6™) = > é(da(g"?, gmn)
=1

i=1

- (Z 6(dc(G7,G™) = Y dldal S‘,Qm'))> (62)
i=1 i=1

0 (#(da (@™, Go)) = $(da(G™, G0))) }EE’\Z;

The steps above update the multiplicity of a single edge (7, j). In a single iteration of updat-
ing the mode G™, we consider looping over each (i,7) € V x V, updating their multiplicity
in this manner, leading to what can be seen as an exchange-within-Gibbs step for sampling
from p(G™ |, {GW}L).

For the proposal ¢(2'|x), we consider uniform sampling over a v-neighbourhood of z
with reflection as zero. More precisely, given current state z € Zxg, sample proposal z’ via

1. Sample z* ~ Uniform(A) where
A={jeZ :z—-—v<j<z+v}\{z}
is the v-neighbourhood of z in Z, excluding z, then

2. If * > 0 let 2/ = x*, else let 2’ = —a*,
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for which one has

0 ifex=2a
q(2'|r) = % ifex+a2' <v
% else

and hence ¢(2'|x) = g(z|2"), which will lead to cancellation of such terms in (62).

Finally, we note that both of these schemes to sample from p(G™|vy,{G;}!,) and
p(¥|G™, {GM}7_ ) require the ability to obtain an ii.d. sample {G}? | where GF ~
SNF(G™, ) for some given (G",~). Unfortunately, this cannot be done in general. How-
ever, we can replace this with approximate MCMC-based samples, exactly as we did for
our interaction-sequence and interaction-multiset models (Section 5.6). To do so, we re-use
the scheme above (without auxiliary sampling).

In particular, with current state G, we update edge (7, 7) as follows. Letting x = Aigj,
we sample 2’ from ¢(2'|z) (via v-neighbourhood as above), constructing proposal G’ via its
adjacency matrix

g’ o' if (k1) = (4, )
A = AY |
v clse

that is, G’ is equivalent to G with the multiplicity of edge (7,j) flipped from z to z’. We
then accept G’ with the following probability

p(G'1G™,v)q(x]2’) }
" p(G1G™, v)q(2!|x)

~ min {1, exp{ 7 (6(da(G'.6™) — 6(d6(G.G™) }ZE?B } :

a(G,G’") = min {1

Note this will update a single edge (i,7). One could now follow the approach used to
update the mode G™, looping over all edges in turn. However, in this case we opt to instead
choose a single edge at random to update. That is, in a single iteration, we choose (i, j)
uniformly from V x V, and update it as above. This can be seen as a Gibbs sampler with
a randomised sweep strategy (Levine and Casella, 2006).
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Algorithm 4: Evaluating edit distance dg 5.

Data: Interaction sequences S = (Zi,...,Zy) and &' = (71, ...,Z),)
Result: dg 5.)(S,S’) (Definition 4)

O e RINHDX(M+1)
Cn =0

C(i+1)1 =Cpn+ 5(1'@) (fOl“ 1=1,..., N);
Cl(j-‘rl) = Cl] + (S(I]/) (fOI' ] = 1, coey ]\4)7
fori=1,...,ndo

for j=1,...,mdo

9

Cigg1) +0(Z)
Clit1)(j+1) = min § Ciy1y; + 0(Z5)
Cij + d](Ii,IJ{)

end

end
return C(n1)(n41)

Algorithm 5: Evaluating edit distance dg 5. (light memory)

Data: Sequences S = (Zi,...,Zy) and S’ = (71, ...,Z};)
Result: d 5.)(S,S’) (Definition 4)
Zprev  gzewr R(M—i—l);
ZPY =0, Z§wr = 0,
Z5Y =27 4 0(Z)) (for i =1,...,M);
fori=1,...,ndo
Z5W = Z5WT 4+ 6(1h);
forj=1,...,mdo

Z]I-)ff’ +0(Zy)

23 = min § 28 +5()

ijrev + d[(Zz,Z]/)
end
zprev _ geurr
end
return Zj/h
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Algorithm 6: Evaluating LCS distance d,cs

Data: Paths Z = (z1,...,2,) and Z' = (y1,. .., Ym)
Result: dics(Z,7') (Section 4.3)

C € 7., (n)x(mt)
Ci1 =0

Cligin =1 (fori=1,...,n);
Cigy=J (for j=1,...,m);
6 =0;

fori=1,...,ndo

for j=1,...,m do

?

Cig+1) +1
Carn+y =min § Cppn; +1
Cij +2 - 1(x; # yj),
end

end
return C, 1 1)(m+1)

Algorithm 7: Evaluating LCS distance dp,cs (light memory)

Data: Paths Z = (x1,...,2,) and Z' = (y1,. .., Ym)
Result: disp(Z,Z') (Section 4.3)
prev curr (m+1),
ZpreV’ 7 Cmf ZJF .
Ziy =Z3 =i (for i =0,...,m);
fori=1,...,n do
qurr — qurr _"_ 1;
for j=1,...,m do
prev
Ziq +1
Z7Y = min ZiMr+1
27 2100 7 )
end
Zprev — Zcurr.
end
return Z7"%
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Algorithm 8: Evaluating LSP distance drsp

Data: Paths Z = (z1,...,2,) and Z' = (y1,. .., Ym)
Result: disp(Z,Z') (Section 4.3)
Q € 7., () (m+D);
Q11 =0;
Qi+1)1 =0 (fori=1,...,n);
Qigj+1) =0 (for j =1,...,m);
6 =0;
fori=1,...,ndo
for j=1,...,m do
if z; = y; then
Qi+ = Qij +1
0 = max (z, Q(i+1)(j+1))
else
| Qi+ =0
end

end

end
return n +m — 20

Algorithm 9: Evaluating LSP distance drgp (light memory)

Data: Paths Z = (z1,...,2,) and Z/ = (y1,. .., Ym)
Result: disp(Z,Z') (Section 4.3)

Zprev  geurr ¢ Zg_m—'—l);

Z0 = Z5 =0 (for i = 0,...,m);

6 =0;

fori=1,...,ndo

for j=1,...,mdo

if T =Yj then

Z]C—lil-l‘lr — Z]prev _"_ 1

J— curr
0 = max <z, Zj+1)
else
curr __
| ZHi =0
end
end
Zprev — ZCuI‘I'

end
return n +m — 20
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Algorithm 10: SIS posterior component-wise MCMC

Input: observed data {S®}7_,

initialise (S5, o)

fori=1,...,mdo
// Update gamma
v = dispersion_update(S!™,, vi—1) // (Algorithm 11)
// Update mode

S = mode_update(S™,v;) // (Algorithm 12)

1
end

Output: sample {(S™, )},

7

Algorithm 11: SIS posterior dispersion conditional accept-reject

Input: (S, ;)

Output: ;11
Function dispersion_update(S]”, v;):

)

sample v/ via q(v'|y) of (35) // Sample proposal
sample {S/}7 ; ii.d. from SIS(S™,~') // Sample auxiliary data
evaluate a = «a(v,7’) of (36) // Acceptance probability

~" with probability a
Yi+1 = . .
~  with probability (1 — «)
return ;41 // Accept/reject proposal

end
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Algorithm 12: SIS posterior mode conditional accept-reject

Input: (S, ;)
Output: S
function mode_update (S/”, v;):

let (8m77) = (Slmf}/z)
sample z ~ Bernoulli(5)
if z = 1 then

// Edit allocation move

let u, f(u,S™) and p(u|S™) be as in Supplement S8.3

// Path insertion & deletion move

let u, f(u,S™) and p(u|S™) be as in Supplement S8.4

- [S™]"  with probability «
i+l =

S™  with probability (1 — «)

m
return S},
end

62

// Invoke involution

sample u via p(u’Sm) // Sample auxiliary variable

([Sm]/’ u/) = f(8m7u)

sample {SZ* ?:1 ii.d. from SIS([Sm]/,’y) // Sample auxiliary data

a=a(S8™,[S™]) of (39), using ratio (44) // Acceptance probability
else

// Invoke involution

sample u via p(u!Sm) // Sample auxiliary variable

([Sm]/v u/) = f(8m7u)

sample {SZ* ?:1 ii.d. from SIS([Sm]/,’)/) // Sample auxiliary data

a=a(S8™,[S™]) of (39), using ratio (46) // Acceptance probability
end

// Accept/reject proposal
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Algorithm 13: SIS model iMCMC sampling

Input: (S§™,v) (model parameters)

Input: veq, viq, p(Z|S), S (MCMC tuning parameters)
Input: m (sample size), b (burn-in), [ (lag)

initialise S;

initialise 7 = 1;

while : < m do

sample z ~ Bernoulli(5)

if z = 1 then

// Edit allocation move

let u, f(u,S) and p(u|S) be as in Supplement S8.3
sample u via p(ulS)

Gs/’ul):: f(S,u)

evaluate « = (S, 8’) of (47) using (48)

else

// Path insertion & deletion move

let u, f(u,S) and p(u|S) be as in Supplement S8.4
sample u via p(ulS)

(8,7 u,) = f(S’ u)

evaluate a = a(S,S’) of (47) using (49)

end

// Accept/reject proposal
S— {S’ with probability «
S with probability (1 — «)
// Store sample (accounting for lag and burn-in)

if (i >b) and (i mod!=1) then

i=1+1
end

end
Output: {S;}",

Algorithm 14: SIM posterior component-wise MCMC

Input: observed data {& (i)}?zl
initialise (£, 70)
fori=1,...,mdo
// Update gamma
v = dispersion_update(E™, vi—1) // (Algorithm 15)
// Update mode
E™ = mode_update (£ ,7;) // (Algorithm 12)

end
Output: sample {(£", i)},

]
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Algorithm 15: SIM posterior dispersion conditional accept-reject

Input: (S, )

Output: ;11

Function dispersion_update(&", v;):
let (E™,7) = (&, %)

sample v/ via q(v'|y) of (35)

evaluate o = a(v,7’) of (51)
~" with probability a
Yi+1 = . .
~  with probability (1 — «)

return ;41
end

sample {&}7 , i.i.d. from SIM(E™,~')

// Sample proposal
// Sample auxiliary data

// Acceptance probability

// Accept/reject proposal
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Algorithm 16: SIM posterior mode conditional accept-reject

Input: (£, ;)
Output: &7
function mode_update (&£, v;):

let (£™,7) = (&]", )
sample z ~ Bernoulli(5)
if 2z = 1 then

// Edit allocation move

let w, f(u,8™) and p(u|S™) be as in Supplement S8.3

sample u via p(u]Sm) // Sample auxiliary variable

([Sm]/, u’) = f(Sm,u) // Invoke involution

obtain [Sm]/ from [Sm]/ // Disregard order

sample {51* ?:1 i.i.d. from SIM([Em]’,’y) // Sample auxiliary data

a=alE™ [E™]) of (55), using ratio (44) // Acceptance probability
else

// Path insertion & deletion move

let u, f(u,S8™) and p(u|S™) be as in Supplement S8.4

sample u via p(u’Sm) // Sample auxiliary variable

([Sm]/, u’) = f(Sm,u) // Invoke involution

obtain [(‘:m]/ from [Sm]/ // Disregard order

Sample {EZ* ?:1 i.i.d. from SIM([Em]/,’y) // Sample auxiliary data

a=alE™ [E™]) of (55), using ratio (46) // Acceptance probability
end

m _ JIE™M" with probability a
o E™  with probability (1 — «)

m
return &}y

end
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obtain ™ from £™ // Place paths in arbitrary order

// Accept/reject proposal
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Algorithm 17: SIM model iMCMC sampling

Input: (£™,7) (model parameters)

Input: veq, g, p(Z|S), 8 (MCMC tuning parameters)
Input: m (sample size), b (burn-in), [ (lag)

initialise &;

initialise 7 = 1;

while i <m do

sample z ~ Bernoulli(5)
if z = 1 then
// Edit allocation move

let u, f(u,S) and p(u|S) be as in Supplement S8.3

(&' ') = f(S,u)

obtain & from &’

a=a(&, &) of (59) using (48)
else

// Path insertion & deletion move

let u, f(u,S) and p(u|S) be as in Supplement S8.4

obtain S from &£ // Place paths in arbitrary order

sample u via p(u’S) // Sample auxiliary variable
// Invoke involution
// Disregard order

// Acceptance probability

// Accept/reject proposal
e {5’ with probability a
E  with probability (1 — «)
// Store sample (accounting for lag and burn-in)

if (i >b) and (i mod ! =1) then

1=1+1
end

end
Output: {&}7,
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sample u via p(u]S) // Sample auxiliary variable

(S’,u’) = f(S,u) // Invoke involution

obtain &’ from &’ // Disregard order

o= 04(5,5/) of (59) using (49) // Acceptance probability
end
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