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emission abatement effort increases with its basic production cost, green efficiency, and carbon tax rate.

Under nonlinear demand, less productive firms may exert greater effort to improve their green reputation,

a phenomenon not observed under linear demand. Numerical simulations also show that excessive carbon
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) emphasizes the importance of limiting the rise in

global average temperature to 2 ◦C to avoid the most dangerous consequences of climate change. In response

to growing public concern about environmental issues, consumer attention to firm environmental practices

and investments is increasing. This heightened awareness has been shown to influence consumer behavior,

with more individuals willing to pay a premium for environmentally friendly products. For example, Laroche

et al. (2001) investigated the demographic, psychological, and behavioral traits of environmentally conscious

consumers and found a growing willingness to pay more for green products. Additional reports confirm this

trend: in Europe, 75% of consumers expressed willingness to purchase green products at a premium in 2008,

compared to only 31% in 20051. In OECD countries, 27% of consumers are highly motivated to purchase

environmentally friendly products and actively participate in environmental protection efforts2.

Despite increasing pressure from consumers and regulators, firms’ strategic decisions in balancing carbon

abatement efforts with profitability remain complex, especially in oligopolistic markets where competition,

cost heterogeneity, and nonlinear demand structures interact. In such settings, green reputation becomes

a strategic asset: it not only affects consumer demand but also determines firms’ market power and long-

term viability. This paper models firms’ green reputation and abatement strategies in a nonlinear Cournot

duopoly framework, offering theoretical insights and policy implications.

This study develops a theoretical framework to investigate how firms strategically respond to consumers’

green awareness under oligopolistic competition. Specifically, we investigate firm decision-making in terms

of green reputation and carbon emission abatement in the presence of environmentally conscious consumers.

Because many carbon-intensive industries have a small number of dominant players, we adopt an oligopoly

structure, focusing on a Cournot duopoly. Economists generally believe that carbon pricing is a more effective

mechanism for reducing greenhouse gas emissions than regulatory or command-and-control approaches.

Carbon taxes and emissions trading are the two primary forms of carbon pricing that are currently used.

As noted by Timilsina (2022), these mechanisms have comparable economic effects when designed similarly.

Thus, our model uses carbon taxation as a representative policy tool. We propose a cost function that

separates basic production costs from green production costs, the latter being associated with the use of

environmentally friendly technologies. These two components are determined by the basic cost level and

the green efficiency level, respectively.

The novelty of the models presented in this paper can be attributed to three major factors. First, we

1See European Commission (2008, 2009)
2See OECD (2002).
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incorporate green reputation into firms’ decision-making processes. The concept of green reputation is based

on the work of André et al. (2011), who studied the effect of public disclosure of environmental records in a

dynamic framework. Their findings revealed that disclosing a firm’s environmental performance to the public

has a significant impact on its reputation and public image, influencing market outcomes. Building on this

insight, we consider green reputation a strategic variable that influences consumers’ willingness to pay and,

consequently, firms’ competitive positioning in environmentally sensitive markets. Second, we construct a

novel demand function that embeds green reputation alongside output levels, drawing from the structure

of the widely used isoelastic demand function. This functional form, initially proposed by Puu (1995), has

been widely applied in industrial organization and nonlinear dynamics literature (e.g., Ahmed and Agiza

(1998); Bischi et al. (2007); Li et al. (2025); Li and Su (2024)) due to its analytical tractability and ability to

capture nonlinear substitution effects. Our modified demand function takes into account the roles of both

output and reputation in shaping consumer preferences under green awareness. Third, we develop a dynamic

Cournot game based on the gradient adjustment mechanism to explore the green policies’ long-term impact

on market dynamics. Dynamic oligopoly games have been extensively used to study boundedly rational

behavior and stability issues in industrial organizations (e.g., Bischi et al. (2010); Puu (2011)), but their

application in the context of carbon emission abatement remains limited. By incorporating green reputation

and policy instruments into the adjustment process, our model offers new insights into how environmental

policies affect market stability and firm behavior over time.

To support our theoretical analysis, we employ symbolic computation methods, including the triangular

decomposition method and the cylindrical algebraic decomposition (CAD) method. These methods are

known for their precision and error-free nature, making them ideal for calculating and verifying economic

results. We employ the triangular decomposition method to determine the Nash equilibrium of the proposed

model and demonstrate that firms’ equilibrium outputs are strictly positive. Furthermore, the CAD method

allows us to conduct a thorough comparative static analysis, examining how equilibrium green reputation,

output, market share, and profit react to changes in model parameters.

Beyond the novelty of the modeling framework, this paper provides several substantive economic findings.

In the static analysis, we show that a firm’s equilibrium green reputation (interpreted as its level of emission

abatement effort) increases with both the basic production cost and the carbon tax rate, but decreases

with the green efficiency level. Notably, our result that firms with lower production efficiency exert greater

abatement effort under consumer environmental awareness is novel in the literature and stems specifically

from the nonlinear demand setting. In contrast, studies using linear demand functions Buccella et al. (2021);

Elsadany and Awad (2019); Wen et al. (2018); Xu et al. (2016) do not demonstrate this positive relationship.
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This insight highlights an interesting mechanism: when consumers value green reputation, less efficient firms

may face greater pressure to reduce emissions in order to remain competitive. Second, to examine the impact

of green policy parameters on market stability, we develop a simple dynamic model. We analyze the dynamic

system’s Jacobian matrix under symmetry and find that Nash equilibrium stability can be lost when both

the basic cost and the carbon tax rate are either too high or too low, or when green costs are excessively

high. These theoretical results are supported by numerical simulations, which provide additional insight

into how environmental policy influences market dynamics.

The economic modeling of consumers’ green awareness has attracted substantial attention. Conrad

(2005) analyzed how product differentiation affects markets when consumers care about environmental

attributes. For instance, in a vertically differentiated framework, Garćıa-Gallego and Georgantźıs (2010)

found that environmental awareness campaigns might reduce overall welfare. Yakita and Yamauchi (2011)

examined firms’ R&D incentives under horizontal product differentiation and environmental R&D spillovers

in a symmetric duopoly. Wen et al. (2018) studied pricing and carbon reduction strategies in a duopoly facing

both emissions trading and consumer awareness. Other recent studies have incorporated green preferences

into utility functions to explore the strategic behavior of firms under Cournot and Bertrand competition Xing

and Lee (2024a); Xu and Lee (2023, 2024). For additional literature on consumer environmental awareness,

see also Gori et al. (2024); Liu et al. (2012); Wen et al. (2018); Xing and Lee (2024b, 2025); Zhang et al.

(2015).

A review of the literature reveals a plethora of studies that do not account for the possibility of consumers

having green awareness but are still relevant to the field of emission abatement games. For example, Poyago-

Theotoky (2007) examined two types of R&D organization regimes: independent R&D and environmental

R&D cartels. This is pioneering work on carbon tax policies and competition policies related to quantity-

setting duopolists with end-of-pipe technology. Ouchida and Goto (2014) revisited the model proposed by

Poyago-Theotoky (2007) and conducted further analyses under revised environmental damage parameters.

Meanwhile, Buccella et al. (2021) examined the strategic choices of firms in adopting abatement technologies

in an environment of pollution externalities when the government imposed a carbon tax to incentivize

firms to take abatement actions. Results indicate that when social awareness of a cleaner environment

is relatively low (resp. high) and the index measuring the relative cost of abatement is relatively high

(resp. low), the strategic interaction between two independent, competitive, and self-interested firms in

the abatement game will lead to them not abating (resp. abating). In a related study, Xu et al. (2016)

compared the Cournot and Bertrand models of competition in a differentiated mixed duopoly, incorporating

both emissions taxes and privatization policies. The findings showed that the socially optimal combination
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of emissions tax and privatization resulted in the greatest environmental damage. They also stated that

Cournot competition results in lower environmental damage and social welfare than Bertrand competition.

Subsequently, Elsadany and Awad (2019) introduced naive and boundedly rational adjustment mechanisms

into dynamic models, building on Xu et al. (2016). Regarding dynamic games, the work of Zeppini (2015)

and Cavalli et al. (2023) should also be mentioned. They approached the environmental-economic problem

from a new perspective, focusing on technologies rather than companies, and proposed a discrete choice

model for the transition from dirty to clean technologies.

The remaining sections of this paper are organized as follows. Section 2 establishes a static duopoly

game for the issue of carbon emission abatement. Section 3 compares the static analysis of the static game’s

Nash equilibrium. Section 4 introduces a dynamic model to examine the impact of green policies on market

stability. Section 5 concludes the paper.

2 Static Model

Assume two firms produce homogeneous products and compete directly with one another. In this study, we

utilize q1 and q2 to represent the output of the two firms, and e1 and e2 to denote the carbon emissions per

unit of product produced by the two firms. The regulator will levy a carbon tax on firms, with a tax rate

of Tc ≥ 0. Consequently, firm i will be taxed Tceiqi.

In a market featured by green consciousness, consumers prefer products with lower carbon emissions

per unit. In particular, consumers are most willing to pay for products manufactured by firms with zero

emissions (i.e., ei = 0). Consumer’s willingness to pay decreases as the level of emissions, represented by ei,

increases. In this context, we employ e0 to represent the emissions per unit for which the willingness to pay

is zero. In practice, questionnaires and other similar instruments can be used to estimate the value of e0,

which is subject to change as consumers’ green awareness shifts. An increase in consumers’ green awareness

will lead to a decrease in e0.

As a result, the green reputation of Firm i can be defined as

ui =
e0 − ei
e0

. (1)

When ui = 0, we have ei = e0, indicating that the firm’s emissions per unit have reached the limit of

consumers’ willingness to pay. In this case, consumers are no longer willing to pay for the firm’s product.

When ui = 1, we have ei = 0, indicating that the company’s production process is entirely free of carbon

emissions. In practice, a company’s green reputation will not be confined to the extremes of 0 or 1 but will
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occupy a position somewhere in the middle. Consequently, we assume that ui ∈ (0, 1) in what follows.

Suppose the representative consumer’s utility function is

Uc = ln(u1q1 + u2q2).

This utility function is derived by following the utility function, i.e., ln(q1+q2), which represents the isoelastic

demand. Several studies, including Ahmed and Agiza (1998); Gao et al. (2012); Li et al. (2025); Li and Su

(2024); Puu (1991), have used the isoelastic demand function to describe the nonlinear nature of market

prices.

Accordingly, the consumer surplus is defined as

CS = Uc − (p1q1 + p2q2), (2)

where p1 and p2 are the prices of the two commodities, respectively.

Lemma 1. The inverse demand functions for the products of the two firms are

pi =
ui

uiqi + u−iq−i
, i = 1, 2. (3)

Proof. The first-order condition for maximizing (2) is

∂Uc

∂qi
=

ui
uiqi + u−iq−i

− pi = 0, i = 1, 2,

which can be solved by (3). Moreover, the second-order condition always holds because

∂2Uc

∂q2i
= − u2i

(uiqi + u−iq−i)2
< 0, i = 1, 2,

which completes the proof.

Remark 1. From Eq. (3), the price of products is nonlinear with respect to ui and qi. Further calculations

yield

∂pi
∂ui

=
u−iq−i

(uiqi + u−iq−i)2
> 0.

Holding other factors constant, a rise in ui will lead to a rise in pi.

In addition, we have

p1
p2

=
u1
u2

, (4)
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which implies that the ratio of firms’ green reputation determines the ratio of their product prices. In

particular, the product produced by the firm with a better green reputation is more expensive because

consumers are willing to pay more for greener products. Notably, our model depicts a situation in which

consumers are “perfectly” green, in the sense that, for a product with a green reputation close to zero, their

willingness to pay is also close to zero.

Consider the production side. Given that ei = e0(1 − ui), it follows that Firm i is subject to a carbon

tax of the form

Tceiqi = Tce0(1− ui)qi.

For simplicity, we set d = Tce0. Consequently, the tax imposed on Firm i can be expressed as d(1 − ui)qi,

where d ≥ 0.

Furthermore, it is assumed that the production cost of Firm i is given by

Ci(qi) = ciqi + riu
2
i qi,

where ci > 0 and ri > 0. In this context, the term “basic production cost” refers to the cost incurred by

Firm i in the absence of any emission reduction measures, represented by ciqi. Meanwhile, the term “green

production cost” refers to the additional cost incurred by Firm i when adopting green technologies, denoted

by riu
2
i qi. The green efficiency parameter ri captures the discrepancy between the green costs of different

firms due to their varying emission abatement technology levels. A lower value of ri indicates that Firm i

can achieve a given level of green reputation ui at a lower green cost, conferring a green cost advantage. We

call ci and ri the basic cost level and the green efficiency level of Firm i, respectively.

The term riu
2
i qi denotes the green cost and is quadratic in ui, reflecting a widely accepted assumption

in the environmental economics literature: the marginal cost of environmental improvement increases with

effort. In other words, the quadratic form captures the idea that each additional unit of carbon reduction

increases the cost of achieving it. This functional specification originates from the seminal work of Nordhaus

(1991) and Moraga-González and Padrón-Fumero (2002), and has since been adopted in more recent studies

such as Liu et al. (2012) and Wen et al. (2018).

Based on the outlined assumptions, the profit of Firm i is given by

Πi =
uiqi

uiqi + u−iq−i
− d (1− ui) qi − (ci + riu

2
i )qi. (5)

In this analysis, ui and qi are treated as the firm’s strategic decision variables, whereas d, ci, and ri are
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treated as exogenous parameters. In the static game framework, the two firms simultaneously choose their

green reputation levels ui and output quantities qi. Consumers are assumed to observe the green reputations

of both firms and make purchasing decisions based on the relative quantities and green reputations of the

goods available on the market.

Firm i maximizes its profits by making decisions on ui and qi. We have

∂Πi

∂qi
=

uiu−iq−i

(uiqi + u−iq−i)
2 − d (1− ui)−

(
ci + riu

2
i

)
,

and the second-order partial derivative is

∂2Πi

∂q2i
= − 2u2iu−iq−i

(uiqi + u−iq−i)
3 < 0.

Thus, Firm i determines its output by the first-order condition ∂Πi
∂qi

= 0.

Moreover, a few calculations show that

∂Πi

∂ui
=

qiu−iq−i

(uiqi + u−iq−i)
2 + dqi − 2riuiqi,

and the second-order partial derivative is

∂2Πi

∂u2i
= −

2qi
(
riu

3
i q

3
i + 3riu

2
iu−iq

2
i q−i +

(
3riuiu

2
−iq

2
−i + u−iq−i

)
qi + riu

3
−iq

3
−i

)
(uiqi + u−iq−i)

3 < 0.

Thus, Firm i selects the desired level of green reputation by the first-order condition ∂Πi
∂ui

= 0.

Theorem 1. The model has one unique Nash equilibrium EN = (u∗1, u
∗
2, q

∗
1, q

∗
2), where

u∗i =

√
ci + d

ri
, i = 1, 2, (6)

and

q∗i =
riu

∗
i (2r−iu

∗
−i − d)

4 (ci + d)
(
d2 +

((
1− 2u∗−i

)
r−i + (1− 2u∗i ) ri

)
d+

(
2riu∗iu

∗
−i + c−i

)
r−i + ciri

) , i = 1, 2. (7)

Proof. The Nash equilibrium EN = (u∗1, u
∗
2, q

∗
1, q

∗
2) satisfies the first-order conditions

∂Πi

∂ui

∣∣∣
(u∗

i ,u
∗
−i,q

∗
i ,q

∗
−i)

= 0,
∂Πi

∂qi

∣∣∣
(u∗

i ,u
∗
−i,q

∗
i ,q

∗
−i)

= 0, i = 1, 2.
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As a result, a system of equilibrium equations is obtained as follows:



u∗1u
∗
2q

∗
2

(u∗1q
∗
1 + u∗2q

∗
2)

2 − d (1− u∗1)−
(
c1 + r1u

∗2
1

)
= 0,

u∗2u
∗
1q

∗
1

(u∗1q
∗
1 + u∗2q

∗
2)

2 − d (1− u∗2)−
(
c2 + r2u

∗2
2

)
= 0,

q∗1u
∗
2q

∗
2

(u∗1q
∗
1 + u∗2q

∗
2)

2 + dq∗1 − 2r1u
∗
1q

∗
1 = 0,

q∗2u
∗
1q

∗
1

(u∗1q
∗
1 + u∗2q

∗
2)

2 + dq∗2 − 2r2u
∗
2q

∗
2 = 0.

The above system is nonlinear, and the triangular decomposition method3 can help analyze the structure

of its solution. We use u∗i and q∗i as variables and the remaining symbols as parameters. Using the triangular

decomposition method4, we can transform the equilibria in the equilibrium equations into the zeros of the

triangular sets [T1, T2, T3, T4], where

T1 = r1u
∗2
1 − c1 − d,

T2 = r2u
∗2
2 − c2 − d,

T3 =4 (c1 + d)
(
d2 + ((1− 2u∗2) r2 + (1− 2u∗1) r1) d+ (2 r1u

∗
1u

∗
2 + c2) r2 + c1r1

)
q∗1

− r1u
∗
1(2 r2u

∗
2 − d),

T4 =
(
r2u

∗2
2 + c2 + d− u∗2d

)
q∗2 −

(
r1u

∗2
1 + c1 + d− u∗1d

)
q∗1.

(8)

T1 contains only the variable u∗1, T2 contains only the variable u∗2, T3 contains the variables u∗1, u
∗
2, q

∗
1,

and T4 contains the variables u
∗
1, u

∗
2, q

∗
1, q

∗
2. To put it differently, the number of variables gradually increases,

and [T1, T2, T3, T4] exhibits a triangular form. Such a special structure can greatly facilitate our analysis of

the Nash equilibrium.

Solving u∗1, u
∗
2 from T1 = 0, T2 = 0 and noting that u∗1 > 0 and u∗2 > 0, we obtain (6). From T3 = 0, the

expression for q∗1 can be derived immediately, and the expression for q∗2 follows by the symmetry.

Assumption 1. According to Eq. (6), we assume ci + d < ri, i = 1, 2, because u∗i ∈ (0, 1).

Proposition 1. For the Nash equilibrium EN = (u∗1, u
∗
2, q

∗
1, q

∗
2), there must be q∗i > 0, i = 1, 2.

3The triangular decomposition method can be viewed as an extension of the Gaussian elimination method. The primary
concept behind both methods is to transform a system of equations into a triangular form. However, the triangular decomposition
method is applicable to polynomial systems, whereas the Gaussian elimination method is only applicable to linear systems. For
more details of triangular decomposition, see, e.g., (Jin et al., 2013; Li et al., 2010; Wang, 2001; Wu, 1986).

4The reader can directly use the Triangularize function from the RegularChains package of Maple 2022.
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Proof. According to Eq. (7), to prove q∗i > 0, we must show that 2r−iu
∗
−i − d > 0 and that

d2 +
((
1− 2u∗−i

)
r−i + (1− 2u∗i ) ri

)
d+

(
2riu

∗
iu

∗
−i + c−i

)
r−i + ciri > 0. (9)

Since c−i + d < r−i, we have

∂
(
2r−iu

∗
−i − d

)
∂d

=

√
r−i

c−i + d
− 1 > 0.

This implies that 2r−iu
∗
−i − d is monotonically increasing with d, thus

2r−iu
∗
−i − d = 2

√
r−i(c−i + d)− d ≥ 2

√
r−i(c−i + 0)− 0 > 0.

Meanwhile, the proof of the inequality (9) is more intricate and can be approached through the CAD

method. In this demonstration, we prove (9) only for the case of i = 1 (the proof for the case of i = 2 is

analogous). We know that r1u
∗2
1 − c1 − d = 0 and r2u

∗2
2 − c2 − d = 0, where 0 < u∗1 < 1, 0 < u∗2 < 1, and

take into account the parameter constraints c1 > 0, c2 > 0, r1 > 0, r2 > 0, and d ≥ 0. Then proving (9) for

i = 1 is equivalent to showing that the following inequality does not hold:

d2 + ((1− 2u∗2) r2 + (1− 2u∗1) r1) d+ (2r1u
∗
1u

∗
2 + c2) r2 + c1r1 ≤ 0.

In other words, we only need to prove that the following semi-algebraic system has no real solutions:



r1u
∗2
1 − c1 − d = 0, r2u

∗2
2 − c2 − d = 0,

u∗1 > 0, u∗2 > 0, 1− u∗1 > 0, 1− u∗2 > 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

d2 + ((1− 2u∗2) r2 + (1− 2u∗1) r1) d+ (2r1u
∗
1u

∗
2 + c2) r2 + c1r1 ≤ 0.

Using the CAD method5, we obtain computational results indicating no real solutions to the above system,

thereby completing the proof.

5The reader can directly use the SamplePoints function in the RegularChains package of Maple 2022. The CAD method is
the first practical quantifier elimination algorithm proposed by Collins (1975). Therefore, it is also known as Collins’ algorithm.
This algorithm decomposes any semi-algebraic set in the n-dimensional space of real numbers into a finite number of disjoint
semi-algebraic sets. The same set of polynomials defines all of the resulting semi-algebraic sets, and the sign of the polynomials
defined on each semi-algebraic set remains constant. Specifically, the CAD method can compute the CAD and its sample points,
ensuring that the signs of the given polynomials remain constant across decompositions. Note that the original CAD method
was not efficient enough and was later improved by Collins and Hong (1991) and Brown (2001).
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3 Comparative Static Analysis

This section presents a comparative static analysis of firms’ equilibrium green reputation, output quantity,

market share, and profit, as well as their equilibrium consumer surplus.

3.1 Green Reputation

Proposition 2. The equilibrium green reputation of Firm i, i.e., u∗i , will increase with ci or d, but decrease

with ri.

Proof. The conclusion can be immediately derived from Eq. (6).

Eq. (1) calculates the equilibrium emissions per unit of Firm i as e∗i = e0(1 − u∗i ). According to

Proposition 2, the regulator can reduce the firm’s per-unit emissions e∗i by increasing the equilibrium green

reputation u∗i . This can be achieved by enhancing green efficiency—i.e., lowering the value of ri—and

by raising the carbon tax rate d. In addition, the regulator can reduce the baseline emissions parameter

e0 through initiatives such as green education and public awareness campaigns, thereby contributing to

emissions reduction.

According to Eqs. (4) and (6), the equilibrium prices of the two firms satisfy

p∗1
p∗2

=
u∗1
u∗2

=

√
c1 + d

c2 + d

√
r2
r1
.

If c1 = c2, then
p∗1
p∗2

=
u∗
1

u∗
2
=

√
r2
r1
. This indicates that, when basic costs are equal, the firm with a green

efficiency advantage (i.e., a lower ri) achieves a higher equilibrium green reputation, resulting in a higher

equilibrium price. Alternatively, if r1 = r2, then
p∗1
p∗2

=
u∗
1

u∗
2
=

√
c1+d
c2+d . This implies that when green efficiency is

constant, the equilibrium green reputation level u∗i correlates positively with the basic cost ci. From a profit-

maximization perspective, a higher ci incentivizes the firm to raise its price and imposes greater pressure to

improve its green reputation to remain competitive in the face of consumer environmental awareness. To

the best of our knowledge, this result has not been observed in existing studies under linear demand, and it

highlights a unique mechanism specific to the nonlinear framework considered in this paper.

For analytical simplicity, most models of green oligopoly competition in the carbon emission abatement

literature use linear demand functions. However, the linearity assumption may overlook potential links

between firms’ willingness to reduce emissions and their production efficiency. For example, Elsadany and

Awad (2019) and Xu et al. (2016) demonstrated that, under both the Cournot and Bertrand frameworks,

firms’ emission abatement efforts depend solely on the carbon tax rate. The model by Buccella et al. (2021),
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which incorporates green costs, finds that abatement effort increases with the carbon tax rate but decreases

with the level of green costs. Wen et al. (2018) introduced a carbon trading framework that incorporates

green-aware consumers, demonstrating that firms’ abatement incentives increase with the carbon price and

consumer environmental awareness. Notably, all of these studies rely on linear demand and do not uncover

any relationship between production efficiency and firms’ abatement behavior.

In contrast, our model employs a nonlinear demand function and reveals a novel mechanism: firms with

higher basic production costs may have greater incentives to improve their green reputation and reduce

emissions. Although this result may appear counterintuitive, it emerges naturally from nonlinear consumer

preferences and emphasizes the importance of modeling demand curvature in environmental competition.

We acknowledge that this theoretical prediction requires empirical validation, which we leave for future

research.

3.2 Output Quantity

Proposition 3. If ci < c−i, then q∗i will decrease with d.

Proof. By virtue of the symmetry, it is sufficient to demonstrate that
∂q∗1
∂d < 0 if c1 < c2. We have

∂q∗1
∂d

= −

3r1(((
2

3
r2c2 +

2

3
r2d+

1

3
d2)a1 −

d3

4
+ (− r1

12
− c1

6
− 13r2

12
)d2 + ((−2c1

3
− 11c2

12
)r2 +

r1c1
12

)d+

c1(r1c1 − 3r2c2)

6
)a2 + ((−7d2

6
+ (−c1

6
− 4c2

3
)d− c1c2

3
)a1 + d3 + (

2c1
3

+
r1
3

+ c2 +
r2
3
)d2+

((
c1
6

+
c2
2
)r2 + (

2c2
3

+
r1
6
)c1 +

c2r1
2

)d+
c2(c1 + c2)r2

6
− r1c1(c1 − 3c2)

6
)r2)

2a1a2(c1 + d)((−2d+ 2a1)a2 − 2da1 + d2 + (r1 + r2)d+ r1c1 + r2c2)2
,

where a1 =
√
r1(c1 + d), a2 =

√
r2(c2 + d).

We use Num(·) and Den(·) to denote the numerator and denominator, respectively. Then, provided that

Den
(
∂q∗1
∂d

)
̸= 0, it is evident that

∂q∗1
∂d and Num

(
∂q∗1
∂d

)
·Den

(
∂q∗1
∂d

)
have same signs.

By using the CAD method, we derive that no real solutions exist for the following semi-algebraic system:



a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

c2 − c1 > 0,

Num

(
∂q∗1
∂d

)
·Den

(
∂q∗1
∂d

)
≥ 0.

12



It follows that if c1 < c2, then Num
(
∂q∗1
∂d

)
·Den

(
∂q∗1
∂d

)
< 0. That is,

∂q∗1
∂d < 0, which completes the proof.

(a) c1 = 0.3, c2 = 0.4, r1 = 2, r2 = 2 (b) c1 = 1, c2 = 0.1, r1 = 2, r2 = 2

Figure 1: Effect of the parameter d on q∗i , where q∗1 and q∗2 are colored in red and blue, respectively.

Fig. 1 illustrates the effect of the carbon tax rate d on the equilibrium outputs q∗i , where q∗1 and q∗2

are represented by red and blue lines, respectively. In Fig. 1(a), we set the other parameters to c1 = 0.3,

c2 = 0.4, r1 = 2, and r2 = 2. The equilibrium output q∗1 of the more production efficient Firm 1 (i.e., the firm

with the lower basic cost ci) decreases as d increases, which is consistent with the result in Proposition 3.

Moreover, we find that the output q∗2 of the less efficient Firm 2 (with higher ci) decreases with an increase

in d.

However, this pattern may not hold when basic cost levels differ significantly. In Fig. 1(b), we increase

the basic cost of Firm 1 by ten times that of Firm 2. In this scenario, the response of q∗1 to changes in the

carbon tax rate d becomes insignificant and non-monotonic. This observation suggests that the condition

ci < c−i in Proposition 3 is indeed necessary for the monotonicity result to hold.

Proposition 4. The equilibrium output q∗i will decrease with ci. If ci < c−i and ri < r−i, then q∗i will

decrease with c−i.

Proof. By the symmetry, it is sufficient to demonstrate that the proposition holds for i = 1. This entails

proving that: (1)
∂q∗1
∂c1

< 0; (2)
∂q∗1
∂c2

< 0 if c1 < c2 and r1 < r2.

13



We have

∂q∗1
∂c1

=
(−2a2 + d)

(
(4a1 − 2d) a2 − 4da1 + d2 + (3r1 + r2) d+ 3r1c1 + r2c2

)
r1

8a1 (c1 + d) ((−2d+ 2a1) a2 − 2da1 + d2 + (r1 + r2) d+ r1c1 + r2c2)
2 ,

where a1 =
√
r1(c1 + d) and a2 =

√
r2(c2 + d).

By using the CAD method, we derive no real solutions for the following semi-algebraic system:



a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

Num

(
∂q∗1
∂c1

)
·Den

(
∂q∗1
∂c1

)
≥ 0.

It follows that Num
(
∂q∗1
∂c1

)
·Den

(
∂q∗1
∂c1

)
< 0, and thus

∂q∗1
∂c1

< 0.

In addition, we have

∂q∗1
∂c2

=
(−da1 + da2 + (r1 − r2) d+ r1c1 − r2c2) a1r2

4a2 ((2a2 − 2d) a1 − 2da2 + d2 + (r1 + r2) d+ r1c1 + r2c2)
2 (c1 + d)

.

By using the CAD method, we derive no real solutions for the following semi-algebraic system:



a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

c2 − c1 > 0, r2 − r1 > 0,

Num

(
∂q∗1
∂c2

)
·Den

(
∂q∗1
∂c2

)
≥ 0.

It follows that
∂q∗1
∂c2

< 0 if c1 < c2 and r1 < r2, which completes the proof.

To illustrate Proposition 4, we show in Fig. 2 the effect of the basic cost parameter c1 on the equilibrium

outputs q∗i . As Firm 1 becomes more efficient in production (i.e., as c1 decreases), its equilibrium output

q∗1 increases monotonically. This result supports Proposition 4 and is consistent with economic intuition:

lower production costs lead to higher output. The blue curve shows that c1 has a minor impact on Firm 2’s

equilibrium output q∗2. Nonetheless, we observe that when c1 > c2 = 0.4, a reduction in c1 leads to a

moderate increase in q∗2, suggesting some degree of strategic interdependence between firms.
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Figure 2: Effect of the parameter c1 on q∗i , where q∗1 and q∗2 are colored in red and blue, respectively. The
other parameters are set to c2 = 0.4, r1 = 2.1, r2 = 2, and d = 0.5.

Proposition 5. If ci > c−i and ri > r−i, then q∗i will decrease with ri. If ci < c−i and ri < r−i, then q∗i

will decrease with r−i.

Proof. By the symmetry, we only need to show that the proposition holds for i = 1. This entails proving

that: (1)
∂q∗1
∂r1

< 0 if c1 > c2 and r1 > r2; (2)
∂q∗1
∂r2

< 0 if c1 < c2 and r1 < r2.

It can be calculated that

∂q∗1
∂r1

=
(−2a2 + d)

(
−2da2 + d2 + (−r1 + r2) d− r1c1 + r2c2

)
8a1 ((−2d+ 2a1) a2 − 2da1 + d2 + (r1 + r2) d+ r1c1 + r2c2)

2 ,

where a1 =
√
r1(c1 + d), a2 =

√
r2(c2 + d).

By using the CAD method, we derive that there are no real solutions for the following semi-algebraic

system: 

a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

c1 − c2 > 0, r1 − r2 > 0,

Num

(
∂q∗1
∂r1

)
·Den

(
∂q∗1
∂r1

)
≥ 0.

Therefore, if c1 > c2 and r1 > r2, then
∂q∗1
∂r1

< 0.
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Furthermore, we have

∂q∗1
∂r2

=
(−da1 + da2 + (r1 − r2) d+ r1c1 − r2c2) (c2 + d) a1

4a2 (c1 + d) ((2a2 − 2d) a1 − 2da2 + d2 + (r1 + r2) d+ r1c1 + r2c2)
2 .

By using the CAD method, we prove no real solutions for the following semi-algebraic system:



a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

c2 − c1 > 0, r2 − r1 > 0,

Num

(
∂q∗1
∂r2

)
·Den

(
∂q∗1
∂r2

)
≥ 0.

It follows that
∂q∗1
∂r2

< 0 if c1 < c2 and r1 < r2, which completes the proof.

Figure 3: Effect of the parameter r1 on q∗i , where q∗1 and q∗2 are colored in red and blue, respectively. The
other parameters are set to c1 = 0.5, c2 = 0.4, r2 = 2.4, and d = 1.

Fig. 3 depicts the conclusion of Proposition 5. As shown in the figure, the equilibrium output of Firm 1

increases monotonically as its green efficiency improves—that is, as r1 decreases. In contrast, r1 has a non-

monotonic effect on Firm 2’s equilibrium output. However, when r1 > r2 = 2.4, we observe that a reduction

in r1 leads to an increase in q∗2. This observation confirms the need for the conditions ci < c−i and ri < r−i

in the second part of Proposition 5 to ensure the expected comparative statics.
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3.3 Market Share

From an economic standpoint, it is important to examine how green policies affect firms’ market shares.

The market share of Firm i is defined as qi
qi+q−i

. It is easy to show that an increase in the output ratio qi
q−i

corresponds to an increase in Firm i’s market share, and vice versa. Therefore, to analyze the impact of

policy parameters on market shares, we must study their effects on the output ratio qi
q−i

.

Proposition 6. The market share of Firm i will decrease with ri and increase with r−i.

Proof. By the symmetry, we only show that Firm 1’s market share decreases with r1 and increases with r2.

This is equivalent to proving that the output ratio
q∗1
q∗2

decreases with r1 and increases with r2.

From T4 in Eq. (8), it is known that

q∗1
q∗2

=
r2u

∗2
2 + c2 + d− u∗2d

r1u∗21 + c1 + d− u∗1d
.

Plugging Eq. (6) into the above yields

q∗1
q∗2

=
2 c2 + d

(
2−

√
c2+d
r2

)
2 c1 + d

(
2−

√
c1+d
r1

) . (10)

Since
√

ci+d
ri

< 1, it is evident that 2−
√

ci+d
ri

> 0. If all other parameters are held constant, then one can

readily derive that
q∗1
q∗2

decreases with r1 and increases with r2.

Proposition 6 suggests that a firm can increase its market share by improving its green efficiency—that

is, by reducing its own green cost parameter ri. If the rival firm follows a similar strategy, the firm’s market

share will decrease.

Proposition 7. If ci ≤ c−i and ri > r−i, then the market share of Firm i will decrease with d.

Proof. By the symmetry, we only examine the effect of the parameter d on Firm 1’s market share. It is

sufficient to show that if c1 ≤ c2 and r1 > r2, then
∂(q∗1/q∗2)

∂d < 0. We have

∂ (q∗1/q
∗
2)

∂d
=

r21
((
(8c1 − 8c2) a2 − 2d2 − 6c1d− 4c1c2

)
a1 +

(
4c1c2 + 6c2d+ 2d2

)
a2 + d2 (c1 − c2)

)
8a1a2

(
−da1

2 + r1 (c1 + d)
)2 ,

where a1 =
√
r1(c1 + d) and a2 =

√
r2(c2 + d).
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Using the CAD method, one can derive no real solutions for the following semi-algebraic system:



a21 − r1(c1 + d) = 0, a22 − r2(c2 + d) = 0,

c1 > 0, c2 > 0, r1 > 0, r2 > 0, d ≥ 0,

a1 > 0, a2 > 0, r1 − (c1 + d) > 0, r2 − (c2 + d) > 0,

c2 − c1 ≥ 0, r1 − r2 > 0,

Num

(
∂ (q∗1/q

∗
2)

∂d

)
·Den

(
∂ (q∗1/q

∗
2)

∂d

)
≥ 0.

Therefore,
∂(q∗1/q∗2)

∂d < 0 if c1 ≤ c2 and r1 > r2, which completes the proof.

Proposition 7 implies that when Firm i enjoys a productivity advantage (i.e., a lower basic cost ci) but

suffers from a green efficiency disadvantage (i.e., a higher ri), its market share will decline as the carbon tax

rate d increases. This result aligns well with economic intuition: stricter environmental policies amplify the

competitive disadvantage of firms using less efficient green technology.

Furthermore, the special case of no carbon taxation (d = 0) deserves special attention, as it remains

the norm in many countries today. In this case, Eq. (10) yields
q∗1
q∗2

= c2
c1
, indicating that market shares

are determined solely by production efficiency and unaffected by the green efficiency parameters ri. This

highlights the importance of carbon taxes in incentivizing greener technologies and reshaping competitive

dynamics.

(a) c1 = 0.3, c2 = 0.4, r1 = 2.5, r2 = 2.4. (b) c1 = 0.4, c2 = 0.4, r1 = 2.5, r2 = 2.4. (c) c1 = 0.4, c2 = 0.3, r1 = 2.5, r2 = 2.4.

Figure 4: Effect of the parameter d on the output ratio
q∗1
q∗2
.

We conducted numerical simulations across a wide range of parameter combinations, and the results are

consistent with the conclusion of Proposition 7. As shown in Fig. 4(a), the output ratio
q∗1
q∗2

decreases as
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the carbon tax rate d increases when Firm 1 has a productivity advantage (c1 < c2) but a green efficiency

disadvantage (r1 > r2). A similar pattern is observed in Fig. 4(b), where c1 = c2 and r1 > r2; again,
q∗1
q∗2

declines as d increases. However, when Firm 1 has a productivity disadvantage (c1 > c2), the outcome may

differ. For instance, Fig. 4(c) shows that
q∗1
q∗2

may increase with d under the condition r1 > r2. This suggests

that the relative magnitudes of the cost and green efficiency parameters jointly determine the direction of

the effect.

3.4 Profit

For simplicity, we focus on the case where the carbon tax rate d is sufficiently small. Many countries,

particularly developing economies, have low or near-zero carbon tax rates.

Proposition 8. If d is small enough, then Π∗
i will decrease with ci or ri, but increase with c−i or r−i.

Proof. By the symmetry, we only need to show that the conclusion holds for i = 1. Plugging Eqs. (7) and

(6) into Eq. (5) in turn, we obtain

lim
d→0+

Π∗
1 =

c2r2
(√

c1r1
√
c2r2 + c2r2

)√
c1r1(

2
√
c1r1

√
c2r2 + c1r1 + c2r2

) (
c2r2

√
c1r1 + c1r1

√
c2r2

) .
Some calculations yield that

∂ (limd→0+ Π∗
1)

∂r1
= −

(
(c1r1 + 3 c2r2)

√
c1r1 + (3 c1r1 + c2r2)

√
c2r2

)
c22r

2
2c

2
1r1

√
c1r1

(
2
√
c1r1

√
c2r2 + c1r1 + c2r2

)2 (
c2r2

√
c1r1 + c1r1

√
c2r2

)2 < 0,

∂ (limd→0+ Π∗
1)

∂c1
= −

(
(c1r1 + 3 c2r2)

√
c1r1 + (3 c1r1 + c2r2)

√
c2r2

)
c22r

2
2c1r

2
1

√
c1r1

(
2
√
c1r1

√
c2r2 + c1r1 + c2r2

)2 (
c2r2

√
c1r1 + c1r1

√
c2r2

)2 < 0.

However,

∂ (limd→0+ Π∗
1)

∂r2
=

c1r1c
2
2r2

√
c1r1

(
3 c1c2r1r2 + c1r1

√
c1r1

√
c2r2 + c22r

2
2 + 3 c2r2

√
c1r1

√
c2r2

)(
2
√
c1r1

√
c2r2 + c1r1 + c2r2

)2 (
c2r2

√
c1r1 + c1r1

√
c2r2

)2√
c2r2

> 0,

∂ (limd→0+ Π∗
1)

∂c2
=

c1r1c2r
2
2
√
c1r1

(
3 c1c2r1r2 + c1r1

√
c1r1

√
c2r2 + c22r

2
2 + 3 c2r2

√
c1r1

√
c2r2

)(
2
√
c1r1

√
c2r2 + c1r1 + c2r2

)2 (
c2r2

√
c1r1 + c1r1

√
c2r2

)2√
c2r2

> 0.

Therefore, the conclusion follows for i = 1. The proof is completed.

Proposition 8 shows that in an economy with a sufficiently low carbon tax, a firm can enhance its profits

by reducing basic production costs or improving its green efficiency. However, similar improvements by the

rival firm may have a negative effect on the firm’s profitability.
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Figure 5: Contour plot of Π∗
1 with respect to c1 and d when c2 = 0.3, r1 = 2.5, and r2 = 2.4.

Fig. 5 presents a contour plot of Π∗
1 for the case where c2 = 0.3, r1 = 2.5, and r2 = 2.4, illustrating how

Firm 1’s profits are affected by changes in c1 and the carbon tax rate d, with d > 0. We observe that for a

fixed value of d, the profit Π∗
1 decreases as c1 increases, which is consistent with the result in Proposition 8.

However, the relationship between Π∗
1 and d is not monotonic when c1 is kept constant. When c1 is low

enough (e.g., c1 < 0.2), Π∗
1 decreases with increasing d. In contrast, when c1 is relatively high (e.g., c1 > 0.4),

Π∗
1 increases with d. This non-monotonic behavior highlights the interaction between production efficiency

and carbon taxation in determining firm profitability.

Similarly, the contour plot in Fig. 6 depicts the effect of the parameters c2 and d on Firm 1’s equilibrium

profit Π∗
1, with c1 = 0.4, r1 = 2.5, and r2 = 2.4. It is observed that Π∗

1 decreases as c2, which is consistent

with the result in Proposition 8. For a fixed value of c2, the relationship between Π∗
1 and the carbon tax

rate d shows an opposite pattern to that shown in Fig. 5. When c2 is low (e.g., c2 < 0.2), Π∗
1 increases with

d. Conversely, when c2 is high (e.g., c2 > 0.6), Π∗
1 decreases as d increases. This highlights the complex

interplay between cost asymmetries and environmental regulation in shaping firm profitability.

In addition, Fig. 7 (respectively, Fig. 8) illustrates the effect of the parameters r1 (respectively, r2) and

d on Firm 1’s equilibrium profit Π∗
1. As shown in Fig. 7, for a fixed value of d, improving Firm 1’s green

efficiency (i.e., lowering r1) leads to a higher profit Π∗
1. Conversely, Fig. 8 shows that for a given d, an

increase in the rival’s green efficiency level r2 reduces Firm 1’s profit. Furthermore, Fig. 8 shows that the

impact of the carbon tax rate d on Π∗
1 is not always monotonic. For instance, around r2 = 1.1, Firm 1’s

profit initially increases and then decreases as d rises from zero. This again highlights the complex interplay
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Figure 6: Contour plot of Π∗
1 with respect to c2 and d when c1 = 0.4, r1 = 2.5, and r2 = 2.4.

Figure 7: Contour plot of Π∗
1 with respect to r1 and d when c1 = 0.4, c2 = 0.3, and r2 = 2.4.
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Figure 8: Contour plot of Π∗
1 with respect to r2 and d when c1 = 0.4, c2 = 0.3, and r1 = 2.5.

between environmental regulation and inter-firm asymmetries.

An important question concerning producer surplus is how changes in the carbon tax rate d affect the

total producer surplus, defined as Π∗
1 + Π∗

2. The following proposition examines the special case where

c1 = c2. It also provides some preliminary analytical results. The conclusion suggests that in markets with

a high degree of environmental consciousness, an increase in the carbon tax rate may increase producer

surplus, particularly when the existing carbon tax rate is low or close to zero.

Proposition 9. If d is small enough and c1 = c2, then Π∗
1 +Π∗

2 will not decrease with d.

Proof. Let c1 = c2 = c. We have

lim
d→0+

∂ (Π∗
1 +Π∗

2)

∂d
=

c3r1r2 (r1 − r2)
2

c
√
r1r2

(
2c
√
r1r2 + c (r1 + r2)

)2 (
r1
√
r2c+ r2

√
r1c

) ≥ 0.

This implies that Π∗
1 +Π∗

2 will not decrease with d if d is sufficiently small.

3.5 Consumer Surplus

For simplicity, we only consider the special case in which firms have identical basic production costs (c1 = c2)

and identical green efficiency levels (r1 = r2).

Proposition 10. Let c1 = c2 = c and r1 = r2 = r. The equilibrium consumer surplus CS∗ will decrease

with r, c, and d.
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Proof. Plugging Eqs. (6) and (7) into Eq. (2) yields that

CS∗ = − ln
(
2
√

r (c+ d)− d
)
− ln (2)− 1.

Accordingly, we have

∂CS∗

∂r
= − c+ d√

r (c+ d)
(
2
√
r (c+ d)− d

) ,
and

∂CS∗

∂c
= − r√

r (c+ d)
(
2
√
r (c+ d)− d

) .
Since c+ d < r, it is readily derived that

∂
(
2
√
r (c+ d)− d

)
∂d

=

√
r

c+ d
− 1 > 0,

which implies that 2
√
r (c+ d)− d is monotonically increasing with d, thus

2
√
r (c+ d)− d ≥ 2

√
r(c+ 0)− 0 > 0.

It follows that ∂CS∗

∂r < 0 and ∂CS∗

∂c < 0.

Furthermore, one can see that

∂CS∗

∂d
= − 1

2
√
r (c+ d)− d

(√
r

c+ d
− 1

)
< 0,

which completes the proof.

Proposition 10 illustrates the impact of green policies, specifically raising the carbon tax rate and im-

proving green efficiency, on the equilibrium consumer surplus CS∗, under the assumption that c1 = c2 and

r1 = r2. The results show that improved green efficiency increases consumer surplus. In other words, if the

regulator invests in or promotes the development of green technologies, consumer welfare can be improved.

In contrast, Proposition 10 suggests that increasing the carbon tax rate reduces consumer surplus, despite

potentially lowering per-unit carbon emissions. This reveals an important policy trade-off: although carbon

taxes can promote environmental goals, regulatory authorities must consider the potential negative impact

on consumer welfare when designing effective and balanced green policies.

To examine the case of heterogeneous basic cost levels and heterogeneous green efficiency levels, we
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Figure 9: Contour plot of CS∗ with respect to r (r1 = r2 = r) and d when c1 = 0.8 and c2 = 0.4.

Figure 10: Contour plot of CS∗ with respect to r1 and r2 when c1 = 0.8, c2 = 0.4, and d = 0.5.
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conduct numerical simulations as shown in Figs. 9 and 10. For instance, Fig. 9 depicts the impact of the

carbon tax rate and green efficiency on the equilibrium consumer surplus CS∗ when the basic costs are

asymmetric (c1 ̸= c2). The results indicate that even under cost heterogeneity, the main conclusions of

Proposition 10 continue to hold: increasing green efficiency enhances consumer surplus, whereas increasing

the carbon tax rate tends to reduce it.

Furthermore, Fig. 10 illustrates the pattern of equilibrium consumer surplus CS∗ under heterogeneous

cost levels and green efficiency levels. It has been observed that consumer surplus decreases as either r1 or

r2 increases, highlighting the importance of green technology efficiency in sustaining consumer welfare.

4 Dynamic Model

To examine the impact of green policies on market stability, we develop a simple dynamic model in this

section. Let the current period be t+1 and the previous period be t. At time t+1, Firm i does not observe

its competitor’s green reputation decision u−i(t + 1) or output decision q−i(t + 1). However, it is assumed

that Firm i can assess the marginal effect of its own green reputation on profits in the previous period (i.e.,

the partial derivative ∂Πi
∂ui

(t)) based on market research or business experimentation, while holding other

strategic variables constant. Accordingly, Firm i updates its green reputation level at time t + 1 with the

following gradient adjustment mechanism:

ui(t+ 1) = ui(t) + ki
∂Πi

∂ui
(t), i = 1, 2,

where ki > 0 is a parameter governing the speed of adjustment in green reputation.

Similarly, it is assumed that Firm i can observe the marginal effect of its own output on profits in the

previous period, denoted by ∂Πi
∂qi

(t). Based on this information, the firm adjusts its output level at time t+1

according to the following rule:

qi(t+ 1) = qi(t) + siqi(t)
∂Πi

∂qi
(t), i = 1, 2,

where si > 0 determines the output adjustment speed. Notably, the adjustment is not only governed by si,

but also scaled by the firm’s current output qi(t), reflecting size-dependent responsiveness.
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For ease of presentation in the subsequent analysis, we define the following notation:

Fi(ui(t), u−i(t), qi(t), q−i(t)) ≡ ui(t) + ki
∂Πi

∂ui
(t)

= ui(t) + ki

(
qi(t)u−i(t)q−i(t)

(ui(t)qi + u−i(t)q−i(t))
2 + dqi(t)− 2 riui(t)qi(t)

)
, i = 1, 2,

and

Gi(ui(t), u−i(t), qi(t), q−i(t)) ≡ qi(t) + siqi(t)
∂Πi

∂qi
(t)

= qi(t) + siqi(t)

(
ui(t)u−iq−i

(ui(t)qi(t) + u−i(t)q−i(t))
2 − d (1− ui(t))−

(
ci + riu

2
i (t)

))
, i = 1, 2.

In summary, the dynamic model presented above can be described by the following four-dimensional

discrete dynamic system: 

u1(t+ 1) = F1(u1(t), u2(t), q1(t), q2(t)),

u2(t+ 1) = F2(u2(t), u1(t), q2(t), q1(t)),

q1(t+ 1) = G1(u1(t), u2(t), q1(t), q2(t)),

q2(t+ 1) = G2(u2(t), u1(t), q2(t), q1(t)),

where its Jacobian matrix is given by

J =



∂F1
∂u1

∂F1
∂u2

∂F1
∂q1

∂F1
∂q2

∂F2
∂u1

∂F2
∂u2

∂F2
∂q1

∂F2
∂q2

∂G1
∂u1

∂G1
∂u2

∂G1
∂q1

∂G1
∂q2

∂G2
∂u1

∂G2
∂u2

∂G2
∂q1

∂G2
∂q2


.

In general, analyzing the Jacobian matrix J is mathematically complex. To simplify the analysis, we

limit our attention to the symmetric case by assuming c1 = c2 = c, r1 = r2 = r, k1 = k2 = k, and

s1 = s2 = s. Under this symmetry, the Jacobian matrix evaluated at the Nash equilibrium can be simplified

as follows:

J∗ ≡ J(u∗1, u
∗
2, q

∗
1, q

∗
2) =



A 0 B 0

0 A 0 B

C 0 D 0

0 C 0 D


,
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where

A =

k(d+ 1)(d+ 2)2r2 + (−4d4 + (−4c− 20)d3 + (−12
√

r(c+ d) k − 20c+ 24k − 32)d2 + ((−4
√

r(c+ d) k+

40k − 32)c− 8
√

r(c+ d) k + 8k − 16)d+ 16c2k + (8k − 16)c)r + 32(d+ 1)(c+ d)((
√

r(c+ d)− 1)d− c)

4
(
− (d+ 2)2 r + 8

√
r (c+ d) d− 8c− 8d

)
(d+ 1) (c+ d)

,

B =
(
−2

√
r (c+ d) + d

)
k,

C =
4 s

√
r (c+ d)

(√
r (c+ d)− d

2

)(
− rd

4 +
√
r (c+ d)

)
(d+ 1)

(
− (d+ 2)2 r + 8

√
r (c+ d) d− 8c− 8d

)
r

,

and

D =
ds
√

r (c+ d)− 2r
(
−1

2 + (c+ d) s
)

r
.

The local stability of the Nash equilibrium can be determined by examining the moduli of the eigenvalues

of J∗. Specifically, the equilibrium is locally stable if all eigenvalues have moduli strictly less than 1. Con-

versely, if at least one eigenvalue has modulus greater than 1, the equilibrium is unstable. Our calculations

show that the matrix J∗ possesses four real eigenvalues, two of which are identical. We denote these as

e1 = e′1 and e2 = e′2, respectively. Although we have derived closed-form expressions for both e1 and e2,

they are algebraically complex, and each spans more than a page in length. Due to space limitations, we opt

not to present the full expressions here. Instead, we provide a graphical representation of the eigenvalues to

characterize their behavior and assess stability.

Fig. 11 depicts the two eigenvalues e1 and e2 of the Jacobian matrix J∗, with e1 shown in red and e2 in

blue. It is observed that e1 consistently lies within the interval (−1, 1), indicating stability in that direction.

Under certain parameter configurations, e2 may fall below −1, indicating the dynamic system’s possible

instability. Fig. 11(a) shows that increasing the parameter c can result in e2 < −1, whereas Fig. 11(d)

demonstrates that even a small value of c can lead to instability when d = 0. Similarly, Fig. 11(b) reveals

that increasing the carbon tax rate d may push e2 below −1, whereas Fig. 11(e) demonstrates that a very

small value of d can also lead to instability when c = 0.01. In other words, the model may become unstable

when either c or d is too large, or when both are too small. Fig. 11(c) shows that an increase in the green

cost parameter r may drive e2 below −1, thereby destabilizing the equilibrium. However, as indicated in

Fig. 11(f), even for relatively small values of r, the system may remain locally stable, as long as both c

and d are not simultaneously small. These findings highlight the nontrivial role of model parameters in
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(a) s = 0.9, k = 0.1, r = 2.5, d = 1 (b) s = 0.9, k = 0.1, c = 0.5, r = 2.5 (c) s = 0.9, k = 0.1, c = 0.5, d = 1

(d) s = 0.9, k = 0.1, r = 2.5, d = 0 (e) s = 0.9, k = 0.1, c = 0.01, r = 2.5 (f) s = 0.9, k = 0.1, c = 0.01, d = 0.01

Figure 11: In the symmetric case of c1 = c2 = c, r1 = r2 = r, k1 = k2 = k, and s1 = s2 = s, the eigenvalues
e1 and e2 of the Jacobian matrix J∗, which are colored in red and blue, respectively. (Left) The effect of c.
(Center) The effect of d. (Right) The effect of r.
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determining the system’s local stability.

In addition, we conduct numerical simulations to explore the dynamic behavior of the model in the

asymmetric case. Throughout all simulations, the initial conditions are set to w1(0) = w2(0) = 0.1 and

q1(0) = q2(0) = 0.1. The simulation results confirm that the conclusions obtained from the eigenvalue

analysis of the Jacobian matrix J∗ in the symmetric case remain qualitatively consistent under asymmetry.

Furthermore, the simulations reveal that the model’s trajectories may converge to various types of attractors,

including periodic cycles, quasi-periodic orbits (invariant closed curves), and chaotic trajectories. Moreover,

different bifurcation phenomena, such as period-doubling and Neimark–Sacker bifurcations, are observed.

These findings underscore the model’s rich dynamic structure and sensitivity to parameter variation. For

related studies on numerical simulations in dynamic oligopoly games, see, for example, (Yu and Yu, 2014a,b).

(a) w1, w2 (b) q1, q2

(c) w1, w2 (d) q1, q2

Figure 12: One-dimensional bifurcation diagrams with respect to d, where the other parameters are set to
r1 = 2.2, r2 = 2, s1 = 0.9, s2 = 0.5, k1 = 0.24, and k2 = 0.2. (Top) c1 = c2 = 0.9. (Bottom) c1 = c2 = 0.01.
The diagrams of Firms 1 and 2 are marked in red and blue, respectively.

Figure 12 depicts one-dimensional bifurcation diagrams of the model with respect to the carbon tax rate
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d. In the top two panels, we set c1 = c2 = 0.9, whereas in the bottom two panels, we use c1 = c2 = 0.01.

For visual clarity, the left-hand panels show the trajectories of w1 and w2, whereas the right-hand panels

display the trajectories of q1 and q2. Firms 1 and 2 are represented in red and blue, respectively.

Fig. 12 shows that when the trajectories converge to an equilibrium, we observe that w∗
1 < w∗

2 (both

increasing in d) and q∗1 < q∗2 (both decreasing in d), which is consistent with the intuition that r1 > r2.

Panels (a) and (b) demonstrate that, for c1 = c2 = 0.9, increasing the carbon tax rate d can destabilize the

Nash equilibrium through a period-doubling bifurcation: as d increases, the equilibrium shifts to a 2-cycle

orbit and then to a 4-cycle orbit. In contrast, panels (c) and (d) show that when c1 = c2 = 0.01, the

equilibrium can become unstable if the carbon tax rate is too low. Specifically, as d approaches zero, the

system converges to a stable 2-cycle orbit, which then transitions into two stable invariant closed curves as

d decreases.

Figure 13: Two-dimensional bifurcation diagram with respect to d and c = c1 = c2, where the other
parameters are set to r1 = 2.2, r2 = 2, s1 = 0.9, s2 = 0.5, k1 = 0.24, and k2 = 0.2.

To gain a broader understanding of the system’s global dynamics, we present a two-dimensional bifurca-

tion diagram with respect to the carbon tax rate d and the symmetric basic cost level c = c1 = c2 in Fig. 13.

For a detailed explanation of two-dimensional bifurcation diagrams, see Marszalek et al. (2019). In such

diagrams, different colors are used to distinguish parameter regions that correspond to different types of

attractors. Dark blue points indicate convergence to a fixed point (i.e., a 1-cycle orbit), whereas light blue

points represent convergence to a 2-cycle orbit. Yellow points represent parameter values for which trajec-
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tories converge to attractors with order 24 or higher, indicating the presence of high-order periodic cycles,

quasi-periodic orbits, or chaotic (complex) dynamics. Grey points indicate divergence, where trajectories

tend to infinity. Fig. 13 shows that the system exhibits similar bifurcation behavior to that observed in

Fig. 12. In particular, when both c and d are small enough, the Nash equilibrium may experience a period-

doubling bifurcation, causing instability. Similarly, when both parameters are large enough, a similar route

to instability via period-doubling is observed. These findings reinforce the system’s sensitivity to the joint

effects of cost structure and environmental regulation.

(a) w1, w2 (b) q1, q2

(c) w1, w2 (d) q1, q2

Figure 14: One-dimensional bifurcation diagrams with respect to c2, where the other parameters are set to
d = 1, r1 = 3, r2 = 2, s1 = 0.9, s2 = 0.5, k1 = 0.12, and k2 = 0.1. (Top) c1 = 0.8. (Bottom) c1 = 1.8. The
diagrams of Firms 1 and 2 are marked in red and blue, respectively.

In contrast to the previous bifurcation patterns driven by the carbon tax rate, Fig. 14 illustrates how

variations in the parameter ci can induce model instability through different bifurcation mechanisms. Specif-

ically, the figure presents a series of one-dimensional bifurcation diagrams with respect to c2, with c1 = 0.8

used in the top two panels and c1 = 1.8 in the bottom two panels. As before, the left and right panels
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display the trajectories of w1, w2 and q1, q2, respectively. The trajectories for Firms 1 and 2 are marked in

red and blue, respectively.

Figs. 14(a) and (c) show that when the trajectories converge to a Nash equilibrium, the value of w∗
1

remains constant, whereas an increase in c2 results in a noticeable rise in w∗
2. When c1 = 0.8, increasing

c2 destabilizes the equilibrium through a period-doubling bifurcation. The system transitions from a fixed

point to a 2-cycle orbit, with the amplitude of oscillation growing as c2 increases. In contrast, when c1 = 1.8,

a rise in c2 causes the equilibrium to lose stability via a Neimark–Sacker bifurcation. The system transitions

to a quasi-periodic orbit, and the amplitude of this orbit also increases progressively. Additionally, for

c1 = 1.8, we observe an intermittency phenomenon in which the system alternates between quasi-periodic

and periodic dynamics as the value of c2 varies, indicating rich and complex transitions in the underlying

dynamic structure.

Figure 15: Two-dimensional bifurcation diagram with respect to c1 and c2, where the other parameters are
set to d = 1, r1 = 3, r2 = 2, s1 = 0.9, s2 = 0.5, k1 = 0.12, and k2 = 0.1.

Fig. 15 reports a two-dimensional bifurcation diagram for the parameters c1 and c2, offering a more

comprehensive view of the model’s dynamic behavior. The diagram reveals that if c1 (respectively, c2) is

less than a certain threshold, variations in c2 (respectively, c1) do not disrupt the Nash equilibrium. When

c1 is moderate, increasing c2 may result in a period-doubling bifurcation. However, if c1 is large enough,

an increase in c2 may cause a Neimark–Sacker bifurcation. Conversely, when c2 is moderate, raising c1 can

lead to a Neimark–Sacker bifurcation. Meanwhile, for larger values of c2, the system may undergo a period-
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doubling bifurcation as c1 increases. Notably, the diagram also reveals the presence of Arnold tongues,

which are regions corresponding to periodic attractors of different orders, highlighting the model’s rich and

intricate bifurcation structure.

(a) w1, w2 (b) q1, q2

Figure 16: One-dimensional bifurcation diagrams with respect to r = r1 = r2, where the other parameters
are set to d = 1.4, c1 = 0.4, c2 = 0.2, s1 = 0.9, s2 = 0.5, k1 = 0.12, and k2 = 0.1. The diagrams of Firms 1
and 2 are marked in red and blue, respectively.

Fig. 16 depicts the effect of green efficiency on the model’s dynamics. Assuming symmetry in green

efficiency parameters, i.e., r = r1 = r2, the figure shows one-dimensional bifurcation diagrams with respect to

r. Panels (a) and (b) show trajectories for w1, w2 and q1, q2, respectively. As shown in Fig. 16(a) (respectively,

(b)), when the system converges to the Nash equilibrium, both w∗
1, w

∗
2 (respectively, q∗1, q

∗
2) increase as r

decreases, aligning with economic intuition: improved green efficiency promotes higher equilibrium green

reputations and output levels. Furthermore, as r increases, the Nash equilibrium becomes unstable through

a period-doubling bifurcation, indicating the destabilizing effect of rising green costs on market dynamics.

Fig. 17 shows a two-dimensional bifurcation diagram of the model based on the carbon tax rate d

and the (symmetric) green efficiency parameter r = r1 = r2. The figure shows that, under homogeneous

green efficiency, increasing r can destabilize the Nash equilibrium exclusively through a period-doubling

bifurcation. No Neimark–Sacker bifurcations are observed in this setting.

In the case of heterogeneous green efficiency levels (r1 ̸= r2), Fig. 18 displays one-dimensional bifurcation

diagrams with respect to r1, fixing r2 = 1.9. The results show that a decrease in r1 may cause instability

via a period-doubling bifurcation, whereas an increase in r1 may trigger a Neimark–Sacker bifurcation. We

observe intermittent switching between quasi-periodic and periodic dynamics when the system undergoes a

Neimark–Sacker bifurcation, reflecting rich and complex behavior near the bifurcation boundary.

To gain a more comprehensive understanding, Fig. 19 shows the two-dimensional bifurcation diagram
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Figure 17: Two-dimensional bifurcation diagram with respect to d and r = r1 = r2, where the other
parameters are set to c1 = 0.4, c2 = 0.2, s1 = 0.9, s2 = 0.5, k1 = 0.12, and k2 = 0.1.

(a) u1, u2 (b) q1, q2

Figure 18: One-dimensional bifurcation diagrams with respect to r1, where the other parameters are set to
r2 = 1.9, c1 = 0.8, c2 = 0.4, d = 0.9, s1 = s2 = 0.9, and k1 = k2 = 0.1. The diagrams of Firms 1 and 2 are
marked in red and blue, respectively.
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Figure 19: Two-dimensional bifurcation diagram with respect to r1 and r2, where the other parameters are
set to c1 = 0.8, c2 = 0.4, d = 0.9, s1 = s2 = 0.9, and k1 = k2 = 0.1.

with respect to r1 and r2. The figure shows that the Nash equilibrium can lose stability due to period-

doubling and Neimark–Sacker bifurcations in different regions of the parameter space. Furthermore, the

presence of Arnold tongues of various orders demonstrates the intricate structure of bifurcation dynamics

in the asymmetric green efficiency case.

5 Concluding Remarks

To examine how firms make green reputation decisions under consumer environmental awareness and carbon

taxation, this paper develops a nonlinear Cournot duopoly model. Our analysis highlights how carbon tax

rates and green efficiency affect firms’ production, pricing, and emission strategies. Our model, which links

green reputation with demand and cost, provides new insights into strategic environmental behavior under

policy incentives.

The study establishes a strong foundation for future research. One particularly relevant extension is

to incorporate green managerial delegation into the existing framework. For example, CSR-oriented firms

often delegate to managers whose goals include environmental performance in addition to profit. Exploring

such scenarios may reveal how delegation affects firms’ green investment and competitive strategies. Fu-

ture research could focus on related topics such as consumer environmental awareness in green managerial

delegation contracts with common ownership, the theoretical foundations of green managerial delegation,
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and cross-ownership and environmental delegation models in mixed oligopolies. Future research could an-

alyze firms’ decisions under optimal carbon taxation, providing useful implications for designing effective

environmental tax policies.

Our model focuses on Cournot competition, but it would be valuable to extend the analysis to Bertrand

or Cournot–Bertrand competition in differentiated markets, or to endogenize the competition mode following

Singh and Vives (1984). These comparisons may provide additional insights, but are beyond the scope of

this paper and should be left for future work.

Lastly, the model can be adapted to investigate broader environmental policy instruments, such as

green subsidies or green transformation initiatives, which are receiving growing attention in recent energy

economics research. We hope that these directions will inspire further research into the role of strategic

behavior in sustainability and industrial policy.
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