
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 1

Enabling Scalability and Flexibility into Network
Routing Protocol using Behavior Tree

Jiaorui Huang, Chungang Yang, Tao Feng, Lujia Dong, Alagan Anpalagan, Qiang Ni, Mohsen Guizani

Abstract—Current network routing protocol design is faced
with novel challenges due to evolving network scale, various
network service demands, and dynamic network states. However,
the conventional finite state machine models lack both scalability
and flexibility for the description of network routing protocol
states. In this article, we enable scalability and flexibility into
network routing protocol by exploring and exploiting behavior
trees, where behavior trees can reformulate the network routing
protocol by characterizing state transformation as action nodes.
We first present a generic routing protocol architecture with a
comparative analysis of the behavior tree, finite state machine,
etc. Then, we propose an implementable functional scheme,
which provides a foundation for extending the functionality and
enabling flexible configurations towards the network routing
protocol. Finally, we design two use cases to verify that behavior
trees can effectively replace finite state machines and the excellent
scalability of behavior trees in terms of routing protocols.

Index Terms—Behavior Tree, Control Plane Decoupling, Net-
work Routing Protocol.

I. INTRODUCTION

The diversity of service demands, the increasing scale of
networks, and the dynamics of network situations involve
novel scalability and flexibility challenges to network routing
protocols [1]. On the one hand, most network routing protocols
leverage finite state machine (FSM) to manage the state
transitions in the network routing process [2], [3]. For instance,
the border gateway protocol (BGP), as described in [2], the
protocol operates with six states and experiences nineteen state
transitions. The open shortest path first (OSPF), as discussed in
[3], utilizes ten states to control packet flow. On the other hand,
the FSM describes the work of a system by defining a finite
number of states and transitions between states processes,
which usually consist of state, transfer and event [4]. Adopting

This work was supported in part by the National Key Research and
Development Program of China (2020YFB1807700), the Specific Technology
Program (JZX6Y202207010351), the Innovation Capability Support Program
of Shaanxi (2024RS-CXTD-01), and the National Key Laboratory of Multi-
domain Data Collaborative Processing and Control (MDPC20240401). Cor-
responding author Chungang Yang is with National Key Laboratory of Multi-
domain Data Collaborative Processing and Control, Xian, 710068, China, and
also with Hangzhou Institute of Technology of Xidian University, Hangzhou,
311231, China.

J. Huang, C. Yang and L. Dong are with the State Key Laboratory
on Integrated Services Networks, Xidian University, Xi’an, 710071 China
(emails: hjr6286@163.com, guideyang2050@163.com, jiatofight@163.com).

T. Feng is with Institute of System Engineering AMS PLA (email:
feng09@163.com).

Q. Ni is with the School of Computing and Communications, Lancaster
University, Lancaster LA1 4WA, U.K. (e-mail: q.ni@lancaster.ac.uk).

A. Anpalagan is with the Department of Electrical, Computer and Biomed-
ical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3,
Canada (e-mail: alagan@ee.torontomu.ca).

M. Guizani is with the Machine Learning Department, Mohamed Bin
Zayed University of Artificial Intelligence, Abu Dhabi, UAE (e-mail:
mguizani@ieee.org).

the FSM in routing protocols presents several challenges as
networks scale, dynamics evolve, and service requirements
diversify, which are given as follows.

• Limited modularity and scalability: The FSM is inher-
ently linear and finite, requiring a redesign of the state
transition when new states or behaviors are added, which
makes scalability difficult.

• Poor expression of complex behaviors: The FSM is
suitable for simple, sequential task processing, but it tends
to become bloated and state explosion when dealing with
complex behaviors that are difficult to manage.

• Lack of parallel processing: The FSM executes tasks in
sequence order and is unable to handle multitasking or
prioritize tasks simultaneously.

• Limited fault handling and recovery: The FSM requires
the explicit design of additional error-handling states or
fallback mechanisms when a state fails to complete a task,
which increases design complexity.

Taking the BGP protocol as an example, it serves as a stan-
dardized protocol for exchanging routing information between
the Internet and autonomous systems. This is accomplished
by establishing adjacencies, advertising network prefixes, and
dynamically adjusting the optimal path based on various
policies [5]. Its FSM includes six states that manage the peer
sessions, including Idle, Connect, OpenSent, OpenConfirm,
Established, and Active, as shown in Fig. 1. However, as
network scale and dynamics increase, the BGP exhibits critical
vulnerabilities in route announcement verification and peer
authentication [6]. To ensure secure communication between
peers, a Security state can be introduced into the FSM. Before
a peer transitions to the Connect state, it must first enter
the Security state for identity authentication and certificate
verification; only upon successful validation can a connection
be established. Additionally, before the protocol moves to the
OpenConfirm state, the security and integrity of the received
Open message must be verified in the Security state. If
any security issues arise in the Established state after the
session has been established, it becomes necessary to access
the Security state to refresh the security parameters. This
analysis illustrates that introducing a single Security state
requires seven additional state transitions. As the number of
states increases, the complexity of state transition relationships
escalates significantly, leading to state explosion. Moreover, in
the BGP state transition process, subsequent steps are triggered
only when the execution result of the preceding step satisfies
the specified condition, preventing any synchronization of
operations.

Behavior tree (BT) offers a modular and flexible alternative
to the FSM [7]–[10]. The BT is a graphical mathematical

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 2

A:ConnectOrActive_to_OpenSent

ConnectOrActive_to_OpenSent

Parallel
Parallel

[IN]failure_threshold

[IN]success_threshold

1

4

BGP BT

The Behavior Tree for the six state

transitions in the BGP protocol FSM.

Five logical node types: fallback,

parallel, sequence, condition, action.

BGP BT

Idle
Conne

ct

Error Error Error Error

Receive
Correct

Keepalive

Active

Receive
Correct
Open

TCP
EstablishedStart

Connect Retry
Timeout

TCP
Failed

TCP
Established BGP FSM

OpenS

ent

Open

Confirm
Estab

lished

After adding the
new Security state.

FSM BT

FSM BT

(a)

(b)

Idle
Open

Sent

Establi

shed

Conne

ct

Conne

ct

Open

Confirm

Open

Confirm

Error Error Error Error

Receive
Correct

Keepalive

ActiveActive

Receive Correct
Open

TCP
EstablishedStart

Connect Retry
Timeout

TCP
Failed TCP

Established

Secu

rityError

Verification Success

Receive
Correct
Open

Successful
verify secure
and complete

Open

Security issues occurring

Refresh security parameters

Start

BGP FSM

Idle
Open

Sent

Establi

shed

Conne

ct

Open

Confirm

Error Error Error Error

Receive
Correct

Keepalive

Active

Receive Correct
Open

TCP
EstablishedStart

Connect Retry
Timeout

TCP
Failed TCP

Established

Secu

rityError

Verification Success

Receive
Correct
Open

Successful
verify secure
and complete

Open

Security issues occurring

Refresh security parameters

Start

BGP FSM

Root

Root

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback
Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Root

Root

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

Fallback

A:keep_Idle

keep_Idle

A:keep_Idle

keep_Idle

Parallel
Parallel

[IN]failure_threshold

[IN]success_threshold

1

4

C: Start

Start

C: Start

Start

→Sequence

Sequence

→Sequence

Sequence

→Sequence

Sequence

→Sequence

Sequence

→Sequence

Sequence

→Sequence

Sequence

→Sequence

Sequence

C: TCP_Established

TCP_Established

C: TCP_Failed

TCP_Failed

C: Connect_Retry_Timeout

Connect_Retry_Timeout

C: Receive_Correct_Open

Receive_Correct_Open

C: Receive_Correct_Keepalive

Receive_Correct_Keepalive

A:Idle_to_Connect

Idle_to_Connect

A:Connect_to_Active

Connect_to_Active

A:Active_to_Connect

Active_to_Connect

A:OpenConfirm_to_Established

OpenConfirm_to_Established

A:OpenSent_to_OpenConfirm

OpenSent_to_OpenConfirm

C: TCP_Established

TCP_Established

C: Receive_Correct_Open

Receive_Correct_Open

C: Receive_Correct_Keepalive

Receive_Correct_Keepalive

C: Connect_Retry_Timeout

Connect_Retry_Timeout

C: TCP_Failed

TCP_Failed

A:Active_to_Connect

Active_to_Connect

A:ConnectOrActive_to_OpenSent

ConnectOrActive_to_OpenSent

A:OpenConfirm_to_Established

OpenConfirm_to_Established

A:Idle_to_Security

Idle_to_Security

A:Security_to_Connect

Security_to_Connect

C: Verification_Success

Verification_Success

A:Connect_to_Active

Connect_to_Active

A:Refresh_security_parameters

Refresh_security_parameters

C:Security_issues_occurring

Security_issues_occurring

C:Successful_verify_secure_and_complete_Open

Successful_verify_secure_and_complete_Open

A:Security_to_OpenConfirm

Security_to_OpenConfirm

A:OpenSent_to_Security

OpenSent_to_Security

Fig. 1: Scalable and flexible network routing protocol using behavior tree for BGP protocol. (a) Transition between BGP
internal finite state machine and behavior tree. (b) New finite state machine and behavior tree with added security state.

model designed to support reactive and fault-tolerant opera-
tions. It consists of five essential logical nodes: action, condi-
tion, fallback, sequence, and parallel [4]. The BT effectively
addresses limitations in the FSM. First, the BT modularity
results from its compositional structure, where each node
functions as an independent, self-contained unit representing
a distinct behavior or operation. This design allows nodes
to be added, removed, or modified without disrupting the
overall structure, making the BT highly adaptable and easy
to extend or integrate. Second, the various logical nodes in
the BT enable it to flexibly express complex logic without

increasing system complexity, while parallel nodes support
concurrent task execution. Finally, fallback nodes enhance
fault tolerance by automatically selecting alternative paths
when a task fails, providing greater flexibility in achieving
objectives. The authors in [7] demonstrated that the BT was
widely utilized in game development and robotics as a mod-
ular alternative to the FSM for managing complex decision-
making processes while maintaining stability under high load.
Drawing inspiration from this, we explore the potential of
the BT in network systems, which often experience instability
under heavy traffic. Accordingly, this article investigates the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 3

introduction of the BT into network routing protocols to
address these challenges. Our previous study in [2] applied
the BT to decouple processing logic from operational logic
and action execution in routing protocols. However, that work
was largely theoretical, lacking a practical implementation.
To fill this gap, we propose a realizable functional scheme
that establishes a foundation for extending functionality and
enables flexible, dynamic configuration of network routing
protocols. Additionally, the authors in [11] utilized the BT
in the power systems domain to manage protocol switching,
providing flexible control over the execution of operations.
In contrast, our approach utilizes the BT to construct the
process of the routing protocol itself, replacing the existing
FSM mechanisms within the protocol’s internal operations.

In this article, we explore and exploit the BT to achieve
flexibility and scalability of network routing protocols with
the following research contributions:

• Generic network routing protocol architecture: In this
article, we replace the FSM in routing protocols with the
BT and design a generic architecture based on the BT.
Then, we compare and analyze this architecture in eight
aspects with the FSM, hierarchical finite state machine
(HFSM), and decision tree (DT).

• Implementable functional scheme: To bridge the gap
between theory and implementation, this article proposes
an implementable functional scheme based on the BT to
decouple the control plane, enhancing the flexibility of
protocol functionality extensions.

• Proof-of-concept implementations: This article presents
two use cases. The first demonstrates the feasibility and
advantages of replacing the FSM in a routing protocol
with the BT. The second highlights the enhanced capa-
bilities for extending the protocol through leveraging the
BT.

The rest of this article is organized as follows. In Section
II, we provide an overview of the concept of the BT and
compare it with existing control architectures. In Section III,
we focus on the application of the BT in routing protocols and
design a generic network routing protocol architecture based
on the BT. In Section IV, we present the feasibility analysis of
leveraging the BT as an alternative for the FSM, along with
a scalability analysis based on the BT through two use cases.
Finally, conclusion is drawn in Section V.

II. BASICS AND ANALYSIS OF BEHAVIOR TREES FOR
NETWORK ROUTING PROTOCOL CHALLENGES

This section provides a brief overview of the BT and
five types of logical nodes, leveraging the BGP protocol to
illustrate the application of the BT in network routing proto-
cols. Subsequently, we conduct a comparative analysis of the
relationship between the BT and existing control architectures.

A. Basics and Logic Nodes of Behavior Tree

The BT is a widely applied graphical model for reactive
and fault-tolerant task execution in gaming and robotics [4].
However, the application of the BT in routing protocols has not
been fully explored. The modular structure of the BT enhances
clarity and reduces design errors, with its strengths rooted
in modularity, scalability, and reusability. The BT operates

through five types of logical nodes: sequence, fallback, paral-
lel, condition, and action. Among these, the sequence, fallback,
and parallel nodes are composite nodes, each producing one
of three possible outcomes: success, failure, or running. Child
nodes that can be attached to a composite node include action,
condition, and other composite nodes.

The five types of logical nodes as follows.
• Fallback nodes, also known as selectors, execute from

left to right. If any child node succeeds, the following node
stops execution and returns success. If all child nodes fail, the
fallback node returns failure.

• Sequence nodes execute from left to right, returning suc-
cess only if all child nodes succeed. If any node fails, the
sequence node returns failure, and the remaining nodes are
not executed.

• Parallel nodes determine their return status based on a
predefined strategy, allowing threshold values to be set for the
number of successes and failures. Specifically, if a parallel
node has N child nodes, success and failure thresholds can be
set at Q and P, respectively, where P ≤ Q ≤ N. The node
returns success if at least Q child nodes succeed, and failure
if at least P child nodes fail.

• Action nodes perform the necessary functions for the cu-
rrent network. They return success when the operation com-
pletes successfully, failure if it fails, or running when the
operation is still in progress.

• Condition nodes serve the purpose of decision-making
and return success if a given condition is met; otherwise, they
return failure. These nodes do not influence the internal state
of BT and are primarily intended to enhance its readability.

We utilize five types of logical nodes to implement the FSM
to the BT conversion for the BGP protocol. The BT begins at
the root node and initially enters a fallback node. When no
event is triggered, the action keeps Idle. If an event is triggered,
the process enters a parallel node consisting of four fallback
nodes. These four fallback nodes are as follows. For the first
fallback node, if a start event is triggered and then enters the
sequence node. The first action in the sequence node is the
transition to Connect. Subsequently, a sequence node with two
fallback nodes is executed. Following a left-to-right sequence,
the first fallback node within this sequence checks if the
transmission control protocol (TCP) connection is successful.
The action will transition to Active if the connection fails.
The second fallback node within this sequence assesses if
the retry connection has timed out. If it has, the action is to
transition back to Connect. For the second fallback node, the
system determines if the TCP connection has been established.
If it has, the action is to transition to OpenSent. For the
third fallback node, the system waits to receive an open
message from a peer node after sending an open message in
the current node. The action is to transition to OpenConfirm
if received. For the fourth fallback node, the system waits
for a keepalive message from a peer node. If received, the
action is to transition to Established, where update messages
are exchanged to learn route entries. Based on the threshold
settings of the parallel nodes, if any of the four fallback nodes
return failure, the entire parallel node immediately returns a
failure to the connected fallback node, taking the action to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 4

TABLE I: Comparative analysis of finite state machine, hierarchical finite state machine, decision tree and behavior tree.

FSM HFSM DT BT

Hierarchy

Readability

Reusability

Portability

Testability

Robustness

Unit of state. Unit of decision result. Unit of function subtree.

Event-driven,

one-way transfer

Event-driven,
hierarchical execution,

one-way transfer.

Recursive division,
hierarchical executioon,

tree visualization.

Tick-driven,
hierarchical execution,
bidirectional transfer

Fair Good Excellent

Poor Poor Average Excellent

Logic is easy,

coding is complex.

Logic is easy,

coding is complex.

Logic is easy,

coding is moderate.

Logic is easy,

coding is easy.

Manually control
conversions, difficult to

modify

Manually control
conversions, difficult to

modify

Manually division based
on node characteristics.

Automatic update of state,
action space and

operation content.

SMC, Unity, Godot,

Matlab,....

SMC, Unity, Godot,

Matlab ,....

Visual Paradigm,

WEKA,.....

1.Reduce sub-state
coupling;

2.Parallel is easy to
conflict;

3.Cooperative is easy to
clock inconsistency.

1. Highly affected by
changes in data;

2. Difficult to learn
abstract concepts;

1.Modular easy
decoupling, high

readability and scalability;
2.Logic node control

action execution;
3.Visualization manual

design operation interface.

Method

Attributes

Simple state: Good
Complex state: Fair

1. Low parallelism;
2. State explosion occurs

for multiple states;

Modularity

Modifiability

BehaviorTree.CPP,
behaviac, CocosCreator,

Behavior Designer .

Unit of sub-state machine,
low coupling.

transition to Idle. Only when all four fallback nodes execute
success does the root node ultimately receive success. In Fig.
1, the BT replaces the complex task-transition relation of the
FSM by adding only three branches based on the template.

The transition from the FSM to the BT introduces several
challenges. A primary concern is compatibility, as integrating
the BT into existing routing protocols may lead to conflicts
with the FSM. To address this issue, we adopt a phased
approach, implementing incremental replacements rather than
undertaking a complete overhaul, thereby ensuring a smooth
transition and preserving system compatibility. Regarding de-
bugging verification, while the BT offers two-way feedback, it
lacks the capability to identify which specific function mount-
ed under the logical node is malfunctioning. Consequently,
this article proposes a feedback mechanism utilizing sockets
within the mounted functions, facilitating more precise fault
localization.
B. Comparative Analysis of Finite State Machine, Hierarchi-
cal Finite State Machine, Decision Tree and Behavior Tree

We compare the BT with other similar control architectures,
including the FSM, HFSM, and DT, across eight aspects:
modularity, hierarchy, readability, reusability, portability, mod-
ifiability, testability, and robustness, as presented in TABLE I.
The definitions of these aspects are as follows: Modularity
refers to the decomposition of a large program or system into
smaller, more manageable modules or components. Hierarchy
is a principle in software architecture that structures a system
into various levels or layers. Reusability indicates that code
or modules can be utilized across multiple projects or systems
with minimal or no modifications. Portability signifies that the
system can operate across different environments with little or
no changes. Robustness denotes a program’s resilience and
reliability when encountering erroneous inputs or unexpected

situations.
The comparisons in TABLE I are analyzed as follows:
1) Modularity: The smallest control unit differs across

the four methods. Both the BT and the DT exhibit strong
modularity, the HFSM has partial modularity, while the FSM
lacks modularity entirely. The BT combines the structural
aspects of the HFSM with the decision-making capabilities
of the DT within a tree-like structure, offering a flexible and
modular approach for representing complex behaviors [12].

2) Hierarchy: Both the FSM and the HFSM are event-
driven with unidirectional transitions. The DT employs recur-
sive classification to form a hierarchical tree structure, while
the BT features a tick-driven, bidirectional hierarchical tree
structure [13].

3) Readability: According to [14], the BT offers more
excellent readability than the FSM and the HFSM, mainly for
handling complex state problems. In this article, the FSM of
BGP extends a Security state by adding seven state transition
relations, as shown in Fig. 1, and the readability of the FSM
is worse than that of the BT. Its tree structure and modularity
enhance clarity. The DT also provides an intuitive structure,
making it easy to understand [4].

4) Reusability: The BT demonstrates the highest reusability
due to its strong modularity. The FSM is not modular and has
the worst reusability. The HFSM offers reusability due to its
hierarchical design, while DT’s remains uncertain.

5) Portability: The logic of all four methods is simple,
but in terms of code development, the BT is the easiest to
develop based on templates; the DT is one of the most popular
algorithms in machine learning, though its implementation
complexity may vary. The FSM and HFSM are more challeng-
ing to code for complex scenarios, as they require managing
multiple states and transitions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 5

6) Modifiability: The FSM, HFSM, and DT require manual
modification and compilation by the developer for updates.
In contrast, the BT supports automatic updates that can be
triggered dynamically in response to different scenarios.

7) Testability: The four methods are tested with appropriate
test tools.

8) Robustness: The FSM and HFSM struggle with complex
states and parallel operations, while the DT’s sensitivity to
data changes leads to lower robustness. In contrast, the BT’s
modular design and decoupled structure provide enhanced
flexibility and robustness, making it more suitable for intricate
environments.
III. BEHAVIOR TREES IN NETWORK ROUTING PROTOCOL

In this section, we first present a generic network routing
protocol architecture. Then, we propose an implementable
functional scheme.
A. Generic Network Routing Protocol Architecture of Behav-
ior Tree

The generic routing protocol architecture proposed in this
article aligns with the distributed structure of the Internet.
However, when a new protocol is introduced to a network
element, all other elements within the management domain
require structural updates, as noted in [15]. This necessity for
widespread adjustments presents practical challenges, often
resulting in lengthy implementation processes. To address
these issues, we propose a new routing protocol architecture
with a three-plane structure: the management plane, the control
plane, and the data plane, as shown in Fig. 2.

In the management plane, the intent analysis module primar-
ily translates user intent into executable operations for network
devices. First, user inputs in various forms are converted
into natural language, with keyword extraction and intent
interpretation performed through natural language processing.
Complex intents are broken down into subtasks, which are
then transformed into executable operations based on current
network data and available network capabilities. The BT
visualization module enables the construction of a BT frame-
work using an editor, forming a basic operational template
guided by the output of the intent analysis module. These
BT templates are dynamically adjusted and reorganized during
the subsequent decision-making process according to feedback
from the resource awareness module.

In the control plane, network policies are generated by
combining data from the routing policy repository with re-
source information on the calculation, memory, security, and
forward capabilities sensed from the network. The control
plane leverages the BT to separate control policies from
control executions. The decision module applies decision rules
through logical nodes within the BT, sending control signals
to the execution module to carry out specific operational tasks.
The execution module then assigns the generated routing table
entries to Zebra, which interacts with the kernel to forward
packets to the data plane. This process uses the open-source
routing suite FRRouting, which includes multiple standard
routing protocols. Zebra, the core daemon, manages routing
tables and facilitates communication between the kernel and
user space.

The data plane is designed to prioritize network topology
and end-user deployment. Each network node integrates a BT,

Decision Module
Execution

Module

Routing Policy

Repository

Module

Resource Awareness Module

Data plane

Calculation Memory Forward Security

Block1 Block2 Block3 Block4

Control plane

Control

Signaling

Management plane

FRR

Routing

Table

User/scenario

Requirements
Intent Analysis

BT Visualization

Manual
Configuration

BT Template

Decoupling control policy
from control execution

......

...

Flexible
selection of
functions

ROOTROOT

Behavior Tree

...

Flexible
selection of
functions

ROOT

Behavior Tree

Zebra

Kernel

Fig. 2: Generic network routing protocol architecture using
behavior tree.

which can be configured or activated to meet specific user
requirements.
B. Implementable Functional Scheme of Behavior Tree

Building on our prior research [2], we reconstruct complex
control logic for routing protocols utilizing the BT from a
practical implementation perspective. Taking the intermediate
system to intermediate system (IS-IS) routing protocol as an
example, we model the entire process, from link establishment
to final packet forwarding, leveraging the BT framework, as
illustrated in Fig. 3.

During execution, control logic templates are constructed
flexibly by editing control rules within the BehaviorTree.CPP
editor and selecting logic nodes through the graphical us-
er interface provided by the Groot plugin. This component
primarily executes the source code of the network routing
protocol during logical control operations. Furthermore, sock-
ets are employed to link control rules to the action nodes
of the BT, facilitating real-time reflection of the protocol’s
current status. For instance, at time T 1, four actions are de-
fined: EXTABLISH CONNECT, SEND HELLO PDU, CIR-
CUIT UP, and FORWARD, which are executed sequentially
as the protocol operates. To introduce a New Function be-
tween CIRCUIT UP and FORWARD at time T n, an action
node is inserted in Groot. It is important to note that newly
added modules necessitate the prior preparation of the BT-
based control logic templates. This approach significantly sim-
plifies the extension of routing protocols with new functions,
enhancing both the flexibility and scalability of protocol design
and development.
IV. PROOF-OF-CONCEPT IMPLEMENTATION OF BEHAVIOR

TREE FOR ROUTING PROTOCOL

In this section, we design two use cases. Use case 1
establishes an equivalence analysis between the BT and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 6

XML
Template

Registration
&

Compilation

ROOT

Control Rule

Control Operation

Code Running

socket

Management plane

Data plane

ESTABLISH

CONNECT

SEND

HELLO

PDU

CIRCUIT

UP
FORWARD

Time

T_1

T_n ESTABLISH

CONNECT

SEND

HELLO

PDU

CIRCUIT

UP

FORWA

RD
New

Function

DDeecciissiion on Selection

Function

Fig. 3: Implementable control plane decoupling architecture
of flexible network routing protocol utilizing behavior tree.

FSM, while use case 2 illustrates the scalability of the BT for
extending routing functionalities.

A. Use Case 1: An Equivalence Verification between Behavior
Tree and Finite State Machine

In this use case, we demonstrate the equivalence between
the BT and the FSM. We establish a network topology
utilizing the IS-IS protocol from the open-source IP routing
suite FRRouting. Developed in C, this suite encompasses
various standard routing protocols, including BGP, OSPF, and
IS-IS, which contributes to its widespread adoption among
organizations and institutions.

In the simulation, we configure network topologies con-
sisting of three and five nodes, respectively. Focusing on
the five-node configuration, which includes R1, R2, R3, R4,
and R5, each node is configured with the IS-IS protocol and
connected sequentially. During the conversion of the FSM
to the BT mechanism within the IS-IS protocol, developers
face significant challenges, primarily involving a comprehen-
sive understanding of the state transition logic and interface
relationships within the FSM code of the existing protocol.
To address these challenges, developers need to accurately
identify the relevant modules in the implementation code and
systematically organize the FSM transition rules. We restruc-
ture the 149 lines of code in the isis csm.c file according to
the execution logic of the BT, leading to a total of 181 lines.
This modification includes redesigning both state transitions
and functional modules. Although these adjustments require
code modifications, the challenges during development are
effectively managed through proper modularization.

We employ five virtual machines to emulate network nodes,

each operating on Ubuntu 20.04. The experiment utilizes the
ping tool to simulate packet transmission. We execute the com-
mand “ping 192.168.137.128” to assess link connectivity from
R1 to R5. The evaluation method involves manually disrupting
the link between R3 and R4 for 40 seconds during data transfer
before restoring the connection. We measure the reconvergence
time for two mechanisms: the FSM-based protocol and the
BT-based protocol. Convergence is defined in terms of packet
reachability, indicating that packet transmission within the
network is restored following a link failure or update.

In the results, we present the distribution of ten data sets for
each method, as illustrated in Fig. 4. The analysis reveals that
the average convergence time for the BT-based protocol is 29.9
seconds, which is 0.8 seconds faster than the 30.7 seconds
recorded for the FSM-based protocol. Similarly, in a three-
node network, the average convergence time for the BT is
27.9 seconds, demonstrating a 0.4 seconds advantage over the
FSM, which has an average convergence time of 28.3 seconds.
These results indicate that the BT can effectively substitute the
FSM in protocol implementations.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

FSM BT FSM_Average BT_Average

C
o

n
v

er
g

en
ce

 t
im

e
/s

Fig. 4: Verification of the equivalence between finite state
machines and behavior trees, with a comparative analysis of

routing convergence time after replacing the circuit state
machine component in the IS-IS routing protocol with the

behavior tree.

B. Use Case 2: An Scalability Analysis for Behavior Tree

In this use case, we focus on demonstrating the scalability
of the BT in terms of improved routing functionality.

Network failures and dynamic topology changes are primary
factors affecting data transmission reliability. Conventional
routing protocols often require time to converge following link
state changes, which can lead to packet loss. Our research aims
to implement a more rapid response mechanism through the
BT to improve routing performance and mitigate the risk of
data loss.

The new routing enhancement function is triggered when
a packet transmission route is disrupted in the initial routing
protocol. Specifically, when a port on a network node fails,
the system promptly computes all available routes to the
destination node. A new routing table format, based on the
IPv6 routing table, is developed to accommodate these newly
computed paths, which are subsequently inserted into the
appropriate table entries. This updated table is then transmitted
to the data forwarding plane to resume packet transmission.
This design effectively reduces link state convergence time

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2024 7

0

20

40

60

80

100
P

ac
k

et
 l

o
ss

 r
at

e
%

Number of packets

re eefoB

100 5000 10000 15000

xte
After extension

nsion

Fig. 5: Scalability of routing protocol functionalities utilizing
the behavior tree to compare the impact on packet loss rates

before and after the extension.

compared to the initial routing protocol. However, every
approach has its drawbacks, which can result in additional
overhead due to the need to carry network connection status
information.

In the simulation, the network is configured such that R1,
R2, and R3 are interconnected, R4 connects to R1 and h1,
R5 connects to R2 and h2, and R6 connects to R3 and h3.
We transmit varying numbers of packets from h2 to h3,
subsequently interrupting the link between R2 and R3 to
monitor the packet loss rate. Throughout the experiment, we
record the packet loss before and after the extension of the
new routing enhancement functionality BT for a comparative
analysis. As illustrated in Fig. 5, following the enhancement,
the packet loss rate for all packets significantly decreases,
while the packet loss rate prior to the enhancement ranged
from approximately 40% to 50%. These results demonstrate
that the BT exhibits strong scalability in dynamically adjusting
routes, particularly in environments characterized by frequent
changes in link states.

V. CONCLUSION

In this article, we proposed a generic architecture for
network routing protocols that leveraged the behavior tree to
improve scalability and flexibility. Furthermore, we presented
a functional scheme that enabled the effective deployment of
the routing protocol. Finally, we conducted a proof-of-concept
leveraging two use cases, revealing that: 1) the behavior tree
served as an effective alternative to the finite state machine,
achieving superior average routing convergence speeds, and 2)
the behavior tree demonstrated scalability in adapting to dy-
namic routing adjustments. In future work, we plan to validate
our method in larger and more complex network topologies,
evaluate performance metrics such as CPU, memory overhead,
and latency, and further clarify integration details. Additional-
ly, we aim to explore incremental behavior tree adoption for
conventional systems to enhance flexibility and demonstrate
practical applications in platforms such as software-defined
wide area networks, 5G, and the Internet of Things.

REFERENCES

[1] M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han,
A. Jamalipour, D. I. Kim, X. Shen, V. C. M. Leung, and H. V.
Poor, “Unleashing the power of edge-cloud generative AI in mobile
networks: A survey of AIGC services,” IEEE Commun. Surveys Tuts.,
vol. 26, no. 2, pp. 1127-1170, 2nd Quart., 2024.

[2] X. Gao, T. Feng, J. Du, and S. Jiang, “An programmable control plane
framework by using behavior tree,” in Proc. 2021 4th Int. Conf. Hot
Inf.Centric Network. (HotICN), Nanjing, China, Nov. 2021, pp. 74-80.

[3] A. Zengin and M. M. Ozturk, “Formal verification and validation with
DEVS-Suite: OSPF Case study,” Simul. Model. Pract. Theory, vol. 29,
pp. 193-206, Dec. 2012.

[4] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI:
An Introduction. Boca Raton, FL, USA: CRC Press, 2018.

[5] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection
techniques: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 1,
pp. 377-396, 1st Quart., 2017.

[6] P. Spadaccino, S. Bruzzese, F. Cuomo, and F. Luciani, “Analysis
and emulation of bgp hijacking events,” in Proc. IEEE/IFIP Network
Operations and Management Symposium (NOMS), Miami, FL, USA,
May. 2023.

[7] E. Coronado, F. Mastrogiovanni, and G. Venture, “Development of
intelligent behaviors for social robots via user-friendly and modular
programming tools,” in Proc. IEEE Workshop Adv. Robot. Social
Impacts (ARSO), Genova, Italy, Sep. 2018, pp. 62-68.

[8] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and AI,” Robot. Auton. Syst., vol. 154, pp.
104096, Aug. 2022.

[9] M. Colledanchise and P. Ögren, “How behavior trees modularize hybrid
control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees,” IEEE Trans. Robot., vol.
33, no. 2, pp. 372-389, Apr. 2017.

[10] M. Colledanchise and L. Natale, “On the implementation of behavior
trees in robotics,” IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 5929-
5936, Jul. 2021.

[11] B. Christalin, M. Colledanchise, P. Ögren, and R. M. Murray, “Syn-
thesis of reactive control protocols for switch electrical power systems
for commercial application with safety specifications,” in Proc. Symp.
Computational Intell., Athens, Greece, Feb. 2016.

[12] A. v. Perger, P. Gamper, and R. Witzmann, “Behavior trees for smart
grid control,” IFAC-PapersOnLine, vol. 55, no. 9, pp. 122-127, 2022.

[13] M. Colledanchise, “Behavior trees in robotics,” Ph.D. dissertation, KTH
Royal Institute of Technology, 2017.

[14] M. Iovino, J. Förster, P. Falco, J. J. Chung, R. Siegwart, and C. Smith,
“Comparison between behavior trees and finite state machines,” arXiv
preprint, arXiv: 2405.16137, 2024.

[15] H. Luo, S. Zhang, Z. Wang, and Q. Meng, “Understanding and thinking
about the innovation on internet architecture,” Acta Electronica Sinica,
vol. 52, no. 4, pp. 1411-1420, 2024.

VI. BIOGRAPHY
Jiaorui Huang is currently pursuing her Ph.D. degree at Xidian University.
Her research interests are artificial intelligence in intent-driven network and
network routing protocols.
Chungang Yang is a full professor at Xidian University. His research interests
are artificial intelligent 6G wireless mobile networks, intent-driven networks
(IDN), space-terrestrial networks (STN), and game theory for emerging
communication networks.
Tao Feng received Ph.D. degree in computer science from Tsinghua Univer-
sity, Beijing, China. His research interests are AI for networking, software-
defined networks, and network management.
Lujia Dong is currently pursuing her masters degree at Xidian University. Her
research interests are intent-driven network and network routing protocols.
Alagan Anpalagan received the B.A.Sc., M.A.Sc., and Ph.D. degrees in
electrical engineering, in 2001 from the University of Toronto, Toronto, ON,
Canada. He is currently a Professor in the Department of Electrical and
Computer Engineering at Ryerson University, where he leads research on
radio resource management and networking in the WINCORE Lab. He is a
Registered Professional Engineer in the province of Ontario, Canada.
Qiang Ni received the Ph.D. degree in engineering from Huazhong University
of Science and Technology, Wuhan, China, in 1999. He is currently a Full
Professor and the Head of the Communication Systems Research Group,
School of Computing and Communications, Lancaster University, Lancaster,
U.K. His research interests include future generation communications and
networking systems.
Mohsen Guizani received the B.S. (with distinction), M.S., and Ph.D. degrees
in electrical and computer engineering from Syracuse University, Syracuse,
NY, USA in 1985, 1987, and 1990, respectively. He is currently a Professor
and the Associate Provost with Mohamed Bin Zayed University of Artificial
Intelligence, Abu Dhabi, UAE. His research interests include applied machine
learning, smart city, wireless communications/networking, cloud computing,
and security. Prof. Guizani is currently serving on the editorial boards of many
IEEE transactions and magazines.

