Bold, Matthew and Goerigk, Marc (2025) Recoverable robust single machine scheduling with polyhedral uncertainty. Journal of Scheduling, 28 (3). pp. 269-287. ISSN 1094-6136
10951_2024_Article_828.pdf - Published Version
Available under License Creative Commons Attribution.
Download (618kB)
Abstract
This paper considers a recoverable robust single-machine scheduling problem under polyhedral uncertainty with the objective of minimising the total flow time. In this setting, a decision-maker must determine a first-stage schedule subject to the uncertain job processing times. Then following the realisation of these processing times, they have the option to swap the positions of up to Δ disjoint pairs of jobs to obtain a second-stage schedule. We first formulate this scheduling problem using a general recoverable robust framework, before we examine the incremental subproblem in further detail. We prove a general result for max-weight matching problems, showing that for edge weights of a specific form, the matching polytope can be fully characterised by polynomially many constraints. We use this result to derive a matching-based compact formulation for the full problem. Further analysis of the incremental problem leads to an additional assignment-based compact formulation. Computational results on budgeted uncertainty sets compare the relative strengths of the three compact models we propose.