
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

A Data Replication Placement Strategy for the
Distributed Storage System in Cloud-Edge-Terminal

Orchestrated Computing Environments
Peng Chen, Mengke Zheng, Xin Du, Muhammad Bilal, Zhihui Lu, Member, IEEE Qiang Duan, Senior

Member, IEEE, and Xiaolong Xu, Senior Member, IEEE

Abstract—Cloud-edge-terminal orchestrated computing, as an
expansion of cloud computing, has sunk resources to the edge
nodes and terminal equipment, which can provide high-quality
services for delay-sensitive applications and reduce the cost
of network communication. Due to the high volume of data
generated by Internet of Things (IoT) devices and the limited
storage capacities of edge nodes, a significant number of terminal
devices are now being considered for utilization as storage nodes.
However, because of the heterogeneous storage capacity and
reliability of these hardware devices and the different data
requirements of user services, the performance and storage
reliability of applications deployed in cloud-edge-terminal orches-
trated computing environments have become urgent problems
to be solved. Especially, for a distributed storage system in
these environments, it is required to ensure reliable storage of
the generated data and its’ replications. In this paper, we first
implement a distributed storage system and construct a data
replication placement model. Then, based on the constructed
model, we formulate the data replication placement problem
and design a data replication placement strategy called DRPS
to solve it. The DRPS covers a ranks-based replication storage
node selection algorithm and a greedy load balancing algorithm,
which can select appropriate hardware devices for different
data requirements of services and is implemented in the data
storage system to store replications and balance loads. We design
extensive experiments to verify the effectiveness of DRPS. The
results indicate that the proposed strategy outperforms other
state-of-the-art algorithms in terms of system delay reduction
by 39.9%, an increase of 43.3% in the replication numbers, a
27.5% improvement in memory utilization, and a reduction of
unreliability rate by 82.0%.

Index Terms—Cloud-Edge-Terminal Orchestrated Computing;

The work of this paper is supported by the National Natural Science Foun-
dation of China under Grant (No.61873309, No.92046024, No.92146002),
Shanghai Science and Technology Project under Grant (No.22510761000),
and Intel Sponsored Research Agreement under Grant (Intel CG # 89533661).
(Corresponding author: Xin Du, Xiaolong Xu.)
P. Chen and X. Long are with the School of Software and Technology, Nanjing
University of Information Science and Technology, Nanjing 210044, China.
(e-mail: chenpenghehedawang@gmail.com, xlxu@ieee.org).
M. Zheng and Z. Lu are with the School of Computer Science, Fudan
University, Shanghai 200433, China. (e-mail: mkzheng23@m.fudan.edu.cn,
lzh@fudan.edu.cn).
Z. Lu is also with Shanghai Blockchain Engineering Research Center,
Shanghai 200433, China.
Muhammad Bilal is with the School of Computing and Communications,
Lancaster University, Lancaster LA1 4WA, UK. (e-mail: m.bilal@ieee.org)
Qiang Duan is with the School of Information Sciences and Technology,
Pennsylvania State University, State College, PA 16802 USA. (e-mail: qd-
uan@psu.edu).
Xin Du is with the School of Software Technology, Zhejiang University,
Zhejiang 310027, China, and also with the State Key Lab of Brain-
Machine Intelligence, Zhejiang University, Zhejiang 310027, China. (e-mail:
jsjduxin@gmail.com).

Distributed Storage System; Data Replication Placement; Load
Balance

I. INTRODUCTION

WTHE the rapid development of the Internet of Things
(IoT) technology, some smart terminal devices with

certain computing and storage capabilities have emerged
and are widely used in industrial environments [1]. The
combination of these terminal devices, such as smart cars,
cameras, and sensors, with their associated edge nodes and
cloud servers, forms what is known as cloud-edge-terminal
orchestrated computing environments [2]. In the environments,
to reduce data transmission and latency while enhancing
system response time and reliability1, these hardware devices,
which include smart terminals and edge nodes, are typically
located at the network edge, allowing for local processing and
storage of data. However, due to the limitations of resources
and capabilities, data collected and transmitted by terminal
devices may experience loss, errors, or corruption, which
lowers the reliability and integrity of the data. Therefore, in
real environments, a distributed storage system usually be
maintained to replicate the data collected and processed by
the terminals to improve the accessibility and availability of
the data [3], [4]. Additionally, the system can also provide
a reliable data foundation for subsequent data analysis and
mining. To ensure the performance and reliability of data
stored in this system, it is necessary to design a data replication
placement strategy for it. Especially when terminal devices as
storage nodes are involved in the distributed storage system,
although this can significantly enhance resource utilization,
managing such an extensive number of IoT devices and data,
while ensuring the reliability and performance of applications
in this environment, becomes a substantial challenge. To the
best of our knowledge, while keeping the storage effectiveness
of the system, there is no data replication placement strategy
that can fully guarantee the reliability of data storage in cloud-
edge-terminal orchestrated computing environments.

As shown in Figure. 1(a), for traditional data replication
placement strategy for storage systems in cloud-edge-terminal
orchestrated computing environments, when data is generated
in terminal devices, the system usually chooses to upload data
to a cloud server or edge nodes after data collection for data

1In this paper, the term ”reliability” is used exclusively to refer to storage
reliability.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

(a) traditional data replication placement strategy (b) proposed data replication placement strategy

Fig. 1. Illustration of the different data replication placement strategy for distributed storage system in cloud-edge-terminal orchestrated computing environments

persistence and conducts data analysis and access in the cloud
or edge [3]–[5]. However, with the continuous improvement of
smart terminal device performance, an increasing number of
these devices have acquired data storage capabilities. Failing
to fully utilize this storage capacity would be a waste of
hardware resources [3], [4]. Furthermore, the exponential
growth of data generated by smart devices has led to edge
nodes, originally intended for data storage, being overwhelmed
by massive amounts of data. Hence, some researchers have
adopted distributed storage systems by using the cooperation
of terminal devices in some industrial environments.

In Figure. 1(b), for the proposed data replication placement
strategy in the distributed storage system, when data is gener-
ated in terminal devices, the system can choose to store and
replicate the data in the terminal devices or upload them to
a cloud server or edge nodes. Compared to cloud servers or
edge nodes, the number of terminal devices is large and widely
distributed, and there are significant differences in resource
performance and reliability between different devices [6]–[8].
When designing a data replication placement strategy for the
distributed storage system, some challenges are summarized as
follows: First, the performance capabilities of terminal devices
vary significantly, influencing the load they are capable of
managing. Second, the reliability of these terminal devices
differs, thereby affecting the level of data security they can
ensure. Third, there is a diversity of storage resources that are
required for the data to be stored and replicated. Fourth, the
required reliability levels for data storage and replication also
vary. In addition, load balancing also needs to be considered,
and the data replication placement strategy should be used to
avoid causing excessive load [9].

In this study, we first attempt to construct the complex
data replication placement model and combine a ranks-based
replication storage node selection algorithm with a greedy load
balance algorithm in the proposed DRPS to solve the data
replication placement problem. Compared to other state-of-
the-art methods in the distributed storage system, the proposed
DPPS not only can satisfy the data storage reliability but also
make the data storage more effective. In summary, the main

contributions of this paper are as follows:

• We construct a comprehensive data replication placement
model for cloud-edge-terminal systems, uniquely consid-
ering terminal devices as storage nodes with heteroge-
neous reliability and capacity. For a distributed storage
system in cloud-edge-terminal orchestrated computing
environments, not only the storage capacity and reliability
of the terminal devices need to be considered, but also the
potential impact of the dynamic changes in the terminal
devices and networks available for distributed storage
on the system’s load balancing needs to be taken into
account.

• Based on the constructed model, we formulate the data
replication placement problem as a multi-objective opti-
mization problem and design a data replication placement
strategy named DRPS to achieve it. Especially, DRPS
employ a ranks-based replication storage node selection
algorithm and a greedy load balancing algorithm, which
deploys multiple data replicas on appropriate hardware
devices and distributes them to different devices based
on the load conditions of these devices to achieve load
balancing of the whole system. With the premise of en-
suring data reliability, the resources of each terminal are
balanced as much as possible to achieve load balancing
among devices, improve resource utilization, and reduce
system delay.

• We simulate a cloud-edge-terminal orchestrated comput-
ing environment and implement a distributed storage
system for it. The system employs the proposed DRPS
to ensure the reliable storage of data and improve the
storage performance of the hardware devices. By de-
signing comprehensive experiments and utilizing datasets
obtained from a real-world IoT scenario, we validate that
the proposed DRPS achieves superior performance in
terms of system delay, data storage reliability, and hard-
ware utilization compared to existing approaches. The
implementation codes will be released upon publication
of this work.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

The remainder of the paper is organized as follows. We
first review related work in Section 2. Then, we introduce
the implementation of a distributed storage system and the
construction of a data replication placement model in Section
3. Based on the model, in Section 4, we design the DRPS
which combines a ranks-based replication storage node selec-
tion algorithm and a greedy load balancing algorithm. The
experimental results for performance evaluation are reported
in Section 5. Section 6 concludes the paper with a brief
discussion of future work.

II. RELATED WORK

There has been some prior work on related topics about
cloud-edge-terminal orchestrated computing environments,
which include distributed storage systems and data replication
placement.

Distributed storage system. With the emergence of edge
computing, some researchers began to evaluate the perfor-
mance of traditional cloud-distributed storage systems (includ-
ing Rados [10], Cassandra [11], and IPFS [12]) in edge com-
puting environments. A lot of storage systems were developed
and deployed on edge nodes based on their characteristics,
and the read-write performance and network communication
latency between different edge nodes were tested. However,
these studies were limited to deploying their system on
the edge node. They did not consider the differences be-
tween edge computing and traditional cloud computing or
the interaction between the cloud and edge nodes. Recently,
some authors made modifications to IPFS [12] to reduce the
amount of data transferred between different edge nodes to
adapt to network conditions between these nodes, but the
study was still limited to the consideration of edge nodes.
Gupta et al. designed the distributed storage system named
FogStore [13], which is an edge key-value storage system
(Key-Value Store) developed based on Cassandra [11]. In
FogStore, the geographical relationship between different edge
nodes and the reliability requirements of different data were
taken into account to design corresponding data replication
placement strategies. Furthermore, Monga et al. [14] designed
the Elfstore, a distributed storage system that combines peer-
to-peer (p2p) and Hadoop Distributed File System (HDFS)
architectures to effectively address the replica placement chal-
lenge. Elfstore utilizes highly reliable fog nodes to manage
and monitor edge resources. Similarly, by using cloud services
benchmark to assess their proposed solution, Mayer et al. [15]
also proposed an architecture for managing data replication
within a fog infrastructure, leveraging existing distributed
data storage systems as a foundation. However, the focus of
these studies was on the properties of terminal devices, and
they ignored the heterogeneity of different hardware devices.
Moreover, Huang et al. [16] proposed an edge collaborative
Internet of Things (IoT) management system that addresses
the challenges of high data storage network costs and weak
range search capabilities in cloud-edge hybrid environments.
Liu et al. [17] proposed offline community discovery and
online community adjustment schemes to adaptively solve
the replication placement problem in geo-distributed cloud

storage systems. For a distributed storage system, a replication
placement strategy named TS-REPLICA [18] was proposed
based on the entropy weight TOPSIS (a technique for order
preference by similarity to the ideal solution) method, which
first reflects the performance and defines the load of nodes
and then calculated the average comprehensive load score of
the entire hardware devices.

Data replication placement. To meet the reliability and secu-
rity requirements of data storage, the design and implementa-
tion of a data replication placement strategy are indispensable
in distributed storage systems. Confais et al. [19] proposed a
data replication management system that utilizes the Domain
Name Service (DNS) protocol and Content Delivery Network
(CDN) protocol. This management system creates a network
topology-based tree structure to store data locations in fog
architecture. Karatas and Korpeoglu [20] presented a heuristic
approach for classifying Internet of Things (IoT) data and
determining the type of data required by IoT applications
(latency-sensitive or computation-sensitive). They also pro-
posed a hierarchical data placement architecture in cloud-edge
hybrid environments. In their approach, data replication is
selected and utilized based on the highest centrality score,
and replication is performed on independent edge nodes in
two partitions. Huang et al. [16] proposed a protocol-based
strategy to solve the data replication placement problem and
minimize overall latency. It provides reasonable solutions in
polynomial time by using different heuristic rules to prune
infeasible solutions and reduce the search space. Li et al. [21]
established a dynamic strategy for data placement, considering
the serviceability of each node, estimating the likelihood of
data generation, and dynamically selecting edge nodes for
placement. Saranya et al. [22] proposed a method for random
data replication in cloud-edge-terminal orchestrated computing
environments. They conducted tests and validations across
various hardware device configurations to verify the effec-
tiveness of data replication placement strategies. As a result,
the network latency and bandwidth utilization of distributed
storage systems were reduced. Jaber et al. [23] provided a
meta-heuristic-based method using the non-dominated sorting
genetic algorithm aimed at minimizing network latency and
bandwidth. The effectiveness of their technique was compared
with other alternatives, demonstrating its efficiency in address-
ing the proposed solution.

Furthermore, Shakarami et al. [27] conducted a compre-
hensive survey and categorization of the most advanced data
replication schemes in various existing cloud computing solu-
tions to define current schemes on the topic and proposed open
questions. The proposed classification includes three main
categories: data deduplication schemes, data auditing schemes,
and data processing schemes. Chrysostomos et al. [24] pro-
posed a data placement strategy based on user mobility for
mobile application scenarios under a cloud-edge collaborative
architecture, considering the trade-off between latency and
data migration. They used a causality-aware method to classify
users into three mobility categories: static, local, or mobile
and then utilized this information to optimize the proposed
data placement strategy. Masoumeh et al. [28] addressed the
issue of ”over-provisioning” when resources in fog computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Ref Evaluation Tool Technique Performance Metrics Dataset
Huang [16] iFogSim Greedy algorithm Overall and execution time Simulation

Li [21] Apache JMeter Fast NSGA-II algorithm SRT,SSU,ART,RRT,TDW Simulation
Saranya [22] Simulation Random algorithm Bandwidth savings Simulation

Jaber [23] iFogSim ARIMA method Data latency/availability/access cost Simulation
Chrysostomos [24] Simulation DL network QoS, transfer latency and migration costs Simulation
Konstantinos [25] Python Simulation Heuristic approach Data cost, latency and availability, Real-world data

Dias [26] Thyme GardenBed Mecerra algorithm Data availability and overhead Simulation
Ours Python Simulation DRPS algorithm System delay/memory utilization/replication/reliability Simulation

TABLE I
A CONCLUSION OF SOME RELATED WORKS IN TERMS OF EVALUATION TOOLS, UTILIZED TECHNIQUES, PERFORMANCE METRICS, AND DATASETS.

architectures exceed needs and ”under-provisioning” when
fog resources are insufficient, by proposing an effective deep
learning-based resource auto-scaling mechanism to manage
the amount of resources needed to handle dynamic workloads
in fog environments. Esmaeil et al. [29] systematically cate-
gorized the work on data replica placement in hybrid cloud
and edge scenarios, dividing the main methods applied by
researchers into four types: framework-based, graph-based,
heuristic-based, and meta-heuristic-based algorithms, and dis-
cussed their advantages and disadvantages. Konstantinos et
al. [25] focused on optimizing data integrity, lifespan, security,
and cost while utilizing erasure coding to perform resource
allocation, proposing a comprehensive mixed integer linear
programming strategy for storage resource orchestration to
effectively balance performance and execution time. Mo-
hammad et al. [30] concluded a review paper to provide a
taxonomy of social-aware edge caching approaches consisting
of game theory-based, machine learning-based, model-based,
and heuristic-based approaches. Dias et al. [26] proposed a
data replica ranking algorithm tailored to the characteristics of
the mobile edge computing environment and formulated a data
replica placement strategy based on this algorithm, improving
the efficiency of finding replicas and reducing storage costs.
Sarwar et al. [31] focused on the importance of data replica
privacy for data protection, reliability, and authentication.
Based on the privacy level defined by data owners and the
service capability of edge nodes, they proposed a data replica
placement algorithm that not only protected the privacy of
data replicas but also effectively reduced the storage cost of
data replicas. Afonso et al. [32] paid attention to the trade-off
between consistency and access efficiency when storing data
replicas at edge nodes, proposing a data replica storage service
based on a causality tracking mechanism, which improved the
system’s access speed, throughput, and scalability.

In addition, Shao et al. [33] devised an aware collaborative
system for data replication placement in cloud-edge hybrid
environments to minimize data access costs and ensure data
dependability. This study also suggested a deadline-driven
scheduling strategy to optimize the burden on the edge and
fog infrastructure. Their method estimates the number of
data replicas dynamically and selects the optimal storage
device based on data block prevalence. Furthermore, Fahs and
Pierre [34] proposed Proximity, a straightforward approach
that allows system administrators to manage the trade-off
between reducing user-to-replica latency and evenly balancing
the load among replicas. The findings indicate that their tech-
nique effectively reduces the average user-to-replica latency

while enabling system administrators to control the level of
load balancing. Inspired by this study, load balancing was also
considered an important metric of the data replication place-
ment strategy designed, which can maximize the utilization of
hardware resources used for storage in the distributed system.
To ensure a fair load distribution over a fixed-size replication
placement, Aral et al. [35] maintain the tail latency within
pre-defined bounds and keep their system’s load balancing.
Moreover, Klervie et al. [36] introduced the concept of a spare
edge device to handle sudden load variations in time and
space without having to continuously over-provision. Zhang
et al. [37] proposed a mobility-aware service provisioning
approach based on multiple digital twin replica placements to
enhance service continuity in edge computing environments.
Zheng et al. [38] proposed Lion, a transaction processing
protocol that minimizes distributed transactions by adaptively
provisioning replicas using workload prediction and replica
remastering, outperforming existing methods in throughput
and scalability. Compared with Lion [38], which focuses on
reducing distributed transactions via master replica adjust-
ments, our work targets reliability-aware replica placement
in heterogeneous cloud-edge-terminal environments. Further-
more, unlike the DT-oriented placement approach by Zhang et
al. [37], which emphasizes delay-sensitive mobility support,
our DRPS strategy incorporates reliability, delay, and load
balancing into a unified model, offering more practical benefits
in distributed storage systems. To provide a clearer depiction
of the current state of research, Table I presents a summary
encompassing evaluation tools, employed techniques, perfor-
mance metrics, and datasets. Overall, the majority of current
research endeavors are still reliant on simulated evaluation
tools and datasets, with a lack of uniformity observed in the
techniques employed and evaluation metrics utilized.

In summary, the data replication placement strategies in
distributed storage systems have evolved from solely focusing
on reducing system delay to gradually considering load balanc-
ing among devices. Initially, random multi-replica strategies
were commonly used in distributed storage systems, which
often neglected the need for load balancing. However, with
the emergence of edge computing architectures, researchers
began employing load-aware and context-based load-balancing
algorithms to achieve device equilibrium within the system.
Moreover, researchers discovered a trade-off between load
balancing among devices and the system delay required for
replica backups, leading to the utilization of evolutionary
algorithms to search for optimal solutions. Before the inclu-
sion of terminal devices in the storage system, researchers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 2. The flowchart of data replication placement for implemented distributed storage system in cloud-edge-terminal orchestrated computing environments.

primarily emphasized system delay and load balancing during
replication. However, because the terminal devices become the
storage nodes in cloud-edge-terminal orchestrated computing
environments, the reliability of data must be further ensured.
Our approach incorporates device reliability as a constraint in
the data placement strategy, considering both system delay and
load balancing while ensuring data reliability.

III. SYSTEM AND MODEL

In this section, we first describe the implementation of a
distributed storage system in cloud-edge-terminal orchestrated
computing environments. Then, we provide a specific example
to analyze the motivation of this study. Subsequently, we give
fundamental definitions of all components based on the system
and construct a data replication placement model. Lastly,
according to the constructed model, we formulate the problem
as a multi-objective optimization problem.

A. System Overview

In the cloud-edge-terminal orchestrated computing environ-
ments, there are a cloud datacenter (DCc), multiple edge
nodes (DCe), and a mass of terminals (tdi,j). Edge nodes
can be divided into managing edge nodes (ed1i) and regular
edge nodes (ed0i). Managing edge nodes provides gateway
services for terminal devices in the distributed storage system
and registers and manages terminal devices so the terminal
devices can be grouped according to the managing edge nodes

to which they belong. Regular edge nodes only are used to
store data in the system. Considering the characteristics of
terminal devices, which primarily collect various types of
unstructured data such as videos, images, and documents,
our system employs distributed storage based on a block-
based data model. The storage unit is a data block marked
by a block ID (bid), and each block consists of two parts:
data payload and metadata. Additionally, data blocks have
a minimum reliability requirement, indicating the minimum
storage reliability that the storage service needs to guarantee.
The metadata contains essential information such as block ID,
timestamp, and checksum. Furthermore, to support diverse
IoT applications and terminal devices, the metadata part of
the data block also includes custom attributes. For example,
the device that collected the data block, the data type of the
block, and the geographical location information of the data
collection. The metadata is used for data indexing and location,
so the responsible edge node needs to maintain the metadata
of data blocks in its managed terminal devices to support data
positioning within the system. Moreover, to facilitate cross-
regional data positioning, the responsible edge node also needs
to maintain a global data index service and write data indexes
to the appropriate locations. In the system, we implemented
the data manipulation interface as follows:

• PutBlock(bid, reliability, metadata[], data): The operation
creates a new data block with a designated identifier,
referred to as ”bid.” The parameter ”reliability” indicates
the minimum reliability requirement for the data block.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Fig. 3. The sequence diagram of data replication placement for implemented distributed storage system in cloud-edge-terminal orchestrated computing
environments.

The system achieves the desired reliability by replicating
the data block multiple times and placing its replicas on
different devices.

• UpdateBlock(bid, data, vData): The ”UpdateBlock” op-
eration is used to update all replicas of the data block
identified as ”bid.” It involves modifying the content of
the data block across its replicas. The operation utilizes
an optimistic locking mechanism, where the parameter
”vData” represents the version number of the old data,
enabling concurrency control. By comparing the version
number of the old data with the current version, conflicts
can be detected, and appropriate synchronization or con-
flict resolution mechanisms can be applied to ensure data
consistency.

• UpdateMeta(bid, metadata[], vMeta): The ”UpdateMeta”
operation is used to update the metadata of the data block
identified as ”bid.” It involves modifying the metadata
associated with the data block. Similar to the ”Up-
dateBlock” operation, the ”UpdateMeta” operation also
utilizes an optimistic locking mechanism and concurrency
control. The parameter ”vMeta” represents the version
number of the old metadata, enabling conflict detection
and resolution.

• GetBlock(bid): The operation is used to download the
data block identified as ”bid”.

• GetMeta(bid): The operation is used to request the meta-
data of the data block identified as ”bid.”

The data replication placement flowchart and sequence dia-
gram of our proposed distributed storage system under cloud-
edge-terminal orchestrated computing environments are shown
in Figure 2 and Figure 3. Upon collecting and generating

new data in an intelligent terminal device, it is initially stored
locally. Subsequently, the terminal device sends the storage
information to the managing edge node to which it belongs,
and the edge nodes responsible for managing it determine if
the data meets the reliability requirements. When an edge
node responsible for managing a specific region receives
an upload request from a smart terminal device if the data
meets the reliability requirements, the edge node records the
relevant data index and informs the system that the data has
been successfully stored. However, for the data storage that
does not meet the reliability requirements, the edge node
responsible for regional management executes the proposed
data replication placement strategy (which is described in
Section 4) to determine an appropriate solution. In real-
world system implementations, although terminal devices offer
substantial potential for data storage due to their vast numbers,
the heterogeneity of these devices also leads to more severe
reliability issues during the data storage process. The purpose
of data replication, therefore, is to ensure the integrity and
availability of the data. Then, the edge node responsible for
management communicates the selected replication strategy
to the terminal device that needs to store the replicas. The
terminal devices that need to place their data replication send
the requests to the designated hardware devices based on the
received solution. The respective hardware devices store the
replicated data according to the request, report the stored data
index to the corresponding managing edge node, and confirm
the successful storage of the replicated data to the system.
Upon receiving confirmation of all successful placements,
the managing edge node updates its data index and informs
the system that the entire data replication process has been

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 4. Sample of data replication placement by two strategies.

TABLE II
THE RELIABILITY AND STORAGE CAPACITY OF TERMINAL DEVICES IN THE SYSTEM

Devices td11 td12 td13 td14 td21 td22 td23 td31 td32 td41 td42 td43 td44
Reliability 0.8 0.9 0.8 0.99 0.9 0.85 0.8 0.8 0.85 0.85 0.95 0.9 0.99

Storage 64 128 32 32 64 32 16 16 32 16 64 32 64

completed.

B. Motivation

To analyze the data replication placement problem in the
distributed storage system, Figure 4 shows two data replication
placement strategies for a real-world case study example
in cloud-edge-terminal orchestrated computing environments.
There are 4 managing edge nodes and 13 terminals, which
have their attributes of reliability and storage capacity. Based
on the constructed model, we denote the four managing edge
nodes as {ed11, ed12, ed13, ed14}, ed11 = {td11, td12, td13, td14},
ed12 = {td21, td22, td23}, ed13 = {td31, td32}, and ed14 =
{td41, td42, td43, td44}. In this example, to explain the ef-
fectiveness of the data replication placement strategy more
simply, the replicas are only considered in the terminal devices,
and the system time is only calculated by the data transfer
time. Table II lists the respective attributes (i.e., the reliability
of the devices, storage capacity of the devices) of these
terminal devices in the scenario. When a terminal device td11
generates a data block, for which the reliability requirement
is 0.999, and the size of it is 50 MB. The data can be denoted
as bidcase =< 50MB, 0.999 >. If the data needs to be
replicated in different terminals, the system will select some
devices to minimize the system time and satisfy the reliability
requirement. It is well known that the data transfer time will be
affected by the data placement location, the data placed in the
same region with the generation device is lower than others.
Furthermore, the different distances can lead to different data
transfer times. We assume the bandwidth between different
terminal devices covered in the same managing edge node is
200 M/s, the bandwidth between terminal devices and their’
managing edge node is 100 M/s, the bandwidth between
different managing edge nodes is 50 M/s, and the bandwidth
between a managing edge node with the cloud datacenters is

20M/s. In this case, the data replication placement strategy
1 adopts our proposed method. While meeting the reliability
requirements, data replication placement strategy 1 requires
replicating the data 3 times, whereas strategy 2 requires 5
replications to meet the same requirements. The data transfer
time of strategy 1 is 3.25 s, and the result of strategy 2 is 4.75
s. Expectedly, different data replication placement strategies
will significantly affect the system time and efficiency of the
storage process. In these terms, the data replication placement
strategy 1 is superior to strategy 2.

In summary, the presented case clearly demonstrates that
data replication placement strategies significantly affect sys-
tem performance, resource utilization, and data reliability
in cloud-edge-terminal orchestrated computing environments.
Traditional random or static placement methods fail to ad-
equately address the heterogeneity of terminal devices, load
balancing, and varying reliability requirements, often resulting
in resource waste, increased system delay, and excessive
replication. Therefore, there is an urgent need for an intel-
ligent replication placement strategy that incorporates device
performance levels, data replication, memory utilization, and
reliability to optimize overall system efficiency, which forms
the core motivation of this work.

C. Model Construction

In our model, the hardware devices include a cloud data
center, edge nodes, and terminal devices. The DCc is denoted
as the cloud datacenter and DCe is represented as the set of
n edge nodes contained in the distributed system:

DCe = {ed1, ed2, ed3, ..., edn} (1)

For an edge node edi, we can denote it as edi =<
si, ci, ri, typei >, which has a pre-defined reliability attribute
ri, a current available storage capacity attribute si, a current

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

available calculation capacity attribute ci. In addition, the
attribute typei is used to flag whether the edge node is a
managing edge node or a regular edge node. When typei=1,
the edge node is denoted as a managing edge node; when
typei=0, the edge node is a regular data storage node. For
simplicity, we describe the managing edge node as ed1i in this
paper. Besides, in the system, cloud datacenter DCc at the
long-distance end, which generally has unlimited storage re-
sources and intolerable latency for delay-sensitive applications.
Hence, it only stores a huge amount of data that none of the
edge nodes can handle. The reliability attribute of a device
can be obtained through performance testing, manufacturer
data, and other channels. The reliability and storage capacity
of different hardware devices are heterogeneous, which is
one of the characteristics of cloud-edge-terminal orchestrated
computing environments. To demonstrate the reliability of a
hardware device more conveniently, the pre-defined reliability
attribute is set as [0, 1], which is a larger value indicating that
the reliability of the device is higher. Each managing edge
node corresponds to a set of k terminal devices that it manages:

ed1i = {tdi1, tdi2, tdi3, ..., tdik} (2)

where tdij represents the j-th terminal device managed by
edge node ed1i . Similarly, for each terminal device tdij , it
also can be described as tdij =< sij , cij , rij >. To calculate
system delay in the distributed storage system, we also rep-
resent the bandwidth across different hardware devices as bij ,
which is the value of the bandwidth, and the device i is not
device j.

In the system, the data that is generated through the terminal
devices and needs to be stored and replicated is called a
data block. For a data block bidi, it also includes three
corresponding attributes: the required data reliability rbidi

, the
data block size sbidi

and computing capacity to process the
data block storage task cbidi

. To achieve the minimum data
reliability requirement for a data block, it is necessary to select
several terminal devices as replication placement nodes from
the terminal device layer and the edge node to which they
belong. Let Em denote a set of m1 terminal devices and m2

edge nodes that serve as data replication placement nodes for
the distributed storage system. These m1 terminal devices may
belong to different managing edge nodes for management. A
data block needs to be replicated to different hardware devices,
and hardware devices also store a lot of data blocks, it is
a many-to-many map. Hence, we denoted the bidi, Em as
follows:

bidi =< sbidi
, cbidi

, rbidi
> (3)

Em = {td1, td2, ..., tdm1} ∪ {ed1, ed2, ..., edm2} ∪DCc (4)

While guaranteeing the system delay is as small as possible,
the final selected data replication placement is related to
the data reliability requirements, the reliability, the storage
capacity, and the calculation capacity of hardware devices in
the system. This means that the actual number of replicas and
storage space occupied by each data block may vary. The
hardware devices used to place replicas may need to place
several replicas, which should ensure the storage reliability
of all replicas. In other words, a device must satisfy all data

blocks whose replicas need to be placed in it. Based on this,
when hardware devices are selected to place multiple data
replicas in the system, the selected m devices must meet the
reliability, storage, and calculation capacity requirements, that
is:

si ≥ sbib, ∀i ∈ [1,m] ∩ ∀ bib (5)

ci ≥ cbib, ∀i ∈ [1,m] ∩ ∀ bib (6)

1− rbidi
≥

m∏
i=1

(1− ri), ∀(tdi ∪ edi ∪DCc) ∈ Em (7)

where ∀ bib represents a set of data blocks stored in a
hardware device i. For a given data block, excessive data
replication would result in the wastage of system storage
resources, while insufficient replication would fail to meet
the reliability requirements of this data. Hence, we formulate
the data replication placement problem as a multi-objective
optimization problem and propose DRPS to achieve it.

D. Problem Formulation

To fully utilize the storage capacity in a cloud-edge-terminal
system for data replication, any data block bibi generated on
the terminal device tdi may be transmitted to various types of
replication locations, including terminals in the same cluster
(local terminals), terminal in other clusters (remote terminals),
and regular edge nodes, which lead to different transmission
patterns and delay. Let Ei be the set of all selected replication
locations for bibi, then Ei = Ea

i ∪ Eb
i ∪ Ec

i , where Ea
i ,

Eb
i , and Ec

i are the sets of selected local terminals, edge
nodes, and remote terminals respectively. We first analyze
the transmission delay for data replication in the following
three cases and then derive the delay for the general case as
a combination of these cases.

Case 1: All replication locations are local terminals, i.e.,
Ei = Ea

i . In this case, a copy of bibi is first transmitted from
its source tdi to the managing edge node and then forwarded
by the edge node to all the selected terminal devices for
replication. The transmission link from the source device tdi
to the edge node (referred to as the uplink) is a point-to-point
connection. If more than one device is selected (i.e., |Ea

i | ≥ 2),
data transfer from the edge node to all the destination devices
tdj ∈ Ea

i will be multicast through multiple downlinks one
for each tdj ∈ Ea

i ; therefore, the downlink delay will be
determined by the delay of the slowest downlink. So, the total
latency of data transmission for replication is

Ttrans =
s(bibi)

vi,e
+ max

j∈Ea
i

s(bibi)

ve,j
, (8)

where s(bibi) is the size of data black bibi, vi,e is the trans-
mission capacity of the uplink, and ve,j is the transmission
capacity of the downlink from the edge node to terminal
tdj . According to [39]–[41], the transmission capacity of a
wireless communication channel between devices i and j can
be calculated as

vij = bij ∗ log2(1 +
pijgij

µ2 + Iij
), (9)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

where bi,j is the available spectrum bandwidth for the channel,
pij is the transmission power allocated to the devices, gij is
the channel power gain, µ2 is the ambient noise power, and Ii
is the power of inter-cell interference experienced by device
i.

Case 2: All replication locations are edge nodes, i.e.,
Ei = Eb

i . In this case, the data block bibi will be transmitted
from tdi to its managing edge node and then forwarded
by the managing edge node to other edge nodes selected
for replication through the edge network. Similarly, when
|Eb

i | ≥ 2 the data forwarding will be multicast using multiple
paths in the edge network, one to each destination; therefore,
transfer delay is determined by the path with the longest
latency. Then the total transmission delay for data replication
can be determined as

Ttrans =
s(bibi)

vi,e
+ max

j∈Eb
i

s(bibi)

ve,j
. (10)

where ve,j is the bandwidth of the network route from the
managing edge node to the replication location edj ∈ Eb

i .
Case 3: All replication locations are remote terminals,

i.e., Ei = Ec
i . In this case, the data block bibi will be

transmitted via an uplink to its managing edge node, forwarded
to the managing edge nodes of the selected remote terminals,
and then delivered to the destined remote terminals through
downlinks. Therefore, the end-to-end transmission delay for
data replication, in this case, will be

Ttrans =
s(bibi)

vi,e
+

s(bibi)

ve,e
+ max

j∈Ec
i

s(bibi)

ve,j
. (11)

where ve,e is the bandwidth of the network route from the
managing edge node of the source terminal tdi to the manag-
ing edge node of the destination terminal tdj .

In order to analyze the transmission delay for the general
case where all three types of locations (local terminals, edge
nodes, and remote terminals) are selected for replicating the
data block bibi, we define the following indicator variable Le

Le =

{
0 if Ei = Ea

i

1 otherwise
(12)

Similarly, we define another indicator variable Ld

Ld =

{
0 if Ei = Eb

i

1 otherwise
(13)

Then, the transmission delay for data replication in general
can be presented as

Ttrans =
s(bibi)

vi,e
+ Le max

j∈Eb
i

s(bibi)

ve,e
+ Ld max

j∈Ea
i ∪Ec

i

s(bibi)

ve,j
.

(14)
In addition, inspired by [41], [42], we denote the computing

resource capacity (CPU frequency) that is used to replicate
the data as fbibi . The data replication execution time Texe can
calculate as follows:

Texe =

|DCe|∑
i=1

|DCe|∑
j ̸=i

sbibi
θi ∗ fbibi

(15)

The proportionality factor of computing is denoted as θi,
which can represent the resource capacity allocated by the
device i to deal with the data replication task.

The total system time can be calculated as:

Tsys = Ttrans + Texe (16)

Hardware resource utilization refers to the ratio between the
hardware resources currently used by each device in the system
and the maximum storage resources it can accommodate. It
reflects the utilization of hardware resources in the distributed
storage system and serves as an indicator of whether the
system is load-balanced. The load balance of a distributed
storage system depends on the hardware device with the worst
storage capacity, calculation capacity, or network state. When
available resources of one of the hardware devices in the
system are exhausted, the efficiency of data replication tends
to decrease quickly [43], [44]. The load of a device can be
calculated as follows:

dev.loadi =a(
dev.ci

dev.ci,max
) + b(

dev.si
dev.si,max

)

+ c(
dev.bi

dev.bi,max
)

(17)

max(dev.loadi) i ∈ {1, 2, ..,m} (18)

where dev.ci and dev.ci,max denote the available calcula-
tion resource and the maximum calculation resource of the
hardware device i, respectively. Similarly, the dev.si and
dev.si,max are the available and maximum storage resources
of the hardware device. And, the dev.bi and dev.bi,max are the
available and maximum bandwidth resources of the hardware
device. For the load of each hardware device, a, b, and c are
the weights of the calculation resource usage, storage resource
usage, and bandwidth resource usage, respectively. To fairly
measure resources across different dimensions, parameters a,
b, and c must be normalized so that a + b + c = 1. This
prevents any single resource from being magnified or ignored.

In the cloud-edge-terminal orchestrated computing environ-
ment, intelligent service requests from terminal devices are
often highly sensitive to latency. Hence, data replication for
distributed storage systems is also required to minimize system
time. To ensure satisfactory performance, our study aims to
minimize the system time of data replication requests through
effective data placement and allocation of hardware resources.
In addition, considering the data placement strategies with
different business data reliability requirements and different
terminal device storage reliability, the number of required data
replicas is definitely less than the traditional fixed multi-replica
redundancy scheme, which can more efficiently utilize the
storage resources of the different hardware devices. To de-
termine the corresponding Em for any data blocks, this paper
formulated the selection of hardware devices used to store the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

data replicas as a multi-objective optimization problem. The
problem can be formally expressed as:

min{Tsys, max(dev.loadi)}
s.t. si ≥ sbib, ∀i ∈ [1,m] ∩ ∀ bib

ci ≥ cbib, ∀i ∈ [1,m] ∩ ∀ bib

1− rbidi ≥
m∏
i=1

(1− ri), ∀(tdi ∪ edi ∪DCc) ∈ Em

(19)
IV. DRPS

A data replication placement model has been constructed
based on real-life parameters, which involve multiple different
hardware devices. In this section, a novel data replication
placement strategy (DRPS) based on the model is described,
which provides the algorithm for finding a better data repli-
cation placement map to minimize system delay and satisfy
the reliability requirement of all data in the system. In ad-
dition, a greedy load balancing algorithm also be used in the
DRPS, which balances the calculation, storage, and bandwidth
resources of each hardware device as much as possible to
achieve load balancing among all hardware devices in the
distributed storage system.

A. Ranks-based replication storage node selection algorithm

The terminal device tdij stores a data block bidi by initi-
ating a written request to the managing edge node ed1i using
the PutBlock(bid, reliability, metadata[], data) operation. The
request parameters specify the minimum storage reliability
requirement rbidi

and the data block size sbidi
. In addition

to storing the data block bidi locally, the managing edge node
ed1i responsible for that region selects several additional data
replication placement nodes to ensure the reliability of the
data.

All terminal devices within the system are potential can-
didates for data replication replacement nodes, posing a chal-
lenge due to the large number of terminal devices and their re-
spective management by different edge nodes. It is impractical
to maintain the currently available storage capacity and device
reliability of all terminal devices on every managing edge
node. To address this challenge, we have designed a ranks-
based replication placement node selection algorithm for the
storage performance and reliability of terminal devices. This
algorithm involves categorizing devices into different ranks,
which helps in making decisions to select data replication
placement nodes.

Terminal devices report their storage performance informa-
tion, including available storage capacity and device reliability,
to their corresponding managing edge nodes through periodic
heartbeat mechanisms. The managing edge nodes maintain
the storage attributes of all the terminal devices they oversee
and use this information to calculate the minimum, median,
and maximum values of storage capacity and reliability for
the managed devices, denoted as (smin

i , smed
i , smax

i) and
(rmin

i , rmed
i , rmax

i) respectively. Using smed
i as a threshold,

the managed terminal devices are categorized as low-capacity
devices (LS) or high-capacity devices (HS). Similarly, using
rmed
i as a threshold, the edge devices are classified as low-

reliability devices (LR) or high-reliability devices (HR). By

combining both attributes, the terminal devices can be divided
into four categories: low-capacity low-reliability (LSLR), low-
capacity high-reliability (LSHR), high-capacity low-reliability
(HSLR), and high-capacity high-reliability (HSHR). We de-
note the four categories as follows:

LSLRi = {tdij |si,j ∈ [smin
i , smed

i] & ri,j ∈ [rmin
i , rmed

i]}
(20)

LSHRi = {tdij |si,j ∈ [smin
i , smed

i] & ri,j ∈ [rmed
i , rmax

i]}
(21)

HSLRi = {tdij |si,j ∈ [smed
i , smax

i] & ri,j ∈ [rmin
i , rmed

i]}
(22)

HSHRi = {tdij |si,j ∈ [smed
i , smax

i] & ri,j ∈ [rmed
i , rmax

i]}
(23)

The managing edge nodes maintain information about the
performance levels of devices in other managing edge nodes
based on a ranks-based replication storage node selection
algorithm. This information includes the maximum, median,
and minimum reliability values of the terminal devices under
each managing edge node, the maximum, median, and min-
imum available capacity, and the number of devices in each
performance level category. Let U denote the collection of
brief information on all n managing edge nodes in the system,
where ui represents the device performance level information
for the edge node edi with the corresponding index i, and
{cntLSLR

i , cntLSHR
i , cntHSLR

i , cntHSHR
i } are denoted as the

devices number of different ranks in the managing edge node.
To prioritize the selection of devices with high remaining

storage capacity for data storage, the storage capacity that
can be provided by high-capacity devices in each managing
edge node can be estimated using the grading indicators. Let
scHSLR

i and scHSHR
i respectively denote the storage capacity

that can be provided by high-capacity low-reliability terminal
devices and high-capacity high-reliability terminal devices in
managing edge node i. This can be estimated as:

scHSLR
i = smed

i ∗ cntHSLR
i (24)

scHSHR
i = smed

i ∗ cntHSHR
i (25)

Compute the median values of scHSLR and scHSHR for
all n managing edge nodes, denoted as medscHSLR and
medscHSHR, respectively. Based on these median values,
edge nodes are added to the high-capacity high-reliability
edge node candidate set UHSLR and the high-capacity low-
reliability candidate set UHSHR as follows:

UHSLR = {ui|scHSLR
i ≥ medscHSLR} (26)

UHSHR = {ui|scHSHR
i ≥ medscHSHR} (27)

The storage nodes will be selected from these two candidate
sets. It is worth noting that the elements in UHSLR and
UHSHR correspond to managing edge nodes that are abun-
dant in high-capacity low-reliability or high-capacity high-
reliability terminals, respectively. These two sets are not
entirely exclusive, i.e., a managing edge node may belong to
both sets at the same time.

After receiving a PutBlock data write request, managing
edge nodes will select data replication storage devices from
the two candidate sets based on the storage device statistics of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Algorithm 1 Ranks-based replication storage node selection
algorithm
Input: : Data block bib, reliability rbib, terminal device tdij ,

the high-capacity low-reliability hardware device candi-
date set UHSLR and the high-capacity high-reliability
hardware device candidate set UHSHR

Output: : Replication storage locations: S
1: S ← tdij (Initialize the data replication storage queue S,

which contains the device tdij).
2: r̂ ← 1 − rij (Initialize reliability of the data replication

storage queue S, which contains the evaluation score of
device tdij).

3: if rij ≥ rmed
i then

4: U ← UHSLR

5: else
6: U ← UHSHR

7: end if
8: while r̂ ≥ 1− rij do
9: ed1k ∈ U (the managing edge node is selected ran-

domly)
10: Gets the terminal devices tdk1 of the corresponding

type from ed1k
11: S ← S ∪ tdk1
12: r̂ ← r̂ ∗ (1− rk1)
13: if U = UHSHR then
14: U ← UHSLR

15: else
16: U ← UHSHR

17: end if
18: end while
19: Output S

each managing edge node, as shown in Algorithm 1. Specif-
ically, the edge terminal device tdij first sends a PutBlock
operation to its managing edge node ed1i , hoping to write
a data block bidi into the system with a storage reliability
requirement of rbidi . Let S represent the data replication stor-
age location that makes up the ranks-based replication storage
node selection algorithm. Since tdij stores a replication of
the data, S is initialized as tdij , as shown in lines 1-2 of
Algorithm 1. The candidate sets are initialized in lines 3-7. If
tdij is a high-reliability device, the next device to be selected
should be a low-reliability device; if tdij is a low-reliability
device, the next device to be selected should be a high-
reliability device. Then, ed1i randomly selects a managing edge
node ed1k and requests the corresponding category of terminal
device as a storage node. ed1k returns the terminal device tdk1,
which is randomly added to the data replication placement
locations, resulting in S = {tdij , tdk1}. If S meets the storage
reliability requirement rbidi

, that is, 1−rbidi
(1−rij)∗(1−rk1),

the algorithm is completed. Otherwise, ed1i will select a
managing edge node from the other candidate set and request
the corresponding type of terminal devices as a data replication
storage node. The process is repeated, using terminal devices
from the two candidate sets alternately as replication storage
nodes, until the storage reliability of the data replication meets

Algorithm 2 Data Replication Placement Strategy
Input: : All hardware devices, data blocks, and the currently

available load of each hardware device are dev.loadi =
{dev.ci, dev.si, dev.bi}

Output: : E (data replication placement map)
1: Initial E by performing ranks-based replication storage

node selection algorithm (i.e., Algorithm 1)
2: G ← sort(dev.loadi) (Sort all the hardware devices in

the system).
3: for devi in E do
4: find devi−1 in G
5: if rdevi−1

≥ rdevi then
6: Calculate the Tsysi−1 and Tsysi by Equation (14),
7: if Tsysi−1 ≤ Tsysi then
8: devi = devi−1

9: Update the E
10: end if
11: Keep devi in E and Update the E
12: end if
13: Keep devi in E and Update the E
14: end for
15: Output E

the requirement, as shown in lines 8-18 of Algorithm 1. When
selecting terminal devices with different reliabilities as storage
nodes, high-capacity and high-reliability terminals (HSHR or
HSLR) are given priority to balance the remaining storage
capacity of each hardware device as much as possible. It is
noteworthy that the runtime of this algorithm increases linearly
with the size of the input data. Its time complexity is O(n).

B. Data Replication Placement Strategy

When it comes to data replication placement strategies, there
are two main objectives to consider: ensuring data reliability
and maximizing load balancing within the system. Algorithm 1
effectively guarantees the reliability requirements for all data
stored in the system. By combining a greedy load balancing
algorithm, Algorithm 2 is an extension of Algorithm 1. This
enhanced approach not only maximizes resource utilization
within the system but also effectively reduces system delay
during the storage process. The time complexity of Algo-
rithm 2 is O(n2).

In Algorithm 2, we first initiated the data replication map
by performing Algorithm 1, and the result can satisfy the
data reliability. However, the result does not consider the load
balancing. In this study, we consider the system’s load by
taking into account the available computing capacity, storage
capacity, and network resources among devices. In the storage
node queue G, the hardware devices available for storage
are sorted in ascending order based on their load capacities.
Among these devices, we identify the placement nodes that
already meet the reliability requirements. For each of these
nodes, we search for a slightly smaller load node. If replacing
the original node with this node fails to meet the reliability
requirements, the replacement cannot be performed. However,
if the replacement maintains data reliability, we then calculate

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

the system delay for both placement options. If the latency of
the replaced node is not greater than the latency of the original
placement, we replace the node with the device for data
replication placement. Through this iterative greedy approach,
we have achieved a data replication placement strategy that
satisfies both data reliability and minimizes system delay and
hardware load performance.

V. PERFORMANCE EVALUATION

In this section, we design comprehensive simulation ex-
periments to evaluate the effectiveness of the proposed data
replication placement strategy and discuss the impact factors in
our constructed model. Comparing the results with those from
other strategies and also considering the different scenarios
of these factors, the advantages of our proposed strategy in
this context, as well as the impact factors, are evaluated.
The impact of important parameters on the performance of
the proposed algorithm, including the number of edge nodes,
the number of terminal devices, the computing and storage
resource capacity of edge nodes and terminal devices, and
the average hardware utilization of each hardware device in
the system, are mainly investigated. We run the simulation
experiments on Python 3.5 hosted by a PC with an Intel i7
3.5 GHz CPU and 16 GB RAM.

A. Experimental Setup

In the experiment, we consider a cloud-edge-terminal or-
chestrated computing environment consisting of 100 edge
nodes, of which 20 nodes are set as managing edge nodes.
Furthermore, in the environment, there is also one cloud
data center and 4000 terminal devices. To better describe the
impacts of the number of these hardware devices, the number
of the managing edge node varies between 4 and 20 with
an increment of 4, and the average number of the terminal
devices under each managing edge node is set from 40 to 200
with an increment of 40. According to the real configurations
of reliability and storage capacity for terminal devices, the
settings for our terminal devices in the distributed storage
system are as follows: 1) Reliability: The reliability is set to
follow a normal distribution with a mean of 0.9 and a standard
deviation of 0.04, denoted as N(0.9, 0.042). This means that
the reliability is distributed around a mean of 0.9 with a
standard deviation of 0.04. 2) Storage Capacity: The avail-
able storage capacity of these terminal devices is uniformly
distributed between 8GB and 64GB. 3) Computing Capacity:
Following [41], [45], the computing resource capacity used
for storage and replication is set as 5 ∼ 10 GHz. 4) Network
setting: According to the [42], we model the channel power
gain between the terminal devices under the same managing
edge node as 140.7+ 36.7log10(dij) +µ, where we represent
the transmission distance of terminals i and j as dij , which
is randomly assigned within the range of 0.02 km to 0.4 km.
The parameter is µ denotes the log-normal shadowing standard
deviation, following a normal distribution N (0, 8 dB). The
cable transmission latency is also randomly selected within
the range of 20 ms to 200 ms, while the channel bandwidth is
fixed at 2 MHz [40]. The data blocks that require replication

are generated by the terminal devices in the system and have
storage-related loads (including the memory capacity they
require for storage and computational capabilities) as well as
reliability requirements. In our experiment, the reliability re-
quirements for the data blocks to be replicated are categorized
into five levels: {0.9, 0.93, 0.95, 0.99, 0.999}. The memory
loads required by the data blocks are divided into three types:
{10MB, 30MB, 50MB}, with their proportions among all
generated data blocks being {50%, 30%, 20%} respectively.
Regarding computational capabilities, during the storage and
replication process, the hardware devices only need to handle
task requests. We randomly set the computational capability
requirement within the range of 200 to 400 Megacycles. In
addition, we set the bandwidth between different edge nodes
as 100 M/s∼200 M/s. Unless otherwise specified, the default
setting for the experimental parameters will be used. Each data
point in the experiments is obtained through 100 independent
runs.

To evaluate the effectiveness of the proposed DRPS in this
paper, we compared DRPS with the following four methods:

• Random Data Replication Placement: This strategy is
commonly used in traditional file systems like HDFS for
data replication and placement. For the common HDFS,
each data block that needs to be stored is replicated into
three copies. These three replicas are randomly selected
among the storage nodes in the system for storage. In our
work, the number of replicas depends on the reliability
requirements of data blocks. The strategy needs to satisfy
the requirement, which is the same as other strategies.

• DCABA-based Data Replication Placement: The
DCABA algorithm is a load-balancing algorithm based
on task clustering, which achieves load balancing by
assigning tasks to nodes with similar load states. Specifi-
cally, the data replication placement strategy based on the
DCABA algorithm divides the hardware devices in the
system into multiple groups and maintains the average
load value for each group. When a new task request is
received, this strategy selects the group with the minimum
load and randomly places the replica on a device within
that group.

• CLB-based Data Replication Placement: The CLB al-
gorithm is a content-based load-balancing algorithm that
selects appropriate nodes for data replication placement
based on the characteristics of the data block. Specifically,
the data replication placement strategy based on CLB
identifies a few managing edge nodes closest to the data
block based on its characteristics and access frequency.
The data is then allocated to the hardware devices under
the jurisdiction of those nodes.

• ACO-based Data Replication Placement: The ACO
(Ant Colony Optimization) algorithm possesses charac-
teristics of distributed computing, positive feedback of
information, and heuristic search, making it a heuris-
tic global optimization algorithm within the domain of
evolutionary algorithms. The ACO-based data replication
strategy dynamically selects suitable hardware devices for
data storage based on the load status of the hardware

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

(a) (b)

Fig. 5. Comparison of Average System Delay with Different Data Replication Placement Strategies

devices in the system and the requirements of the place-
ment tasks. It achieves an optimized selection of hardware
devices for storage through the updating of pheromone
values.

B. Experimental Results and Evaluation

The performance of the proposed DRPS is first compared
to the other related methods in terms of the average system
delay, the number of replications of hardware devices, and
the memory resource utilization while processing a batch of
IoT-generating data. Meanwhile, we consider and analyze the
effect of experimental parameters, including the number of
managing edge nodes and terminal devices.

1) Comparison of Average System Delay: The average sys-
tem delay refers to the system delay required for data storage
and replication when all the data blocks generated in the
distributed storage system meet the reliability requirements.
A smaller average system delay implies faster data storage
and replication, which is of significant importance for time-
sensitive applications. As shown in Figure 5, regardless of the
variations in managing edge nodes and terminal devices within
the system, our proposed DRPS (Data Replication Placement
Strategy) consistently achieves the lowest average system de-
lay, with a 39.9% reduction compared to the baselines, proving
the superiority of DRPS. In Figure 5(a), compared to Random
and DCABA-based strategies, the CLB-based and ACO-based
strategies are superior as they also take into account the data
transmission delay mentioned in formula(14). However, by us-
ing Algorithm 1, the DRPS achieves a 39.9% reduction in the
average system delay. On the other hand, the DCABA-based
strategy exhibits the highest average system delay, surpassing
even the random strategy. This is because the DCABA-based
strategy primarily only focuses on load conditions without
considering the time taken for data transmission due to spatial
distance and strategy execution time.

In Figure 5(b), as the number of managing edge nodes in
the system increases, the average system delay of all five data
replication placement strategies decreases. However, among
all the strategies, the proposed DRPS strategy remains the
most stable. The reason for the decreasing average system
delay in all strategies is that as the number of managing edge

TABLE III
COMPARISON OF OTHER METHODS AND DRPS BY USING

ANALYSIS OF VARIANCE (ANOVA) AND TUKEY-HSD

Average System Delay
Tukey’s P1 Tukey’s P2

Random v.s. DRPS ¡ 0.00001 0.055057
ACO-based v.s. DRPS ¡ 0.00001 0.037527
CLB-based v.s. DRPS ¡ 0.00001 0.073492

DCABA-based v.s. DRPS ¡ 0.00001 0.0011195
* The P1(ANOVA) ¡ 0.00001 and P2(ANOVA) = 0.00284.

nodes increases, there are more available hardware devices
for storing replicas, allowing for faster storage completion for
each data block. In addition, another reason for the decreasing
average system delay as the number of managing edge nodes
increases is the locations of these nodes and terminal devices.
The locations of the managing edge nodes and terminal
devices were determined based on the Shanghai Telecom
base stations and the data accessed from these base stations.
Therefore, as the number of edge nodes increases, resulting in
a higher density of their actual positions, the average spatial
distance between the nodes naturally decreases. As a result,
the average system delay also decreases.

Figure 5(a) shows experimental results comparing the av-
erage system delay across different methods as the number
of terminal devices varies. Meanwhile, Figure 5(b) shows the
results comparing the average system delay across different
methods as the number of managing nodes varies. To better
statistically analyze the results presented in Figure 5(a) and
Figure 5(b), following [46], [47], we conduct a two-way anal-
ysis of variance (ANOVA) and Tukey multiple comparisons
to distinguish our DRPS from other methods. The values
obtained from the analysis of the results in Figure 5(a) are
denoted as P1, while those derived from Figure 5(b) are
represented as P2. As shown in Table III, the results indicate
that both P1(ANOVA) and P2(ANOVA) values are less than
0.05, and Tukey’s P1 and Tukey’s P2 remain comparatively
small. This demonstrates a significant distinction between our
method and others, further validating the effectiveness of the
results presented in Figure 5.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

(a) (b)

Fig. 6. Comparison of Replication Numbers with Different Data Replication Placement Strategies

TABLE IV
COMPARISON OF OTHER METHODS AND DRPS BY USING

ANALYSIS OF VARIANCE (ANOVA) AND TUKEY-HSD

Number of Replications
Tukey’s P1 Tukey’s P2

Random v.s. DRPS 0.000233 0.000109
ACO-based v.s. DRPS 0.000091 0.000026
CLB-based v.s. DRPS 0.002538 0.000689

DCABA-based v.s. DRPS 0.0001102 0.000022
* The P1(ANOVA) = 0.000043 and P2(ANOVA) =

0.000011.

2) Comparison of The Number of Replications: The num-
ber of replications refers to the number of successful data
replication placement operations that can be completed by the
system from the start of storing replicas until the available
resources of one of these hardware devices are exhausted. A
higher number of replications indicates that the data replication
placement strategy achieves better load balancing. This enables
more convenient addition of hardware devices or an increased
quantity of data blocks to the system, meeting the growing
demands for data storage and replication without compro-
mising service quality, such as system delay, and ensuring
effective data storage and replication. As shown in Figure 6,
as the number of managing edge nodes or terminal devices
increases, all methods exhibit an increase in the number of
replications. This is because the addition of hardware devices
translates to an increase in available resources, leading to
better load distribution among the devices. Furthermore, it is
evident that the proposed strategy demonstrates a significantly
faster growth in the number of replicas stored as the device
resources increase compared to other methods. By employing
Algorithm 2, the proposed DRPS effectively increases replicas
by 43.3%. This result highlights the superior load-balancing
capability of our proposed strategy.

When comparing our proposed strategy to the best-
performing CLB-based strategy among others, it is observed
that as the average number of terminal devices managed by
each edge node increases from 40 to 200, our strategy achieves
an additional increase of 774,660 replicas, which is 58.7%

more in growth rate compared to the CLB-based strategy.
Similarly, when the number of edge nodes increases from 4 to
20, our proposed strategy can store 918,613 replicas, whereas
the best-performing CLB-based strategy in other methods can
store only 452,104 replicas. Both in terms of the growth in the
number of replicas and the growth rate, our proposed strategy
outperforms the CLB-based strategy by more than 43.3%. In
Table IV, similarly to Table III, we denote the analysis of the
results in Figure 6(a) as P1, while representing the analysis of
the results derived from Figure 6(b) as P2. The results indicate
that both P1(ANOVA) and P2(ANOVA) values are less than
0.05, and Tukey’s P1 and Tukey’s P2 remain comparatively
small. This demonstrates a significant distinction between our
method and others, further validating the effectiveness of the
results presented in Figure 6.

For each hardware device and generated data block, the
strategy we have designed takes into account detailed con-
siderations of storage resources and reliability. We address
the overall load balancing of the system, allowing for a
more precise selection of suitable hardware devices for data
storage and replication while avoiding situations where a
single device becomes overloaded and exhausts its resources.
Furthermore, we have implemented a ranks-based replication
storage node selection algorithm, categorizing devices into
different levels of reliability. This allows for more accurate
control over the replication and storage of data with different
reliability requirements on each hardware device in the system.
It helps reduce storage resource wastage to a certain extent and
enhances the overall load-balancing capability of the system.

3) Comparison of Memory Resource Utilization: Memory
resource utilization refers to the overall utilization of sys-
tem resources when a hardware device’s resources of these
hardware devices are exhausted. The specific calculation de-
termines the ratio between the currently available resources
and the maximum available resources in the system. It is an
important metric that reflects the effectiveness of the data
replication placement strategy in achieving load balancing.
Based on the formula (17), if there is a high utilization rate of
memory resources, it implies that more storage nodes in the
system can handle increased loads, leading to improved load
balancing within the system. According to the results depicted

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

(a) (b)

Fig. 7. Comparison of Memory Resource Utilization with Different Data Replication Placement Strategies

(a) (b)

Fig. 8. Comparison of Unreliability Rate with Different Data Replication Placement Strategies

in Figure 7, our proposed strategy consistently outperforms
other solutions in terms of resource utilization, regardless of
variations in the number of managing edge nodes and terminal
devices. For the statistical analysis of Figure 7(a) and 7(b),
Table V show that P1(ANOVA) and P2(ANOVA) values are
less than 0.00001, and Tukey’s P1 and Tukey’s P2 values are
also less than 0.00001.

The outcome can be attributed to the comprehensive consid-
erations embedded in our strategy. By resource consumption
grading and reliability grading for devices and data blocks, our
data replication placement strategy imposes more constraints
during the selection of storage devices. As a result, it enhances
the efficiency of resource utilization, ensuring better utilization
of storage resources. Comparing the best-performing CLB-
based strategy, the proposed DRPS increases 27.5% ∼ 52.0%
in terms of memory resource utilization, demonstrating the
superiority of our approach.

4) Comparison of Unreliability Rate: By fixing the num-
ber of data replications, the unreliability of data replication
placement strategies in the distributed storage system can be
assessed by quantifying the success rate of these strategies
in replicating that data. In this study, we only focus on
ensuring data storage reliability without imposing constraints
on the number of data replications. Instead, in this experiment,
we impose a limitation whereby all data is replicated with
exactly three replicas, which are generally used in traditional

TABLE V
COMPARISON OF OTHER METHODS AND DRPS BY USING

ANALYSIS OF VARIANCE (ANOVA) AND TUKEY-HSD

Memory Utilization
Tukey’s P1 Tukey’s P2

Random v.s. DRPS ¡ 0.00001 ¡ 0.00001
ACO-based v.s. DRPS ¡ 0.00001 ¡ 0.00001
CLB-based v.s. DRPS ¡ 0.00001 ¡ 0.00001

DCABA-based v.s. DRPS ¡ 0.00001 ¡ 0.00001
* The P1(ANOVA) ¡ 0.00001 and P2(ANOVA) ¡ 0.00001.

distributed storage systems. Under this constraint, when a
hardware device resource is depleted, some data fail to meet
the reliability requirements, and the ratio of such data to the
total replicated data stored is defined as the unreliability rate
of the strategy.

Compared with other data replication placement methods,
the results indicate that our proposed DRPS exhibits the
lowest data unreliability rate. Following the formula (7), it
is observed that as the pre-defined reliability attribute of
ri the hardware devices used for storing replicas increases,
the unreliability rate correspondingly decreases. As shown
in Figure 8, compared to the best strategy in alternative
data replication methods, the proposed DRPS reduces the
unreliability rate by 82.0%∼87.8% in a cloud-edge-terminal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

(a) (b)

Fig. 9. Comparison of Average Energy with Different Data Replication Placement Strategies

(a) (b)

Fig. 10. Comparison of Average Cost with Different Data Replication Placement Strategies

TABLE VI
COMPARISON OF OTHER METHODS AND DRPS BY USING

ANALYSIS OF VARIANCE (ANOVA) AND TUKEY-HSD

Unreliability Rate
Tukey’s P1 Tukey’s P2

Random v.s. DRPS ¡ 0.00001 ¡ 0.00001
ACO-based v.s. DRPS ¡ 0.00001 ¡ 0.00001
CLB-based v.s. DRPS ¡ 0.00001 ¡ 0.00001

DCABA-based v.s. DRPS ¡ 0.00001 ¡ 0.00001
* The P1(ANOVA) ¡ 0.00001 and P2(ANOVA) ¡ 0.00001.

orchestrated environment characterized by varying numbers
of edge nodes and terminal devices. This can be attributed to
the fact that our proposed data replication strategy leverages
more precise data and device information during the node
selection process, facilitating the placement of replicated data
in a manner that optimally ensures storage location accuracy
while minimizing the number of replications. In addition, as
shown in Table VI, for Figure 8, P1(ANOVA) ¡ 0.00001
and Tukey’s P1 ¡ 0.00001 denote that the proposed DRPS
exhibits a significant difference compared to other methods
when varying the number of terminal devices. Similarly, the

results indicated by P2(ANOVA) ¡ 0.00001, coupled with
P2 ¡ 0.00001, signify that the proposed DRPS exhibits a
significant difference compared to other methods when varying
the number of managing edge nodes.

5) Comparison of Average Energy and Cost: The average
energy and cost pertain to the energy consumption and ex-
penses associated with data transfer required for storing and
replicating data in a distributed storage system while meeting
reliability requirements for all data blocks. The average energy
represents the consumption of data replication, considering
both node distance and the number of data replicas. The
average cost refers to storage expenses and is proportional to
the number of data replicas [48]. Comparative analysis against
alternative data replication placement methods reveals that our
proposed DRPS strategy exhibits the lowest average energy
consumption and cost, proving the superiority of our approach.
As depicted in Figure 9 and Figure 10, as the number of
terminal devices increases, all strategies maintain stability in
average energy consumption for data storage and replication.
Moreover, the proposed DRPS consistently outperforms other
strategies by approximately 50%. This superiority stems from
DRPS’s ability to consistently meet reliability storage require-
ments more efficiently and with lower energy consumption.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

Regarding the number of managing edge nodes, an increase
in their count leads to a gradual decrease in the average energy
consumption across all data replication strategies. However,
among these strategies, the proposed DRPS maintains the
highest level of stability. This can be attributed to the uti-
lization of more edge nodes for management, which provides
additional a priori information and hardware resources for
storing replicas in the system. Furthermore, the decrease in
average energy with an increasing number of managing edge
nodes is influenced by the geographical distribution of these
nodes and terminal devices. These locations were determined
based on Shanghai Telecom base stations and the data accessed
through them. Consequently, as the number of edge nodes
rises, resulting in a higher density of their actual positions,
the average spatial distance between nodes naturally decreases,
leading to a reduction in average energy consumption.

In addition, it is imperative to consider the experimental
findings depicted in Figure 10(b). While the average cost of the
DRPS proposed in this paper exhibits a significant reduction
compared to other strategies, it marginally increases with the
growing number of managing edge nodes. These results may
be from the fact that the computation of cost is intricately
linked to both the number of data replicas to be stored and
the volume of information to be stored on managing edge
nodes. The escalation in the number of managing edge nodes
responsible for storing information is a corresponding increase
in the information load associated with data replication within
the system. The challenge deserves further attention and
solutions in future research work.

6) Comparison of Different Storage Patterns: As men-
tioned above, an important corollary is that in a cloud-
edge-terminal orchestrated computing environment, adopting
terminal resource-sharing for data storage and replication not
only provides the edge nodes in the system with more re-
sources to handle an increasing number of intelligent tasks but
also significantly reduces the system delay required for data
replication placement. In the experiment, we differentiated the
storage patterns as the traditional data replication placement
patterns and the proposed strategy (i.e., terminal devices also
as storage nodes). To better compare the difference between
placing data replicas through both edge nodes and terminal
devices and placing them solely on edge nodes, we first
simulated 20 edge nodes and 1000 data blocks that require
storage and replication tasks in the distributed storage system.
We obtained the system delay required for storage using
various data replica placement strategies. Next, we designated
8 out of the simulated 20 edge nodes as managing edge
nodes, responsible for managing 640 terminal devices that can
share resources for replica placement. As shown in Figure 11,
except for the DCABA-based strategy, storing data replications
through the joint placement of edge nodes and terminal devices
can improve the average system delay during the data storage
and replication process. It is worth noting that expanding
terminal devices in the system to become storage nodes is done
to increase the utilization of available resources. Therefore, as
long as the average system delay is acceptable, the results
mean that the proposed storage pattern can be applied.

Fig. 11. Comparison Different Storage Patterns With and Without Terminal
Devices

TABLE VII
COMPUTATIONAL COMPLEXITY OF DIFFERENT STRATEGIES

Strategy Node Selection Load Balancing Overall Complexity

DRPS O(n) O(n2) O(n2)
Random O(1) - O(1)
DCABA O(n) O(n logn) O(n logn)
CLB O(n) O(n2) O(n2)
ACO O(n2) O(n2 ∼ n3) O(n3)

Fig. 12. Comparison of Data Transmission Frequency for Different Strategies

7) Comparison of Overhead: To prove the effectiveness of
the DRPS strategy, we analyzed its computational overhead, as
shown in Table VII. By combining node selection and load-
balancing efficiency, the DRPS strategy maintains moderate
computational overhead O(n2) compared to other strategies.
In terms of computational overhead, the Random, DCABA,
and CLB strategies are competitive to some extent. However,
the random strategy performs poorly in resource utilization and
latency. DCABA fails to consider data transmission distance
and latency. CLB has significant deficiencies in system latency,
replication, and memory utilization reliability. Therefore, our
proposed DPRS strategy has an advantage over other compar-
ison strategies in terms of computational overhead.

Additionally, DRPS offers better data transmission effi-
ciency. As shown in Figure 12, we compare the data transmis-
sion frequency of different data blocks under 40 edge nodes
and 200 terminal devices. For the same data volume, DRPS
achieves better transmission frequency, benefiting from its

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

advantage in system latency. This demonstrates the superiority
of our proposed algorithm in terms of data communication
overhead.

Combined with the overhead advantages of data transfer
and computation, DRPS significantly improves system per-
formance by reducing system latency by 39.9%, increasing
replication efficiency by 43.3%, improving memory utilization
by 27.5%, and reducing instability by 82%. These benefits
justify the DRPS strategy, ensuring better reliability, balanced
resource utilization, and optimized storage performance.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a data replication placement strategy, named
DRPS, is proposed, leveraging the synergy of a ranks-based
replication storage node selection algorithm and a greedy
load balancing algorithm. This strategy aims to optimize
the mapping of replicas and hardware devices, focusing on
enhancing system delay and resource utilization within cloud-
edge-terminal orchestrated computing environments. Firstly, a
data replication placement model was constructed to consider
multiple different replication tasks across heterogeneous hard-
ware devices. Furthermore, the data replication placement was
formulated as a multi-objective optimization problem and the
DRPS was proposed to solve it. The data replication strategy
not only properly trades off system delays and resource
utilization but also guarantees the reliability of every data
block in the distributed storage system. The comprehensive
experiments were designed to verify that, in comparison to
other state-of-the-art methods, DRPS reduced system delay
by 39.9%, increased replication by 43.3%, enhanced mem-
ory utilization by 27.5%, and decreased unreliability rate by
82.0%.

In future work, an investigation into the integration of DPRS
and federated learning/reinforcement learning is anticipated.
This approach will be aimed at managing online-generated
data requiring replication, with the objective of further en-
hancing both system delay and reliability performance. The
explorations are expected to achieve the optimization of data
replication strategies within dynamic computing environments.

VII. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

VIII. DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

REFERENCES

[1] Y. Li, W. Liang, J. Li, X. Cheng, D. Yu, A. Y. Zomaya, and S. Guo,
“Energy-aware, device-to-device assisted federated learning in edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 7, pp. 2138–2154, 2023.

[2] Y. Yang, M. Ma, H. Wu, Q. Yu, P. Zhang, X. You, J. Wu, C. Peng,
T.-S. P. Yum, S. Shen et al., “6g network ai architecture for everyone-
centric customized services,” arXiv preprint arXiv:2205.09944, 2022.

[3] X. Du, S. Tang, Z. Lu, J. Wet, K. Gai, and P. C. Hung, “A novel data
placement strategy for data-sharing scientific workflows in heteroge-
neous edge-cloud computing environments,” in 2020 IEEE International
Conference on Web Services (ICWS), 2020, pp. 498–507.

[4] X. Du, S. Tang, Z. Lu, K. Gai, J. Wu, and P. C. Hung, “Scientific
workflows in iot environments: a data placement strategy based on het-
erogeneous edge-cloud computing,” ACM Transactions on Management
Information Systems (TMIS), vol. 13, no. 4, pp. 1–26, 2022.

[5] R. Besharati, M. H. Rezvani, M. M. Gilanian Sadeghi et al., “An
auction-based bid prediction mechanism for fog-cloud offloading using
q-learning,” Complexity, vol. 2023, 2023.

[6] D. Prerna, R. Tekchandani, and N. Kumar, “Device-to-device content
caching techniques in 5g: A taxonomy, solutions, and challenges,”
Computer Communications, vol. 153, pp. 48–84, 2020.

[7] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “On the fundamental
limits of device-to-device private caching under uncoded cache place-
ment and user collusion,” IEEE Transactions on Information Theory,
vol. 68, no. 9, pp. 5701–5729, 2022.

[8] M. F. Mohamed, M. Dahshan, K. Li, A. Salah et al., “Virtual machine
replica placement using a multiobjective genetic algorithm,” Interna-
tional Journal of Intelligent Systems, vol. 2002, 2023.

[9] S. Tang, X. Du, Z. Lu, K. Gai, J. Wu, P. C. Hung, and K.-K. R.
Choo, “Coordinate-based efficient indexing mechanism for intelligent
iot systems in heterogeneous edge computing,” Journal of Parallel and
Distributed Computing, vol. 166, pp. 45–56, 2022.

[10] W. Lv, Y. Lu, Y. Zhang, P. Duan, and J. Shu, “Infinifs: An efficient
metadata service for large-scale distributed filesystems,” in 20th USENIX
Conference on File and Storage Technologies (FAST 22), 2022, pp. 313–
328.

[11] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS operating systems review, vol. 44, no. 2,
pp. 35–40, 2010.

[12] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[13] H. Gupta and U. Ramachandran, “Fogstore: A geo-distributed key-
value store guaranteeing low latency for strongly consistent access,” in
Proceedings of the 12th ACM International Conference on Distributed
and Event-based Systems, 2018, pp. 148–159.

[14] S. K. Monga, S. K. Ramachandra, and Y. Simmhan, “Elfstore: A resilient
data storage service for federated edge and fog resources,” in 2019 IEEE
International Conference on Web Services (ICWS). IEEE, 2019, pp.
336–345.

[15] R. Mayer, H. Gupta, E. Saurez, and U. Ramachandran, “Fogstore:
Toward a distributed data store for fog computing,” in 2017 IEEE Fog
World Congress (FWC). IEEE, 2017, pp. 1–6.

[16] T. Huang, W. Lin, Y. Li, L. He, and S. Peng, “A latency-aware multiple
data replicas placement strategy for fog computing,” Journal of Signal
Processing Systems, vol. 91, pp. 1191–1204, 2019.

[17] K. Liu, J. Peng, J. Wang, W. Liu, Z. Huang, and J. Pan, “Scalable
and adaptive data replica placement for geo-distributed cloud storages,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7,
pp. 1575–1587, 2020.

[18] J. Liu, M. Xie, S. Chen, G. Xu, T. Wu, and W. Li, “Ts-replica: A novel
replica placement algorithm based on the entropy weight topsis method
in spark for multimedia data analysis,” Information Sciences, 2023.

[19] B. Confais, B. Parrein, and A. Lebre, “A tree-based approach to locate
object replicas in a fog storage infrastructure,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[20] F. Karatas and I. Korpeoglu, “Fog-based data distribution service (f-dad)
for internet of things (iot) applications,” Future Generation Computer
Systems, vol. 93, pp. 156–169, 2019.

[21] C. Li, M. Song, M. Zhang, and Y. Luo, “Effective replica management
for improving reliability and availability in edge-cloud computing envi-
ronment,” Journal of Parallel and Distributed Computing, vol. 143, pp.
107–128, 2020.

[22] N. Saranya, K. Geetha, and C. Rajan, “Data replication in mobile edge
computing systems to reduce latency in internet of things,” Wireless
Personal Communications, vol. 112, pp. 2643–2662, 2020.

[23] J. Taghizadeh, M. Ghobaei-Arani, and A. Shahidinejad, “A
metaheuristic-based data replica placement approach for data-intensive
iot applications in the fog computing environment,” Software: Practice
and Experience, vol. 52, no. 2, pp. 482–505, 2022.

[24] C. Symvoulidis, A. Kiourtis, G. Marinos, J.-D. Totow Tom-Ata, G. Ma-
nias, A. Mavrogiorgou, and D. Kyriazis, “A user mobility-based data
placement strategy in a hybrid cloud/edge environment using a causal-
aware deep learning network,” IEEE Transactions on Computers, vol. 72,
no. 12, pp. 3603–3616, 2023.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

[25] K. Kontodimas, P. Soumplis, A. Kretsis, P. Kokkinos, M. Fehér, D. E.
Lucani, and E. Varvarigos, “Secure distributed storage orchestration on
heterogeneous cloud-edge infrastructures,” IEEE Transactions on Cloud
Computing, vol. 11, no. 4, pp. 3407–3425, 2023.

[26] J. Dias, J. A. Silva, and H. Paulino, “Adaptive replica selection in
mobile edge environments,” in International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services. Springer,
2021, pp. 243–263.

[27] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, M. Masdari, and
H. Shakarami, “Data replication schemes in cloud computing: a survey,”
Cluster Computing, vol. 24, pp. 2545–2579, 2021.

[28] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, “A cost-efficient
auto-scaling mechanism for iot applications in fog computing environ-
ment: a deep learning-based approach,” Cluster Computing, vol. 24,
no. 4, pp. 3277–3292, 2021.

[29] E. Torabi, M. Ghobaei-Arani, and A. Shahidinejad, “Data replica
placement approaches in fog computing: a review,” Cluster Computing,
vol. 25, no. 5, pp. 3561–3589, 2022.

[30] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, “A review on the
edge caching mechanisms in the mobile edge computing: A social-aware
perspective,” Internet of Things, p. 100690, 2023.

[31] K. Sarwar, S. Yongchareon, J. Yu, and S. ur Rehman, “Efficient privacy-
preserving data replication in fog-enabled iot,” Future Generation Com-
puter Systems, vol. 128, pp. 538–551, 2022.

[32] N. Afonso, M. Bravo, and L. Rodrigues, “Combining high throughput
and low migration latency for consistent data storage on the edge,” in
2020 29th International Conference on Computer Communications and
Networks (ICCCN), 2020, pp. 1–11.

[33] Y. Shao, C. Li, and H. Tang, “A data replica placement strategy for
iot workflows in collaborative edge and cloud environments,” Computer
Networks, vol. 148, pp. 46–59, 2019.

[34] A. J. Fahs and G. Pierre, “Proximity-aware traffic routing in distributed
fog computing platforms,” in 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019,
pp. 478–487.

[35] ——, “Tail-latency-aware fog application replica placement,” in Service-
Oriented Computing: 18th International Conference, ICSOC 2020,
Dubai, United Arab Emirates, December 14–17, 2020, Proceedings 18.
Springer, 2020, pp. 508–524.

[36] K. Toczé, A. J. Fahs, G. Pierre, and S. Nadjm-Tehrani, “Violinn:
Proximity-aware edge placementwith dynamic and elastic resource pro-
visioning,” ACM Transactions on Internet of Things, vol. 4, no. 1, pp.
1–31, 2023.

[37] Y. Zhang, W. Liang, Z. Xu, and X. Jia, “Mobility-aware service
provisioning in edge computing via digital twin replica placements,”
IEEE Transactions on Mobile Computing, vol. 23, no. 12, pp. 11 295–
11 311, 2024.

[38] Q. Zheng, Z. Zhao, W. Lu, C. Yao, Y. Chen, A. Pan, and X. Du, “Lion:
Minimizing distributed transactions through adaptive replica provision,”
in 2024 IEEE 40th International Conference on Data Engineering
(ICDE), 2024, pp. 2012–2025.

[39] X. Li, Z. Zhou, Q. He, Z. Shi, W. Gaaloul, and S. Yangui, “Re-
scheduling iot services in edge networks,” IEEE Transactions on Net-
work and Service Management, vol. 2023, 2023.

[40] Y. Qu, H. Dai, F. Wu, D. Lu, C. Dong, S. Tang, and G. Chen, “Robust
offloading scheduling for mobile edge computing,” IEEE Transactions
on Mobile Computing, vol. 21, no. 7, pp. 2581–2595, 2022.

[41] H. Liu, X. Long, Z. Li, S. Long, R. Ran, and H.-M. Wang, “Joint
optimization of request assignment and computing resource allocation
in multi-access edge computing,” IEEE Transactions on Services Com-
puting, vol. 16, no. 2, pp. 1254–1267, 2023.

[42] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[43] L. Zhang, Y. Deng, W. Zhu, J. Zhou, and F. Wang, “Skewly replicating
hot data to construct a power-efficient storage cluster,” Journal of
Network and Computer Applications, vol. 50, pp. 168–179, 2015.

[44] J. Li, Y. Deng, Y. Zhou, Z. Wu, S. Pang, and G. Min, “Tadrp: Towards
thermal-aware data replica placement in data-intensive data centers,”
IEEE Transactions on Network and Service Management, 2023.

[45] Y. Ma, W. Liang, M. Huang, W. Xu, and S. Guo, “Virtual network
function service provisioning in mec via trading off the usages between
computing and communication resources,” IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2949–2963, 2022.

[46] L. Cheung, P. C. Cheung, and V. E. Ooi, “Antioxidant activity and total
phenolics of edible mushroom extracts,” Food chemistry, vol. 81, no. 2,
pp. 249–255, 2003.

[47] P. Glynn and L. D’croz, “Experimental evidence for high temperature
stress as the cause of el niño-coincident coral mortality,” Coral reefs,
vol. 8, pp. 181–191, 1990.

[48] M. Séguéla, R. Mokadem, and J.-M. Pierson, “Energy and expenditure
aware data replication strategy,” in 2021 IEEE 14th International Con-
ference on Cloud Computing (CLOUD). IEEE, 2021, pp. 421–426.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 20

Peng Chen received the Ph.D. degree in com-
puter science and technology from Fudan University,
China, in 2024. He is currently a lecturer at the
School of Software, Nanjing University of Informa-
tion Science and Technology. His research interests
include trustworthy AI, edge computing, federated
learning, and fintech.

Mengke Zheng is a M.D. student at School of
Computer Science, Fudan University. His research
interests are distributed computing and edge com-
puting.

Xin Du is an Assistant Professor at School of
Software Technology, Zhejiang University, China.
He received a Ph.D. computer science degree from
Fudan University in 2024. His research interests in-
clude distributed system, brain-inspired computing,
and service computing.

Muhammad Bilal received the Ph.D. degree in in-
formation and communication network engineering
from the School of Electronics and Telecommuni-
cations Research Institute (ETRI), Korea University
of Science and Technology, Daejeon, South Korea,
in 2017. In 2018, he joined Hankuk University of
Foreign Studies, South Korea, where he is currently
working as an Associate Professor with the Division
of Computer and Electronic Systems Engineering.
Since 2023, he has been a Senior Lecturer (Associate
Professor) with the School of Computing and Com-

munications, Lancaster University, United Kingdom. His research interests
include the design and analysis of network protocols, network architecture,
network security, the IoT, named data networking, blockchain, cryptology, and
future Internet.

Zhihui Lu is a Professor at School of Computer
Science, Fudan University. He received a Ph.D. com-
puter science degree from Fudan University in 2004,
and he is a member of the IEEE and China Computer
Federation’s Service Computing specialized commit-
tee. His research interests are cloud computing and
service computing technology, big data architecture,
edge computing, and IoT distributed systems.

Qiang Duan is currently a Professor of Information
Sciences and Technology with Pennsylvania State
University Abington College. His current research
interests include network-edge-cloud convergence,
cognitive and autonomous networking, and ubiq-
uitous intelligence in the future Internet. He has
published more than 100 research papers in these
areas and served on the editorial boards of various
research journals in the field of networking and
distributed computing.

Xiaolong Xu received the Ph.D. degree in computer
science and technology from Nanjing University,
China, in 2016. From April 2017 to May 2018,
he was a Research Scholar with Michigan State
University, USA. He is currently a Professor with
the School of Software, Nanjing University of In-
formation Science and Technology. His research
interests include edge computing, the Internet of
Things (IoT), cloud computing, and big data.

