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Abstract 
Single-molecule junctions (SMJs) provide an excellent platform for understanding charge 

transfer (CT) in molecular-scale structures and are a crucial building block for investigating 

electronic devices. Over the past two decades, numerous efforts have been focused on studying 

electron transport in molecular systems. The aim is vital for synthesising stable molecules and 

designing highly efficient energy devices. Furthermore, explorations of electronic and 

thermoelectric properties of single-molecule junctions have established the validity of applying 

quantum tools to molecular systems. This thesis addresses theoretical simulations for electric 

and thermoelectric transport properties such as transmission coefficient T(E), Seebeck 

coefficient S, and electrical conductance G. The charge transfer (CT) in single-molecule 

junctions can tune their thermoelectric properties. Particularly, CT complexes such as chlorine 

perylene bisimide (Cl-PBIs) combined with tetracyanoethylene (TCNE) and tetrathiafulvalene 

(TTF) can exhibit distinct electron transport behaviours due to donor-acceptor interactions and 

also molecular-orbital hybridisation. Furthermore, porphyrin-based wires incorporating 

hexafluorophosphate [PF6]
- counterions can influence redox activity through electrostatic 

gating. Thus, theoretical tools are employed to explain many phenomena, including quantum 

interference effects, rectification, switching, and transistor effects. In Chapter 2, density 

functional theory (DFT) is implemented within the SIESTA code. In Chapter 3, Green’s 

function methods and thermoelectric coefficients are addressed. In Chapter 4, I investigated 

charge transfer complexes of chlorine perylene bisimide (Cl-PBI) with TCNE as a pendant 

molecule in SMJs. In Chapter 5, thermoelectric properties are explored in the chlorine perylene 

bisimide (Cl-PBI) with a TTF as a pendant molecule, which affects an electron transport 

behaviour close to the Fermi energy EF at room temperature (∽300K). In Chapter 6, I focused 

on tuning the thermoelectric properties of single-porphyrin wires by studying various 

scenarios.  
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Chapter 1 

Introduction to Molecular-Scale Systems 
 

1.1 Introduction 
 

Electronic components, such as semiconductors, have become smaller and smaller at an 

exponential rate, according to a historical tendency that Gordon Moore predicted in 1965. 

Many investigations have been carried out to discover ways that can continue this historical 

trend, and these investigations are now approaching the nano- or molecular scale [1]. At the 

nanoscale, a range of device concepts have been proposed, and used to demonstrate 

fundamental phenomena associated with electron transport, including nanoscale 

superconducting devices [2-6], devices based on carbon nanotubes [7-9], and sensors based on 

nanopores in graphene [10-12] or silicone [13]. Many of these concepts carry over to 

molecular-scale structures. 

Molecular electronics (ME) is the field of science that analyses the electrical and thermal 

transport properties of circuits constructed with individual molecules (or groups of them) as 

their fundamental components. In 1974, Aviram and Ratner provided the initial concept for the 

molecular current rectifier [14]. Since that time, a range of single-molecule electrical devices 

have been proposed as transistors [15], rectifiers [16,17] and switches [18, 19] and a variety of 

methods for controlling electron transport through molecules have been proposed, including 

governing their molecular conformation [20], orientation within a junction [21], and frontier-

orbital energy levels relative to the Fermi energy of electrodes [22]. 

In a single-molecule junction, electron transport can be controlled by varying the anchor 

groups, the molecular core, and attaching pendant groups to the core besides the linkages to 

the anchor groups. In contrast with the 1974 work of Aviram and Ratner [14], which assumed 
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that electron transport through single molecules incoherently takes place, one of the great 

discoveries during the past decade or so is that electron transport through single molecules can 

remain phase coherent, even at room temperature. This phase coherence means that a range of 

quantum interference effects are possible and that these can be used to control the electrical 

and thermal transport properties of molecular junctions. Manifestations of such interference 

effects include conductance oscillations in atomic wires [23] and Seebeck oscillations in π-

stacked molecular junctions [24]. In addition, since molecules can be attached to electrodes via 

anchor groups, and the anchor groups can be connected to a molecular core with atomic 

accuracy, a range of connectivity-dependent quantum interference (QI) effects can be observed 

[25-27]. This ability to control connectivity to electrodes is a unique feature of single-molecule 

junctions, which distinguishes them from artificial quantum dots, where the connectivity to 

electrodes is poorly defined at an atomic scale. 

In the simplest configuration, a molecule can be anchored to a gold electrode via direct carbon-

gold bonds. Many other anchor groups have been tested in the literature, and correlations 

between the binding energy of the anchor to the electrodes and the magnitude of the electrical 

conductance have been demonstrated [28,29]. Gold is the most commonly used electrode 

material, but since it is not a complementary metal-oxide semiconductor (CMOS) like other 

electrode materials such as graphene [30-32].  

Remarkably, many of the quantum interference effects discovered in single-molecule junctions 

have been shown to persist in materials formed from self-assembled molecular layers [33,34]. 

This is important because organic molecules can be utilised in scalable devices, such as cross-

bar architectures. The finite cross-section electrodes will inevitably make contact with a film 

of many molecules in parallel.  



15 
 

It is also worth noting that the above interference effects derive from the wave nature of 

electrons passing through a molecule from one electrode to another. Since heat is mediated by 

vibrational waves and minimisation of thermal conductance is highly desirable for 

thermoelectric applications, it is of interest to determine phonon interference effects can be 

used to control thermal conductance. This question has been explored by adapting techniques 

originally developed to model lattice dynamics in nanostructures [35] to model phonon 

transport through single-molecule junctions [36,37]. 

1.2 Molecular Electronics Modelling 
 

In molecular-scale structures, calculating the electronic properties of an isolated molecule is 

the first step in understanding electron transport. After solving the Schrödinger equation to find 

eigenvalues, eigenvectors, and the self-consistent Hamiltonian of these systems, one can then 

calculate the Green’s function and scattering matrix. In the case of many-body problems, it is 

very difficult to provide an exact solution, therefore, some approximate methods must be 

applied to decrease the complexities of such interactions. There are two approaches to deal 

with such systems. The first involves semi-empirical techniques, which require different 

parameters to be fitted to experimental data. The second is a first-principles ‘ab initio’ 

approach, which I shall use in this thesis [38-41] to provide a systematic way to understand 

electronic structure without recourse to experimental data.  

As an implementation of the ‘ab initio’ method, density functional theory (DFT) is a convenient 

way to calculate the electronic features of molecular-structure systems consisting of hundreds 

of atoms. Even though it is an approximate approach, DFT often provides good agreement with 

experimental data [42], although in some cases, it shows significant differences. In this thesis, 

I shall mainly utilise the DFT-SIESTA code, which allows eigenvalues and eigenfunctions to 

be obtained using computational methods. In the next chapters, I shall explain how density 
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functional theory (DFT) can be combined with a Green’s function scattering method to 

calculate the electronic properties of molecular junctions. 

 

1.3 Perylene Bisimide (PBI) 
 

Currently, silicon applications are a well-known field of research and have many industrial 

investigations [43,44]. Hence, the interest in discovering new features and understanding 

properties of charge transport in molecular junctions has been increasing in the past two 

decades [45-49]. Here, I introduce organic molecules and investigate their electric properties 

by studying various molecular structures in single-molecule junctions in the next chapters. I 

shall start my investigation with chlorine perylene bisimide (Cl-PBI), which is classified as an 

organic molecular group with unique electrical properties and innovations in sensors and 

fluorescence [45,46.50-54]. Generally, PBIs are extended 𝜋-systems, which can provide more  

𝜋-orbital overlap and 𝜋-𝜋 interactions with other molecular derivatives [54-57] in Figure 1.1 

below the core of the perylene bisimide PBI molecule. Moreover, they have valuable properties 

such as thermal and chemical stability, larger electron mobility, and high electron affinity 

[65,68].  
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Figure 1.1. a) The chemical structure of perylene bisimide (PBI). b) The molecular 

configuration of PBI, where atoms are nitrogen (blue), oxygen (red), carbon (grey), 

and hydrogen (white). 

 

1.4 Porphyrin Molecule 
 

As a continuous work in this thesis, I shall address the porphyrin molecule, which contains two 

different side groups on its backbone, and then add metal atoms [M =Ni, Zn, Mg, and Co], 

which are centred at their backbone to tune thermoelectric behaviours. Porphyrins are regarded 

as high-potential building blocks in molecular devices, due to their unique properties such as 

emission, absorption behaviours, and stability features [58] as shown in Figure 1.2. Given the 

rich chemical redox of porphyrin molecules, I shall proceed to investigate the porphyrin 

molecule, including the role of charged pendant groups of [PF6]
- anions, which deforms a dimer 

system to study the charge transport complexes in such metal-molecule-metal wires and 

understand their charged states which can be interesting in memory device applications.   

 

 

(a) 

(b) 
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Figure 1.2. a) The chemical structure of the porphyrin molecule core (left) and 

metalloporphyrin core (right). b) The molecular configuration of the porphyrin 

molecule core. 

 

1.5 Outline of Thesis 
 

This thesis reports calculations and predictions of electric and thermoelectric properties of 

organic molecules. Consequently, I shall study electron transfer through metal-molecule-metal 

systems and then expand my work to investigate charge transfer complexes of organic 

molecules by constructing a dimer system with pendant group molecules. Additionally, the 

results will describe electric and thermoelectric behaviour in single-molecule junctions. In the 

thermoelectrical process, a temperature difference causes an electrical voltage to appear across 

the system, which can cause charge to move from a hot side to a cold one. As a potential 

application, this phenomenon enables the generation of electrical current in a system from 

(a) 

(b) 
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waste heat. More generally, thermoelectric effects encompass three crucial principles, which 

include the Seebeck effect, the Peltier effect, and the Thomson effect. 

As the building up of this thesis in Chapter 2, I shall introduce some fundamental principles 

of the density functional theory (DFT) and the SIESTA code by outlining the formalism, which 

allows us to treat many-body problems and apply the exchange-correlation technique. In 

Chapter 3, I shall illustrate the Green’s function method, used for quantum transport 

calculations, and introduce the electric properties of single-molecule junctions. In Chapters 4 

and 5, I aim to study the electric properties of chlorine perylene bisimide (Cl-PBI) as a main 

candidate for single-molecule junctions by varying its anchor groups for pyridine and a methyl 

thioether (SMe), which are symmetrically linked at opposite ends. I investigate further the 

charge transfer (CT) complexes by adding extra pendant molecules in the system of Cl-PBI 

and creating dimer systems which consist of pendant groups of tetracyanoethylene (TCNE) 

and tetrathiafulvalene (TTF).  In Chapter 6, I shall show my results of studying the porphyrin 

molecules and modifying its bay area with different scenarios by including various side groups 

(X = C3N2), (X = pyridine rings plus CH3), centred atoms (M= Ni, Zn, Mg, and Co), and the 

pendant anions [PF6]- which can form a dimer system to study the charge transport complexes 

and redox-active interaction in nano-wires. Finally, in Chapter 7, I shall summarise my 

findings and calculations and provide some ideas for my future projects.  
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Chapter 2 
 

The Density Functional Theory (DFT) 
 

In this chapter, the formalism of density functional theory (DFT) implemented with the 

SIESTA code will be introduced, which is employed for single-molecule calculations in this 

thesis. The first step in solving the electron transport mechanism of molecules is to apply DFT 

to obtain a mean-field Hamiltonian. I shall present computational methods in electronic 

molecular calculations. I shall begin with a general description of a many-body problem 

consisting of electrons and nuclei. The next sections will describe with Born-Oppenheimer 

Approximation, the Hohenberg-Kohn Theorems, and the Kohn-Sham Method. Then shall 

present Exchange-Correlation functionals and SIESTA formalisms in the following sections. 

Finally, the counterpoise correction method will be addressed. 

2.1 Introduction 
 

Density Functional Theory (DFT) is a crucial computational approach that scientists use to 

study the electronic properties of atoms, molecules, and lattice systems. Indeed, this method is 

a powerful tool to investigate and predict the ground-state properties of interacting many-

particle systems. It is constructed to solve many-body problem systems that consist of many 

interacting particles. These physical properties can be calculated by considering a function of 

the ground-state density of many-body interacting systems [1,2]. Thus, the DFT is a dependable 

approach utilised on a wide range of molecular systems since numerous papers and literature 

offer in-depth explanations of the principles of DFT and how it is used [1-6]. The significance 

of DFT was underscored in 1998 by the Nobel Prize in Chemistry being granted to Walter Kohn 

[4] for developing density functional theory. The inception of DFT traces back to the Thomas-

Fermi model from the 1920s, offering initial steps toward deriving the density functional for 
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total energy based on wavefunctions [1,6-8]. Progress was subsequently made by Hartree, 

Dirac, Fock, and Slater, nearly forty years following the work of Thomas-Fermi. The 

Hohenberg-Kohn theorems and Kohn-Sham method further cemented the foundations [5,33-

37].  

This chapter provides an overview of DFT, illustrating its primary formalism as a means of 

understanding how electrons are transported in organic molecular junctions begins with 

comprehending the electronic characteristics of an individual junction. This process involves 

solving the complex interacting many-body Schrödinger equation to identify eigenvalues, 

eigenvectors, Hamiltonian, and overlap matrices, which are then utilised to compute the 

electron scattering matrix. Unfortunately, solving this equation becomes impractical with 

numerous interacting electrons and particles. Nonetheless, various alternative methods exist to 

simplify the issue, such as employing 'ab initio' techniques rooted in theoretical principles or 

semi-empirical methods involving parameter fitting to experimental data [12-15]. 

This thesis opts for the former approach to offer a consistent and systematic method of 

determining electronic structure, eliminating the need for experimental measurements. An 

illustration of an 'ab initio' method is Density Functional Theory (DFT), commonly used in 

computing the electronic attributes of complicated molecules containing thousands of 

electrons. Despite being an approximation, DFT frequently yields accurate properties, though 

differences can arise in some instances [16]. Given the focus on molecules with extensive 

electron populations, employing DFT is a practical choice for efficiently deriving eigenvalues 

and transfer integrals, providing computational capabilities.  
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2.2 Many-Body Problem 
 

A molecule consisting of many atoms can be considered a good example of a many-body 

system. For a system that exhibits one or two particles, numerical techniques can be applied to 

solve the system with a higher order of complexity. However, the mathematics tools of many-

body quantum mechanics for large systems are difficult to solve since the computational time 

is expensive and requires memory storage to apply for realistic calculations. The DFT can 

provide an accurate description of a charged system surrounded by electrons. In quantum 

theory, we can describe a system consisting of electrons and nuclei by expressing the 

Schrödinger equation as: 

𝐻Ψ(𝒓𝑖, 𝑹𝐼) = 𝐸Ψ(𝒓𝑖 , 𝑹𝐼) (2.1) 

where 𝐻 represents the Hamiltonian operator for a system with 𝑀 nuclei and 𝑁 electrons, 𝒓𝑖 is 

the position of the 𝑖-th electron, and 𝑹𝐼 is the position of the 𝐼-th nucleus. 

Solve the Schrödinger equation by applying this Hamiltonian would be exceedingly difficult 

since the complexity of interactions between particles in the system. Hamiltonian can be 

illustrated by the general equation (2.2) of many body-Hamiltonian of a system containing 𝑁 

interacting electrons and 𝑀 Nucleons as: 

𝐻 =∑−
ℏ2

2𝑚𝑖

𝑁

𝑖=1

∇𝑖
2
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(2.2) 

 

The first two terms in equation (2.2) represent the kinetic energies of electrons and nucleons 

respectively, the third one is the electron-electron interactions, while the fourth term is the 
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nucleon-nucleon interactions, and the last one is the electron-nucleon interactions. Solving the 

Schrödinger equation by applying this Hamiltonian would be exceedingly difficult because of 

the complexity of interactions between particles in the system. Therefore, to find a solution for 

the system, an approximation is required to be applied to decrease the size of the problem and 

ignore the electron-nucleon interactions to increase the degree of freedom, which is treated by 

the Born-Oppenheimer approximation in the next section. 

2.3 Born-Oppenheimer Approximation  
 

To find a solution to the Schrödinger equation (2.1), there is a wavefunction that contains the 

coordinates of all the nucleons and electrons of the system as 3𝑁 + 3𝑀 components. Thus, 

Born and Oppenheimer came up with an efficient approach to solve a wavefunction by 

separating the Hamiltonian into effective electron and nucleon parts, which can be calculated 

individually. The nucleon is considered to be a stationary object compared with the electron 

due to their size, and the relaxation time of the electron is much faster to reach the ground state, 

so the nucleon is assumed to be fixed and independent of the positions of the electron. The 

equation (2.1) can be presented as the product of an independent nucleon wavefunction Θ and 

the electron wavefunction Φ as: 

Ψ(𝒓𝑖, 𝑹𝐼) = Θ(𝑹𝐼)Φ(𝒓𝑖, 𝑹𝐼) (2.3) 

It can be considered that the function of nucleon positions is considered to be zero as the 

nucleons are assumed to be fixed within the relaxation time of the electrons whereas the 

electron-phonon interaction can be omitted by considering low temperatures while it can take 

a phonon self-energy which can be presented in Green’s function calculations and Dyson’s 

equations [17].                                    

Hence, we can write an electron Hamiltonian within an effective Schrödinger equation of an 

electron as: 
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𝐻𝑒𝜑 = 𝐸𝑒𝜑                                                        (2.4) 

It presents the motion of an electron in a fixed positive potential field due to the stable nuclei. 

Hence, the Hamiltonian of electron can be written as: 

 

𝐻𝑒 =∑−
ℏ2

2𝑚𝑖
∇𝑖
2 +

1

2
∑

𝑒2
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(2.5) 

 

Therefore, the Hamiltonian of nucleon includes only the kinetic and interaction terms of the 

nucleons and can be written as: 
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(2.6) 

                                              

Thus, the Born-Oppenheimer approximation can apply the degree of freedom to solve the 

Schrödinger equation by separating electrons and nucleons.  

 

 2.4 Hohenberg-Kohn Theorems 
 

The first and second Hohenberg-Kohn theorems are fundamental concepts in density functional 

theory (DFT), which play an essential role in solving the ground-state of the effective electron 

Schrödinger equation. These theorems present the ground-state properties of a system 𝑛0 

corresponding to a minimum total energy functional [18]. The Hohenberg-Kohn theorem 

describes a system of interacting particles within an external potential field 𝑉(𝒓)[10]. Thus, 

the density functional is applied to minimise the functional of total energy, whereas the global 

minimum presents the ground state density. The external potential is described by the ground-
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state density 𝑛0 of a particle; however, it is not applied for a constant potential. Furthermore, 

Levy and Leib have provided other methods to have the same calculations as the previous 

theorems do with a restriction for a non-degenerate system [19-23]. In one method, there are 

two Hamiltonians 𝐻1and 𝐻2 with two external potentials 𝑉1and 𝑉2, which lead to the same 

ground-state density 𝑛0, so the Schrödinger equations can be written as: 

                 𝐻1𝜑1 = 𝐸1𝜑1 

                𝐻2𝜑2 = 𝐸2𝜑2 

 

(2.7) 

For non-degenerate systems, the wavefunction 𝜑2 is not the ground state of 𝐻1and it can be 

shown:  

                          ⟨𝜑1|𝐻1|𝜑1⟩ < ⟨𝜑2|𝐻1|𝜑2⟩ (2.8) 

We can expand the right side of (2.8) producing eigenvalues  𝐸2 of 𝐻2 and the external 

potentials 𝑉1and 𝑉2.  

 

⟨𝜑2|𝐻1|𝜑2⟩ = ⟨𝜑2|𝐻2|𝜑2⟩ + ⟨𝜑2|𝐻1 − 𝐻2|𝜑2⟩ 

                          = 𝐸2 +∫[𝑉1(𝒓) − 𝑉2(𝒓)]𝑛0(𝒓)𝑑
3𝒓 

                            

 

(2.9) 

 

Again, we do the same procedure with ⟨𝜑2|𝐻2|𝜑2⟩ and then substitute them back in equation 

(2.8) to get: 

𝐸1 < 𝐸2 +∫[𝑉1(𝒓) − 𝑉2(𝒓)]𝑛0(𝒓)𝑑
3𝒓 

𝐸2 < 𝐸1 +∫[𝑉2(𝒓) − 𝑉1(𝒓)]𝑛0(𝒓)𝑑
3𝒓 

                                                                

 

(2.10) 

 

By summing the final expressions of (2.10), we are going to have contradicting inequality 𝐸1 +

𝐸2 < 𝐸1 + 𝐸2 which illustrates that there are no external potentials with various values for no 
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more than only one constant. Thus, we will have the same non-degenerate ground-state value 

of the density, and the external potentials are determined by a unique ground-state density. 

Then the second method can be described as the previous one that corresponds to the 

minimization of a total energy functional [24]. Thus, a functional 𝐸[𝑛(𝒓)] is defined to be a 

way of mapping a function 𝑛(𝒓) into a single value 𝐸 [25]. As it has been described before, the 

density can uniquely present the external potential that corresponds to the Hamiltonian, which 

is applied to the wavefunction to solve the Schrödinger equation of the system. Thus, the 

wavefunction is a functional of the density, which leads to defining the expectation value 𝐸 of 

the Hamiltonian is also to be a functional of the density. 

⟨Ψ[n]|𝐻𝑒|Ψ[n]⟩ = ⟨Ψ[n]|𝑇|Ψ[n]⟩ + ⟨Ψ[n]|𝑉𝑖𝑛𝑡|Ψ[n]⟩     (2.11) 

                                                                           

Hence, the variational principle can be applied to find the ground-state energy and to minimise 

the expected value of the effective electron Hamiltonian 𝐻𝑒 with the wavefunctions that can be 

written as: 

                                𝐸[𝑛] = (⟨Ψ|𝐻𝑒|Ψ⟩)𝑚𝑖𝑛Ψ                                   

                                        = (⟨Ψ|𝑇|Ψ⟩ + ⟨Ψ|𝑉𝑖𝑛𝑡|Ψ⟩ + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑
3𝒓)

𝑚𝑖𝑛n|Ψ

 
 

                                        = (𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛]  + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑
3𝒓)

𝑚𝑖𝑛n|Ψ

 
 

                                        = (𝐸[𝑛])𝑚𝑖𝑛n|Ψ  (2.12) 

The first two terms in equation (2.12) consist of the kinetic energy 𝑇[𝑛] and the electron-

electron interaction energy functional 𝐸𝑖𝑛𝑡[𝑛]. Therefore, the density of the system is 

considered to reach a minimum, which is equivalent to the wavefunction Ψ in the system. In 

other words, if the density functional does not approach the ground-state, then the wavefunction 
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cannot be the ground-state wavefunction and the expectation value is not considered to be 

corresponding to the ground-state energy of the system.  

 

2.5 Kohn-Sham Method and Self-Consistent Field  
 

The density functional theory (DFT) is based on the Kohn-Sham formalism [31], which 

involves an effective potential 𝑉𝑒𝑓𝑓(𝒓) that plays an important role in solving a non-interacting 

system. We can represent the energy functional of a non-interacting system by introducing the 

non-interacting kinetic energy functional 𝑇𝐾𝑆[𝑛]. Thus, the non-interacting system energy 

functional can be written as: 

𝐸𝑛𝑜𝑛[𝑛(𝒓)] = 𝑇𝐾𝑆[𝑛] + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑
3𝒓 

(2.13) 

The main purpose is to reach the minimum energy functional of the ground-state density, as 

the Hohenberg-Kohn theories predict that the functional 𝐸𝑛𝑜𝑛[𝑛(𝒓)] is zero when it is derived 

over the state density 𝛿/𝛿𝑛(𝒓) [26]. To be able to minimise the equation (2.13), the density 

functional needs to be normalized to the number of electrons under the extra constraint as:  

𝑁 = ∫𝑛(𝒓)𝑑3𝒓 
(2.14) 

To write the full energy functional of the ansatz Kohn-Sham  𝐸𝐾𝑆[𝑛] of the whole interacting 

system that contains the kinetic energy functional of the non-interacting system and the 

electron-electron interaction term, which are the Hartree functional 𝐸𝐻, and the exchange-

correlation functional 𝐸𝑥𝑐 which can be expressed as:  

𝐸𝐾𝑆[𝑛] = 𝑇𝐾𝑆[𝑛] + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑
3𝒓 + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] 

  

(2.15) 
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The Hartree functional 𝐸𝐻[𝑛] represents the electron self-interaction of the Hartree potential: 

𝐸𝐻[𝑛] =
1

2
∫

𝑛(𝒓)𝑛(𝒓′)

4𝜋𝜖0|𝒓 − 𝒓′|
𝑑3𝒓𝑑3𝒓′ 

(2.16) 

The functional of exchange-correlation 𝐸𝑥𝑐[𝑛]   contains the interacting kinetic energy for 

many-body interactions, and it can be reduced for non-interacting systems. We can minimise 

the functional by taking the derivative of alternative functionals that contain many-body 

interactions as written: 

𝐸𝑥𝑐[𝑛] = (𝑇[𝑛] − 𝑇𝐾𝑆[𝑛]) + (𝐸𝑖𝑛𝑡[𝑛] − 𝐸𝐻[𝑛])                              (2.17) 

The Kohn-Sham potential 𝑉𝐾𝑆 can be presented as non-interacting system and can be written 

as: 

𝑉𝐾𝑆(𝒓) = ∫
𝑛(𝒓′)

4𝜋𝜖0|𝒓 − 𝒓′|
𝑑3𝒓′ + 𝑉𝑥𝑐(𝒓) + 𝑉𝑒𝑥𝑡(𝒓) 

 

(2.18) 

In addition, the single electron potential is affected by the many-body interactions. By 

understanding the Kohn-Sham formalism with the exact known of the exchange-correlation 

functional can lead us for the ground-state density as a result of the Hohenberg-Kohn theorems. 

Therefore, the previous prosses can be illustrated by the use of the self-consistent cycle in 

Figure 2.1. 
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Figure 2.1 A schematic of the DFT self-consistent cycle.  

As a condition of solving the total energy functional, the density has to be known, in addition 

to the Hamiltonian of the electron. Hence, by diagonalising the Hamiltonian, we can solve the 

eigenvectors of the system, which can be turned back to solve the density. Therefore, we can 

simplify the problem of many-body systems into non-interacting systems by involving the 

Kohn-Sham method and also knowing the functional of exchange-correlation. The accuracy of 

the calculations appears only in finding the eigenfunctions and ground states of energies and 

densities.  
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 2.6 The Exchange-Correlation Functionals  
 

The exchange-correlation functional 𝐸𝑥𝑐[𝑛] Includes all the interactions of many-body 

electrons and potentials in the calculations and provides an accurate approximation that 

reasonably describes the empirical data. There are a variety of approximations, that can be used 

for different purposes in molecular calculations as a fruitful choice for accuracy such as the 

local density approximation (LDA) and the generalized gradient approximation (GGA) where 

the exchange-correlation functional lies only on the density at the former and depends on the 

gradient and also density at the latter with some degrees of differences in the accuracy [26-29].  

 The exchange-correlation functional can be expressed as: 

𝐸𝑥𝑐[𝑛] = ∫𝑑
3𝒓∫𝑑3𝒓′

1

2

𝑛(𝒓)�̅�𝑥𝑐(𝒓, 𝒓
′)

|𝒓 − 𝒓′|
 

 

(2.19) 

The exchange-correlation energy arises from the electrostatic interaction between every 

electron and the coupling constant of the averaged exchange-correlation hole located around 

it. We mean the hole because it is generated by three factors: 

I) Pauli exclusion principle. 

II)  The unphysical self-interaction correction since an electron cannot interact with itself. 

III) Coulomb repulsion. 

The first two effects contribute to the exchange, while the third one deals with the correction. 

2.7 SIESTA  
 

In this thesis, my calculations are based on applying Spanish Initiative for Electronic 

Simulation with Thousands of Atoms (SIESTA) [35], which is a numerical code used to 

compute various electronic structures. SIESTA can be applied to simulate a large system 
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consisting of thousands of atoms and perform many methods and parameters, such as norm-

conserving pseudopotentials, a linear combination of atomic orbitals (LCAO) basis, and a 

periodic supercell.  

The SIESTA code allows us to apply different types of basis set functions in computational 

calculations. Thus, the self-consistent cycle optimises the basis set and requires the 

Hamiltonian to be diagonalized to generate the wavefunctions of the system.   A single-ξ (SZ) 

basis set is the simplest set in the SEISTA code for calculating a single basis function 𝜑𝑛𝑙𝑚(𝒓) 

per electron orbital in an atom. In this thesis, I have mainly applied the double-𝜉 polarised 

(DZP) basis set along with double-𝜉 (DZ) basis set for the electrodes [43,44]. 

2.9 Pseudopotentials  

Pseudopotentials play a significant role in removing the effect of core electrons from atoms. 

The first introduction of pseudopotentials was established by Fermi in 1934, and then they have 

been applied in methods to generate non-realistic experimental pseudopotentials to create 

realistic ab initio pseudopotentials [36-39]. Typically, electrons are considered to be core 

electrons and valence electrons, where the core ones are located in the shells of atoms, and the 

valence electrons lie on the partially filled orbitals of atoms. Thus, the valence electron states 

can make an overlap as atoms become close together, and they correspond to the formation of 

the molecular orbitals between atoms, whereas the core electrons are localised around the 

nucleus. By applying a pseudopotential, the core electron can be considered replaced, and the 

valence electrons can test the same charge of the nucleon. All of that will assist us in decreasing 

the number of electrons included in the system to reduce the required time and memory for 

calculations.  

 



40 
 

The SIESTA code consists of an ab initio pseudopotential, which is called a ‘norm-conserving 

pseudopotential’ to study the properties of molecules [40]. Hence, to start with, wavefunctions 

of all electrons (AE) in the valence levels of isolated atoms are written as a product of the radial 

and spherical wavefunctions 𝜑𝑛𝑙𝑚
𝐴𝐸 (𝒓) =  𝑅𝑛𝑙

𝐴𝐸(𝒓)𝑌𝑙𝑚(𝒓) respectively. The solution of the radial 

Schrödinger equation is the radial wavefunction 𝑅𝑛𝑙
𝐴𝐸 which includes ‘All-Electron’ (AE) 

potential 𝑉𝑛𝑙
𝐴𝐸 which consists of all electron interactions in the atom. SIESTA uses the Troullier-

Martins method to define the pseudo-wavefunction [41,42]. 

Thus, five rules are controlled by the radial pseudo-wavefunction due to classifying the 

resulting pseudopotential as a norm-conserving: 

1. For larger values of the cut-off radius (𝑟𝑐) all-electron (AE) wavefunctions and the 

pseudo-wavefunction (PP) have to be equal as: 

            𝑅𝑛𝑙
𝑃𝑃( 𝑟 > 𝑟𝑐) = 𝑅𝑛𝑙

𝐴𝐸( 𝑟 > 𝑟𝑐)                                     (2.20) 

2. To generate a smooth pseudopotential, the pseudo-wavefunction is required to be 

nodeless and smooth so that it can be produced as 𝑅𝑛𝑙
𝑃𝑃 and the first four derivatives of 

it should be continuous at the cut-off radius 𝑟𝑐. 

3. The eigenvalues of the pseudo-wavefunction and all-electron wavefunctions have to be 

identical as: 

𝜀𝑛𝑙
𝑃𝑃 = 𝜀𝑛𝑙

𝐴𝐸                                                (2.21) 

4. For the norm conservation, the total charge which is enclosed inside the range of the 

cut-off radius (𝑟𝑐) has to be equivalent for both pseudo-wavefunctions (PP) and all-

electron (AE) wavefunctions as: 

∫ |𝑅𝑛𝑙
𝑃𝑃(𝑟)|2𝑟2𝑑𝑟

𝑟𝑐

0

= ∫ |𝑅𝑛𝑙
𝐴𝐸(𝑟)|

2
𝑟2𝑑𝑟

𝑟𝑐

0

 
                 (2.22) 
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If the previous conditions are applied and satisfied, the resulting pseudopotential ‘the screened 

pseudopotential’ will be nodeless and smooth in order to get convergence of calculations [42].  

2.8.1 Local Density Approximation (LDA) 
 

This approximation of the exchange-correlation was presented by Kohn-Sham [31]. Since the 

relatively slow change in the density of the exchange-correlation hole, it can be approximated 

by depending only on the local density 𝑛(𝒓). Therefore, the functional can be defined as the 

energy functional per electron in a homogeneous electron gas (HEG) 𝜖𝑥𝑐[𝑛(𝒓)] with a local 

density 𝑛(𝒓). 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝒓)] = ∫𝑛(𝒓)𝜖𝑥𝑐

𝐿𝐷𝐴[𝑛(𝒓)]𝑑3𝒓 
(2.23) 

Where 𝜖𝑥𝑐 is a sum of the exchange 𝜖𝑥 and the correlation 𝜖𝑐 energies [32].                                          

The correlation functional needed to be parametrised first and then applied to the Monte-Carlo 

simulations for various densities. The well-known accurate results are presented by the 

Ceperley-Ander [33] and Perdew-Zunger [34] parameterisations. LDA has a disadvantage, 

which is the self-interaction error due to the one-electron self-interacting term that is partially 

cancelled, so it is not like the Hartree-Fock theory, where the electron self-potential is cancelled 

out in the calculations.  

2.8.2 Generalized Gradient Approximation (GGA) 

By constructing a gradient expansion, considering isotropy conditions, and ensuring that the 

exchange-correlation holes are controlled by their respective normalised conditions, this 

approach has been undertaken by various research groups, with notable functionals developed 

by Perdew in 1986 [51,52], and Wang in 1991 [53]. These exchange-correlation functionals 

fall under the category of generalized gradient approximations (GGAs). 



42 
 

Essentially, GGA enhances the treatment of quantities already well-handled by LDA, such as 

total energies, binding energies, and geometries of the system. In general, Kohn-Sham 

ionization energies are comparable between GGA and LDA. In common, LDA overestimates 

correlation energy and underestimates exchange energy, whereas GGA illustrates these 

differences to a specific limit. However, since these corrections have opposing effects, the 

overall impact is not remarkably valuable [54-56].  

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝒓)] = ∫𝑛(𝒓)𝜖𝑥𝑐

𝐺𝐺𝐴[𝑛(𝒓), |∇𝑛(𝒓)|]𝑑3𝒓 
(2.24) 

2.10 Counterpoise Correction Method  

 

SIESTA code provides a basis set superposition error (BSSE) due to the localised basis sets, 

as quantum chemistry computations can apply finite basis sets that are volatile to BSSE. The 

overlap occurs when molecule atoms interact with each other through the system, which allows 

their basis set functions to interact. The accuracy of the calculations increases when molecules 

reach their minimum energy related to their geometry optimisations. However, involving a 

long-range energy with a short-range energy can produce an error in calculations. 

For the BSSE to be corrected in the SIESTA code, the counterpoise correction method is 

involved, which was investigated by Boys and Bernardi in 1970 [45,46]. This technique utilises 

the total interaction energy of the molecular system and subtracts its contribution from the basis 

set overlaps. By considering two molecular systems A and B interacting and separated by a 

distance r. Thus, the total energy of the combined system can be written as [47]: 

∆𝐸𝑡𝑜𝑡𝑎𝑙 
𝐴𝐵 (𝒓) = 𝐸𝐴𝐵

𝐴𝐵 − 𝐸𝐴𝐵
𝐴 − 𝐸𝐴𝐵

𝐵  (2.25) 

Where 𝐸𝐴𝐵
𝐴𝐵 is the energy of the combined molecules and 𝐸𝐴𝐵

𝐴  and 𝐸𝐴𝐵
𝐵  are the energies of the 

isolated molecules. Hence, we can express the binding energy (BE) of this system as [50]: 
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𝐵𝐸 = 𝐸𝐴𝐵
𝐴𝐵 − (𝐸𝐴𝐵

𝐴 + 𝐸𝐴𝐵
𝐵 ) (2.26) 

 

 

Figure 2.3.  A schematic configuration of the counterpoise correction (CP) method to find the binding 

energy (BE), where (I) displays the basis function of the entire system. (II) and (III) represent the basis 

functions for the individual system. Meanwhile, parts (IV) and (V) illustrate the ghost states (blue 

atoms) by applying the counterpoise correction, where every single molecule is involved for the same 

basis functions of the total system in part (I) [48].    

Figure 2.3 shows the five parts of the interactions between basis sets of molecules by presenting 

the ghost atoms whose basis set functions do not include electrons or protons in the simulations. 

The counterpoise correction technique can improve the accuracy of the basis set functions by 

decreasing the basis set superposition error (BSSE) in the computational systems [46-49].  

 

 

 

 

 

 



44 
 

Bibliography 
 

1.  Argaman, N. & Makov, G. (1998) ‘Density functional theory: An introduction’, arXiv 

preprint, physics/9806013. 

2.  Dronskowski, R. (2005) Computational Chemistry of Solid State Materials: A Guide 

for Materials Scientists, Chemists, Physicists and Others. Wiley‐VCH.  

3.  Eschrig, H. (2003) The Fundamentals of Density Functional Theory (Revised and 

Extended Version). Edition am Gutenbergplatz, Leipzig, Germany. 

4.  Kohn, W., Becke, A. D., & Parr, R. G. (1996) ‘Density functional theory of electronic 

structure’, The Journal of Physical Chemistry, 100(31), pp. 12974–12980. 

5.   Martin, R.M. (2004). Electronic structure : basic theory and practical methods. 

Cambridge, Uk ; New York: Cambridge University Press. 

6.   Parr, R.G. and Yang, W. (1994). Density-functional theory of atoms and molecules. 

New York, Ny Oxford Univ. Press. 

7.   Kumar, A. (2012) ‘A brief introduction to Thomas-Fermi model in partial differential 

equations’, Department of Mathematics and Statistics, McGill University. 

8.   Lieb, E.H. (1981). Thomas-fermi and related theories of atoms and 

molecules. Reviews of Modern Physics, 53(4), pp.603–641. 

9.   Gross, E. K. & Dreizler, R. M. (1995) Density Functional Theory. Vol. 337. Springer. 

10.   Hohenberg, P. & Kohn, W. (1964) ‘Inhomogeneous electron gas’, Physical Review, 

136(3B), pp. B864–B871. 

11.   Kohn, W. & Sham, L. J. (1965) ‘Self-consistent equations including exchange and 

correlation effects’, Physical Review, 140(4A), pp. A1133–A1138. 



45 
 

12.   Pariser, R. and Parr, R.G. (1953). A Semi‐Empirical Theory of the Electronic Spectra 

and Electronic Structure of Complex Unsaturated Molecules. I. The Journal of 

Chemical Physics, 21(3), pp.466–471. 

13.   Bingham, R. C., Dewar, M. J. S., & Lo, D. H. (1975). Journal of the American 

Chemical Society, 97(6), pp. 1302–1307. 

14. Stewart, J. J. P. (1989) ‘Optimization of parameters for semi-empirical methods I. 

Method’, Journal of Computational Chemistry, 10(2), pp. 209–220. 

15.   Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P. (1985). Development 

and use of quantum mechanical molecular models. 76. AM1: a new general purpose 

quantum mechanical molecular model. Journal of the American Chemical Society, 

107(13), pp.3902–3909. 

16.  Jones, R. O. & Gunnarsson, O. (1989) ‘The density functional formalism, its 

applications and prospects’, Reviews of Modern Physics, 61(3), pp. 689–746. 

17.  Lake, R. & Datta, S. (1992) ‘Nonequilibrium Green’s-function method applied to 

double-barrier resonant-tunneling diodes’, Physical Review B, 45(12), pp. 6670–6685. 

18.  Hohenberg, P. & Kohn, W. (1964) ‘Inhomogeneous electron gas’, Physical Review, 

136(3B), pp. B864–B871. 

19.  Levy, M. (1979). Universal variational functionals of electron densities, first-order 

density matrices, and natural spin-orbitals and solution of the v-representability 

problem. Proceedings of the National Academy of Sciences, [online] 76(12), pp.6062–

6065. 

20.  Levy, M. (1982) ‘Electron densities in search of Hamiltonians’, Physical Review A, 

26(3), pp. 1200–1208. 

21.  Levy, M. & Perdew, J. P. (1985) ‘Density functional methods in physics’, Plenum, 

New York, pp. 11–80. 



46 
 

22.  Lieb, E. H. (1982) ‘Density functionals for Coulomb systems’, MIT Press, Cambridge, 

pp. 111–149. 

23.  Lieb, E.H. (1983). Density functionals for coulomb systems. International Journal of 

Quantum Chemistry, 24(3), pp.243–277. 

24. Martin, R. (2005) Electronic Structure: Basic Theory and Practical Methods. 

Cambridge University Press, pp. 124. 

25.  Lieb, E. (1985) Density Functional Methods in Physics, Plenum, New York, pp. 11. 

26.  Trott, M. "Functional Derivative." MathWorld—A Wolfram Web Resource, created 

by Eric W. Weisstein.  

27.  Becke, A. D. (1988) ‘Density-functional exchange-energy approximation with correct 

asymptotic behavior’, Physical Review A, 38(6), pp. 3098–3100. 

28.  Perdew, J. P. & Wang, Y. (1992) ‘Accurate and simple analytic representation of the 

electron-gas correlation energy’, Physical Review B, 45(23), pp. 13244–13249. 

29.  Perdew, J. P., Burke, K. & Ernzerhof, M. (1996) ‘Generalized gradient approximation 

made simple’, Physical Review Letters, 77(18), pp. 3865–3868. 

30.  Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999) ‘Improved adsorption energetics 

within density-functional theory using revised Perdew-Burke-Ernzerhof functionals’, 

Physical Review B, 59(11), pp. 7413–7421. 

31.  Kohn, W. & Sham, L. J. (1965) ‘Self-consistent equations including exchange and 

correlation effects’, Physical Review, 140(4A), pp. A1133–A1138. 

32.  Thijssen, J. M. (2003) Computational Physics. Cambridge University Press, pp. 101. 

33.  Ceperley, D. M. & Alder, B. J. (1980) ‘Ground state of the electron gas by a stochastic 

method’, Physical Review Letters, 45(7), pp. 566–569. 



47 
 

34.  Perdew, J. P. & Zunger, A. (1981) ‘Self-interaction correction to density-functional 

approximations for many-electron systems’, Physical Review B, 23(10), pp. 5048–

5079. 

35.  Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-

Portal, D. (2002) ‘The SIESTA method for ab initio order-N materials simulation’, 

Journal of Physics: Condensed Matter, 14(11), pp. 2745–2779. 

36.  E. Fermi (1934). Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie 

Spettrali. Il Nuovo Cimento, 11(3), pp.157–166. 

37.  Abarenkov, I. V. & Heine, V. (1965) ‘The model potential for positive ions’, 

Philosophical Magazine, 12(117), pp. 529–537. 

38.  Ashcroft, N. W. (1966) ‘Electron-ion pseudopotentials in metals’, Physics Letters, 

23(1), pp. 48–50. 

39.  Zunger, A. & Cohen, M. L. (1978) ‘First-principles nonlocal-pseudopotential approach 

in the density-functional formalism: Development and application to atoms’, Physical 

Review B, 18(10), p. 5449. 

40.  Hamann, D. R., Schlüter, M., & Chiang, C. (1979) ‘Norm-conserving 

pseudopotentials’, Physical Review Letters, 43(20), pp. 1494–1497. 

41.  N. Troullier and José Luı́s Martins (1990). A straightforward method for generating 

soft transferable pseudopotentials. Solid State Communications, 74(7), pp.613–616. 

42.  Troullier, N. & Martins, J. L. (1991) ‘Efficient pseudopotentials for plane-wave 

calculations’, Physical Review B, 43(3), pp. 1993–2006. 

43. Sankey, O. F. & Niklewski, D. J. (1989) ‘Ab initio multicenter tight-binding model for 

molecular-dynamics simulations and other applications in covalent systems’, Physical 

Review B, 40(7), pp. 3979–3995. 

44.  Pulay, P. (1977) Modern Theoretical Chemistry, Plenum, New York. 



48 
 

45.  Perdew, J. P. & Wang, Y. (1986) ‘Accurate and simple density functional for the 

electronic exchange energy: Generalized gradient approximation’, Physical Review B, 

33(13), pp. 8800–8802. 

46.  Perdew, J. P. (1986) ‘Density-functional approximation for the correlation energy of 

the inhomogeneous electron gas’, Physical Review B, 33(13), pp. 8822–8824. 

47.  Wang, Y. & Perdew, J. P. (1991) ‘Correlation hole of the spin-polarized electron gas, 

with exact small-wave-vector and high-density scaling’, Physical Review B, 44(24), pp. 

13298–13307. 

48.  Boese, A. D., Jansen, G., Torheyden, M., Höfener, S., & Klopper, W. (2011) ‘Effects 

of counterpoise correction and basis set extrapolation on the MP2 geometries of 

hydrogen-bonded dimers of ammonia, water, and hydrogen fluoride’, Physical 

Chemistry Chemical Physics, 13(3), pp. 1230–1238. 

49.  Becke, A. D. (1988) ‘Density-functional exchange-energy approximation with correct 

asymptotic behavior’, Physical Review A, 38(6), p. 3098. 

50.  Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999) ‘Improved adsorption energetics 

within density-functional theory using revised Perdew-Burke-Ernzerhof functionals’, 

Physical Review B, 59(11), p. 7413. 

51.  Perdew, J. P., Burke, K., & Ernzerhof, M. (1996) ‘Generalized gradient approximation 

made simple’, Physical Review Letters, 77(18), p. 3865. 

52. Mierzwicki, K. & Latajka, Z. (2003) ‘Basis set superposition error in N-body clusters’, 

Chemical Physics Letters, 380(5), pp. 654–664. 

53. Boys, S. & Bernardi, F. d. (1970) ‘The calculation of small molecular interactions by 

the differences of separate total energies. Some procedures with reduced errors’, 

Molecular Physics, 19(4), pp. 553–566. 



49 
 

54. Haynes, P.D., C.-K. Skylaris, Mostofi, A.A. and Payne, M.C. (2006). Elimination of 

basis set superposition error in linear-scaling density-functional calculations with local 

orbitals optimised in situ. Chemical Physics Letters, 422(4-6), pp.345–349. 

55. Daza, M.C., Dobado, J.A., Molina, J.M., Salvador, P., Duran, M. and Villaveces, J.L. 

(1999). Basis set superposition error-counterpoise corrected potential energy surfaces. 

Application to hydrogen peroxide⋯X (X=F−, Cl−, Br−, Li+, Na+) complexes. The 

Journal of Chemical Physics, 110(24), pp.11806–11813. 

56. Boese, A.D., Jansen, G., Torheyden, M., Höfener, S. and Klopper, W. (2010). Effects 

of counterpoise correction and basis set extrapolation on the MP2 geometries of 

hydrogen bonded dimers of ammonia, water, and hydrogen fluoride. Physical 

Chemistry Chemical Physics, 13(3), pp.1230–1238.  

57. Senent, M. & Wilson, S. (2001) ‘Intramolecular basis set superposition errors’, 

International Journal of Quantum Chemistry, 82(6), pp. 282–292. 

 

 

 

 

 

 

 

 

 



50 
 

Chapter 3 

Quantum Theory of a Single-Particle 

Transport 
 

3.1 Introduction 
 

In the previous chapter, I introduced the density functional theory (DFT) and the SIESTA code 

as the first step to calculating the electronic properties of an isolated molecular system. To solve 

the Schrödinger equation for an open system connected to semi-infinite electrodes, I shall now 

discuss Green’s function scattering formalism, which is utilised in later calculations. To 

illustrate the formalism of the fundamental concepts, I shall illustrate Green’s function of a 

one-dimensional tight-binding (TB) chain and show how scattering arises in a one-dimensional 

chain whose periodicity is broken by a single defect. Then, I shall show the surface Green’s 

function for infinite and finite periodic systems and introduce the idea of the transmission 

coefficient associated with a scattering region. Lastly, the Landauer Formula for electrical 

conductance and thermoelectric coefficients will be addressed. 

 

3.2 Green’s Function Method 
 

To illustrate the Green’s function formalism, first of all, I shall provide a simple example of a 

doubly infinite one-dimensional chain, with identical on-site energies 𝜀0 and coupling 

parameters −𝛾 between them as shown in Figure 3.1. 
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Figure 3.1.  A doubly infinite one-dimensional (1D) chain of identical sites 𝜀0 linked with identical 

couplings −𝛾. 

The Schrödinger equation is: 

𝐻|Φ⟩ = 𝐸|Φ⟩            

(𝐸 − 𝐻)|Φ⟩ = 0                                                        (3.1)  

where the tight-binding (TB) Hamiltonian 𝐻 of the system can be expressed as: 

𝐻 = (

⋱ −𝛾 0 0
−𝛾 𝜀0 −𝛾 0
0 −𝛾 𝜀0 −𝛾
0 0 −𝛾 ⋱

)                                          (3.2) 

Thus, the Schrödinger equation (3.1) can be expanded for the site 𝑧 in terms of the energy 𝐸 

and wavefunction |Φ𝑧⟩ as: 

                    𝜀0|Φ𝑧⟩ − 𝛾|Φ𝑧−1⟩ − 𝛾|Φ𝑧+1⟩ = 𝐸|Φ𝑧⟩                                 (3.3) 

Therefore, the wavefunction can be written in the Bloch state for a perfect system as: 

|Φ𝑧⟩ =
1

√𝑣
𝑒𝑖𝑘𝑧|𝑧⟩ 

(3.4) 

where 𝑣 is the group velocity, and k is a wavenumber. If we insert (3.4) into the equation (3.3), 

we obtain the following ‘dispersion relation’. 

𝐸 = 𝜀0 − 2𝛾cos (𝑘)                                                 (3.5) 

 In contrast with (3.1), the retarded Green’s function 𝑔(𝑧, 𝑧′) is defined to satisfy: 
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(𝐸 − 𝐻)𝑔(𝑧, 𝑧′) = 𝛿𝑧,𝑧′       ,         𝛿𝑧,𝑧′ = {
1  𝑖𝑓  𝑧 = 𝑧′

0  𝑖𝑓  𝑧 ≠ 𝑧′
                        (3.6) 

where 𝛿𝑧,𝑧′ is the Kronecker delta.  

The retarded Green’s function 𝑔(𝑧, 𝑧′) provides a wave function at 𝑧 direction and caused by 

an excitation state at a point 𝑧′. One finds that the retarded Green’s function for the infinite 

one-dimensional chain can be written as [1]: 

𝑔(𝑧, 𝑧′) =
1

𝑖ℏ𝑣
𝑒𝑖𝑘|𝑧−𝑧

′| 
(3.7) 

where the group velocity 𝑣 can be obtained from the dispersion equation (3.3) as: 

𝑣 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
= 2𝛾 sin (𝑘) 

(3.8) 

 

 

From (3.5), we also note that the energies of electrons in the one-dimensional chain are 

restricted to the energy bands 𝜀0 − 2𝛾 and 𝜀0 + 2𝛾.  

3.3 A One-Dimensional Scattering System 
 

In this section, to find the entire Green’s function for a system that consists of a double-infinite 

one-dimensional chain, with an impurity coupling energy (−Γ) and identical on-site energies 

(𝜀0), and hopping elements (−𝛾)  that appear in Figure 3.2 below.  

 

Figure 3.2.  A double-infinite one-dimensional (1D) chain with identical on-site energies 𝜀0 and 

couplings −𝛾 , and an impurity coupling energy −Γ. 
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The Hamiltonian of this infinite system can be written as: 

𝐻 =

(

 
 
 
 

⋱ ⋱ 0 0 0 0
⋱ 𝜀0 −𝛾 0 0 0
0 −𝛾 𝜀0 −𝛤 0 0
0 0 −𝛤 𝜀0 −𝛾 0
0 0 0 −𝛾 𝜀0 ⋱
0 0 0 0 ⋱ ⋱)

 
 
 
= (

𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)                                    (3.9)   

Where 𝐻𝐿 and 𝐻𝑅 are the Hamiltonians of the left and right electrodes, and the coupling is 𝑉𝑐. 

Therefore, to obtain the Green’s function of this system: 

𝐺 = (𝐸 − 𝐻)−1                                                           (3.10) 

Now, for the case of decoupled electrodes (−Γ = 0), the new Green’s function of both sides of 

semi-infinite electrodes is found by the decoupled Green’s function 𝑔 of the infinite 1-D chain 

in a matrix as:  

𝑔 = (
𝑔𝐿 0
0 𝑔𝑅

) =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 

 

 

(3.11) 

By turning on the interaction, the Green’s function for the coupled electrodes with the utility 

of Dyson’s equation as: 

                         𝐺 = (𝑔−1 − 𝑉)−1 

 

(3.12) 

The perturbation operator V is expressed as: 

𝑉 = (
0 −Γ
−Γ 0

)                                                    (3.13) 

By the utility of Dyson’s equation, we can find the Green’s function of this system:  

                                               𝐺 =
1

𝛾2𝑒−2𝑖𝑘−Γ2
(
𝛾𝑒−𝑖𝑘 Γ

Γ 𝛾𝑒−𝑖𝑘
)    

(3.14) 
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The next step is to calculate the transmission (𝑡′)and the reflection (𝑟′) coefficients of a 

scattering region, the Fisher-Lee relations are employed. Hence, we can yield the reflection (𝑟) 

the transmission (𝑡) amplitudes respectively as: 

     𝑟 = 𝑖ℏ𝑣𝐺(0,0) − 1                                                         (3.15) 

   𝑡 = 𝑖ℏ𝑣𝐺(0, 𝑁 + 1)𝑒𝑖𝑘                                                  (3.16) 

However, the quantities 𝑟 and 𝑡 are not considered observable due to the complex values. 

Therefore, by taking the modulus squared of both 𝑟 and 𝑡, we can find the observable 

coefficients 𝑅 = |𝑟|2 and 𝑇 = |𝑡|2. For instance, in a system consisting of a single channel, 

there are probabilities 𝑇 ≤ 1 and 𝑅 ≥ 0 that are defined in the unitary 𝑆-matrix condition as 

[2]: 

𝑇 + 𝑅 = 1                                                    (3.17) 

3.4 An Infinite Periodic System 
 

In this section, I shall describe a general infinite periodic electrode by modelling a tight-binding 

(TB) method, which can be extended periodically along the 𝑧 direction containing two parts of 

the intra-Hamiltonian 𝐻0 and inter-Hamiltonian  𝐻1 elements as shown in Figure 3.3. 

 

Figure 3.3.  A schematic configuration of an infinite periodic electrode consists of intra-Hamiltonian 

𝐻0 and inter-Hamiltonian  𝐻1 elements. 
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In this case, the total Hamiltonian of the infinite periodic system can be illustrated as a block-

tridiagonal matrix 𝐻 by considering only the neighbour interactions between cells. 

𝐻 =

(

 
 
 
 

 

⋱ ⋱ 0 0 0 0
⋱ 𝐻0 𝐻1 0 0 0

0 𝐻1
† 𝐻0 𝐻1 0 0

0 0 𝐻1
† 𝐻0 𝐻1 0

0 0 0 𝐻1
† 𝐻0 ⋱

0 0 0 0 ⋱ ⋱)

 
 
 
 

                                    (3.19)   

Then we can write the Schrödinger equation in terms of the energy and the wavefunction of 

the system: 

𝐻0|Φ𝑧⟩ + 𝐻1|Φ𝑧+1⟩ + 𝐻1
†|Φ𝑧−1⟩ = 𝐸|Φ𝑧⟩                            (3.20) 

The considered system is finite in both 𝑥 and 𝑦 directions except the 𝑧 direction, which is the 

only infinitely periodic. Thus, the on-site wavefunction |Φ𝑧⟩ can be written in Bloch’s state, 

which is the product of a propagating plane wave and a wavefunction |φ𝑘⟩ in the perpendicular 

movement to pass. The wavefunction |φ𝑘⟩ is a normalised m-component column vector 

consisting of  𝑚 degree of freedom and corresponding to a 1 × 𝐽 dimensional vector. 

|Φ𝑧⟩ =
1

√𝑣𝑘
𝑒𝑖𝑘𝑧|φ𝑘⟩ 

(3.21) 

By substituting equation (3.20) into (3.21), the Schrödinger equation can be modified and left 

with 𝜉 = 𝑒𝑖𝑘 since the dependence on  𝑧 position vanishes.  

(𝐻0 + 𝐻1𝜉 + 𝐻1
†𝜉−1)|φ𝑘⟩ = 𝐸|φ𝑘⟩                                       (3.22) 

For the band-theory structure, the Hamiltonian on the left-hand side of (3.22) is diagonalised 

for provided values of 𝑘 to obtain 𝑚 number of energy eigenvalues 𝐸(𝑘) and the corresponding 

set of eigenvectors {|φ𝑘⟩}. We can rewrite the equation (3.22) in a new form by applying an 
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opposite method for a given value of 𝐸(𝑘) and all the complex values of 𝑘 will be determined 

and the values of 𝜉 will be found. 

[−𝐻1
−1(𝐻0 − 𝐸) − 𝜉 − 𝐻1

−1𝐻1
†𝜉−1]|φ𝑘⟩ = 𝜉|φ𝑘⟩                          (3.23) 

We can assume that |Ω𝑘⟩ = 𝜉
−1|φ𝑘⟩ and substitute it into equation (3.23) to be an equivalent 

eigenvalue as:  

   (−𝐻1
−1(𝐻0 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
|φ𝑘⟩

|Ω𝑘⟩
) = 𝜉 (

|φ𝑘⟩

|Ω𝑘⟩
)                           (3.24) 

The solution of equation (3.24) provides a set of 2𝐽 eigenvalues and the identified 

wavefunctions |φ𝑘⟩ which are considered as the top 𝐽 components of eigenvectors.  

For the Hermitian matrix 𝐻0, we can describe the eigenvalues for four cases of two sets: the 

first set is right-moving and decaying plane waves as 𝑧 → ∞ and the second set is left-moving 

and decaying plane waves as 𝑧 → −∞. Consequently, the left and right-moving states depend 

on the real values of 𝑘, whereas the decaying states relate to the complex values of 𝑘 for 𝑧 →

±∞. For the real values of 𝑘, two solutions correspond to the right 𝑘 and left �̃� propagating 

states which either take a positive 𝑣+ or negative 𝑣− group velocities respectively. The real 𝑘-

vectors describe open scattering channels, as in the case when 𝑘 = −�̃�. Hence, the channel 

velocities can be written as: 

𝑣+ =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
> 0   

(3.25) 

𝑣− =
1

ℏ

𝜕𝐸(�̃�)

𝜕�̃�
< 0 

(3.26) 
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For the complex solutions of 𝑘, we can consider two pairs of solutions  𝑘 and also 𝑘∗, whereas 

there are two possible sets of {𝑘𝑅}, and {�̃�𝐿} representing the right or left moving/decaying 

states respectively. 

Now, we can define a general Green’s function for the infinitely periodic system as: 

𝑔(𝑧, 𝑧′) =

{
 

 ∑ |𝜑𝑘𝑙⟩𝑒
𝑖𝑘𝑙(𝑧−𝑧

′)⟨Μ𝑘𝑙|                         𝑧 ≥ 𝑧
′

𝐽

𝑙=1

∑ |𝜑�̃�𝑙⟩𝑒
𝑖�̃�𝑙(𝑧−𝑧

′)⟨Μ�̃�𝑙|                        
𝐽

𝑙=1
𝑧 ≤ 𝑧′

 

 

(3.27) 

The equation (3.36) represents Green’s function, which corresponds to the wavefunction of the 

system, where its vectors are ⟨Μ𝑘𝑙|, and ⟨Μ�̃�𝑙| which must be determined. At the point 𝑧 = 𝑧′ 

the Green’s function is continuous, which leads us to the continuity condition as: 

∑ |𝜑𝑘𝑙⟩⟨Μ𝑘𝑙|
𝐽

𝑙=1
=∑ |𝜑�̃�𝑙⟩⟨𝛭�̃�𝑙

|
𝐽

𝑙=1
 

(3.28) 

 

We can introduce the defined equation of Green’s function for the closest cell where 

interactions take place at a point 𝑧 to be written as:                         

(𝐸 − 𝐻0)𝑔(𝑧, 𝑧
′)+𝐻1𝑔(𝑧, 𝑧 + 1) + 𝐻1

†𝑔(𝑧, 𝑧 − 1) = 𝐼      (3.29) 

∑[(𝐸 − 𝐻0)|𝜑𝑘𝑙⟩⟨Μ𝑘𝑙| + 𝐻1|𝜑𝑘𝑙⟩𝑒
𝑖𝑘𝑙⟨Μ𝑘𝑙| + 𝐻1

†|𝜑�̃�𝑙⟩𝑒
−𝑖�̃�𝑙⟨𝛭�̃�𝑙

|]

𝐽

𝑙=1

= 𝐼 

 

(3.30)                         
 

 

In the normal band structure calculations, the wavefunctions are chosen to be functions of 𝑘 and 

are orthogonal to each other. Nevertheless, the wavefunctions linked to different selections of 

wavevectors k cannot always be orthogonal because the operator on the left side of equation 

(3.22) does not interact with itself for different values of 𝜉. Subsequently, to find the solutions 

of (3.24) for a fixed energy, we need to choose various nonorthogonal wavevectors 𝑘. Thus, a 



58 
 

dual basis set can be applied {|�̃�𝑘𝑙⟩} which is orthogonal to the basis {|𝜑𝑘𝑙⟩} and they both 

form a complete basis in the Hilbert space. 

⟨𝜑�̃�𝑙|�̃��̃�𝑗⟩ = 𝛿�̃�𝑙�̃�𝑗 ,     ∑|𝜑�̃�𝑙⟩

𝐽

𝑙=1

⟨�̃��̃�𝑙| = 𝐼 

(3.31) 

⟨𝜑𝑘𝑙|�̃�𝑘𝑗⟩ = 𝛿𝑘𝑙𝑘𝑗 ,    ∑|𝜑𝑘𝑙⟩

𝐽

𝑙=1

⟨�̃�𝑘𝑙| = 𝐼 

 

(3.32) 

 We can define the dual basis and then express the vectors ⟨Μ𝑘𝑙|, and ⟨Μ�̃�𝑙| as a superposition 

of each other as:     

⟨𝑀𝑘𝑙| = ∑⟨�̃�𝑘𝑙|𝜑�̃�𝑗⟩

𝐽

𝑗=1

⟨𝑀�̃�𝑗
| 

(3.33) 

⟨𝑀�̃�𝑙
| = ∑⟨�̃��̃�𝑙|𝜑𝑘𝑗⟩

𝐽

𝑗=1

⟨𝑀𝑘𝑗| 

(3.34) 

We then substitute the previous equations into (3.30), and then simplify it to be able to represent 

both vectors ⟨Μ𝑘𝑙|, and ⟨Μ�̃�𝑙| in terms of the basis set and the dual basis functions. 

⟨𝑀𝑘𝑙| =∑⟨�̃�𝑘𝑗|

𝐽

𝑗=1

Λ−1 

(3.35) 

⟨𝑀�̃�𝑙
| =∑⟨�̃��̃�𝑗|

𝐽

𝑗=1

Λ−1 

(3.36) 

Where Λ−1 is expressed as: 

Λ−1 =∑𝐻1
−1

𝐽

𝑙=1

(|𝜑𝑘𝑙⟩𝑒
−𝑖𝑘𝑙⟨�̃�𝑘𝑙| − |𝜑�̃�𝑙⟩𝑒

−𝑖�̃�𝑙⟨�̃��̃�𝑙|) 

(3.37) 
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By substituting the vectors |𝑀⟩ back into the equation (3.27), then we can rewrite the Green’s 

function of the infinite periodic system as:  

𝑔(𝑧, 𝑧′) =

{
 

 ∑ |𝜑𝑘𝑙⟩𝑒
𝑖𝑘𝑙(𝑧−𝑧

′)⟨�̃�𝑘𝑙|Λ
−1                         𝑧 ≥ 𝑧′

𝐽

𝑙=1

∑ |𝜑�̃�𝑙⟩𝑒
𝑖�̃�𝑙(𝑧−𝑧

′)⟨�̃��̃�𝑙|Λ
−1                        

𝐽

𝑙=1
𝑧 ≤ 𝑧′

 

 

(3.38) 

 

3.5 A Semi-Infinite Periodic System 
 

In this section, the construction of Green’s function of the left and right semi-infinite periodic 

systems will be presented. We can derive the one-dimensional semi-infinite Green’s function 

from the infinite Green’s function system. First, the left electrode is defined to be a periodic 

system from the extended value 𝑧 = −∞ to the last Hamiltonian cell at 𝑧 = 𝑧0 − 1 whereas 

the right electrode is defined as the extending periodic system from  𝑧 = +∞ to the last 

Hamiltonian cell at 𝑧 = 𝑧0 + 1 as shown in Figure 3.4 below. Therefore, these boundary 

conditions constrain the left and right electrodes Green’s function to be zero at the point 𝑧 = 𝑧0 

as: 

𝑔𝐿(𝑧0, 𝑧0) = 𝑔𝑅(𝑧0, 𝑧0) = 0                                             (3.39) 

For the previous constraints to be obeyed, a wavefunction is added to the Green’s function 𝑔 

(3.38).  
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Figure 3.4.  A schematic configuration of a periodic system consists of intra-Hamiltonian 𝐻0 and inter-

Hamiltonian  𝐻1 elements. 

 

To start with the left electrode, we assume adding a left-moving wavefunction of the amplitude 

Υ𝐿(𝑧
′, 𝑧0). 

𝑔𝐿(𝑧, 𝑧
′) = 𝑔(𝑧, 𝑧′) +∑ |𝜑�̃�𝑙⟩𝑒

𝑖�̃�𝑙𝑧Υ𝐿(𝑧
′, 𝑧0)

𝐽

𝑙=1
 

(3.40) 

Then we can find the amplitude when the constraint (3.39) is applied at the point 𝑧 = 𝑧0. 

∑ |𝜑𝑘𝑙⟩𝑒
𝑖�̃�𝑙(𝑧0−𝑧

′)⟨�̃�𝑘𝑙|Λ
−1

𝐽

𝑙=1
+∑ |𝜑�̃�𝑙⟩𝑒

𝑖�̃�𝑙𝑧Υ𝐿 = 0
𝐽

𝑙=1
 

(3.41) 

Hence, 

Υ𝐿 = −∑ 𝑒−𝑖�̃�𝑙𝑧0 ⟨�̃��̃�𝑗|𝜑𝑘𝑙⟩ 𝑒
𝑖𝑘𝑙(𝑧0−𝑧

′)⟨�̃�𝑘𝑙|Λ
−1

𝐽

𝑗=1
 

 

(3.42) 

Therefore, we can substitute (3.42) into equation (3.40) to obtain the Green’s function of the 

left semi-infinite electrode as: 

𝑔𝐿(𝑧, 𝑧
′) = [∑ |𝜑𝑘𝑙⟩𝑒

𝑖𝑘𝑙(𝑧−𝑧
′)⟨�̃�𝑘𝑙|

𝐽

𝑙=1

−∑ |𝜑�̃�𝑙⟩𝑒
𝑖�̃�𝑙(𝑧−𝑧0) ⟨�̃��̃�𝑗|𝜑𝑘𝑙⟩ 𝑒

𝑖𝑘𝑙(𝑧0−𝑧
′)⟨�̃�𝑘𝑙|

𝐽

𝑙,𝑗
] Λ−1 

 

 

(3.43) 
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Now, we can do the same process for the right electrode by applying the right-moving 

wavefunction to get the Green’s function as: 

𝑔𝑅(𝑧, 𝑧
′) = [∑ |𝜑�̃�𝑙⟩𝑒

𝑖�̃�𝑙(𝑧−𝑧
′)⟨�̃��̃�𝑙|

𝐽

𝑙=1

−∑ |𝜑𝑘𝑙⟩𝑒
𝑖𝑘𝑙(𝑧−𝑧0) ⟨�̃�𝑘𝑗|𝜑�̃�𝑙⟩ 𝑒

𝑖�̃�𝑙(𝑧0−𝑧
′)⟨�̃��̃�𝑙|

𝐽

𝑙,𝑗
] Λ−1 

 

 

(3.44) 

To introduce the evaluated surface Green’s function for every endpoint (𝑧0 = 𝑧 = 𝑧
′) of both 

side electrodes, the completeness relations (3.31) and (3.32) are applied. 

𝑔𝐿
𝑆 = (𝐼 −∑ |𝜑�̃�𝑗⟩ 𝑒

−𝑖�̃�𝑗 〈�̃��̃�𝑗||𝜑𝑘𝑙〉 𝑒
𝑖𝑘𝑙⟨�̃�𝑘𝑙|

𝐽

𝑙,𝑗
)Λ−1 

(3.45) 

 

𝑔𝑅
𝑆 = (𝐼 −∑ |𝜑𝑘𝑗⟩ 𝑒

𝑖𝑘𝑗 〈�̃�𝑘𝑗||𝜑�̃�𝑙〉 𝑒
−𝑖�̃�𝑙⟨�̃��̃�𝑙|

𝐽

𝑙,𝑗
)Λ−1 

(3.46)                                                                       

Finally, we have a convenient way of applying the numerical method in equation (3.33) in order 

to calculate the surface Green’s functions in equations (3.43) and (3.44) for a semi-infinite 

system. In the next section, we will apply the same technique for treating a scattering problem 

to calculate the transmission coefficient 𝑇(𝐸).  

         

3.6 Transmission Coefficient of a Scattering Region 
 

Now we can define a structure of the scattering region, as we have already illustrated the semi-

infinite Green’s functions. Let us consider a scattering region which is defined by the 

Hamiltonian 𝐻𝑆𝑐, and also linked to a left electrode by a coupling energy Γ𝐿, and connected at 

the right electrode by a coupling energy Γ𝑅, as shown in Figure 3.5. 
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Figure 3.5.  A sketch of two semi-infinite periodic electrodes which consist of intra-Hamiltonian 𝐻0 

and inter-Hamiltonian  𝐻1 elements and coupled to a scattering region with a scattering Hamiltonian 

𝐻𝑆𝑐 which coupled with coupling energies Γ𝐿, Γ𝑅. 

 

By assuming zero values of the couplings Γ𝐿 and Γ𝑅, the surface Green’s function can be written 

as: 

    𝑔 = (

𝑔𝐿
𝑆 0 0

0 (𝐸𝐼 − 𝐻𝑆𝑐)
−1 0

0 0 𝑔𝑅
𝑆

)                                                (3.47)   

The Green’s function of the isolated scatterer can be calculated by solving the Green’s equation 

(𝐸𝐼 − 𝐻𝑆𝑐)𝑔𝑆𝑐 = 𝐼 and also, we can introduce the perturbation Γ which is related to the 

couplings to the scattering region: 

Γ = (

0 Γ𝐿 0

Γ𝐿
† 0 Γ𝑅

0 Γ𝑅
† 0

)                                                        (3.48)   

Hence, we can include both equations (3.47) and (3.48) in Dyson’s equation to computationally 

calculate the new Green’s function 𝐺 as [3]: 

𝐺 = (𝑔−1 − Γ−1)−1                                                      (3.49) 
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G = (

𝐺00 𝐺0𝑆 𝐺0𝑁
𝐺𝑆0 𝐺𝑆𝑆 𝐺𝑆𝑁
𝐺𝑁0 𝐺𝑁𝑆 𝐺𝑁𝑁

)                                                    (3.50)   

The next process is to calculate the transmission t and reflection r coefficients by employing a 

projector operator Ρ𝑙(𝑧
′) which projects the Green’s function of the infinite periodic electrode 

(3.39) onto a normalised plane-wave moving along a channel 𝑙 with k-value 𝑘𝑙. 

[∑|𝜑𝑘𝑗⟩ 𝑒
𝑖𝑘𝑗(𝑧−𝑧

′) ⟨�̃�𝑘𝑗 |Λ
−1

𝐽

𝑗=1

] Ρ𝑙(𝑧
′) =

1

√𝑣𝑘𝑙
|𝜑𝑘𝑙⟩𝑒

𝑖𝑘𝑧         𝑧 > 𝑧′ 

 

(3.51)                                         

By employing the orthogonality of the dual basis from (3.31) and (3.32), the projector  Ρ𝑙(𝑧
′) 

can be written as: 

Ρ𝑙(𝑧
′) =

{
 
 

 
 
1

√𝑣𝑙
Λ|𝜑𝑘𝑙⟩𝑒

𝑖𝑘𝑙𝑧
′
            𝑧 > 𝑧′

1

√𝑣𝑙
Λ|𝜑�̃�𝑙⟩𝑒

𝑖�̃�𝑙𝑧
′
            𝑧 < 𝑧′

 

 

(3.52) 

The projector can produce a wavefunction from the Green’s function 𝐺 of the general scatterer 

in (3.50). The wavefunction on either side of the scattering region is complicated because the 

incident wave in the channel 𝑘𝑙 can be transmitted or reflected in various channels {𝑘𝑗} and 

{�̃�𝑗} respectively. Thus, the wavefunction of the system can be obtained as: 

|Φ(𝑧)⟩ =

{
 
 

 
 
1

√𝑣𝑙
|𝜑𝑘𝑙⟩𝑒

𝑖𝑘𝑙𝑧 +∑
𝑟𝑙𝑗

√𝑣
𝑒𝑖�̃�𝑗𝑧 |𝜑�̃�𝑗⟩

𝑗

            𝑧 ≤ 0

∑
𝑡𝑙𝑗

√𝑣𝑗
𝑒𝑖𝑘𝑗𝑧|𝜑𝑘𝑗⟩

𝑗

                                          𝑧 ≥ 𝑁

 

 

 

(3.53) 

Now, from the equations (3.52) and (3.53), we can express the transmission and reflection 

coefficients in terms of the surface Green’s function components (3.50). 
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𝑡𝑙𝑗 = √
𝑣𝑗

𝑣𝑙
⟨�̃�𝑘𝑗 |𝐺0𝑁Λ|𝜑𝑘𝑙⟩ 𝑒

−𝑖𝑘𝑗𝑁 

(3.54) 

𝑟𝑙𝑗 = √
𝑣𝑗

𝑣𝑙
⟨�̃��̃�𝑗 |𝐺00Λ − I|�̃�𝑘𝑙⟩ 

(3.55) 

 Where the transmission coefficient 𝑡𝑙𝑗 describes a wave which scatters from a channel 𝑙 with 

k-vector 𝑘𝑙 to a right-moving channel 𝑗 with k-vector 𝑘𝑗, and the reflection coefficient 𝑟𝑙𝑗 

represents a wave which scatters from a channel 𝑙 with k-vector 𝑘𝑙 to a left-moving channel 𝑗 

with k-vector �̃�𝑗. Thus, to calculate the transmission coefficient is to apply the appropriate 

projector to the total surface Green’s function. Eventually, the crucial portion of our interest is 

the total observable transmission coefficient, which is the sum over all channels, as it can be 

written in terms of the trace of the transmission 𝑡 [4]. Thus, we can write the transmission 

coefficient 𝑇(E). 

𝑇 =∑|𝑡𝑙𝑗|
2

𝐽

𝑙𝑗

 

 

=∑𝑡𝑙𝑗𝑡𝑗𝑙
∗

𝑙𝑗

 
 

= 𝑇𝑟(𝑡𝑡†) (3.56) 

Finally, we can sum up the key steps to calculate the transmission coefficient T(E): 

1. Using the SIESTA code to relax and optimise the geometry and energy of the isolated 

molecule. 

2. Construct an extended molecule system and apply the SIESTA code to run DFT 

calculations to solve the Hamiltonian of the system. 

3. Define the boundary layers of the scarring region and then extract the 𝐻0 and 𝐻1 of the 

electrodes to solve the left and right surface Green’s function of the electrodes. 
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4. Connect the reduced extended molecule system to the surface Green’s function by using 

Dyson’s equation, then compute the transmission coefficients via the GOLLUM code. 

In conclusion, this is the explanation of Green’s function method, which is applied to calculate 

the transmission coefficients of a single-molecule junction in this thesis. Computationally, 

applying Green’s function scattering approach with the potentially infinitely sized system can 

assist in reducing the complexity of the problem to a finite-sized system which can be 

calculated [5]. 

3.7 Landauer Formula  
 

The Landauer formula provides an important relation between the transmission coefficient T(E) 

and the electrical current passing in a single-molecule system through the scattering region, as 

shown in Figure 3.6 [6]. The moving wavefunction is defined by a state of energy 

corresponding to the Fermi energy 𝐸𝐹
𝐿 of the left electrode at zero temperature. Furthermore, 

the right-moving current is described by many states with different energies defined by the 

Fermi distribution function 𝑓𝐿(𝐸 − 𝐸𝐹
𝐿), and also the same case with the right-moving current 

defined by the Fermi distribution function 𝑓𝑅(𝐸 − 𝐸𝐹
𝑅) at a finite temperature. According to 

Landauer, the electrical conductance G can be described in terms of a Fermi distribution 

function, which is defined by a common Fermi energy 𝐸𝐹, and the transmission coefficient 

𝑇(𝐸) in a low-bias regime [7-9]. 
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Figure 3.6.  An electron passing through an electrode-molecule-electrode junction at the Fermi 

energy 𝐸𝐹. 

Thus, the current flowing from the left electrode to the right one is written as: 

𝐼 =
2𝑒

ℎ
∫ 𝑇(𝐸)

∞

−∞

[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]𝑑𝐸 

(3.57) 

where 𝑒 is electron charge, ℎ is Planck’s constant. The Fermi distribution 𝑓(𝐸)  is defined as: 

𝑓𝐿,𝑅(𝐸) =
1

[𝑒(𝐸−𝜇𝐿,𝑅)/𝑘𝐵𝑇 + 1]
 

(3.58) 

where 𝜇𝐿,𝑅 are the chemical potentials of the left and right reservoirs and the Boltzmann 

constant is 𝑘𝐵 = 8.62 × 10
−5 𝑒𝑉/𝐾, and 𝑇 is the temperature. Hence, when the voltage is 

symmetrically employed, the chemical potentials are 𝜇𝐿 = 𝐸𝐹 +
𝑒𝑉

2
  and 𝜇𝑅 = 𝐸𝐹 −

𝑒𝑉

2
 

respectively and then 𝐼 = 0 as 𝑓𝐿(𝐸) = 𝑓𝑅(𝐸). Thus, at finite voltage and absolute zero 

temperature, the current can be expressed as: 

𝐼 =
2𝑒

ℎ
∫ 𝑇(𝐸)

𝐸𝐹+
𝑒𝑉
2

𝐸𝐹−
𝑒𝑉
2

𝑑𝐸 

 

(3.59) 

The electrical conductance 𝐺 at zero voltage and an ambient finite temperature range of 

(𝑘𝑏𝑇 ≈ 25 𝑚𝑒𝑉) can be expressed as:  

𝐺 =
𝐼

𝑉
=
2𝑒2

ℎ
∫ 𝑇(𝐸) (−

𝜕𝑓(𝐸)

𝜕𝐸
)

∞

−∞

𝑑𝐸 

 

(3.60) 
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where 
𝜕𝑓(𝐸)

𝜕𝐸
⁄ = −𝛿(𝐸 − 𝐸𝐹)  is defined in the bias regime at zero temperature and 

represents a normalised probability distribution with a width close to 𝑘𝑏𝑇 . Thus, we can define 

the zero-bias conductance at the Fermi energy as:  

 

𝐺(𝐸𝐹) = (
2𝑒2

ℎ
)𝑇(𝐸𝐹) = 𝐺0𝑇(𝐸𝐹)    

 

(3.61) 

where 𝐺0 ≈ 77.5 𝜇𝑆 is the quantum conductance. Employing a high bias on the system might 

alter the geometrical structures and energy levels of molecules. Thus, the systems I investigate 

are set to be in equilibrium conditions and equilibrium Green’s function formalism, which are 

applied to my calculations via the GOLLUM code. For high-bias calculations, we can apply 

numerical codes such as SMEAGOL and TranSiesta, which contain the non-equilibrium 

Green’s function formalism, which is not of interest [10-14]. 

 

3.8 Thermoelectric Coefficients 
 

The thermoelectric properties depend on common physical quantities, i.e. heat, current, voltage 

and temperature, which are represented by the Thompson [15,16], Peltier effects [17], and 

Seebeck effects [18]. Since the 19th century, these effects have remained significant for 

describing the electrical currents. The Seebeck effect involves voltage generation due to a 

temperature difference across a conductor. In contrast, the Peltier effect causes heating or 

cooling with an electric current, and the Thomson effect deals with the change of heat through 

a conductor. 

Now, we will show the relationship between the electrical conductance G, which depends on 

the applied electrical bias on the system, as my calculations are set up for a small potential 

across the system of interest. A general view can be presented since there is a temperature 
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difference ∆𝑇 and a potential drop ∆𝑉 through the system, as shown in Figure 3.11. 

Consequently, this will allow the current 𝐼 and the heat current �̇� to flow across the system. 

These currents are linearly related to the temperature and potential differences as the 

thermoelectric coefficients 𝐺, 𝐿,𝑀, 𝑎𝑛𝑑 𝐾 take place as [19,20]: 

 

Figure 3.11.  A schematic structure of the thermopower effect due to an applied temperature difference 

(𝑇𝐻𝑜𝑡 − 𝑇𝐶𝑜𝑙𝑑) in a metal-molecule-metal junction.  

 

(
𝐼
�̇�
) = (

𝐺 𝐿
𝑀 𝐾

) (
∆𝑉
∆𝑇
)                                                   (3.62) 

We can express the previous equation further to demonstrate the current in terms of 

thermoelectric coefficients:   

(
∆𝑉
�̇�
) = (

1

𝐺
−
𝐿

𝐺
𝑀

𝐺
𝐾 −

𝐿𝑀

𝐺

)(
𝐼
∆𝑇
) 

= (
𝑅 𝑆
Π 𝜅

) (
𝐼
∆𝑇
) 

 

 

 

(3.63) 
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Where 𝑅 is the electrical resistance, the thermopower is  𝑆, Peltier coefficient is Π and the 

thermal conductance is 𝜅. The ratio represents the electrical conductance  𝐺 = 𝐼/∆𝑉, whereas 

at ∆𝑇 = 0 it can be expressed as:  

𝐺 = 𝐺0𝐿0 (3.64) 

where 𝐺0 is the quantum conductance and 𝐿0 is the Lorenz number.  

𝐿𝑛 = ∫(𝐸 − 𝐸𝐹)
𝑛

∞

−∞

(−
𝜕𝑓(𝐸)

𝜕𝐸
)𝑇(𝐸)𝑑𝐸 

(3.65) 

The thermopower depends on the potential corresponding to the temperature difference, as the 

electrical current is not represented. 

𝑆 ≡ −(
∆𝑉

∆𝑇
)
𝐼=0

= −
𝐿1
𝑒𝑇𝐿0

 
(3.66) 

The Peltier coefficient Π is obtained by the heat transfer because of the charge current, in the 

absence of a temperature difference. 

Π ≡ −(
�̇�

𝐼
)
∆𝑇=0

 

=
𝑀

𝐺
 

= −𝑆𝑇 

 

 

 

(3.67) 

Consequently, 𝑆 and Π coefficients provide information on the electric device's actions through 

the heating or cooling mechanism. Furthermore, a crucial parameter known as the 

dimensionless number thermoelectric figure of merit ZT is used to measure the thermoelectric 

efficiency of a system for energy conversion [21-23]. 

𝑍𝑇 =
𝑆2𝐺𝑇

𝜅
 

 

(3.68) 
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From a classical electronics perspective, the figure of merit ZT originated by determining the 

highest temperature variation when producing electrical current, where the Joule heating 

effects are present. For a current-conducting material attached with two heat reservoirs at 

temperatures T1 and T2, and electrical potentials V1 and V2, respectively. The thermoelectric 

figure of merit ZT is attained by quantifying the peak temperature difference generated by the 

electrical current flowing through a conductor. 

By defining �̇� as the obtained amount of heat from reservoir 1 to reservoir 2, we can express 

the transferred heat using the measurable thermoelectric coefficients. 

�̇� = Π𝐼 − 𝜅Δ𝑇                                                         (3.69) 

This transferred heat will result cooling from one reservoir and heating from the other reservoir, 

increasing Δ𝑇. The Joule heating in the conductor is expressed as �̇�𝐽 = 𝑅𝐼
2 which is directly 

proportional to the electrical resistance and the square of the current, and also this Joule heating 

influences the temperature difference which induced by the transferred heat. Subsequently, for 

a stable situation, we can write the temperature difference as: 

Π𝐼 − 𝜅Δ𝑇 =
𝑅𝐼2

2
 

(3.70) 

Δ𝑇 =
1

𝜅
(Π𝐼 −

𝑅𝐼2

2
) 

(3.71) 

Therefore, we now possess an equation indicating how the temperature difference varies with 

the electrical current and determine the maximum temperature difference which involves 

differentiating (3.79) and solving for Δ𝑇 as: 

𝜕Δ𝑇

𝜕𝐼
=
Π − 𝐼𝑅

𝜅
 

(3.72) 

Now, we apply the current 𝐼 = Π/R and then substitute the equation (3.67) into the equation 

(3.72) to yield the maximum temperature difference as:                                                           
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(Δ𝑇)𝑚𝑎𝑥 =
Π2

2𝜅𝑅
=
𝑆2𝑇2𝐺

2𝜅
 

(3.73) 

Hence,  

(Δ𝑇)𝑚𝑎𝑥
𝑇

=
𝑆2𝐺𝑇

2𝜅
=
1

2
𝑍𝑇 

(3.74) 

In the case of the thermal conductance due to electrons can be expressed as:  

𝜅𝑒 = 𝐾𝑒 − 𝑆
2𝐺𝑇 (3.75) 

At Δ𝑇 = 0, 

𝜅𝑒 =
2

ℎ𝑇
(𝐿2 −

(𝐿1)
2

𝐿0
) 

(3.76) 

The electric contribution figure of merit describes the property of electrons expressed as: 

𝑍𝑇𝑒 =
𝑆2𝐺𝑇

𝜅𝑒
= (

(𝐿1)
2

𝐿0𝐿2 − (𝐿1)2
) 

(3.77) 

where, 

 

𝐿0 ≈ 𝑇(𝐸𝐹) 

𝐿1 ≈ (𝑒𝑇)
2𝛼 (

𝑑𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

 

𝐿2 ≈ (𝑒𝑇)
2𝛼𝑇(𝐸𝐹) 

 

 

(3.78) 

where 𝛼 is the Lorentz number (𝛼 = 2.44 × 10−8 𝑊 ∙ Ω ∙ 𝐾−2), so the thermal electric 

conductance can take the form: 

𝜅𝑒 ≈ 𝛼𝐺𝑇 (3.79) 

The equation (3.79) is well-known as the Wiedemann-Franz law, which indicates that the 

electric thermal conductance is proportional to G as the transmission coefficient 𝑇(𝐸𝐹) differs 

slowly with the range of 𝑘𝑏𝑇. 
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Also, the Seebeck coefficient can take the form at this limit as: 

𝑆(𝐸𝐹) = 𝑒𝑇𝛼 (
𝑑𝑙𝑛[𝑇(𝐸)]

𝑑𝐸
)
𝐸=𝐸𝐹

 
(3.80) 

The equation (3.80) shows that the sign of the Seebeck coefficient depends on the slope of the 

transmission coefficient 𝑇(𝐸). Hence, according to Wiedemann-Franz law the expression of 

the electric thermal conductance 𝜅𝑒 can lead to the form of electric figure of merit as: 

𝑍𝑇𝑒 =
𝑆2

𝛼
 

(3.81) 

To attain 𝑍𝑇𝑒 > 1, the condition  𝑆2 > 𝛼 must be met, and the Seebeck coefficient should 

exceed approximately  150 𝜇𝑉𝐾−1[3]. 
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Chapter 4 

Charge Transfer Complexes of Chlorine 

Perylene Bisimide with the Presence of 

TCNE in Single-Molecule Junctions  
 

In this chapter, I shall illustrate the first primary outputs of my research by studying charge 

transfer (CT) complexes in single-molecule junctions (SMJs). This theoretical study of electric 

and thermoelectric properties of chlorine perylene bisimide (Cl-PBI) molecules is partially 

motivated by experimental research by Prof. Thomas Wandlowski’s group at the University of 

Ben [1] and also the prior related theoretical study entitled “Exploiting the extended p-system 

of perylene bisimide for label-free single-molecule sensing” Journal of Materials Chemistry C, 

3(9), 2101-2106, 2015 [2]. Hence, I shall specifically focus on studying the electron transport 

properties of chlorine perylene bisimide (Cl-PBI) molecule linked with two different anchor 

groups pyridine (pyridyl) and a methyl thioether (SMe). Additionally, I shall involve 

tetracyanoethylene (TCNE) as a pendant group in the junctions, which is well-known as an 

acceptor to discover its effect on quantum transport. To enhance the development of functional 

advanced organic materials, I shall focus on functionalising chlorine perylene bisimide (Cl-

PBIs) molecules as organic building blocks and study their thermoelectric properties. I shall 

also investigate charge transport complexes exhibiting electron transport through a 

donor/acceptor system. 
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4.1 Introduction 
 

There are many theoretical studies of the physical properties of molecular systems and many 

of them are based on organic materials [3-7,30-33]. Related experimental studies have 

investigated a variety of thermoelectric properties of molecular systems [8]. The increasing 

demand for highly efficient energy of nano-structure devices motivates us to synthesise organic 

materials to reach discoveries in this area of research. PBI molecules are unique organic 

molecules due to their large chemical and thermal stability and provide strong absorption 

through the electromagnetic spectrum. Furthermore, they can form self-assemble in molecular-

scale devices and have interesting synthesis possibilities and applications in exhibiting 

fluorescence and dyes [9,10]. It is also possible to tune their electrical conductance G of 

electrode-molecule-electrode systems by employing various anchor groups such as pyridine 

(pyridyl) and SMe anchor groups.  

 

Experimentally it is a challenging task to control the connection between anchor groups linked 

with molecules and electrodes. However, numerically it is possible to control geometrical 

configurations to have realistic systems of general connections. In addition, introducing a 

tunnelling barrier on any side of the electrodes can affect on conductance [11]. Thus, 

potentially studying the thermoelectric properties at the room temperature (~300𝐾) lead us to 

solutions for many applications, such as power generation, waste heat efficiency, and cooling 

systems. findings of this research provide some theoretical predictions of thermoelectric 

properties of single-molecule junctions, which assist experimental and theoretical scientists 

focusing on electron transport behaviours.  
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4.2 Computational Techniques 
 

To reach the optimum ground state geometry of molecules, I used density functional theory 

(DFT) within the SIESTA code, which is based on the unitised Troullier-Martins 

pseudopotentials and a local atomic orbital basis (LAOB) [12,13]. I used a double-zeta 

polarised (DZP) basis set defined by a confining cut-off of 0.003 Ry, norm-conserving 

pseudopotentials, an energy cut-off of 150 Ry and the generalized gradient approximation 

(GGA) method [14] to describe the exchange-correlation functionals [14,15]. All forces on 

atoms were relaxed to a force tolerance of 0.01 eV/Å to allow isolated molecules to reach their 

optimum geometries.  By choosing a basis set at a cut-off value of 0.003 Ry, we can control the 

position of the Fermi energy 𝐸𝐹 within the HOMO-LUMO gap. Hence, all of these previous 

parameters were applied through this thesis.   

4.3 Electronic Structure Simulations  
 

The systems studied in this chapter consist of two molecules forming metal-molecule-metal 

junctions, one constructed of Cl-PBIs molecules linked with pyridine (Py) anchor groups and 

the other with methyl thioether (SMe) anchor groups, as shown in Table 4.1. Later in this 

chapter, I shall report thermoelectric calculations of Cl-PBIs combined with the 

tetracyanoethylene (TCNE) molecule, forming a donor-acceptor system that possibly can 

enhance charge transfer (CT) complexes. Firstly, the studied molecules are optimised until they 

reach their ground-state geometries, as shown in Table 4.1.  
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Table.4.1 Chemical structures and molecular configurations of chlorine perylene bisimide (Cl-PBI) 

backbone linked with pyridine (Py) anchor groups and SMe anchor groups, where the atoms are 

nitrogen (blue), chlorine (green), oxygen (red), carbon (grey), and hydrogen (white). 

 

Molecules 

 

 

Chemical Structures 

 

Molecular Configurations 

Chlorine Perylene 

Bisimide 

 (Cl-PBI) _Pyridine 

 

 

Chlorine Perylene 

Bisimide 

(Cl-PBI_SMe) 

 

 

 

   

4.4 Frontier-Molecular Orbitals (FMO) 
 

 Molecular orbitals are essential for understanding electron interactions and regions where they 

can be found at the atomic level. When molecular orbitals overlap, quantum constructive 

interference (QCI) or quantum destructive interference (QDI) can occur. In molecular 

junctions, electron transport is partly determined by how close the HOMO and LUMO are to 

the Fermi energy 𝐸𝐹 of the electrodes [16-18].  

The first three frontier molecular orbitals (FMO) of Cl-PBI_Py and Cl-PBI_SMe are shown in 

Tables 4.2 and 4.3 respectively, where the highest occupied molecular orbitals (HOMO), 

HOMO-1, HOMO-2, and also the lowest unoccupied molecular orbitals (LUMO), LUMO+1, 

and LUMO+2 are presented. The blue and red colours represent negative and positive 

amplitudes of the regions along the molecules.  
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Table 4.2 The HOMO-LUMO wavefunctions of Cl-PBI_Pyridine, where the negative orbitals are blue, 

and the positive ones are red. 

 

 

Table 4.3 The HOMO-LUMO wavefunctions of Cl-PBI_SMe, where the negative orbitals are blue and 

the positive ones are red. 
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Due to the electrostatic factors, Cl-PBI molecules are twisted in their bay area, which reduces 

the probability of 𝜋-𝜋 interactions with nearby molecules and allows the formation of single-

molecule junctions [19]. Thus, the results of relaxing Cl-PBIs molecules show that the twisted 

backbones are due to the repulsive forces of chlorine atoms on both edges of the bay area. For 

Cl-PBI_Py, there is a torsion angle of 230, whereas for Cl-PBI_SMe, the torsion angle is 290. 

Table 4.4 summarises the Kohn-Sham (K-S) calculations of the HOMO and LUMO 

eigenvalues, the Fermi energy, the energy gap (Eg). 

 

Table.4.4 The Kohn-Sham calculations. 

Component HOMO (eV) LUMO (eV) EF (eV) Energy gap 

(eV) 

Cl-PBI_Py - 4.72 - 3.88 - 4.29 0.84 

Cl-PBI_SMe - 4.28 - 3.53 - 3.90 0.75 

 

 

 

 

4.5 Binding Energy Between Anchor Groups and Gold 

Electrodes   

 

In the following molecular electronic calculations, the single-molecule junctions are built of a 

single molecule attached to two identical gold electrodes, which are a face-centred unit cell of 

(111). Every electrode is constructed from 5 periodic principle layers, each consisting of 25 

gold atoms, where the terminated surface is arranged in a triangular pyramidal shape containing 

11 atoms. To calculate their binding energies to a gold electrode, I set up Cl-PBIs molecules to 

be constructed with either pyridine (Py) anchor groups, as in Figure 4.1 (a) or methyl thioether 
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(SMe) anchors, as in Figure 4.2 (a). Both are attached with the gold electrodes, and the distance 

varies to obtain the favourable optimum energetic states.  

 

I first constructed the system by positioning the isolated molecule to be connected 

symmetrically with the gold electrodes at a separation distance 𝑑 between the N and the apex 

Au atom or the S and the apex gold atom of the electrode pyramid. Then I calculate the binding 

energy 𝐸𝑏 as a function of the separation distance 𝑑  between N-Au and S-Au atoms.  

 

I calculated using the local density approximation (LDA) to reach the expected minimum 

energy between two systems. Then, I employ a counterpoise method as a localised basis set is 

applied to avoid the basis set superposition errors (BSSE). The ghost states were presented for 

calculating the binding energy 𝐸𝑏 by using the following equation [20,21]: 

𝐸𝑏 = 𝐸𝐴𝐵
𝐴𝐵 − (𝐸𝐴

𝐴𝐵 + 𝐸𝐵
𝐴𝐵) (4.1) 

where 𝐸𝐴𝐵
𝐴𝐵 is the ground state energy of the entire system, whereas  𝐸𝐴

𝐴𝐵 and 𝐸𝐵
𝐴𝐵  are energies 

in systems A and B, respectively.  

 

Figure 4.3 (b) and Figure 4.4 (b) show the binding energy 𝐸𝑏 as a function of a separation 

distance 𝑑 between the isolated molecule and the gold electrode. The results show that the bond 

length between N-Au atoms is approximately 𝑑 ≈ 1.7 Å as shown in Figure 4.1 (b), and the 

corresponding value of the binding energy is 𝐸𝑏 = −1 𝑒𝑉. Similarly, the optimum distances 

for the connection between the bond length between S-Au atoms are approximately 𝑑 ≈ 2.62 Å 

in Figure 4.2 (b), the value of the binding energy is found to be  𝐸𝑏 = −0.39 𝑒𝑉Since nitrogen 
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atoms have higher electronegativity than sulphur atoms, the N-Au bond length is stronger than 

the S-Au bond, and the N atom sits closer to the gold surface of the electrodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 a) Molecular configuration where the Au-N bonded atoms. b) The binding energy 𝐸𝑏 as a 

function of distance 𝑑 between Au-N atoms. 
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Figure 4.2 a) Molecular configuration where the Au-S bonded atoms. b) The binding energy 𝐸𝑏 as a 

function of distance d between Au-S atoms. 

 

4.6 Molecular Complexes of Cl-PBI with TCNE 
 

As mentioned above, PBI molecules possess intriguing structural characteristics associated 

with the twisted 𝜋-system that shows conformational flexibility [22]. Additionally, the twisting 
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bay-substituents [23]. This section provides a deeper scope of the impact of the studied 

substituent with its bay position of Cl-PBIs backbones by considering the presence of the 

organic pendant-group tetracyanoethylene (TCNE) molecule. The TCNE has been widely 

utilised in donor-acceptor studies, and therefore, it is of my interest to determine how it binds 

differently with Cl-PBI molecules. Figure 4.3 illustrates the mechanism of charge transfer (CT) 

complexes, which occur when an electron moves through a donor/acceptor system. 

 

 

 

 

 

 

 

Figure 4.3 A sketch of charge transfer (CT) complexes through a donor-acceptor system consists of a 

molecular backbone coupled to left (source) and right (drain) electrodes by hopping elements  −Γ and 

a pendant molecule. 

 

4.6.1 Frontier-Molecular Orbitals of TCNE  
 

Table 4.5 shows the frontier orbitals and their corresponding energy values for the isolated 

TCNE molecule. The Fermi energy EF is - 6.59 eV, and the energy gap Eg is 2.62 eV. 
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Table 4.5 The frontier molecular orbitals of TCNE, where the negative amplitudes are 

blue and the positive ones are red. 

                             
 

                           TCNE 

 
LUMO = -5.45 eV 

 
LUMO+1 = -2.52 eV 

 
LUMO+2 = -2.39 eV 

 
HOMO-2 = -9.48 eV 

 
HOMO-1 = -9.16 eV 

 
HOMO = -8.07 eV 

 

 

 

4.6.2 Binding Energy Between Cl-PBI and TCNE   
 

In this section, I calculated the binding energy Eb between the extended 𝜋-system of the 

Cl-PBIs and the pendant electron acceptor tetracyanoethylene (TCNE) [24]. By applying 

the LDA method to find the minimum binding energy Eb and the most favourable location 

between the Cl-PBI backbone and the TCNE, the TCNE molecule is simulated to be moved 

along the ∆𝑥 and ∆𝑦 directions, with a fixed distance ∆𝑧 ≈ 3Å on Cl-PBI_Py and then Cl-

PBI_SMe, as demonstrated in Figure 4.4 below. Plot (a) in Figure 4.4 below shows the 

binding energy (BE) of the combined system Cl-PBI + TCNE for various locations. Thus, 

the favourable location is determined at the minimum binding energy of the combined 
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system is -0.36 eV. Plot (b) shows the fruitful position to set the TCNE on the Cl-PBI_SMe 

molecule, which is found to be at the minimum binding energy of -0.5 eV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. a) The binding energy between the CI-PBI_Py with the presence of the TCNE 

pendant molecule at various locations. b) The binding energy of CI-PBI_SMe with the presence 

of the TCNE pendant molecule at various locations. 
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In Figure 4.5, I calculated the binding energy again as a function of distance along z-direction 

for Cl-PBI_Py + TCNE, where I found the minimum Eb = -0.36 eV at dz =3.26 Å. In Figure 

4.6, I calculated the binding energy again as a function of distance along the z-direction for Cl-

PBI_SMe + TCNE where the minimum binding energy is found Eb = -0.7 eV at a separation 

distance dz =3.26 Å from the Cl-PB backbone. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. a) Molecular configuration of CI-PBI_Py and TCNE molecules. b) The binding energy 𝐸𝑏  

as a function of the separation distance 𝑑𝑧. 
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Figure 4.6. a) Molecular configuration of CI-PBI_SMe and TCNE molecules. b) The binding energy 

𝐸𝑏  as a function of the separation distance 𝑑𝑧. 

 

Now, some population analysis is needed to understand how the TCNE pendant molecule tends 

to accept an electron from the backbone of Cl-PBI molecules.  I calculated the total net charge 

∆𝑄 of the TCNE as demonstrated in Table 4.6.  
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Table.4.6 The combined molecular systems configurations and calculations of population 

analysis of the TCNE. 

Cl-PBI+TCNE 

 

 

 

Mulliken 

∆Q (e) 

Hirshfeld 

∆Q (e) 

Voronoi 

∆Q (e) 

-0.163 -0.162 -0.161 

Cl-PBI+TCNE 

 

Mulliken 

∆Q (e) 

Hirshfeld 

∆Q (e) 

Voronoi 

∆Q (e) 

-0.438 -0.437 -0.438 

 

 

4.6.3 Frontier-Molecular Orbitals of Cl-PBIs with 

Presence of TCNE   

 

The frontier molecular orbitals and HOMO-LUMO energy levels were calculated for the 

combined systems. The interactions of the combined systems are responsible for affecting 

electric and thermoelectric features, which can be discriminated between. Table 4.7 illustrates 

the FMO of the investigated combined systems of the Cl-PBIs with TCNE linked with pyridine 

and SMe anchor groups, respectively. where for Cl-PBI_Py with TCNE the HOMO level is 
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delocalised across the backbone, whereas the LUMO is more localised in the core of portion 

of Cl-PBI and has significant overlap with the TCNE. In this case, the energy gap Eg is 0.22 

eV. For Cl-PBI_SMe with the TCNE, the HOMO is also delocalised and the LUMO is located 

in the core of portion of Cl-PBI. Clearly, there is again a significant overlap with orbitals on 

the TCNE. In this case the energy gap Eg is 0.16 eV. My results of the population methods 

indicate that the TCNE molecule tends to gain an electron from the Cl-PBI molecule, forming 

an acceptor/donor structure.  

In the following section, I shall discuss electron transport calculations computed by the utility 

combination of DFT-SIESTA code [3] and Green’s function method via GOLLUM code [27] 

which can potentially provide attractive findings of electronic properties that can be applied in 

various fields such dyes, fluorophores, and solar technologies [25,26]. 

Table 4.7 HOMO-LUMO frontier molecular orbitals of the combined systems for Cl-PBI_Py 

with TCNE and Cl-PBI_SMe with TCNE. 

Frontier-Molecular Orbitals of The Combined Systems 

Cl-PBI_Pyridine + TCNE 

HOMO = - 4.85 eV LUMO = - 4.63 eV 

  

Cl-PBI_SMe + TCNE 

HOMO = - 4.40 eV LUMO = - 4.24 eV 

  

 

 



92 
 

 

4.8. Results and Discussion 
 

In this section, density functional theory (DFT) as utilised in the SIESTA code and the 

equilibrium Green’s function transport code of GOLLUM [27] are employed in the 

calculations. First, I compute the scattering region of bare Cl-PBIs junctions to find their 

electric properties under zero bias. In the following discussion, I use a double-zeta polarised 

(DZP) basis set for all atoms except the gold atoms of the electrodes, which are set to be a 

double-zeta (DZ) due to stability and to avoid artificial noise and the generalised gradient 

approximation (GGA) for the exchange-correlation functionals. To calculate the electric 

properties of the studied molecules, I start by calculating the transmission coefficients 𝑇(𝐸), 

and electrical conductance 𝐺 of bare Cl-PBI molecules, which are linked to Au (111) electrodes 

by pyridine (pyridyl) and SMe. The Hamiltonian defining the system is extracted by using the 

SIESTA code.  

The transmission coefficient describes the probability of electron transport through single-

molecule systems and provides a crucial tool for understanding electron transport behaviour in 

a junction. Additionally, the transmission coefficient 𝑇(𝐸) can significantly impact electrical 

conductance G, with more variations occurring closely at the Fermi energy EF. Hence, by the 

Landauer formula, we can express the relation between the transmission and electrical 

conductance where the energy range is close to the Fermi energy 𝐸𝐹 [28,29].  
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4.7.1 Transmission Coefficient and Electrical 

Conductance of Bare Junctions  

 

Now, I shall calculate the transmission coefficient for both the bare junctions of Cl-PBI_Py and 

Cl-PBI_SMe for an electron passing from the left to the right electrode through the scatterer. 

The strength of the coupling between the anchor groups and electrodes can broaden the 

transmission curve and shift down the energy because of the electrodes' self-energy, hence 

increasing the electron transport passing the scattering region. 

 

 

 

 

 

 

 

 

 

 

Figure.4.7 Chemical configurations of Au-Cl-PBIs-Au junctions. a) Bare junction of Cl-

PBI_Py. b) Bare junction of Cl-PBI_SMe. 

 

In Figure 4.8 Breit-Wigner resonances appear for the HOMO and LUMO levels in the energy 

window, and the Fermi 𝐸𝐹 energy is located within the HOMO-LUMO gap. In addition to the 

effect of the strength of the coupling between the Au-Cl-PBIs-Au, the shape of the Breit-

Wigner can be changed by the presence of more than one orbital. For Figure 4.8 (a) the 

(a) 

(b) 
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transmission curve (blue) for Cl-PBI_Py shows LUMO-dominant transport close to Fermi 

energy, with a narrower energy gap, whereas the Cl-PBI_SMe shows a tunnelling behaviour 

‘silent resonance’ (orange) with wider energy gap Eg. 

 

 

 

Figure 4.8. a) Comparison between transmission coefficients T(E) as a function of energy E 

(left panel) for both bare Cl-PBI_Py (blue) and Cl-PBI_SMe (orange) junctions. b) Comparison 

between transmission Electrical conductance G (right panel) for both bare Cl-PBI_Py (blue) 

and Cl-PBI_SMe (orange) junctions. 

 

4.7.2 Transmission Coefficient and Electrical 

Conductance of Cl-PBI_Py + TCNE 
 

In this section, I present the effect of the TCNE pendant group complexed with the Cl-PBI_Py 

junction to observe the electric properties of the combined system, as shown in Figure 4.9. 

below. 
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Figure.4.9 Chemical configurations of Au-Cl-PBIs-Au junctions. a) Bare junction of Cl-

PBI_Py. b)  junction of Cl-PBI_Py+ TCNE. 

 

 

 

 

 

 

 

 

 

Figure 4.10. a) The two views of the configuration structure of the combined system Cl-PBI_Py 

with TCNE. b) Comparison of the transmission coefficients 𝑇(𝐸) (left panel). c) the 

corresponding electrical conductance  𝐺 (right panel). 
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Figure 4.10. b) shows the transmission coefficients 𝑇(𝐸) as a function of energy for two cases 

of Cl-PBI_Py junctions, and reveals that transport is LUMO-dominated in both cases. In the 

presence of TCNE (red curve) an extra resonance appears near the LUMO level, and a shift of 

the HOMO-LUMO resonances occurred, whereas the bare junction shows only two resonances 

close to the Fermi energy 𝐸𝐹 . Plot (c) shows the corresponding room-temperature electrical 

conductance of both junctions. For the bare junction (blue curve) 𝑙𝑜𝑔 (𝐺/𝐺0) = −4.4  whereas 

the combined system of Cl-PBI with TCNE (red curve) has a value 𝑙𝑜𝑔 (𝐺/𝐺0) = −4.3   at the 

DFT-predicted Fermi energy at (𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0). 

 

4.7.3 Transmission Coefficient and Electrical 

Conductance of Cl-PBI_SMe + TCNE 

 

Figure 4.12 b) shows the transmission coefficient for the TCNE-Cl-PBI_SMe. This is a 

tunnelling behaviour occurring with a wide energy gap, but with a ‘silent resonance’ (green 

curve) which indicates a 𝜋 − 𝜋 stacking feature. Plot (c) (right panel) in Figure 4.12 shows that 

the electrical conductance G for the bare junction (orange curve) is around 𝑙𝑜𝑔 (𝐺/𝐺0) =

−7.2   and the combined Cl-PBI_SMe + TCNE system (green curve) is about 𝑙𝑜𝑔 (𝐺/𝐺0) =

−7.47  at the DFT-predicted Fermi energy. 
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Figure.4.11. Chemical configurations of Au-Cl-PBIs-Au junctions. a) Bare junction of Cl-

PBI_SMe. b)  junction of Cl-PBI_SMe + TCNE. 

 

 

 

 

 

 

 

 

 

Figure 4.12. a) The two views of the configuration structure of the combined system Cl-

PBI_SMe with TCNE. b) Comparison of the transmission coefficients 𝑇(𝐸) (left panel). c) The 

corresponding electrical conductance  𝐺 (right panel). 
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4.7.4 Comparison of Transmission Coefficient and 

Electrical Conductance of Cl-PBIs and TCNE 
 

Overall, the presence of the TCNE pendant group does not significantly affect the room-

temperature conductance compared to the difference that occurs when the anchor groups are 

changed from Py to SMe. Figures 4.13, 4.14, and Table 4.7 compare junction properties of the 

two anchor groups, with and without TCNE. For the Cl-PBI_Py junctions, the LUMO 

resonances appear to be positioned closer to 𝐸 − 𝐸𝐹
𝐷𝐹𝑇 as the influence of these bridges on the 

conjugated nature [4]. Subsequently, results of T(E) indicate that the group connections of Cl-

PBI with pyridine anchor groups exhibit a narrower HOMO-LUMO gap than group 

connections Cl-PBI with SMe anchor groups because the coupling strengths are affected by the 

binding energies to the electrodes.  

 

 

 

 

 

 

 

Figure 4.13. a) Comparisons between Transmission coefficients for Cl-PBIs junctions (left 

panel). b) Comparisons between the electrical conductance 𝐺 of all Cl-PBIs molecules with 

varying anchor groups (pyridine and SMe) with the presence of the pendant groups (TCNE) 

and with bare junctions. (right panel). 
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Table.4.8 The averaged values of electrical conductance G at the Fermi energy. 

Component log(𝐺/𝐺0)  

(𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇  =  0 𝑒𝑉) 

Cl-PBI_Py −4.4  

 Cl-PBI_Py + TCNE −4.3 

Cl-PBI_SMe −7.2 

Cl-PBI_SMe + TCNE −7.47   

 

 

 

 

 

 

 

 

Figure 4.14.  The average electrical conductance 𝐺 at room temperature based on Cl-PBI linked 

via the pyridine anchor groups attached to gold electrodes. 
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smallest values as follows: Cl-PBI_Py + TCNE > Cl-PBI_Py > Cl-PBI_SMe > Cl-PBI_SMe 

+ TCNE, as the DFT-SIESTA calculations demonstrate at the Fermi energy 𝐸𝐹 of the 

electrodes. 

 

4.7.5 Comparison of Seebeck Coefficient S of Cl-PBIs 
 

The Seebeck coefficient S can take a positive or negative sign corresponding to the sign of the 

slope of the transmission function at the Fermi energy. Figure 4.15 illustrates Seebeck 

coefficients (thermopower) for a general comparison of the four cases of Cl-PBIs with pyridine 

anchor groups, where the calculated values of the Seebeck coefficient S are at the DFT-

predicted Fermi energy. Table 4.9 addresses the values of the Seebeck coefficient S at the 

energy window  (𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇). 

 

Figure 4.15. Comparison of Seebeck coefficients 𝑆 of Cl-PBIs junctions with the 

presence of TCNE and without TCNE. 
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Table 4.9 The values of the Thermopower effect (Seebeck coefficient S) at  (𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0). 

 

 

 

 

 

 

4.7 Summary 
 

In conclusion, the above calculations indicate that with both anchor groups (pyridine and SMe), 

Cl-PBIs combined with the TCNE, they tend to have similar behaviours as the bare junctions. 

The transmission coefficients of single-molecule junctions are mainly influenced by the anchor 

groups, which affect molecular electronic structures and the coupling at the molecule-electrode 

interfaces. The transmission coefficient 𝑇(𝐸) as a function of energy illustrate the electron 

tunnelling behaviours, as HOMO-LUMO resonances occur far from the Fermi energy for both 

bare Cl-PBI_Py, Cl-PBI_SMe, Cl-PBIs + TCNE, and Cl-PBI_SMe + TCNE junctions. 

 

 

 

 

Component 𝑆(𝜇𝑉/𝐾) 

Cl-PBI_Py 7.98 

 Cl-PBI_Py + TCNE -9.24 

Cl-PBI_SMe -42.55 

Cl-PBI_SMe + TCNE -1.23 
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Chapter 5 

Exploring Charge Transfer Complexes of 

Chlorine Perylene Bisimide with the 

Presence of TTF in Single-Molecule 

Junctions  
 

 

Investigating charge transfer complexes between chlorine perylene bisimide (Cl-PBI) and 

tetrathiafulvalene (TTF) exhibits significant promise for molecular devices [1]. The charge 

transfer occurs through interactions between electron donors and acceptors with unique 

electronic features. Since PBIs can work as electron acceptors while TTF is well-known as a 

good donor of electrons, I shall explore the CT by combining Cl-PBI and TTF in a single-

molecule junction to enhance CT interactions and tune electron transport behaviour. Thus, 

introducing TTF as a pendant molecule in SMJs can lead us to the discovery of thermoelectric 

properties.  

 

5.1 Introduction 
 

The research on charge transfer (CT) complexes, specifically involving perylene bisimide 

(PBI) molecules and tetrathiafulvalene (TTF), is interesting due to their unique electronic and 

photonic applications. These organic molecules can play essential roles in molecular devices, 

since the perylene bisimides are excellent candidates for their light absorption, photostability, 

and fluorescence features [4-7]. These properties can enable CT complexes, when combined 

with TTF as an electron-donating molecule, to exhibit new electronic characteristics in SMJs. 
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These combined systems are crucial for designing applications, e.g., light-emitting diodes [2], 

photovoltaics [3], and switches [13-15]. 

 

5.2 Molecular Complexes between Cl-PBI and the 

Presence of TTF  

 

In this section, chlorine perylene bisimides (Cl-PBIs) and tetrathiafulvalene (TTF) are analysed 

to reveal transport mechanisms through these charge transfer (CT) complexes. Since TTF has 

a conjugated 𝜋-electron system, their combined systems exhibit electron-accepting features of 

Cl-PBIs and electron-donating features of TTF [12]. 

 

5.2.1 Frontier-Molecular Orbitals of TTF 

 

In this section, I calculated the frontier molecular orbitals of TTF. Table 5.1 shows the HOMO-

LUMO levels of the optimised TTF molecule. It shows that all its wavefunctions are 

delocalised over the TTF. The Fermi energy EF is - 2.61 eV, and the energy gap Eg is 1.94 eV. 
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Table 5.1 the frontier molecular orbitals of TTF, where the negative orbitals are blue and the positive 

ones are red. 

                             
 

           TTF 

                                                                      

 
 

LUMO = - 1.60 eV 

 
 

LUMO+1 = - 1.09 eV 

 
 

LUMO+2 = - 0.79 eV 

 
HOMO-2 = - 6.41 eV 

 
HOMO-1 = - 5.39 eV 

 
HOMO = - 3.54 eV 

 

 

 

5.2.2 Binding Energy Between Cl-PBI and TTF  
 

Now, I computed the binding energy (BE) between the extended. 𝜋-system of the Cl-

PBI_Py, Cl-PBI_SMe, and the pendant molecule TTF, which is considered electron-

donating. To achieve this goal, I keep the Cl-PBIs stationary, and the TTF is moved on top 

along ∆𝑥 and ∆𝑦  directions with a fixed position ∆𝑧 ≈ 3Å , as shown in Figure 5.1 (a) and 

(b) [16,17]. Plot (a) illustrates the BE of Cl-PBI_Py + TTF for various locations, where the 

favourable location for the combined system is at the binding energy of -0.14 eV. Plot (b) 

shows the BE of Cl-PBI_SMe + TTF, where the favourable location for the combined 

system is at the binding energy of -0.53 eV.  
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Figure 5.1. a) The binding energy between the CI-PBI_Py with the presence of the TTF pendant 

molecule at various locations. b) The binding energy of CI-PBI_SMe with the presence of the TTF 

pendant molecule at various locations. 
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In further steps, I calculated the binding energy Eb as a function of the distance 𝑑𝑧 of the dimer 

molecules as shown in Figure 5.2 (a). The result shows that the minimum binding energy 

between Cl-PBI_Py and TTF is close to -0.53 eV at the equilibrium distance 𝑑𝑧 = 3.06 Å in 

Figure 5.2 (b). 

 

 

 

 

 

 

Figure 5.2. a) Molecular configuration of CI-PBI_Py and TTF molecules. b) The binding energy 𝐸𝑏  as 

a function of the separation distance 𝑑𝑧. 

 

Then, I used the same process of computing the minimum binding energy between Cl-PBIs 

and TTF along the z direction as the chemical configuration is illustrated in Figure 5.3 (a). I 

found the optimum binding energy Eb = -0.61 eV at the equilibrium distance 𝑑𝑧 = 3.2 Å shown 

in Figure 5.3 (b). 
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Figure 5.3. a) Molecular configuration of CI-PBI_SMe and TTF molecules. b) The binding energy 𝐸𝑏  

as a function of the separation distance 𝑑𝑧. 

 

I carried out the population methods to determine the electronic charge distribution of TTF. 

The calculations are performed using the local density approximation (LDA). Three population 

analysis methods, the Mulliken, Hirshfeld, and Voronoi populations, are applied to gain 

insights into the distribution of electrons on the atomic structure of the molecule. Indeed, the 

findings show that the TTF tends to donate an electron to the Cl-PBIs molecules, as shown in 

Table 5.2 below. 
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Table.5.2 The combined molecular systems configurations and population analysis of TTF. 

 

Cl-PBI+TTF 

 

 

 

Mulliken 

∆Q (e) 

Hirshfeld 

∆Q (e) 

Voronoi 

∆Q (e) 

0.242 0.207 0.245 

Cl-PBI+TTF 

 

Mulliken 

∆Q (e) 

Hirshfeld 

∆Q (e) 

Voronoi 

∆Q (e) 

0.136 0.075 0.127 

 

 

5.2.3 Frontier-Molecular Orbitals of Cl-PBIs with the 

Presence of TTF   

 

The wavefunctions distribution of the combined system Cl-PBIs + TTF using two different 

pyridine and SMe anchor groups, the highest occupied molecular orbitals (HOMOs) and the 

lowest unoccupied molecular orbitals (LUMOs) are computed. Table 5.3 illustrates the FMO 

of the investigated combined systems of Cl-PBIs + TTF  for  HOMOs-LUMOs, where the red 

regions are positive and the blue ones are negative, where for Cl-PBI_Py with TTF the HOMO 

level is localised with overlap orbitals and LUMO level there are a clear overlap between TTF 
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and the core of Cl-PBI orbitals with energy gaps Eg of 0.13 eV, whereas for Cl-PBI_SMe + 

TTF, the HOMO level is delocalised and LUMO level there are overlap orbitals between TTF 

and the core of Cl-PBI with energy gap Eg of 0.23 eV. 

 

Table 5.3 HOMO-LUMO frontier molecular orbitals of the combined molecules for Cl-

PBI_Py with TTF and Cl-PBI_SMe with TTF. 

Frontier-Molecular Orbitals 

Cl-PBI_Pyridine + TTF 

HOMO = -3.77 eV LUMO = -3.64 eV 

  

Cl-PBI_SMe + TTF 

HOMO = -3.58 eV LUMO = -3.35 eV 

  

 

5.3 Results and Discussion 
 

Transmission coefficient 𝑇(𝐸) and the electrical conductance 𝐺 are computed employing the 

quantum transport theory via the GOLLUM code [7]. I applied DFT-SIESTA calculations to 

study CT complexes in dimer molecular systems of Cl-PBIs + TTF, where I investigated them 

in the TTF pendant group to observe their thermoelectric features.  
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5.3.1. Transmission Coefficient and Electrical 

Conductance of Cl-PBI_Py + TTF 

 

 

 

 

Figure.5.4 Chemical configurations of Au-Cl-PBIs-Au junctions. a) Bare junction of Cl-

PBI_Py. b) junction of Cl-PBI_Py+ TTF. 

 

Figure 5.4 shows the investigated SMJs of my interest. Figure 5.5 (b) shows the transmission 

coefficient T(E) as a function of energy E for the bare-Cl-PBI_Py (blue) and in the presence of 

TTF (black), both LUMO-dominant close to EF. It can be seen from plot (b) that a Fano-

resonance occurs close to EF, which indicates that the TTF pendant group interacts 

electronically with the backbone molecule. Figure 5.5 (c) shows the corresponding room-

temperature electrical conductance 𝐺 for the bare-Cl-PBI_Py and Cl-PBI+TTF. Plot (c) 

illustrates the corresponding electrical conductance G of both junctions, where bare-Cl-PBI_Py 

(blue curve) is 𝑙𝑜𝑔 (𝐺/𝐺0) = −4.4  whereas the combined molecules of Cl-PBI_Py with TTF 

(black curve) have a value of 𝑙𝑜𝑔 (𝐺/𝐺0) = −3.67   at the DFT-predicted Fermi energy. 

 

(a) 

(b) 
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Figure 5.5 a) The two views of the configuration structure of the combined system Cl-

PBI_SMe with TTF. b) Comparison of the transmission coefficients 𝑇(𝐸) (left panel). 

c) the corresponding electrical conductance  𝐺 (right panel). 

 

 

5.3.2 Transmission Coefficient and Electrical 

Conductance of Cl-PBI_SMe + TTF 

 

In this section, I compared the bare Cl-PBI_SMe with Cl-PBI-SMe + TTF, as shown in Figure 

5.6. 
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Figure.5.6 Chemical configurations of Au-Cl-PBIs-Au junctions. a) Bare junction of Cl-

PBI_SMe. b) junction of Cl-PBI_SMe + TTF. 

 

In Figure 5.7 (b) the transmission coefficient T(E) as a function of energy E shows the bare-

Cl-PBI_Py (blue) and the presence of TTF (black), both LUMO-dominant close to EF. It can 

be seen from plot (b) that a Fano resonance occurs close to EF, which indicates that a CT 

complex has formed. Figure 5.7 (c) below represents logarithmic values of the electrical 

conductance 𝐺 for the bare-Cl-PBI_Py and Cl-PBI+TTF. Plot (c) illustrates the corresponding 

electrical conductance G of both junctions, where for bare-Cl-PBI_SMe (orange curve) is 

𝑙𝑜𝑔 (𝐺/𝐺0) = −7.2  whereas the combined molecules of Cl-PBI_SMe with TTF (pink curve) 

have a value of 𝑙𝑜𝑔 (𝐺/𝐺0) = −7.93   at DFT-predicted (𝐸 − 𝐸𝐹
𝐷𝐹𝑇 = 0). 

 

 

 

 

(a) 

(b) 
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Figure 5.7 a) The two views of the configuration structure of the combined system Cl-

PBI_SMe with TTF. b) Comparison of the transmission coefficients 𝑇(𝐸) (left panel). 

c) the corresponding electrical conductance  𝐺 (right panel). 

 

5.2.3 Comparison of Transmission Coefficient and 

Electrical Conductance of Cl-PBIs and TTF 

 

In this section, I compare the previous results for transmission coefficients T(E) and electrical 

conductance G with the two different anchor groups for both bare-Cl-PBIs junctions and in the 

presence of TTF. From Figure 5.8 (a) it can be seen clearly that Fano-resonance appears for 

both cases with the presence of TTF demonstrating that a charge transfer (CT) occurs. Figure 

5.8 (b) illustrates the room-temperature electrical conductance G for the studied junctions of 

Cl-PBIs with TTF pendant group.  
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Figure 5.8 a) Comparisons between Transmission coefficients for Cl-PBIs junctions (left panel) 

with TTF and without the pendant group. b) Comparisons between the electrical conductance 

𝐺 (right panel) of Cl-PBIs molecules with varying anchor groups (pyridine and SMe) with the 

presence of the TTF pendant group and the bare junctions.  

 

Table.5.4 The averaged values of electrical conductance G at  

(𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 =  0 𝑒𝑉). 

Component log(𝐺/𝐺0)  

 Cl-PBI_Py −4.4  

 Cl-PBI_Py + TTF −3.67 

 Cl-PBI_SMe −7.2 

Cl-PBI_SMe + TTF −7.93   
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Figure 5.9 The averaged electrical conductance 𝐺 at room temperature based on Cl-

PBI linked via the pyridine anchor groups attached to gold electrodes. 

 

Table 5.4 shows logarithmic values of the electrical conductance 𝐺 calculations of two groups 

of Cl-PBIs molecules with different anchor groups (Pyridine and SMe) and in the presence of 

TTF pendant molecules. Figure 5.9 above represents theoretical calculations of the electrical 

conductance 𝐺 values of these molecules as a function of energy for the energy window at 

room temperature (300K). My findings show the values of electrical conductance G from the 

greatest to the smallest values as follows: Cl-PBI_Py > Cl-PBI_Py + TTF > Cl-PBI_SMe > 

Cl-PBI_SMe + TTF as the DFT-SIESTA calculations demonstrate at the Fermi energy (𝐸𝐹 −

𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉) of the electrodes. 
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5.2.3 Comparison of Seebeck Coefficient S of Cl-PBIs 

with TTF 

 

Figure 5.10 illustrates the Seebeck coefficients S for a general comparison of the four cases of 

Cl-PBIs where the calculated values of the Seebeck coefficient S are at the DFT-predicted 

Fermi energy. 

 

Figure 5.10. Comparison of Seebeck coefficients 𝑆 of Cl-PBIs junctions with the presence of 

TTF and the bare-Cl- PBIs. 
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Table.5.5 The values of the Seebeck coefficient S at (𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉). 

Component 𝑆(𝜇𝑉/𝐾) 

 Cl-PBI_Py 7.98 

 Cl-PBI_Py + TTF 15.64 

 Cl-PBI_SMe -42.55 

Cl-PBI_SMe + TTF 11.03 

 

 

5.4 Summary  
 

To sum up, through chapters 4 and 5, I have presented a new investigation of the electrical and 

thermoelectrical properties of single-molecule junctions formed from charge transfer 

complexes in six cases of Cl-PBIs, including two different anchoring groups (Pyridine, SMe) 

and also combined with two pendant groups (TCNE [acceptor] and TTF [donor]). In the 

beginning, I started optimising isolated molecules, then I computed their minimum binding 

energy between their dimer systems to find a favourable position to observe new electric 

features in SMJs. After that, Fano resonances were found close to the Fermi energy in the 

system where Cl-PBI+TTF combined with the pendant groups TTF, with both Pyridine and 

SMe anchors. In contrast, the Cl-PBIs +TCNE complexes show general Breit-Wigner 

behaviour in HOMO-LUMO gaps and only a very narrow Fano resonance, which is called 

‘silent’, because it has a negligible effect on the electrical conductance. 

 

By understanding these aspects theoretically and synthesising chemically the organic 

molecules, they can be controlled and expanded for self-assembled monolayer study. With the 
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variety of methods to measure the electrical properties of single-molecule junctions (SMJs), 

there are challenges in controlling the molecule connection geometries to achieve precise 

efficiency in molecular devices. Thus, all of that can lead us to remarkable results in the field 

of nanotechnologies and their applications, i.e. molecular rectifiers [8], switches [9], and 

sensors [10].  
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Chapter 6 

Tuning The Thermoelectric Properties of 

Single-Porphyrin Molecules in Single-

Molecule Wires  
 

In chapters 4 and 5, I investigated the neutral pendant molecules ‘side groups’, formed by 

charge transfer complexation to a conjugated backbone. In this chapter, I shall examine the 

effects of charged pendant groups covalently bonded to a backbone. This work is stimulated 

by a collaborative project between our theory group at Lancaster University, Prof. Harry 

Anderson’s group at the University of Oxford, which specialises in the synthesis of porphyrin 

molecules and Prof. Richard Nichol’s group at the University of Liverpool, which can measure 

single-molecule conductances. Thus, I shall investigate porphyrin molecules linked with SMe 

anchor groups to discover the effect of side groups on charge transport. In this chapter, I shall 

focus on studying the electric and thermoelectric properties of porphyrin molecules, which are 

varied by attaching different side groups and involve a charged pendant molecule.  

 

6.1 Motivation 
 

Since the beginning of the 19th century, the interest in attempts to create energy from a 

temperature gradient has increased rapidly [1]. The Seebeck effect can convert waste heat from 

industry to electricity, and the inverse process (Peltier effect) can be employed in cooling 

electronic components [2-5]. Recently, the aim has been to find high-efficiency materials by 

attempting to parameterise factors that affect the thermoelectric properties of nano-structured 
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materials [6-12]. My findings will reveal some essential features affecting the thermoelectric 

properties of nanostructures.  

 

Studying porphyrin molecules provides many advantages in nanostructure applications as they 

possess unique features and characteristics, including high chemical stability and conjugated 

structures. Furthermore, they can form metalloporphyrin molecules by inserting a metal ion 

into their aromatic backbones [13-17]. Furthermore, porphyrin is a building block for 

constructing self-assembled arrays in molecular-scale devices.  

 

6.2 Introduction 
 

In this chapter, I shall illustrate the charge transport properties of a two-terminal device formed 

from metallic electrodes attached to porphyrin molecules, which can allow electron transport 

resonances to occur close to the Fermi energy EF. By studying the thermoelectric properties at 

room temperature (~300𝐾) I aim to develop a fundamental understanding of various 

applications, such as power generation, waste heat efficiency, and cooling systems. I shall 

address a theoretical study of various scenarios of side groups linked to porphyrin molecules 

with centrally coordinated metal ions and demonstrate their electric features in single-molecule 

wires.  

Since porphyrin molecules are building blocks in nano-structure devices, they possess key 

features such as being rigid, stable, and conjugated. Porphyrins can accommodate various 

metallic ions [18-26]. Due to their rich chemical redox activity, I shall investigate porphyrin 

molecules in the presence of [PF6]
- anion. Thus, from the electric and thermoelectric features 

perspective, single-molecule wires made from porphyrins are intriguing. Therefore, applying 
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the same computational methods is worth investigating the porphyrin molecules and 

metalloporphyrins, which can affect thermoelectric phenomena in nano-scale devices [27-30]. 

 

6.3 Results and Discussion  
 

Figure 6.1. The below shows a porphyrin molecule attached to two gold electrodes. The 

Hamiltonian is extracted for the extended molecular system via the SIESTA code. In what 

follows, I set up the isolated molecules to be attached to two gold electrodes as the favourable 

optimum energetic states. Generally, I attempt to position the molecules to be connected 

perpendicularly with two identical gold electrodes at a minimum separation binding energy Eb. 

Therefore, the favourable position is the distance. 𝑑 =  2.6 Å and the angle 𝜃 ≈ 122.6𝑜 

Between the sulphur atom and the gold atom of each tip of the electrodes. In my charge transfer 

(CT) calculations. 

 

 

 

 

Figure 6.1.  An Au-porphyrin-Au wire configuration of electrons passes from a source through 

a porphyrin molecule into a drain. 
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6.3.1 Impact of Side Groups on Thermoelectric 

Performance of Free-Base Porphyrins    

 

Side groups can play a crucial role in the functionality and electronic properties of porphyrin 

molecules. Altering the side groups can affect porphyrins’ chemical stability and binding 

interactions [31] and impact their redox-activity behaviours by changing electron-

donating/accepting duality [32]. In Figure 6.2 below, there are two free-base porphyrin 

molecules consisting of an inner ring. 𝜋-systems with varying side groups. I shall consider the 

cases where porphyrin 1 possesses two side groups of (X = C3N2), whereas free-base porphyrin 

2 possesses two side groups of (X = Pyridine rings + CH3) on each edge of its backbone. Both 

porphyrins have SMe anchor groups. Thus, my aim in the following sections is to explore how 

changing the side groups can affect the thermoelectric properties of free-base porphyrins in 

molecular wires.  
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Figure 6.2.  Chemical structures of porphyrins with different side groups. (a) free-base porphyrin 

molecule. (b) Porphyrin 1 (P1) consists of side groups of (X = C3N2), (c) Porphyrin 2 (P2) consists of 

the side groups of [Pyridine rings + CH3]. 

 

6.3.2 Thermoelectric Calculations of Free-base 

Porphyrin with Side Groups of C3N2 

 

In this section, I shall demonstrate the thermoelectric properties of porphyrin molecule P1, 

which possesses side groups C3N2 as shown in Figure 6.3. Table 6.1 shows the spin-up/down 

frontier orbitals of P1, and the HOMO-LUMO levels expose identical localised states all over the 

molecule. 
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Figure 6.3.  (a) The chemical structure of the free-base porphyrin 1, (b) The optimised free-

base porphyrin P1 consists of the side groups of [X = C3N2]. 

 

Table 6.1 The spin-up/down frontier molecular orbitals of porphyrin P1 with the positive (red) and 

negative (blue) orbitals.  

MOL. Conf. HOMO-1  HOMO LUMO LUMO+1 

 

 

P1  

EF= -4.22 eV 

 

Spin up 

 

Spin up 

 

Spin up 

 

Spin up 

 

Eg= 1 eV 

 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

Figure 6.4. (a) shows the free-base porphyrin P1 molecule attached symmetrically to two gold 

electrodes linked with SMe anchor groups. Figure 6.4. (b) shows the spin-dependence of the 

transmission coefficient T(E) as a function of energy E. The figure presents the spin-dependent 

and total transmission coefficient of the free-base P1 and shows that Fano resonances occur 

close to the HOMO level, whereas the transport is LUMO-dominated at the DFT-predicted 

Fermi energy EF. Figure 6.5. (a) shows the room-temperature electrical conductance G for P1. 

Figure 6.5. (b) shows the Seebeck coefficient 𝑆, which is boosted by increasing the slope of 

(a) (b) 
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transmission coefficients 𝑇(𝐸). Thus, the zero-bias conductance for the provided geometries 

are affected by the different connection geometries. The electric thermal conductance 𝜅𝑒 values 

are shown in Figure 6.6. (c) and the electric Figure of merit 𝑍𝑇𝑒 values shown in Figure 6.5. 

(d). 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.4. (a) The electrode-molecule-electrode structure. (b) The total transmission as a 

function of energy 𝑇(𝐸) (black curve) whereas the spin-dependent is illustrated as spin up 

(dashed red curve) and the spin down (dashed blue curve) 
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Figure 6.5. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck Coefficient 

S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒. 

 

6.3.3 Thermoelectric Calculations of Free-base 

Porphyrin with Side Groups of [Pyridine Rings + CH3]  

 

In this section, I shall alter the side groups of the free-base porphyrin backbone by adding 

pyridine rings + CH3 on both edges as shown in Figure 6.6, to yield molecule P2. 
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Figure 6.6. (a) The chemical structure of the free-base porphyrin (P2), (b) The optimised free-

base porphyrin 2 consists of the side groups of [Pyridine rings + CH3]. 

 

In Table 6.2 the spin up/down frontier molecular orbitals of porphyrin P2 with the positive (red) 

and negative (blue) orbitals for P2 the HOMO levels expose localised states on the molecule 

whereas the LUMO levels exhibit a delocalised state on the backbone for the first level and a 

localised all over the molecule for LUMO+1.  

Table 6.2 The spin-up/down frontier molecular orbitals of porphyrin 2 with the positive (red) 

and negative (blue) orbitals.  

MOLECULE Conf. HOMO-1  HOMO LUMO LUMO+1 

 

 

P2 EF= -4.97 eV 
 

Spin up 

  

Spin up 

 

Spin up 

 

 Spin up 

Eg= 0.21eV 
 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

(a) (b) 
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In Figure 6.7 (a), the studied system consists of a free-base porphyrin molecule that forms a 

metal-molecule-metal junction. Plot (b) illustrates the transmission coefficient T as a function 

of E, which presents the spin-dependent and total transmission coefficient of the free-base P2. 

Fano-resonances occur close to the DFT-predicted Fermi energy EF as the transport is 

considered to be LUMO-dominated. 

   

 

 

 

 

 

 

 

 

 

Figure 6.7. (a) The electrode-molecule-electrode structure. (b) The total transmission as a 

function of energy 𝑇(𝐸) (black curve) whereas the spin-dependent is illustrated as spin up 

(dashed red curve) and the spin down (dashed blue curve). 

 

Figure 6.8 shows the thermoelectric properties of P2 attached symmetrically to two gold 

electrodes linked with SMe anchor groups. Plot (a) shows the room-temperature electrical 

conductance G for P1. Plot (b) shows the Seebeck effect 𝑆 is boosted by increasing the slope 

of transmission coefficients 𝑇(𝐸). Thus, the zero-bias conductance G for the provided 
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geometry is affected by the different connection geometries. The electric thermal conductance 

𝜅𝑒 values are shown in Figure 6.8. (c) and the electric Figure of merit 𝑍𝑇𝑒 values shown in 

panel (d).  

  

 

 

 

 

 

 

 

 

 

Figure 6.8. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck 

Coefficient S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒.  
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6.3.4 Comparisons of Thermoelectric Calculations for 

Both Free-base Porphyrins 
 

Now, I shall compare thermoelectric calculations between the free-base porphyrins to highlight 

their differences. In Table 6.3, some electronic structure calculations of P1 and P2 are shown. 

 

Table 6.3. The electronic structure calculations of the isolated free-base porphyrins. 

 

 

 

  

Figure 6.9. shows compares results for the thermoelectric properties for P1 and P2. The 

transmission coefficient T (E) as a function of energy E is shown in Figure 6.9. a, along with 

the electrical conductance G (Figure 6.9. b), the Seebeck Coefficient S (Figure 6.9. c). and (d) 

the electric thermal conductance 𝜅𝑒 and (e) the electric figure of merit 𝑍𝑇𝑒 due to electrons. 

Hence, these findings reveal the values of electrical properties as follows:  G2 < G1   and the 

ZTe 1 < ZTe 2 as shown in Table 6.2. I observe that Seebeck coefficients S (thermopower) has 

larger value 𝑆1 ≈ −141 𝜇𝑉/𝐾 for the free-base porphyrin 1 whereas for free-base porphyrin 

2 has a smaller value 𝑆2 ≈ −21.19 𝜇𝑉/𝐾  as shown in Figure 6.2. 

 

 

 

 

Molecule HOMO (eV) LUMO (eV) EF (eV) Eg (eV) 

P 1 - 4.72 - 3.72 -4.22 1 

P 2 - 5.08 - 4.87 -4.97 0.21 
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Figure 6.9. Comparisons of thermoelectric calculations for both free-base porphyrins. (a) 

Transmission coefficient 𝑇 (𝐸) as a function of energy E. (b) the electrical conductance G. (c) 

the Seebeck Coefficient S. (d) the electric thermal conductance 𝜅𝑒. (e) electric figure of merit 

𝑍𝑇𝑒.  

 

Table 6.4 Thermoelectric properties calculations of the studied free-base and metalloporphyrin 

molecules. 

Molecule Log(G/G0) S (μV K-1) Log 𝜅𝑒 

(pW/K) 

ZTe 

P1 -2.36 -141 12.55 0.2  

P2 -2.84 -21.19 12.22 0.52 
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6.3.5 Tuning Thermoelectric Properties of 

Metalloporphyrin Wires     

 

Porphyrins are regarded as high-potential building blocks in molecular devices due to their 

unique properties such as emission, absorption behaviours, and stability [33]. In this section, I 

shall address some metalloporphyrin molecules that generally contain metal atoms at the centre 

of their backbones, as shown in Figure 6.8. Therefore, metal atoms of Ni, Zn, Mg, and Co are 

embedded in the core of porphyrin molecules that will be studied due to their electronic features 

for enhancing electron transport through 𝜋-systems as shown in Figure 6.9. The aim is to study 

the thermoelectric properties of these single-molecule wires. By altering the metal atoms of the 

core of porphyrins, there is a possibility to adjust the HOMO-LUMO energy levels to be closer 

to the Fermi energy EF of the electrodes, where electron transport is expected to occur. To start 

modelling, I tested the charge transfer and spin states for the isolated metalloporphyrin 

molecules. 

 

 

 

 

 

 

Figure 6.8. Molecular structure of metalloporphyrin. 
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The isolated metalloporphyrins with all metal atoms [M= Ni, Zn, Mg, and Co] are twisted after 

making geometry optimisation as shown in Figure 6.9 below. Then I attached each 

metalloporphyrin molecule between two gold electrodes, where the equilibrium bond length 

between SMe and the gold atom of the tip is found to be 2.6 Å. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 6.9. Molecular Configurations of four metalloporphyrins. (a) Nickel porphyrin (Ni-P). (b) Zinc 

porphyrin (Zn-P). (c) Magnesium porphyrin (Mg-P). (d) Cobalt porphyrin (Co-P). 

 

Mg-P 

Ni-P Zn-P 

Co-P 

(a) (b) 

(c) (d) 
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6.3.6 Thermoelectric Calculations of Ni-Porphyrin  
 

The wavefunctions of HOMO-LUMO levels are calculated as shown in Table 6.3 below for 

both the Ni-porphyrin. In Table 6.3 for the Ni-P molecule, the HOMOs are positioned between 

-3.53 eV to -2.38 eV and the LUMOs are positioned between -2.2 eV to -1.93 eV. 

 

Table 6.3. The spin up/down and HOMO-LUMO energy levels are calculated for Ni-porphyrin.  

MOLECULE Conf. HOMO-1 HOMO LUMO LUMO+1 

 

 

Ni-P EF= -2.21 eV 
 

Spin up 

  

Spin up 

 

Spin up 

 

 Spin up 

 

 

Eg= 0.18 eV 
 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

In Figure 6.10 (a), the studied system consists of a metal atom of Ni centred on a porphyrin 

core that forms an Au-molecule-Au wire where the electron transfer occurs from the left side 

of the electrode to the right side. Plot (b) illustrates the transmission coefficient T as a function 

of E, which represents the spin-dependent and total transmission coefficient of the Ni-P, where 

Fano-resonances occurred close to the DFT-predicted Fermi energy EF as the transport is 

LUMO-dominated. 
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Figure 6.10. (a) Electrode-Nickel-porphyrin-electrode structure (left), (b) logarithmic 

transmission coefficient T(E) (right). 

 

Figure 6.11 illustrates the thermoelectric properties of Ni-P that is attached symmetrically to 

two gold electrodes linked with SMe anchor groups. Plot (a) shows the room-temperature 

electrical conductance G for Ni-P. Plot (b) shows the Seebeck effect 𝑆 is boosted by increasing 

the slope of transmission coefficients 𝑇(𝐸). Thus, the zero-bias conductance G for the provided 

geometry is affected by the different connection geometries. The electric thermal conductance 

𝜅𝑒 values are shown in plot (c) and the electric Figure of merit 𝑍𝑇𝑒 values shown in panel (d).  
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Figure 6.11. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck Coefficient 

S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒. 

 

6.3.7 Thermoelectric Calculations of Zn-Porphyrin 
 

Here, I alter the central atom by inserting Zn in the centre of the porphyrin molecule, to 

determine if the chemical features of this metal produce new features in thermoelectric 

properties in such nanowires.  Table 6.4 shows the spin up/down frontier molecular orbitals of 

Zn-P wire where the HOMOs of all Zn-porphyrin are located between about -3.43 eV to -2.43 

eV and the LUMOs are located between about -1.99 eV to -1.92 eV.   
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Table 6.4. The spin-up/down and HOMO-LUMO energy levels are calculated for Zn-

porphyrin.  

MOLECULE Conf. HOMO-1  HOME LUMO LUMO+1 

 

 

Zn-P EF= -2.21 eV 
 

Spin up 

  

Spin up 

 

Spin up 

 

 Spin up 

 

 

Eg= 0.44eV 
 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

In Figure 6.12 (a), the studied system consists of a metal atom of Zn centred on a porphyrin 

core that forms an Au-Zn-P-Au wire where the electron transfer occurs from the left side of the 

electrode to the right side. Plot (b) illustrates the transmission coefficient T as a function of E, 

which represents the spin-dependent and total transmission coefficient of the Zn-P. Fano-

resonances occur close to the DFT-predicted Fermi energy EF as the transport is considered to 

be LUMO-dominated. 
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Figure 6.12. (a) Electrode-Zinc-porphyrin-electrode structure (left), (b) logarithmic 

transmission coefficient T(E) (right).  

 

Figure 6.14 demonstrates the thermoelectric properties of Zn-P attached symmetrically to two 

gold electrodes linked with SMe anchor groups. Plot (a) shows the room-temperature electrical 

conductance G for Zn-P. Plot (b) shows the Seebeck effect 𝑆 is boosted by increasing the slope 

of transmission coefficients 𝑇(𝐸). Thus, the zero-bias conductance G for the provided 

geometry is affected by the different connection geometries. The electric thermal conductance 

𝜅𝑒 values are shown in plot (c) and the electric Figure of merit 𝑍𝑇𝑒 values shown in panel (d).  
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Figure 6.13. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck Coefficient 

S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒. 

 

6.3.8 Thermoelectric Calculations of Mg-Porphyrin 
 

To continue this study of a series of metalloporphyrins, I replaced the central atom of the 

backbone of the porphyrin’s ring and added a magnesium Mg atom to observe the change in 

the thermoelectric properties. First, I optimised the isolated molecule and calculated its 

electronic structure. Table 6.5 shows the spin-up/down molecular orbitals of Mg-P and its 
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corresponding HOMO-LUMO energy levels, where HOMO-LUMO energies range 

approximately between -3.48 to -1.92 eV.  

 

Table 6.5. The spin up/down and HOMO-LUMO energy levels are calculated for the Mg-P 

molecule.  

MOLECULE Conf. HOMO-1  HOMO LUMO LUMO+1 

 

 

Mg-P EF= -2.21 eV 
 

Spin up 

  

Spin up 

 

Spin up 

 

 Spin up 

 

 

Eg= 0.44eV 
 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

In Figure 6.14 (a), the nano-structure shows a metal atom of Mg centred on a porphyrin core 

that forms an Au-Mg-P-Au wire. Right panel (b) illustrates the transmission coefficient T as a 

function of E, which represents the spin-dependent and total transmission coefficient of the 

Mg-P, where Fano-resonances occurred close to the DFT-predicted Fermi energy EF as the 

transport is considered to be LUMO-dominated. 
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Figure 6.14. (a) Electrode-Magnesium-porphyrin-electrode structure (left), (b) logarithmic 

transmission coefficient T(E) (right). 

 

Figure 6.15 shows the thermoelectric properties of Mg-P that is attached symmetrically to two 

gold electrodes. Plot (a) shows the room-temperature electrical conductance G for Mg-P. Plot 

(b) shows the Seebeck effect 𝑆 which corresponds to the slope of transmission coefficients 

𝑇(𝐸). Thus, the zero-bias conductance G for the provided geometry is affected by the different 

connection geometries. The electric thermal conductance 𝜅𝑒 values are shown in plot (c) and 

the electric Figure of merit 𝑍𝑇𝑒 values shown in panel (d). 
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Figure 6.15. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck Coefficient 

S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒. 

 

6.3.9 Thermoelectric Calculations of Co-Porphyrin 
 

In this section, I alter the metallic atom by cobalt Co, which is centred on the core of the 

porphyrin. Table 6.6 represents the spin-up/down molecular orbitals and their HOMO-LUMO 

energies, which range between -2.76 to -1.88 eV. It can be seen clearly that spin-up molecular 

orbitals vary from spin-down orbitals due to the spin-splitting behaviour in electron transport. 
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Table 6.6. The spin-up/down orbitals and HOMO-LUMO energy levels are calculated for the 

Co-P molecule. 

MOLECULE Conf. HOMO-1  HOMO LUMO LUMO+1 

 

 

Co-P 
EF= -2.29 eV 

 

Spin up 

  

Spin up 

 

Spin up 

 

 Spin up 

 

 

Eg= 0.55eV 
 

Spin down 

 

Spin down 

 

Spin down 

 

Spin down 

 

In Figure 6.16 (a), the studied system consists of a metal atom of Co centred on a porphyrin 

core that forms an Au-Co-P-Au wire where the electron transfer occurs from the left side of the 

electrode to the right side. Plot (b) illustrates the transmission coefficient T as a function of E, 

which represents the spin-dependent and total transmission coefficient of the Co-P. Fano-

resonances occur close to the DFT-predicted Fermi energy EF as the transport is considered to 

be LUMO-dominated. 
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Figure 6.16. (a) Electrode-Cobalt-porphyrin-electrode structure (left), (b) logarithmic transmission 

coefficient T(E) (right). 

 

Figure 6.17 shows the thermoelectric properties of Co-P that is attached symmetrically to two 

gold electrodes. Plot (a) shows the room-temperature electrical conductance G for Co-P. Plot 

(b) shows the Seebeck effect 𝑆 which corresponds to the slope of transmission coefficients 

𝑇(𝐸). Thus, the zero-bias conductance G for the provided geometry is affected by the different 

connection geometries. The electric thermal conductance 𝜅𝑒 values are shown in plot (c) and 

the electric Figure of merit 𝑍𝑇𝑒 values shown in panel (d). 
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Figure 6.17. Thermoelectric calculations. (a) the electrical conductance G. (b) the Seebeck Coefficient 

S. (c) the electric thermal conductance 𝜅𝑒. (d) the electric figure of merit 𝑍𝑇𝑒. 

 

6.3.10 Comparisons of Thermoelectric Calculations  
 

Based on the DFT-SIESTA code and GOLLUM code, I calculate the electric and thermoelectric 

properties of molecular wires [34] and compare the results of the porphyrins to distinguish 

clear observations on the charge transfer behaviours. Table 6.7 illustrates electronic structure 

calculations of the isolated free-base and metalloporphyrins. Based on the spin-polarisation 

method for accuracy, the transmission functions are represented for five scenarios of porphyrin 

molecules using the DFT-SIESTA code predicted for the Fermi energy EF. The thermoelectric 
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properties are calculated including electrical conductance (G), Seebeck coefficient (S), electric 

thermal conductance (𝜅𝑒), and electric figure of merit (𝑍𝑇𝑒). 

 

Table 6.7. The electronic structure calculations of the isolated porphyrins. 

 

 

 

 

  

 

 

 

 

 

Figure 6.18 shows comparisons of thermoelectric properties for the free-base and 

metalloporphyrin wires. Plot (a) illustrates the transmission coefficients, and there are HOMO-

LUMO resonances located close 𝐸𝐹. Generally, there are Fano resonances that appear near 

(𝐸 − 𝐸𝐹
𝐷𝐹𝑇 = 0).  

 

 

Porphyrins EF (eV) Eg (eV) 

Free-base-P (Bare-P) -4.97 0.21 

Ni-P -2.21 0.18 

Zn-P -2.21 0.44 

Mg-P -2.21 0.44 

Co-P -2.29 0.55 
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Figure 6.18. Comparisons of thermoelectric properties of the free-base porphyrin (Bare) and 

metalloporphyrins [M= Ni, Zn, Mg, and Co] at room temperature (∽300K). (a) Transmission 

coefficient 𝑇 (𝐸) as a function of energy E. (b) the electrical conductance G. (c) the Seebeck 

Coefficient S. (d) the electric thermal conductance 𝜅𝑒 . (e) the electric figure of merit 𝑍𝑇𝑒.  

 

 

 

 

 

 

 

 

(a) (b) (c) 

(d) 
(e) 

-1 0 1

-6

-4

-2

0

lo
g

(G
/G

0
)

EF - EDFT
F  (eV)

 Bare

 Ni-P

 Zn-P

 Mg-P

 Co-P

-1 0 1
8

10

12

14

lo
g

 k
e
 (

p
W

/K
)

E-EDFT 
F (eV)

 Bare 

 Ni-P

 Zn-P

 Mg-P

 Co-P

-1 0 1
0

3

6

9

12

Z
T

e

E-EDFT
F (eV)

 Bare 

 Ni-P

 Zn-P

 Mg-P

 Co-P

-1 0 1

-200

-100

0

100

200

S
 (
m

V
·
K

-1
)

EF-EDFT
F  (eV)

 Bare 

 Ni-P

 Zn-P

 Mg-P

 Co-P

−1 0 1
−8

−6

−4

−2

0

lo
g

 T
(E

)

E-EDFT
F (eV)

 Bare

 Ni-P

 Zn-P

 Mg-P

 Co-P



154 
 

Table 6.8 Thermoelectric properties calculations of the studied free-base and porphyrins. 

Junction Log(G/G0) S (μV K-1) Log 𝜅𝑒 

(pW/K) 

ZTe 

Free-base 

(Bare) 

-2.84 -141 12.22 0.2  

Ni-P -2 -122.26 12.44 4.97 

Zn-P -1.79 -100.5 12.49 4.88 

Mg-P -1.78 -101.16 12.52 4.72 

Co-P -2.27 -129.27 12.14 6 

 

Table 6.8 above demonstrates the thermoelectric properties calculations of G, S, 𝜅𝑒, and 𝑍𝑇𝑒. 

The calculated values of Seebeck coefficient S are Sbare > SCo > SNi > SMg > SZn at the DFT-

predicted Fermi energy in Table 6.8.  In comparison, Figure 6.19 shows in plot (a) the electrical 

conductance G values of these studied molecules as a function of energy at the room-

temperature (∽300K), showing results from large to small as follows: Mg-P > Zn-P > Ni-P > 

Co-P > bare. For plot (b), the values of the electronic contribution to the thermal conductance 

𝜅𝑒  are as following: Mg-P > Zn-P > Ni-P > bare > Co-P. For plot (c), the values of the electric 

figure of merit 𝑍𝑇𝑒 are as following: Co-P > Ni-P > Zn-P > Mg-P > bare at the DFT-predicted 

Fermi energy (EF = 0 eV). 

 

 

 

 



155 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19. (a) The room-temperature electrical conductance G for the free-base porphyrin 

(Bare, Ni-P, Zn-P, Mg-P, and Co-P, respectively, where the quantum conductance is 𝐺0 =

2𝑒2/ℎ =  77𝜇𝑆. (b) the electric thermal conductance 𝜅𝑒.(c) the electric figure of merit 𝑍𝑇𝑒. 
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6.3.11 Comparisons of Electrical Conductance G 

Between Theoretical Calculations and Experimental 

Measurements  
 

Now, I shall compare my DFT calculations with recent experimental measurements to provide 

more insights into the values of electrical conductance (G). For comparisons, there are two 

experimental groups that I compare my results with because of some common conditions with 

my simulations. The experimental measurements of Group 1 are based on the STM-BJ method 

and investigate two metalloporphyrins of Au-NiP1-Au and Au-ZnP1-Au linked to various 

anchor groups [43], whereas the measurements of Group 2, which also utilised the STM-BJ 

technique, focus on porphyrins such as Au-TPP-Au and Au-CoTPP-Au terminated with a one-

sided amino group and the other with a porphyrin ring [44]. Table 6.9 shows a comparison 

between my theoretical values of electrical conductance and experimental measurements of 

group 1 and group 2, respectively. Figure 6.20 shows a comparison between DFT calculations 

(red circles) and experimental measurements of Group 1 (blue triangles) and Group 2 (green 

stars). Up to this point, my DFT-predicted calculations show excellent agreement with STM-

BJ measurements of free-base-porphyrin, Ni-P, Zn-P, and Co-P. 
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Table 6.9 The electrical conductance G calculations of the studied free-base and 

metalloporphyrin molecules. 

 

Molecule 

Theo. 

(DFT) 

Log(G/G0) 

Exp. 

(Group1) 

Log(G/G0) 

Exp. 

(Group2) 

Log(G/G0) 

Free-base (Bare) -2.84 -- -2.49  

Ni-P -2 -2.2  -- 

Zn-P -1.79 -2  -- 

Mg-P -1.78 -- -- 

Co-P -2.27 -- -2.58  

       Note: (--) NO experimental measurements are available. 

 

 

 

 

 

 

 

 

 

Figure 6.20. Comparisons of the electrical conductance (G) between Thermotical DFT 

calculations (red) of free-base-porphyrins (Bare) and metalloporphyrins (M= Ni, Zn, 

Mg, Co) and the excremental group 1 measurement (blue) and the excremental group 

2 measurements. 
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6.3.12 Transmission Coefficients of Porphyrin 

Molecules in the Presence of Hexafluorophosphate 

[PF 6] 
− 

 

Many researchers have investigated redox properties [34,35] and the photovoltaic features of 

metalloporphyrins [36]. In this section, I am interested in investigating porphyrin molecules 

which exhibit paramagnetic behaviour (H=1) [37,38] in the presence of [PF 6] 
− anions. If the 

results of calculating transmission coefficients close to the Fermi energy show unique 

behaviours as I modify the metalloporphyrin backbones, these will lead us to explore the 

possibility of tuning the redox activity and charge transfer (CT) complexation in porphyrin 

nano-wires. Hence, I shall examine the charge transfer (CT) of free-base porphyrin and 

metalloporphyrin molecules [M= Ni, Zn, Mg, and Co] with the presence of 

hexafluorophosphate [PF 6] 
–. Here, I position two [PF 6] 

– anions located on top of the methyl 

(CH3) on the edges of the porphyrin’s ring by attempting to study electron transport through 

the combined systems formed from the porphyrins and the hexafluorophosphate. Hence, an 

oxidation state can occur when an interaction can take place in dimer systems where the [PF 6] 
– 

anion molecule can be attractive for forming the charge transfer complexes. 

Now, the combination of the free-base-P with the presence of [PF6]
- anions is shown in Figure 

6.21 below, which shows two views of the molecular configuration of the combination of free-

base-P plus PF6
- anions. In Figure 6.22, the spin-up/down orbitals for the HOMO-LUMO 

energy levels are computed.  
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Figure 6.21. Two views configuration of free-base porphyrin with the presence of two [PF6]- 

anions. 

 

 

 

 

 

 

  

Figure 6.22. The spin up/down orbitals of HOMO-LUMO for free-base-porphyrin + edged 

[PF6
-]2. 

 

Next, I formed the combination of Ni-P with the presence of [PF6]
- anions, as shown in Figure 

6.23 below for two views of the molecular configuration of the combination of Ni-P with edged 

Bare-P + [PF6]-
2 
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PF6
-  anions. In Figure 6.24, the spin-up/down orbitals of the HOMO-LUMO energy levels are 

computed.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.23. Two views configuration complex of Ni-porphyrin with [PF6]- anions 

 

 

 

 

 

 

  

Figure 6.24. The spin up/down orbitals and HOMO-LUMO levels for Ni-porphyrin + edged 

[PF6
-]2. 

Ni-P + [PF6]-
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Figure 6.25 shows two views of the molecular configuration of the combination of Zn-P with 

edged PF6
-  anions on top of the methyl (CH3). In Figure 6.26, the spin-up/down orbitals and 

the HOMO-LUMO energy levels are computed.  

 

 

 

 

 

 

 

 

 

Figure 6.25. Two views configuration complex of Zn-porphyrin with [PF6]-
2 anions. 

 

 

 

 

 

 

 

Figure 6.26. The spin up/down orbitals and HOMO-LUMO levels for Zn-porphyrin + edged 

[PF6]-
2. 
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Then, the combination of Mg-P with the presence of two [PF6]
- anions is illustrated in Figure 

6.27, which shows two views of the molecular configuration of the combination of Mg-P with 

PF6-  anions on top of the methyl (CH3). In Figure 6.28, the spin-up/down orbitals of the 

HOMO-LUMO energy levels are computed.  

 

 

 

 

 

 

 

 

 

Figure 6.27. Two views configuration complex of Mg-porphyrin with [PF6]- anions. 

 

 

 

 

 

 

  

Figure 6.28. The spin up/down orbitals and HOMO-LUMO levels for Mg-porphyrin + edged 

[PF6
-]2. 
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Here, I combined the Co-P with the presence of [PF6]
- anions, as shown in Figure 6.29, which 

shows two views of the molecular configuration of the combination of Co-P with edged PF6
-  

anions on top of the methyl (CH3). In Figure 6.30, the spin-up/down orbitals of the HOMO-

LUMO energy levels are computed.  

 

 

 

 

 

 

 

 

Figure 6.29. Two views configuration complex of Co-porphyrin with [PF6]- anions. 

 

 

 

 

 

 

  

Figure 6.30. The spin up/down orbitals and HOMO-LUMO levels for Co-porphyrin + edged 

[PF6
-]2. 
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6.3.13 Comparisons of Transmission Coefficient 

Calculations 
 

For comparison, Table 6.10 shows the electronic structure calculations of Fermi energies EF 

and energy gaps 𝐸𝑔 of the studied molecules, obtained from DFT-SIESTA calculations for 

various scenarios of porphyrins. It can be observed that the range of the Fermi energy 𝐸𝑔  is 

between -3.89 eV to -1.09 eV, and the range of energy gap 𝐸𝑔 is between 0.09 eV to 1.33 eV.  

  

Table 6.10. The electronic structure calculations of the isolated free-base porphyrins 

and metalloporphyrins.  

Complexes 𝐸𝐹  (eV) 𝐸𝑔 (eV) 

Free-base-P + 

[PF6]-
2 

-3.98 0.93 

Ni-P + [PF6]-
2 -1.09 0.31 

Zn-P + [PF6]-
2 -1.23 0.09 

Mg-P + [PF6]-
2 -1.16 1.33 

Co-P + [PF6]-
2 -1.46 0.3 

 

 

 

 

 

 



165 
 

The transmission coefficients in Figure 6.31 demonstrate that the presence of the anions [PF6]
- 

on top of porphyrins junctions affects the electron transport behaviours. By comparing the 

transmission curves corresponding to free-base and metalloporphyrin wires with (red curves) / 

without (blue curves) anions [PF6]
-
2 at room temperature.  Fano-resonances occur for each 

scenario due to charge transfer on the porphyrin’s backbone, and PF6
- anions influence charge 

transfer behaviours of porphyrin wires [40,41].  As a result, the transmission coefficients show 

LUMO-dominant behaviours close to the DFT-predicted Fermi energy for all scenarios. Hence, 

the transmission coefficients T(E) as energy functions are calculated to distinguish unique 

features in single-molecule wires at room temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.31 Comparison of the transmission coefficient functions for porphyrin junctions with 

(blue curves) vs without (red curves) the anions [PF6]-. (a) T(E) of Free-base porphyrin (Bare-

P) junctions. (b) T(E) of Ni-porphyrins. (c) T(E) of Zn-porphyrins. (d) T(E) of Mg-porphyrins. 

(e) T(E) of Co-porphyrins. 

 

-1 0 1

-6

-3

0

lo
g

 T

E - EDFT
F  (eV)

 Bare-P

 Bare-P+[PF6]-2

-1 0 1

-6

-3

0

lo
g

 T

E - EDFT
F  (eV)

 Ni-P

 Ni-P+[PF6]-2

-1 0 1

-6

-3

0
lo

g
 T

E - EDFT
F  (eV)

 Zn-P

 Zn-P+[PF6]-2

-1 0 1

-6

-3

0

lo
g

 T

E - EDFT
F  (eV)

 Mg-P

 Mg-P+[PF6]-2

-1 0 1

-6

-3

0

lo
g

 T

E - EDFT
F  (eV)

 Co-P

 Co-P+[PF6]-2

(a) (b) (c) 

(d) (e) 



166 
 

6.4 Summary 
 

Finally, in this effort, I have investigated a new work to study thermoelectric properties in 

molecular wires and to discover the electron transfer in porphyrin molecules and their 

electronic structures. I started by altering the side groups of the free-base porphyrin backbone 

for two cases, the first is with (X = C3N2) and the second case is with [X = pyridine rings plus 

the methyl (CH3)]. Then I introduce a centre metallic ion M into the core of the porphyrins for 

the series (M = Ni, Zn, Mg, and Co), and the side groups are [X = pyridine rings plus the methyl 

group (CH3)]. For the free-base porphyrin and all metalloporphyrins, I studied their effects on 

the thermoelectric behaviours through molecular wires.  Metalloporphyrin molecules are 

unique organic molecules due to their large chemical and thermal stability, and provide strong 

absorption through the electromagnetic spectrum. As I previously illustrated the results, my 

investigations in using functionalised metal-centred candidates Ni, Zn, Mg, and Co, embodied 

in the centre of the porphyrin core. I can adjust the molecular energy states related to the Fermi 

energy of the electrodes. Next, I combined the porphyrin molecule with the presence of two 

hexafluorophosphate [PF 6] 
–   anions located on top of the methyl (CH3) of the porphyrin 

backbone. Moreover, different scenarios of porphyrin candidates are combined with two anions 

[PF6] seeking confirmation of the oxidation state. The resulting values of thermoelectric 

properties show a significant range of values, depending on the metal. I demonstrated in this 

chapter significant calculations which show results of conductance in single-molecule wires as 

follows: Mg-P > Zn-P > Ni-P > Co > bare. 
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Chapter 7 

Conclusions and Future Works 
 

7.1. Conclusions 

 

In this thesis, I have presented fundamental aspects of quantum transport by first illustrating 

computational methods, which are widely used for nano-structure systems. My interest in these 

synthesised systems is motivated by the possibility of controlling the unique features which 

occur close to the Fermi energy EF of the electrodes. To explore this possibility, this thesis 

explores the electric and thermoelectric properties of various molecular systems by using the 

density functional theory (DFT), the Green’s function method in detail. In Chapter 2, I 

introduced the formulation of the density functional theory (DFT), particularly with local 

density approximations for the exchange-correlation and the pseudopotentials used in the 

SIESTA code. Furthermore, the Klein-Bylander method was illustrated.  In Chapter 3, the 

Green’s function method was addressed, and the Landauer formula was explained, along with 

important features in the transmission coefficients, including resonances and thermoelectric 

properties.  

 

In Chapters 4 and 5, detailed simulations focused on charge transport (CT) complexes based 

on 𝜋-conjugated chlorine bisimide perylene (Cl-PBI) molecular junctions linked with various 

anchor groups (pyridine and SMe). In particular, the effects of pendant groups of 

tetracyanoethylene (TCNE) and then tetrathiafulvalene (TTF) were investigated. I also applied 

the DFT-SIESTA method to calculate thermoelectric properties. The studied molecules offer 

advantages for on/off molecular switching and sensing applications. Moreover, I showed the 
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relationship between the transmission coefficient as a function of energy and the thermopower 

effect at the DFT-predicted Fermi energy EF. My results suggested that the dimer combinations 

between the Cl-PBIs and the TTF show a Fano resonance feature close to the Fermi energy of 

gold electrodes, whereas the combinations of Cl-PBIs and the acceptor TCNE show normal 

tunnelling behaviour as for the bare junctions, with two Breit-Wigner resonances associated 

with the HOMO-LUMO levels. 

I demonstrated that varying the anchor groups (Pyridine and SMe) symmetrically connected to 

both sides of chlorine bisimide perylene Cl-PBIs and linked to two gold electrodes can affect 

the physical properties in single-molecule junctions SMJs. Furthermore, introducing the charge 

transfer (CT) complexes using the pendant molecules TCNE and TTF can provide a means to 

adjust the electron transport behaviour. It was shown that the combined system consisting of 

Cl-PBI + TTF produces Fano resonance close to Fermi energy for different anchor groups 

pyridine and SMe. Additionally, using pyridine anchor groups leads to magnitudes of Seebeck 

coefficients S ranging between [-366 to +354 μV/K] and provides higher electrical conductance 

log (G/G0) ranging between [−4.4 to −3.67]. On the other hand, SMe anchor groups lead to 

magnitudes of Seebeck coefficients S ranging between [-345 to +408 μV/K] and also provide 

smaller electrical conductance G/G0 ranging between [−7.93   to −7.2].  

 

In Chapter 6, I examined the thermoelectric properties of porphyrin molecules attached to 

gold electrodes and examined the properties of a series of metalloporphyrins, obtained by 

inserting metal atoms Ni, Zn, Mg, and Co into the core of porphyrin.  In this way, I examined 

the thermoelectric properties of a variety of metalloporphyrin derivatives. In these molecules, 

different ions are coordinated in the centre of the porphyrin core. At room temperature, I 

attempted to enable the tuning of the electric and thermal features by varying the side groups 
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of the bay area on the backbone of free-base porphyrin molecules.  Next, I investigated the 

effect of introducing PF6
- anions on top of the methyl (CH3) along the porphyrins. I found that 

the electrical conductance G increases due to the presence of these ions. 

 

In conclusion, I illustrated the main concepts of my work starting with theoretical formalisms 

and then computational calculations at single-molecule levels. Density functional theory is the 

foundation of my calculations to study quantum transport behaviours and to investigate the 

electric and thermoelectric properties in molecular systems. I have concentrated on the charge 

transfer complex in single-molecule junctions.  

 

7.2. Future Works 
 

I shall expand my current work further by including more derivatives of perylene bisimides 

(PBIs), which contain different bay-area substituents. A family consists of four symmetric PBIs 

derivatives, such as thiobutyl (S-PBI), pyrrolidinyl (Py-PBI), and tert-butyl-phenoxy (T-PBI, 

P-PBI) and also one unsymmetric derivative, such as (aPy-PBI), which are linked by thiol 

anchor groups to study their thermoelectric properties. As a next step, I shall combine the 

previous molecules with TCNE and TTF to observe any unique features in charge transfer 

complexes. 

and introducing new anchor groups (i.e., Thiol: [−SH], and Amine: [−NH2]), and varying 

electrode materials (i.e., Graphene, and Silicon [Si]) and multi-terminals, shapes and also 

including effected quantities on the single-molecule junctions such as electric and thermal 

conductance and how the effective mass can play a role in phononic calculations.  Furthermore, 

I am also interested in involving different electrodes and anchor groups and how they can affect 

changing electric and thermoelectric properties in SMJs. I shall introduce more theoretical 
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analysis techniques for future projects, such as increasing my understanding of analytical and 

physical concepts of quantum transport systems and expanding our studies for more 

thermoelectric properties.  

For future studies, I shall focus on enhancing the thermoelectric figure of merit ZT either by 

increasing the thermopower effect or reducing the relative contribution of phononic thermal 

conductance compared to electric thermal conductance from the ratio of   𝜅𝑝ℎ/𝜅𝑒 as a function 

of the temperature T and current-voltage (I/V) calculations. I shall involve more computational 

techniques, i.e., Gaussian 16, and VASP and cooperate with theoretical and experimental 

groups. One of my interesting plans is to investigate larger and stronger coupling to pendant 

groups to exploit new features by studying the CT with various donors/acceptors (i.e., 

Dibenzotetrathiafulvalene (DBTTF), Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) 

Tetracyanoquinodimethane (TCNQ), and F4TCNQ. 

The phononic contributions can play an essential role in the thermal conductance and affect the 

magnitude of the full figure of merit (ZT) at room temperature. Phonons represent atomic 

vibrations; thus, I shall elaborate on studying how electron-phonon interaction affects 

molecular device efficiency at room temperature. Thermal transport is controlled by vibrational 

behaviours of phonons in single-molecule junctions [1]. The thermal conductance can be varied 

for more rigorous calculations due to phonon interactions along a metal-molecule-metal 

junction. I can use the density functional theory (DFT) approach to calculate the phononic 

thermal properties for single-molecule junctions. Theoretical studies of thermal transport in 

nano-scale systems can provide a deep scope of understanding thermal features, which leads 

to improving thermoelectric applications. There are many opportunities for applying thermal 

features in various fields, i.e. heat pumps/ratchets [2,3], thermal modulators/rectifiers/ 

transistors [4-7].  
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