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Abstract—Despite the rapid advancements in few-shot seg-
mentation (FSS), most of existing methods in this domain are
hampered by their reliance on the limited and biased information
from only a small number of labeled samples. This limita-
tion inherently restricts their capability to achieve sufficiently
high levels of performance. To address this issue, this paper
proposes a pioneering framework named LLaFS++, which, for
the first time, applies large language models (LLMs) into FSS
and achieves notable success. LLaFS++ leverages the extensive
prior knowledge embedded by LLMs to guide the segmentation
process, effectively compensating for the limited information
contained in the few-shot labeled samples and thereby achieving
superior results. To enhance the effectiveness of the text-based
LLMs in FSS scenarios, we present several innovative and task-
specific designs within the LLaFS++ framework. Specifically,
we introduce an input instruction that allows the LLM to
directly produce segmentation results represented as polygons,
and propose a region-attribute corresponding table to simulate
the human visual system and provide multi-modal guidance. We
also synthesize pseudo samples and use curriculum learning for
pretraining to augment data and achieve better optimization,
and propose a novel inference method to mitigate potential
oversegmentation hallucinations caused by the regional guidance
information. Incorporating these designs, LLaFS++ constitutes
an effective framework that achieves state-of-the-art results on
multiple datasets including PASCAL-5i, COCO-20i, and FSS-
1000. Our superior performance showcases the remarkable
potential of applying LLMs to process few-shot vision tasks.

Index Terms—Few-shot segmentation, large language models.

I. INTRODUCTION

Image segmentation is a fundamental task in computer
vision with broad applications. The advent of deep learning
algorithms trained by expansive datasets has brought signifi-
cant progress to this domain. For example, trained on over 1
billion high-quality annotated images, the Segment Anything
Model (SAM) [29] achieves class-agnostic segmentation with
strong generalization capabilities. However, annotating pixel-
level segmentation labels on such a large scale is extremely
resource-intensive. Consequently, few-shot segmentation, a
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more resource-efficient learning paradigm that requires fewer
annotated samples, has garnered increasing interest within the
academic community and holds immense practical value.

In few-shot segmentation (FSS), a model is required to rec-
ognize and segment a novel class based on very few annotated
examples, known as the support images. Motivated by the
success of few-shot classification, the majority of FSS ap-
proaches typically adopt a support-feature-guided mechanism.
This mechanism involves extracting representative features
from the support images to assist in segmenting an unlabeled
image, referred to as the query image. Several methods have
been proposed to boost the effectiveness of this mechanism,
focusing on enhancing the extraction method of support fea-
tures [34], [57], [49] or improving how these features assist
in segmenting the query images [23], [83], [92]. Although
these methods have made some incremental improvements,
their segmentation performance is still far from satisfactory.
A critical factor contributing to this underperformance issue
is their heavy dependence on a very limited set of support
images, which can only provide a narrow, incomplete, and
possibly biased set of information. Consequently, frameworks
that depend exclusively on such restricted data are inherently
limited by informational constraints, thus incapable of achiev-
ing sufficiently high accuracy. To address this issue, some
recent methods [8], [68] employ foundation models, such as
CLIP [60] and SAM [29], to enhance FSS performance by
leveraging their pretrained image–text alignment or segmenta-
tion feature extraction abilities. However, due to the relatively
limited number of model parameters for CLIP and the lack of
class awareness of SAM, these foundation models are still
unable to provide sufficient auxiliary information and lack
inherent few-shot learning capabilities. In light of these limita-
tions, we believe that the further advancement of FSS requires
the development of an entirely new framework—one that can
leverage a richer and more comprehensive set of information
while offering enhanced few-shot learning capabilities, thus
breaking through the limitations of existing paradigms and
enabling superior performance.

In our LLaFS [103] published on CVPR 2024, we delved
into the large language models (LLMs) and found them to
be an effective foundation for developing such a brand-new
framework with more information gotten involved. Specifi-
cally, we identified two properties of LLMs that motivated
us to leverage them as a few-shot segmenter: (1) LLMs’
extensive pretraining on broad textual corpora equips them
with a vast amount of prior knowledge, which can effectively
supplement the insufficient information in support images,
thus providing enhanced guidance. (2) Furthermore, LLMs
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have been demonstrated to be effective few-shot learners
in NLP [4]. This success naturally inspires us to further
extend their capabilities to few-shot tasks in other modalities.
Drawing on these motivations, in [103], we introduced LLaFS,
an innovative framework that pioneered applying LLMs to
FSS and achieved SOTA results. Unlike some previous FSS
methods that also use language models (LMs) but only for
auxiliary purposes, such as utilizing LMs to extract text
features [94], [74], our LLaFS is the first to leverage the
more powerful large language models and directly employs
LMs to generate segmentation results. This approach elevates
LMs from a supportive position to a central role, making
them no longer work as only auxiliary tools but unlocking
their complete potential to perform complex vision tasks in
an end-to-end manner. In this way, we provide a pioneering
exploration towards creating a generalized framework that
empowers LLMs to address few-shot learning challenges in
other modalities beyond NLP.

In the research, we find that utilizing LLMs for FSS
presents a lot of significant, non-trivial challenges that must be
overcome. A primary issue is how to adapt LLMs, which are
designed to produce text-based outputs, to the requirements
of image segmentation that demands to output pixel-level
binary masks. Drawing inspiration from previous work [76],
we tackle this challenge by representing segmentation results
as the vertices of 16-sided polygons and crafting an instruction
within the LLM’s input to explicitly define this format. This
approach provides LLM with a clear hint about the task’s
definition and requirements, thereby prompting it to handle
image segmentation more effectively and robustly. Another
crucial challenge lies in how to effectively combine the visual
information from support images with the textual information
from LLMs to guide the segmentation of query images. Lever-
aging the LLMs’ strong capacity for in-context learning, we
treat support images as demonstration exemplars and introduce
a region-attribute corresponding table as a more fine-grained
multi-modal guidance. This table details specific attributes
of the target class alongside their corresponding regions on
the support image, thereby instructing the LLM to execute
segmentation in a more fine-grained and human-like manner.
Moreover, we notice the issue of training difficulty caused
by the limited data and propose a pseudo-sample generation
strategy to tackle it with a curriculum learning mechanism
to facilitate optimization. By incorporating these innovative
designs, our proposed LLaFS framework presents excellent
effectiveness in handling few-shot segmentation.

While the LLaFS framework has demonstrated impressive
performance, we still identified some limitations, which we
aim to address in this work. A primary concern arises from
the proposed region-attribute corresponding table, which is
designed to align local regions in the support image with
specific class attributes to form a fine-grained guidance. The
existing approach for aligning region-attributes in LLaFS,
which requires cropping images from local regions before
extracting their CLIP features, could potentially diminish the
model’s effectiveness, since the act of image cropping may
eliminate crucial global context information, possibly leading
to imprecise alignment and, consequently, undermining the

effectiveness of the corresponding table. To overcome this
challenge, we introduce a simpler yet more effective technique
to construct the region-attribute corresponding table. This
method not only yields superior results but also reduces the
computational cost required by the alignment process. Another
issue of the region-attribute table is that it contains many
features describing local areas of a class, such as the black eyes
of a panda. These locally-focused features could potentially
mislead the LLM into focusing on segmenting only local
regions rather than the entire object of the target class, thus
resulting in the reduced segmentation performance. To mitigate
this issue, we introduce a novel inference method within this
paper, employing a contrastive prediction strategy designed to
exclude incorrectly predicted local regions. By incorporating
these two enhancements into the existing framework, We
propose LLaFS++, a more robust and effective FSS framework
with higher performance.

We conduct extensive experiments across multiple datasets,
and the results validate the outstanding performance of LLaFS
and LLaFS++. On PASCAL-5i, COCO-20i, and FSS-1000,
LLaFS++ achieves improvements of 3.6%, 8.3%, and 3.2%
respectively compared to the previously reported best results.
Moreover, LLaFS++ outperforms LLaFS by 3.7%, 3.6%, and
0.9% on these three datasets, highlighting the effectiveness
of the proposed new techniques and improvements in this
extended work. We also carry out comprehensive ablation
studies to demonstrate the effectiveness and rationality of
each module and design within our LLaFS++ framework. In
summary, the main contributions of this paper are as follows:

• We propose LLaFS (and its extension LLaFS++), the first
framework to address few-shot segmentation using large
language models.

• We propose various innovative designs to make better
use of LLMs in few-shot segmentation, including a task-
tailored instruction, a fine-grained in-context instruction
serving as multi-modal guidance, a pseudo-sample-based
curriculum pretraining mechanism, and a novel inference
method to mitigate prediction mistakes.

• Our approach achieves state-of-the-art performance on
multiple datasets, with extensive experiments demonstrat-
ing the effectiveness of our designs.

As an extension of our previous conference paper [103], this
paper introduces significant enhancements in four key aspects.
First, we propose an improved methodology for the creation
of the region-attribute corresponding table, which not only
offers enhanced effectiveness but also requires reduced com-
putational costs. (Sec.III-C3) Second, a new inference method
is proposed to mitigate the issue identified in the original
LLaFS framework, where inaccuracies in predicting localized
regions instead of the whole object are observed. (Sec.III-F2)
Third, we conduct more comprehensive experiments includ-
ing additional datasets and more ablation studies. (Sec.IV)
Fourth, the applicability of our method is assessed across more
tasks, including few-shot object detection that extends beyond
segmentation. The excellent performance across diverse tasks
demonstrates the generalization of LLaFS++. (Sec.IV-G)
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II. RELATED WORK

A. Image Segmentation

Image segmentation is a fundamental task in the field of
computer vision. Over the last decade, deep learning has
brought significant advancements to this field, with techniques
based on neural networks showcasing outstanding achieve-
ments across various sub-domains, such as semantic segmen-
tation [7], [88], [106], [12], [36], [1], [104], [81], instance
segmentation [17], [33], [27], [79], [87], and panoptic segmen-
tation [70], [28], [10], [9], [51], [39]. A notable example is the
Deeplab series [5], [6], [7], which employs atrous convolution
to increase the size of the receptive field, enabling richer
semantic information to be captured and preserving the high-
resolution of feature maps to avoid boundary blurring. More
recently, transformer-based approaches [88], [11], [12], [24],
[91] have pushed the boundaries of segmentation performance
even further. For instance, SegFormer [88] introduces an
innovative pipeline that combines a hierarchical transformer
encoder with an MLP-based decoder. Mask2Former [11] in-
troduces masked attention to achieve faster convergence by
constraining cross-attention within predicted mask regions.
Despite remarkable results, their success heavily relies on
the extensive segmentation annotations for training across all
classes. Our research, different from the previously mentioned
methods, focuses on the task of few-shot segmentation, which
allows to segment a query image on a novel class using only a
very small number of annotated support images, thus avoiding
the huge cost for the extensive data annotation.

B. Few-Shot Segmentation

Few-shot segmentation (FSS) [75], [93], [43], [26], [47], [3],
[31], [57], [32], [13], [71], [48], [105] has gained significant
attention in recent years due to its ability to work well with
only limited data, which is highly practical in real-world
applications. [64] proposes the pioneering method in this field,
where a feature is extracted from the labeled support images
to generate a head that is then used to segment unlabeled
query images. Building upon this framework, many existing
methods [14], [31], [93], [55], [34], [23], [13], [82] adopt a
prototype-guided strategy. These techniques employ masked
average pooling (MAP) to derive global or local average
prototypes from support image features, which then guide
the segmentation of query images through various approaches
such as feature fusion [34], [31], [46], distance measurement
[49], [18], or attention-based mechanisms [59]. To avoid
information loss caused by the prototype generation process,
some more recent methods [98], [97], [73], [22], [89], [84]
do not compress features into prototypes but instead retain
the complete feature maps for per-pixel processing. For ex-
ample, [92] proposes a self-calibrated cross-attention network
with pixel-wise correlation extraction to solve the background
mismatch and foreground-background entanglement issues.
Other approaches [49], [66], [18], [90] try to extract the
relationship between support and query image features in even
greater detail. For instance, [49] proposes a hypercorrelation
squeeze network that leverages efficient 4D convolutions to
extract multi-level feature correlations. [80] formulates the

segmentation task as an in-context coloring problem to im-
prove the model’s few-shot capability. While these methods
have achieved some success, they can only leverage a limited
amount of information extracted from a very small number
of support images. Such a constraint may lead to suboptimal
performance and decreased robustness. To mitigate this issue,
[94] employs word embeddings from a language model as a
more comprehensive source of class information to aid in seg-
mentation, [8] leverages the image-text alignment capability of
CLIP [60] to enhance segmentation performance. While these
approaches introduce some enhancements, they remain limited
by the relatively weak capabilities of small language models
and lack an in-depth exploration of how to combine textual
information with support image information more effectively
for the improved guidance. In this work, we are the first to
apply LLMs to few-shot segmentation by using our carefully
designed instructions, which offer a more comprehensive and
effective multimodal guidance system. Moreover, we leverage
the LLM to directly output segmentation results rather than
merely using the features of a language model as done in [94],
[8]. This novel method introduces a brand-new paradigm for
few-shot segmentation, exploring new possibilities for using
LLMs in this research domain.

C. Large Language Models and Their Applications in Image
Segmentation

The advent of large language models (LLMs) such as GPT
[4] and Llama [72] has marked the beginning of a new era in
artificial intelligence. Thanks to their significantly increased
model parameters and training data, these LLMs contain rich
prior knowledge and can be efficiently finetuned for specific
tasks or application requirements through methods such as
prompts [44], adapters [20] and LoRA [21]. Recently, re-
searchers have started exploring visual large language models
[35], [41], [76], [67], [2], [102] to establish a unified frame-
work for multimodal data processing, aiming to override the
restriction of LLMs being solely applicable to language data.
However, most of these methods can only handle image-level
understanding tasks, such as image captioning, visual question
answering, etc., but are incapable of performing the more fine-
grained segmentation tasks. Some more recent research [30],
[62], [100], [76], [96], [61] has begun exploring how to extend
the capabilities of LLMs to the field of image segmentation.
For example, [30] proposes a large language instructed seg-
mentation assistant to produce segmentation masks by incor-
porating an additional segmentation token into the existing
vocabulary. [62] proposes an LLM-based segmentation model
with a lightweight pixel decoder and a comprehensive segmen-
tation codebook. [100] introduces a novel framework to handle
unified segmentation by first generating mask proposals and
then using LLMs to classify them. In our approach, we follow
the strategy proposed by VisionLLM [76], which empowers
LLMs to produce segmentation masks by generating the
vertices of enclosing polygons. While all of the above methods
are capable of performing image segmentation, our method
differs from them significantly since none of them is designed
specifically for few-shot segmentation. In contrast, LLaFS++
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is the first LLM-based few-shot segmentation framework with
several novel and task-tailored designs including: (a) LLM’s
inputs. Two novel instructions serving as LLM’s inputs are
proposed to extract rich information from the annotated sup-
port images in few-shot scenarios. (b) Training data. A novel
method for synthesizing pseudo samples is proposed to solve
the insufficient training data issue in few-shot segmentation.
(c) Optimization approaches. A curriculum learning strategy
is implemented to overcome slow convergence challenges.
Incorporating these novel designs, LLaFS++ constitutes a
brand-new framework that can effectively leverage information
from both the annotated images and language priors to achieve
high-quality few-shot segmentation.

D. Vision Foundation Models and Their applications for Zero-
Shot Image Segmentation

Benefiting from the expansion of data scale and the advance-
ment of computational power, vision foundation models, such
as vision-language models [60], [41] and large-scale segmenta-
tion models [29], have made rapid progress in recent years. For
example, CLIP [60] aligns text and image representations into
the same space through multimodal contrastive learning. SAM
[29] achieves highly generalized segmentation capabilities by
training on extensive segmentation datasets. These progresses
have further propelled the development of zero-shot and open-
vocabulary segmentation [40], [95], [65], [91], [101], [25],
[100], which aim to segment novel classes unseen during
training. Some methods [40], [95], [91], [101], [25] leverage
the pretrained vision-language alignment capabilities of CLIP
to enable zero-shot segmentation. For example, OVSeg [40]
segments unseen categories by aligning image features from
cropped regions with text features of class names. Open-
Vocabulary SAM [95] further improves performance by com-
bining CLIP’s alignment ability with SAM’s powerful seg-
mentation capabilities. More recently, researchers have begun
exploring the use of the more effective large language models
(LLMs) for zero-shot segmentation [65], [100]. For instance,
LLMFormer [65] enhances segmentation performance by in-
corporating LLM-generated image descriptions as additional
information. Our proposed LLaFS++ differs from these ap-
proaches by extending the setting from zero-shot to few-
shot segmentation, where additional guidance from annotated
support images can provide richer and more comprehensive
information to further improve segmentation performance. To
fully leverage the information in support images, our work
further introduces a novel instruction design incorporating
a carefully constructed region-attribute corresponding table,
which effectively enhances the foundation model’s segmenta-
tion capability and improves model performance.

III. METHOD

A. Overview

This paper aims to construct an LLM-based framework for
few-shot segmentation, i.e., to segment a query image Iq based
on Ns support images {Ins }

Ns
n=1 and their ground truth maps

{Gn
s }

Ns
n=1.1 As shown in Figure 1, the overall framework of

LLaFS++ can be divided into three key components: (1) a
feature extractor that extracts image features and generates
visual tokens; (2) a task-tailored instruction that combines
visual tokens, target categories, and task requirements to
provide task-related information and support guidance; and
(3) an LLM that predicts segmentation masks based on the
input instruction and segmentation embeddings, followed by
a refinement network to optimize the results. For the feature
extractor, we adopt the approach in Blip2 [35] by using an
image encoder followed by a Q-former and a fully-connected
layer to generate a set of visual tokens. We use a frozen ResNet
as the image encoder, which generate tokens from each input
image. The Q-former [35] further compresses the number of
such tokens and performs an initial interaction between the
visual features and the textual information of the class name.
For the instruction, we carefully design it as the combination of
two parts: segmentation task instruction (Sec.III-B) and fine-
grained in-context instruction (Sec.III-C) to provide compre-
hensive and detailed guidance. The instruction is concatenated
with a set of learnable segmentation embeddings {Pn}Nn=1

(Sec.III-D) for inputting into the LLM. For the LLM, we
employ CodeLlama [63] with 7 billion parameters that have
been finetuned through instruction tuning. Note that compared
to vanilla Llama, we empirically find that CodeLlama fine-
tuned with code generation datasets exhibits higher accuracy
and stability in generating structured information like the
segmentation result in our task. We equip CodeLlama with
LoRA for finetuning. All these components work together
within the LLaFS++ framework to achieve high-quality few-
shot segmentation.

As the input of LLM, the instruction is the most crucial
component in our framework that makes LLM possible to
handle few-shot segmentation. To provide comprehensive in-
formation, we design two instructions, namely segmentation
task instruction and fine-grained in-context instruction, to
respectively provide the LLM with detailed task definitions
and fine-grained multi-modal guidance. These two instructions
are integrated to formulate the complete instruction as shown
in Figure 1. In the following Sec.III-B and Sec.III-C, we
introduce these two instructions in detail.

B. Segmentation Task Instruction

The LLMs trained on massive text contents have gained
strong reasoning capabilities and a vast amount of world
knowledge. Language instructions have shown to be a pow-
erful tool for leveraging this knowledge and capability to
handle complex tasks [58]. To achieve better results, the
instructions need to be sufficiently clear and detailed, whereas
those using only simple terminologies such as ‘performing
image segmentation’ are too abstract for LLMs to comprehend.
Thus, we design a structured instruction to explicitly provide
more task details such as the expected input and output formats
of few-shot segmentation. Specifically, in our instruction, we
follow [76] by representing the pixel-wise segmentation output

1For simplify of illustration, we introduce LLaFS++ under the one-shot
setting. Appendix presents how to extend LLaFS++ to the multi-shot setting.
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Instruction
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…

Visual Tokens

For each object within the class [class] in an image, output coordinates of a 16-sided polygon that
encloses the object. These points should be arranged in a clockwise direction. The output should be a
tuple in the format of (c1, c2, ..., cn), where cn is the coordinates for the n-th object and its format
should be ((x1,y1),(x2,y2),…,(x16,y16)). The coordinate value should be within [image size]. To
accomplish this task, you can refer to the following properties of [class]: [class] has [attributes]. For
example, in [support image], the output should be [support ground truth], because in these regions,
[cor]1 is [att]1, [cor]2 is [att]2,…, [cor]Na is [att]Na. For image [query image], what is the output?

Large Language Model

Instruction

[query image]

[support image]

🔥

🔥

🔥

Refinement
Network

🔥
(x1,y1), …, (x16, y16)

Output
…

Polygon Embedding
𝐏! 𝐏" 𝐏# 𝐏$

❄

❄ : Frozen 🔥 : Trainable : Integration

Fig. 1. Overview of LLaFS++. The image encoder and Q-former extract image features and generate a set of visual tokens. Subsequently, a segmentation task
instruction and fine-grained in-context introduction are introduced to provide detailed and comprehensive information. These two instructions are integrated
and fed into the LLM along with a set of polygon embeddings {Pn}Nn=1 to produce the vertices coordinates of polygons that enclose the target object. The
segmentation mask represented by this polygon is processed by a refinement network to get the final result.

as a set of 16-sided polygons that enclose the target objects
[42]. Note that it is hard for LLMs to directly generate pixel-
wise segmentation masks due to LLM’s limited number of
output tokens. Our alternative solution of generating polygon
vertices provides a token-efficient method for using LLMs to
achieve pixel-level segmentation.

Furthermore, the language-focused design of LLMs poses a
challenge for their precise interpretation of visual information.
This issue is particularly severe in few-shot image segmenta-
tion, where the availability of training images is extremely
limited. To address this problem, inspired by the success of
in-context learning in NLP [50], [15], we propose a novel
strategy that encodes the support image along with its ground
truth as a visual demonstration example. This example is then
incorporated into the instruction, providing the LLM with a
clear and intuitive reference that instructs the LLM on how to
accurately segment a specific class within an image.

By incorporating these designs, we write our segmentation
task instruction as: “For each object within the class [class]
in an image, output coordinates of a 16-sided polygon that
encloses the object. These points should be arranged in a
clockwise direction. The output should be a tuple in the format
of (c1, c2, ..., cn), where cn is the coordinates for the n-th
object and its format should be ((x1,y1),(x2,y2),...,(x16,y16)).
The coordinate value should be within [image size]. For
example, for image [support image], the output should be
[support ground truth]”. Here, [support image] is the visual
token from the support image, [support ground truth] denotes
the vertex coordinates of 16-sided polygons that enclose the
support foreground regions.

C. Fine-grained In-context Instruction

1) Motivation: The above task instruction makes segment-
ing a class possible by leveraging LLM’s knowledge of
the class. In the instruction, the class to be segmented is
indicated by the [class] token, which is typically a single
noun. However, considering that LLMs are language-based
models mainly trained on text corpus, it is challenging for
them to directly align this abstract noun with an image region
that may possess a complex internal structure. To address this
issue, we drew inspiration from human brains and found that
when classifying an unseen new class, the human cognitive

[att]1: Black patches around eyes [att]2: Black ears [att]3: White and black fur [att]4: White face

A photo of [att]i

CLIP 
Image 

Encoder
𝑓

𝑡!

𝑀!
𝑒"

Region Encoding Network

La
ye

r 1

La
ye

r 2

La
ye

r 3

𝑟!

False cor ! = 𝑟!

True cor ! = 𝑁𝑜𝑛𝑒

(a)

(b)

CLIP 
Text 

Encoder

Support Image

Fig. 2. (a) Examples of similarity maps Mi computed from the support
image and class attributes. (b) Illustration of how to construct the region-
attribute corresponding table for the i-th attribute [att]i. sf refers to all pixels
in support foreground. Note that the spatial shape of f and Mi shown in this
figure is 2 × 2. This is only for the simplification of illustration but not the
actual size H ×W used in practice.

system follows a mechanism of ‘from general to detailed, from
abstract to concrete’ [85], [54]. Specifically, given an unseen
class represented by a general noun, the human brain first
decomposes it into detailed attributes based on the acquired
knowledge. For example, in the case of an unseen class
‘panda’, a person can first gather information from references
to learn about the panda’s attributes such as ‘black and white
fur’ and ‘black ears’. Subsequently, it can search the image
for concrete regions that match these abstract attributes to
determine the presence of the class.

Motivated from the above discussion, we propose a fine-
grained in-context instruction that leverages support images
to simulate such a human cognitive mechanism. Specifically,
we first instruct the LLM to extract detailed attributes of
the target class (Sec.III-C2). Subsequently, we locate regions
within support images that match these attributes and create
a corresponding table accordingly (Sec.III-C3). This table,
together with the extracted attributes, constitutes an in-context
instruction (Sec.III-C4), which is then fed into the LLM to
serve as a demonstration example that guides the LLM on
how to recognize image classes in a more human-like and
fine-grained manner. This approach effectively mitigates the
limitations of LLMs in performing segmentation tasks based
solely on generic class names. Furthermore, we also present
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What does a panda look like? Please answer in the format of: A panda has A,
B, C,...,where A,B and C are noun phrases to describe a panda.

A panda has round black ears, a stout body, a white face, a bushy tail.

[att]1: round black ears   [att]2:a stout body    [att]3:a white face
[att]4: a bushy tail 

(a)  Class Attributes Generation

Except for panda, which classes also have (round black ears, a stout body, a
white face, a bushy tail)?

Raccoon, Skunk, Polar Bear.

[a-class]1: Raccoon    [a-class]2: Skunk    [a-class]3: Polar Bear

(b) Ambiguity Detection

What does panda look different from (Raccoon, Skunk, Polar Bear)?

A panda has black and white fur, black patches around eyes.

[d-att]1: black and white fur    [d-att]2: black patches around eyes

(c) Discriminative Attributes Generation

Fig. 3. Examples of using LLM for (a) class attributes generation, (b)
ambiguity detection and (c) discriminative attributes generation.

an LLM-checking framework to refine the produced instruc-
tions (Sec.III-C5). In the following sections, we introduce the
method for generating and refining the instruction in detail.

2) Attributes Extraction: We first simulate the step of ‘from
general to detailed’ to extract class attributes. Specifically, as
shown in Figure 3(a), we construct a prompt ‘What does a
[class] look like? Please answer in the format of: A [class] has
A, B, C,..., where A, B, and C are noun phrases to describe a
[class].’, and instruct the LLM in LLaFS++ to extract phrases-
based attributes that describe the fine-grained details of this
class. These attributes are denoted as [attributes] = {[att]i}Na

i=1.
For each [att]i, we utilize ‘A photo of [att]i’ as a prompt to
extract an embedding ti from the CLIP’s text encoder. In this
way, we get {ti}Na

i=1 from {[att]i}Na
i=1.

3) Region-attribute Corresponding Table: Considering that
many attributes describe the locally regional characteristics of
a category, for example, ‘black ear’ for ‘panda’, to obtain a
more refined support guidance, we further simulate the second
step of ‘from abstract to concrete’ by identifying specific local
regions within the support image that can be aligned with
these class attributes, and then employing the alignments to
construct a fine-grained in-context demonstration example. To
implement this alignment, we introduce a simple yet effective
method. Specifically, we first feed the support image into an
enhanced CLIP image encoder proposed by [53] to produce a
feature map f ∈ RH×W×C , where H , W and C represent
the height, width, and channel number of f , respectively.
Benefiting from its patch-level contrastive pretraining [53], this
enhanced CLIP encoder excels in aligning text with specific
local image regions. We then compute the cosine similarity
between each pixel f j within f and each attribute embedding
ti to produce a similarity map Mi ∈ RH×W . As shown in
Figure 2(a), it is encouraging to observe that this similarity
map, although derived through a simple and straightforward
method without complex post-processing, already exhibits a
good level of attribute awareness, with regions corresponding
to the attribute typically exhibiting higher similarities than
the other areas. We further observe that some attributes, such
as ‘black and white fur’ for ‘panda’, describe the wide-level
properties of a class rather than specific details in local regions.

In this case, Mi can still capture the presence of such attributes
effectively, with a wide range of pixels across the entire
foreground showing a high degree of similarity.

The next challenge involves how to encode the attribute-
corresponding region captured by Mi into a format that the
LLM can receive as input. To tackle this issue, we introduce
a lightweight region encoding network (REN) designed to
convert Mi into an implicit feature. As shown in Figure 2(b),
the REN is structured with three serial transformer layers, with
the input being the concatenation of the similarity map Mi and
a learnable region embedding er. er’s hidden state ri at the
output of the transformer is utilized as a feature to represent
[att]i’s corresponding region in the support image. Note that
in the transformer, we employ masked attention [11] rather
than the vanilla self-attention to focus REN on the support
foreground area that belongs to the target class. During the
training process, REN is optimized end-to-end in sync with the
LLM. We also notice that not every attribute extracted through
Sec.III-C2 can find a corresponding region on the support
foreground, mainly due to the variations in camera angles
and instances of occlusion. To prevent introducing misleading
information, we use a simple thresholding approach to filter
out feature r calculated from these support-non-corresponding
attributes. In this way, we establish region-attribute correspon-
dence [cor]i for each attribute [att]i by:

[cor]i = None if max
j∈sf

M j
i < α else ri, (1)

where M j
i denotes the j-th pixel on Mi and sf refers to all

pixels in support foreground. α is a pre-defined threshold. The
obtained [cor]i represents regions in support image that align
with the i-th attribute. In this way, we get {[cor]i}Na

i=1 from
{[att]i}Na

i=1, which serves as a region-attribute corresponding
table that can provide fine-grained multi-modal reference.

It is crucial to highlight that the aforementioned technique
for creating the region-attribute corresponding table is simpler
yet more effective than the method utilized in LLaFS [103].
As mentioned in Sec.I, the approach used in LLaFS requires
the extraction of CLIP features from cropped images, which
compromises the region-attribute alignment accuracy due to
the loss of context information. In contrast, the improved
approach presented in this paper eliminates this need for image
cropping and achieves better performance as demonstrated by
the experimental results shown in Table VI.

4) Instruction Construction: We integrate the class at-
tributes {[att]i}Na

i=1 and corresponding table {[cor]i}Na
i=1, and

write the fine-grained in-context instruction as: “To accom-
plish this task, you can refer to the following properties of
[class]: The [class] has [attributes]. For example, in [support
image], the output should be [support ground truth], because
in these regions, [cor]1 is [att]1, [cor]2 is [att]2, ..., [cor]Na

is
[att]Na

”. Note that to prevent introducing misleading informa-
tion, only non-empty [cor]i will be included in this instruction.
By using the instruction as input, we provide the LLM with
a detailed reference regarding the attributes of the target class
and their corresponding regions in the support image. This
creates a demonstration example that simulates how the human
cognitive mechanism recognizes the support foreground as the
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target class. With such an example as reference, the LLM can
be taught how to understand and segment an image class in a
fine-grained and human-like manner.

5) Instruction Refinement: The above-introduced instruc-
tion, which is constructed by the extracted attributes
{[att]i}Na

i=1 and table {[cor]i}Na
i=1, can be directly fed into LLM

for guidance. However, we have identified potential issues that
directly combining the attributes derived from Sec.III-C2 may
introduce class ambiguities due to the shared attributes across
different classes. For example, the combination of attributes
‘wheels, windows, doors’ might be extracted for the ‘train’
class but could also refer to other classes such as ‘bus’
and ‘car’. Furthermore, since attributes not corresponding to
the support image have been filtered out through Eq.1, the
generated table {[cor]i}Na

i=1 may represent regions for only
a subset of attributes within {[att]i}Na

i=1. The combination of
these partial attributes is consequently more susceptible to
class ambiguities, and thus making the resultant instruction
to be confusing and misleading.

To alleviate the aforementioned issue, we propose an LLM-
checking framework to refine the instruction. This frame-
work identifies potential ambiguous classes for the existing
attributes, and subsequently extracts additional attributes with
higher class discrimination ability to mitigate the ambiguity
problem. Specifically, the instruction refinement is imple-
mented through the following three steps: 1) Ambiguity Detec-
tion. As shown in Figure 3(b), we instruct the LLM to identify
potential ambiguous classes in the obtained table {[cor]i}Na

i=1.
Specifically, we denote the set of all attributes with a non-
empty [cor]i as [valid-att] and ask the LLM ‘Except for
[class], which classes also have [valid-att]?’2 In this way, we
obtain a set of ambiguous classes denoted as [a-classes]={[a-
class]i}Nac

i=1 from LLM’s feedback. 2) Discriminative At-
tributes Generation. As shown in Figure 3(c), to avoid being
misled by these ambiguous classes, we use ‘What does [class]
look different from [a-classes]?’ as a text prompt, enabling the
LLM to generate attributes that are more discriminative from
the ambiguous classes. The obtained attributes {[d-att]i}Nd

i=1

are added to [attributes] for updating. 3) Table and Instruction
Refinement. Finally, using the updated attributes, we generate
a refined table by reperforming Eq.1. The updated attributes
and table are reassembled through the way in Sec.III-C4 to
obtain a refined instruction.

We found that a single execution of the three steps already
resolves ambiguities in over 92% of the instructions. While
for the residual 8%, the class ambiguities remain, resulting
in a still-ambiguous instruction after refinement. To address
this problem, we apply the three steps iteratively until the
ambiguity is completely eliminated. To achieve this goal, from
the second iteration onwards, we replace the text prompt
in the discriminative attributes generation step with ‘Apart
from [all-d-att], tell me more differences in appearance be-
tween [class] and [a-classes]’, where [all-d-att] refers to the
discriminative attributes [d-att]i obtained from all previous
iterations. This modification enables our iterative framework

2We also add a format control prompt for asking the LLM. Please see
Appendix.A-B for details.

to continuously discover more discriminative attributes and
refine the instruction accordingly. We end the iteration process
when either of two conditions is met: the LLM cannot find
any ambiguous class, or the number of iterations reaches our
predefined maximum. For efficiency, we set this maximum
to 3, in which we found 98% of the ambiguities have been
entirely eradicated.

D. Segmentation Prediction

We integrate segmentation task instruction and fine-grained
in-context instruction to formulate the complete instruction
as shown in Figure 1. With this instruction as input, the
LLM can predict the vertex coordinates of 16-sided polygons
that surround the target objects. Specifically, as shown in
Figure 1 and inspired by MaskFormer [12], we introduce N
sets of polygon embeddings {Pn}Nn=1, each consisting of 33
learnable embeddings (x1

n,y
1
n,x

2
n,y

2
n, ...,x

16
n ,y16

n ,vn). Each
Pn is concatenated with the instruction and fed into the LLM.
The LLM’s outputs for (x1

n,y
1
n,x

2
n,y

2
n, ...,x

16
n ,y16

n ) represent
the x- and y-coordinates of the polygon’s 16 vertices, and the
hidden states of vn from the LLM’s final layer are passed
through a fully connected layer fv to produce a validity
score vn. During training, we first apply bipartite matching
to align all the LLM-predicted polygons with the ground truth
mask. For polygons matched to the ground truth mask, the
corresponding vn is optimized to be as large as possible;
while for unmatched polygons, vn is optimized to be as
small as possible. Through this training process, the validity
score vn learns to reflect the likelihood that the polygon
produced by Pn can accurately represent the target object in
the query image. Please refer to Appendix.A-F for the detailed
optimization loss. Moreover, to rectify the imprecision caused
by the polygon representation of object edges, we introduce a
refinement network that comprises a pixel decoder and a mask
transformer to generate a refined segmentation mask by using
these polygons as the initial masks. Please see Appendix.A-
C for the detailed structures of this network. Note that this
refinement network is only an optional component that can
further improve performance. Excluding it from LLaFS++
and directly using the LLM-generated polygons as the final
segmentation mask is completely acceptable, and it can still
achieve the SOTA performance.

E. Curriculum Pretraining with Pseudo Samples

1) Motivation: After carefully designing the model struc-
ture and instruction format, the next challenge is how to
train LLaFS effectively to achieve high-quality segmentation
results. Previous work [41] has highlighted that the success
of LLMs typically relies on the training on extensive data.
However, due to the challenge of acquiring pixel-annotated
labels, the datasets for training in segmentation often have
a limited number of images. To mitigate this limitation, we
propose an innovative solution that generates pseudo support-
query pairs for pretraining the LLM. The LLM’s ability to
handle few-shot segmentation can thus be enhanced by seeing
more visual samples with segmentation annotations.
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Support Image Support Image Support Image

Easy Tasks Difficult Tasks
: Polygon vertices that need to be predicted.: Polygon vertices provided in the instruction.

Query Image Query Image Query Image

Beginning Stage Middle Stage Final Stage

Fig. 4. Examples of pseudo samples generated at different pretraining stages.
Foreground regions are marked by white contours. As pretraining progresses,
pseudo images have reduced intra-image foreground-background differences
and greater support-query foreground differences. Meanwhile, the number
of polygon vertex coordinates provided in the instruction decreases, while
the predicted vertex count increases. These changes gradually increase the
pretraining difficulty. (Best viewed in color)

2) Pseudo Sample Generation: Specifically, we propose
a method to generate pseudo support-query pairs with the
following three steps: 1) Pseudo foreground-background par-
tition. We first use bezier curves to generate a random contour
within a black image. The area surrounded by this contour is
considered as the foreground within the target class, while
the regions outside the contour are treated as the background.
2) Noise filling for pseudo support generation. We fill the
foreground with Gaussian noise that has a random mean value.
For background, we first randomly divide it into multiple
subregions, aiming to simulate the complex backgrounds in
real images. Each subregion is then filled with Gaussian noise
that has a random mean value different from the foreground
noise. The resulting image is utilized as the support image.
3) Pseudo query generation. We use the same approach to
generate a query image. Note that in this process, the contour
and the mean value of the foreground noise are not entirely
random but are instead adjusted according to those for creating
the support image. This is done to ensure that the foreground
regions of both the support and query images exhibit similar
contour shapes and internal characteristics, so that they can
represent the same category. Please refer to Appendix.A-D2
for more pseudo support-query generation details.

3) Curriculum Pretraining: The synthetic support-query
pairs can be directly used for pretraining. However, this
straightforward method is observed to yield a slow rate of
convergence. One potential explanation for this issue is that
the LLM, given its language-based nature, may face diffi-
culties in optimizing for a complex image processing task.
To address this issue, we propose a progressive pretraining
approach inspired by the success of curriculum learning [78],
in which we initiate the model’s pretraining with a simple task
and gradually increase the task’s difficulty until it ultimately
reaches the requirements of segmentation.

Specifically, as show in Figure 4, during pretraining, we

incrementally raise the task’s difficulty from the following
two aspects: 1) Image understanding. During pretraining, by
controlling the difference between mean values of different
filled noise, we gradually increase the difference in foreground
between the synthetic support and query, while reducing the
internal difference between foreground and background within
each image. This strategy incrementally increases the chal-
lenge for the LLM to execute few-shot guidance and distin-
guish between foreground and background areas as pretraining
progresses. 2) Polygon generation. Generating a polygon
represented by a combination of vertex coordinates is observed
to be another challenge for the LLM. Therefore, we also apply
a progressive strategy to this aspect. Specifically, instead of
pretraining the model to directly predict the coordinates of a
polygon’s all 16 vertices, we randomly provide the coordinates
of K vertices in the instruction, leaving the LLM to predict the
coordinates of the remaining 16−K vertices. During pretrain-
ing, we gradually reduce K from 15 to 0. This incremental
reduction means that the model receives fewer hints and is
required to predict more vertex coordinates as pretraining
progresses. Consequently, the pretraining difficulty gradually
increases, ultimately reaching the task of predicting all 16
vertices for segmentation. Experimental results show that this
curriculum learning approach allows the model to converge
better and achieve higher results. Please see Appendix.A-D3
for more technical details on how we increase the difficulty in
image understanding and polygon generation.

Ultimately, the model is trained on the realistic few-shot
segmentation dataset after completing the aforementioned
pretraining process. We will illustrate the detailed training
procedures in the following section.

F. Training and Inference

After introducing our innovative designs within the
LLaFS++ framework, in this section, we further elaborate
on the complete process of model training and inference
methods. Specifically, we follow previous works by using a
multi-stage training strategy (Sec.III-F1), and propose a novel
inference method to address potential hallucination issues
when executing the LLaFS++ framework (Sec.III-F2).

1) Training: Following the method of Blip2 [35], which
commences by training the Q-former independently before
jointly training it with the LLM, we train the LLaFS++ frame-
work using three stages, with distinct components targeted at
each stage. In the first stage, we freeze the LLM, pretrain the
Q-former and fully-connected layers for 100K steps (1 epoch)
with a batch size of 128 using the image captioning datasets3

and methods in Blip2 [35], with the aim of enabling the
LLM to acquire the capability to process visual images. Note
that incorporating image captioning datasets into the training
process is a strategy widely adopted by a lot of LLM-based
segmentation methods such as LISA [30] and VisionLLM
[76]. Thus, we employ the same method as well. Another
point worth mentioning is that we found models trained
directly with the original image captioning dataset exhibit
poor spatial locality awareness, which is detrimental to image

3COCO is excluded from the pretraining set to avoid test data leakage.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

(b) Correctly Predicted 
Complete Objects

(a) Wrongly Predicted 
Local Regions (c) Validity Scores for Local Regions

(d) Validity Scores for Complete Objects

Fig. 5. Illustration of the oversegmentation hallucination problems (a) and
the distribution of vn (green lines) and ṽn (purple lines) for local regions (c)
and complete objects (d). Best viewed in color.

segmentation. To address this issue, we employ a simple data
augmentation method, which adds noise to a random region
of each training image, and then modifies the image’s caption
to include description of the noisy region’s spatial location.
Training with such augmented data helps improve the spatial
awareness of the model and thus improving segmentation
performance. Please see Appendix.A-E for more details of
this augmentation method. In the second stage, we freeze
the Q-former, equip the LLM with LoRA, and pretrain the
fully-connected layers, LLM and refinement network using the
pseudo-sample-based curriculum learning method (Sec.III-E)
for 60k steps (1 epoch) with a batch size of 32. In the
third stage, we fine-tune the fully-connected layers, LLM
and refinement network on the realistic few-shot segmentation
dataset (25 epochs for PASCAL-5i and FSS-1000, 3 epochs
for COCO-20i) with a batch size of 32. The number of epochs
is set based on experimental results shown in Appendix.C6.
The loss functions are detailed in Appendix.A-F.

2) Inference with Hallucination Mitigation: During the
inference stage, when segmenting a target class, we follow the
same setting as previous methods [48], [45], [31], [92], treating
an annotated image of this class as the support image and the
test image to be segmented as the query image. We feed these
images into the LLaFS++ framework as shown in Figure 1,
using the generated polygons with validity scores vn > 0 as
the initial segmentation results and the refined mask from the
refinement network as the final results. While this straight-
forward method typically produces satisfactory outcomes, as
shown in Figure 5(a), we occasionally face a hallucination
issue where the model incorrectly segments incomplete local
regions of the target object rather than capturing its entirety.
This problem may arise from the utilization of the fine-grained
in-context instruction as described in Sec.III-C, where some
locally regional characteristics of the target class and their
corresponding local regions within the support image are input
into the LLM for guidance, which could potentially mislead
the LLM to focus on segmenting only local regions of the
target class, thus resulting in the hallucination issue. To address
this problem, we introduce a contrastive prediction approach
for model inference. Specifically, consider the LLM ϕ with L

layers; denote the first L−1 layers of the LLM as ϕ[1:L−1] and
the final layer as ϕ[L]. Within ϕ[L], we use self-attention masks
to block all hidden states of [class] tokens and [support ground
truth] tokens, thereby preventing other tokens from seeing
these tokens describing the target class’s global information. In
this way, we create a locally-biased layer denoted as ϕ̂[L]. For
the n-th polygon embedding Pn, we denote its validity score
(refer to Sec.III-D for details) computed from [ϕ[1:L−1], ϕ[L]]

as vn and that from [ϕ[1:L−1], ϕ̂[L]] as v̂n. During the inference
stage, instead of using the original vn, we calculate another
score ṽn as follows to verify the validity of the polygon:

ṽn = vn + (vn − v̂n) = 2vn − v̂n. (2)

Subsequently, polygons with ṽn < 0 are excluded. This
procedure incorporates a contrastive element (vn− v̂n) during
the inference phase, a strategy drawing inspiration from the
success of contrastive decoding [38] in NLP. Specifically,
within the LLM’s input instructions, the [class] tokens de-
note the class name, while the [support ground truth] tokens
describe the entire area belonging to the target class within
the support image. These tokens collectively represent the
holistic or global information of the target class. When such
global tokens are masked out within ϕ̂[L], the remaining
information is primarily related to the localized attributes
of the target class. Relying solely on such locally-focused
information inherently increases the validity scores of the
predicted local regions, while reducing those for polygons that
enclose the entire target object. Therefore, a higher contrastive
value (vn − v̂n) can reflect a greater possibility that the n-
th polygon represents the entire object. By combining this
contrastive element with vn and using the combined score ṽn
to assess the polygons, we can filter out those that represent
just local regions of the target object, thus mitigating the
aforementioned hallucination problem. The score distributions
shown in Figure 5 demonstrate the effectiveness of ṽn, which
shows that compared to vn, a greater number of ṽn for the
incorrectly predicted local regions fall below 0. Conversely,
for the correctly predicted complete objects, the distribution
exhibits an opposite trend. Note that our inference method does
not require adding any extra parameters; it only necessitates
a slight 3% increase in computational cost for an additional
run of the LLM’s last layer. Therefore, our approach can
enhance performance at almost zero cost, as demonstrated by
the experimental results presented in Table VI.

IV. EXPERIMENTS

A. Datasets and Metrics

We evaluate our method on three commonly used datasets:
PASCAL-5i [64], COCO-20i [55], and FSS-1000 [37]. The
PASCAL-5i dataset is comprised of images sourced from the
PASCAL VOC 2012 dataset with annotations extended by the
SDS dataset. COCO-20i is proposed in [55] and built based on
MSCOCO. Following previous work [103], [92], [48], [13], we
employ a cross-validation strategy for our experiments. Specif-
ically, we divide the total classes of each dataset into four equal
subsets, using three subsets for training and the remaining
one subset for testing in each experiment. In this way, for
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TABLE I
PERFORMANCE COMPARISON WITH OTHER METHODS ON PASCAL-5i

Backbone Method 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

ResNet50

NTRENet [45] 65.4 72.3 59.4 59.8 64.2 77.0 66.2 72.8 61.7 62.2 65.7 78.4
BAM[31] 69.0 73.6 67.6 61.1 67.8 79.7 70.6 75.1 70.8 67.2 70.9 82.2
AAFormer[84] 69.1 73.3 59.1 59.2 65.2 73.8 72.5 74.7 62.0 61.3 67.6 76.2
SSP[14] 60.5 67.8 66.4 51.0 61.4 - 67.5 72.3 75.2 62.1 69.3 -
IPMT[46] 72.8 73.7 59.2 61.6 66.8 77.1 73.1 74.7 61.6 63.4 68.2 81.4
ABCNet[83] 68.8 73.4 62.3 59.5 66.0 76.0 71.7 74.2 65.4 67.0 69.6 80.0
HDMNet [59] 71.0 75.4 68.9 62.1 69.4 - 71.3 76.2 71.3 68.5 71.8 -
MIANet[94] 68.5 75.8 67.5 63.2 68.7 79.5 70.2 77.4 70.0 68.8 71.6 82.2
MSI[52] 71.0 72.5 63.8 65.9 68.3 79.1 73.0 74.2 66.6 70.5 71.1 81.2
SCCAN[92] 68.3 72.5 66.8 59.8 66.8 77.7 72.3 74.1 69.1 65.6 70.3 81.8
AMFormer[82] 71.1 75.9 69.7 63.7 70.1 - 73.2 77.8 73.2 68.7 73.2 -
HPA[13] 67.5 72.4 65.2 56.7 65.5 76.4 71.2 73.9 68.8 63.8 69.4 81.1
BAM-final[32] 69.2 74.7 67.8 61.7 68.3 80.3 71.8 75.7 72.0 67.5 71.8 83.1
PFENet++[48] 63.3 71.0 65.9 59.6 64.9 76.8 66.1 75.0 74.1 64.3 69.9 81.1
PGMA-Net[8] 73.4 80.8 70.5 71.7 74.1 83.5 74.0 81.5 71.9 73.3 75.2 84.2
LLaFS [103] 74.2 78.8 72.3 68.5 73.5 84.8 75.9 80.1 75.8 70.7 75.6 85.3
LLaFS++ 77.8 82.1 75.8 72.9 77.2 86.7 79.7 83.6 77.9 73.8 78.8 87.7

ResNet101

NTRENet[45] 65.5 71.8 59.1 58.3 63.7 75.3 67.9 73.2 60.1 66.8 67.0 78.2
DCAMA[66] 65.4 71.4 63.2 58.3 64.6 77.6 70.7 73.7 66.8 61.9 68.3 80.8
VAT[18] 70.0 72.5 64.8 64.2 67.9 79.6 75.0 75.2 68.4 69.5 72.0 83.2
ABCNet[83] 65.3 72.9 65.0 59.3 65.6 78.5 71.4 75.0 68.2 63.1 69.4 80.8
MSI[52] 73.1 73.9 64.7 68.8 70.1 82.3 73.6 76.1 68.0 71.3 72.2 82.3
SCCAN[92] 70.9 73.9 66.8 61.7 68.3 78.5 73.1 76.4 70.3 66.1 71.5 82.1
AMFormer[82] 71.3 76.7 70.7 63.9 70.7 - 74.4 78.5 74.3 67.2 73.6 -
HPA[13] 67.2 73.1 64.3 59.8 66.1 76.6 68.3 75.2 66.4 67.8 69.4 80.4
BAM-final[32] 69.9 75.4 67.1 62.1 68.6 80.2 72.6 77.1 70.7 69.8 72.5 84.1
PFENet++[48] 63.1 72.4 63.4 62.2 65.3 75.5 67.2 76.1 75.5 67.2 71.5 82.7
PGMA-Net[8] 76.8 82.3 75.7 75.7 77.6 86.2 77.7 82.7 76.9 77.0 78.6 86.9
LLaFS 75.0 79.3 72.9 69.4 74.1 85.1 77.0 81.1 76.5 72.1 76.7 85.8
LLaFS++ 78.8 82.4 76.2 73.2 77.7 87.2 80.5 84.4 78.7 74.8 79.6 88.4

TABLE II
PERFORMANCE COMPARISON WITH OTHER METHODS ON COCO-20i .

Backbone Method 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

ResNet50

NTRENet[45] 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 38.4 40.3 69.2
BAM[31] 43.4 50.6 47.5 43.4 46.2 67.4 49.3 54.2 51.6 49.6 51.2 71.9
SSP[14] 35.5 39.6 37.9 36.7 37.4 - 40.6 47.0 45.1 43.9 44.1 -
AAFormer[84] 39.8 44.6 40.6 41.4 41.6 67.7 42.9 50.1 45.5 49.2 46.9 68.2
MM-Former[99] 40.5 47.7 45.2 43.3 44.2 - 44.0 52.4 47.4 50.0 48.4 -
IPMT[46] 41.4 45.1 45.6 40.0 43.0 - 43.5 49.7 48.7 47.9 47.5 -
ABCNet[83] 42.3 46.2 46.0 42.0 44.1 69.9 45.5 51.7 52.6 46.4 49.1 72.7
HDMNet [59] 43.8 55.3 51.6 49.4 50.0 72.2 50.6 61.6 55.7 56.0 56.0 77.7
MIANet[94] 42.5 53.0 47.8 47.4 47.7 71.5 45.8 58.2 51.3 51.9 51.7 73.1
MSI[52] 42.4 49.2 49.4 46.1 46.8 - 47.1 54.9 54.1 51.9 52.0 -
SCCAN[92] 40.4 49.7 49.6 45.6 46.3 69.9 47.2 57.2 59.2 52.1 53.9 74.2
AMFormer[82] 44.9 55.8 52.7 50.6 51.0 72.9 52.0 61.9 57.4 57.9 57.3 78.8
HPA[13] 41.0 46.9 44.3 43.2 43.8 68.3 46.2 56.2 49.2 50.4 50.5 71.4
BAM-final[32] 43.9 51.4 47.9 44.5 46.9 72.3 49.8 55.4 52.3 50.2 51.9 74.7
PFENet++[48] 40.9 46.0 42.3 40.1 42.3 65.7 47.5 53.3 47.3 46.4 48.6 70.3
LLaFS [103] 47.5 58.8 56.2 53.0 53.9 75.2 53.2 63.8 63.1 60.0 60.0 79.5
LLaFS++ 50.8 62.7 60.2 56.4 57.5 78.8 53.9 64.9 63.8 61.1 60.9 79.9

ResNet101

NTRENet[45] 38.3 40.4 39.5 38.1 39.1 67.5 42.3 44.4 44.2 41.7 43.2 69.6
SSP[14] 39.1 45.1 42.7 41.2 42.0 - 47.4 54.5 50.4 49.6 50.2 -
IPMT[46] 40.5 45.7 44.8 39.3 42.6 - 45.1 50.3 49.3 46.8 47.9 -
ABCNet[83] 36.5 35.7 34.7 31.4 34.6 59.2 40.1 40.1 39.0 35.9 38.8 62.8
MSI[52] 44.8 54.2 52.3 48.0 49.8 - 49.3 58.0 56.1 52.7 54.0 -
SCCAN[92] 42.6 51.4 50.0 48.8 48.2 69.7 49.4 61.7 61.9 55.0 57.0 74.8
AMFormer[82] 40.5 45.7 44.8 39.3 42.6 - 45.1 50.3 49.3 46.8 47.9 -
HPA[13] 43.2 50.5 45.5 46.2 46.3 68.8 49.4 58.4 52.5 50.9 52.8 74.4
BAM-final[32] 45.2 55.1 48.7 45.0 48.5 69.9 48.3 58.4 52.7 51.4 52.7 74.1
PFENet++[48] 42.0 44.1 41.0 39.4 41.6 65.4 47.3 55.1 50.1 50.1 50.7 70.9
LLaFS [103] 48.1 59.3 56.5 53.6 54.4 75.6 53.2 64.1 63.3 60.2 60.2 79.6
LLaFS++ 51.1 63.0 61.4 56.9 58.1 79.2 54.2 65.2 63.9 61.3 61.1 80.0

TABLE III
PERFORMANCE COMPARISON ON FSS-1000

Backbone Method mIoU
1-shot 5-shot

ResNet50

MSI[52] 90.0 90.6
PFENet++[48] 88.6 89.1
LLaFS[103] 92.3 92.8
LLaFS++ 93.2 93.5

ResNet101

MSI[52] 90.6 91.0
PFENet++[48] 88.6 89.2
LLaFS[103] 92.7 93.0
LLaFS++ 93.4 93.8

PASCAL-5i, we have 15 classes for training and 5 classes for
testing, and for COCO-20i, we have 60 classes for training and
20 classes for testing in each experiment. This approach results
in four sets of experimental results along with their mean result

TABLE IV
COMPARISON WITH LLM-BASED SEGMENTATION METHODS

Method PASCAL-5i COCO-20i FSS-1000
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

LISA[30] 70.2 73.7 51.9 58.0 90.5 91.1
PixelLM[62] 69.5 73.2 51.0 57.2 90.0 90.5
LLaFS[103] 74.1 76.7 54.4 60.2 92.7 93.0
LLaFS++ 77.7 79.6 58.1 61.1 93.4 93.8

for each dataset. The FSS-1000 dataset contains images of
1000 classes, of which 486 classes are new classes not present
in previous benchmarks. The overall classes in FSS-1000 are
divided into 520, 240, and 240 classes for training, validation,
and testing, respectively. Following previous methods [48], we
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report the results on the test set. We use two widely-adopted
metrics for evaluation, including mean intersection-over-union
(mIoU) and foreground-background IoU (FB-IoU).

B. Implementation Details

We set the threshold α in Eq.1 to 0.22, and the number N
of polygon embedding Pn to 15. The ground truth of polygon
vertices is obtained in polar coordinates [86]. Specifically,
starting from the object center, 16 rays are uniformly emitted at
equal angular intervals △θ = 22.5◦. The points of intersection
between these rays and the object contour are taken as the
ground truth of the polygon vertices. AdamW is used as
the optimizer with the cosine annealing schedule and an
initial learning rate of 0.0002. The model is trained on A100
GPUs. More implementation details about model structures
and training settings are presented in Appendix.B.

C. Main Results

1) Comparison with Few-shot Segmentation methods: In
this section, we compare our method with existing state-of-
the-art few-shot segmentation techniques on three datasets:
PASCAL-5i, COCO-20i, and FSS-1000, with the results pre-
sented in Table I, Table II, and Table III, respectively. To
evaluate the generalization capabilities of our approach, we
report comparative results utilizing two different backbone
scales: ResNet50 and ResNet101. All the compared methods
are advanced approaches published at top conferences (CVPR,
ICCV, etc.) or in top journals (T-PAMI, etc.) within the recent
two years. The results of the compared methods are directly
taken from their original publications. Our method displays
superior performance across most datasets and experimental
settings, consistently outperforming the existing approaches
and showing a significant enhancement over the previous
SOTA results. For instance, using the ResNet50 backbone on
the PASCAL-5i dataset, LLaFS [103] reaches an mIoU of
73.5% and an FB-IoU of 84.8%. In this paper, we introduce
LLaFS++, which incorporates additional improvements and
thus achieving an even higher mIoU of 77.2% and FB-IoU
of 86.7% in the 1-shot scenario, which surpasses LLaFS by
3.7% and 1.9%, and outperforms the previous best results by
3.1% and 3.2%, respectively. Considering the more demanding
COCO-20i dataset, which presents a bigger challenge due
to a greater number of classes and more diverse images,
our method shows even higher advantages, outperforming the
previous state-of-the-art techniques by 8.3% in mIoU and
9.3% in FB-IoU for the 1-shot scenario using the ResNet101
backbone. Furthermore, LLaFS++ also shows significant ad-
vantages on the FSS-1000 dataset, surpassing the second-best
method by 3.2% in the one-shot setting with the ResNet50
backbone. Compared to other benchmarks, FSS-1000 includes
a broader range of categories. The strong performance on this
dataset highlights the powerful category generalization ability
of LLaFS++ enabled by the extensive knowledge of LLMs.
It is worth noting that MIANet [94] and PGMA-Net [8], two
methods we compare against, also employ language models
(word2vec) or vision-language models (CLIP) to facilitate
few-shot segmentation. Our method, different from them,

TABLE V
EFFECTIVENESS OF DIFFERENT COMPONENTS IN THE LLAFS

FRAMEWORK.

Method mIoU FB-IoU

LLaFS++ 77.8 87.1

LLaFS++ w/o segmentation task instruction w/ abstract summary 73.9 84.9
LLaFS++ w/o fine-grained in-context instruction 70.2 80.6
LLaFS++ w/o refinement network 74.3 84.8
LLaFS++ w/o pseudo-sample-based curriculum pretraining 67.5 77.2

leverages the more powerful large language model (LLM)
with several innovative and task-specific designs that enhance
the LLM’s capability in addressing the few-shot segmentation
problem. Particularly, our fine-grained in-context instruction
delves deeper into how to better integrate textual and visual
information from language models and annotated images
for getting a better multimodal guidance. With these novel
designs, our method significantly outperforms MIANet and
PGMA-Net by 8.5% and 3.1% on PASCAL-5i, respectively.
Furthermore, using the ViT backbone, we compare our method
with SegGPT [80], a general in-context segmentation frame-
work, and our method still achieves superior performance
(see Appendix.C1 for details). These results demonstrate the
excellent performance of our LLaFS++ and highlight the huge
potentiality of using LLMs to tackle few-shot segmentation.

2) Comparison with LLM-based Segmentation Methods:
We further compare our method with other LLM-based seg-
mentation techniques to highlight the superior advantages of
our LLaFS++ framework. We choose two recently published
advanced algorithms from CVPR 2024 for this comparison:
LiSA [30] and PixelLM [62] and the comparative results are
shown in Table IV. Given that these methods are not originally
designed for few-shot segmentation tasks, we perform some
minor adjustments to their model structures to better suit
the task. Specifically, on top of their existing textual input,
we include support image features and support ground truth
features as additional inputs for the language models. The
support image features are obtained directly from the CLIP
encoder, while the support ground truth features are acquired
through SAM’s [29] prompt encoder. After incorporating these
changes, we retrain the altered models on few-shot segmenta-
tion datasets, allowing us to fairly evaluate their performance
against our LLaFS++ framework. As shown in Table IV, we
note that although LiSA and PixelLM also employ LLMs
with a 7B parameter size, their performance on all three
datasets is significantly worse than that of LLaFS++. This is
because our LLaFS++ contains several task-tailored designs
such as the novel instructions and pseudo-sample-based pre-
training mechanisms, which enable the LLM to handle few-
shot segmentation more effectively. The results demonstrate
the excellent performance of LLaFS++ in comparison to other
LLM-based segmentation methods. It also suggests that the
superior performance of LLaFS++ is NOT attributable only
to the use of an LLM, but is also a result of our carefully
designed, innovative, and task-tailored methods that enhance
the LLM’s ability to process few-shot segmentation.
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TABLE VI
EFFECTIVENESS OF EXTENSION COMPARED TO LLAFS

Method mIoU GFLOPs

RAA of LLaFS++ 77.8 66
RAA of LLaFS 75.8 485
‘RAA’: region-attribute alignment
method; GFLOPs represent the com-
putations for the RAA process.

Method mIoU FH

IN of LLaFS++ 77.8 3.9%
IN of LLaFS 75.0 11.8%
‘IN’: inference method; ‘FH’: the fre-
quency of oversegmentation halluci-
nations occurring in all test images.

0 10 20 30 40 50 60 70
Proportion (%)

Good

Medium

Bad Region-Attribute Alignment Result of LLaFS
Region-Attribute Alignment Result of LLaFS++

Fig. 6. Six volunteers’ average scores regarding the quality of the region-
attribute alignment results for 500 randomly sampled images.

D. Ablation Study

In this section, we perform several ablation studies to verify
the effectiveness of the proposed designs and components in
our LLaFS++. The experiments are conducted on PASCAL-5i

Fold-0 with the ResNet50 backbone and 1-shot scenario.
1) Effectiveness of Key Components: To enhance the

LLM’s capability in handling few-shot segmentation, we pro-
pose several novel designs in this work including (1) the
segmentation task instruction, (2) the fine-grained in-context
instruction, (3) the refinement network, and (4) the pseudo-
sample-based curriculum pretraining. These innovative designs
work together within our LLaFS++ framework to achieve
high-performance few-shot segmentation. To evaluate the con-
tribution of each component, we conduct a series of ablation
experiments with the results presented in Table V. We observe
that replacing the detailed segmentation task instruction with
an abstract summary ‘perform image segmentation’ decreases
the mIoU by 6.5%. Not using the other components can also
lead to a significant drop in performance, demonstrating their
importance and effectiveness. It is important to note that even
without the refinement network, directly using the polygons
outputted by the LLM as the final segmentation results still
yields quite good performance (74.3% mIoU) that outperforms
previous SOTA (71.1% mIoU) significantly.

2) Effectiveness of Extension Compared to LLaFS: Our
LLaFS++ proposed in this paper extends LLaFS [103] in
two significant aspects: (1) a better method for aligning
image regions with class attributes to build the region-attribute
corresponding table, and (2) a contrastive prediction method
for inference to mitigate hallucinations. As presented in Table
VI, discarding these enhancements and reverting to the original
methods used in LLaFS results in a significant decrease
in performance, which validates the high effectiveness of
our extended approaches. Also note that the region-attribute
alignment method used in LLaFS++ (including the process
of region encoding network REN) reduces computational load
by over 85% compared to LLaFS, since it no longer requires
extracting a CLIP feature for every cropped image. Further-
more, we conduct a more detailed evaluation. Specifically, we
randomly select 500 images from the PASCAL-5i test set, and
use the methods in LLaFS and LLaFS++ to extract the align-

TABLE VII
EFFECTIVENESS OF LARGE

LANGUAGE MODEL.

Method mIoU FB-IoU

LLaFS++ 77.8 87.1
LLaFS++ w/o LLM 62.3 73.7

LLaFS++ (CodeLlama) 77.8 87.1
LLaFS++ (Llama2) 74.3 84.5

TABLE VIII
EFFECTIVENESS OF SUPPORT

IMAGES

Tr w/ SI In w/ SI In-vocab mIoU FB-IoU

✓ ✓ ✗ 77.8 87.1
✓ ✗ ✗ 63.5 75.0
✗ ✗ ✗ 65.6 77.3
✓ ✓ ✓ 91.2 94.6
✗ ✗ ✓ 89.1 93.0

‘Tr’: training; ‘In’: inference; ‘SI’: support images. ‘In-
vocab’: the scenario where the categories in testing are the
same as the categories in training.

ment results between image regions (cropped image in LLaFS
and similarity map M in LLaFS++) and class attributes. It
is challenging to directly assess these results’ quality since
we do not have ground truth for such alignment. Thus, we
instead conduct a user study by inviting six volunteers, who are
completely unrelated to this research, to rate each test image’s
alignment result as ‘bad’, ‘medium’, or ‘good’. The average
results of the six raters are presented in Figure 6, which
indicates the significant advantages of LLaFS++ proposed in
this paper. Additionally, we also calculate the frequency of
oversegmentation hallucination occurring in all the test images
of the PASCAL-5i dataset in both LLaFS and LLaFS++.
Oversegmentation hallucination refers to the issue where the
model incorrectly segments multiple local regions of the target
object instead of capturing it as a whole (See Sec.III-F2 for
details). As shown in Table VI, using the inference method in
LLaFS++ reduces this frequency (FH) from 11.8% to 3.9%,
demonstrating the effectiveness of our approach.

3) Effectiveness of Large Language Models: With exten-
sive prior knowledge and powerful few-shot capabilities, the
large language model (LLM) contributes significantly to the
high effectiveness of our LLaFS++ framework. To validate
the importance of the LLM within our model, we conduct
an experiment by excluding the LLM from LLaFS++ and
evaluate the performance of a modified model that is composed
of the remaining parts of LLaFS++. More specifically, in
constructing this model ‘LLaFS++ w/o LLM’, we perform
some small alterations on model structures to ensure that few-
shot segmentation could be executed solely with the remaining
components (detailedly illustrated in Appendix). As shown in
Table VII, removing LLM significantly decreases mIoU by
15.5% compared to the complete LLaFS++, demonstrating the
crucial role of the LLM in ensuring the high performance
of our framework. In our method, we employ CodeLlama
instead of the vanilla Llama as the large language model.
This is because CodeLlama finetuned with code generation
datasets is more killed in generating structured information
like the segmentation result in our task. This is demonstrated
by the result presented in Table VII, which shows that the
performance of using CodeLlama is 4.4% better than Llama.

4) Effectiveness of Support Images: Based on the task
setting of few-shot segmentation, we leverage a small number
of annotated images, called support images, to provide visual
reference information for guiding the segmentation process. In
fact, LLM-based segmentation models can also perform seg-
mentation in an open-vocabulary manner, that is, to segment a
category by solely utilizing its class name but without the need
to apply any annotated support image. To evaluate the impact
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TABLE IX
ABLATION STUDY OF FINE-GRAINED IN-CONTEXT INSTRUCTION

Method mIoU FB-IoU

LLaFS++ 77.8 87.1

LLaFS++ w/o class attributes 74.2 84.8
LLaFS++ w/o region-attribute corresponding table 72.3 82.9

LLaFS++ w/o thresholding procedure in Eq.1 73.9 84.7
LLaFS++ w/o instruction refinement 74.5 85.0
LLaFS++ w/o iterative refinement 75.8 85.7

of support images on enhancing the model’s effectiveness, we
conduct experiments to compare with such an open-vocabulary
and support-image-free method, with the results presented in
Table VIII. When we keep the training schema unchanged yet
removing the support image and its ground truth mask from
the input during inference, there is an observed decrease in the
model’s mIoU by 14.3%. If these elements are also excluded
from the training phase, this gap can be reduced to 12.2% since
the training and inference inputs become aligned, but the result
is still significantly worse than the original LLaFS++. These
results demonstrate that our LLaFS++ benefits not solely from
LLM’s prior knowledge in an open-vocabulary manner but
indeed gains further improvement from the provided few-shot
samples. Moreover, we investigate a scenario within an in-
vocabulary setting, where the categories in testing are the
same as the categories in training. Concretely, we employ
all 20 classes in PASCAL-5i for training and also apply
all these classes for testing. In this scenario, LLaFS++ still
significantly outperforms the methods that do not leverage
support images, indicating that incorporating a small number
of annotated samples during evaluation can effectively enhance
model performance, even for categories that have already
been well trained with extensive training data. Such results
demonstrate the crucial role of support images within our few-
shot segmentation framework.

5) Ablation of Fine-grained In-context Instruction: The
fine-grained in-context instruction constitutes a crucial compo-
nent of our LLaFS++ framework, which combines visual infor-
mation from support images with textual cues from the LLM’s
pretrained knowledge to form a comprehensive reference that
can guide the segmentation of query images effectively. We
conduct a thorough evaluation of various components and
designs within this instruction and present the results in Table
IX. As illustrated in Sec.III-C, the fine-grained in-context
instruction is primarily made up of two parts: attributes of
the target class and a region-attribute corresponding table
derived from the support image. Table IX shows that excluding
these components can respectively decrease the mIoU by 3.6%
and 5.5%, demonstrating the importance of these reference
information in guiding the segmentation of query images.
We also evaluate the detailed designs within this instruction,
including (1) the thresholding procedure (Eq.1) to exclude
support-non-matching attributes, (2) the instruction refinement
framework to resolve class ambiguities (Sec.III-C5), and (3)
the iterative execution of this refinement. Table IX shows
that removing any of these designs will cause a significant
reduction in performance, thus demonstrating their important
contributions to enhancing model effectiveness.

TABLE X
ABLATION STUDY OF PSEUDO-SAMPLE-BASED CURRICULUM

PRETRAINING

Method mIoU FB-IoU

LLaFS++ 77.8 87.1

LLaFS++ w/o pseudo samples 67.5 77.2
LLaFS++ w/ random pseudo query generation 67.9 77.2

LLaFS++ w/o curriculum strategy 71.6 82.0
LLaFS++ w/o curriculum strategy in image understanding 75.0 85.2
LLaFS++ w/o curriculum strategy in polygon generation 73.2 83.5
LLaFS++ w/o increasing SF-QF difference 75.9 85.6
LLaFS++ w/o reducing F-B difference 75.6 85.8

LLaFS++ + curriculum polygon generation in training 78.0 87.1
‘SF’, ‘QF’, ‘F’, ‘B’ respectively refer to support foreground, query foreground,
foreground, background.

6) Ablation of Pseudo-sample-based Curriculum Pretrain-
ing: In Sec.III-E, we present a method for creating pseudo
support-query pairs to expand the training dataset for few-
shot segmentation. Additionally, we propose a curriculum
learning-based strategy to address difficulties in model training
convergence. To validate the effectiveness of these methods,
we conduct several ablation study experiments and present
the results in Table X. For pseudo sample synthesis, we
investigate two crucial aspects: (1) When the pseudo-sample-
based pretraining is excluded, we observe an mIoU drop of
10.3%. (2) When generating pseudo support-query samples,
to ensure that the support and query can reflect the same
category, the contour and the mean value of foreground noise
used to generate the query image are adjusted based on those
used for generating the support image. When this strategy
is not employed and random generation is used instead, the
mIoU decreases by 9.0%. We also evaluate the proposed
curriculum pretraining strategy that progressively increases
the pretraining tasks’ difficulty in the following aspects: (1)
image understanding, (2) polygon generation, in which the
difficulty increase of image understanding is implemented by
(a) increasing the difference between support foreground and
query foreground, and (b) reducing the difference between
foreground and background within each image. Excluding
either of these methodologies would cause a significant perfor-
mance decline, demonstrating their importance and necessity
in our framework. Beyond applying curriculum-based polygon
generation to synthetic images during the pretraining stage,
we also examine its further application to realistic data during
the training phase. We observe that such an extension does
not significantly improve performance. A possible explanation
is that the model has already acquired sufficient ability to
generate 16-vertex coordinates through curriculum pretraining
with pseudo samples, so it no longer requires the continued ap-
plication of this curriculum method in the subsequent training
stage. Therefore, we only use this strategy during pretraining.

7) Settings of Hyper-parameter α: As illustrated in
Sec.III-C3, it is observed that not every attribute extracted
for the target class can find a corresponding region in the
support foreground. To prevent the introduction of misleading
information due to this issue, we use a thresholding method
to exclude the regional features calculated from attributes
that do not correspond with the support. As illustrated in
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Fig. 7. Performance of using different values for the threshold α in Eq.1

(a) Pretraining Loss Curve (b) Training Loss Curve

Fig. 8. Pretraining (a) and training (b) loss curves in different settings.
Curriculum pretraining results in the best convergence in both pretraining
and training stages. (Best viewed in color)

Eq.1, this process is made possible by a predefined threshold
α. We experiment with different values for α to find the
optimal choice and present the results in Figure 7. It is
observed that both excessively small and large values for α
can decrease the mIoU. This might be due to the fact that
an excessively small value of α could lead to a false positive
problem, where non-matching attributes may be erroneously
classified as matching; while an excessively large value of α
could lead to a false negative issue, where matching attributes
are incorrectly deemed non-matching. Both conditions can
adversely affect the quality of the generated region-attribute
corresponding table. Based on the results shown in Figure 7,
we choose α = 0.22 as the threshold setting in our framework.

E. Loss Curves

In Sec.III-E, we introduce a curriculum-learning-based
method to accelerate the optimization convergence of our
model. To evaluate the effectiveness of this approach, we
compare the loss curves for models pretrained with and
without this curriculum learning strategy. The results presented
in Figure 8(a) indicate that without the use of curriculum
learning, the pretraining task becomes excessively challenging,
which causes the model optimization to quickly reach a bottle-
neck with difficulties in the further convergence. After utilizing
curriculum learning, this issue is significantly alleviated and
the model can continuously converge. In Figure 8(b), we
further present a comparison of the loss reduction conditions
during the training phase after using different pretraining meth-
ods: pretraining with curriculum learning, pretraining without
curriculum learning, and no pretraining at all. The model that
has not undergone any pretraining is observed to have the
lowest convergence rate, while the model pretrained with the
curriculum learning strategy shows the swiftest convergence
in the training phase, which demonstrates the effectiveness of
our proposed curriculum-based pretraining method.

(a) Image (b) Ground Truth (c) Result from 
LLaFS

(d) Result from 
LLaFS++’s LLM

(e) Result from LLaFS++’s 
refinement network

Fig. 9. Visualization of segmentation results for LLaFS and LLaFS++.

F. Visualizations of Segmentation Results

To provide an intuitive demonstration of our method’s high
performance and to illustrate the progress we have made in
this extended work, we present visualizations of segmentation
results generated by LLaFS++ and compare them with those
from LLaFS [103]. These visualization results are presented
in Figure 9, with each row from left to right showcasing
the query image, the query ground truth, the segmentation
result from LLaFS, the segmentation result from LLaFS++’s
LLM, and the segmentation result from LLaFS++’s refinement
network, respectively. A frequent error observed in the original
LLaFS is its tendency toward oversegmentation hallucination,
which refers to the model’s mistake to segment only partial
regions rather than the entirety of the target object in the
query image (illustrated in detail in Sec.III-F2). LLaFS++,
the extended version in this paper with several improvements
and new designs, shows stronger segmentation capabilities
with the more accurate segmentation outputs compared to
LLaFS. Furthermore, the issue of oversegmentation hallu-
cination is also significantly mitigated benefiting from our
newly proposed inference method. It is noteworthy that the
polygons produced by the LLaFS++’s LLM already exhibit
strong segmentation results, while the results output from
the refinement network are further refined and more precise,
particularly at the object edges. Another important observation
is that in cases where an image consists of multiple objects, our
method still demonstrates robust performance by accurately
predicting multiple polygons to enclose different objects.
These results demonstrate the excellent performance of our
LLaFS++, showcasing its high effectiveness in handling the
task of few-shot segmentation.

G. Extended Experiments

LLMs are known for their strong generalization abilities to
effectively and robustly handle different conditions, such as
different tasks, diverse input formats, and different domains,
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TABLE XI
EXPERIMENTAL RESULTS ON GENERALIZED FEW-SHOT SEGMENTATION

Method 1-shot 5-shot
mIoUb mIoUn mIoUm mIoUb mIoUn mIoUm

CAPL [69] 65.5 18.9 42.2 66.1 22.4 44.3
DIaM [16] 70.9 35.1 53.0 70.9 55.3 63.1
VP [19] 76.4 39.8 58.1 76.4 56.1 66.3
PixelLM [62] 78.6 53.5 66.1 79.1 62.6 70.9
LLaFS++ 79.8 62.7 71.3 80.2 71.4 75.8

by leveraging their extensive and diverse pre-trained knowl-
edge. This observation motivates us to investigate whether
LLaFS++, as an LLM-based segmentation model, also exhibits
such strong generalization capabilities in visual tasks. To this
end, we further conduct a series of extended experiments
on generalized few-shot segmentation (Sec.IV-G1), cross-
domain few-shot segmentation (Sec.IV-G2), weak-label few-
shot segmentation (Sec.IV-G3), and few-shot object detection
(Appendix.C7) to evaluate LLaFS++’s class generalization
ability, domain generalization ability, input format general-
ization ability, and task generalization ability, respectively.
To ensure a fair comparison with previous methods, we use
the ResNet101 backbone for few-shot object detection and
ResNet50 for other tasks.

1) Generalized Few-Shot Segmentation: Compared to the
setup adopted in this work, generalized few-shot segmentation
is a more challenging task with greater real-world application
value. It requires the trained model to not only segment
new classes with annotated samples but also segment all
the base classes that have been seen during the training
phase. To adapt our LLaFS++ for this task, we introduce
some minor modifications. Specifically, in its original form,
LLaFS++ utilizes a set of learnable polygon embeddings as
LLM’s inputs to produce segmentation results. To address
the generalized few-shot segmentation task, we split these
polygon embeddings into two groups, denoted as {P̂n} and
{P̃n}. {P̂n} is tasked with producing segmentation results
for the particular class corresponding to the support image,
whereas {P̃n} is responsible for segmenting all classes that
can be seen during the training phase. At the testing stage, we
accomplish generalized few-shot segmentation by using {P̂n}
for segmenting the novel class and {P̃n} for segmenting all
seen base classes. This modified model is retrained on the
PASCAL-5i dataset and the results are presented in Table XI.
Following previous works, we utilize three metrics—mIoUb,
mIoUn, and mIoUm—to quantify the mIoU scores for base
classes, novel classes, and the mean of mIoUb and mIoUn,
respectively. The comparative results show that LLaFS++
achieves the best performance on all three metrics. Another
important finding is that in comparison with other approaches,
the issue of bias towards the base classes is less pronounced
in our method, as indicated by the narrower margins between
metrics mIoUn and mIoUb. This mitigation of bias may be
due to our employment of a large number of class-agnostic
synthetic pseudo samples for pretraining, which allows the
model to learn a more general segmentation capability rather
than overfitting to the trained categories.

2) Cross-Domain Few-Shot Segmentation: The recently
proposed task of cross-domain few-shot segmentation focuses

TABLE XII
RESULTS ON CROSS-DOMAIN
FEW-SHOT SEGMENTATION

Method 1-shot 5-shot

Meta-Memory [77] 65.6 70.1
BAM-final [32] 69.0 71.7
IFA [56] 71.0 80.9
PGMA-Net [8] 72.4 72.8

LLaFS++ 79.6 84.3

TABLE XIII
EXPERIMENTAL RESULTS ON

WEAK LABELS

Training Testing mIoU

PM PM 77.8

PM BB 75.3
BB BB 76.5

‘PM’: pixel-level mask; ‘BB’: bound-
ing box.

on addressing the challenging domain shift problem within
few-shot segmentation. This task not only needs to segment
new, previously unseen classes as the normal few-shot segmen-
tation, but also requires the model to be able to process testing
images in the different domains from the training images.
Following previous works, we conduct experiments in the
COCO-to-PASCAL setting, where the model is trained using
the COCO-20i dataset and tested on the PASCAL-5i dataset.
Results presented in Table XII indicate that LLaFS++ achieves
the best performance. Note that we do not make any changes
to the model structure or the training method of LLaFS++
in this experiment, yet it still outperforms all comparative
methods, including both other few-shot segmentation meth-
ods like PGMA-Net [8] and those designed specifically for
cross-domain few-shot segmentation [77], [56]. This could
be attributed to the rich and general pretrained knowledge
of LLM, which enables our framework to handle different
domains effectively. These results indicate that LLaFS++ can
achieve excellent performance even in the presence of domain
shifts, thus demonstrating its high robustness and effectiveness.

3) Weak-Label Few-shot Segmentation: Annotating pixel-
level segmentation ground truth is time-consuming and labor-
intensive, whereas a weaker annotation, such as the bounding
box, is much easier to obtain. To this end, we evaluate the
effectiveness of utilizing bounding boxes as support images’
labels in our framework. Specifically, we consider the space
inside the bounding box as the foreground region, generating
a corresponding binary mask which is then input into the
LLaFS++ framework to serve as the support ground truth
mask. The results in Table XIII indicate that the original
LLaFS++ model, which is trained on the pixel-level ground
truth mask, can still maintain good performance when eval-
uated using bounding-box-based support ground truth, with
only a minor drop in mIoU by 3.5% compared to test-
ing using the pixel-level support ground truth. Moreover,
this performance gap can be further reduced to 1.3% when
LLaFS++ is retrained using bounding boxes as the support
ground truth. These results demonstrate the robustness of
LLaFS++ against annotation noise, indicating that LLaFS++
can work well even when provided with only bounding-box-
level annotations. Such adaptability is valuable for real-world
applications, offering a practical solution to reduce the burden
of detailed annotation.

V. CONCLUSION

This paper introduces LLaFS++, an extension of LLaFS, as
a novel and effective framework that leverages large language
models (LLMs) to address few-shot segmentation. To adapt
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LLMs for this visual task, we introduce a segmentation task in-
struction to provide detailed task definitions, a fine-grained in-
context instruction to simulate human cognitive mechanisms
and offer fine-grained multimodal reference information, and
a pseudo-sample-based curriculum pretraining mechanism to
augment the training samples required for instruction tuning.
Furthermore, we improve upon LLaFS by introducing a better
method for constructing in-context instructions with lower
computational cost and higher precision, as well as a novel
inference strategy to mitigate potential over-segmentation hal-
lucinations caused by regional guidance information. With
these new techniques and improvements, LLaFS++ achieves
outstanding performance, as demonstrated by extensive exper-
iments across various datasets and scenarios, where LLaFS++
not only achieves state-of-the-art results compared to previous
advanced methods, but also shows substantial improvements
over the original LLaFS (+2.1% on PASCAL-5i and +3.6% on
COCO-20i). We consider LLaFS++ a significant step forward
in leveraging LLMs to tackle few-shot challenges in computer
vision. Despite its significant success, our work still has a
limitation: LLaFS++ is designed only for image segmentation
and cannot directly handle video segmentation, which is also
crucial for many real-world applications. In the future, we
plan to extend LLaFS++ to support a broader range of input
formats, including both images and videos. Additionally, we
will explore the potential of leveraging advanced LLM tech-
niques, such as chain-of-thought reasoning and reinforcement
learning, to further enhance segmentation performance.
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