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AbstractðFractional vegetation cover (FVC) is a critical 

component of ecosystems, global climate change and the carbon 

cycle. Several FVC products have been released, the most widely 

used of which are the GLASS FVC products (including the 

GLASS-MODIS and GLASS-AVHR R FVC products). Specifically, 

the GLASS-MODIS FVC product covers the period from 2000 to 

present with a 500 m spatial resolution, whereas the 

GLASS-AVHRR FVC product is available from 1982 to present 

with a coarser spatial resolution of 5 km. For local monitoring of 

patterns of change in vegetation, however, there is a great need for 

fine spatial resolution (e.g., 500 m in this paper) and long-term 

time-series FVC datasets. To this end, we proposed to reconstruct a 

500 m, 8-day historical MODIS FVC dataset (1982ï2000) by 

making full use of the advantages of the existing GLASS-MODIS 

FVC (fine spatial resolution of 500 m) and GLASS-AVHRR FVC 

(long-term coverage from 1982 to the present) products covering 

China in this paper. The known GLASS-AVHRR FVC product 

was first used to fit the relationship between the FVC data after 

2000 and before 2000, based on a random forest (RF) model. The 

trained relationship was migrated to the GLASS-MODIS FVC 

product, that is, predicting the MODIS FVC before 2000 based on 

the input of MODIS FVC after 2000. The validation using 64 scenes 

of Landsat FVC reference data revealed that the predicted 

historical MODIS FVC dataset has a reliable accuracy with a 

correlation coefficient (CC) value of 0.84, root mean square error 

(RMSE) of 0.14, Bias of 0.04 and unbiased RMSE (ubRMSE) of 

0.12. Moreover, an accuracy evaluation in seven different regions 

in 1999 suggested that the historical MODIS FVC is closer to the 

Landsat FVC than the GEOV2 FVC product. Overall, the 500 m, 

8-day MODIS FVC dataset (1982ï2000) in China can provide 

important historical data for long-term, local monitoring of 

vegetation, which has great potential in supporting studies in a 

range of applications areas including ecology, hydrology and 

climatology. This dataset is available at 

https://doi.org/10.6084/m9.figshare.24616446.v1. 
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I. INTRODUCTION 

Vegetation plays an essential role in the global carbon cycle 

by absorbing carbon dioxide from the atmosphere in the form of 

carbohydrates through photosynthesis and fixing it in terrestrial 

ecosystems [1-4], which can protect terrestrial ecosystems by 

regulating climate, conserving water and preventing soil erosion 

[5-7]. Moreover, vegetation is an effective way to alleviate the 

urban heat island (UHI) effect by decreasing the temperature 

through evapotranspiration [8]. Therefore, monitoring 

vegetation dynamics has become an important topic in 

ecological and environmental assessments. Fractional 

vegetation cover (FVC) is an important indicator of surface 

vegetation conditions and is defined as the proportion of the 

vertical projection area of vegetation canopy (including 

vegetation components such as leaves, stems and branches) per 

unit area [9]. FVC is also a key factor in transpiration, 

photosynthesis, global climate change and other terrestrial 

processes and climate patterns, and it has been used widely in 

applications such as agriculture, forestry, drought monitoring 

and related fields [10], [11]. 

Remote sensing is the main tool used to estimate FVC at a 

large scale and has the advantages of a large monitoring range 

(e.g., global coverage) and regular revisit frequency. Generally, 

the FVC extracted by remote sensing technology refers to green 

vegetation cover. Currently, there are three classical methods for 

estimating FVC [12]. First, empirical methods construct the 

relationship between true FVC and vegetation index [13]. The 

methods can be divided into linear and nonlinear regression. 

Secondly, physical methods aim to establish the physical 

relationships between FVC and the spectral reflectance of the 

vegetation canopy, such as via a radiative transfer model [14] 

and geometric-optical model. For example, as a widely used 

radiative transfer model, PROSAIL is composed of the leaf 

optical properties model PROSPECT [15] and the canopy 

bidirectional reflectance model SAIL. The vegetation canopy 

reflectance and the corresponding FVC simulated based on the 

PROSAIL model can be used as training data to train a learning 

model, and then the learning model can be applied to estimate 

FVC from satellite observations. Finally, spectral unmixing 

methods assume that remote sensing image pixels contain 

different surface feature information [16]. In this case, the linear 

spectral mixture model (LSMM) has been the most widely used 

choice [17], [18]. Owing to the complexity of endmember 

extraction, several machine learning methods were developed 

recently [19], [20]. 

Up to now, several FVC products have been published, 

including the ENVISAT [21], GEOV [22], MuSyQ [23] and 

https://doi.org/10.6084/m9.figshare.24616446.v1
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GLASS FVC products [12], [24]. Information regarding the 

sensors, resolution and available time for these products is listed 

in Table 1. Amongst them, the GLASS FVC is a widely used 

product, due to the advantages in terms of spatial resolution (i.e., 

500 m for MODIS) or temporal coverage (i.e., from 1982 to the 

present for AVHRR). Originally, the GLASS FVC product was 

derived from 500 m moderate resolution imaging 

spectroradiometer (MODIS) data (denoted as the 

GLASS-MODIS FVC product) using the general regression 

neural networks (GRNNs) approach [25], [26], where Thematic 

Mapper (TM) and Enhanced Thematic Mapper plus (ETM+) 

data were used as labels to construct training samples [12]. 

Considering that the computational efficiency of GRNNs was 

unsatisfactory for long-term products, alternative algorithms 

were considered in later studies, such as the multivariate 

adaptive regression splines (MARS) [27-29]. Generally, the 500 

m GLASS-MODIS FVC product can provide more detailed 

spatial information than other FVC products at kilometer 

resolution. However, as MODIS surface reflectance data were 

acquired after 2000, GLASS-MODIS FVC product data are only 

available from 2000 to the present. That is, a long-term 

time-series FVC product that extends to before 2000 is not 

available. Therefore, to further expand the temporal coverage of 

GLASS FVC, a GLASS FVC product derived from advanced 

very high resolution radiometer (AVHRR) data (denoted as the 

GLASS-AVHRR FVC product) was developed, where the 

relation between the GLASS-MODIS FVC product and the 

AVHRR reflectance data was identified in the training process 

[24]. As the AVHRR data have been available from 1982, the 

GLASS-AVHRR FVC product can span from 1982 to the 

present, which is generally longer than other FVC products at 

the global scale. 

 
Table 1. Information on some FVC products. 

Product name Sensor 
Spatial 

resolution 

Temporal 

resolution 
Available time 

ENVISAT MERIS 1.2 km 10-day 2002-2012 

GEOV 
VGT 1 km 10-day 1999-2020 

https://land.copernicus.eu/global/products/fcover 

MuSyQ 
MODIS, FY-3 1 km 5-day 2010-now 

http://www.doi.org/10.11922/sciencedb.j00001.00266 

GLASS FVC 

AVHRR 5 km 8-day 1982-now 

http://www.glass.umd.edu/FVC/AVHRR/ 

MODIS 500 m 8-day 2000-now 

http://www.glass.umd.edu/FVC/MODIS/500m/ 

 

The GLASS-MODIS FVC product, with a 500 m spatial 

resolution and an 8-day temporal resolution, has good spatial 

and temporal continuity characteristics as well as satisfactory 

accuracy at the global scale. Therefore, it has been used as 

ancillary data in conjunction with other data types for vegetation 

change monitoring and downscaling. For example, Mu et al. [30] 

used the GLASS-MODIS FVC product from 2001ï2018 to 

analyze the vegetation change trend in China and quantified the 

CO2, temperature, shortwave radiation, precipitation, and land 

cover change effects on changes in vegetation cover using a 

generalized linear model. Hu et al. [31] used the 

GLASS-MODIS FVC product as a fine spatial resolution 

independent variable to assist in downscaling soil moisture data 

in the Tibetan Plateau region. Therefore, the GLASS-MODIS 

FVC product at fine spatial resolution provides important data 

supporting a wider range of researches. 

As mentioned earlier, 500 m FVC data are absent before 2000. 

Thus, presently, the existing GLASS-MODIS FVC product 

cannot satisfy the requirement for long time-series vegetation 

monitoring at fine spatial resolution, and it would be of great 

interest to extend the time span of the GLASS-MODIS FVC 

product at 500 m spatial resolution. For existing FVC products, 

the GLASS-AVHRR FVC has the longest historical time span 

(i.e., beginning from 1982). Consequently, the GLASS-AVHRR 

FVC could be used as base data to extend the temporal length of 

the GLASS-MODIS FVC back to 1982. In contrast to some 

historical, coarse spatial resolution FVC data (e.g., 

GLASS-AVHRR FVC and GEOV), the produced 500 m 

historical FVC data would provide more refined and abundant 

spatial information. Moreover, based on these advantages, the 

constructed data will contribute to vegetation change trend 

analysis over a longer period and can also be employed to study 

vegetation-climate interactions and the relationships between 

ecosystems over historical periods. 

Currently, most spatio-temporal reconstruction methods aim 

to fill missing data using partial available data that are spatially 

adjacent (known as gap filling), which is essentially an 

interpolation task. However, this task is substantially different 

from the task of reconstructing completely missing data (i.e., an 

extrapolation task). In this paper, the 500 m historical MODIS 

FVC data to be predicted is completely missing at the time of 

interest. Thus, the gap filling methods are not applicable to the 

reconstruction task in this paper. 

In this paper, we reconstructed a 500 m, 8-day historical 

MODIS FVC dataset from 1982ï2000 in China, based on the 

GLASS-MODIS FVC with fine spatial resolution and 

GLASS-AVHRR FVC with a longer period (from 1982 to the 

present). First, a training model was constructed using the 

GLASS-AVHRR FVC product at different times in China, 

based on the assumption that the FVC temporal change pattern 

in the GLASS-AVHRR FVC product is similar to that of the 

GLASS-MODIS FVC product. Specifically, the relation 

between the GLASS-AVHRR FVC data after 2000 (i.e., input) 

and GLASS-AVHRR FVC data at any time within 1982ï2000 

(i.e., label) was fitted using a random forest (RF) model. Then, 

the trained RF model was applied to estimate the historical 500 

m MODIS FVC dataset from 1982ï2000, with the 

GLASS-MODIS FVC after 2000 as input. The accuracy of the 

estimated 500 m, 8-day FVC data from 1982 to 2000 was 

evaluated by referring to Landsat FVC data. The reconstructed 

FVC dataset not only maintains the fine spatial resolution of the 

GLASS-MODIS FVC product, but also further extends the 

temporal length (i.e., from 1982). Thus, the reconstructed 500 m, 

8-day MODIS FVC dataset (1982ï2000) can provide important 

sources for long-term, local monitoring of vegetation, which can 

support studies in a range of applications areas including 

ecology, hydrology and climatology. 

The remainder of this paper is organized as follows: Section II  

introduces the used data, including the GLASS-MODIS and 
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GLASS-AVHRR FVC products and Landsat data. Workflow 

details for reconstructing the historical MODIS FVC dataset in 

China are elaborated in Section III . Section IV  presents 

validation of the reconstructed FVC results and the 

corresponding spatio-temporal analysis. Section V discusses 

further issues with the produced FVC dataset, including FVC 

change analysis, advantages in spatial resolution and the 

handling of uncertainty. Finally, Section  concludes the paper. 

II. DATA  

A. GLASS-MODIS FVC product 

The GLASS product suite [32] provides global MODIS FVC 

data (i.e., GLASS-MODIS FVC) with an 8-day temporal 

resolution and a 500 m spatial resolution [9]. The 

GLASS-MODIS FVC product was generated using a machine 

learning method applied to the MODIS surface reflectance data 

(i.e., MOD09A1), where the MARS model was chosen as the 

most applicable algorithm compared with the other three models 

[27]. Landsat data from global samples were used as labels for 

the training samples. Direct validation using 44 ground 

measurements from the Validation of Land European Remote 

Sensing Instruments (VALERI) sites revealed that the 

GLASS-MODIS FVC product trained by MARS has a reliable 

performance for estimating FVC (R
2
=0.836, root mean square 

error (RMSE)=0.149). Considering the MODIS surface 

reflectance data were acquired from 24 February 2000, the 

corresponding GLASS-MODIS FVC product is not available 

before 2000. This paper aimed to reconstruct the historical 

MODIS FVC dataset for China from 1982ï2000. The 

GLASS-MODIS FVC product was downloaded from 

http://www.glass.umd.edu/FVC/MODIS/500m/. 

B. GLASS-AVHRR FVC product 

The GLASS-AVHRR FVC product is available as a GLASS 

product suite with a 5 km spatial resolution and 8-day temporal 

resolution. Jia et al. [24] used the GLASS-MODIS FVC product 

to generate a long-term GLASS FVC product from AVHRR 

data dating back to 1982. More precisely, the AVHRR surface 

reflectance data [33], including the red and near-infrared bands, 

were used as input data and the corresponding GLASS-MODIS 

FVC product (reprojected to 5 km) was used as a label for 

training samples in training the MARS model. Based on the 

trained model, the 5 km FVC product starting in 1982 was 

estimated using AVHRR reflectance data as input. To ensure 

consistency with the GLASS-MODIS FVC results, the AVHRR 

FVC results were corrected linearly using the GLASS-MODIS 

FVC product. Direct validation of the ground measurements 

demonstrated the reliability of the GLASS-AVHRR FVC 

product (R
2
=0.834, RMSE=0.145). Furthermore, compared to 

the GLASS-MODIS FVC product from 2013, satisfactory 

spatial and temporal consistencies were found between the two 

products. The data can be freely downloaded from 

http://www.glass.umd.edu/FVC/AVHRR/. 

C. Landsat data 

The Landsat-5 TM reflectance data, which can be acquired 

from Earth Explorer (https://earthexplorer.usgs.gov/), were used 

to validate the estimated historical MODIS FVC results in this 

paper. The spatial and temporal resolution of Landsat data are 30 

m and 16-day, respectively. To match by location, the 

GLASS-MODIS and GLASS-AVHRR FVCs and Landsat data 

were unified into a single Geographic Coordinate System (i.e., 

WGS84). The reference FVC data at 500 m spatial resolution 

were derived by applying the dimidiate pixel model to the 

Landsat data. Further details are provided in Section -D. 

 

 

 
Fig. 1. Flowchart showing generation of historical MODIS FVC in China from 1982ï2000. 
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Fig. 2. The GLASS-AVHRR FVC (black line) and GLASS-MODIS FVC (red line) products temporal curves during 2002ï2005 at three different geographical 

locations in China. (a) Lat: 26Á12ôN, Lon: 102Á24ôE; (b) Lat: 33Á46ôN, Lon: 115Á25ôE; (c) Lat: 43Á31ôN, Lon: 129Á19ôE. 

 

 
Fig. 3. The relation (in terms of three indicators) between the FVC temporal profiles (from 2002ï2005) of the GLASS-AVHRR FVC and GLASS-MODIS FVC 

products (upscaled to 5 km). (a) CC; (b) RMSE; (c) Bias (using the GLASS-AVHRR FVC as reference). 
 

III.  METHODS 

In this paper, we considered exploiting known FVC products 

(i.e., GLASS-AVHRR FVC) as training samples, in which the 

RF model was used as the training model. A strategy flowchart is 

shown in Fig. 1. The training samples were constructed using the 

GLASS-AVHRR FVC product (China) time-series data, with 

the data from day of year (DOY) 2002001ï2005361 as input and 

known historical data (i.e., within DOY 1982001ï2000041) as 

labels. The trained RF model was used to estimate the historical 

MODIS FVC dataset from DOY 1982001ï2000041. Finally, the 

estimated historical MODIS FVC dataset was validated using 

Landsat FVC data. Details of this process are described in the 

following subsections. 

A. Construction of training samples 

Based on the GLASS-AVHRR and GLASS-MODIS FVC 

products, three groups of FVC change curves from 2002ï2005 

in China are shown in Fig. 2, with geographical locations 

selected randomly in China. We found that, for all three groups, 

the overall change trend of GLASS-AVHRR and 

GLASS-MODIS FVC is similar, despite the local difference in 

FVC values between the two products. Moreover, the intra-year 

variation in FVC is regular, and the inter-year variation also 

remains largely constant, indicating that the time-series of both 

the GLASS-AVHRR and GLASS-MODIS FVC products 

exhibit a regular change. In addition, we calculated the 

correlation coefficient (CC), RMSE and Bias between the FVC 

temporal profiles for each pixel of the GLASS-AVHRR FVC 

and GLASS-MODIS FVC products (upscaled to 5 km) from 

2002ï2005, respectively, as shown in Fig. 3. It can be seen that 

most regions of China present CC values above 0.90, RMSE 

values below 0.1 and Bias values ranging from -0.1 to 0.1. Thus, 

the two FVC products have a large correlation and small 

differences between the temporal profiles. Based on the 

similarity in the two products, we assume that the pattern of 

temporal changes in the GLASS-AVHRR FVC can be 

transferred to the GLASS-MODIS FVC. Therefore, to 

reconstruct the historical MODIS FVC before 2000, the longer 

time-series GLASS-AVHRR FVC product for China was taken 

to construct the training samples for the predicted model. 

Specifically, the training model was constructed for each date 

within 1982ï2000, in turn, in which the GLASS-AVHRR FVC 

data from 2002ï2005 were used as the input for training, 

whereas the GLASS-AVHRR FVC data for a date within 1982ï

2000 were used as labels to train the corresponding learning 

model. 

B. RF model for training 

The RF model is a decision tree-based machine learning 

algorithm proposed by Breiman [34]. The RF model can 

quantify complex nonlinear relationships that are not affected by 

outliers or redundant data and there is no significant over-fitting 

risk [35]. Therefore, the RF has been utilized widely in fields 

such as ecology [36], [37] and agriculture [38]. This paper 

exploited the RF model to estimate the historical MODIS FVC 

dataset. In addition, the temporal length of the GLASS-AVHRR 
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FVC data (China) used as input data was evaluated to determine 

the appropriate temporal length for historical MODIS FVC 

estimation (Section -A). In addition, the number of decision 

trees (ntree) was set to 200 and the number of variables at each 

node (mtry) was set to 5. 
 

C. Estimation of the historical MODIS FVC dataset (1982ï

2000) 

The GLASS-AVHRR FVC product in China was utilized as 

input data, and the optimal temporal length for estimating the 

historical MODIS FVC was determined as 4 years (illustrated in 

Section -A). The RF model was trained using 

GLASS-AVHRR FVC data (China) using the following 

expression: 

1 2
( , , , )

i i N

AVHRR AVHRR AVHRR AVHRR

t t T T Tf=FVC FVC FVC FVC     (1) 

where 
1 2

, , ,
N

AVHRR AVHRR AVHRR

T T TFVC FVC FVC  are the fixed 

time-series GLASS-AVHRR FVC data (China) with 5 km 

spatial resolution based on the optimal temporal length (i.e., 4 

years in this paper) as the input data for training. Specifically, 

1 2, , ,and  NT T T  represent the period from 2002001ï2005361. 

Note that the data of two dates, 2002305 and 2005169, are 

missing from the GLASS-MODIS FVC product. To maintain a 

consistent number of training samples, the corresponding 

GLASS-AVHRR FVC data constructing the training samples do 

not include the scenes of these two dates, resulting in 182 scenes. 

That is, N=182 in this paper. 
i

AVHRR

tFVC  represents the 

GLASS-AVHRR FVC data (5 km) at a time 
it  ( 1,2, ,i n= ) in 

the historical period of 1982001ï2000041 (i.e., n=834), which 

was used as a label for training the RF model. 
it

f  is the 

nonlinear relationship operator at the corresponding time 
it . 

In line with the assumption mentioned in Section -A, the 

trained RF model was used to produce a 500 m, 8-day historical 

MODIS FVC dataset from 1982ï2000 (i.e., DOY from 

1982001ï2000041). The specific expression is as follows: 

1 2
( , , , )

i i N

MODIS MODIS MODIS MODIS

t t T T Tf=FVC FVC FVC FVC     (2) 

where 
it

f  is the function fitted using Eq. (1) and 

1 2
, , ,

N

MODIS MODIS MODIS

T T TFVC FVC FVC are known time-series 

GLASS-MODIS FVC data (China) with 500 m spatial 

resolution from 2002001ï2005361 as input data. Note that the 

input data are also fixed, and the temporal length of the input 

data is the same as that in Eq. (1). 
i

MODIS

tFVC  is the predicted 

MODIS FVC (500 m) at time it  in the historical period (i.e., 

within 1982001ï2000041). For each prediction time it , the 

training model in Eq. (1) and predicting model in Eq. (2) were 

constructed in turn. The specific processes are summarized as 

follows: 

1) The GLASS-AVHRR FVC data (China) from 2002001ï

2005361 were used as the fixed input of the training data 

and the known historical GLASS-AVHRR FVC (China) at 

the prediction time it  (i.e., in the historical period of 

1982001ï2000041) was used as the label. 

2) The RF model was trained based on the training data in step 

1). 

3) The corresponding GLASS-MODIS FVC (China) from 

2002001ï2005361 were input to the trained RF model, 

producing the prediction of the historical MODIS FVC at 

time 
it . 

4) The above steps were repeated for all time points in the 

period from 1982001ï2000041. Then, a 500 m, 8-day 

historical FVC dataset from 1982ï2000 in China was 

reconstructed. 

D. Validation with Landsat data 

Owing to the lack of in-situ FVC data for validation in the 

predicted time interval, the processed Landsat FVC data were 

selected as references based on Landsat-5 surface reflectance 

images, which were acquired from 1984ï2000 with a 30 m 

spatial resolution. The classic dimidiate pixel model was used to 

calculate the acquired Landsat image FVC values [10], [39], 

[40]. The dimidiate pixel model is a simple and widely used 

model that assumes that a pixel is composed only of vegetation 

and soil [41], [42]. The normalized difference vegetation index 

(NDVI) reflects vegetation growth during different periods as 

well as vegetation coverage at different locations [43]. Therefore, 

based on the dimidiate pixel model, the 30 m FVC was estimated 

using the NDVI [44]. The mathematical expression is as follows: 

Landsat S

V S

NDVI NDVI
FVC

NDVI NDVI

-
=

-
                      (3) 

where LandsatFVC  is the estimated 30 m FVC; NDVI is the NDVI 

value of the pixel, which is calculated by bands 3 (i.e., Red band) 

and 4 (i.e., NIR band) from Landsat-5 surface reflectance data 

(i.e., 
4 3

4 3

Band Band
NDVI

Band Band

-
=

+
); NDVIs is the NDVI value of a 

full soil pixel, and NDVIv is the NDVI value of a full vegetation 

pixel. 

The NDVIs and NDVIv values remain constant in the ideal case; 

however, these two parameters were affected by other 

environmental factors. Despite this, the NDVIs and NDVIv values 

can be confirmed by NDVI statistical analysis of the entire 

Landsat image, which assumes that full soil and vegetation 

pixels exist for each Landsat image. In this paper, the NDVI of 

each Landsat image was calculated and then the cumulative 

probability distribution was analyzed statistically. The NDVI 

values at 2% and 98% cumulative percentage were determined 

as NDVIs and NDVIv, respectively [45], [46]. After estimating 

the 30 m FVC according to Eq. (3), the result was upscaled to 

500 m to validate directly the corresponding 500 m historical 

MODIS FVC. 

IV.  RESULTS 

A. Evaluation of the RF model 

The influence of the temporal length of the time-series data 

for the RF model was evaluated to ensure the reliability of 

training sample selection. Five temporal lengths were evaluated 

in this study, with a 1-year minimum and a 5-year maximum 

temporal length. The model performance was evaluated by 

predicting the MODIS FVC in China for 2001 (i.e., from DOY 

2001001ï2001361, a total of 46 scenes) and comparing it with 
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the existing GLASS-MODIS FVC product at the corresponding 

time [12]. The CC, RMSE, Bias and unbiased RMSE (ubRMSE) 

were utilized as statistical indicators. Fig. 4 shows the accuracy 

for each temporal length in the RF model. According to Fig. 4, it 

is not difficult to find that the CC increases while the RMSE 

decreases with temporal length increasing from 1-year to 5-year. 

For the 4-year temporal length, the CC value can reach 0.95, but 

does not increase obviously as the temporal length increases to 

5-year. Therefore, we take the 4-year (i.e., from 2002ï2005) as 

the desirable temporal length. 

 

 
Fig. 4. Evaluation of the temporal length of the time-series used in the RF model.  

 

We trained the RF model based on the optimal temporal 

length, and the four accuracy curves of the trained RF model for 

predicting the FVC of the whole China in 2001 are shown in Fig. 

5. It can be seen that the CC value remains between 0.92 and 

0.97 for the 46 predicted results (i.e., from DOY 2001001ï

2001361) in 2001. Meanwhile, the ubRMSE remains between 

0.04 and 0.08. The averages of the four accuracy indicators are 

also plotted in Fig. 5. We can clearly observe that the average 

CC of the predicted FVC can achieve 0.95 and the average Bias 

is only -0.02, and the corresponding average RMSE and 

ubRMSE values are 0.07 and 0.07, respectively. The results 

suggest that the RF model trained by the GLASS-AVHRR FVC 

product (China) with the optimal temporal length can reliably 

predict FVC. 

 

 

 
Fig. 5. Four statistical metrics (i.e., CC, RMSE, Bias and ubRMSE) of the 

predicted 500 m FVC in China (with the GLASS-MODIS FVC product in 2001 

as reference). 
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Fig. 6. Exhibition of the predicted historical MODIS FVC in China for several randomly selected days. 

 

B. Validation of the 500 m FVC results using Landsat FVC 

1) Overall validation. With the RF model, we obtained the 

500 m 8-day FVC historical dataset (1982ï2000) in China. Part 

of the data are shown in Fig. 6. Since Landsat-5 data were 

available from 1984, we acquired 64 Landsat tiles from 1984ï

2000. More precisely, for each year, the historical MODIS FVC 

results were validated with four Landsat tiles sampled randomly 

at different times. The spatial distribution map of Landsat tiles 

used for validation is displayed in Fig. 7. The spatial size of the 

validation region is 200×200 pixels, with a 500 m spatial 

resolution. Table 2 shows the accuracy evaluation results 

between the historical MODIS and Landsat FVCs at a 500 m 

resolution. To provide an intuitive accuracy assessment, we 

present scatterplots for four selected years (i.e., 1996, 1994, 

1992 and 1990) of the validation results (Fig. 8). According to 

the validation analysis (Table 2), it is observed that the CC 

values are all above 0.71, and the RMSE values are below 0.22. 

Moreover, we calculated the averages of each indicator for 

validation results of all 48 scenes. The results show that the 

mean values of CC, RMSE, Bias and ubRMSE are 0.84, 0.14, 

0.04 and 0.12, respectively. As shown in Fig. 8, the scatter of the 

MODIS FVC results is clustered around the line y=x (black line), 

suggesting that the historical FVC estimated by the RF model is 

close to the reference data (that is, Landsat FVC). This reveals 

that the MODIS FVC dataset produced in the historical period 

has a reliable accuracy. 

 
Table 2. Accuracy evaluation results (predicted MODIS FVC vs. Landsat FVC) 

at 500 m resolution. 

Date Path/Row CC RMSE Bias ubRMSE 

1999/03/04 130/042 0.8686 0.1479 0.1135 0.0948 

1999/05/18 127/035 0.9275 0.1129 0.0730 0.0861 

1999/05/27 126/037 0.8360 0.1228 -0.0745 0.0976 

1999/06/29 117/030 0.8808 0.1841 -0.1181 0.1412 

1998/05/25 117/030 0.9019 0.1274 0.0360 0.1223 

1998/05/26 124/033 0.8392 0.2100 0.1768 0.1134 

1998/05/28 122/032 0.9095 0.1637 0.1348 0.0930 

1998/10/24 125/044 0.7717 0.1555 0.1147 0.1051 

1997/05/25 122/025 0.8047 0.1618 0.0488 0.1542 

1997/05/28 127/035 0.9303 0.0910 0.0186 0.0891 
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DOY001 DOY049 DOY097 DOY145 

DOY193 DOY241 DOY289 DOY337 
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1997/06/13 127/035 0.9387 0.0968 -0.0066 0.0966 

1997/06/23 117/029 0.8051 0.1879 -0.1223 0.1427 

1996/04/12 130/042 0.8830 0.1617 0.1287 0.0979 

1996/05/22 122/032 0.8887 0.1361 0.0914 0.1008 

1996/09/14 127/035 0.8029 0.1021 0.0002 0.1021 

1996/12/14 124/044 0.8089 0.1410 0.1052 0.0939 

1995/05/07 127/035 0.8587 0.1109 0.0038 0.1108 

1995/05/09 125/041 0.7890 0.1128 -0.0305 0.1086 

1995/06/08 127/035 0.9244 0.1126 0.0264 0.1095 

1995/06/19 124/033 0.8221 0.1807 0.1336 0.1217 

1994/05/17 122/032 0.8877 0.1246 0.0816 0.0941 

1994/05/27 128/036 0.9352 0.0907 -0.0047 0.0905 

1994/06/15 117/030 0.8660 0.1250 -0.0157 0.1240 

1994/08/22 145/030 0.7354 0.1536 0.0608 0.1411 

1993/04/04 130/042 0.8717 0.1556 0.1137 0.1061 

1993/05/14 122/032 0.8877 0.1070 0.0478 0.0957 

1993/09/22 127/035 0.8226 0.1205 0.0791 0.0909 

1993/12/06 124/044 0.8072 0.1503 0.1115 0.1008 

1992/02/13 130/042 0.7614 0.1667 0.1099 0.1254 

1992/05/14 127/035 0.9189 0.1238 0.0575 0.1096 

1992/05/27 122/032 0.8595 0.1192 0.0475 0.1093 

1992/07/17 127/035 0.8741 0.1102 -0.0077 0.1100 

1991/02/10 130/042 0.7687 0.1468 0.0789 0.1238 

1991/05/25 122/025 0.7520 0.1683 0.0556 0.1588 

1991/11/15 124/043 0.8162 0.1189 -0.0297 0.1151 

1991/11/15 124/044 0.7967 0.1031 0.0133 0.1031 

1990/03/11 130/042 0.8411 0.1695 0.1348 0.1027 

1990/05/18 126/037 0.7973 0.1302 -0.0804 0.1024 

1990/05/22 122/032 0.8963 0.1002 -0.0029 0.1001 

1990/11/28 124/044 0.8055 0.1096 0.0116 0.1090 

1989/05/03 122/032 0.8769 0.2075 0.1709 0.1178 

1989/05/11 130/042 0.8972 0.1405 0.0990 0.0997 

1989/06/01 117/028 0.8963 0.1341 0.0227 0.1322 

1989/12/02 125/044 0.8131 0.1445 0.0962 0.1079 

1988/02/02 130/042 0.7133 0.1556 0.0801 0.1335 

1988/06/04 127/038 0.7326 0.2203 -0.1835 0.1234 

1988/06/06 125/041 0.7561 0.1247 -0.0606 0.1090 

1988/06/25 114/028 0.7764 0.1984 -0.0561 0.1903 

1987/02/15 130/042 0.7579 0.1800 0.1316 0.1228 

1987/05/14 122/032 0.8946 0.1068 0.0348 0.1009 

1987/06/02 127/038 0.7917 0.2004 -0.1530 0.1295 

1987/10/08 127/035 0.8863 0.1870 0.1435 0.1199 

1986/05/27 122/032 0.8992 0.1008 0.0249 0.0977 

1986/06/04 114/028 0.8184 0.1731 0.0134 0.1725 

1986/06/09 117/030 0.8183 0.1820 0.1049 0.1488 

1986/12/13 130/042 0.7403 0.1628 0.1037 0.1255 

1985/05/14 116/030 0.7989 0.1741 -0.0716 0.1587 

1985/05/16 114/028 0.8467 0.1704 0.0789 0.1510 

1985/05/21 117/029 0.8925 0.1417 0.0426 0.1352 

1985/05/21 117/030 0.8577 0.1338 0.0322 0.1299 

1984/05/18 117/027 0.8093 0.1315 0.0122 0.1309 

1984/05/18 117/028 0.8747 0.1555 0.0924 0.1250 

1984/05/18 117/029 0.8653 0.1466 0.0659 0.1310 

1984/05/18 117/030 0.8706 0.1710 0.1238 0.1180 

 Average 0.8403 0.1446 0.0416 0.1173 

 

 
Fig. 7. The spatial distribution of Landsat tiles used for validation. The base map 

is the land cover type map derived from the MCD12Q1, where the different 

forest types are all categorized as forests. 
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