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Abstract 

Combining Speech with Sight and Touch; Investigating the Benefits of Audio-Visual and 

Audio-Tactile Speech on Speech Intelligibility and Cortical Speech-Envelope Tracking 

Accuracy 

Brandon Lee O’Hanlon, MSc 

 

Speech plays a critical role in communication in our everyday lives. Understanding 

how speech is processed in the brain, from mechanoelectrical transduction in the ear to 

processing in the subcortical and cortical regions of the auditory pathway, provides insight 

into how we may improve speech perception during difficult listening conditions which may 

hinder us. As discussed in Chapter 1, multisensory integration is one such method in which 

we may restore intelligibility to speech-in-noise. This thesis aims to contribute to the current 

multisensory speech integration literature through new investigations into audio-visual and 

audio-tactile speech and their benefits to cortical speech-envelope tracking in the auditory 

cortex and speech intelligibility. 

Chapter 2 reassessed the audio-visual benefits to speech perception in-noise when 

phoneme stimuli are selected from different visually distinct viseme categories. It found that, 

when visemes are considered, the benefits of audio-visual integration were reduced compared 

to previous literature, with some phonemes providing more benefit to intelligibility than 

others. Chapters 3 and 4 explored potential benefits of both bottom-up and top-down short-

term audio-tactile training on cortical speech-envelope tracking accuracy and speech 

intelligibility. Within these chapters, findings indicated an initial enhancement on neural 

tracking accuracy but with no associated benefit to speech intelligibility. This unexpected 
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outcome was further investigated with Chapter 5, which returned to audio-visual speech to 

examine the potential role of neural tracking in the prediction of oncoming speech.  

In all, this thesis provided evidence of multisensory benefits to speech perception, 

especially in difficult listening conditions. The thesis also contributes to the growing 

literature around neural tracking in the brain, with further evidence to suggest that tracking 

accuracy is not intrinsically linked to intelligibility. Chapter 6 discusses these findings, 

alongside future directions, to finalise this thesis.    
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Chapter 1 

1 Introduction 

Speech, alongside gesture, plays a large role in communication between people in 

social settings. However, speech signals are highly complex and are not always easily 

processed and decoded in the brain when trying to understand what someone is saying, 

particularly in difficult listening conditions. Understanding the neural underpinnings of 

speech processing and perception will allow us to develop new methods of improving 

communication in everyday life. This is especially true for those with hearing loss, as 

understanding how the speech signal is transformed throughout the auditory pathway lends 

great insight into where and how speech processing may be affected. This loss of hearing can 

be alleviated with new hearing technologies, such as cochlear implants and hearing aids, but 

may not necessarily mean that speech processing ability is comparable to normal-hearing 

populations. Difficult listening conditions, such as an environment where many people are 

talking, further affect those with hearing loss, but also normal-hearing populations too, with 

reductions seen in speech intelligibility and neural tracking accuracy. Multisensory 

integration naturally occurs between the visual and auditory systems, with visual lipreading 

assisting with speech when difficult listening arises using viseme identification. Despite 

audio-visual integration playing a large role in the restoration of speech intelligibility, visual 

lipreading is not always possible. It may be possible to train audio-tactile integration in 

speech perception to enhance the utility of speech-relevant tactile information in difficult 

listening conditions when lipreading is inaccessible.  

This thesis explores: the benefits of audio-visual integration to speech perception 

when visually distinct phonemes are selected as stimuli; the potential benefits of audio-tactile 

integration to neural representations in the auditory cortex and to speech intelligibility, both 
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when training is bottom-up and top-down; and finally the potential role of neural tracking in 

the prediction of oncoming speech through the lens of audio-visual integration in the 

posterior superior temporal gyrus. The following literature review will discuss the topics of 

the components of a speech signal, neural speech processing, difficult listening conditions, 

multisensory integration, and sensory training, providing an overview of the relevant 

literature that has built up the aims and objectives of this thesis.  

1.1 The Speech Signal 

Speech is made up of two primary components: the temporal fine structure and the 

speech envelope. The temporal fine structure relates to the rapid, individual pressure 

variations in the air that reach the ear. This provides information about pitch (Moore, 2008; 

Santurette & Dau, 2011; Moon & Hong, 2014), frequency discrimination (Hopkins & Moore, 

2010; Moon & Hong, 2014), and spatial location of speech in our environment (Borjigan & 

Bharadwaj, 2019). The speech envelope, on the other hand, relates to the slow temporal 

fluctuations in the overall amplitude of a speech signal over time. This envelope provides 

critical information for understanding speech (Shannon et al., 1995; Ahissar et al., 2001; 

Apoux & Healy, 2013). Shannon and colleagues (1995) extracted speech envelopes at 

multiple frequency bands and presented these envelopes to participants, finding that the 

intelligibility of speech increased with the addition of each band. Despite the speech 

presented being highly degraded and lacking in fine structure, participants could still 

recognise consonants, vowels, and words with high rates of accuracy, demonstrating the 

importance of the speech envelope in our understanding of speech. Studies using auditory 

chimaeras (where the fine structure from one sentence is combined with the envelope of 

another) have further found distinctions between envelope and fine structure processing. In 

the case of Smith and colleagues (2002), when chimaeras were presented to participants the 

envelope of the chimaera was more influential on that participant’s understanding of the 
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speech heard than the fine structure. The more frequency bands were introduced, the more the 

envelope of the chimaera influenced their understanding of the speech. The fine structure on 

the other hand provided further clarity of the speech, such as source location, consistent with 

other studies (Heinz & Swaminathan, 2009).  Further chimerical evidence from Smith et al. 

(2002) indicated that sound location was defined by the temporal fine structure alone, 

whereas word identification is derived from the speech envelope.  

This finding has been supported by more recent work by Warnecke et al. (2020), who 

investigated the role of the fine structure and envelope in processing non-stationary sounds in 

the environment. Warnecke and colleagues (2020) found that the removal of low-frequency 

temporal fine structure reduced participants’ sensitivity to capturing sound motion in the 

environment, leading to worsened source location ability. Conversely, when the speech 

envelope fluctuated, participants were more likely to assume a sound was stationary in the 

environment. As shown, the wealth of research into the temporal fine structure and the speech 

envelope over the past few decades has highlighted key differences between the two 

components of speech in their purpose in speech processing. Understanding the difference 

between the speech envelope and the temporal fine structure provides a clear focus for 

neuroscientific research to understand how each component is processed in the brain, and 

how decoded information from both is combined to provide understanding of the speech 

perceived. Of particular interest is the speech envelope and its apparent importance in speech 

segmentation and speech understanding (Shannon et al., 1995; Ahissar et al., 2001; Apoux & 

Healy, 2013). However, it is also important to consider how the processing of both speech 

components may occur in the brain in parallel, with each providing crucial information for 

segmentation of speech units to assist with speech processing (Teng et al. 2019). For 

example, Teng et al. (2019) showed evidence of both the temporal fine structure and the 

speech envelope entraining cortical responses at low frequencies, with the fine structure 
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providing comparable temporal information for speech processing as the envelope. Here, it is 

argued that both components are responsible for aiding speech segmentation and suggest that 

research into speech segmentation should be with both components of speech in mind.  

To further understand the importance of these components, it is crucial to understand 

the auditory processing pathway detailing the complex process of listening in the brain. 

1.2 Listening in the Brain 

Auditory processing in the brain begins with stimulation from transduction of inner hair 

cells in the cochlea as they respond to sound, leading to electrical activity passing through the 

auditory nerve and reaching the cochlear nucleus in the brainstem (Plack, 2018). From here, 

the cochlear nucleus sends auditory information along afferent pathways towards the inferior 

colliculus, either through the dorsal, anterior ventral, or posterior ventral cochlear nucleus 

(Pickles, 2015; Kunchur, 2023). Distinctions in purpose between these differing regions of the 

cochlear nucleus have been found. The dorsal cochlear nucleus assists with sound localisation 

(May, 2000; Trussell & Oertel, 2018) and some early multisensory integration (Shore, 2005; 

Balmer & Trussell, 2021). The anterior ventral cochlear nucleus, on the other hand, plays a 

crucial role in the encoding of the speech envelope through T-stellate and bushy cells (Rubio, 

2018), which act as time-coding cells to track the onset and offset of dynamic, more complex 

auditory experiences whilst further assisting sound localisation (Kuenzel, 2019; Kunchur, 

2023). Finally, the posterior ventral cochlear nucleus acts as the branching, early afferent 

pathway responsible for extracting information from the temporal fine structure and amplitude 

modulations via octopus cells (Rebhan & Leibold, 2021; Kunchur, 2023). The cochlear nucleus 

is also thought to engage with efferent pathways, both from the inferior colliculus back to the 

cochlear nucleus and from the cochlear nucleus back to the ear, via medial and lateral 

olivocochlear neurons (Balmer & Trussell, 2022; Farhadi, 2023). This olivocochlear system 

may play a role in selective attentional processes in which information regarding noise in an 
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environment is detected and the cochlea is informed for noise suppression or intensity gain 

(Jennings, 2020; Hockley et al., 2022; Lauer et al., 2022). However, conflicting evidence does 

suggest that attention is not processed in the olivocochlear system, prompting further study 

(Kikuchi et al., 2023; Gafoor et al., 2023; Jedrzejczak et al., 2020). 

After processing at the cochlear nucleus, sound then reaches the inferior colliculus. 

Many roles of the inferior colliculus have been discussed, providing a general view of the 

inferior colliculus as a central hub in the auditory system for integrating sound information 

from afferent and efferent pathways by utilising tonotopic arrangement of neurons (Plack, 

2018; Driscoll & Tadi, 2020; Kunchur, 2023). This tonotopic arrangement allows information 

from other nuclei – such as the various branches of the cochlear nucleus or the medial 

geniculate body – to arrive to specific layers of the inferior colliculus dependent on neuronal 

frequencies. It is likely that this auditory region, alongside the superior colliculus, plays a role 

in communicating to other midbrain and other sensory cortical regions to enact multisensory 

integration, like the sensorimotor and visual cortices (T. Ito et al., 2021; S. Ito et al., 2021; X. 

Liu et al., 2022; Bean et al., 2023). Indeed, an example of this for audio-visual integration is 

the inferior-superior colliculi circuit, which is thought to take auditory and visual cues in the 

environment for the driving of selective attention tin the primary visual cortex (Hu & Dan, 

2022). Furthermore, evidence does suggest that the inferior colliculus plays a part in pitch 

perception (Braun, 2000) and spatial coding (Palmer & Kuwada, 2005; Litovsky et al., 2002), 

suggesting that the temporal fine structure – given its importance in understanding the pitch 

and source of a speaker - is heavily processed at this region. However, it may be that the inferior 

colliculus binds this information together after they have been extracted and processed by other 

areas. It is important to note that the inferior colliculus in recent study has been shown to 

contain sub-regions in a similar manner to the cochlear nucleus, with both lemniscal (central 

nucleus) and non-lemniscal (dorsal cortex, and external cortex) layers (M. Liu et al., 2022). 
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Here, it appears that the specific sub-region of the inferior colliculus that processes non-

auditory information for multisensory integration is the external cortex, whereas the dorsal 

cortex focuses on auditory information projected from and to the medial geniculate body of the 

thalamus. This medial body is the next relay region along the auditory pathway following the 

inferior and superior colliculi, with three sub-regions (the dorsal, ventral, and medial) 

connecting to previous sub-regions of said colliculi (see Bartlett, 2012). As a thalamic body, it 

has been suggested that the medial geniculate acts simply as a region of relay for information 

to travel to cortical regions, although this may not be the case (see Winer, 1984; Bartlett, 2012). 

Evidence suggests that sub-regions of the medial geniculate body are modulated by 

corticofugal projections from the auditory cortices (Ojima & Rouiller, 2010; Winer et al., 

2001). For a more specific example, the modulation of the medial sub-region by the secondary 

auditory cortex has been highlighted by Luo et al. (2022) as a means by which auditory threat 

memory can be accessed and potential threatening sounds in the environment may be assessed 

with attentional priority. Other thalamic bodies are present that play a similar role for different 

sensory processes, such as the lateral geniculate nucleus experiencing corticofugal projection 

from the primary visual cortex (O’Connor et al., 2002; Meng & Schneider, 2022). Though, the 

extent to which these thalamic regions communicate locally through thalamic projections 

during multisensory integration is difficult to discern.  

The auditory cortex is the final higher-level area on the auditory neural pathway and is 

situated on the superior temporal gyrus and sulcus. Sub-regions of the auditory cortex include 

the primary cortex located largely on – though not exclusively - Heschl’s gyrus, and secondary 

cortex regions like the planum temporale and the planum polare (see Poeppel et al., 2012). 

Whilst these sub-regions have been evidenced to engage in notably different stimulus contexts 

– with primary regions mostly processing simplistic acoustic features and nonprimary regions 

complex semantic context of sounds, such as in speech (Ahveninen et al., 2006; de Heer et al., 
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2017) – these processing streams do appear to work in parallel, shown with intracranial 

electrocortical stimulation work by Hamilton et al. (2021). Notably, many neuroanatomical 

studies of the auditory cortex (and other subcortical regions as well) are animal-based studies. 

The human auditory cortex is exceptionally complex and vast, with new sub-regions being 

discovered in recent work (Zachlod et al., 2020) that may not be present in animal models in 

the same manner (see Brewer & Barton, 2016). Still, knowledge of the functional role of the 

human auditory cortex is well documented. The auditory processing includes complex auditory 

working memory, speech processing, recognition, and prediction (Yu et al., 2021; King & 

Schnupp, 2007; King et al., 2018), as well as influences on pitch perception, motion, frequency 

discrimination, spatial location, and more (Hall et al., 2003; Hall & Barker, 2012), the outputs 

of which can be used in top-down descending corticofugal, corticollicular, and corticothalamic 

projections to influence previous subcortical regions as discussed above. Interestingly, the 

auditory cortex does comprise of lateralisation differences in organisation and function, with 

the left-hemisphere’s superior temporal sulcus being shallower than the right-hemisphere’s, in 

example (Moerel et al., 2014; Tzourio-Mazoyer et al., 2020). Functionally, Zatorre and Belin 

(2001) demonstrated that the left hemisphere shows greater responses to stimuli that showed 

temporal change in frequency whilst the right hemisphere shows greater responses to stimuli 

with spectral changes, though both hemispheres still showed some response to both temporal 

and spectral features. This lateralisation is guided by handedness, with right-handed individuals 

showing left-hemisphere bias in speech processing and left-handed individuals showing 

bilateral activity (Papadatou-Pastou, 2011; Potdevin et al., 2023). This handedness and 

lateralisation link is not just exclusive to speech and language centres in the brain, as 

sensorimotor function also exhibits lateralisation (Sainburg, 2014). This is further shown in 

multisensory contexts too, with Koskinen et al. (2020) showing left-lateralisation for 
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contextual influences on predicting oncoming speech, with regions involving the auditory and 

sensorimotor cortices.  

In all, the processing of sound in our environment in the brain follows a complex path 

through subcortical and cortical systems, with descending and ascending projections. In 

relation to the specific components and units of speech, however, further investigation is 

required to understand exactly how the speech envelope and temporal fine structure are 

decoded within the brain. As a crucial element of speech intelligibility (Shannon et al., 1995; 

Ahissar et al., 2001; Apoux & Healy, 2013), the decoding of the speech envelope remains of 

particular interest. A further finding from Koskinen et al. (2020)’s work highlighting speech-

processing lateralisation was that theta frequency coupling to the speech envelope was 

reflective of the syllabic rate of perceived speech, whilst low-delta frequency coupling was 

reflective of speech prosody. Oscillatory activity in the auditory system may help further 

uncover more detail about the neural underpinnings of speech processing and how it differs 

from nonspeech auditory processing.  

1.2.1 Oscillatory Activity in the Auditory Cortex 

Neuronal oscillations occur across the brain and the sensory cortices and can be banded 

by specific frequency speeds (see Jensen et al., 2019). These frequencies of activity can be as 

low as in the delta (0.1 – 4 Hz; Steinmetzger & Rosen, 2017; Morillon et al., 2019), theta (4 – 

8 Hz; Steinmetzger & Rosen, 2017), and alpha ranges (8 – 12 Hz; Becker, et al., 2018), 

extending to higher frequencies with beta (13 – 30 Hz; Morillon et al., 2019; Cabral et al., 

2022), gamma (30 – 90 Hz; Crone et al., 2011), and even as high as 200 Hz with broadband 

high-gamma activity (Crone et al., 2011). The boundaries for each frequency band are not 

entirely consistent in the literature, however. For example, some have determined theta to be 

between 4 and 7 Hz and beta between 13 and 25 Hz (von Stein & Sarnthein, 2000; Beste et al., 

2023), whilst others have debated alpha oscillating between 7 and 15 Hz (Tripathi, 2022). 
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Indeed, some definitions of lower frequency bands also indicate variance, with Boucher et al. 

(2019) categorising theta activity as between 3 Hz and 10 Hz, with delta residing below 3 Hz. 

This lack of standardisation in the literature does mean that care should be taken when making 

direct comparisons between studies about specific frequency bands as to exactly which 

boundaries are being suggested. Regardless of the specificities of the boundaries, a common 

understanding about oscillatory activity is that each band represents a different contribution to 

brain function (Gourévitch et al., 2020). As a general example, alpha-band activity is thought 

to play a role in inhibition across the brain as well as an indicator of resting state (Jensen & 

Mazaheri, 2010; Scheeringa et al., 2012; Lombardi et al., 2023). Oscillatory waves in neuronal 

clusters of specific brain regions are non-sinusoidal (Cole & Voytek, 2017), and, as detailed by 

Schroeder et al. (2008), fluctuate between states of high and low excitability as the oscillatory 

activity continues (see also Lakatos et al., 2005). Separate brain regions can communicate and 

integrate with one another, despite operating different frequency oscillations, through 

hierarchical phase-amplitude coupling (Esghaei et al., 2022). For example, beta-gamma phase-

amplitude coupling would modulate the power of gamma (the higher of the two frequencies) 

along the phase of beta (the lower of the two frequencies), allowing both to transmit oscillatory 

information without disrupting the other. This phase-coupling also exists locally, such as in the 

processing of more complex speech stimuli (Schroeder, et al., 2008).  

In the context of speech, oscillatory bands are seen to have slightly different 

contributions to speech perception. For example, phoneme-level processing seems to occur in 

the delta and theta band ranges (Di Liberto et al., 2015), yet rhythm and intelligibility of speech 

are reflected separately between delta and theta frequencies respectively (Ding & Simon, 

2014). Furthermore, Steinmetzger and Rosen (2017) demonstrated delta power increasing in 

the second half of continuous, intelligible sentences. This serves as key evidence in the role of 

delta oscillatory activity in speech intelligibility, likely reflecting the benefits of the low-
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frequency speech envelope to understanding of speech. Auditory delta activity is further 

thought to interact with beta motor activity during sensorimotor integration in the left precentral 

gyrus through phase-amplitude coupling (Morillon et al., 2019), likely reflective of a network 

for speech production, though this remains unclear (Morillon et al., 2015). Whilst not directly 

related to speech processing, beta-gamma activity (20 – 35 Hz) projecting from the 

ventromedial prefrontal cortex has been associated with unexpected learning outcomes from 

interactions in our environment (Marco-Pallarés et al., 2015). Thus, beta-gamma coupling may 

arise in response to sudden, positive sounds processed in the environment and when learning 

language. Furthermore, theta-gamma coupling appears to play a role in speech comprehension 

during initial listening (Lizarazu et al. 2019). These examples of gamma coupling in auditory 

processing may be reflective of additional gamma input from short-term selective attentional 

processing in the prefrontal cortex (see Kaiser & Lutzenberger, 2005). Finally, looking at alpha-

band activity, it has been suggested that alpha oscillations actively regulate and monitor long-

range dependence across the brain, allowing for inhibition of current and future activity 

(Becker et al. 2018). As outlined by Guan et al. (2023), long-range dependence conceptualises 

how current-in-time oscillatory activity may influence the course of activity at a future state, 

both in the same or a differing brain region. This could be related to attenuation of continuous 

noise in the environment during selective attention of a target speaker (Daly & Pitt, 2021). 

Moreover, there are differences seen in peak resting-state alpha frequencies between visual and 

auditory cortices, with ‘visual alpha’ peaking typically at the higher alpha ranges (10 – 13 Hz) 

and ‘auditory alpha’ in the lower alpha ranges (around 8.5 Hz) (Capilla et al. 2022). 

Taken together, it does appear that all oscillatory frequency bands play some role in the 

processing of speech. Primarily, speech processing and comprehension seems driven by delta- 

and theta-band activity, with hierarchical coupling to higher frequencies occurring when speech 

processing involves working memory (Hjortkjær et al., 2020), attention (Kaiser & 
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Lutzenberger, 2005), or other higher-level auditory processes (see Meyer, 2018). Delta and 

theta range oscillations are informative, as they exhibit slow moving frequency changes much 

like the speech-envelope expresses the slow fluctuating changes in amplitude of the speech 

signal over time. As previously discussed, the speech-envelope plays a critical role in speech 

intelligibility and comprehension (Shannon et al., 1995; Ahissar et al., 2001; Apoux & Healy, 

2013). The exact way in which the speech-envelope is processed to reach speech understanding 

is not entirely clear; phase-locking of neuronal activation to changes in the speech-envelope, 

and delta/theta neural entrainment may provide further insight (Peelle & Davis, 2012). 

Specifically, the recent emergence in auditory neuroscience of investigations into cortical 

speech-envelope tracking in the brain will next be discussed. 

1.2.2 Cortical Speech-Envelope Tracking 

One such way the auditory system may be utilising the speech-envelope is through 

phase-locking in the auditory cortex. Phase-locking – or neural tracking – is the process in 

which electrical activity in the auditory pathway (particularly cortical regions) ‘lock’ into 

patterns that closely match the stimuli in question (Heil & Peterson, 2015; Plack, 2018). A 

nonspeech auditory example of this is through consistent musical beats, such as a drumline, 

to which the auditory system can match its neural activity to the low-frequency beats of the 

drum (Zuk et al., 2021). In the case of speech, phase-locking would represent the brain’s 

ability to match its oscillatory activity to temporal information from the speech perceived. 

The auditory cortex has been shown to phase-lock to the speech envelope of attended 

streams, identified through the low-frequency neural activity that correlates with said 

envelopes (Ding & Simon, 2014; see also Ding et al., 2014; Issa et al., 2024). This specific 

process is known as cortical speech-envelope tracking - also referred to as neural speech 

tracking. Neural speech tracking may be important for segmenting and quickly processing 

multiple, smaller units of speech, allowing for easier recognition (Giraud & Poeppel, 2012), 
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though the causal role of this tracking remains unclear (Kösem et al., 2023). This cortical 

tracking of speech-envelopes is present in infancy too, with evidence from Barajas et al. 

(2021) indicating tracking is present from birth for both familiar and unfamiliar languages 

(see also: Menn et al., 2022; Jessen et al., 2021). Barajas et al. further determined that 

changes to neural tracking occur at 6 months of age, with the ability to track unfamiliar 

languages reducing as a primary language develops. This is particularly interesting, as it 

matches perceptual phoneme boundary development at a similar age, wherein infants lose the 

ability to perceive phonemes that are not present in their primary language (Trehub, 1976; 

Werker & Tees, 1984). Furthermore, neural tracking remains robust in older adults (aged 65-

80 years: Kurthen et al., 2021), specifically for delta band oscillations (McHaney et al., 

2021). 

Speech envelope tracking exists in the low-frequency oscillatory ranges on most 

accounts, including the delta band (0.5-4 Hz; Etard & Reichenbach, 2019; Ding & Simon, 

2013; Ding & Simon, 2014), theta band (4-8 Hz; Etard & Reichenbach, 2019), and low alpha 

band (8-15 Hz; Dimitrijevic et al., 2017), though can also occur in the gamma band (Kubanek 

et al., 2013). It has been suggested that phonemes are represented through tracking of the 

gamma band (above 30 Hz), syllables in the theta band (4 – 8 Hz), and intonational phrase 

boundaries in the delta band (0.5 – 4 Hz) (Meyer, 2018). The intonational phrase boundaries 

(ITBs) denote the separation of chunks of speech (phrases, sentences, or parts of sentences) 

that may be spoken within or between breath gaps. Delta band processing of ITBs potentially 

reflects how low-frequency speech envelope tracking may be used to segment speech into 

chunks for easier processing. Evidence from invasive electrocorticography (ECoG) studies 

sheds further light on the auditory cortex’s tracking of speech envelopes (Kubanek et al., 

2013). ECoG is an invasive neuroscientific method of recording electrical activity directly 

from cortical surfaces on the brain (as well as deeper subcortical regions), providing a more 
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robust and direct measure of cortical activity than other non-invasive methods like EEG (Ball 

et al., 2009; see also: Kanth & Ray, 2020). Due to the invasive nature of ECoG, however, 

participant pools typically consist of epileptic surgery patients, limiting the generalisability of 

such measures (Schomer & Da Silver, 2012). Kubanek et al. (2013) found that gamma bands 

were highly correlated to speech-envelope information in the belt regions of the auditory 

cortex. Of note, these early belt regions also tracked the envelope of musical melody and not 

solely speech. Likewise, higher areas of the auditory cortex, such as the superior temporal 

sulcus and Broca’s area, tracked the envelope of speech through gamma oscillations. This 

was only apparent for speech envelopes, suggesting these areas are responsible in part for the 

linguistic analysis of speech. There also appears to be a dominance of low-frequency 

envelope tracking in the right hemisphere over the left, though the implications of this 

distinction are yet to be discerned (Abrams et al., 2008). As a note of distinction, Pefkou and 

colleagues (2017) identified that lower theta frequencies between 4 and 8 Hz were sensitive 

to the syllabic rate of the speech heard but reflected no sensitivity to the understanding of said 

speech, whereas the beta frequency range (14 – 21 Hz) reflected the inverse. Other studies 

have corroborated findings on theta frequency contributions to envelope tracking but have 

discerned delta frequencies (0.5 and 4 Hz) to be essential during tracking for speech 

comprehension (Vanthornhout et al., 2018). More clarification in the literature on the purpose 

of cortical speech tracking to each frequency band may be needed.  

These discrepancies may be due to differences in research methods, such as ECoG, 

magnetoencephalography (MEG), and electroencephalography (EEG). As an invasive 

methodology, ECoG may be better tuned to detect gamma frequency tracking in auditory 

regions. Higher frequencies may be tracked in the auditory regions that non-invasive 

techniques like EEG and MEG are not able to detect or highlight because of poor signal-to-

noise quality (Todaro, et al., 2019). Obleser et al. (2012) also argued against the envelope 
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being the solely tracked source of speech information, suggesting that the auditory cortex 

phase-locks and tracks across the low and high frequency bands - not just slow, temporal 

fluctuations. It may be that other features of speech are equally as important to speech 

intelligibility as the envelope information, such as spectral content or the temporal fine 

structure. This is further corroborated by Dimitrijevic and colleagues (2017), who show that 

alpha and beta oscillations above 15 Hz are a strong predictor of speech intelligibility, despite 

other work suggesting that the frequencies below 15 Hz are more critical for speech 

understanding (Pefkou et al., 2017). More points of contention arise when looking at neural 

tracking earlier in the auditory pathway, such as in the brainstem. For example, previous 

research into the auditory brainstem response (ABR: see Kraus, 2011) - and the resulting 

frequency-following response (FFR: see Krizman & Kraus, 2019) - looked at high-frequency 

responses to auditory stimuli (such as phonemes or sinewave sounds), finding encoding in the 

auditory nerve with sinusoidal (therefore non-oscillatory) modulations at 88 and 39 Hz 

(Herdman et al. 2002). Here, however, it is important to note that brainstem response studies 

are limited in their capacity to investigate phase-locking at higher frequencies, as phase-

locking is not seen at high frequencies past 1000 Hz (Palmer & Russell, 1986; Verschooten & 

Joris, 2014). Another point of discrepancy can come from univariate (as in, through single-

channel analysis) versus multivariate (through many channels) methods of investigating 

tracking accuracy. Investigating univariately with event-related potentials (ERPs), Aiken and 

Picton (2008) found that posterior auditory cortex regions follow the speech envelope. These 

ERPs were present when changes in the speech envelope occurred, reflecting the brain’s 

representation of changes in the envelope through cortical speech-envelope tracking. They 

found that vertical dipole source waveforms significantly correlated with speech envelopes. 

Here, work was univariate and applied across multiple channels in dipole-source analyses. 

Thus, whilst it is possible to evidence neural tracking during listening using ERPs, it is 
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difficult to say whether these univariate measures convey a full picture of tracking across the 

auditory system. This is especially important as we know many other regions play a role in 

our understanding of speech, such as posterior cortical regions utilised in semantic processing 

(Dick et al., 2009). Therefore, multivariate approaches to investigating cortical speech 

tracking may be preferable as to cover the wide range of neural networks engaged in speech 

perception.  

1.3 Investigating Neural Tracking Accuracy 

Cortical speech-envelope tracking accuracy – a correlational measure of how well-

represented a speech-envelope is in the auditory cortex via phase-locking – can be obtained 

through many functions, including temporal response functions (Crosse et al., 2016). 

Forward-modelled temporal response functions (TRFs) are univariate, in that channels of 

neural recordings can only be related to a stimulus feature independently. As outlined by 

Crosse et al., more complex stimuli in our environment, particularly speech, is decoded 

through multiple frequency channels in the cochlea, and - as discussed – many afferent and 

efferent pathways throughout the auditory pathway. To reduce this decoding to a singular 

point of reference in neural recordings would not be ecologically valid. Multivariate TRFs (or 

mTRFs), on the other hand, can be computed to derive tracking accuracy from complex 

speech listening. Through backwards modelling, these mTRFs can be used in stimulus 

reconstruction, reconstructing a stimulus feature like the speech envelope using neural data 

across any number of recorded channels at once during continuous speech presentation. This 

provides a more valid assumption of the neural representation of the speech envelope across 

all auditory networks in the brain that have been captured by neural recordings, both 

invasively and non-invasively. Stimulus reconstruction makes use of a decoder model, which 

computes the reconstructed envelope of speech across designated time lags and weights each 

channel of neural data when mapping them back onto to the original speech envelope. The 
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decoder is trained on a subset of the neural data and tested on the rest. Cross-validation of 

training and test subsets are typically done using a ‘leave-one-trial-out’ method. The weight 

distribution is calculated such that channels deemed more useful in the tracking of speech 

during the task are given more value (or weight) to the reconstruction of the envelope. This 

reconstructed envelope is then correlated (typically using Pearson’s R) with the original 

speech envelope, with a higher positive correlation relating to higher accuracy of speech 

envelope tracking in the recorded brain regions.  

Both MEG and EEG are sufficient methods of collecting neural data for speech 

envelope reconstruction (Destoky et al., 2019). However, MEG requires significantly fewer 

data to train decoding models and correlation estimates of clear speech are higher in MEG 

than in EEG data. Whilst MEG may be more beneficial, EEG is still adequately robust 

(Biesmans et al., 2016; Crosse et al., 2016). More work by Mirkovic and colleagues (2015) 

shows that neural data from EEG can still sufficiently train decoders for reconstructing 

speech envelopes when the data is reduced to as little as 24 channels, and when the decoder is 

trained with 15-minutes of the subject-independent neural input. As further support for 

decoding models with non-invasive recordings, Anumanchipalli et al. (2019) found that 

stimulus reconstruction methods are robust enough to allow for further synthesis of original 

speech. Using neural data from superior temporal gyrus, inferior frontal gyrus, and ventral 

sensorimotor regions responsible for lip, mouth, and tongue movements, they synthesised 

speech from reconstructed envelope and spectrogram information with success, even from 

silently mimed speech. This highlights the robustness of reconstruction methods as a base for 

synthesising speech from neural data alone and has been further expanded in recent literature 

(see: Wairagkar et al., 2023; Luo et al., 2023; Chen et al., 2024). 

The beneficial frequency band parameters for a decoder model, as per 

recommendations Crosse et al. (2016), are between 0.5 and 15 Hz, covering delta, theta, and 
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alpha oscillatory bands. Further narrowing of the frequency range used in the decoder can 

help to gauge any effects there may be of specific bands on the value of reconstruction 

accuracy, though using non-optimised parameters for a given neural dataset may result in 

erroneous inflation of correlational values if representation of the original envelope is 

misrepresented at the chosen frequencies. There are also methodological choices that differ 

slightly between studies that may be influencing why some studies report more robust 

activity in the theta band than others. For example, Bourguignon and colleagues (2020) found 

that cortical tracking is influenced not only by external speech but also by speech produced 

by us. Study designs where participants repeat sentences aloud as a measure of intelligibility 

versus lexical decision tasks may produce different results in neural tracking accuracy as a 

result. Interestingly, in Bourguignon’s study, there was an enhancement of tracking in the 

theta band when reading aloud versus listening to others. This may suggest that speech 

prediction and top-down modulation utilising the sensorimotor and speech production regions 

of the brain play a role in our ability to accurately track the speech envelope. 

Whilst understanding speech processing in clear environments is beneficial, it is also 

important to consider processing when speech is in difficult listening conditions. These 

situations affect speech processing in our everyday lives, sometimes to detrimental effect 

(Dubbelboer & Houtgast, 2007; Venetjoki et al., 2007). Understanding how speech 

processing and perception is altered in these conditions, and how both speech intelligibility 

and tracking accuracy are lowered as a result, may assist in providing insight for ways to 

improve communication and speech perception. This will be further discussed in the context 

of multisensory integration and learning. 

1.4 Difficult Listening Conditions 

Difficult conditions are commonplace in everyday life, such as background noise, 

multiple speakers talking at once, or the attended speech being quiet. This degradation of the 
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original speech envelope in these conditions has been evidenced in some studies to lower 

neural speech-envelope tracking accuracy (An et al., 2023). Moreover, Vanthornhout and 

colleagues (2018) demonstrated a high correlation between measures of accuracy of speech 

envelope tracking in the auditory cortex and the understanding of speech. Attention and 

cognitive processes can alleviate this difficulty, by putting more listening effort and cognitive 

resources into understanding the speech signal (Wingfield, 2016; White & Langdon, 2021). 

As more noise is introduced, we require more cognitive effort to understand speech. Thus, a 

decline in our cognitive functioning – such as a natural decline with age – undoubtedly 

affects our speech perception as well (Gosselin & Gagne, 2011). This was evidenced in 

ageing studies by Saija and colleagues (2014), who show that older adults have a decline in 

their ability to understand speech in noise compared to younger adults, but this decline can be 

restored by slowing down speech or introducing top-down restoration of speech as a form of 

assisting with the cognitive effort needed to decode it. Investigating how our brains come to 

understand and process speech on a neural level has become increasingly more beneficial to 

the development of methods for improving speech comprehension in difficult listening 

environments. 

An interesting distinction in impaired processing is that hearing-impaired listeners 

demonstrate a reduced ability to use the temporal fine structure to benefit speech 

understanding in noise (Moon & Hong, 2014), but not a reduction in the ability to use 

additional speech-envelope information compared to normal-hearing participants (Lorenzi et 

al., 2006). Given that the neural accuracy of speech-envelope tracking is assumed to be 

linked to speech intelligibility, such that greater tracking accuracy associates with greater 

speech intelligibility (Kong et al., 2015; Vanthornhout et al., 2018), one would assume that 

intelligibility and tracking are linked. This intrinsic link is supported by speech-in-noise 

studies, where decreases in tracking accuracy occur as more noise is added to a speech signal 
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causing reductions in intelligibility (Vanthornhout et al., 2018; An et al., 2023). However, if 

hearing impairment does not affect envelope-tracking yet does decrease intelligibility in 

noise, this assumed intrinsic link must be brought into question. Indeed, in normal-hearing 

populations, difficult listening conditions also diminish speech intelligibility (Dubbelboer & 

Houtgast, 2007), yet evidence suggests that this is not linked to tracking accuracy (Kösem et 

al., 2023). It may be that tracking accuracy plays an alternative role in speech perception, 

which is not related to the segmentation of units of speech for better understanding during 

processing and may instead be related to attentional decoding or speech prediction (see: 

Geirnaert et al., 2021; Geirnaert et al., 2024; Straetmans, 2022). 

It is also important to briefly consider attention and its impact on cortical tracking. 

When attention is involved in speech processing, such as in the common cocktail party effect, 

we see an increase in early alpha activity between 8 and 12 Hz, indicative of attentional 

processes, as well as further activity in the theta band (4-8 Hz) when attending to a 

continuous stream of speech (Kerlin et al., 2010). In this study, sentences were structured in a 

way that only the last word was changed, such as: ‘His other friend was tired’ and ‘His other 

friend was fast’. It is then likely that participants attended to the last word only and so may 

not be an accurate representation of frequency activity for full sentences, but rather the 

understanding that the last word had changed and the subsequent processing of that word. 

Brodbeck et al. (2018) conducted an MEG study, showing similar findings to early and late 

responses to attended and unattended speech. Here, later peaks in temporal response 

functions at around 150 ms reflected attended speech were found. Interestingly, they found 

that these lexical processing peaks were absent from the unattended speech. This would 

support the notion that the speech envelope is tracked to help locate and segment speech for 

processing, but the primary lexical processing is reserved only for the attended stream. As a 

final point on the effect of correlation, Vanthornhout et al. (2019) tested to see if there was a 
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difference in neural tracking correlations in attentional tasks (where participants were asked 

to listen to speech whilst being asked questions) versus passive listening tasks (where 

participants were asked to ignore speech and watch a silent, unrelated movie). They found 

that in noise conditions with lower signal-to-noise ratios, the neural tracking accuracy was 

higher in the attention conditions, whereas in clear speech there was little difference. With 

these findings, they speculated that the passive listening task gave rise to stable, yet low, 

tracking accuracies. The active attentional task gave rise to higher tracking accuracies, but 

likely for shorter periods when attention was kept high, thus showing less stable accuracy 

values across the task.  

On the other hand, there is an exception to this seen with healthy ageing, as older 

adults show better neural tracking of the speech envelope than younger adults (Decruy et al., 

2019), with a greater correlation between neural tracking and speech intelligibility. This is 

hypothesised to be related to inefficient cognitive functioning and an increase in listening and 

cognitive effort required as we age (Gosselin & Gagne, 2011). This also calls into question 

the role of neural tracking, as it is unexpected for the tracking accuracy of older adults to be 

more robust than younger adults, given age-related decline in hearing and speech processing 

(Lin, 2024). There is the notion that the stimulus intensity used in the experiment may have a 

large effect on tracking accuracy for methods like stimulus reconstruction. In these cases, 

differences in intensity used to train a decoder versus reconstruct data on a participant-by-

participant basis can cause results to be skewed. Verschueren et al. (2021) highlighted this, 

showing that if the same stimulus intensity is used to train the decoder as is used in 

experimentation, then the reconstruction accuracy remains robust. Therefore, when working 

with any age in the population, it is important to match participants based on hearing ability 

more closely. This is because if one participant has a slightly different level of hearing than 

another, their perception of the intensity of the stimulus would differ. This intensity problem 
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can also be avoided by training a separate decoder for each participant using a long speech 

stimulus – such as a story chapter – before the task and having each reconstruction be based 

on the participant’s trained decoder and own neural testing data. With a younger population, 

this exception is not currently present in the literature. Enhancing neural speech envelope 

tracking in a younger population should, therefore, have great benefit to speech recognition, 

especially in situations where recognition is not at ceiling level, such as in noise. On the other 

hand, an alternative explanation can be drawn from results by Woodfield and Akeroyd 

(2010), who found that there was little to no difference between older and younger adults’ 

ability to segment speech. As the neural tracking of older adults retains its robustness with 

age, it may be that the neural tracking enhancement is not reflecting enhanced speech 

intelligibility at all. Instead, the assistance with the segmentation of speech may be separate 

from speech intelligibility performance.  

To investigate tracking in younger, normal-hearing populations further, we can look at 

cases of multisensory integration, such as visual lipreading, where an increase in both 

intelligibility of speech and cortical speech tracking occurs because of added sensory input 

relevant to speech heard. 

1.5 Multisensory Integration in Speech Perception 

Multisensory integration in the brain occurs in many regions, with the auditory system 

seeing benefit in processing through sensorimotor, visual, and tactile systems. To be 

discussed are the potential ways in which audio-visual and audio-tactile information can be 

integrated to improve speech intelligibility and cortical speech-envelope tracking accuracy.  

1.5.1 Audio-visual Speech Integration 

Audio-visual speech integration typically uses lipreading to provide the auditory 

cortex with non-auditory speech-relevant cues to assist with speech perception (Sumby & 
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Pollack, 1954; Bernstein et al., 2004; Maier et al., 2011). This is thought to be executed by 

reading visually distinct movements made by the lips, categorised as visual visemes (Fisher, 

1968; Massaro et al., 2012; Bernstein, 2018). These visemes represent a narrow range of 

phonemes spoken that share the same distinguishable visual features. This allows us not only 

to enhance our ability to attend to a single stream of speech in a noisy setting – by focusing 

on the lips of the attended speaker – but to also better understand the speech perceived in 

noise (Sumby & Pollack, 1954; Schwartz et al., 2004). The inverse can also occur, wherein 

incongruent lip movements influence our ability to discriminate between speech sounds. An 

example of this is the McGurk Effect (McGurk & MacDonald, 1976), where presenting the 

speech phoneme ‘Ba’ with visual lip movements associated with ‘Ga’ leads to perceptions of 

the sound ‘Da’ instead. Neural evidence exists showing the benefit of visual input. Golumbic 

and colleagues (2013) conducted a MEG study, finding that lipreading enhanced the speech 

envelope tracking of participants in the auditory cortex. It was greatly beneficial for 

differentiating between multiple speakers and phase-locking neural activity to the attended 

speaker alone. This provided an enhancement not only in the accuracy of the cortical tracking 

to the original speech envelope but also in speech intelligibility. This research has been 

further backed up by studies utilising neural reconstruction methods of analysis, too (Haider 

et al., 2024; Crosse et al., 2015). In background noise, visual information is recruited further 

(Yuan et al., 2021). Regions involved in audio-visual integration are widespread across many 

cortical and subcortical locations, with the most influential regions for speech intelligibility 

being superior temporal gyrus, right occipital gyrus, and the right thalamus (Gao et al., 2023). 

Evidence also suggests that both the dorsal and ventral pathways of the visual system are 

active during audio-visual speech integration (Kaposvári et al., 2015).  

When speaking with others, we typically see lip movements before we hear the 

spoken words (Chandrasekaran et al., 2009) as a form of natural stimulus onset asynchrony 
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(SOA). SOA is when two different modalities of information in cross-modal stimuli are 

presented at different onsets. The window of integration is the term given to the period in 

which visual information can lead or lag speech sounds before the visual information is no 

longer perceived as part of the same stimulus (Stein & Meredith, 1993). If the lip movements 

are desynchronised from the speech sounds within a specific period, then we still perceive the 

lip movements and the speech we hear to be congruent. If the SOA is large enough that the 

auditory and visual information do not fall within the same window of integration, we may 

perceive the two modalities as separate, and therefore not process the visual information as 

helpful extra information to discern and comprehend the speech. For speech signals, syllables 

have a window with an upper limit of about 240 ms and short words of about 300 ms 

(Navarra et al., 2005). Although it is important to note that this window of integration can be 

highly stimulus-dependent, and ranges in the literature between 150 and 800 ms (Colonius & 

Diederich, 2010; Schwartz & Savariaux, 2014, Ren et al., 2017), and even differs between 

age groups (Ren et al., 2017). 

Alongside lipreading, there also exists a visual-motor network for integration in 

speech perception too. Here, the motor system involved with the articulation of our lips is 

actively involved in the assistance of speech perception (Bruderer et al., 2015; Tiippana et al., 

2015). This has also been demonstrated with somatosensory stimulation during an audio-

visual speech discrimination task, which when congruent improved participant performance 

and activated parts of the temporal gyrus and the right occipital region (S. Ito et al., 2021). 

These two networks have been distinguished in fMRI studies (Okada & Hickok, 2009) as 

utilising different brain regions. Whether the visual-motor network itself also phase-locks to 

temporal speech envelope information however is not as clear in the literature. As a point of 

contention, blind individuals show better neural tracking in auditory regions than sighted 

individuals in a study by Hertrich et al. (2013). This was for ultra-fast speech, suggesting 
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heightened neural sensitivity to speech in the absence of visual information processing. 

Despite its benefits to speech perception, visual input is not always present. With the 

increased use of facemask wearing post-COVID-19 pandemic, speech intelligibility has 

lessened because of an absence of visual input from readable visemes (Brown et al., 2021; Yi 

et al., 2021; Smiljanic et al., 2021). The impact of COVID-19 may require a reassessment of 

our understanding of audio-visual integration in speech perception and it’s benefits to speech 

intelligibility, which will be investigated in Chapter 2. In a similar manner, neural speech 

tracking in audio-visual speech perception will be investigated in Chapter 4 in relation to the 

potential purpose of tracking in speech prediction. Furthermore, there are many cases where 

visual information is inaccessible, such as speaking from a distance, through communication 

devices that utilise auditory streams only like phone calls, and for those with visual 

impairments due to age, injury, or even blindness.  

Investigating other multisensory networks in the brain may provide insight into other 

beneficial approaches to speech perception in noise. One such sense that will be focused on is 

the sense of touch through numerous means of tactile stimulation.  

1.5.2 Audio-tactile Speech Integration 

Whilst visual information can be defined distinctly, tactile information can be 

provided through several different means, such as vibrations, pressure variations on the skin, 

spatial differentiation via tactile input moving across different parts of the body, and even 

non-direct sensations such as air puffs (Gick et al., 2010). Even so, many avenues of tactile 

input have been observed to assist with speech processing (Rizza et al., 2018; Khoo et al., 

2013; Maereg et al., 2017; Dementyev et al., 2021) using on-body applications. Some posit 

that this is because such inputs inform our speech perception systems of when to listen rather 

than provide any distinct information about the speech heard (Tjan et al., 2013). Tjan and 

colleagues (2013) found that this was the case for both visual and tactile input, suggesting 
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that audio-tactile and audio-visual integration in speech perception have a similar purpose for 

assisting with speech processing. In early work, Brooks and Frost (1983) aimed to test if 

tactile sensations could be used to train participants to learn words. To this end, they 

developed a tactile vocoder. This vocoder took live-feed audio information from the 

researcher and produced unique tactile stimulation corresponding to the speech. They then 

provided tactile stimulation alone and taught participants specific set lists of lexical items 

through it. Participants managed to learn large chunks of words after extensive training. This 

shows that tactile information is sufficient for learning speech, so long as extensive training is 

provided. These vocoders were further applied alongside visual lipreading and found to 

enhance tactile-visual lipreading ability when participants were trained over time (Bernstein 

et al., 1991). However, simply learning vocabulary through the set, tactile vocoded signals is 

not an efficient method of using other senses to assist with our speech perception, as it may 

not help with understanding speech in noise, nor understanding words that have not yet been 

learnt. In a similar example, the Tadoma method for deaf-blind individuals also shows how 

tactile information can be used to represent speech in the absence of visual and auditory 

streams (Reed et al., 1985; Chomsky, 1986). In this method, deaf-blind individuals place their 

hands on a speaker’s face, with their fingers touching the speaker’s throat, cheek, lips, and 

chin. This provides them with a tactile representation of speech through the movement of the 

lips, vocal cords, and even from the expelling of air. This method requires extensive training, 

however, and only really sees benefit in deaf-blind populations. A similar, adapted version of 

the Tadoma method was used by Sato et al. (2010) to further investigate the use of touch with 

sound. Their findings showed that audio-tactile integration occurred when participants placed 

their hands on the mouth and face of a speaker whilst listening to speech both embedded in 

noise and not. When the talker’s mouth movements did not match the speech spoken, 

intelligibility was reduced again, suggesting that the tactile information played a role in the 
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interpretation of speech in noise. This is an important step in showing the benefit of the 

tactile sense in speech perception. Furthermore, the study showed that this effect was 

beneficial for both blind participants and sighted individuals. However, as discussed before, 

this is one of many ways the tactile system could potentially be utilised with speech. The 

need to feel the mouth of the speaker may not be a suitable method of acquiring this 

information in everyday life and represents a motion more akin to the Tadoma method of 

multisensory speech. Other methods of tactile transcription, such as vibrational or spatial 

across the skin, may be more suitable. 

One recent method of alleviating problems with noise in cochlear implants has been 

the use of a form of tactile stimulation called electro-haptic stimulation (EHS). EHS 

techniques have been investigated to improve speech in noise processing (Fletcher et al., 

2019; Fletcher et al., 2020; Fletcher, 2021), wherein vibrations that correspond to electrical 

frequencies of the cochlear implant have been used to provide missing auditory information 

to the skin. This has been shown to work well with short training programmes, improving 

speech recognition in multi-talker scenarios (Fletcher et al., 2018) and spatial awareness of 

speakers (Fletcher et al., 2020). More importantly, it has demonstrated that tactile stimulation 

can carry speech signal information, and this can be utilised by participants after short-

training regimes. It is, however, only in the context of electro-haptic stimulation for aiding 

cochlear implant usage, which is a different hearing environment to non-implant users.  

Another key aspect of current multisensory integration investigations is the length of 

the window of integration. In audio-visual speech, visual information of the lips moving can 

follow the speech spoken by 250 ms and precede the speech by approximately 70 ms before it 

no longer provides any useful benefit to speech comprehension, though this window is highly 

variable and stimulus dependent (Navarra et al., 2005; Colonius & Diederich, 2010; Schwartz 

& Savariaux, 2014, Ren et al., 2017). Gick et al. (2010) determined a temporal window of 
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audio-tactile integration in speech perception to be up to 200 ms of asynchrony for the air 

puff to follow the audio and 50 ms for preceding the audio. Whilst a narrower window of 

integration than seen in the audio-visual stream, this shows that, to some capacity, there is an 

inherent ability for the brain to utilise tactile streams of information for speech integration. 

Moreover, in a study by Riecke and colleagues (2019), speech envelopes were extracted from 

sentences as a form of degradation to speech stimuli. The remaining fine structure was 

presented to participants. As expected, cortical tracking diminished with the removal of 

speech envelope information. However, when this information was provided to the 

participant in the form of tactile stimulation to the fingertips, there was an enhancement of 

speech envelope-tracking seen. This follows similar audio-visual envelope tracking trends in 

previous literature and highlights an avenue for the use of tactile sensations to improve 

speech processing in the absence of – or in combination with – visual lipreading.  

Interestingly, unlike evidence from audio-visual integration, Riecke and colleagues 

did not identify any increase in speech recognition or intelligibility in audio-tactile trials, 

despite a significant increase in cortical tracking being present. This goes against previous 

notions that speech envelope tracking is critical for enhancing our understanding of speech 

heard. There are two accounts for this pointed out in the paper. Firstly, that tactile stimulation 

simply is not a sufficient sense for providing speech information. Secondly, that training or 

exposure to tactile sensations that relate directly to speech envelopes is needed to see 

improvements in speech recognition. This second comment is of particular interest. In the 

case of audio-visual input, most people have been exposed to lipreading and viseme 

information for speech for most of their lives and arguably were naturally trained with such 

stimuli from very early childhood. There is evidence that infants as young as 5 months old 

demonstrate a neural capability to track speech envelopes, and that this is enhanced with 

congruent visual lipreading (Tan et al., 2022). Again, further evidence of audio-visual 
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integration of speech being present from a young age, essentially trained and exposed to 

throughout most of our lives.  

 It may be that short-term training with tactile stimulations will provide the missing 

link of intelligibility increase alongside further enhancements to cortical speech envelope 

tracking. Though, on the other hand, it may be more complex than simple exposure or 

training, as highlighted by studies showing that visual-tactile input improves speech with no 

previous exposure (Fowler & Dekle, 1991). Turning to recent work investigating cortical 

speech tracking in multiple languages, Reetzke et al. (2021) found that non-native speakers 

demonstrated a level of significant neural tracking of English speech. Native English 

speakers, however, demonstrated higher tracking than non-native speakers. This could reflect 

limited tracking to lower levels of speech processing. For example, there could be elements 

of phoneme or syllabic tracking with shared sounds of the native and foreign language that 

maintain high correlations, whereas word and sentence segmentation are lost in non-native 

speakers and not robustly tracked, lowering the overall correlation between cortical activity 

and original tracked speech. At the very least, without some semblance of training or 

exposure to aspects of speech, low-level neural tracking correlates could indicate their 

purpose relating to attention to speech as opposed to lexical processing.  

Training to audio-tactile speech-in-noise may be key to providing tactile benefit to 

speech intelligibility. The potential benefits of short-term training on audio-tactile speech will 

be investigated in Chapter 3. 

1.6 Perceptual Training in Speech-in-noise 

Before making assumptions and hypotheses based on training with tactile information 

to improve speech tracking and intelligibility, it is important to review findings from 

perceptual training research. Perceptual training has long been studied to better understand 
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adaptive brain plasticity and methods by which we can improve our perception of our 

environment, and the respective systems used to decode it (Rosenzweig & Bennett, 1996; 

Ahissar, 2001). In particular, the benefits of training with speech-in-noise both behavioural 

and neural are of relevance. Song and colleagues (2011) investigated speech-in-noise training 

with naturalistic, multi-talker babble scenarios. Here, participants were either trained over 20 

short sessions or simply tested regularly in their ability to discriminate speech from noise. 

Before and after training, baseline measures were taken, and brainstem responses were 

recorded during the task. They found a significant increase in speech discrimination 

performance in trained versus non-trained participants. Impressively, these increases from 

training were retained for six months, highlighting the effectiveness of simple, short-term 

auditory training regimes. Moreover, investigations using ERPs have narrowed the length of 

training to as low as two days, with 12 hours between sessions for consolidation (Atienza et 

al., 2002). This consolidation likely plays an important role in learning in speech processing, 

stabilising the benefits from training at a faster rate than when sleep consolidation is not 

accessible post-training (Drouin et al., 2023). Speculatively, this may be in part related to the 

oscillatory delta activity which furthers speech intelligibility through tracking of the speech-

envelope in the auditory cortex (Etard & Reichenbach, 2019; Ding & Simon, 2014) and plays 

a role in deep-sleep brain states (Nir et al., 2011; Lechat et al., 2022). Perceptual training has 

seen other forms of success in the auditory domain too, such as for the improvement of 

speech and cognitive processes in children with auditory disorders (Kumar et al., 2021), and 

with ADHD (Mishra et al., 2016). Though, on the other hand, it is important to note that there 

is disagreement in the perceptual learning literature regarding seen training effects, with some 

believing that trained performance in perceptual learning research does not adequately 

evidence far transfer (applied training benefits to a dissimilar task) and thus should be taken 
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with care (Don et al., 2023; Fransen, 2024), whilst others claim evidence of far transfer (Gao 

et al., 2020).  

Further, in the context of multisensory perceptual training, it has been observed that 

short-term audio-visual training has improvements to speech discrimination over training 

with auditory stimuli only, with retention of these benefits for at least one month (Moradi et 

al., 2017). The benefits from this multimodal training group were seen in just a single session 

(though the length of this training session is undefined), suggesting that, whilst multiple short 

sessions are required for single-modality training procedures, the added benefit of the visual 

medium through lipreading was great enough to reduce training times drastically and promote 

improvement just after a day. This rapid learning would align with research showing that the 

lateral geniculate nucleus, a thalamic region likely crucial for visual learning (Yu et al., 2016; 

Weyand, 2015), engages in rapid plasticity (Moore et al. 2011). Together, alongside the 

medial geniculate body of the thalamic centre is being utilised for auditory learning, this 

repeated projection through the thalamic pathways for integration may be enhancing 

perceptual learning at a greater rate than when learning is unimodal. In further speculation, it 

may also be possible to use other forms of multisensory integration for auditory speech 

perception in training programmes given this benefit, such as tactile speech envelope 

stimulation. There has been research investigating tactile training with pure tone sounds for 

profoundly deaf individuals (Gonzalez-Garrido et al., 2017). Whilst only using simplistic 

pure-tone sounds, this still highlights the brain’s ability to adapt to relevant tactile input and 

use it accordingly. There is the concern that this training is with too simplistic a set of stimuli. 

For example, being able to discriminate pure tones using tactile stimulation might not reflect 

your ability to discriminate more complex speech or even just another frequency of a pure 

tone. This concern, however, may not be valid, as recent research has found that training 

speech-in-noise benefits speech perception regardless of task specificity (Gao et al. 2020). 
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Therefore, it can be entirely reasonable to infer from perceptual training studies that specific, 

enhanced speech discrimination ability seen in trained groups may transfer to other speech 

discrimination contexts.  

1.6.1 Bottom-up vs Top-down Training 

Whilst investigating general perceptual learning from a unimodal and multimodal 

perspective is useful for understanding if tactile training may be beneficial, it is also 

important to reflect upon different types of training that utilise both bottom-up and top-down 

processes. It is known that speech perception involves a combination of dynamic bottom-up 

and top-down processing (Zekveld et al., 2006; Diekhof et al., 2009). As discussed, there are 

many ascending and descending pathways in the auditory processing stream, with sensory 

processing primarily taking place along the ascending route through the cochlear nucleus, 

inferior and superior colliculi, medial geniculate body of the thalamus, and through to the 

primary and nonprimary regions of the auditory cortex (Plack, 2018). Top-down processing, 

on the other hand, is more complex, with descending corticofugal projections from the 

auditory cortex to every lower subcortical region, including corticothalamic and 

corticollicular (Asilador & Llano, 2021; Souffi et al., 2021; Oberle et al., 2022; Ford et al., 

2024). Whilst training may be possible on a sensory level with audio-tactile speech, it might 

be more effective to present training that utilises both top-down and bottom-up processes to 

capture the wider speech processing network in the brain. Indeed, both bottom-up and top-

down focused training paradigms can successfully lead to improvements in speech 

intelligibility (Gohari et al., 2023). As detailed by Gohari et al. (2023), a top-down training 

paradigm might include memory-based training (Ingvalson et al., 2015; Schneiders et al., 

2012) or speech-in-noise training (Fletcher et al., 2020; Ciesla et al., 2022; O’Hanlon et al., 

in prep., 2025) to make use of top-down selective attention and contextual speech cues. A 

bottom-up training paradigm on the other hand might include temporal integration (Zerr et 
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al., 2019) or phonemic training (Schumann et al., 2015) to make use of sensory speech 

processing alone. This form of training would likely rely on the auditory system’s natural or 

pre-trained ability to integrate multimodal speech-relevant information, as top-down 

modulation would not be a focus of the paradigm to learn integration beyond the training 

stimulus set. As audio-visual integration is developed at an early age (Soto-Faraco et al., 

2012), audio-visual integration systems may be sufficiently developed for successful bottom-

up training, whereas audio-tactile training would likely require further learning input. This 

discrepancy between bottom-up and top-down effectiveness for audio-tactile training will be 

explored in Chapter 4.   

1.7 Summary and Thesis Outline 

In summary, the auditory system processes complex speech information through a 

variety of afferent and efferent pathways. Neural speech tracking in the brain can provide a 

means of understanding how components of speech, such as the speech envelope, are 

represented in the brain during processing. With difficult listening conditions, speech become 

more difficult to understand, with both neural tracking accuracy and intelligibility decreasing. 

Multisensory integration can assist with speech perception in these difficult listening 

conditions, though may need facilitation with training to encourage benefit, like with audio-

tactile integration.  

This thesis aims to further our understanding of multisensory integration in speech 

perception, and how audio-visual and audio-tactile speech can enhance neural speech 

tracking and speech intelligibility. The first aim is to reassess the benefits of audio-visual 

speech. This will be investigated in Chapter 2, which examines the behavioural benefits of 

audio-visual speech when stimuli are selected from different viseme categories. Chapter 5 

will also provide further audio-visual speech understanding from a neural perspective. The 

second aim of this thesis is to investigate if short-term training provides audio-tactile benefit 



37 

to speech intelligibility, as well as further enhancements in neural tracking accuracy. This will 

be investigated by both Chapters 3 and 4. Further to this, these chapters will also contribute to 

the aim of understanding the differences in applying top-down versus bottom-up training for 

audio-tactile speech processing. Finally, this thesis aims to further our understanding of the 

role of neural tracking accuracy in speech processing. Chapter 5 will primarily investigate 

this through a secondary data analysis of intracranial electrocorticography data, examining 

the potential role of tracking in the prediction of oncoming speech through audio-visual 

integration. To conclude, Chapter 6 will provide general discussion to this thesis, along with 

speculation for future research and final conclusions.  
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Chapter 2 
 

2 Reassessing the Benefits of Audio-Visual Integration to Speech 

Perception and Intelligibility  

 

 

 

Linking Statement: 

This chapter investigates the contributions of audio-visual integration to speech perception 

and intelligibility when viseme categories – group boundaries for phonemes that share visual 

distinctiveness through lipreading – are considered. The chapter also investigates the window 

of integration for these visually distinct phonemic stimuli. To be discussed is a reassessment 

of the benefits of audio-visual speech.  

 

Author Note: This paper was accepted for publication in the Journal of Speech, Language, 

and Hearing Research in September 2024 and published in January 2025. It was produced in 

collaboration with Dr. Helen Nuttall, and Prof. Christopher Plack as co-authors.  
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2.1 Abstract 

Purpose: In difficult listening conditions, the visual system assists with speech perception 

through lipreading. Stimulus onset asynchrony (SOA) is used to investigate the interaction 

between the two modalities in speech perception. Previous estimates of audiovisual benefit 

and SOA integration period differ widely. A limitation of previous research is a lack of 

consideration of visemes - categories of phonemes defined by similar lip movements when 

produced by a speaker - to ensure that selected phonemes are visually distinct. This study 

aimed to reassess the benefits of audiovisual lipreading to speech perception when different 

viseme categories are selected as stimuli and presented in noise.  The study also aimed to 

investigate the effects of SOA on these stimuli.  

Method: Sixty participants were tested online and presented with audio-only and audiovisual 

stimuli containing the speaker’s lip movements. The speech was presented either with or 

without noise and had six different SOAs (0, 200, 216.6, 233.3, 250, and 266.6 ms). 

Participants discriminated between speech syllables with button presses.  

Results: The benefit of visual information was weaker than that in previous studies. There 

was a significant increase in reaction times as SOA was introduced, but no significant effects 

of SOA on accuracy. Furthermore, exploratory analyses suggest that the effect was not equal 

across viseme categories: ‘Ba’ was more difficult to recognise than ‘Ka’ in noise.  

Conclusion: In summary, the findings suggest that the contributions of audiovisual 

integration to speech processing are weaker when considering visemes but are not sufficient 

to identify a full integration period.  

Keywords: audiovisual speech, speech perception, multisensory integration, visemes, vision 
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2.2 Reassessing the Benefits of Audio-Visual Integration to Speech Perception and 

Intelligibility  

Intelligible speech is built up from speech phonemes. Phonemes are small linguistic 

units - such as the /b/ phoneme that begins ‘boy’ in the English language - and play a large 

role in the identification of speech (Ewen & Van der Hulst, 2001; Bowers et al., 2016). 

Processing of speech can be made more difficult with the introduction of noise in the 

environment, which reduces the ability to discriminate successfully between phonemes 

(Summerfield, 1992). In many cases, information from the visual sense that is relevant to the 

speech – such as from lipreading – can be integrated into speech processing systems to 

improve comprehension. In background noise, this assisting sense is recruited further (Yuan 

et al., 2021). Viewing the lip movements when an individual is speaking can help to improve 

the intelligibility of speech-in-noise versus when the lips are not visible (Sumby & Pollack, 

1954; Maier et al., 2011). The inverse can also occur, wherein incongruent lip movements 

influence our ability to discriminate between speech sounds. An example of this is the 

McGurk Effect (McGurk & MacDonald, 1976), where presenting the auditory phoneme ‘Ba’ 

with visual lip movements associated with ‘Ga’ leads to perceptions of the sound ‘Da’ 

instead. A more recent example comes from face mask-wearing due to the COVID-19 

pandemic. Brown et al. (2021) found that if the speaker wore a facemask that either fully or 

partially covered lip movements, performance on speech discrimination tasks decreased 

dramatically. These data indicate that the visual and auditory systems interact to influence 

how we perceive speech. 

However, estimates of audiovisual benefit vary widely in the literature, likely due to 

stimulus-dependent effects (Ma et al., 2009), in that, how the stimuli are created for lab 

experimentation drastically affects how participants respond to speech discrimination tasks. 

For example, whilst it is important for research on audio-visual processing to consider how 
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auditorily distinctive sounds are, visual distinctiveness is equally important. A way to 

examine the effect of visual distinctiveness is to select phonemes from separate viseme 

categories for testing. A viseme category is a group of phonemes from the English language 

that share the lip movements and visual information portrayed by each phoneme when 

spoken (Massaro et al., 2012). Fisher (1968) identified five viseme categories based purely 

on visual distinguishability for English phonemes. Examples of phonemes that belong to the 

same viseme category are /b/, /p/, and /m/ which in syllable form can correspond to ‘Ba’, 

‘Pa’, and ‘Ma’. If two speech tokens share the same viseme, then it is impossible to discern 

which was spoken through lip-reading alone (Van Engen et al., 2022) and are only 

distinguishable through sound. This means that any measure of audiovisual benefit derived 

from discriminating within a viseme category will be lessened. It is therefore important to 

select stimuli from separate viseme categories when investigating how auditory and visual 

systems work together during speech syllable discrimination.  

When speaking with others, we typically see lip movements before we hear the 

spoken words (Chandrasekaran et al., 2009) as a form of natural stimulus onset asynchrony 

(SOA). SOA is when two different modalities of information in cross-modal stimuli are 

presented at different onsets. The window of integration is the term given to the period in 

which visual information can lead or lag speech sounds before the visual information is no 

longer perceived as part of the same stimulus (Stein & Meredith, 1993). If the lip movements 

are desynchronised from the speech sounds within a specific period, then we still perceive the 

lip movements and the speech we hear to be congruent. If the SOA is large enough that the 

auditory and visual information do not fall within the same window of integration, we may 

perceive the two modalities as separate, and therefore not process the visual information as 

helpful extra information to discern and comprehend the speech. For speech signals, syllables 

have a window with an upper limit of about 240 ms and short words of about 300 ms 
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(Navarra et al., 2005). Although it is important to note that this window of integration can be 

highly stimulus-dependent, and ranges in the literature between 150 and 800 ms (Colonius & 

Diederich, 2010; Schwartz & Savariaux, 2014, Ren et al., 2017), and even differs between 

age groups (Ren et al., 2017). This mixed range in the literature could also be due to a 

mismatch with reported display refresh rates (typically 60 Hz), video framerates (typically 30 

– 60 frames per second) and levels of SOA used in research if reported at all (Ren et al., 

2017). For example, in 10 ms increments, a 60 Hz monitor can't display separate visual 

streams of information that refresh every 10 ms, as it is only capable of doing so every 16.6 

ms, assuming the video plays at a full 60 frames per second as well.  

The present study aimed to reassess the benefits of visual information to speech-in-

noise perception using stimuli with visual distinctiveness. We also aimed to determine the 

effect of SOA on audiovisual speech perception. We tested the following hypotheses:  

(i) purely audio speech discrimination accuracy will be decreased when speech is 

presented in noise compared to without noise.  

(ii) reaction time to correctly discriminated purely audio speech will be increased 

when speech is presented in noise compared to without noise. 

(iii) speech-in-noise discrimination accuracy will be increased when speech is 

presented with congruent visual information of the speaker’s lip movements 

(audiovisual stimuli) compared to when no visual information is present (purely 

audio stimuli). 

(iv) reaction time to correctly discriminated speech-in-noise will be decreased when 

speech is presented with congruent visual information of the speaker’s lip 

movements (audiovisual stimuli) compared to when no visual information is 

present (purely audio stimuli). 
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(v) as the visual information precedes the auditory information by larger SOAs (0 -

266 ms), speech-in-noise discrimination accuracy will decrease. 

(vi) as the visual information precedes the auditory information by larger SOAs, 

reaction time to correctly discriminated speech-in-noise will increase. 

Further exploratory analysis also investigated the window of integration for these 

audiovisual stimuli, as well as differences in visual benefit between each syllable used. 
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2.3 Methods 

2.3.1 Design 

To address hypotheses (i) and (ii), a single within factor (noise type: speech without 

noise, and speech-in-noise) design was used for purely audio trials with no stimulus 

asynchrony. For hypotheses (iii) and (iv), a single within factor (stimulus type: audiovisual, 

and purely audio) design was used for speech-in-noise trials with no stimulus asynchrony. 

Finally, for hypotheses (v) and (vi), a single within factor (SOA; 0, 200, 216.6, 233.3, 250, 

and 266.6 ms) design was used for audiovisual, speech-in-noise trials only. In total, 

participants took part in all 14 unique conditions (see Table 1), and both the accuracy of 

speech discrimination and reaction time in the discrimination task were recorded.  

Ethical approval was granted by the Faculty of Science and Technology Research 

Ethics Committee at Lancaster University (approval reference: FST-2022-2122-RECR-2, 

project ID: 2122). The study was pre-registered on AsPredicted.org before commencing data 

collection. The pre-registration can be found at https://aspredicted.org/aq98a.pdf. All 

deviations from this pre-registration are listed in the section below. The collected data have 

been archived on the Open Science Framework (OSF: https://osf.io/kcbzs). 

2.3.2 Deviations from pre-registration 

In the original study pre-registration, there were three set hypotheses listed:  

• There will be a decrease in the accuracy of speech discrimination (measured 

by correct responses in trials) or an increase in response times in the auditory-

only condition when the speech is in noise compared to speech without noise.  

• When visual information is present (audiovisual), the accuracy of speech 

discrimination and response times for each trial will not be as obstructed in 

https://aspredicted.org/aq98a.pdf
https://osf.io/kcbzs


75 

speech-in-noise conditions compared to audio-only conditions (when no visual 

information is present). 

• As the visual information precedes the auditory information by larger margins 

(200 ms, 216 ms, 233 ms, 250 ms, 266 ms), the accuracy of speech 

discrimination in the speech-in-noise conditions will decrease - or response 

times will increase - in audiovisual conditions compared to when the 

audiovisual information is congruent (0 ms). 

These were changed to the hypotheses listed in the introduction by splitting the 

dependent measures into separate hypotheses and improving readability. This was done to 

make interpretations of results more clearly defined when referring to the hypotheses. To 

accompany this, the models used to test the hypothesis were also adjusted, giving six separate 

models of analysis - one for each hypothesis - instead of four. Generalised linear mixed-

effects models (GLMER) were used to test all six hypotheses, instead of the mixture of 

GLMER models for accuracy data and LMER models for reaction time data that was listed in 

the pre-registration. This was done as GLMER models are more appropriate than LMER 

models for reaction time data, which is generally positively skewed (Lo & Andrews, 2015). 

These GLMER models were preferable still over repeated measures generalised linear 

models for considering random effects that may be present on a participant-by-participant 

basis. Finally, in our sample size calculation using data simulation (see section ‘Sample size 

calculation’), it was determined that 60 participants were needed to sufficiently power the 

study. In the pre-registration, we then added a further 10% after a priori calculations (another 

6 participants) to make a sample size estimate of 66. Due to the availability of resources, this 

extra 10% was not collected, leaving the sample of the study at the original number of 60 

participants. 
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2.3.3 Participants 

All data were collected online, with 81 participants recruited for the study. Of these, a 

total of 60 participants completed the study (mean age = 25.66 years, 28 male, 30 female, two 

non-binary). The other 21 participants completed the eligibility questionnaire but were either 

not eligible or did not proceed to the study task and provide study data. Participants were 

recruited via online advertisements or through Prolific and were compensated for their time. 

All participants were monolingual, native speakers of British English to control any potential 

speech perception differences across languages and in bilingualism and multilingualism 

(Lotfi et al., 2019). Participants reported no hearing disorders and had either normal or 

corrected-to-normal vision. Only those between the ages of 18 and 35 were tested, as the 

window of integration for audiovisual information increases significantly with age, which can 

make speech discrimination more difficult (Ganesh et al., 2018; Sekiyama et al., 2014). 

Participants reported no developmental disorders, such as dyslexia, or history of 

developmental disorders. This was important as the window of integration for audiovisual 

stimuli is wider in individuals with learning difficulties such as autism spectrum disorder and 

developmental dyslexia (Smith & Bennetto, 2007; Megnin-Viggars & Goswami, 2013; 

Michalek et al., 2014; Noel et al., 2018). All participants were right-handed.  Finally, 

participants had no musical expertise, as previous research suggests that individuals with 

continuous experience as musicians can detect smaller SOAs, even for speech syllables (Lee 

& Noppeney, 2014; Sorati & Behne, 2019). Musical expertise was defined as training with a 

single musical instrument or voice for more than 7 years (Varnet et al., 2015; Lee et al., 

2020) and for at least 3.5 hours a week (Lee & Noppeney, 2014). Participants were screened 

for the experiment using Qualtrics (see section ‘Procedure’).  
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2.3.4 Sample size calculation 

Before testing, data simulation was conducted using R 4.2.2 (R Core Team, 2022) for 

power and sample size analysis. Lme4 (v1.1-27.1; Bates et al., 2015), afex (v1.0-1; Singmann 

et al., 2024) and simr (v1.0.5; Peter et al., 2019) were the core packages utilised in this 

process. Firstly, means and standard deviations of accuracy were gathered from studies that 

used syllable or bi-syllable phonetic speech tokens to investigate visual integration in speech 

perception. These studies typically used either multiple signal-to-noise ratios (SNRs; between 

-12 and -18 dB: Altieri et al., 2014; Grant & Seitz, 1998; Sekiyama et al., 2014) or 

individualised ratios (Ten Oever et al. 2013). For those studies that used multiple speech-to-

noise ratios, we took data from – or closest to – -16 dB SNR. -16 dB was selected for our 

speech-shaped noise as this was the average SNR at which there was a notable difference 

between perceiving speech with or without visual aid (Bernstein et al., 2004). An average 

estimated mean and standard deviation were then calculated for each condition. A dataset was 

produced using the rtruncnorm function (truncnorm package; v1.0-8; Mersmann et al., 2018) 

- to randomly generate data for each condition that had a mean and standard deviation close 

to the ones calculated. This was repeated for each speech token (‘Ba’, ‘Fa’, and ‘Ka’) and all 

trials of each condition, providing a full dataset of expected results.  

The dataset was then analysed using our planned experimental analyses (see below) to 

generate predicted results. Simulations were repeated 1000 times. An aggregation of power 

was then calculated. If the power was insufficient (below .80 at an alpha level of .05), the 

sample size of the dataset was manually adjusted, and the data simulation was conducted 

again. This was done until a minimal sample size with sufficient power was found. A total of 

60 participants were calculated to be needed for sufficient power. The code for data 

simulation is available on OSF (https://osf.io/kcbzs). 

https://osf.io/kcbzs
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2.3.5 Materials 

The experiment was created using PsychoPy 3’s builder tools (v2021.2.3; Peirce et 

al., 2019) and hosted online through Pavlovia. A consent form and a screening form were 

created and hosted on Qualtrics (Qualtrics, 2005). Three single-syllable speech tokens were 

used: ‘Ba’, ‘Fa’, and ‘Ka’. These were chosen as they belong to three distinct viseme 

categories, did not rely on distinguishing any tongue movements that would have been 

obscured from sight (such as labiodental phonemes), and could be easily distinguished 

without visual aid when not in noise. These speech tokens were spoken by a native British 

English-speaking male speaker and were recorded using personal home equipment. An 

external USB 3.0 condenser microphone was used to record audio (HyperX Quadcast with 

default windshield, set to the cardioid position). The initial video footage was recorded at 

1920 x 1080 resolution and 60 frames per second using a mobile device (OnePlus 7 Pro). 

Both devices were connected to a single desktop machine, which recorded the audio and 

video in tandem using open-source OBS Studio software (Open Broadcaster Software, 

version 29.1.3). After the initial recording, the speech tokens were edited in length and 

converted to mp4 files at a resolution of 1280 x 720 and a frame rate of 60 frames per second. 

As the study would be completed on participants’ laptops or desktop systems and using their 

internet connection, we could not ensure that all participants were using a device with a 1920 

x 1080 resolution screen. By reducing the resolution of files to 1280 x 720, all likely 

participant resolution sizes could be accommodated whilst ensuring that all participants 

viewed the files at the same resolution. Sixty frames per second was chosen as the frame rate 

as home device monitors and laptop screens are typically to a standard 60 Hz or higher. By 

using the lower boundary and not a higher frame rate, we can be sure that all SOAs 

implemented in the stimuli were visually relayed to the participant. For audiovisual 

conditions, the video footage contained only the speaker’s lower face in view, containing 
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mouth and lips. This meant that participants were only provided with visual information 

regarding the lip movements made when speaking, and not any other visual information 

relevant to other actions the speaker may have made during recordings. For audio-only 

conditions, the video of the lips was overlayed with a plain black PNG image file. This kept 

the audio-only stimuli in a consistent video format rather than exporting the file as an mp3. 

All video files were the same length of 2 s.  

Audacity software (Audacity Team, 2021) was then used to rip the audio from the 

MKV files to be edited as WAV files in Praat software (Boersma & Weenink, 2021) for the 

creation of speech-shaped noise. First, a sentence using English words – ‘His plan meant 

taking a big risk’ - was recorded to provide a base for the speech-shaped noise. White noise 

was then produced using Praat’s white noise generator. The noise was brought down to an 

intensity tier, then an amplitude tier. This was then multiplied with the sentence above to 

create speech-shaped noise (Van Engen et al., 2017). Praat was then used to combine the 

speech-shaped noise with the speech-in-noise conditions at a speech-to-noise ratio of –16 dB. 

This was done using a Praat script developed by McCloy (2021). Finally, Audacity was used 

again to ramp up the start and ramp down the ends of all audio files for every condition. The 

audio was then stitched back onto the MP4 files.  

For the conditions where the stimuli were asynchronous, Lightworks was again used 

to desynchronise the onset of the audio ahead of the onset of the lip movements using exact 

frames of the video footage (12, 13, 14, 15, and 16 frames per second) which corresponded 

with the SOAs of the relevant conditions (audio starting after the visual lip information by 

200, 216.6, 233.3, 250, and 266.6 ms). The result was 42 stimuli in MP4 format, representing 

three speech tokens (‘Ba’, ‘Fa’, and ‘Ka’) for each of the 14 condition levels presented to the 

participant.  



80 

2.3.6 Procedure 

Participants were linked to Qualtrics once they had consented to the study. 

Participants were also reminded at this stage to ensure that they were in a quiet room with no 

background noise, as well as to load the experiment on either Microsoft Edge, Google 

Chrome, or Mozilla Firefox internet browsers on a laptop or desktop computer. They were 

explicitly told not to open the experiment on any other browser, such as Safari, nor a mobile 

or tablet device as these were incompatible. Participants were also instructed to use 

headphones for the experiment, rather than to play the stimuli through their device’s 

speakers.  

A volume check began, in which a constant pure tone played (440 Hz frequency), and 

participants were asked to adjust the volume of their device as necessary for a comfortable 

auditory experience and to ensure that the audio was playing correctly at a sufficient volume 

level. This tone would play for as long as the participant wished to alter the volume levels of 

their device. Once complete, the spacebar would be pressed, and the tone stopped. 

Participants were informed that a video would play either showing no visual information or 

visual information of lips moving. Meanwhile, speech would be played. Participants were 

told to listen carefully to the speech sound spoken, and after hearing the sound to press one of 

three buttons on their keyboards that corresponded with the three available speech tokens. 

They were instructed to respond to each trial as quickly as possible. They were reminded 

before and after each trial to press 'z' on their keyboard if they heard ‘Ba’, 'x' for ‘Fa’, or 'c' 

for ‘Ka’. If they were unsure, they were told to make a guess.  

Participants were given six practice trials before data were collected. This was using 

the speech without noise, 0 ms, and audiovisual condition stimuli, with two trials for each of 

the three speech tokens (Ba, Fa, and Ka). A white crosshair would be displayed on the screen 

for 1000 ms before the trial began to bring attention to the centre of the screen where the 
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video trials would be displayed. Stimuli were shown for 2500 ms, then the response screen 

would display. On this screen, the participants were reminded of the buttons to press for each 

of the three speech sounds. Only the three buttons could be pressed and pressing the buttons 

whilst the stimuli were still playing would not record a response or stop the trial. A total of 

546 trials (not including the practice trials) were completed. The order of the trials and 

conditions was completely random to avoid any potential order bias. After every 42 trials, a 

break screen would appear. This screen told the participant to take a short break before 

continuing with a press of the spacebar. If the participant did not wish to take a break, they 

were permitted to continue with a spacebar press immediately. There was a total of 12 breaks 

in the experiment, each with a short attention check question to ensure participants remained 

attentive to the experiment. Upon completing the study, participants could close the browser 

tab or window down and all data would remain recorded on the Pavlovia system.  

2.3.7 Analysis 

Descriptive statistics were first gathered from each condition for both the accuracy 

ratings and the reaction times. Reaction times were taken from the offset of the stimuli to the 

participant response. The average accuracy and reaction time of accurately responded trials 

for each condition and each participant was calculated, with reaction times winsorised over 

the 95th percentile only. This was done to replace any large, outlying reaction times to trials 

that may be due to a distraction at home during testing or the participant taking a short break 

before the break period.  The assumptions of linear and generalised linear mixed-effects 

models were tested, including residual plots to check for linearity, quantile-quantile plots for 

normality, assessing the levels of multicollinearity between stimulus type, noise, and SOA 

using variance inflation factors, and ensuring the assumption of homoscedasticity was met. 

All the above tests were conducted on the dataset and all assumptions were met. As we were 
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testing six separate hypotheses, the experiment-wise error rate was controlled using the 

Bonferroni-Holm method (Holm, 1979). 

With further regards to stimulus variability, previous studies often employ analyses 

such as repeated measures analysis of variance (ANOVA) tests which do not consider 

random effects (Bates et al., 2015). Including random effects is important for ensuring that 

any effects found in the model are not influenced by differences in participant ability or by 

the stimuli themselves, as some stimuli may be easier to recognise and comprehend in noise 

than others. To counter this issue, mixed-effects models can be used that consider the random 

effects, such as participant number and stimuli number, across intercepts and slopes within 

the model to provide a more valid interpretation of the integration between visual and 

auditory systems in speech perception.  

Using the lme4 package (Bates et al., 2015), generalized linear mixed-effects 

regression model (GLMER) analyses were conducted for the accuracy scores to test 

hypotheses (i), (iii), and (v) and for reaction time scores to test hypotheses (ii), (iv), and (vi). 

GLMERs were chosen instead of repeated measures generalised linear models such as 

ANOVA tests because they consider random effects that may be present across all 546 trials 

on a participant-by-participant basis. GLMER was chosen over LMER for analysis with 

reaction times as these scores are typically positively skewed. As noted by Lo and Andrews 

(2015), generalised linear mixed models are more appropriate for skewed datasets in this 

context. Furthermore, accuracy in a trial is a binary outcome variable that can either be 

correct (1) or incorrect (0). Therefore, GLMERs were used to ensure that assumptions of 

categorical dependent variables in mixed-effects models were met. GLMERs were conducted 

using the lme4 package still, as this package supported a generalised approach. Due to the 

generalised nature of the model and package restrictions, no suitable p-values were provided 

with the GLMER analyses. Instead, significance was interpreted using 99.2% confidence 
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intervals (CIs), chosen to reflect our lowest criterion of significance in the Bonferroni-Holm 

approach being p < .008 for six comparisons. If the resulting confidence intervals showed 

insignificance, the next boundary of Bonferroni-Holm (p < .01) was checked using 99% 

confidence intervals. This kept going until either significance was found or no significance 

was found at a significance level of p < .05. Once detected or classed as insignificant, the test 

was ranked with the other p-values in our analyses as the lowest boundary of significance and 

Bonferroni-Holm was conducted as normal on our six ranked comparisons.   

To test hypothesis (i), a GLMER analysis was conducted using the accuracy of 

responses on the speech discrimination task as the dependent variable and using noise type 

(no noise or speech-shaped noise) as the independent variable in the model. As we 

hypothesised that presenting speech in noise would significantly decrease accuracy compared 

to without noise, we expected to find a significant effect of noise type from this GLMER 

analysis. Hypothesis (ii) was the same as the first but looked at reaction times to correctly 

discriminated speech-in-noise on the same task. A GLMER was used to test this hypothesis, 

using reaction times as the dependent variable and noise type as the independent variable. 

Similarly, we expected to find a significant effect of noise type, increasing reaction times. 

To test hypothesis (iii), a GLMER analysis was conducted using the accuracy of 

responses on the speech discrimination task as the dependent variable and using stimulus type 

(purely audio or audiovisual) as the independent variable in the model. As we hypothesised 

that presenting audiovisual stimuli in noise would significantly increase accuracy compared 

to purely audio stimuli in noise, we expected to find a significant effect of stimulus type from 

this GLMER analysis. Hypothesis (iv) was the same as the third but looked at reaction times 

to correctly discriminated speech-in-noise on the same task. A GLMER was used to test this 

hypothesis, using reaction times as the dependent variable and stimulus type as the 
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independent variable. Similarly, we expected to find a significant effect of stimulus type, 

decreasing reaction times. 

To test hypothesis (v), we conducted a GLMER analysis using accuracy as a 

dependent variable and SOA as the independent variable. SOA was treated as a categorical 

variable in this model and the model for hypothesis (vi) below. We expected to find a 

significant effect of SOA, with accuracy decreasing when more asynchrony was introduced 

to the stimuli. This would reflect that the window of integration for audiovisual speech is 

important for visual information to be beneficial to understanding speech in noise. Finally, in 

a similar manner, hypothesis (vi) was tested using a GLMER analysis with reaction times as 

the dependent variable and with SOA levels as the independent variable in the model. Again, 

we expected a significant effect of SOA on reaction times, with reaction times increasing 

with the introduction of asynchrony.  

For all six GLMER models listed above, the speech sound token used (Ba, Fa, or Ka), 

participant age and the participant ID were all included as random effects. No further model 

selection of these random and fixed effects was undergone, as we wanted a conservative 

model that included a full random effects structure to account for the expected larger 

individual differences of an online experiment. All model equations and structures can be 

found in the supplementary materials (Table 2).  

Furthermore, we also conducted exploratory analyses to assess the effect of noise on 

speech discrimination accuracy between the three visually distinct, chosen phonemes (‘Ba’, 

‘Fa’, and ‘Ka’). To do this, a GLMER analysis was conducted using accuracy as the 

dependent variable and speech token as the independent variable. Purely audio trials in noise 

were used for this analysis. Furthermore, we also conducted pairwise comparisons within the 

GLMER models used to test hypotheses (v) and (vi) as another exploratory analysis, 
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comparing between each level of our SOA independent variable. We expect that not all the 

SOA interactions will show significance. As we expected the benefits of visual stimuli to 

only be present during the window of integration, there would only be a significant decrease 

in accuracy and an increase in reaction times at SOAs outside this window. Therefore, this 

exploratory analysis can be used to better understand the window of integration for our 

stimuli. All exploratory analyses will use an inference criterion of p < .008 as this was the 

strictest threshold for significance included in our Bonferroni-Holm correction. 
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2.4 Results 

2.4.1 Descriptive statistics 

The means and standard deviations of the accuracy of responses and reaction times of 

responses can be seen in Table 1. Descriptive statistics were also calculated for each speech 

token (Ba, Fa, and Ka). Figure 1 shows the mean reaction times and mean accuracy rates for 

both audio-only and audiovisual stimuli when no SOA is considered (0 ms SOA), whilst 

Figure 2 shows these data for all SOAs when audiovisual stimuli are used for speech-in-noise 

conditions. Figure 3 shows the mean reaction times and accuracy rates for all SOAs when 

audiovisual stimuli are presented without noise. Furthermore, Figure 4 shows accuracy rates 

and reaction times in purely audio and audiovisual stimuli in noise between each of the three 

speech tokens. Violin plots were used for all figures to highlight the distribution of accuracies 

and reaction times across participants for each condition, as individual differences were large 

in this dataset likely due to online experimentation.  

2.4.2 Effect of noise on speech perception 

The first planned GLMER analysis was conducted to test hypothesis (i). There was a 

significant effect of noise type (with or without noise), showing a decrease in accuracy in 

speech-in-noise discrimination when noise was introduced versus clear speech (β = -.29, t = -

12.95, 99.2% CI = [-.35, -.23], p < .008). This model supports hypothesis (i), as we expected 

to find that the introduction of noise to speech would decrease performance. For testing 

hypothesis (ii), the planned GLMER analysis was conducted. There was a significant effect 

of noise type on reaction times (β = .06, t = 3.10, 99.2% CI = [.01, .11], p < .008). This model 

supports hypothesis (ii), as we expected to find that introducing noise would increase reaction 

times to correctly discriminated speech.  



87 

2.4.3 Effect of congruent, distinguishable visual information on speech perception 

Our next planned GLMER analysis was conducted to test hypothesis (iii). There was a 

significant effect of stimulus type (purely audio or audiovisual), as there was an increase in 

accuracy in speech-in-noise discrimination when stimulus type was audiovisual versus purely 

audio (β = .26, t = 11.36, 99.2% CI = [.20, .32], p < .008). This model supports hypothesis 

(iii), as we expected to find that introducing relevant visual information would improve 

speech perception in noise. For testing hypothesis (iv), the planned GLMER analysis was 

conducted. There was a significant effect of stimulus type on reaction times (β = -.08, t = -

4.15, 99.2% CI = [-.13, -.03], p < .008). This model supports hypothesis (iv), as we expected 

to find that introducing relevant visual information would decrease reaction times and 

improve speech perception in noise.  

2.4.4 Effect of stimulus onset asynchrony on audiovisual speech perception 

When testing hypothesis (v), the planned GLMER analysis was done for data across 

all SOA levels for audiovisual speech-in-noise stimuli only. There was no significant effect 

of SOA on accuracy at any interval, even at a 95% confidence interval, showing no support 

for hypothesis (v). Finally, our planned GLMER analysis was run to test hypothesis (vi). 

There was a significant main effect of SOA (β = .04, t = 3.31, p < .008) on reaction times, 

indicating reaction times increased with SOA. This supports hypothesis (vi). 

2.4.5 Exploratory analyses 

As a further, exploratory analysis, a GLMER model was used to investigate phoneme 

differences in speech-in-noise discrimination. Looking at pairwise comparisons, there was a 

significant difference between accuracy rates of the ‘Ba’ and ‘Fa’ tokens (β = -.17, t = -5.03, 

p < .008), ‘Ba’ and ‘Ka’ tokens (β = -.53, t = -15.50, p < .001), and ‘Fa’ and ‘Ka’ tokens (β = 

-.36, t = -10.47, p < .008) for purely audio stimuli. For audiovisual stimuli, however, there 
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was no significant change in accuracy rate between the three tokens. A GLMER model for 

reaction times showed similar patterns, although only ‘Ba’ and ‘Ka’ were significantly 

different for purely audio stimuli, with ‘Ba’ having increased reaction times in comparison to 

‘Ka’ (β = .14, t = 4.21, p < .008).  

Finally, to explore differences between SOA intervals to see if a window of 

integration could be determined, pairwise comparisons were made on the GLMER analyses 

used to test hypothesis (vi). Pairwise comparisons were not made on the GLMER used to test 

hypothesis (v) as no significant effect of SOA on accuracy was observed. Pairwise 

comparisons made on the GLMER to test hypothesis (vi) indicated that reaction times were 

significantly reduced compared to 0 ms at 250 (β = -.05, t = -3.94, p = .001) and 266.6 ms (β 

= -.05, t = -3.88, p = .002). However, no other comparisons between levels of SOA were 

significantly different. Whilst this implies that a minimal end of the window of integration 

could lie above 233.3 ms (as SOAs between 233.3 and 250 ms were not tested), no accurate 

window of integration can be determined from the data.  
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2.5 Discussion 

This study aimed to reassess the contribution of audiovisual integration to speech 

perception in noise when stimuli belonged to different viseme categories. As speech 

perception can differ wildly with stimuli sets, it was important to first reassess the detriment 

of noise on speech discrimination, as well as the benefits of speech-relevant visual 

integration. The study incorporated the visual distinguishability of each speech phoneme used 

in the speech discrimination task by selecting phonemes from separate viseme categories. 

Furthermore, the study also aimed to examine the effects of stimulus onset asynchrony (SOA) 

on audiovisual speech perception. This may assist in determining a window of integration for 

these stimuli, which was explored in further analyses.  

2.5.1 Reassessing the detriment of noise on speech perception 

GLMERs were used to investigate the influence of the predictor variables on accuracy 

ratings on the speech discrimination task. The first model, using noise type as the predictor, 

supported our first hypothesis, showing that there was a decrease in accuracy for purely audio 

stimuli when the speech was presented in noise compared to without noise. Additionally, the 

introduction of noise to the speech signal increased reaction times significantly. These results 

support our second hypothesis. As both the accuracy and reaction time to trials with noise 

differed significantly from those without, it can be said that the detriment of noise on speech 

perception was present with our created stimuli and chosen SNR ratio of -16 dB using 

speech-shaped white noise. 

2.5.2 Reassessing the contribution of audiovisual information on speech processing in 

noise 

There was a significant increase in accuracy when relevant, congruent visual 

information was present with the stimuli versus purely audio stimuli in noise. This supports 
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hypothesis (iii) and confirms previous findings regarding the contribution of audiovisual 

information to speech-in-noise processing. However, it should be noted that whilst the effect 

is prominent, it is not as great as previous literature findings which used a similar speech-to-

noise ratio (Van de Rijt et al., 2019). Here, the effectiveness of audiovisual enhancement of 

speech recognition was assessed with SNR ratios as low as -21 dB SNR, where the 

introduction of relevant visual cues provided an increase in accuracy of up to 50% for some 

stimuli, with greater enhancements for words like ‘Pieter’. Even at -16 dB SNR, Van de Rijt 

et al.’s data suggests that greater audiovisual enhancement should have been seen, though 

reaction time data was not reported in the study.  

This could also be explained using results from our exploratory analysis. When the 

speech was in noise and the stimuli contained auditory information only, the token ‘Ba’ 

displayed much lower mean accuracy scores than the other tokens. This suggests that there 

are specific differences in the acoustic properties of the tokens used that are influencing the 

perception of speech-in-noise. In previous literature, ‘Ba’ and other tokens within the same 

viseme (such as ‘Pa’) are frequently used, which could suggest why results in previous 

literature show a larger speech discrimination effect in noise. It is therefore important for 

future research to determine if there are differences in speech perception between other 

viseme categories that were not used in this study (Fisher, 1968). In our LMER model for 

hypothesis (iii), the token used was loaded as a random factor. This variance between tokens 

was removed from the variance found in fixed effects in the outputs of the model. This mixed 

effect modelling also considered participant differences and age, unlike previous literature 

that did not investigate speech discrimination effects using more complex models (Bernstein 

et al., 2004; Sekiyama et al., 2014). As the tokens appear to be largely variant, this could 

further account for the weaker overall patterns of change seen between fixed effects. 
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Next, there was a significant decrease in reaction times when audiovisual stimuli were 

used over purely audio, supporting hypothesis (iv). Interestingly, there was a decrease in 

reaction time in audiovisual conditions with noise over without noise as well. When 

processing multisensory stimuli that are not beneficial to us, reaction times likely increase 

due to extra unnecessary processing (Brown & Strand, 2019). In this case, the audiovisual 

information is only beneficial to us in noise. Therefore, in this model where no comparisons 

to clear speech are made, reaction times significantly decrease with the introduction of noise 

as the extra processing of visual information becomes beneficial. Comparatively, when 

audiovisual information is present without noise, reaction times increase as the added visual 

information is no longer beneficial to speech recognition as it is already clear to understand. 

2.5.3 Investigating the effects of stimulus onset asynchrony on the speech processing 

benefits of audiovisual information  

Our GLMER model testing hypothesis (v) uncovered no meaningful change in 

accuracy between any SOA value. In previous research, the maximal window of integration 

was around 250 to 260 ms for syllables (Dixon & Spitz, 1980). Here, SOAs up to 266.6 ms 

did not affect speech discrimination accuracy, implying that the stimuli were still inside the 

window of integration and that the maximal end of the window lies beyond 266.6 ms. Our 

final LMER model testing hypothesis (vi) found significant increases in reaction time when 

an SOA was introduced. Alternatively, this implies that the range of SOAs used does cover 

the maximal end of the window concerning processing speed, as there was a gradual increase 

in reaction times as SOA was further increased reducing the benefit of audiovisual 

information. When looking at exploratory pairwise comparisons between SOA levels, there 

was a distinct decrease in reaction times at 250 and 266.6 ms compared to no SOA. This 

implies that the ability to discriminate the speech was made less taxing past 250 ms 

asynchrony. It could be, based on these findings, that the minimal end of the window of 
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integration for our created stimuli lies between 233.3 and 250 ms. Given that the stimuli were 

simple syllables, an alternative interpretation may be that the processing of the auditory and 

the visual information was completed before integration had finished, although this would not 

explain the differences in reaction times between the SOA levels. Furthermore, as 

participants could only respond after the stimuli had played in full, with visual cues preceding 

the auditory cues, we would expect integration to have occurred if the SOA remained within 

the window of integration. As these comparisons are exploratory, however, and there is no 

account of accuracy changing with SOAs, further research would be needed to determine the 

full window of integration.  

2.5.4 Limitations of the study and future directions 

One explanation for the audiovisual benefit in our data not being as large as in 

previous studies could be the lack of ecological validity and the artificial nature of the online 

experimentation. Speech-shaped white noise was utilised for speech-in-noise conditions. 

Despite this noise modulating speech, it is still unlike that in a real environment. This may 

mean that the speech-shaped noise was too distinct from the speech itself, especially 

considering that we used syllables for recognition rather than words or sentences. Speaker 

babble or background noise such as light vocal music would be much more akin to that in 

everyday life, making it perhaps more suitable and valid for investigating audiovisual speech 

perception when speech is in noise (Krishnamurthy & Hansen, 2009). Furthermore, the 

stimuli used were single syllable speech tokens, which do not reflect typical communicative 

speech in a real-world environment. Given their simplicity, other aspects of speech 

perception, such as prediction of oncoming words in larger sentences, would not be used as a 

method of speech processing here (Solberg Økland et al., 2019). The overall simplicity and 

artificial design of these stimuli may be obscuring other benefits of audiovisual integration in 

speech perception when applied to realistic speech settings. To better reassess audiovisual 
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integration in speech, further research with more ecologically valid speech stimuli (e.g., full 

sentences) would be of benefit. 

The SNR used for our study was -16 dB. This was selected based on previous 

research investigating audiovisual syllable perception in noise, for which there was a notable 

difference between perceiving speech with or without visual aid (Bernstein et al., 2004). 

However, whilst this may have been true for speech token ‘Ba’, this did not seem to translate 

to ‘Ka’, indicating that different speech viseme categories were affected by speech-shaped 

noise at the SNR -16 dB. Furthermore, initial data collection for this study was conducted 

from 2021 to 2022 after multiple lockdowns in the UK due to the COVID-19 pandemic. 

Many adults in the UK during this time had been socially distancing and wearing facemasks 

to prevent contamination. These facemasks would obscure the lip and mouth area of the 

wearer, meaning that social interactions between many people in this period would have 

lacked visual information to assist with speech perception. In many cases, the facemasks 

obscured sound, making it more difficult to understand speech and imitating difficult 

listening conditions (Yi et al., 2021; Smiljanic et al., 2021). It is possible that due to 

facemask wearing for a year, participants had adapted to listening to speech in difficult 

conditions without visual aids. Furthermore, only three phonemes from three viseme 

categories were used in this study. As there was an apparent difference between these 

phonemes selected, with ‘Ba’ being more impacted by added noise than ‘Ka’, future studies 

may wish to investigate the differences between more viseme categories and the phonemes 

within them. It may also be beneficial to further apply this to more than single-syllable units 

of speech. This would provide a broader view of the contributions of visual information to 

speech processing.  

Finally, this experiment did use home equipment to record stimuli as well as the home 

equipment of participants to play the stimuli through online experimentation. Whilst the 
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recording equipment was of laboratory standard and the recording procedure rigorous, there 

will still be discrepancies between these stimuli and other lab-created stimuli which might 

make replications difficult. Furthermore, the environments that participants were in whilst 

taking part in the study may be different between participants. We do not have measures of 

how well participants understood the task, how noisy their environment was during listening, 

the hardware they used to run the study, and if they followed pre-experiment instructions 

such as to wear headphones. These are likely to contribute to the large individual differences 

seen in the dataset. Whilst GLMER models can consider the participant differences, further 

in-person lab testing with similar methodologies may be needed to fully control these 

confounds.  

2.5.5 Conclusion 

A set of purely audio and viseme-controlled audiovisual stimuli was created to 

investigate the contributions of audiovisual information to speech-in-noise processing. 

Introducing visual information increased accuracy and decreased reaction times in speech-in-

noise conditions relative to audio-only stimuli. When looking at accuracy and reaction times 

at varying SOA intervals in our audiovisual stimuli, introducing SOAs influenced reaction 

times, but not accuracy. In the future, more syllables from more viseme categories could be 

tested to investigate a full range of speech sounds in audio-only and audio-visual contexts, as 

well as with further SOA intervals to ensure that a window of integration can be determined 

with accuracy.  
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Tables and Figures 

 

 

Table 1. 

Means and Standard Deviations (Std. Dev) of accuracy rates and reaction times for speech 

with and without noise, audio-only (AO) or audiovisual (AV) stimuli, and different stimulus 

onset asynchronies (SOAs), with each speech token and participant aggregated into a single 

mean.  

   Accuracy Rate (%) Reaction Time (ms) 

Speech Stimuli SOA (ms) Mean Std. Dev Mean Std. Dev 

Clear AO 0 96.11 10.24 538 216 

Clear AV 0 96.60 13.55 564 257 

Clear AV 200 95.95 14.09 551 241 

Clear AV 216.6 96.56 13.82 573 232 

Clear AV 233.3 96.58 12.61 575 249 

Clear AV 250 96.54 13.90 568 236 

Clear AV 266.6 96.84 13.23 575 255 

Noise AO 0 67.33 21.91 597 285 

Noise AV 0 93.10 15.21 518 239 

Noise AV 200 92.87 16.08 553 223 

Noise AV 216.6 93.62 15.75 554 218 

Noise AV 233.3 93.35 17.52 562 227 

Noise AV 250 93.11 16.30 570 224 

Noise AV 266.6 93.26 15.01 569 237 
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Hypothesis Model Equation 

(i) Accuracy ~ Noise Type + (1|ID) + (1|Age) + (1|Speech Token) 

(ii) Reaction Time ~ Noise Type + (1|ID) + (1|Age) + (1|Speech Token) 

(iii) Accuracy ~ Stimuli Type + (1|ID) + (1|Age) + (1|Speech Token) 

(iv) Reaction Time ~ Stimuli Type + (1|ID) + (1|Age) + (1|Speech Token) 

(v) Accuracy ~ SOA Level + (1|ID) + (1|Age) + (1|Speech Token) 

(vi) Reaction Time ~ SOA Level + (1|ID) + (1|Age) + (1|Speech Token) 

 

Table 2.  

Generalised Linear Mixed-Effects Regression Model (GLMER) equations, including the 

fixed-effects and random effects structure for each main hypothesis. ‘Noise Type’ refers to 

whether the speech was played without noise or with speech-shaped noise. Stimuli Type refers 

to whether the speech was audio-only or audiovisual. SOA level refers to the level of stimulus 

onset asynchrony introduced with the speech (0, 200, 216.6, 233.3, 250, or 266.6 ms). ID 

refers to the participant ID. Age refers to the participant’s age at the time of testing. Speech 

token refers to the single-syllable stimuli used in each trial (Ba, Fa, or Ka). 
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Figure 1.  

Violin plots showing the accuracy rates and reaction times of participants when speech was presented either with or without noise, for both 

audio-only (AO) and audiovisual (AV) stimuli. Boxplots show the median and interquartile ranges for each condition. 
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Figure 2.  

Violin plots showing the accuracy rates and reaction times of participants when audiovisual stimuli were presented in noise at different SOAs. 

Boxplots show the median and interquartile ranges for each condition. 
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Figure 3.  

Violin plots showing the accuracy rates and reaction times of participants when audiovisual stimuli were presented without noise at different 

SOAs. Boxplots show the median and interquartile ranges for each condition. 
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Figure 4.  

Violin plots showing the accuracy rates and reaction times of participants when speech tokens were investigated individually in noise for both 

Audio-Only (AO) and Audiovisual (AV) stimuli. Boxplots show the median and interquartile ranges for each condition. 
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Chapter 3 

3 Effects of Short-Term Audio-Tactile Training on Cortical 

Speech-Envelope Tracking and Speech Intelligibility 

 

 

Linking Statement: 

Following the previous chapter, we have established that audio-visual speech still benefits 

our understanding of speech in difficult listening conditions. However, visual lipreading is 

not always accessible to us in our environment. In these cases, it may be possible to utilise 

the tactile sense in a similar manner to visual integration. This chapter investigates the 

contributions of audio-tactile integration to speech perception and processing. Specifically, 

the chapter discusses how short-term training with speech-relevant tactile stimulation may 

lead to neural speech tracking enhancement on a cortical level, as well as behavioural benefit 

through increased speech intelligibility.  

 

Author Note: This work was produced in collaboration Dr. Helen Nuttall, Prof. Christopher 

Plack, Prof. Lars Hausfeld, Prof. Lars Riecke, and technician Barrie Usherwood. This paper 

is currently under review from the wider collaborative team before planned submission to the 

Journal of Neuroscience for publication. 
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3.1 Abstract 

The auditory cortex tracks speech by synchronising neural activations with fluctuations in the 

speech envelope. Visual lipreading can improve speech-envelope tracking and intelligibility. 

Speech-relevant tactile information also improves tracking, but not intelligibility. We 

hypothesised that this is because we are not exposed to speech-relevant tactile information in 

our environment. Audio-tactile training may improve intelligibility when tactile information 

is available, providing crucial sensory aid to understanding speech-in-noise when visual 

lipreading is inaccessible. Data from 64 young participants (ages: 18-29; 21 males, 42 

females, one non-binary) were collected over five EEG sessions. Participants were given a 

sentence-in-noise recognition task with audio-tactile and audio-only stimuli. They then 

received training with either tactile information that was congruent with sentences heard 

(trained group) or incongruent (pseudo-trained group), with feedback after trials. After 

completing three training sessions, they completed the speech-in-noise recognition task again 

in a fourth session. Two weeks later, they returned for a follow-up session. Results showed a 

significant effect of the session (pre- or post-training) on speech intelligibility, but no 

significant main effect of group or stimulus. At baseline, there was a significant increase in 

speech-envelope tracking accuracy with audio-tactile stimuli relative to audio-only, 

suggesting more accurate neural representation of the speech occurred during listening. After 

training, there was no benefit to congruent training for audio-tactile tracking but there was an 

enhancement of audio-only tracking with incongruent training. This suggests that speech 

intelligibility and tracking are not enhanced by short-term audio-tactile training. The 

unexpected enhancement of non-tactile tracking provides further evidence against the 

assumed link between tracking and intelligibility.   
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3.2 Effects of Short-Term Training with Audio-Tactile Stimulation on Cortical 

Speech-Envelope Tracking and Speech Intelligibility 

The speech envelope refers to the slow temporal fluctuations in the overall amplitude 

of a speech signal. The human auditory cortex can track the speech envelope through phase-

locking, wherein neurons fire action potentials in synchrony with the fluctuations in the 

envelope (Heil & Peterson, 2015; Issa et al., 2024), particularly in the delta and theta ranges 

(Bröhl & Kayser, 2020; Etard & Reichenbach, 2019). The neural accuracy of speech-

envelope tracking is assumed to be linked to speech intelligibility, such that greater tracking 

accuracy associates with greater speech intelligibility (Kong et al., 2015; Vanthornhout et al., 

2019). This intrinsic link is supported by speech-in-noise studies, where decreases in tracking 

accuracy occur as more noise is added to a speech signal causing reductions in intelligibility 

(An et al., 2023). Further evidence of this link between measures comes from audiovisual 

integration. We are adept at integrating auditory and visual information through lipreading to 

improve intelligibility (Maier et al., 2011). This visual aid also benefits neural tracking 

(Golumbic et al., 2013), with recent studies showing that facemask-wearing reduces tracking 

accuracies for audiovisual speech but not for audio-only speech (Haider et al., 2024).   

However, relevant visual information is not always present when listening. In these 

cases, the sense of touch may be more useful for speech integration. Riecke et al. (2019) 

investigated audio-tactile integration by providing tactile information shaped by the speech 

envelope alongside the speech stimuli. Speech was degraded using a 30-channel vocoder to 

reduce the envelope. Results indicated enhanced neural tracking of degraded speech when 

speech-shaped tactile stimulation was provided. Despite this neural enhancement, no 

enhancement of speech intelligibility was observed, which questions the link between 

tracking and intelligibility. Tactile information may be insufficient to enhance intelligibility 

when speech is degraded, despite enhancing neural representations of the speech. 
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Alternatively, this might be indicative of neural tracking serving a different purpose in speech 

perception. For example, tracking may play a role in the prediction of oncoming speech (see 

Karas et al., 2019 for an example of audio-visual integration assisting with the prediction of 

oncoming speech) or in attentional decoding (see: Geirnaert et al., 2021; Geirnaert et al., 

2024; Straetmans, 2022). This would be consistent with further recent evidence showing no 

link between the two measures (Kösem et al., 2023). Kösem et al. (2023) presented 

participants with two- and four-band vocoded speech before and after training but only 

trained participants with four-band vocoded speech. They found that audio-only training 

improved speech intelligibility for four-band vocoded speech and not two-band. However, no 

changes in neural envelope tracking were observed post-training. In contrast, Riecke et al. 

(2019) showed audio-tactile benefit to neural tracking without training but with no 

intelligibility benefit. Here, training with audio-tactile speech may provide speech 

intelligibility improvements akin to Kösem and colleagues, whilst also further enhancing 

neural tracking accuracy benefits seen from Riecke and colleagues. 

Audiovisual speech may show enhancements in tracking and intelligibility because 

we are adept at integrating lip movements with speech from as early as six months of age 

(Pons et al., 2009) and develop audiovisual integration throughout childhood (Tye-Murray et 

al., 2014). It may be that speech-relevant tactile stimulation was insufficient to improve 

intelligibility because we do not have much exposure or training with audio-tactile stimuli. 

Auditory perceptual learning has been shown to occur in a 24 – 48-hour training window 

(Atienza et al., 2002). Even in a multisensory context, audio-tactile training has been shown 

to have comparable benefits to intelligibility as unisensory contexts, though this was not 

investigated alongside neural speech tracking accuracy (Cieśla et al., 2022). Therefore, the 

aim of this study was to investigate the effects of short-term audio-tactile training on cortical 

tracking of the speech envelope and speech intelligibility.  
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We tested the following primary hypotheses: 

(i): Neural tracking of the speech envelope of speech-in-noise will be enhanced with 

the addition of speech-shaped tactile stimulation, compared to neural tracking of the speech 

envelope of speech-in-noise stimuli with no additional speech-shaped tactile stimulation. 

(ii): Neural tracking of the speech envelope of speech-in-noise with speech-shaped 

tactile stimulation will be further enhanced for participants that have undergone short-term 

training with audio-tactile stimulation compared to participants given pseudo-training 

(exposure to irrelevant tactile information). 

(iii): Intelligibility of speech-in-noise with speech-shaped tactile stimulation will be 

enhanced for participants who have undergone short-term training with audio-tactile 

stimulation compared to participants given pseudo-training (exposure to irrelevant tactile 

information). 

We also tested the exploratory hypothesis: 

(iv): There will be no significant difference in intelligibility of speech-in-noise when 

audio-tactile stimuli are presented in the follow-up session (two weeks after the post-training 

task of the experiment is complete) compared to the post-training session for the trained 

group (trained with relevant tactile stimulation).   
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3.3 Materials and Methods 

3.3.1 Participants 

Participants were recruited from the Lancaster University campus and the surrounding 

Lancaster area. Sixty-seven participants passed the eligibility criteria and were recruited for 

the study (ages: 18-29; Mage = 20.5; SDage = 2.43; 21 males, 45 females, one non-binary). Of 

these, 64 participants (ages: 18-29; Mage = 20.5; SDage = 2.46; 21 males, 42 females, one non-

binary) completed the study. The remaining three participants did not complete all three 

training sessions of the study, either due to illness or due to scheduling conflicts with later 

sessions. These partial data were not included in the analyses. Inclusion criteria were that all 

participants: were between the ages of 18 and 35, were right-handed only, were monolingual 

native speakers of British English, and had normal hearing. Hearing was measured using pure 

tone audiometric air conduction testing, bilaterally across 250 to 8000 Hz frequencies and 

following the British Society of Audiology guidelines (BSA, 2018). All participants had 

calculated hearing thresholds below 20 dB HL. Exclusion criteria were that no participants: 

had nerve damage to the fingertips, motor problems in the hands, missing fingers on their 

hands, or peripheral neuropathy in the hands or fingertips. Participants were screened for 

eligibility using Qualtrics before the experiment began. Ethical approval was granted by the 

Faculty of Science and Technology Research Ethics Committee at Lancaster University 

(approval reference: FST-2022-0766-RECR-4, project ID: 0766). 

3.3.2 Sample Size Calculations 

Before testing, data simulation was conducted using R 4.2.2 (R Core Team, 2022) for 

power and sample size analysis using Lme4 (v1.1-27.1; Bates et al., 2021), afex (v1.0-1; 

Singmann et al., 2021) and simr (v1.0.5; Peter et al., 2019). Means and standard deviations 

were taken from previous neural tracking multisensory studies for simulation (Ricke et al., 
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2019; Golumbic et al., 2013), providing an estimated large effect size of R2 = .88. Sixty-four 

participants were deemed sufficient for a power of .80 at an alpha level of .017.  

3.3.3  Experimental Design 

Participants took part in five electroencephalography (EEG) sessions. There was one 

session per day, with the first four sessions being on adjacent days either on a Monday to 

Thursday or Tuesday to Friday pattern. The fifth session was a follow-up session that took 

place 14-18 days later. Participants were randomised into either the ‘Trained’ group or the 

‘Pseudo-Trained’ group before testing began. Throughout the pre-training, post-training, and 

follow-up tasks, participants were presented with a variety of sentences in noise, both audio-

only and audio-tactile. The session structure can be seen in Figure 1. Neural and behavioural 

data were collected in every session. A 2 (Training Group: Training or Pseudo Training) x 2 

(Session: Pre-task, or Post-task) x 2 (Stimulation Type: Audio-tactile Stimulation, or Audio-

only Stimulation) mixed-factors design was used to evaluate these data and test our three 

primary hypotheses. For testing exploratory hypothesis (iv), a 2 (Training Group: Training or 

Pseudo Training) x 2 (Session: Post-task, or Follow-up Task) x 2 (Stimulation Type: Audio-

tactile Stimulation, or Audio-only Stimulation) mixed-factors design was used.  

3.3.4 Materials 

All target sentence and noise audio were wideband, with sampling rates of 44.1 kHz 

and bandwidths of up to 22.05 kHz. Four-talker babble noise was created first using 

sentences from the Clarity Speech Corpus (Graetzer et al., 2022), containing a mixture of 

male and female voices at random. This was done using a MatLab script that randomly 

selected four sentences from the corpus of various durations, took a random 4000 ms segment 

from the selected sentences, and then placed all four segments onto the same waveform track. 

Ten 4000 ms audio files were created using this script, which were used in experimental 
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trials. The target sentence stimuli used sentences also from the Clarity Speech Corpus, which 

in turn were selected from the British National Corpus, with 210 selected in total. However, 

as these needed to be all from the same speaker and of a similar duration, it was decided that 

the chosen sentences would be re-recorded using the primary researcher as the target speaker. 

The sentences were recorded along with a 10-minute segment of Alice in Wonderland that 

was also spoken by the primary researcher. Recordings were made using a HyperX Quadcast 

external USB microphone, set to a cardioid polar direction. Target sentences were between 

3400 and 3650 ms long and always played 250 ms after the noise began. All sentences and 

noise files were loaded into Audacity together and normalised to 60 dB SPL. The noise files 

were then presented in the experiment between -10 and 10 dB SNR at 0.5 dB increments, 

creating 41 possible difficulty levels relative to the 60 dB SPL target sentences.   

The SNR selected for the participant was calculated using a speech-in-noise test. This 

was a custom adaptation of the QuickSIN test (Etymonic) used to personalise the difficulty of 

the experiment so that participants could correctly recognise approximately 50% of keywords 

from target sentences, referred to as the Speech Recognition Threshold (SRT). Typically, 

during QuickSIN, the participant would be required to verbally respond to full sentences and 

correctly responded keywords would be recorded and used in SNR calculations. However, in 

this study, participants discriminated between keywords via a button press (see Procedure). 

This meant that the participant could select correct keywords by chance, resulting in the 

experiment being set at a lower SNR and potentially lowering response accuracy down 

towards chance level. Furthermore, the original QuickSIN sentences were spoken by a female 

speaker, which can be harder to discern in mixed-gender multi-talker noise than a male 

speaker such as was used for the experiment’s target sentences (Larsby et al., 2015). 

Therefore, the QuickSIN test was adapted so that the method of response and the target 
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speaker of the test matched the target speaker of the experiment. The same calculation 

method was used as follows: 

• SRT = Starting dB level + (dB step value/2)) - Total Keywords Correct 

• Therefore, SRT = 12.5 - Total Keywords Correct 

Tactile stimulation was provided to the right index finger of participants in audio-

tactile and training conditions using a lab-built tactile device. This device used a hard drive 

accentuator to generate small horizontal movements to the finger based on slow fluctuations 

in electric potential, which were set to match slow fluctuations in the speech envelope. The 

device used a soft ring around the finger to keep it in place during stimulation and was 

insulated around the area of contact with participants to reduce potential electrical 

interference with the EEG. Furthermore, it was attached to a handrest to make stimulation 

more comfortable throughout the experiment. For the creation of audio-tactile stimuli, speech 

envelopes were extracted from all 210 sentences using Praat (Boersma, & Weenink, 2024) 

via Hilbert transformation. These extracted envelopes were then loaded back into Audacity to 

be normalised. For audio-tactile sentences, the sentence and its respective envelope were 

combined into a single waveform file. This was done by having the left channel of a stereo 

track be the sentence audio, and the right channel just the sentence envelope. For audio-only 

sentences, the sentence was placed in the left channel and the right channel was left silent. 

When played, the left channel was split to a pair of EEG-compatible insert earphones 

(Etymonic ER3-14A Ear Tips) which played the audio in mono format to both ears, whilst 

the right channel was split to the tactile stimulation device. These earphones had transducers 

that were housed in electromagnetic shielding to prevent stimulus artefacts in the data. For 

training session trials, the trained group received the audio-tactile sentences. The pseudo-

trained group however received audio-tactile sentences that had the audio in the left channel 

matched with incongruent speech envelopes in the right channel.  
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An eligibility screening and initial consent form were created and hosted using 

Qualtrics (Qualtrics, 2005). The experiment was designed using PsychoPy Builder 

(v2022.1.4; Peirce et al., 2019) with custom coding elements. Conditions on the pre-task, 

post-task, and follow-up were counterbalanced, with some participants experiencing the 

audio-tactile condition first and others the audio-only condition. Sentences were placed into 

different conditions on different sessions so that no sentences were repeated across the pre-

task, training tasks, and post-task. This placement of sentences was randomised into 10 

possible sets which were counterbalanced between training groups. To ensure that the same 

noise file played alongside the same sentences to avoid potential biases with some sentences 

being harder to understand in some noise files, all sentences were paired with one of the 

possible 10 noise files. Therefore, when sentences were randomised into sentence sets, they 

came attached with the same noise files across those sets for consistency.  Sentence and noise 

files were played to the participant with the same onset during the same PsychoPy routine. A 

32-channel BrainProducts EEG kit (Brain Products GmbH, Gilching, Germany) was used in 

all five sessions of the study to record neural activity whilst the participant listened to stimuli. 

More channels were not needed for reconstruction validity, as shown by Montoya-Martínez 

et al. (2021). The kit utilised a BrainAmp amplifier and recorded brain activity at a 500 Hz 

sampling rate. ActiCAP 64 channel standard caps were used with only the standard 32-

channel 10%-system electrode locations utilised. Cap sizes used ranged from 54 to 60 cm 

head circumference.  For improving impedance values of electrodes, SuperVisc high 

viscosity electrolyte gel was used during setup. Acceptable impedance value targets were 5 

kΩ or less during setup, which was monitored using BrainVision Recorder software (see 

BrainVision Analyzer, Brain Products GmbH, Gilching, Germany). 
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3.3.5 Procedure  

Participants were provided with a basic overview of the five sessions of the 

experiment before and during the study but were blinded regarding their group assignment. 

Participants completed pre-screening via Qualtrics (Qualtrics, 2005). Once participant 

eligibility was confirmed, participants were invited to the lab. In the first session, participants 

were familiarised with the lab setup and equipment, baseline measures were taken, they 

completed a pre-training task, and they completed their first training session. A pure tone 

audiometry assessment was conducted using a calibrated audiometer and following BSA 

guidelines (British Audiology Society, 2018). Participants were then introduced to EEG and 

the tactile device used for the experiment. They were presented with two randomly selected 

sentences with tactile stimulation. Participants’ individual tactile perception threshold was 

measured by adjusting the force of the tactile device following a staircase threshold method. 

Participants informed the researcher if they could feel the movements of the device relevant 

to random speech sentences that played in tandem and if this tactile stimulation was 

comfortable. If the intensity needed adjusting, it was done by the researcher. Once a threshold 

was found, the device was set above threshold by one incremental level. This tactile intensity 

level was recorded and was kept consistent for each participant throughout all their testing 

sessions.  

3.3.6 Speech-in-Noise Test 

Participants then took part in the customised speech-in-noise test. To ensure that any 

potential distracting effects of the EEG cap were considered during the calculation of the 

participant’s individualised SNR, the EEG cap was set up for the speech-in-noise test despite 

not recording data. Participants were also asked to place their right index finger into the 

tactile stimulation device. Again, this device was not switched on during this speech-in-noise 

test. However, having the index finger of their dominant hand placed on an unusual device 



124 
 

may affect speech discrimination performance in later tasks, and so was considered when 

calculating the participant’s SRT. The researcher provided the verbal instructions for the test 

alongside written instructions that the participant had to read and click through to proceed to 

the task. Participants were told that they were to listen for the researcher’s voice and to ignore 

the background noise of other people speaking at the same time. The researcher was present 

for every session conducted in the study so that their voice as the target sentence was 

recognisable. The same example sentence was given to all participants: ‘The dog ran down 

the long road’. They were then told that after hearing the sentence in noise, four keywords 

would pop up on the screen, one in each corner. One of these keywords was the first keyword 

heard in the target sentence, whilst the other three were semantically or phonetically similar. 

In the context of the example target sentences, the correct choice was clarified to participants 

as ‘dog’, and other options may be ‘god’ or ‘cat’. They were told to press the corners of the 

number pad to select the corners of the screen. As an example, if ‘dog’ was in the top right, 

they would press the top right of the lab keyboard’s number pad, which was always ‘9’. If it 

was in the bottom left, they were told to press ‘1’. As explained to the participant, once the 

selection was made, the four keywords would disappear and four more would show up. One 

of these would be the second keyword, ‘ran’. Participants would keep making selections until 

all five sets of keywords were presented. After this, the next target sentence would play.  

For the speech-in-noise test, there were six trials in each block: the SNRs were 

always: 10, 5, 0, -5, -10, and -15 dB. Participants were told to guess if they were unsure. 

There were five blocks in total. The first two blocks acted as practice and familiarisation for 

the participant. The last three blocks were used to calculate the participant’s SRT for the 

experiment. This was done by summing the number of correctly discriminated keywords 

from each sentence per block and subtracting that value from 12.5. This was based on the 

formula from the QuickSIN method (see Materials). As this was done for each of the three 
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test blocks, the average SRT was calculated between them to provide the final SNR value that 

was then used for every session with the participant moving forward.  

3.3.7 Pre-Training Session 

The pre-training task acted as the baseline and consisted of three elements: a short 

passive listening task using a story excerpt from ‘Alice in Wonderland’ (see ‘Materials’), a 

block of 30 speech sentence discrimination trials in noise that were audio-only, and a block of 

30 sentences in noise that were audio-tactile. The order of the audio-only and audio-tactile 

blocks was counterbalanced across participants, whilst the story was always presented as the 

first part of the task. The story segment was presented without noise and was split into two 

five-minute parts, with a break and a content question after each to ensure participants were 

paying attention. This was a multiple-choice answer question, such as ‘What did the rabbit 

pull out of its waistcoat?’, with four answers to select from using a mouse click. Participants 

could not proceed without selecting the correct answer. In a case where participants failed to 

select the correct answer, they listened to the segment again with the same content question. 

EEG data were recorded throughout this task. Once the story task finished, the researcher 

would let the participants know whether they would be next listening to audio-tactile or 

audio-only sentences. This was so that participants were not surprised if the device was active 

during sentence listening. Participants were reminded at this stage to try not to blink during 

speech listening and to remain as comfortable as possible. The audio-only and audio-tactile 

sentence tasks worked the same as the speech-in-noise test, except that the SNR for all 

sentences was set based on the participant’s SRT level. Furthermore, after each sentence trial, 

the participant was given a voluntary break screen and a progress bar indicating how many 

sentences were left for the block. These were implemented to ensure that participants had 

ample opportunity to get comfortable and take a break as they needed, as well as an 

opportunity for the researcher to adjust any electrodes that may have gone noisy mid-testing.  
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3.3.8 Training Sessions 

After the pre-training task was completed, participants moved on to their first training 

task for the study. This training task involved another 30 sentences in noise. This time, after 

all five keywords were responded to, participants were given feedback on their performance. 

This was in the form of seeing how many keywords they correctly identified in that trial, 

hearing the target sentence in full without noise and with the same tactile stimulation they 

received in that trial, and seeing the sentence written out in full whilst listening to it. 

Secondly, whilst the trained group received tactile stimulation that was relevant to the target 

speech sentence’s envelope, the pseudo-trained group received tactile stimulation that was 

relevant to the speech envelope of a different sentence. Their feedback also reflected this, 

replaying the same incorrect tactile stimulation. The training tasks took approximately 20 

minutes to complete, though this could vary depending on the amount of break time a 

participant may have taken between trials. For the second and third sessions, participants 

were set up in EEG again and completed their next training tasks. There were three training 

tasks in total and the sessions were set up the same as the session one’s training task.  

3.3.9 Post-Training and Follow-Up Sessions 

For the fourth session, the participants only took part in a post-training task. This 

mimicked the pre-training task in that they were given the same ‘Alice in Wonderland’ story 

segment to listen to in two halves, with different content questions to the first session, and 

then presented with the audio-tactile and audio-only sentence blocks in a counterbalanced 

order. Finally, for the fifth session, participants came back two weeks later to again complete 

the story listening task and both audio-tactile and audio-only sentence blocks. Whilst this was 

booked to be always on the Friday two weeks after the end of the fourth session, sometimes 

the participant was unable to make the session. In these cases, the follow-up session occurred 

on the following day or – at the latest – the following Monday. At the end of the fifth session, 
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participants were debriefed on the true aims of the study and paid to compensate them for 

their time. In all, the study provided neural and behavioural data across all five sessions. 

3.4 Statistical Analyses 

3.4.1 Variables 

There were three independent variables. The training group variable refers to whether 

the participant was placed in the trained group or the pseudo-trained group. The session 

variable refers to which of the five sessions that data were collected during. In the case of the 

analysis listed below, these were the pre-training task and the post-training task data. For 

exploratory analyses and data figures, we also looked at the follow-up task and all training 

task data. Finally, the stimulation type variable referred to whether the condition was with 

audio-only sentences in noise or audio-tactile sentences in noise. Stimulation type and session 

were within-subject factors, with participants taking part in every session and with both 

audio-only and audio-tactile conditions. The training group was a between-subjects factor, 

with 32 participants placed in the trained group and 32 in the pseudo-trained group. Finally, 

the retention session variable was a within-subject factor used in the exploratory models for 

testing hypothesis (iv) to differentiate between the post-training session and the two-week 

follow up sessions specifically. For dependent variables, both speech intelligibility (SI) and 

cortical speech-envelope tracking accuracy (Rz) were measured. SI was defined as the 

percentage of correctly discriminated keywords in a sentence trial, which was averaged over 

all 30 sentence trials in a condition. To calculate Rz, the multivariate temporal response 

function toolbox (mTRF, Crosse et al., 2016) was used. This process involved utilising a 

decoder function in the mTRF toolbox to reconstruct an estimation of the target sentence 

speech envelope based on the inputs of collected neural data and then correlate this estimated 

envelope with the original stimulus envelope. This correlation was used as the measure of Rz. 
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3.4.2 Missing Data 

One participant was unable to attend the post-training session (pseudo-trained group). 

As they still returned for the two-week follow-up session, their missing data was estimated. 

The group mean change from pre- to post-training for the audio-tactile and audio-only 

conditions was added to the participant’s baseline (pre-training) scores, providing an 

estimation of the post-training effect relevant to their individual baseline. 

3.4.3 Pre-processing and Decoding 

EEG data was pre-processed using EEGLab (Delorme & Makeig, 2004) in MatLab. 

Initially, the data were recorded at a sampling rate of 500 Hz and online filtered across the 

frequency ranges of 0.1 and 44 Hz to keep file sizes efficient. Data were recorded throughout 

each condition, with a new recording file being made per condition. Using EEGLab, the data 

were first resampled to 100 Hz and filtered using a Finite Impulse Response (FIR) filter with 

a low pass at 1 Hz, before independent components analysis (ICA) was run. The spheres and 

weight matrices outputted by the ICA were saved to be used for a future decomposition. This 

method of early ICA was selected as our target frequency range of 0.5 – 15 Hz included delta 

below 1 Hz, which is susceptible to slow-drift distortion with extended infomax ICA 

(Pontifex et al., 2017). The raw data were then reloaded back into EEGLab and resampled to 

100 Hz again. The data were filtered to our target range next using a FIR filter, with a low 

pass at 15 Hz and a high pass at 0.5 Hz. Next, the data were re-referenced using the average. 

The previously decomposed ICA weights and spheres that were determined from the first 

loading of the data were then placed on this second iteration. ICLabel (Pion-Tonachini et al., 

2019) was used to automatically flag components for muscle, eye, heart, line-based, and 

channel-based noise, with boundaries for all set at 85%. These flagged components were then 

removed before finally the stimulus presentation periods were extracted using the onset and 

offset of each sentence file played. To remove the onset of event-related potentials, the first 
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second of each sentence trial was removed. The result was a three-second epoch per trial. For 

the ‘Alice in Wonderland’ story segments, the same pre-processing steps were used. 

However, the first two seconds of each five-minute segment were removed instead, resulting 

in two 298-second epochs.  

3.4.4 Speech-envelope Tracking Accuracy (Rz)  

Rz was obtained using the stimulus reconstruction method via the multivariate 

Temporal Response Function toolbox in MatLab (see Crosse et al.,2016). This method of 

reconstruction uses a backwards approach with a decoder for the neural data. For cross-

validation, the method of ‘leave-one-trial-out’ was chosen (see Riecke et al., 2019). As we 

were using a low SNR that matched participants’ individual SRTs, outputs of the 

reconstruction method were expected to be lower for sentence trials than in previous 

literature. Furthermore, due to the quicker sentence duration, each sentence trial could not 

provide enough EEG data alone for valid reconstruction. The required amount of EEG data 

for valid envelope reconstruction is not entirely clear in the literature, with some referencing 

60 seconds as sufficient for 87.5% accuracy (Biesmans, et al., 2016). A comparative look 

between EEG and Magnetoencephalography (MEG) suggests that EEG requires as much as 

three times the duration of MEG for valid reconstruction, coming to approximately 120 

seconds (Destoky, et al., 2019). It is essential to provide as much EEG data to the decoder as 

possible, with a minimum duration of somewhere between 60 and 120 seconds in mind.  This 

meant that for all 30 sentences in a condition, we would need every epoch available in that 

condition to be combined for a more reliable reconstruction. By stitching together epochs, 

however, we run the risk of training the decoder on the ‘seams’ of the individual epochs, 

which may provide inefficient decoder parameters when it comes to calculating the final 

speech-envelope tracking accuracy value. To alleviate this issue and the issue of low SNR 

during sentence listening, the two five-minute story segments in clear speech were used to 
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train the decoder first and output optimal parameters for the reconstruction of the 30 stitched-

together sentences. This provided an optimal regularisation parameter (lambda) and number 

of ‘folds’ or ‘segments’ (nf), which were then applied as the parameters for sentence 

reconstruction. Reconstruction outputs were averaged across all leave-one-trial-out 

validations to provide a final Rz value for each session’s conditions.  

3.4.5 Models for Analysing Neural Data 

For testing hypotheses (i) and (ii), linear mixed-effects models (LMERs) were used 

taking Rz as the dependent variable. For our first hypothesis, we expect that tracking 

accuracy would see enhancement with audio-tactile speech versus audio-only speech, 

regardless of group, when looking at baseline data only. The ID of the participants and the 

sentence list assigned to them were loaded as random factors. The LMER model was as 

follows: 

Rz ~ Group + Stimulation Type + Group*Stimulation Type + (1|ID) + (1|sentence)) 

To accept this hypothesis, we would expect to see a significant main effect of 

stimulation type (audio-tactile or audio-only). For the second hypothesis, we expect to find 

that Rz scores will increase post-training with audio-tactile speech for the trained group, but 

not for the pseudo-trained group. This would be looking at both pre- and post-training data. 

The ID of the participants and the sentence list assigned to them were loaded as random 

factors. The LMER model was as follows: 

Rz ~ Group + Stimulation Type + Session + Group*Stimulation Type + 

Group*Session + Stimulation Type*Session + Group*Stimulation Type*Session + (1|ID) + 

(1|sentence))  

To accept this hypothesis, we would expect to see a significant interaction effect 

between the three independent variables. The model would then be split by the group variable 
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and the two-way interaction between session and stimulation type would be assessed for both 

the trained group and the pseudo-trained group. If again significant, a pairwise comparison 

test should then signify that this interaction is significant for the trained group receiving 

training benefits to tracking with audio-tactile versus audio-only speech.  

3.4.6 Models for Analysing Behavioural Data 

For testing hypothesis (iii), a generalised LMER model (GLMER) was used as our 

accuracy scores were bound based on choice-selection in the speech discrimination task. We 

expect that speech intelligibility will increase post-training with audiotactile speech for the 

trained group, but not for the pseudo-trained group. This would be looking at both pre- and 

post-training data. The ID of the participants and the sentence list assigned to them were 

loaded as random factors. The GLMER model was as follows: 

SI ~ Group + Stimulation Type + Session + Group*Stimulation Type + 

Group*Session + Stimulation Type*Session + Group*Stimulation Type*Session + (1|ID) + 

(1|sentence))  

To accept this hypothesis, we would expect to see a significant interaction effect 

between the three independent variables.  The model would then be split by the group 

variable and the two-way interaction between session and stimulation type would be assessed 

for both the trained group and the pseudo-trained group. If again significant, a pairwise 

comparison test should then signify that this interaction is significant for the trained group 

receiving training benefits to intelligibility with audio-tactile versus audio-only speech.  

3.4.7 Models for Exploratory Analyses  

Hypothesis (iv) is a preregistered exploratory analysis. This was done because we 

were interested in understanding if any benefits of audio-tactile training to speech 

intelligibility were retained after a short period of two weeks. However, due to study 
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restrictions, we could not increase our sample size to accommodate further levels in our main 

hypothesis models. Furthermore, there may not be a potential benefit to training that could be 

retained, thus it did not feel appropriate to increase resources to test this as a main hypothesis. 

In this regard, any results drawn from testing this hypothesis and other exploratory analyses 

are not sufficiently powered and therefore should not be conclusive without further testing. 

The following models were used on the post-training and follow-up session data: 

LMER: Rz ~ Group + Stimulation Type + Retention Session + Group*Stimulation 

Type + Group*Session + Stimulation Type*Session + Group*Stimulation Type*Session + 

(1|ID) + (1|sentence))  

GLMER: SI ~ Group + Stimulation Type + Retention Session + Group*Stimulation 

Type + Group*Session + Stimulation Type*Session + Group*Stimulation Type*Session + 

(1|ID) + (1|sentence))  

We expect that any benefits of audio-tactile training on speech intelligibility will be 

retained after this short two-week period. This will be reflected with no significant effect of 

the group, stimulation type, or retention session variables on neural tracking accuracy and on 

speech intelligibility, and no significant interactions between variables. This will offer insight 

into potential short-term retention of any neural benefits to audio-tactile training. 

Furthermore, an additional exploratory correlational analysis was conducted between the 

behavioural and neural dependent variables across all sessions through Pearson’s R. This 

provided further insight into the assumed link between the two dependent variables across all 

sessions.  

3.4.8 Pre-registration and Deviations from Pre-registration 

The study was pre-registered on the Open Science Framework (OSF) before data 

collection began. Further details on the data simulation methodology and the preregistration 
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itself can be found at: https://osf.io/9fehp. In the pre-registration, the sample size was 

calculated as 64 participants plus six more to account for attrition. It was deemed not 

necessary to continue testing to 70 full datasets as a sufficiently powered sample size was 

achieved with little attrition. Furthermore, the inference criteria were originally listed as p < 

.05 for determining significance. However, as we will be testing three main hypotheses, we 

will be using the Bonferroni-Holm method to reduce family-wise error rates (banded as: p < 

.017, p < .025, and p < .05). Additionally, a separate GLMER model for testing hypothesis (i) 

was added. This was to separate this hypothesis test from post-training variables in the main 

GLMER model proposed for hypothesis (ii) (see Statistical Analyses). 

  

https://osf.io/9fehp
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3.5 Results 

3.5.1 Effect of Tactile Stimulation on Speech-Envelope Tracking Accuracy 

Figure 2 shows the mean neural tracking accuracy of audio-tactile (mean Rz = .21) 

and audio-only (mean Rz = .19) sentences before training, collapsed across the trained and 

pseudo-trained groups. The linear mixed-effects model (LMER) used to test hypothesis (i) 

indicated a significant main effect of stimuli type in session 1 before training, with audio-

tactile speech increasing speech-envelope tracking accuracy (β = .06, t = 2.92, 95% CI = [.02, 

.10], p = .004), remaining significant after Bonferroni-Holm correction (p < .017) and 

supporting hypothesis (i).   

3.5.2 Effect of Short-Term Training with Tactile Stimulation on Speech-Envelope 

Tracking Accuracy 

Figure 3 shows the difference in mean neural tracking accuracies between the post-

and pre-training tasks, for both audio-tactile and audio-only sentences, in the trained group 

(audio-tactile mean = +.05, audio-only mean = +.01) and the pseudo-trained group (audio-

tactile mean = +.01, audio-only mean = +.09). The LMER analysis for testing hypothesis (ii) 

indicated a significant main effect of session (pre-training or post-training; β = .09, t = 3.68, 

95% CI = [.04, .13], p < .001), showing an enhancement of neural tracking accuracy with 

training across all conditions and groups. There was also a significant effect of stimulation 

type (audio-tactile or audio-only; β = .06, t = 2.46, 95% CI = [.01, .10], p = .015), again 

showing further enhancement of tracking accuracy with the introduction of speech-relevant 

tactile stimulation. The main effect of group was not significant (trained or pseudo-trained; β 

= .04, t = 1.71, 95% CI = [-.006, .09], p = .09). Importantly for testing hypothesis (ii), there 

was a significant three-way interaction between session, group, and stimulation type (β = .11, 
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t = 2.31, 95% CI = [.02, .20], p = .022), which remained significant after Bonferroni-Holm 

correction (p < .025). This provides support for hypothesis (ii).  

However, when splitting this three-way interaction by group to determine the 

direction of this significant interaction, there was a significant two-way interaction between 

session and stimulation type for the pseudo-trained group (β = -.07, t = -2.23, 95% CI = [-.13, 

-.01], p = .028) but not for the trained group (β = .04, t = 1.05, 95% CI = [-.03, .10], p = .30). 

Further pairwise comparisons of the significant interaction for the pseudo-trained group show 

a significant increase post-training in tracking for audio-only speech (β = .09, z = 3.82, 95% 

CI = [.03, .15], p < .001). These results go against predictions that the trained group would 

see significant increases in tracking accuracy post-training for audio-tactile speech. 

Therefore, hypothesis (ii) cannot be accepted.  

3.5.3 Effect of Short-Term Training with Tactile Stimulation on Speech Intelligibility 

Figure 4 shows the difference in mean speech intelligibility scores between the post-

and pre-training tasks, for both audio-tactile and audio-only sentences, in the trained group 

(audio-tactile mean = +5%, audio-only mean = +5%) and the pseudo-trained group (audio-

tactile mean = +6%, audio-only mean = +7%). The GLMER analysis for testing hypothesis 

(iii) indicated a significant main effect of session (pre-training or post-training; β = .07, t = 

6.30, 95% CI = [.05, .09], p < .017). There was no significant main effect of group (trained or 

pseudo-trained; β = -.002, t = -.07, 95% CI = [-.05, .05], p > .05), or stimulation type (audio-

tactile or audio-only; β = -.01, t = -.43, 95% CI = [-.04, .02], p > .05). The three-way 

interaction between session, group, and stimulation type was also not significant (β = .03, t = 

1.53, 95% CI = [-.01, .07], p > .05). Hence, these data do not provide support for hypothesis 

(iii). 
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3.5.4 Exploratory Analyses  

Figure 5 shows the difference in mean neural tracking accuracies between the follow-

up and post-training tasks, for both audio-tactile and audio-only sentences, in the trained 

group (audio-tactile mean = +.02, audio-only mean = +.001) and the pseudo-trained group 

(audio-tactile mean = -.003, audio-only mean = -.02). Figure 6 shows the difference in mean 

speech intelligibility between the follow-up and post-training tasks, for both audio-tactile and 

audio-only sentences, in the trained group (audio-tactile mean = -.8%, audio-only mean = -

.3%) and the pseudo-trained group (audio-tactile mean = +.8%, audio-only mean = -1%). The 

planned exploratory LMER analysis for testing hypothesis (iv) was conducted. There was no 

significant effect of session (β = -.02, t = -.99, 95% CI = [-.06, .02], p > .05), group (β = -.04, 

t = -1.74, 95% CI = [-.08, .004], p > .05), stimulation type (β = -.01, t = -.70, 95% CI = [-.06, 

.03], p > .05), or any significant three-way interaction (β = -.002, t = -.05, 95% CI = [-.08, 

.08], p > .05) on speech-envelope tracking accuracy. For testing speech intelligibility, the 

GLMER analysis was conducted. There was no significant effect of session (β = -.01, t = -

.94, 95% CI = [-.04, .01], p > .05), group (β = -.03, t = -.86, 95% CI = [-.04, .01], p > .05), 

stimulation type (β = -.02, t = -1.25, 95% CI = [-.09, .03], p > .05), or any significant three-

way interaction (β = -.03, t = -.98, 95% CI = [-.08, .03], p > .05) on speech intelligibility. 

Therefore, the data support our exploratory hypothesis (iv), in that the general training 

effects across all conditions and groups for both neural tracking accuracy and speech 

intelligibility were retained two weeks later, along with the enhancement of tracking in the 

pseudo-trained group for audio-only sentences. For the final exploratory analysis, Pearson’s 

R correlational analyses between intelligibility and tracking accuracies found no significant 

relation between the two outputs (r = -.05, 95% CI = [-.17, .07], p > .05), further highlighting 

a discrepancy between the supposed intrinsic link and the role of neural tracking in speech 

perception.   
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3.6 Discussion 

This experiment investigated the effects of short-term audio-tactile training on cortical 

speech-envelope tracking accuracy and speech intelligibility. Replicating previous research 

(Riecke et al., 2019), we found that, at baseline, audio-tactile speech was associated with 

greater cortical speech-envelope tracking accuracy relative to audio-only speech, whilst 

speech intelligibility remained the same. This finding supports our first experimental 

hypothesis. After short-term audio-tactile training, speech-envelope tracking was not 

enhanced relative to the pseudo-trained group. This finding does not provide support for our 

second experimental hypothesis. Finally, there was no enhancement of speech intelligibility 

following audio-tactile training relative to the pseudo-trained group, showing no support for 

our third hypothesis. In summary, we observed initial neural benefits of audio-tactile 

integration to speech-envelope tracking, but these audio-tactile benefits were not enhanced 

with short-term training. Furthermore, there was no evidence for behavioural benefits of 

audio-tactile speech to speech intelligibility. These findings contrast with previous research 

that has reported an intrinsic link between neural speech tracking and intelligibility 

(Vanthornhout et al., 2018; An et al., 2023) and align with recent findings that question the 

link between tracking and intelligibility (Kösem et al., 2023). These findings raise questions 

about the role of speech-envelope tracking in speech perception, and our understanding of the 

neural processing of speech signals in our environment.  

Exploratory analyses tested the short-term retention of training effects, as well as 

relations between the neural and behavioural data, and assessments of listening effort through 

parietal alpha power. There were no significant differences in tracking between the post-

training and follow-up tasks, indicating that enhancements in tracking observed post-training 

for the pseudo-trained group for audio-only sentences were retained even after a two-week 

long period, along with general training effects across both groups. For the correlational 
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analyses, no significant relationship between the neural and behavioural data were found. 

This is in line with results from our main hypotheses, providing preliminary exploratory 

evidence against an intrinsic link between tracking and intelligibility, although future 

research powered for such explorations is needed to confirm this finding.  

These findings indicate that audio-tactile speech can provide similar neural benefits to 

speech processing as seen with audiovisual speech (Crosse et al., 2015). However, these 

benefits were lost post-training where training with non-congruent tactile stimulation 

enhanced audio-only tracking and inhibited audio-tactile tracking in the pseudo-trained 

group. As there was no significant benefit of congruent training to the tracking of either 

stimuli condition in the trained group, one possibility is that this form of training is not 

sufficient to catalyse neural benefits. Moreover, this work further supports recent evidence 

that there is no intrinsic link between neural speech-envelope tracking and speech 

intelligibility (Kösem et al., 2023). This puts into question the role of neural speech-envelope 

tracking in speech perception. Tracking enhancements may be a precursor to intelligibility 

enhancements, where intelligibility enhancements may occur with further, more long-term 

training (see Tawfik et al., 2015). Specifically, longer-term training might be required to 

observe an audio-tactile benefit to speech-in-noise intelligibility. Alternatively, or possibly in 

addition, a different training approach may also be required. The selected training task was a 

bottom-up process, in which participants were asked to identify key words in speech-in-noise, 

directing attention to the auditory modality.  This type of training did not require that 

participants explicitly attend to the tactile domain, only that tactile stimulation was present 

during training to provide further speech-relevant information to the trained group. For some 

participants in the trained group, the tactile stimulation could have been ignored during 

training, leading to ineffective learning of audio-tactile integration. Likewise, this could 

explain why the pseudo-trained group demonstrated greater audio-only tracking 
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improvements. In this case, the pseudo-trained group would be more likely to ignore the 

tactile stimuli due to it not being useful, thus directing more cognitive resources towards the 

auditory stimuli. Future research into audio-tactile speech tracking should use top-down 

training paradigms to ensure that participants are focusing on the tactile stimulation. Such 

paradigms may provide the missing link between speech tracking and speech intelligibility.  

If future research can increase the behavioural benefit from audio-tactile training, this 

will create new opportunities for speech-relevant tactile stimulation in real-world listening 

environments. Devices with readily available tactile components, such as mobile phones, 

smart watches, or hearing aids, could be utilised to boost understanding of speech. This may 

be of particular benefit to current developments in neuro-steered hearing technologies, which 

aim to dynamically adjust hearing algorithms in real-time using neural measures such as 

tracking accuracy (see: Geirnaert et al., 2021; Geirnaert et al., 2024; Straetmans, 2022). If a 

user experiences a decrease in tracking during listening, speech-relevant tactile stimulation 

could be presented to them to aid these neuro-steered aids in enhancing accurate tracking and 

intelligibility and providing more accurate updates to hearing aid algorithms in real-time. It 

also brings to light the importance of ensuring that intelligibility is hindered or enhanced in 

real-time based on neural tracking measurements alone. It is imperative that the role of 

tracking in speech perception be fully understood before it is relied upon as a measure of 

speech understanding in technology. Furthermore, speech tracking in the audiovisual field 

would also require a reassessment, as neural tracking benefits there may not be relevant to 

increases in speech intelligibility also seen with audiovisual speech. 

3.6.1 Conclusion 

In conclusion, the study replicated previous research findings on the immediate 

benefits of audio-tactile speech to speech-envelope tracking and its disassociation with 

speech intelligibility. The introduction of short-term training did not enhance tracking with 
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audio-tactile speech for those trained congruently but did with audio-only speech for those 

trained incongruently. This unexpected short-term training effect did not translate to 

behavioural benefit to speech intelligibility either. This work provides insight into the use of 

audio-tactile speech to benefit neural representations of speech prior to training. This baseline 

neural tracking enhancement indicates that tactile stimulation may have a benefit to real-

world listening, especially in difficult listening conditions, through touch-based devices such 

as mobile phones, smart watches, and hearing aids. Future research should investigate other 

possible training paradigms to improve speech intelligibility benefits to audio-tactile speech. 
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Tables and Figures 

Figure 1. 

Flowchart showing the experimental structure, including all tasks participants completed and 

the timeline of completion. 
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Figure 2.  

Boxplots showing the median and interquartile ranges for tracking accuracy (Rz) of all 

participants in the pre-training task, for both audio-only and audio-tactile speech.  
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Figure 3.  

Boxplots showing the median and interquartile ranges for the difference in tracking accuracy 

from post-training to baseline (post- minus pre-training, dRz) of participants in both the 

trained and the pseudo-trained groups, for both audio-only and audio-tactile speech. 
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Figure 4.  

Boxplots showing the median and interquartile ranges for the difference in speech 

intelligibility from post-training to baseline (post- minus pre-training, %) of participants in 

both the trained and the pseudo-trained groups, for both audio-only and audio-tactile speech. 
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Figure 5. 

Boxplots showing the median and interquartile ranges for the difference in tracking accuracy 

from the two-week follow-up task to post-training (follow-up minus post-training, dRz) of 

participants in both the trained and the pseudo-trained groups, for both audio-only and 

audio-tactile speech. 
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Figure 6. 

Boxplots showing the median and interquartile ranges for the difference in speech 

intelligibility from the two-week follow-up task to post-training (follow-up minus post-

training, %) of participants in both the trained and the pseudo-trained groups, for both 

audio-only and audio-tactile speech. 
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Supplementary Materials A 

 

The following figures show the temporal response function (TRF) weights across all 32 
electrodes for each training group (trained, and pseudo-trained), session number (pre-
training, and post-training), and stimulation type (audio-only, and audio-tactile). In each 
figure, the solid blue line represents the grand average mean of TRF weightings across all 
participants, with variance displayed as one standard deviation away from the mean.  
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Supplementary Materials B 

 

 

The following figures show the comparisons between the predicted stimuli from stimulus 
reconstructions and the original speech stimulus, for each training group (trained, and 
pseudo-trained), session number (pre-training, and post-training), and stimulation type 
(audio-only, and audio-tactile). In each figure, the solid blue line represents the grand 
average (mean) predicted stimulus across all participants, with variance displayed as one 
standard deviation away from the mean, whilst the solid red line represents the original 
stimulus (speech envelope). 
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Chapter 4 

4 Does top-down audio-tactile speech-in-noise training affect 

speech-envelope tracking accuracy and intelligibility? 

 

 

Linking Statement:  

In the previous chapter, we had established further supporting evidence for audio-tactile 

stimulation providing clear initial enhancements to neural speech-envelope tracking. 

Unexpectedly, this enhancement was not apparent for the audio-tactile training group post-

training, nor was a benefit to speech intelligibility seen. To further understand the potential 

contributions of audio-tactile integration to speech perception, this chapter will discuss a top-

down variant on the training paradigm from Chapter 3. The implications of this top-down 

implementation on neural speech tracking accuracy and intelligibility will be discussed. 

 

Author Note: This work was produced in collaboration Dr. Helen Nuttall, Prof. Christopher 

Plack, Prof. Lars Hausfeld, Prof. Lars Riecke, and technician Barrie Usherwood as co-

authors. This paper highlights preliminary analyses of thirty young adults as part of an 

extended pilot to investigate top-down audio-tactile training benefits to speech perception. 

Data collection of the remaining thirty participants calculated to achieve a powered sample 

will continue beyond submission of this thesis to support the submission of a publication in 

collaboration with the co-authors. 
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4.1 Abstract 

Neural speech-envelope tracking in the auditory cortex – wherein neural activations 

synchronise with fluctuations in the speech envelope – is improved with audio-visual and 

audio-tactile speech compared to audio-only speech. Whilst visual cues can also improve 

speech intelligibility; evidence has shown no benefit behaviorally with tactile cues. Even with 

bottom-up short-term audio-tactile training, no further benefit to speech intelligibility was 

seen. Understanding the potential benefits of tactile stimulation is crucial for developing new 

methods of aiding speech perception in difficult listening conditions in the absence of 

relevant visual cues. We hypothesised that top-down audio-tactile training may provide 

benefit to speech intelligibility and further enhancements to tracking accuracy. Here, we 

present a preliminary pilot analysis of thirty young participants (ages: 19-30) who 

participated in a single-session electroencephalography experiment. Participants were given a 

sentence-in-noise recognition task with audio-tactile and audio-only stimuli. They then 

received either top-down audio-tactile training (discriminating between congruent and 

incongruent audio-tactile speech) or bottom-up audio-only training (passively listening to 

audio-only speech) in a single training session lasting 25 – 40 minutes, with feedback after 

trials. Finally, they completed the speech-in-noise recognition task again with audio-tactile 

and audio-only sentences. There was no significant interaction between timepoint (pre- and 

post-training) and group (audio-tactile training and audio-only training) for either tactile 

benefit to neural tracking accuracy (TbRz) or tactile benefit to speech intelligibility (TbSI). 

These preliminary findings suggest that a single-session top-down training paradigm is not 

sufficient for enhancing audio-tactile integration for either training group. However, data 

from a fully powered sample should be analysed before drawing final conclusions.   
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4.2 Does top-down audio-tactile speech-in-noise training affect speech-envelope 

tracking accuracy and intelligibility? 

When listening to speech in difficult listening conditions, such as in background 

noise, visual information from lipreading can be integrated with auditory information from 

listening to improve speech intelligibility (Maier et al., 2011). Visual cues also benefit neural 

tracking (Golumbic et al., 2013), a process wherein neurons fire action potentials in 

synchrony with auditory features like the speech envelope (Heil & Peterson, 2015; Issa et al., 

2024). This is seen particularly in the delta and theta ranges (Bröhl & Kayser, 2020; Etard & 

Reichenbach, 2019) and is further highlighted with recent studies showing that facemask-

wearing reduces tracking accuracies for audio-visual speech but not for audio-only speech 

(Haider et al., 2024). Despite this, relevant visual information is not always present when 

listening. In these cases, the sense of touch may be useful for speech integration (Riecke et 

al., 2019; Fletcher et al., 2020; Cieśla et al., 2022; O’Hanlon et al., in prep., 2025). Cieśla et 

al. (2022) showed clear tactile benefits to speech intelligibility but found no significant 

difference between participants given audio-tactile training and participants given audio-only 

training. Whilst this was not investigated alongside neural tracking accuracy, this work does 

show tactile benefit to speech intelligibility both before and after training: there were no 

significant differences in this tactile benefit post-training between audio-tactile and audio-

only training groups, however. On the other hand, using electroencephalography O’Hanlon et 

al. (in prep., 2025) found that, at baseline, audio-tactile speech produced an enhancement in 

neural tracking accuracy compared to audio-only speech. They found no tactile benefit at 

baseline to speech intelligibility, in line with similar audio-tactile research (Riecke et al., 

2019). Participants were then given three short training sessions in this experiment, each 

involving a speech discrimination task. During training, participants were presented with 

speech-in-noise and either relevant congruent tactile stimulation (trained group) or irrelevant 
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incongruent tactile stimulation (pseudo-trained group). No increase in tracking accuracy or 

speech intelligibility was seen in either group post-training.  

It is known that speech perception involves a combination of dynamic bottom-up and 

top-down processing (Zekveld et al., 2006; Diekhof et al., 2009). Indeed, both bottom-up and 

top-down focused training paradigms can successfully lead to improvements in speech 

intelligibility (Gohari et al., 2023). As detailed by Gohari et al. (2023), a top-down training 

paradigm might include memory-based training (Ingvalson et al., 2015; Schneiders et al., 

2012) or speech-in-noise training (Fletcher et al., 2020; Ciesla et al., 2022; O’Hanlon et al., 

in prep., 2025) to make use of top-down selective attention and contextual speech cues.  Top-

down modulation of bottom-up sensory decoding may occur through corticofugal projections 

(Asilador & Llano, 2021). Through these corticofugal projections, the auditory cortex utilises 

existing knowledge about our understanding of speech to influence bottom-up sensory 

processing, potentially through projections from the primary auditory cortex to subcortical 

generators like the inferior colliculus (Souffi et al., 2021; Oberle et al., 2022; Ford et al., 

2024). A bottom-up training paradigm on the other hand might include temporal integration 

(Zerr et al., 2019) or phonemic training (Schumann et al., 2015) to make use of sensory 

speech processing.  

Arguably, the training provided by O’Hanlon et al. (in prep., 2025) engaged both 

bottom-up and top-down processes, with auditory specific training through speech-in-noise 

discrimination utilising top-down processes and the audio-tactile integration through tactile 

stimulation utilising bottom-up processes. Namely, the speech-in-noise discrimination task 

used presented participants with target speech embedded within noise and asked them to 

identify keywords from said target speech in response. As described by Gohari et al. (2023), 

training with speech-in-noise engages top-down selective attention processes (see also 

Talsma et al., 2010) to attend to the target speech whilst suppressing noise and can also draw 
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upon top-down contextual cues from working memory to aid in discrimination of keywords 

in a sentence (Lad et al., 2020; Vermeire et al., 2019). The tactile stimulation, however, was 

not crucial to identifying the correct keywords in the task, as the tactile element was assumed 

to benefit listening through congruent exposure alone and thus temporally integrated. 

Therefore, training to integrate the tactile stimulation with the target speech was likely driven 

by bottom-up sensory processing. Evidence suggests that there is a dynamic interaction 

between bottom-up and top-down processing in speech perception, with top-down processes 

modulating bottom-up in competition for limited resources (Amitay et al., 2014; Huang & 

Elhilali, 2020). This may explain why audio-tactile training was ineffective, as the auditory-

focused top-down processes during training may have modulated the tactile focused bottom-

up processes. Further evidence shows that bottom-up training of audio-tactile integration has 

not always been successful; Rizza et al. (2018) trained participants to associate tactile 

stimulation with specific speech phonemes, finding no evidence of this form of bottom-up 

associative training leading to integration between the auditory and tactile sensory inputs.  

Conversely, electro-haptic stimulation training in cochlear implant users led to 

improvements in speech intelligibility using a similar training paradigm to O’Hanlon et al. 

(Fletcher et al., 2020). Electro-haptic stimulation is different to the tactile stimulation used in 

other audio-tactile based training studies (Rizza et al., 2018; Riecke et al., 2019; Cieśla et al., 

2022; O’Hanlon et al., in prep., 2025), as it utilises stimulation to areas of the forearm rather 

than through envelope-shaped stimulation to the fingertips, but still encapsulates a form of 

audio-tactile integration. The effectiveness of similar training seen in Fletcher et al. may be 

due to the sample population of cochlear implant users tested, as evidence shows cochlear 

implant users to have enhanced multisensory integration versus normal-hearing listeners 

(Rouger et al., 2007). Thus, these cochlear implant users may have been more tuned to 

utilising haptic information to benefit speech perception than non-cochlear implant users. 
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Another point of consideration is the configuration of noise localisation within this study; 

electro-haptic benefits from training were only seen when the noise was located separately to 

the presented speech (ipsilateral or contralateral to the participant’s implant) and not present 

when the noise accompanied the speech in a central location. This could further highlight a 

discrepancy between top-down and bottom-up training elements. For the central location, it 

would have been difficult to identify whether the haptic stimulation was congruent to the 

target speech or the noise during training, as both were present from the same source. In the 

case of the lateral conditions, where the target speech and noise are separated in source 

location instead, the haptic stimulation may have been more easily perceived as congruent to 

the target speech and incongruent to the noise, resulting in trained top-down selective 

attention of the haptic element in these conditions (Talsma et al., 2010). When looking at 

other top-down training paradigms, it was shown by Woodruff et al. (2024) that top-down 

training improved sensory processing speeds compared to bottom-up training, which did not 

show processing speed improvements at all, potentially mirroring electro-haptic benefit in 

lateral versus central localisation. With audio-tactile training, a top-down variant might 

include presenting both congruent and incongruent tactile stimulation during training and 

requiring participants to actively attend to both types of stimulation to determine which one 

was congruent. This would ensure that top-down attentional processes are utilised for audio-

tactile integration during listening. Thus, a top-down audio-tactile training paradigm may 

provide benefits to neural tracking and speech intelligibility that were not seen in O’Hanlon 

et al. (in prep., 2025) for a normal-hearing population. We tested the following primary 

hypotheses: 

(i): Benefit from speech-shaped tactile stimulation to cortical tracking of the speech 

envelope in-noise will be enhanced post-training versus pre-training for those who have 
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undergone top-down training with audio-tactile stimulation, compared to those given audio-

only training. 

(ii): Tactile benefit to speech intelligibility of speech-in-noise will be enhanced post-

training versus pre-training for those who have undergone top-down training with audio-

tactile stimulation, compared to those given audio-only training.  
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4.3 Materials and Methods 

4.3.1 Participants 

Participants were recruited from the Lancaster University campus and the surrounding 

Lancaster area. 30 participants passed the eligibility criteria and took part in the study (ages: 

19-30 years; Mage = 21; SDage = 2.32; 12 males, 18 females). Whilst 60 were determined in 

sample size calculations (see below) for sufficient power, here a preliminary pilot of 30 

participants is presented, with 15 in the audio-tactile training group and 15 in the audio-only 

group. As such, the results of this experiment are preliminary, and discussion is limited to 

findings with insufficient power until a full dataset is analysed. Inclusion criteria were that all 

participants: were between the ages of 18 and 35, were right-handed only, were monolingual 

native speakers of British English, and had normal hearing. Hearing was measured using pure 

tone audiometric air conduction testing, bilaterally across 250 to 8000 Hz frequencies and 

following the British Society of Audiology guidelines (BSA, 2018). All participants had 

calculated hearing thresholds below 20 dB HL. Exclusion criteria were that no participants: 

had nerve damage to the fingertips, motor problems in the hands, missing fingers on their 

hands, or peripheral neuropathy in the hands or fingertips. Participants were screened for 

eligibility using Qualtrics before the experiment began. Ethical approval was granted by the 

Faculty of Science and Technology Research Ethics Committee at Lancaster University 

(approval reference: FST-2024-0766-SA-1, project ID: 0766). 

4.3.2 Sample Size Calculations 

Sample size was calculated using ‘Power R Sample Size (pwrss)’, an R based 

shinyapp for calculating power and statistical sample sizes (Bulus, 2023: 

https://pwrss.shinyapps.io/index/). A small to medium effect size of R squared = .17 was 

assumed for this study and a Bonferroni-corrected significance criterion of p < .025 was used 
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as we were testing two main hypotheses. A logistic regression sample size calculation was 

used on pwrss as this was the closest matching option to our experimental design. 60 

participants were deemed sufficient for a power of .80 at an alpha level of .025, with 30 in 

each group.    

4.3.3 Experimental Design 

Participants took part in a single electroencephalography (EEG) session. Participants 

were randomised into either the ‘Audio-tactile Training’ group or the ‘Audio-only Training’ 

group before testing began. Throughout the pre-training task, training task, and post-training 

task, participants were presented with a variety of sentences in noise, both audio-only and 

audio-tactile. This led to a 2 (Training Group; audio-tactile training, or audio-only training) x 

2 (Timepoint; pre-training, or post-training) mixed-factors design to evaluate these data and 

test two primary hypotheses.  

4.3.4 Materials 

All target sentence and noise audio were wideband, with sampling rates of 44.1 kHz 

and bandwidths of up to 22.05 kHz. Four-talker babble noise was created first using 

sentences from the Clarity Speech Corpus (Graetzer et al., 2022), containing a mixture of 

male and female voices at random. This was done using a MatLab script that randomly 

selected four sentences from the corpus of various durations, took a random 4000 ms segment 

from the selected sentences, and then placed all four segments onto the same waveform track. 

Ten 4000 ms audio files were created using this script, which were used in experimental 

trials. The target sentence stimuli used sentences also from the Clarity Speech Corpus, which 

in turn were selected from the British National Corpus, with 210 selected in total. However, 

as these needed to be all from the same speaker and of a similar duration, it was decided that 

the chosen sentences would be re-recorded using the primary researcher as the target speaker. 
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The sentences were recorded along with a 10-minute segment of Alice in Wonderland that 

was also spoken by the primary researcher. Recordings were made using a HyperX Quadcast 

external USB microphone, set to a cardioid polar direction. Target sentences were between 

3400 and 3650 ms long and always played 250 ms after the noise began. All sentences and 

noise files were loaded into Audacity together and normalised to 60 dB SPL. The noise files 

were then presented in the experiment between -10 and 10 dB SNR at 0.5 dB increments, 

creating 41 possible difficulty levels relative to the 60 dB SPL target sentences.   

The SNR selected for the participant was calculated using a speech-in-noise test. This 

was a custom adaptation of the QuickSIN test (Etymonic) used to personalise the difficulty of 

the experiment so that participants could correctly recognise approximately 50% of keywords 

from target sentences, referred to as the Speech Recognition Threshold (SRT). Typically, 

during QuickSIN, the participant would be required to verbally respond to full sentences and 

correctly responded keywords would be recorded and used in SNR calculations. However, in 

this study, participants discriminated between keywords via a button press (see Procedure). 

This meant that the participant could select correct keywords by chance, resulting in the 

experiment being set at a lower SNR and potentially lowering response accuracy down 

towards chance level. Furthermore, the original QuickSIN sentences were spoken by a female 

speaker, which can be harder to discern in mixed-gender multi-talker noise than a male 

speaker such as was used for the experiment’s target sentences (Larsby et al., 2015). 

Therefore, the QuickSIN test was adapted so that the method of response and the target 

speaker of the test matched the target speaker of the experiment. A modified calculation 

method was used which added an additional +2 dB to each participant’s final SRT scores, due 

to previous experiments with these stimuli showing a lower speech intelligibility baseline of 

approximately 40% (O’Hanlon et al., in prep., 2025). Therefore, to increase this baseline 

closer to expected SRT accuracy, the following formula was used: 
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• SRT = Starting dB level + 2 + (dB step value/2) - Total Keywords Correct 

• Therefore, SRT = 5.75 - Total Keywords Correct 

Tactile stimulation was provided to the right index finger of participants in audio-

tactile and training conditions using a lab-built tactile device. This device used a hard drive 

accentuator to generate small horizontal movements to the finger based on slow fluctuations 

in electric potential, which were set to match slow fluctuations in the speech envelope. The 

device used a soft ring around the finger to keep it in place during stimulation and was 

insulated around the area of contact with participants to reduce potential electrical 

interference with the EEG. Furthermore, it was attached to a handrest to make stimulation 

more comfortable throughout the experiment. For the creation of audio-tactile stimuli, speech 

envelopes were extracted from all 210 sentences using Praat (Boersma & Weenink, 2021) via 

Hilbert transformation. These extracted envelopes were then loaded back into Audacity to be 

normalised. For audio-tactile sentences, the sentence and its respective envelope were 

combined into a single waveform file. This was done by having the left channel of a stereo 

track be the sentence audio, and the right channel just the sentence envelope. For audio-only 

sentences, the sentence was placed in the left channel and the right channel was left silent. 

When played, the left channel was split to a pair of EEG-compatible insert earphones 

(Etymonic ER3-14A Ear Tips) which played the audio in mono format to both ears, whilst the 

right channel was split to the tactile stimulation device. These earphones had transducers that 

were housed in electromagnetic shielding to prevent stimulus artefacts in the data.  

An eligibility screening and initial consent form were created and hosted using 

Qualtrics (Qualtrics, 2005). The experiment was designed using PsychoPy Builder 

(v2022.1.4; Peirce et al., 2019) with custom coding elements. Conditions on the pre- and 

post-training tasks were counterbalanced, with some participants experiencing the audio-

tactile condition first and others the audio-only condition. No sentences were repeated across 
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any task or trial. Sentences order lists were randomised into 10 possible sets which were 

counterbalanced between training groups. To ensure that the same noise file played alongside 

the same sentences to avoid potential biases with some sentences being harder to understand 

in some noise files, all sentences were paired with one of the possible 10 noise files. 

Therefore, when sentences were randomised into sentence sets, they came attached with the 

same noise files across those sets for consistency.  Sentence and noise files were played to the 

participant with the same onset during the same PsychoPy routine. A 32-channel BioSemi 

EEG kit (BioSemi, NL) was used to record neural activity whilst the participant listened to 

stimuli. More channels were not needed for reconstruction validity, as shown by Montoya-

Martínez et al. (2021). The kit utilised an ActiveTwo AD-box amplifier and recorded brain 

activity at a 2048 Hz sampling rate. ActiveTwo 32 channel standard caps were used with 

standard 32-channel 10%-system electrode locations. Cap sizes used ranged from 52 to 60 cm 

head circumference.  Signa Gel electrolyte gel was used to improve electrode impedance, 

with acceptable impedance values targeting 30 kΩ or less during setup which was monitored 

using ActiView software (BioSemi, NL). 

4.3.5 Procedure  

Participants were blinded regarding their group assignment. Participants completed pre-

screening via Qualtrics (Qualtrics, 2005).  Once participant eligibility was confirmed, 

participants were invited to the lab. A pure tone audiometry assessment was conducted using 

a calibrated audiometer and following BSA guidelines (British Audiology Society, 2018). 

Participants were then introduced to EEG and the tactile device used for the experiment. They 

were presented with two randomly selected sentences with relevant tactile stimulation. 

Participants’ individual tactile perception threshold was measured by adjusting the force of 

the tactile device and using a subjective assessment of participants’ ability to distinguish the 

movements of the device relevant to the speech they were listening to and if the device was 
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comfortable. If the intensity needed adjusting, it was done by the researcher. Once a threshold 

was found, the device was set above threshold by one incremental level. This tactile intensity 

level was recorded and was kept consistent for each participant throughout all their testing 

sessions.  

4.3.6 Speech-in-Noise Test 

Participants then took part in the customised speech-in-noise test. To ensure that any 

potential distracting effects of the EEG cap were considered during the calculation of the 

participant’s individualised SNR, the EEG cap was set up for the speech-in-noise test despite 

not recording data. Participants were also asked to place their right index finger into the 

tactile stimulation device. Again, this device was not switched on during this speech-in-noise 

test. However, having the index finger of their dominant hand placed on an unusual device 

may affect speech discrimination performance in later tasks, and so was considered when 

calculating the participant’s SRT. The researcher provided the verbal instructions for the test 

alongside written instructions that the participant had to read and click through to proceed to 

the task. Participants were told that they were to listen for the researcher’s voice and to ignore 

the background noise of other people speaking at the same time. The researcher was present 

for every session conducted in the study so that their voice as the target sentence was 

recognisable. The same example sentence was given to all participants: ‘The dog ran down 

the long road’. They were then told that after hearing the sentence in noise, four keywords 

would pop up on the screen, one in each corner. One of these keywords was the first keyword 

heard in the target sentence, whilst the other three were semantically or phonetically similar. 

In the context of the example target sentences, the correct choice was clarified to participants 

as ‘dog’, and other options may be ‘god’ or ‘cat’. They were told to press the corners of the 

number pad to select the corners of the screen. As an example, if ‘dog’ was in the top right, 

they would press the top right of the lab keyboard’s number pad, which was always ‘9’. If it 
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was in the bottom left, they were told to press ‘1’. As explained to the participant, once the 

selection was made, the four keywords would disappear and four more would show up. One 

of these would be the second keyword, ‘ran’. Participants would keep making selections until 

all five sets of keywords were presented. After this, the next target sentence would play.  

For the speech-in-noise test, there were six trials in each block: the SNRs were 

always: 10, 5, 0, -5, -10, and -15 dB. Participants were told to guess if they were unsure. 

There were five blocks in total. The first two blocks acted as practice and familiarisation for 

the participant. The last three blocks were used to calculate the participant’s SRT for the 

experiment. This was done by summing the number of correctly discriminated keywords 

from each sentence per block and subtracting that value from 14.5. This was based on the 

formula from the QuickSIN method (see Materials). As this was done for each of the three 

test blocks, the average SRT was calculated between them to provide the final SNR value that 

was then used for every session with the participant moving forward.  

4.3.7 Tactile Familiarisation 

Next, participants were given brief familiarisation with the tactile device. This was to 

provide a period of exposure with the tactile stimulation before the main task began, allowing 

an extended opportunity for participants in both training groups to attempt to understand how 

the tactile stimulation related to target speech. Familiarisation was done at the phoneme, 

word, and sentence level to provide participants with as much opportunity to relate the 

envelope-shaped tactile stimulation with the listened-to speech as much as possible. Starting 

at the phoneme level, participants were given audio-tactile stimulation of a phoneme, such as 

‘ba’ or ‘ka’. The phoneme was visually displayed on the screen during listening. Then, a full 

word related to that phoneme played, such as ‘baker’, repeating three times. And finally, a 

full short sentences akin to those in the task, such as ‘The baker was baking loaves of bread’ 
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played, repeating twice. Each participant completed four sets of familiarisation trials, with 

each set including phonemes, words, and sentences. 

4.3.8 Pre-Training Task 

 The pre-training task acted as the baseline and consisted of three elements: a short 

passive listening task using a story excerpt from ‘Alice in Wonderland’ (see ‘Materials’), a 

block of 30 speech sentence discrimination trials in noise that were audio-only, and a block of 

30 sentences in noise that were audio-tactile. The order of the audio-only and audio-tactile 

blocks was counterbalanced across participants, whilst the story was always presented as the 

first part of the task. The story segment was presented without noise and was split into two 

five-minute parts, with a break and a content question after each to ensure participants were 

paying attention. This was a multiple-choice answer question, such as ‘What did the rabbit 

pull out of its waistcoat?’, with four answers to select from using a mouse click. Participants 

could not proceed without selecting the correct answer. In a case where participants failed to 

select the correct answer, they listened to the segment again with the same content question. 

EEG data were recorded throughout this task. Once the story task finished, the researcher 

would let the participants know whether they would be next listening to audio-tactile or 

audio-only sentences. This was so that participants were not surprised if the device was active 

during sentence listening. Participants were reminded at this stage to try not to blink during 

speech listening and to remain as comfortable as possible. The audio-only and audio-tactile 

sentence tasks worked the same as the speech-in-noise test, except that the SNR for all 

sentences was set based on the participant’s SRT level. Furthermore, after each sentence trial, 

the participant was given a voluntary break screen and a progress bar indicating how many 

sentences were left for the block. These were implemented to ensure that participants had 

ample opportunity to get comfortable and take a break as they needed, as well as an 

opportunity for the researcher to adjust any electrodes that may have gone noisy mid-testing.  
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4.3.9 Training Task 

The training task consisted of a single session that was approximately 25 – 40 minutes 

in duration. Here, both training groups received a different training task. In both groups, two 

sets of 30 sentences were presented, with the first set being speech played without any noise 

and the second set being speech played with the same four-talker babble as the previous tasks 

at the same SNR. For the audio-tactile training group, each sentence was played twice. On 

either the first or second playing of the sentence, congruent tactile stimulation was provided 

that matched the sentence heard. The other sentence was accompanied by incongruent tactile 

stimulation that matched an irrelevant sentence to the one heard. The participants were then 

asked to select the sentence for which the audio and tactile stimulation correctly matched by 

pressing either ‘a’ or ‘b’ on a keyboard (two-alternative forced choice), with ‘a’ referring to 

the first sentence that played and ‘b’ the second. After making their selection, they were 

presented with a feedback screen which let them know if their response was correct, were 

played the sentence again with the congruent stimulation, and had the sentence visually 

written in full on the screen for them to review. This third playing of each sentence in the 

feedback stage was always played without noise, even in the speech-in-noise condition. 

Participants in this group were required to correctly identify all congruent sentences in both 

the set with and without noise. If a sentence was incorrectly identified, it was added back into 

the set to play again until the response to the sentence was correct. Once all 30 sentences 

without noise and 30 sentences with noise were correctly identified, the training ended. This 

typically occurred within 25 – 40 minutes. If 45 minutes had passed and not all sentences had 

been correctly identified, the training ended. This was due to limited resources and to prevent 

exhaustion. Two participants in this group ended their training without identifying all 

sentences in noise, with one failing to identify four sentences in noise and another five.  
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For the audio-only training group, participants also listened to 30 sentences without 

noise and 30 sentences with noise. Each sentence was played twice. This time, however, no 

tactile stimulation was provided and there were no differences between either playing of each 

sentence. Instead, participants were advised to passively observe each sentence and listen as 

closely as possible. There was no active task to complete, although a ‘feedback’ screen was 

still shown to participants after each trial, which played the sentence again without noise and 

presented the sentence in full visually to the participant. To ensure that participants were 

paying attention and reviewed every sentence in the ‘feedback’ stage, they would 

occasionally be presented with a follow-up question after a trial. This question would present 

a single keyword, such as ‘dog’, and ask participants to select either ‘y’ for ‘yes’ or ‘n’ for 

‘no’ as to whether this keyword was spoken in the trial they last listened to.  

4.3.10 Post-Training Task 

The post-training task began immediately after training and consisted of the same 

speech discrimination task from the pre-training task, with audio-tactile and audio-only 

sentence blocks again in a counterbalanced order All sentences used across the experiment 

were unique. At the end of this task, participants were debriefed on the true aims of the study 

and paid to compensate them for their time. 
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4.4 Statistical Analyses 

4.4.1 Variables 

There were two independent variables. The training group variable refers to which 

training group the participant was placed in, either the audio-tactile training group or the 

audio-only training group. The timepoint variable refers to when the data was collected in the 

experiment: either pre-training or post-training. The training group was a between-subjects 

factor, with 15 participants placed in the audio-tactile training group and 15 in the audio-only 

training group. For dependent variables, both tactile benefit to speech intelligibility (TbSI) 

and tactile benefit cortical speech-envelope tracking accuracy (TbRz) were measured. These 

were derived from speech intelligibility (SI) and tracking accuracy (Rz) respectively. SI was 

defined as the percentage of correctly discriminated keywords in a sentence trial, which was 

averaged over all 30 sentence trials in a condition. TbSI was then calculated by taking the SI 

of the audio-tactile and audio-only sentence conditions in both the pre- and post-training 

tasks and using the following formula: 

(Audio-tactile SI – Audio-only SI) / (1- Audio-tactile SI) 

To calculate Rz, the multivariate temporal response function toolbox (mTRF, Crosse 

et al., 2016) was used. This process involved utilising a decoder function in the mTRF 

toolbox to reconstruct an estimation of the target sentence speech envelope based on the 

inputs of collected neural data and then correlate this estimated envelope with the original 

stimulus envelope. This correlation was used as the measure of Rz. Similarly to TbSI, TbRz 

was calculated using audio-tactile and audio-only conditions by the following:  

(Audio-tactile Rz – Audio-only Rz)/(1- Rz) 
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4.4.2 Pre-processing and Decoding 

EEG data was pre-processed using EEGLab (Delorme, & Makeig, 2004) in MatLab. 

Initially, the data were recorded at a sampling rate of 2048 Hz, with no online filtering. Data 

were recorded throughout each condition, with a new recording file being made per 

condition. Using EEGLab, the data were first resampled to 100 Hz and filtered using a Finite 

Impulse Response (FIR) filter with a low pass at 1 Hz, before independent components 

analysis (ICA) was run. The spheres and weight matrices outputted by the ICA were saved to 

be used for a future decomposition. This method of early ICA was selected as our target 

frequency range of 0.5 – 15 Hz included delta below 1 Hz, which is susceptible to slow-drift 

distortion with extended infomax ICA (Pontifex et al., 2017). The raw data were then 

reloaded back into EEGLab and resampled to 100 Hz again. The data were filtered to our 

target range next using a FIR filter, with a low pass at 15 Hz and a high pass at 0.5 Hz. Next, 

the data were re-referenced using the average. The previously decomposed ICA weights and 

spheres that were determined from the first loading of the data were then placed on this 

second iteration. ICLabel (Pion-Tonachini et al., 2019) was used to automatically flag 

components for muscle, eye, heart, line-based, and channel-based noise, with boundaries for 

all set at 85%. These flagged components were then removed before finally the stimulus 

presentation periods were extracted using the onset and offset of each sentence file played. To 

remove the onset of event-related potentials, the first second of each sentence trial was 

removed. The result was a three-second epoch per trial. For the ‘Alice in Wonderland’ story 

segments, the same pre-processing steps were used. However, the first two seconds of each 

five-minute segment were removed instead, resulting in two 298-second epochs.  

4.4.3 Speech-envelope Tracking Accuracy (Rz)  

Rz was obtained using the stimulus reconstruction method via the multivariate 

Temporal Response Function toolbox in MatLab (Crosse et al., 2016). This method of 
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reconstruction uses a backwards approach with a decoder for the neural data. For cross-

validation, the method of ‘leave-one-trial-out’ was chosen (see Riecke et al., 2019). As we 

were using a low SNR that matched participants’ individual SRTs, outputs of the 

reconstruction method were expected to be lower for sentence trials than in previous 

literature. Furthermore, due to the quicker sentence duration, each sentence trial could not 

provide enough EEG data alone for valid reconstruction. The required amount of EEG data 

for valid envelope reconstruction is not entirely clear in the literature, with some referencing 

60 seconds as sufficient for 87.5% accuracy (Biesmans, et al., 2016). A comparative look 

between EEG and Magnetoencephalography (MEG) suggests that EEG requires as much as 

three times the duration of MEG for valid reconstruction, coming to approximately 120 

seconds (Destoky, et al., 2019). It is essential to provide as much EEG data to the decoder as 

possible, with a minimum duration of somewhere between 60 and 120 seconds in mind.  This 

meant that for all 30 sentences in a condition, we would need every epoch available in that 

condition to be combined for a more reliable reconstruction. By stitching together epochs, 

however, we run the risk of training the decoder on the ‘seams’ of the individual epochs, 

which may provide inefficient decoder parameters when it comes to calculating the final 

speech-envelope tracking accuracy value. To alleviate this issue and the issue of low SNR 

during sentence listening, the two five-minute story segments in clear speech were used to 

train the decoder first and output optimal parameters for the reconstruction of the 30 stitched-

together sentences. This provided an optimal regularisation parameter (lambda) and number 

of ‘folds’ or ‘segments’ (nf), which were then applied as the parameters for sentence 

reconstruction. Reconstruction outputs were averaged across all leave-one-trial-out 

validations to provide a final Rz value for each session’s conditions.  
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4.4.4 Model for Analysing Neural Data 

For testing hypothesis (i), linear mixed-effects models (LMERs) were used taking 

TbRz as the dependent variable. For our first hypothesis, we expected that RbRz would see a 

greater increase post-training for the audio-tactile training group, compared to the audio-only 

training group. The ID of the participants and the sentence list assigned to them were loaded 

as random factors. The LMER model was as follows: 

TbRz ~ Group + Timepoint + Group*Timepoint + (1|ID) + (1|sentence)) 

To accept this hypothesis, we would expect to see a significant interaction between 

group and timepoint, with this interaction showing significant increases in TbRz in the audio-

tactile training group post-training compared to the audio-only training group. 

4.4.5 Model for Analysing Behavioural Data 

For hypothesis (ii), a generalised LMER model (GLMER) was used as our accuracy 

scores were bound based on choice-selection in the speech discrimination task. We expected 

that RbSI would see a greater increase post-training for the audio-tactile training group, 

compared to the audio-only training group. The ID of the participants and the sentence list 

assigned to them were loaded as random factors. The GLMER model was as follows: 

TbSI ~ Group + Timepoint + Group*Timepoint + (1|ID) + (1|sentence))  

To accept this hypothesis, we would expect to see a significant interaction effect 

between group and timepoint, with this interaction showing significant increases in TbSI in 

the audio-tactile training group post-training compared to the audio-only training group.   

4.4.6 Pre-registration 

The study was pre-registered on the Open Science Framework (OSF) before data 

collection began. Further details on the data simulation methodology and the preregistration 



194 
 

itself can be found at: https://osf.io/38kqt. There was a deviation from this pre-registration 

involving the wording of the two hypotheses (i, and ii), which originally read as there being 

an enhancement of TbRz (i) and TbSI (ii) post-training versus pre-training for those given 

audio-tactile training, “but not for those given audio-only training”. Upon reflection, these 

could be interpretated as two hypotheses each, as they would require two tests to reject the 

null: one to see if audio-tactile training increased TbRz and TbSI respectively, and another to 

show that audio-only training had no impact on TbRz and TbSI respectively. These 

hypotheses were modified to state “compared to those given audio-only training” instead, to 

better convey the single test per hypothesis chosen above that relies on a significant 

interaction effect to reject the null.   

https://osf.io/38kqt
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4.5 Results 

4.5.1 Effect of Top-Down Training with Tactile Stimulation on Speech-Envelope 

Tracking Accuracy 

Table 1 shows the mean Rz pre- and post-training of audio-tactile and audio-only 

sentences for both the audio-tactile training group and the audio-only training group. Figure 1 

shows the TbRz differences from pre- to post-training for both the audio-only (pre-training 

mean = -.008, post-training mean = -.01) and audio-tactile (pre-training mean = -.008, post-

training mean = +.01) training groups. The preliminary LMER analysis for testing hypothesis 

(i) indicated no significant main effect of group (β = .00, t = -.001, 95% CI = [-.02, .08], p > 

.05), timepoint (β = -.01, t = -.28, 95% CI = [-.04, .05], p > .05), or the interaction between 

group and timepoint (β = .03, t = .81, 95% CI = [-.09, .04], p > .05). Hence, these data do not 

provide support for hypothesis (i). 

4.5.2 Effect of Top-Down Training with Tactile Stimulation on Speech Intelligibility 

Table 2 shows the mean SI pre- and post-training of audio-tactile and audio-only 

sentences for both the audio-tactile training group and the audio-only training group. Figure 2 

shows the TbSI differences from pre- to post-training for both the audio-only (pre-training 

mean = +.7%, post-training mean = -18%) and audio-tactile (pre-training mean = -2%, post-

training mean = -18%) training groups. The preliminary GLMER analysis for testing 

hypothesis (ii) indicated a significant main effect of timepoint (pre-training or post-training; β 

= -.20, t = -3.52, 95% CI = [-.09, -.31], p < .025). There was no significant main effect of 

group (trained or pseudo-trained; β = -.05, t = -.80, 95% CI = [-.16, .07], p > .05), or the 

interaction between group and timepoint (β = .05, t = .57, 95% CI = [-.11, .20], p > .05). 

Hence, these data do not provide support for hypothesis (ii). 
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4.6 Discussion 

Top-down audio-tactile training was used to investigate potential tactile benefit to 

speech intelligibility and neural tracking accuracy in comparison to audio-only training. This 

differed from previous work by O’Hanlon et al. (in prep., 2025), which investigated tactile 

training for audio-tactile speech with a paradigm that did not involve selective attentional 

processes for distinguishing tactile stimulation in the training task, as only congruent tactile 

stimulation (trained group) or incongruent tactile stimulation (pseudo-trained group) was 

present during a speech-in-noise discrimination task. In this top-down audio-tactile training 

study, participants were assigned to either an audio-tactile training or audio-only training 

group and were presented with audio-tactile and audio-only sentences in noise during a 

speech discrimination task both pre- and post-training. It was hypothesised that the audio-

tactile training group, when presented with audio-tactile sentences post-training, would see an 

increase compared to the audio-only training group in tactile benefit to neural tracking 

accuracy (TbRz) for hypothesis (i) and tactile benefit to speech intelligibility (TbSI) for 

hypothesis (ii). Results uncovered no significant benefit to TbRz or TbSI post-training for 

either group. Whilst means and standard deviations of each condition do show a general 

increase in speech intelligibility post-training for audio-only sentences in both groups (see 

Table 2), this was not the case for audio-tactile sentences. These results however are 

preliminary, as only 30 out of the target sample of 60 participants were tested at the time of 

analysis.  

As such, until a suitable sample size for power is obtained, no conclusion can be made 

to reject hypothesis (i) and (ii). These preliminary results do offer early insight into the lack 

of effectiveness of the new top-down audio-tactile training paradigm. Currently, with no 

significant change present in TbRz or TbSI post-training in either group, it can be speculated 

that speech-relevant tactile stimulation was not successful in benefitting neural 
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representations or our understanding of speech in difficult listening conditions for this limited 

sample. Training benefits were seen on average for audio-only sentences alone (see Table 2), 

however. The lack of tactile benefit may be due to the study taking place over only a single 

session, as opposed to a multisession training study with multiple sessions over multiple 

days, as with O’Hanlon et al. (in prep., 2025). Allowing time for participants to consolidate 

memory after training may have provided further tactile benefits (Atienza et al., 2002; 

Molloy et al., 2012). Whilst top-down training has even been beneficial to speech perception 

immediately after training ended and was retained for at least a week after (Drouin & 

Theodore, 2022), consolidation after sleep has been evidenced to stabilise training benefits 

faster than without in the context of decoding noise-vocoded speech (Drouin et al., 2023). 

Drouin et al. (2023) presented two groups with the same training paradigm for understanding 

noise-vocoded speech, with one group starting training in the morning and another in the 

evening. Participants took part in a pre-training, training, and immediate post-training task 

akin to this paper’s present procedure. Participants then had a second post-training 

assessment 12 hours later, which for the morning group was the same day and the evening 

group the following morning. Here, Drouin et al. found that there was immediate training 

benefit in both groups, but only the evening group maintained these benefits in the 12-hour 

post-assessment. In a 1-week follow-up, both groups saw training benefits stabilise. Likely, 

the morning group experienced fatigue due to a period of wakefulness following training, 

resulting in a loss of training benefit that was restored following sleep consolidation in the 1-

week follow-up. Given the long duration of the present top-down audio-tactile experiment, 

taking approximately 2 hours and 30 minutes to complete, it may be that participants in the 

audio-tactile training group did gain tactile training benefit, but the length of the study 

session stretched into a similar period of consequential wakefulness to that of Drouin et al.’s 



198 
 

morning group, leading to a decrease in audio-tactile performance immediately post-training. 

It may be that tactile benefit would have been seen in this group after sleep consolidation.  

On the other hand, the lack of sleep consolidation post-training does not adequately 

explain why performance with audio-only sentences seemed to improve immediately post-

training for both groups regardless of task length. One alternative explanation for the lack of 

tactile benefit could be that the audio-tactile training group may not have been fully able to 

discern differences between the congruent and incongruent stimulation during said task, as 

not all participants were able to successfully identify the congruent stimulation for all 60 

sentences within 45 minutes. Although, if this was the case, it would be expected that more 

participants than only two would have failed to complete the training in time. Furthermore, 

there is evidence to suggest that auditory learning is strengthened with more difficult, 

demanding training tasks (Ahissar & Hochstein, 1997; Moore & Amitay, 2007). More recent 

evidence shows that training is even further strengthened with easy-to-hard presentation, 

wherein easier trials within training are presented first to participants before more difficult 

trials (Wisniewski et al., 2019; Wisniewski et al., 2024). The top-down training task 

presented to the audio-tactile training group in this experiment reflected an easy-to-hard 

presentation by presenting clear speech trials before speech-in-noise trials. As this is a 

preliminary analysis, however, further sample testing would be required to speculate on 

training difficulty based on the proportion of fully completed training tasks in this training 

group. A more plausible explanation for the results is that the top-down audio-tactile training 

was beneficial to the pool of sentences used within the training session only. These sentences 

would have repeated upon an incorrect response, leading to multiple repeats in the pool that a 

participant found difficult to initially discern tactile congruency with. It is entirely possible as 

a result that tactile benefit from this training may only be present for this same or similar set 

of sentences, with no transfer of learning seen to untrained sentences in noise (see also: 
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Bieber & Gordon-Salant, 2021; Bugannim et al., 2019; Banai & Lavner, 2019). As the post-

training task always used a pool of different sentences to the pre-training and training tasks, 

this could explain why tactile benefit did not improve post-training. 

Currently, the preliminary implications of this experiment highlight a lack of tactile 

benefit from top-down audio-tactile training. These findings represent underpowered analyses 

and cannot be taken as a conclusion until a full sample size is collected. Looking at effect 

sizes, however, the corrected marginal (variance explained by the fixed effects only) r-

squared values (see Nagakawa et al., 2017) for the LMER for TbRz was very low (r2 = .03) 

in comparison to priori sample size calculations (r2 = .17). The GLMER analysis for TbSI (r2 

= .17) was comparable to priori sample size calculations (r2 = .17). This may indicate that 

further analysis on a fully powered sample could see significant changes in the analysis for 

TbRz, whereas the results of TbSI analyses are less likely to change with an increased 

sample. If these findings remain consistent with a powered sample, future research should 

focus on potential differences in tactile stimulation delivery to understand why benefit was 

not seen here with speech-envelope shaped tactile stimulation to the fingertips versus other 

works using electro-haptic (Fletcher et al., 2020) and vibro-tactile (Ciesla et al., 2022) 

devices. Furthermore, a multisession training approach should be considered to ensure that 

tactile benefits are not masked by a lack of sleep consolidation post-training. It would also be 

beneficial to test the impact of using the same stimulus set post-training versus a stimulus set 

different to the training pool, as this would provide crucial information on the generalisability 

of tactile training benefits to wider speech environments.       

4.6.1 Conclusion 

In conclusion, the preliminary analysis presented for this study fails to identify 

notable tactile benefit to either neural tracking accuracy or speech intelligibility of speech-in-

noise sentences post-training. This is apparent for both the audio-tactile and audio-only 
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training groups. This work provides further conflicting evidence of the benefit of audio-

tactile speech integration using speech-envelope shaped tactile stimulation to the fingertips. 

This may highlight this method’s insufficient ability – even with top-down training - to 

provide tangible tactile benefit to audio-tactile speech compared to other forms of stimulation 

such as electro-haptic and vibro-tactile. Future research should investigate other possible 

tactile devices and training paradigms to improve neural representations and speech 

intelligibility in difficult listening environments. However, these conclusions should be 

considered with care until a fully powered sample is obtained and these preliminary findings 

are re-analysed.  
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Tables and Figures 

Table 1. 

Means and Standard Deviations (SD) of neural tracking accuracies pre- and post-training in 

audio-tactile and audio-only conditions, for both the audio-tactile training group and the 

audio-only training group. 

 
 

 

  

  Pre-training Post-training 

Group Sentence Type Mean (Rz) SD (Rz) Mean (Rz) SD (Rz) 

Audio-tactile 

Training 

Audio-tactile .06 .04 .07 .07 

Audio-only .07 .04 .06 .05 

Audio-Only 

Training 

Audio-tactile .09 .06 .07 .03 

Audio-only .10 .05 .09 .04 
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Table 2. 

Means and Standard Deviations (SD) of speech intelligibility accuracies pre- and post-

training in audio-tactile and audio-only conditions, for both the audio-tactile training group 

and the audio-only training group. 

 

 

 

 

 

  

  Pre-training Post-training 

Group Sentence Type Mean (%) SD (%) Mean (%) SD (%) 

Audio-tactile 

Training 

Audio-tactile 54.89 27.38 55.38 29.12 

Audio-only 56.58 27.19 63.47 26.97 

Audio-Only 

Training 

Audio-tactile 55.11 27.50 51.42 27.78 

Audio-only 55.20 29.37 59.73 28.28 
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Figure 1.  

Boxplots showing the median and interquartile ranges for the tactile benefit to tracking 

accuracy (TbRz) pre- and post-training in both the audio-tactile and audio-only training 

groups. 
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Figure 2. 

Boxplots showing the median and interquartile ranges for the tactile benefit to speech 

intelligibility (TbSI) pre- and post-training in both the audio-tactile and audio-only training 

groups. 
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Supplementary Materials A 

 

The following figures show the temporal response function (TRF) weights across all 32 
electrodes for each training group (audio-only training, and audio-tactile training), session 
number (pre-training, and post-training), and stimulation type (audio-only, and audio-
tactile). In each figure, the solid blue line represents the grand average mean of TRF 
weightings across all participants, with variance displayed as one standard deviation away 
from the mean.
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Supplementary Materials B 

 

The following figures show the comparisons between the predicted stimuli from stimulus 
reconstructions and the original speech stimulus, for each training group (audio-only 
training, and audio-tactile training), session number (pre-training, and post-training), and 
stimulation type (audio-only, and audio-tactile). In each figure, the solid blue line represents 
the grand average (mean) predicted stimulus across all participants, with variance displayed 
as one standard deviation away from the mean, whilst the solid red line represents the 
original stimulus (speech envelope).
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Chapter 5 

5 Does Speech Tracking Play a Role in Predicting Oncoming 

Speech? Evidence from Audio-visual Speech Perception 

 

 

Linking Statement: 

With Chapters 3 and 4, we investigated how both short-term bottom-up and top-down 

training with audio-tactile speech may benefit speech perception through enhanced neural 

speech-envelope tracking accuracy and intelligibility. Despite seeing evidence of enhanced 

tracking accuracy with audio-tactile speech, no benefits to intelligibility from audio-tactile 

training were seen, in contrast to audio-visual intelligibility benefits assessed in Chapter 2. To 

understand this further, this chapter returns to investigate audio-visual integration from a 

neural perspective. Through secondary data analysis of an intracranial audio-visual speech 

study, we attempt to understand the potential role of speech tracking in the prediction of 

oncoming speech.  

 

Author Note: This work was produced in collaboration Dr. Helen Nuttall, Prof. Christopher 

Plack, and Dr. Sana Hannan. This paper is currently under review from the wider 

collaborative team before planned submission to the Journal of Neuroscience for publication. 
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5.1 Abstract 

The auditory cortex tracks speech by synchronising neural activations with fluctuations in the 

speech signal. Speech-tracking accuracy can be improved with speech-relevant visual 

information, such as through lipreading. Furthermore, enhancements in speech tracking are 

thought to be linked to enhancements in speech intelligibility. However, this is not always the 

case. For example, speech-relevant tactile information improves envelope tracking, but not 

intelligibility. It may be that speech tracking plays a role in the prediction of oncoming 

speech, much akin to visual benefit from lipreading, which may explain why tracking 

accuracy is enhanced with audio-visual speech but not necessarily for audio-tactile speech. 

This study aimed to investigate the potential role of tracking in speech prediction through 

secondary analysis of electroencephalography data (Karas et al., 2019). Intracranial 

electroencephalographic data were collected by Karas et al. from eight participants awaiting 

epilepsy treatment whilst participants perceived auditory or audio-visual speech. In some 

trials, the onset of the auditory stimulus preceded the onset of the visual information by either 

60 or 100 ms (voice-leading condition). In other trials, the onset of visual information 

preceded the onset of the auditory stimulus by either 40 or 100 ms (mouth-leading condition). 

Karas et al. demonstrated that lipreading primed the posterior superior temporal gyrus 

(pSTG) to predict speech when stimuli were mouth-leading compared more accurately to 

voice-leading, indicated through suppressed broadband high-gamma activity for 

representations of incompatible phonemes. We hypothesised that if neural tracking in the 

pSTG also played a role in speech prediction, then visual benefit to tracking accuracy would 

be greater in the mouth-leading condition compared to the voice-leading condition. A 

generalised linear mixed-effects model found no significant difference in the visual benefit of 

speech tracking between mouth-leading and voice-leading conditions (β = .002, t = .04, 95% 

CI = [-.07, .07], p > .05). This secondary data analysis suggests that speech tracking 
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enhancement may not be indicative of enhanced prediction of speech and therefore may have 

a different role in speech perception, such as assisting with continuous selective attention to a 

single speaker in multi-speaker environments. 
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5.2 Does Speech Tracking Play a Role in Predicting Oncoming Speech? Evidence from 

Audio-visual Speech Perception  

Speech tracking refers to the auditory cortex’s ability to phase lock neuronal activity 

to stimulus features present in speech, such as the speech envelope (Issa et al., 2024). The 

purpose of this tracking in speech processing is unclear (Karunathilake et al., 2023). In 

previous literature, there has been an assumed link between tracking accuracy and speech 

intelligibility (Vanthornhout et al., 2018) with some evidence for tracking accuracy to be 

sufficient as a neuronal measure of intelligibility (Lesenfants et al., 2019). Whilst some 

evidence has suggested that greater neural speech tracking accuracy accompanies greater 

speech intelligibility (Kong et al., 2015), other studies have found no intelligibility benefits 

associated with tracking accuracy enhancement (Kösem et al., 2023), particularly in the 

audio-tactile domain (Riecke, et al., 2019; O’Hanlon, et al., in prep., 2025). This lack of 

understanding about the role of speech tracking and its relationship with speech intelligibility 

makes it difficult to assume that tracking can be used as an objective, neural measure of 

speech intelligibility or comprehension independently of behavioural measures. This 

uncertainty in purpose does complicate applications of speech tracking too, as with recent 

developments in dynamic neuro-steered hearing aids to provide improvements to hearing 

technologies through auditory attention decoding using speech tracking (see: Geirnaert et al., 

2021; Geirnaert et al., 2024; Straetmans, 2022). In this case, understanding the role of 

tracking in speech processing and perception may assist in the optimisation of these 

attentional decoding applications for dynamic hearing aids to further improve their 

application.  

On the other hand, audio-visual speech studies indicate a link between tracking 

accuracy and speech intelligibility (Haider et al., 2024; Golumbic et al., 2013), in stark 

contrast to tracking evidence in the audio-tactile domain (Riecke, et al., 2019; O’Hanlon, et 
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al., in prep., 2025). Audio-visual integration makes use of information from visual lipreading, 

in that viewing the lip movements of a speaker whilst listening to speech can improve speech 

intelligibility in noise (Sumby & Pollack, 1954; Maier et al., 2011). This integrative process 

is likely facilitated by established multisensory integration hubs in the medial geniculate body 

and lateral geniculate nucleus (Luo et al., 2022; Meng & Schneider, 2022), as well as through 

corticollicular descending projections to the inferior colliculus from the auditory cortex (Hu 

& Dan, 2022). Lip movements related to specific speech phonemes are categorised into 

groups known as viseme categories (Massaro et al., 2012). An example of phonemes that 

share a viseme category are /b/ (‘ba’), /p/ (‘pa), and /m/ (‘ma’). Of note, no phoneme in the 

English language occupies a viseme category alone (Fisher, 1968). This means that it is 

impossible to distinguish between speech phonemes that share the same viseme category 

through lipreading alone (Van Engen et al., 2022). Work by Karas et al. (2019) showed that 

when visual information preceded the auditory information of the speech, representations of 

incorrect phonemes were suppressed in the posterior superior temporal gyrus (pSTG). These 

suppressed phonemes were ones outside of the viseme categories determined from visual 

lipreading. An important distinction in Karas et al. is that this suppression of incongruent 

phonemes of alternate viseme categories only occurred when the speech was ‘mouth-leading’ 

(the onset of the visual information preceded the onset of the auditory information) and not 

when speech was presented as ‘voice-leading’ (auditory onset preceding the visual onset). 

This mouth-leading (or visual head-start) phenomenon has been evidenced extensively by 

introducing further stimulus onset asynchrony (SOA) to audio-visual speech (Colonius & 

Diederich, 2010; Schwartz & Savariaux, 2014, Ren et al., 2017). When too much SOA is 

introduced, and the visual information precedes the auditory by too much time, visual benefit 

to speech intelligibility is lost (Chandrasekaran et al., 2009), despite the stimuli still 

presenting as mouth-leading. This window of integration varies in the literature but can be 
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estimated to be around 240 ms to 300 ms for phonemes and short word presentations 

(Navarra et al., 2005). In the case of Karas et al. (2019), mouth-leading stimuli were 

presented with SOAs of either 60 or 100 ms, landing within the window of integration for 

audio-visual word presentations.  

Returning to neural speech tracking accuracy, audio-visual speech studies have shown 

links between tracking accuracy and intelligibility (Haider et al., 2024; Golumbic et al., 

2013), compared to mixed findings in auditory and audio-tactile speech (Kösem et al., 2023; 

Riecke, et al., 2019; O’Hanlon et al., in prep., 2025). This may be indicative of tracking 

playing a similar role in speech prediction as audio-visual speech integration by priming the 

auditory cortex to oncoming speech and supressing irrelevant phoneme representation (Zoefel 

& VanRullen, 2016). When this prediction is correct, processing of speech would likely be 

more accurate, potentially increasing speech intelligibility. However, neural speech tracking 

accuracy has not been investigated with regards to mouth-leading and voice-leading audio-

visual stimuli. Using existing intracranial data from Karas et al. (2019), we conducted a 

secondary data analysis investigating potential differences in neural speech tracking accuracy 

between mouth-leading and voice-leading stimuli, providing insight into tracking’s potential 

role in speech prediction akin to audio-visual integration.  

The following primary hypothesis was tested: 

  (i): Presenting audio-visual speech with mouth-leading onsets (the visual 

information preceding the auditory information) will increase visual benefit to speech 

tracking accuracy more than when audio-visual information is presented with voice-leading 

onsets (the auditory information preceding the visual information).  
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5.3 Materials and Methods 

5.3.1 Participants 

The Karas et al. (2019) dataset included eight participants (five female, Mage = 36 

years) who were awaiting neurosurgery for refractory epilepsy. Participants were implanted 

with intracranial electrodes to record ECoG data. From these eight participants, data from all 

128-channels were collected during the task. The data were then mapped onto a single brain 

atlas, and electrodes from this atlas were selected that met anatomical (being placed over the 

posterior superior temporal gyrus) and functional (had a significant broadband high 

frequency activity response to auditory-only speech) criteria. This atlas consisted of 28 

electrode channels averaged across all eight participants. 

5.3.2 Sample Size Calculations 

Post hoc power and sample size calculations were computed using pwrss (Bulus, 

2023: https://pwrss.shinyapps.io/index/), a shinyapp and r package used to conduct sample 

size calculations, for a repeated measures ANOVA. Intracranial neural measures are of high 

quality compared to scalp measures such as electroencephalography due to higher spatial and 

temporal resolutions (Todaro et al., 2019), which is useful for speech tracking decoding. 

Moreover, signal quality is significantly improved in ECoG recordings, with reduced artifacts 

(Ball et al., 2009; see also Kanth & Ray, 2020). This makes neural decoding via stimulus 

reconstruction more valid, as the decoder is trained on data that more accurately represent 

activity in the auditory pathway (Crosse et al., 2016). Thus, we determined sample sizes for 

both assumed medium and assumed large effect sizes to achieve a power of .8. For a large 

effect size of η2 = .26, a total sample size of eight was needed. Therefore, we assumed this 

study’s sample of eight to be sufficiently powered for our planned analysis with a large effect 

size. Again, this justification was made with the expectation of intracranial measures to 

https://pwrss.shinyapps.io/index/
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provide clean neural data for tracking analyses, as it records data at a significantly higher 

signal-to-noise ratio than non-invasive methods (Parvizi, & Kastner, 2018).  

5.3.3 Experimental Design 

To address our hypothesis, secondary data analysis was conducted on an open access 

Electrocorticography (ECoG) dataset collected by Karas et al. (2019). Of this dataset, only 

the neural intracranial data was analysed and not the behavioural experimental data. The 

ECoG data were collected during a word listening task, in which participants listened to 

single English spoken words. These were presented in video format, with some videos 

showing a blank screen during listening (auditory) and other videos showing the speaker’s 

lips moving as they spoke (audio-visual). With audio-visual trials, some stimuli were 

presented as voice-leading (the onset of the auditory information played before the onset of 

the visual lip movements in the video played) and some as mouth-leading (vice-versa). With 

auditory only trials, where no visual information was present, the stimuli were presented 

auditory onsets as their audio-visual counterparts. For example, the mouth-leading audio-

visual presentation of ‘drive’ had a visual onset of 170 ms and an auditory onset of 230 ms. 

For the auditory only counterpart, ‘drive’ was presented with a matching auditory onset of 

230 ms and with no visual information present in the video (blank screen).  

A single (leading stimulus; voice-leading, or mouth-leading) within factor design was 

used to evaluate this data and test our hypothesis. For the dependent variable, visual benefit 

to tracking accuracy (VbRz) was used. Ethical approval was granted by the Faculty of 

Science and Technology Research Ethics Committee at Lancaster University (approval 

reference: FST-2023-4163-SR-1, project ID: 4163). The analysis code can be found on the 

Open Science Framework (OSF) at: https://osf.io/autv6/.  

https://osf.io/autv6/


241 
 

5.3.4 Electrocorticography 

Neural activity was recorded intracranially during listening in the original study by 

Karas et al. (2019) using a 128-channel Cerebus Data Acquisition electrocorticography 

system (Blackrock Microsystems, Salt Lake City, UT). Electrodes were placed on both the 

left and right posterior superior temporal gyri (pSTG), with an inversed electrode facing the 

skull as a reference. These were placed away from detected epileptogenic zones.  

5.3.5 Stimuli 

There were two mouth-leading exemplars (visual information preceding the auditory 

information by either 40 or 100 ms) and two voice-leading (auditory preceding visual by 

either 60 or 100 ms) exemplars, giving rise to four different stimuli presented during neural 

recordings. These were the words: ‘drive’, ‘known’, ‘meant’, and ‘last’. Of these, voice-

leading trials used ‘meant’ (40 ms offset) and ‘known’ (100 ms offset) whereas mouth-

leading trials used ‘drive’ (60 ms offset) and ‘last’ (100 ms offset). These stimuli were 

presented at 30 frames per second (30 Hz monitor refresh rate) with an auditory bandwidth of 

22.05 kHz (44.1 kHz sampling).  

5.3.6 Procedure  

In the original procedure, participants were presented with auditory only, visual only, 

and audio-visual stimuli – all without noise. Subjects only responded to catch trials, which 

were always an audio-visual stimulus of the word ‘press’. No behavioural measures were 

taken during neural recordings. For this secondary data analysis, only the auditory only and 

audio-visual trials were analysed for neural tracking accuracy.  

5.3.7 Calculation of Broadband High-frequency Activity (BHA)  

The open dataset provided by Karas et al. presents broadband high-frequency activity 

(BHA) values for each participant and their selected atlas electrodes during word listening, 
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reflecting high-gamma neuronal activations in the pSTG. BHA was obtained via conversion 

of raw neural data into frequency and phase domains using wavelet transformation, power 

transforming into signal change percentage, and averaging over frequencies between 75 and 

150 Hz (see Karas et al., 2019).  

5.3.8 Speech tracking accuracy (Rz)  

Speech tracking accuracy (Rz) was obtained using the stimulus reconstruction method 

via the multivariate Temporal Response Function toolbox in MatLab (Crosse et al., 2016). 

This method of reconstruction uses a backwards approach with a decoder for the neural data. 

For cross-validation, the method of ‘leave-one-trial-out’ was chosen (see Riecke et al., 2019). 

The reconstructed speech was then correlated with the original speech signal using Pearson’s 

R. This correlational value was used as Rz. As the intracranial dataset involved high-gamma 

BHA values rather than raw neural output with low delta and theta information, the full 

stimulus signal (downsampled to match the neural sampling rate) was used for the correlation 

between original and reconstructed speech signal. Whilst typically a stimulus feature such as 

the speech-envelope is used for backwards reconstruction models (see Crosse et al., 2016), 

this intracranial BHA data does provide clear representations of the listened speech directly 

from the pSTG as evidenced by the original authors. Therefore, the full stimulus signal was 

deemed adequate for providing Rz measurements. Reconstruction outputs were averaged 

across all leave-one-trial-out validations to provide a final Rz value for each condition. 

5.3.9 Visual benefit to speech tracking accuracy (VbRz)  

The Rz measures from each leading stimulus condition for auditory only and audio-

visual data were used to calculate visual benefit to speech tracking accuracy (VbRz). Here, 

the auditory only condition was used as a baseline as we wanted to evaluate the addition of 

visual information comparatively to auditory only speech. There was a separate auditory only 
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baseline for both mouth-leading and voice-leading audio-visual conditions. These baselines, 

whilst presenting no visual information, matched the auditory onsets for each stimulus to 

preserve presentation timings (see Experimental Design for onset examples). The formula for 

VbRz was adapted from previous literature (Yuan et al., 2021) to account for the tracking 

boundaries of -1 to 1 instead of percentage boundaries of 0 to 100. VbRz for the audio-visual 

mouth-leading (AVML) condition used the auditory onset-matched baseline (AOML) 

condition as its baseline in the following equation:  

VbRz = (AVML – AOML)/(1-AOML) 

VbRz for the audio-visual voice-leading (AVVL) condition used the auditory onset-

matched baseline (AOVL) condition as its baseline in the following equation:  

VbRz = (AVAL – AOVL)/(1-AOVL) 

5.3.10 Statistical analyses  

A generalised linear mixed effect regression model (GLMER) will be used to test the 

hypothesis. Stimulus was used as the fixed effect, and participant IDs and the word stimulus 

were added as random factors:   

VbRz ~ Leading_Stimulus + (1|ID) + (1|stimuli)) 

Based on our hypothesis, we expected to find a significant increase in visual benefit to 

speech tracking accuracy from baseline when audio-visual information was presented in the 

mouth-leading condition compared to when audio-visual information was presented in the 

voice-leading condition.  
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5.4 Results 

Table 1 shows the mean tracking accuracies for mouth-leading and voice-leading 

conditions when speech was audio-visual and auditory only, whilst the visual benefit to 

tracking accuracy for mouth-leading and voice-leading conditions is displayed in Figure 1. 

The planned GLMER analysis for testing hypothesis (i) was conducted. There was no 

significant difference in visual benefit to speech tracking accuracy between mouth-leading 

audio-visual speech and auditory only speech (β = .002, t = .04, 95% CI = [-.07, .07], p > 

.05). This finding does not support our hypothesis, suggesting that speech tracking accuracy 

is not affected by the removal of visual head-starts and may not play a role in oncoming 

speech prediction. 
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5.5 Discussion 

The role of neural speech tracking accuracy remains unclear in the literature, with 

mixed evidence of tracking accuracy being intrinsically linked with speech intelligibility 

(Riecke et al., 2019; Kösem et al., 2023; O’Hanlon et al., in prep., 2025). Audio-visual 

integration remains consistent in its enhancement of both tracking and intelligibility and has 

been shown to play a role in incoming speech prediction by narrowing down representations 

of phonemes in the pSTG through speech-relevant visual head-starts (Karas et al., 2019). 

This may provide insight into the role of tracking as contributing to the auditory cortex’s 

ability to predict oncoming speech. To test this, a secondary data analysis of intracranial data 

collected by Karas et al. (2019) was conducted for both mouth-leading and voice-leading 

stimuli. Results indicated no significant difference in visual benefit to tracking accuracy 

between mouth-leading and voice-leading conditions. Therefore, no evidence was found for 

neural tracking enhancements relating to enhanced ability to predict oncoming speech.  

As such, it is important to look towards alternative purposes of speech tracking. If the 

function does not aid in prediction of oncoming speech, it may play a role in attentional 

decoding when in a listening environment with multiple sources of auditory information (see: 

Geirnaert et al., 2021; Geirnaert et al., 2024; Straetmans, 2022). This may also explain why 

visual benefit to tracking accuracy was rather low in this analysis compared to other audio-

visual tracking research, as there was no difficult listening condition that may have required a 

further boost to attentional processes to decode the speech. Alternatively, tracking accuracy 

may be more complex than a singular measure derived from neural activity. There is evidence 

to suggest that delta and theta frequency bands track speech differentially (Bröhl, & Kayser, 

2020), with delta tracking providing benefit to speech clarity and theta to speech 

comprehension (Etard & Reichenbach, 2019). It may be that tracking across all frequency 

bands plays a role in a multitude of different speech processing functions. This would help to 
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explain the inconsistency between tracking and intelligibility measurements across various 

studies, as tracking accuracies may be reflecting enhancements in different speech processing 

mechanisms relevant to the listening environment participants experience.   

5.5.1 Study limitations 

This secondary data analysis was conducted on a relatively small sample of eight 

patients undergoing neurosurgery. Whilst this sample size was adequate for our post hoc 

power calculation (assuming a large effect size), it is important to consider the varied amount 

of intracranial data that was available per each participant for stimulus reconstruction. The 

open dataset contained pSTG-only recordings from a total of 28 electrodes across eight 

participants. These electrodes were selected based on anatomical and functional criteria 

between participants. However, the number of electrodes present for each participant did vary 

between them. Seven of the participants had three to six electrodes present in the data. One 

participant, however, only had one electrode present. This does mean that some participants 

had more intracranial data to train the decoder on for stimulus reconstruction than others, 

with one participant having considerably less available. It is difficult to ascertain whether one 

electrode of data was enough to decode tracking accuracy with validity, though the study did 

present many trials to participants and so even a single electrode may have provided 

sufficient datapoints. Future research should provide as much neural activity as possible for 

more valid reconstructions. Furthermore, the original methodology was not designed with 

speech tracking analyses in mind. The experiment presented single word trials to participants, 

with no active task to conduct during word listening except for catch trials. These catch trials 

were not included in the dataset and this analysis. Whilst these single word trials still 

prompted predictive processing of oncoming speech, as evidenced by the narrowing of 

phoneme representation in the original study, they may have benefited less from audio-visual 

integration due to the simplistic nature of the trials presented. Moreover, the lack of difficulty 
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added to trials by introducing noise to the speech signal would further bring intelligibility 

towards ceiling. As a result, the visual benefit to tracking accuracy in both conditions may not 

have seen significant difference due to the ease of listening. In our secondary analysis, we 

also used broadband high-frequency activity values instead of low-frequency information 

typically used in speech tracking studies that utilise non-invasive neural methodologies 

(EEG, MEG). These values were also only derived from the pSTG and not from other 

speech-relevant nonprimary regions of the auditory cortex, like the planum temporale or the 

planum polare (Poeppel et al., 2012), which may have been playing a larger role in cortical 

tracking of speech (de Heer et al., 2017). This does make it more difficult to compare our 

intracranial analyses with these scalp-based non-invasive studies, as our tracking accuracies 

reflect phase-locking in the pSTG only that is more relevant to high-gamma signal activity 

than low-frequency information such as the speech-envelope.  

5.5.2 Conclusion 

In conclusion, no evidence in this secondary data analysis was provided to support the 

hypothesis that neural speech tracking accuracy is directly involved in the auditory cortices 

ability to predict oncoming speech by narrowing down potential phoneme representations, 

akin to audio-visual integration. This indicates that tracking plays a different role in speech 

perception, such as through attentional decoding, or that speech tracking assists with speech 

prediction outside of the pSTG in nonprimary regions of the auditory cortex. Future research 

should aim to clarify the role of neural speech tracking in speech processing. Understanding 

this role is crucial for the continued development of future neuro-steered hearing technologies 

that seek to provide dynamic algorithms using neural tracking accuracy to provide 

enhancement to speech intelligibility.  
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Tables and Figures 

Table 1. 

Means and Standard Deviations (SD) of neural speech tracking accuracy (Rz) for auditory 

only and audio-visual stimuli, when presented with mouth-leading sensory onsets and voice-

leading sensory onsets. 

 

 Mouth-leading Voice-leading 

 Mean SD Mean SD 

Auditory Only .28 .08 .34 .09 

Audio-visual .27 .04 .33 .11 
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Figure 1. 

Boxplots showing the median and interquartile ranges for visual benefit to tracking accuracy 

(VbRz) for both mouth-leading and voice-leading stimuli. 
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Supplementary Materials A 

 

The following figures show the temporal response function (TRF) weights across all recorded 
iEEG electrodes for each leading condition (mouth-leading, and voice-leading), and 
stimulation type (audio-only, and audio-visual). In each figure, the solid blue line represents 
the grand average (mean) of TRF weightings across all participants, with variance displayed 
as one standard deviation away from the mean.
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Chapter 6 

6 General Discussion and Conclusions 

In this thesis, the benefits of audio-visual and audio-tactile integration for speech 

perception have been explored in the context of both behavioural outcomes through speech 

intelligibility, and neuronal outcomes through EEG- and ECoG-based cortical speech 

tracking accuracy. In Chapter 2, the general behavioural benefits of audio-visual speech were 

reassessed, finding expected restoration of intelligibility in noise compared to auditory only 

speech. Interestingly, however, this benefit was limited to specific viseme categories and was 

diminished in comparison to previous audio-visual literature. Unexpectedly, stimulus onset 

asynchrony manipulation could not identify the upper limit of integration for the specific 

speech phonemes used in this experiment. This may relate to the study being delivered 

online, due to stimulus-dependent effects (Ma et al., 2009), or even due to the window of 

integration for audio-visual stimuli having shifted or expanded post COVID-19, though this 

is only speculative. Despite seeing this diminished and stimulus-dependent benefit with 

audio-visual speech perception, audio-visual integration remains a robust means of enhancing 

speech intelligibility in noise. This thesis then aimed to investigate other potential 

multisensory integration pathways that may be of interest to the improvement of speech 

perception in difficult listening conditions.  

To that end, Chapter 3 investigated the potential benefits of audio-tactile integration. 

Previous audio-tactile integration research has demonstrated neural enhancement of cortical 

speech-envelope tracking (Riecke et al., 2019). This neural enhancement was not 

accompanied by any behavioural increases in speech intelligibility to speech-in-noise. This 

goes against the assumption that speech intelligibility and neural speech tracking accuracy are 
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intrinsically linked. One explanation for this could be that the neural tracking enhancement is 

a pre-cursor to behavioural benefit, as we do not naturally experience audio-tactile speech-

envelope integration in real-world environments like we are exposed to audio-visual speech 

integration through visual lipreading. Behavioural benefit may arise alongside this 

enhancement of neural tracking through training. To that end, short-term audio-tactile speech 

training was given to participants in Chapter 3 whilst investigating the effects of training on 

speech intelligibility and neural tracking accuracy. As expected, without training, participants 

showed an enhancement in tracking accuracy when audio-tactile speech was present over 

auditory only speech, but no differences in speech intelligibility were observed. Post-training, 

however, congruent audio-tactile speech training did not confer any intelligibility benefits 

relative to incongruent training, and no further neural tracking enhancements were observed. 

This is with exception to the pseudo-trained group (active control), who saw significant 

enhancement post-training for auditory-only sentences. Again, this was not linked to 

increased intelligibility, further providing evidence against the link between the two measures 

and failing to demonstrate audio-tactile training to enhance speech perception relative to 

unimodal processing. With these findings from Chapter 3, three possible explanations or the 

findings remain particularly interesting. One is that audio-tactile integration is simply 

insufficient to benefit processing of complex speech sentences and speech-envelope derived 

decoding. Another possible explanation is that the type of training used in Chapter 3, which 

primarily integrated bottom-up processes for the tactile information stream, may not have 

been sufficient to induce significant audio-tactile training effects in the short-term. From this, 

it was suggested that a focused, top-down training paradigm that utilised selective attention to 

the tactile stimulation may have provided missing intelligibility benefit, which was 

investigated in Chapter 4. With Chapter 4, where top-down audio-tactile training was 

assessed, preliminary findings show no post-training benefit to neural tracking accuracy or 
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speech intelligibility, despite training focusing on the top-down modulations of the tactile 

element during integration. Whilst general auditory benefit to speech intelligibility and neural 

tracking was high, even without sleep consolidation, the lack of tactile benefit seen post-

training does suggest that audio-tactile integration was insufficient for enhancing speech 

perception in both neural and behavioural output. As this is a preliminary analysis, 

conclusions regarding the insufficiency of audio-tactile integration and training may not 

remain the same when a final, fully-powered sample is obtained and analysed. Effect sizes for 

the tactile benefit to speech intelligibility (TbSI) were comparable (r2 = .17) to that of the 

original priori sample size calculation (small to medium; r2 = .17), whereas tactile benefit to 

neural speech tracking accuracy (TbRz) was much lower (r2 = .03). This may indicate that, 

whilst results for TbSI may not change with a full sample tested, there could still be a 

significant increase or decrease seen in either training group and either condition for TbRz 

when all 60 participants required for power are tested and analysed. 

The third and final possible explanation as to why there was no link between tracking 

accuracy and intelligibility seen is that there is different potential role of neural tracking in 

the auditory cortex to that of speech segmentation and understanding. Here, Chapter 5 

utilised pre-existing intracranial audio-visual data to investigate if this role of neural tracking 

was related to the prediction of oncoming speech, as well as to further knowledge of audio-

visual integration in the posterior superior temporal gyrus (pSTG). This data presented audio-

visual and auditory only speech to participants, with some audio-visual trials presenting as 

mouth-leading (the onset of the visual information preceded the onset of the auditory 

information) or voice-leading (vice-versa). In the original dataset, conclusions were drawn 

through these leading conditions that audio-visual speech assists with the prediction of 

oncoming speech by suppressing incorrect phoneme expression in the pSTG, which was 

present in mouth-leading but not voice-leading conditions. Chapter 5 hypothesised that, if 
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neural tracking also played a role in the prediction of oncoming speech, then visual benefit to 

tracking accuracy would be higher in the mouth-leading conditions versus voice-leading. 

Findings of this chapter, however, were nonsignificant, showing no changes to tracking 

accuracy between both leading conditions. This may, in part, be due to large participant 

variance in the data. As such, no further insight into audio-visual speech processing were 

uncovered with this analysis, and the role of neural speech tracking in the brain may not be 

relevant to the prediction of oncoming speech.    

6.1 Audio-visual Speech Integration and its Benefit to Speech Perception 

Audio-visual integration was examined in Chapters 2 and 5 with varying results. 

Chapter 2 investigated audio-visual speech benefit to intelligibility of phonemes in noise, 

specifically with chosen phonemes that belonged to visually distinct viseme categories. Here, 

visual benefit was present as expected, with audio-visual speech increasing speech-in-noise 

intelligibility compared to auditory only speech. However, this increase in audio-visual 

benefit was not as large as in previous literature. This may be indicative of experimental 

design differences, as phonemes selected for discrimination in this experiment were of 

different viseme categories. This would be further supported by exploratory analyses in this 

chapter, which highlighted differences in intelligibility between each of the three phonemes 

(Ba, Fa, and Ka) in noise. This experiment also presented audio-visual speech at varying 

levels of stimulus onset asynchrony, with the onset of the visual information preceding the 

onset of the auditory information by six different levels between 200 and 266.6 ms. This was 

to identify a window of integration for this set of stimuli, wherein the maximum level of 

visual onset asynchrony before visual benefit to speech intelligibility or processing speed was 

lost could be identified. Here, no window of integration could be determined using speech 

discrimination accuracy or response time measurements. This finding is also intriguing, as it 

suggests that the window of integration for audio-visual stimuli has expanded compared to 
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previous phoneme discrimination research (Navarra et al., 2005), although other research had 

found varying windows of integration with short-words and other speech stimuli (Colonius & 

Diederich, 2010; Schwartz & Savariaux, 2014, Ren et al., 2017). Relative to aging research, a 

wider window of integration typically indicates poorer performance, as there is a longer 

period in which an erroneous visual cue in the environment may be misinterpreted as speech-

relevant (Ganesh et al., 2018; Sekiyama et al., 2014; see also development disorder 

differences with: Smith & Bennetto, 2007; Megnin-Viggars & Goswami, 2013; Michalek et 

al., 2014; Noel et al., 2018). Therefore, this result may be indicative of poorer integrative 

ability across the participants tested. Future research should readdress this conflicting 

window of integration period from previous literature to gain further insight into the 

mechanisms at play in current audio-visual environments.     

Chapter 5, on the other hand, investigated audio-visual integration in an entirely 

neural perspective. This chapter presented a secondary data analysis of previous intracranial 

audio-visual work, where the pSTG was identified as suppressing incorrect phoneme 

representation to assist with accurate prediction of oncoming speech. Here, we applied neural 

speech tracking accuracy analyses to the intracranial data to examine if speech tracking 

played a role in speech prediction as well. Findings of this chapter demonstrated no 

supporting evidence to suggest that neural speech tracking of audio-visual speech played a 

role in assisting with speech prediction in the pSTG. As another interesting note, there was 

also no visual benefit to tracking observed at baseline in this experiment, going against 

previous tracking work showing enhancements in cortical tracking accuracy with audio-

visual speech presentation (Haider et al., 2024; Golumbic et al., 2013). In speculation, this 

may suggest that audio-visual speech is not tracked at the specific location of the pSTG 

(Kubanek et al., 2013). Given this work’s intracranial nature, future research may wish to 

reinvestigate this paradigm using whole-scalp non-invasive methodologies, such as EEG, to 
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provide further insight into how audio-visual speech is represented across cortical areas other 

than the pSTG.  

6.2 Audio-tactile Integration and its Benefit to Neural Speech Tracking but Not 

Speech Intelligibility 

Audio-tactile integration in speech perception was investigated with non-invasive 

electroencephalography work in Chapter 3 and Chapter 4. Both chapters presented both 

audio-tactile and auditory-only sentences-in-noise during a speech discrimination task whilst 

recording cortical oscillations for use in neural tracking accuracy analysis. Participants in the 

target audio-tactile training groups experienced either a bottom-up (Chapter 3) or top-down 

(Chapter 4) audio-tactile training paradigm, before speech intelligibility was reassessed 

following training with further speech-in-noise discrimination. Here, Chapter 3 captured an 

enhancement of neural speech tracking accuracy pre-training for audio-tactile versus auditory 

only speech sentences, reflecting a more accurate representation of the speech cortically 

when speech-relevant tactile stimulation was provided. This, as expected, was not 

accompanied by any benefit to speech intelligibility with increases in performance in the 

speech-in-noise discrimination task.  

Interestingly, this finding was not present in pre-training data from Chapter 4, despite 

the experiment using the same pre-training task and experimental stimuli. This may be due to 

Chapter 4 presenting an underpowered preliminary analysis, which with further data 

collection may see pre-training enhancement to neural tracking accuracy, as the current effect 

size for TbRz remains much lower than that of the sample size calculation (r2: .03 < .17). 

Alternatively, this finding may be relevant in explaining why audio-tactile speech did not see 

further enhancement in tracking accuracy post-training in either study. One key pre-training 

difference between Chapters 3 and 4 was that tactile familiarisation was presented to both 

training groups in Chapter 4 prior to beginning the pre-training task. As such, any potential 
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novelty or surprise at receiving tactile stimulation for participants in Chapter 3 would not 

have been present in the pre-training task for participants in Chapter 4. If the enhancement 

seen in neural speech tracking accuracy for audio-tactile speech in Chapter 3 was due to 

erroneous processing of a surprising or new stimuli, rather than reflective of a speech 

processing benefit, then this would further explain why no intelligibility increases were seen 

alongside tracking accuracy enhancement. Future audio-tactile speech work may wish to 

investigate how unfamiliar and familiar tactile stimulation may affect neural speech tracking 

accuracy measures to ensure that no erroneous processing is captured by stimulus 

reconstruction.  

Furthermore, post-training data in both experiments highlighted no further tactile-

relevant increases in either speech intelligibility or neural tracking accuracy. Arguably, this 

evidence suggests that audio-tactile integration is – at least after a state of short-term bottom-

up and limited single session top-down training – insufficient to drive any meaningful benefit 

to the processing of speech. With regards neural tracking, it may be that the speech-envelope 

tracking benefit missing post-training was driven by oscillatory activity outside of the 

frequency ranges used for stimulus reconstruction, or deeper in subcortical regions not 

represented by descending, top-down oscillatory activity from the auditory cortex. For 

example, the sensorimotor cortex has been seen to benefit from beta-band oscillatory activity 

(~13 – 30 Hz; Morillon et al., 2019), which mostly lies outside our optimised frequency 

range for neural tracking analysis of 0.5 – 15 Hz. Speculatively, the initial audio-tactile 

speech benefit to tracking may have been influenced by low beta activity (13 – 15 Hz) 

captured from the sensorimotor regions during tactile stimulation, reflective in the audio-

tactile enhancement of tracking accuracy. Post-training, however, audio-tactile integration 

processes may utilise faster beta frequencies outside of our captured range, masking potential 

enhancements to tracking accuracy in our data. Future research may wish to investigate 
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potential beta-band influence on audio-tactile integration, within the sensorimotor cortex, to 

better understand how speech-relevant tactile information is represented in the wider 

processing network.   

6.3 Effectiveness of Top-Down versus Bottom-up Training Paradigms 

Training paradigms were utilised to train audio-tactile speech integration for 

experiments described in Chapters 3 and 4. Whilst both chapters investigated short-term 

training effects to speech intelligibility through speech-in-noise discrimination, as well as 

neural speech-envelope tracking accuracy during listening, the training paradigms employed 

in both studies differed in their targeted direction of auditory pathway involved in speech 

perception. Here, Chapter 3 utilised what was argued to be a bottom-up, sensory driven 

paradigm for tactile integration with auditory processing. On the other hand, Chapter 4 

presented participants in the audio-tactile training group with a top-down training paradigm. 

This training paradigm aimed to utilise selective attentional processes specifically with the 

tactile element, by presenting both congruent and incongruent tactile stimulation to speech 

both with and without noise. Here, participants were asked to actively identify which tactile 

stimulation was congruent to the listened speech, with incorrect responses in a trial resulting 

the sentence being added back into the training pool for reassessment.   

Despite neither training method evidencing benefit to audio-tactile speech 

intelligibility or speech tracking accuracy, there is evidence that top-down training was more 

effective at improving general intelligibility of speech-in-noise for auditory-only sentences. 

In Chapter 3, training was spread out across three separate days, with time for sleep 

consolidation between each. Furthermore, a total of 90 unique sentences were presented 

during training. In contrast, Chapter 4 presented top-down training during a single session 

only. This training took place immediately after the pre-training task and before the post-

training task, with no sleep consolidation before retesting. The experiment also only allocated 



268 
 

60 unique sentences for training, although these sentences were repeated if participants 

responded to training trials incorrectly. Despite these drawbacks, top-down training on 

average still saw an approximately 7% increase in speech intelligibility performance for the 

audio-tactile training group post-training for auditory only sentences, though the benefit was 

not specific to the audio-tactile group alone. This is a larger average increase than what was 

seen in the audio-tactile training group after four sessions (5%), and comparable to increases 

seen in the pseudo-trained group for that chapter (6 – 7%). This does help speculate as to if 

further sleep consolidation with top-down audio-tactile training would induce greater training 

benefits to intelligibility and tracking accuracy (Drouin et al., 2023).  

6.4 What is the Role of Neural Speech Tracking in Speech Processing? 

Throughout Chapters 3, 4, and 5, the neural measurement of neural speech tracking 

accuracy has been investigated in relation to the intelligibility of audio-visual, audio-tactile, 

and auditory only speech. In Chapter 3, enhanced neural tracking accuracy was observed 

following initial introduction to audio-tactile speech through envelope-shaped tactile 

stimulation at baseline. This was not accompanied by any benefits to speech intelligibility, in 

line with previous audio-tactile and auditory only work (Riecke et al., 2019; Kösem et al., 

2023). Even after short-term bottom-up training with audio-tactile stimuli, no further 

intelligibility increases relative to tactile stimulation were found. In contrast, neural tracking 

accuracy in the pseudo-trained group increased for auditory-only stimuli, still with no 

relationship to changes in intelligibility. This lack of intrinsic link was further supported in 

Chapter 4, where top-down audio-tactile training remained insufficient in inducing tactile-

relevant intelligibility benefits. Although, experimental findings in Chapter 4 also failed to 

capture any enhancement of neural tracking accuracy with audio-tactile speech pre-training 

as well. Taken together, findings from both audio-tactile chapters indicate that the role of 
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neural speech tracking in speech processing is not related directly to the intelligibility of 

speech, nor does it play a role in assisting speech segmentation.  

This raises the question as to what speech tracking in the auditory cortex is utilised 

for. Chapter 5 attempted to support the hypothesis that tracking plays a role in the prediction 

of oncoming speech signals, much akin to how visual lipreading primes the pSTG to 

predictions of oncoming speech through the suppression of incorrect phonemes, likely 

processed as viseme categories. However, results from this preliminary analysis were also 

unexpected, with no support found for neural tracking in the pSTG playing an assisting role 

in speech prediction. Potentially, tracking may assist with speech prediction in a separate 

auditory processing region than the pSTG, such as through integration hubs on the lateral 

geniculate nucleus or the inferior colliculus, which were not represented in the intracranial 

dataset used.  As such, it may be beneficial for future research to investigate neural tracking 

accuracy using whole-scalp methods like EEG and MEG to pick up oscillatory activity 

relevant to wider corticofugal modulation of subcortical integration regions, or through direct 

intracranial measures recorded at these subcortical areas of interest. In all, these chapters 

indicate that the role of neural speech tracking requires further consideration in future speech 

processing work. 

6.5 Limitations 

Throughout all the presented experimental chapters, limitations are present which 

must be considered when evaluating the contributions of this thesis to wider auditory 

research. Firstly, Chapter 2 is an online behavioural experiment, conducted partly during the 

COVID-19 pandemic and partly after. As such, it is difficult to associate the findings of 

audio-visual benefit to typical listening environments that we find ourselves in, as they may 

be more applicative to contexts where less face-to-face social interaction was present during 

speech listening (Brown et al., 2021). Moreover, this experiment produces only behavioural 
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outcomes. As such, it is difficult to use findings from this chapter to pinpoint specific 

mechanisms for audio-visual integration in the auditory pathway and surrounding networks. 

Likewise, Chapter 5 presents a neural perspective only to audio-visual speech integration 

through neural speech tracking accuracy measurements in the pSTG. It may be of benefit for 

future research to investigate non-invasive methodologies when examining the neural 

tracking accuracy of mouth- and voice-leading audio-visual speech, combined with further 

behavioural testing akin to Chapters 3 and 4, to provide a more holistic insight into audio-

visual integration during speech processing.   

With regards to the audio-tactile training studies in Chapters 3 and 4, these are limited 

in scope by being short-term or single-session training experiments. Long-term training with 

audio-tactile speech may see benefits in speech intelligibility and neural representations that 

were not apparent in the presented work. In the case of the top-down training paradigm, 

short-term top-down audio-tactile training may still be effective with the introduction of sleep 

consolidation into the experimental design. Furthermore, the optimisation parameters used 

when reconstructing speech features in Chapters 3, 4, and 5 do highlight further limitations in 

this thesis. This thesis provides a basis for analysis the tracking accuracy of shorter sentences 

using EEG without training the decoder to the seams of each sentence (which typically leads 

to erroneous output: Crosse et al., 2016). Here, by training decoders to longer segments of 

continuous speech (10-minute story) and removing initial ERP responses to the onset of each 

stimulus, the shorter sentences can then be joined into longer chunks of data for 

reconstruction analysis with successful results. Despite this successful demonstration of 

utilising reconstruction decoder models for shorter sentences in EEG, reconstruction is still 

made more valid with more task-relevant neural data available (Destoky et al., 2019). 

Presenting more trials per condition with longer segments of continuous speech would result 

in more accurate measures of neural speech tracking accuracy. This is of note for Chapter 5, 
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where intracranial data was limited to broadband high-gamma activity from only a few 

selected electrodes per participant. This in turn may have led to the large participant 

variability seen in the analysis. Future work looking to utilise reconstruction methods should 

be aware of the challenges faced in this thesis when designing neural speech tracking based 

experiments.   

6.6 Future Directions 

Based on the findings of this thesis, future research may wish to investigate further 

the neural mechanisms underlying both audio-visual and audio-tactile speech integration. It 

would also be beneficial for more work to be done investigating the true role of neural speech 

tracking in speech processing. From Chapter 2, the benefits of audio-visual speech to 

intelligibility were seen to be variable dependent on the phoneme, and thus potentially the 

viseme category, presented. It would be beneficial to research in audio-visual speech to 

understand how visemes are processed in multisensory integration hubs like the inferior 

colliculus (Shore, 2005; Balmer & Trussell, 2021), and to investigate if there are more 

stimulus-dependent effects of other phonemes and viseme categories. From Chapters 3 and 4, 

where both top-down and bottom-up short-term audio-tactile training appears to be 

ineffective at providing enhanced benefit to speech intelligibility in noise, future research 

may wish to consider how sleep consolidation could facilitate short-term top-down training 

effects (Drouin et al., 2023) or investigate longer-term audio-tactile training. Finally, it is 

crucial that an understanding of the role of neural speech tracking in speech perception and 

processing is strengthened. Following Chapter 5, a non-invasive examination of the tracking 

accuracy differences between mouth-leading and voice-leading audio-visual speech will 

provide clarity to the potential role of tracking in speech prediction outside of the pSTG, as 

well as strengthen our understanding of audio-visual speech integration. Although, it may be 

that tracking plays an entirely different role altogether, which should be further investigated. 
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In example, attentional decoding might be the key to understanding how neural tracking is 

utilised. This understanding is also crucial in assisting with the continued development of 

dynamic, neuro-steered hearing aids, which aim to utilise neural tracking accuracy during 

real-time listening to tailor hearing aid outputs to a user’s needs (see: Geirnaert et al., 2024; 

Straetmans, 2022).  

6.7 Conclusion 

In conclusion, this thesis demonstrates the importance of non-auditory sensory cues in 

assisting with speech processing when listening is difficult. The well documented benefit of 

audio-visual speech integration has been reassessed using visually-distinct phoneme selection 

following the COVID-19 pandemic, highlighting key differences in benefit to speech 

intelligibility and to the window of integration of audio-visual speech. Moreover, audio-

tactile speech has been shown to be insufficient at providing speech intelligibility or neural 

speech tracking accuracy enhancement with both bottom-up and top-down training 

paradigms, indicating a need to revisit the types of tactile stimulation that may be provided to 

assist with speech perception in difficult listening conditions. Finally, through work in both 

the audio-visual and audio-tactile domains, evidence has been found to support the notion 

that speech intelligibility and neural tracking accuracy are not intrinsically linked, nor does 

speech tracking in the posterior superior temporal gyrus indicate a role in assisting with 

predictions of oncoming speech. Future work should prioritise the role of speech tracking in 

the auditory pathway, as this will provide further insight into how multisensory integration is 

represented in the brain during listening and aid with the continued development of neuro-

steered hearing aids.  
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