
ar
X

iv
:2

40
6.

07
12

6v
3

 [
cs

.L
G

]
 2

1
A

ug
 2

02
4

Logical Distillation of Graph Neural Networks

Alexander Pluska, Pascal Welke, Thomas Gärtner, and Sagar Malhotra

TU Wien

{alexander.pluska, pascal.welke, thomas.gaertner, sagar.malhotra}@tuwien.ac.at

Abstract

We present a logic based interpretable model for learning on
graphs and an algorithm to distill this model from a Graph
Neural Network (GNN). Recent results have shown connec-
tions between the expressivity of GNNs and the two-variable
fragment of first-order logic with counting quantifiers (C2).
We introduce a decision-tree based model which leverages
an extension of C2 to distill interpretable logical classifiers
from GNNs. We test our approach on multiple GNN archi-
tectures. The distilled models are interpretable, succinct, and
attain similar accuracy to the underlying GNN. Furthermore,
when the ground truth is expressible in C2, our approach out-
performs the GNN.

1 Introduction

We present and evaluate an algorithm for distilling Graph
Neural Networks (GNNs) into a symbolic model. Our dis-
tillation algorithm relies on a novel model called Iterated
Decision Tree (IDT), which is tailored to represent logical
formulas represented by GNNs. GNNs play a crucial role in
safety-critical applications like drug discovery and in cost-
critical applications like large-scale transport routing. How-
ever, most GNN models are black-box in nature and their in-
ternal representations are opaque to any human or computer-
aided formal scrutiny. Hence, interpreting and explaining
GNN predictions is a fundamental problem of significant re-
search interest. Although many results have analyzed the ex-
pressivity of GNNs in terms of formal languages like first-
order logic, extracting the logical classifiers expressed by
GNNs remains largely unexplored. We aim to fill this gap
by developing a distillation model aimed at extracting logi-
cal classifiers expressed by GNNs.

The key motivation for our model is the close relationship
between GNNs and first-order logic with only two variables
and counting quantifiers C2 (Barceló et al., 2020; Grohe,
2021, 2023). Hence our model, the IDT, is designed to ex-
press any C2 formula. An IDT consists of a sequence of de-
cision trees. Each decision tree expresses a number of unary
C2 formulas of quantifier depth one. Combining multiple
such decision trees enables us to express formulas of larger
quantifier depth. Additionally, we propose an extension of
C2 that can capture operations like mean aggregation, which
are common in GNNs, and incorporate it into IDTs. Our dis-
tillation algorithm is able to exploit intermediate node rep-

resentations from each message-passing layer of a GNN to
iteratively learn decision trees of an IDT. Although the learn-
ing process for IDTs is guided by the GNN, our empirical
results show that the logic-based inductive bias incentivizes
succinct and interpretable models.

We test IDTs on multiple synthetic and real-world
datasets, performing distillation on two prominent GNN
architectures: Graph Isomorphism Networks (GIN)
(Xu et al., 2019) and Graph Convolution Networks (GCN)
(Kipf and Welling, 2017). Our algorithm consistently
distills IDTs that are succinct and have comparable pre-
dictive performance to the underlying GNN. Furthermore,
when the ground truth is a C2 formula, the distilled IDT
exhibits better generalization, outperforming the GNN
on the test data. Qualitatively, we find that our method
can provide new insights. For instance, on the AIDS
dataset (Riesen and Bunke, 2008), IDTs infer a very simple
high-performing rule that achieves over 99% classification
accuracy. This rule classifies graphs based on their number
of nodes being smaller or larger than 12. To the best of
our knowledge, none of the existing GNNs or explanation
methods have been able to infer this rule.

In the next section we discuss the relevant related work.
In Section 3 we discuss the necessary background on graphs,
logic and GNNs. We present IDTs in Section 4 and show
how IDTs can be distilled from GNNs in Section 5. In Sec-
tion 6, we introduce an extension of C2, which allows us to
learn more expressive IDTs. We empirically evaluate IDTs
in Section 7 and analyze some of the obtained logical expla-
nations in Section 7.4. Finally, we summarize our work and
discuss future research directions in Section 8.

2 Related Work

Our work is related to explanation methods of
GNNs (Longa et al., 2022) and to logical approaches
(Barceló et al., 2020; Grohe, 2021, 2023) for analyzing
their expressivity. Explanation methods aim to derive
insights about the process underlying the model predictions.
Although IDTs may aid such understanding, our goal is
different. We aim to distill an interpretable classification
model for the data, while using trained GNN model as guid-
ance for the learning process. Hence, we want our model
to not only be interpretable, but also to generalize well. In
the literature, methods that provide a global explainer, i.e.,

http://arxiv.org/abs/2406.07126v3

an interpretable surrogate model (Azzolin et al., 2023), can
be adapted to yield classification models for the underlying
data. However, such models come at a significant cost to
the accuracy.

Our work is also loosely connected to the general
problem of learning desision trees from neural net-
works. This problem has already been extensively
investigated for tabular data (Craven and Shavlik, 1995;
Krishnan, Sivakumar, and Bhattacharya, 1999; Boz, 2002;
Dancey, McLean, and Bandar, 2004; Setzu et al., 2021).
Furthermore, recent works have also investigated the
tweaking of learning process or the neural architecture itself
for learning decision trees (Schaaf, Huber, and Maucher,
2019; Wu et al., 2018; Yang, Morillo, and Hospedales,
2018; Kontschieder et al., 2016). Although these results are
related to our approach in spirit, our work is fundamentally
different in its theoretical motivation and the learning
procedure. GNNs expressivity is deeply connected to that of
first-order logic (Barceló et al., 2020; Grohe, 2021, 2023).
Hence, using logic-based decision trees is a natural choice
for learning decision trees from GNNs.

Explanation methods that distill surrogate models from
GNNs come closest to our approach. Azzolin et al. (2023)
first derive instance-level local subgraphs as explanations
and then cluster them to extrapolate a model-level Boolean
formula using the subgraphs as concepts. Yuan et al. (2020)
base their approach on input-optimization, i.e. globally re-
ducing graphs to a number of instances for which the ex-
planation is then given. Their approach requires prior do-
main knowledge. Müller et al. (2024) first compute (almost)
categorical layer wise node representations using GNN lay-
ers with Gumbel-Softmax update functions. Subsequently,
they replace the neural networks by decision trees trained
on the categorical node representations. Their approach re-
sults in an interpretable message passing scheme based on
intermediate categorical node states but requires to train a
specific GNN architecture. All three approaches use graphs,
sub-graphs, or their combinations as the explanation model.
This restricts these methods, as many simple and important
constraints, e.g. a graph has more than 12 nodes, can not
easily be expressed in terms of subgraphs. Similarly to us,
Köhler and Heindorf (2024) use a description logic based
method for explaining GNNs. Their method uses GNNs
as a black box, whereas IDTs are distilled layer-by-layer,
exploiting GNNs representations at each iteration. Further-
more, their approach currently does not support counting
quantifiers.

3 Background

We use [n] to denote the set {0, . . . , n− 1}. For a matrix A
we write Aij for the entry in the i-th row and j-th column.

AT is the transpose of A and A−1 its inverse. We write I
for the identity matrix, i.e., a matrix with all diagonal entries
equal to one and all non-diagonal entries equal to zero. We
write 1 to denote the matrix with all entries equal to one.

A simple undirected graph G consists of a set of nodes
V and a set of edges E. Without loss of generality, a finite
set of nodes V is given as V = {vi}i∈[|V |]. The adjacency

matrix A of a graph is a symmetric matrix, where Aij = 1
if there is an edge connecting vi and vj , otherwise Aij =
0. We use N(v) to denote the neighbors of a node v and
dv to denote its degree. In this paper, graphs are always
simple and undirected. We discuss possible generalizations
in Section 8.

A tree is a connected acyclic graph. A rooted tree is a
tree with a designated root node. The depth of a node v in
a rooted tree is the length of the unique path from the root
to v. The depth of a rooted tree is defined as the maximum
depth of its nodes. Each node in a rooted tree, except the root
node, has a unique parent node, which is the only adjacent
node with a smaller depth. The children of a node are the
nodes adjacent to it with a larger depth. A leaf node is a node
without children. A binary tree is a rooted tree in which each
node has at most two children. A binary tree of a given depth
h is perfect if it has 2h leaves of depth h.

3.1 Graph Neural Networks

Graph neural networks (GNNs) are a class of deep learning
models that operate on graphs. We will consider message
passing GNNs consisting of a sequence of layers that iter-
atively combine the feature vector of every node with the
multiset of feature vectors of its neighbors. Formally, let
aggk and combk for k ∈ [l] be aggregation and combina-
tion functions. We assume that each node has an associated
initial Boolean feature vector xv = x

(0)
v . A GNN computes

a vector x
(k)
v for every node v via the following recursive

formula

x(k+1)
v = combk+1(x

(k)
v , aggk+1({{x(k)w : w ∈ N(v)}})),

(1)

where k ∈ [l]. The vectors x
(l)
v are then pooled

ŷ = pool({{x(l)v : v ∈ V }}) (2)

to give a single graph vector ŷ, the output of the GNN. Note
that in our theoretical framework, pool is not limited to com-
mon pooling operations such as mean or sum but can also in-
clude more complicated operations, e.g., a neural network.

Example 1. A special case of the above architecture pattern
is the GCN (Kipf and Welling, 2017), in which

agg({{x(k)w : w ∈ N(v)}}) =
∑

w∈N(v)

x
(k)
w√
dw

comb(x(k)v , a) = σ

(

W (k)

(

x
(k)
v

dv
+

a√
dv

))

pool({{x(l)v }}) = MLP

(

σ′

(

1

|V |
∑

v∈V

x(l)v

))

where: W (k) are learned weight matrices; σ and σ′ are non-
linear activation functions and MLP is a function computed
by a Multilayer Perceptron.

3.2 Graphs and Logic

C2 is the fragment of first-order logic with only two vari-
ables v, w. Besides the usual existential (∃) and universal
(∀) quantifiers, C2 also admits counting quantifiers of the
form ∃≥n, ∃≤n and ∃=n, which stand for exist at least n, ex-
ist at most n and exist exactly n (Cai, Fürer, and Immerman,
1989). All C2 sentences can be expressed in first-order logic
without counting quantifiers albeit using more than two vari-
ables (Grohe, 2023). In this paper, we assume a first-order
language on graphs consisting of exactly one binary predi-
cate E and m unary predicates {Uj}j∈[m]. E(v, w) denotes

that there is an edge between nodes v and w. Uj(v) denotes
that the j-th node-attribute is true for the node v in the graph.
We use U to represent a binary matrix with |V | rows and m
columns. An entry Uij in U is 1 if Uj(vi) holds in a given
graph. Hence, the matrix U completely represents the inter-
pretation of the atoms {Uj} on a given graph. With a slight
abuse of notation, we use Uj also to denote the j-th column
of U . Note that for a given graph G, its adjacency matrix A
completely encodes the interpretation of the predicate E.

Example 2. Consider the graph G (shown below) with
unary predicates U0, U1 where U0(v) is true if v ∈ {v1, v3}
and U1(v) holds if v ∈ {v0, v3}. Then we have

G

v0 v1

v2 v3

A =







0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0






U =







0 1
1 0
0 0
1 1







Here, U0 = (0101)T and U1 = (1001)T . The matrix
product AUj gives us the number of neighbors of each node
satisfying Uj . Similarly, (1 − A)Uj gives us all the non-
neighbors of each node satisfying Uj , where 1 is a matrix
with all entries equal to 1.

We will consider node and graph classifiers. For instance,
the C2 formula ∃=2y E(x, y) is a logical node classifier
which characterizes nodes of a given graph with degree ex-
actly 2. The formula has exactly one free variable x and
can, therefore, be evaluated on the nodes of a given graph.
On the other hand, ∀x∃=2y E(x, y) does not have any free
variables. Therefore, it constitutes a graph classifier. It char-
acterizes 2-regular graphs. Barceló et al. (2020) and Grohe
(2021) have shown multiple connections between C2 and
expressivity of GNNs. A key result is the following:

Theorem 1 (Barceló et al. (2020), Theorem 5.2). Any clas-
sifier expressible in C2 can be computed by a GNN.

Note that GNNs can also compute classifiers that are inex-
pressible in first-order logic. Whether every first-order clas-
sifier computed by a GNN is expressible in C2 is an open
question. However, for GNNs without pool operation, first-
order logic expressivity is completely characterized by the
guarded fragment of C2 (Barceló et al., 2020, Theorem 4.2).
The proof of Theorem 1 builds on the equivalence between
C2 and the modal logic EMLC (Lutz, Sattler, and Wolter,
2001). EMLC allows us to define a convenient grammar

and serves as the motivation for our proposed model. We
follow Barceló et al. (2020, Appendix D) and introduce a
language similar to their Lemma D.4.

Definition 1. A modal parameter S is one of the following

0, 1, I, A, 1− I, 1−A, I +A, 1− I −A.

Given a graph G and vertex v, the interpretation εS(v) of S
on v is defined as

ε0(v) := ∅ ε1−I(v) := V \ {v}
ε1(v) := V ε1−A(v) := V \N(v)

εI(v) := {v} εI+A(v) := {v} ∪N(v)

εA(v) := N(v) ε1−I−A(v) := V \ ({v} ∪N(v))

An EMLC formula is then built by the following grammar:

ϕ ::= Uj | ⊤ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Sϕ > n

where Uj ranges over all the unary predicates,⊤ represents
the predicate which is always true, S ranges over modal pa-
rameters, and n ranges over N. The semantics of the logical
connectives (⊤, ∧,∨, and ¬) are defined as usual. We say
that (G, v) |= Sϕ > n if there are more than n vertices
w ∈ εS(v) with (G,w) |= ϕ. We say G |= ϕ if (G, v) |= ϕ
for all nodes v ∈ G. The depth of a formula is the maximal
number of nested modal parameters.

Definition 1 can be used to express other comparison sym-
bols, for instance one can define Sϕ < n as ¬(Sϕ > n− 1)
and Sϕ = n as ¬(Sϕ < n)∧¬(Sϕ > n). Computationally,
EMLC formulas can be interpreted as matrix operations.
The modal parameters are naturally interpreted as matrices,
i.e., 0 and 1 as the square matrices with numerical entries
zero and one everywhere, I as the identity matrix, and A as
the adjacency matrix. Suppose ϕ is given as a binary vec-
tor, i.e., the i-th entry of ϕ is 1 if and only of (G, vi) |= ϕ.
Then the i-th entry of the matrix-vector product Sϕ is the
number of w ∈ εS(vi) such that (G,w) |= ϕ. Vectorizing
∧,∨,¬ and > gives a convenient method for determining
which nodes satisfy a given EMLC formula.

Example 3. We have the following C2 formula ϕ with a
free variable v

ϕ := ∃>1w(E(v, w) ∧ ¬∃=1v(E(w, v) ∧ U1(v))). (3)

Hence, ϕ is true for a node if it has more than one neighbor
w satisfying

¬∃=1v(E(w, v) ∧ U1(v)),

that is, w must not have exactly one neighbor satisfying
U1. Here, we have re-used the variable v. The inner-
quantification is bound to the quantifier ∃=1. Whereas the
first occurance of v is free. Note that ϕ can be equivalently
written as the following EMLC formula

A(¬(AU1 = 1)) > 1. (4)

When evaluating the formula (4) on the graph given in Ex-

ample 2, we have

A(¬(AU1 = 1)) > 1 = A(¬(A(1001)T = 1)) > 1

= A(¬((0210)T = 1))) > 1

= A(¬((0010)T)) > 1

= A(1101)T > 1

= (1221)T > 1

= (0110)
T

The second entry of AU1 = A(1001)T = (0210)T repre-
sents that v1 has two neighbors w for which U1(w) is true.
Similarly, the third entry represents that v2 has exactly one
such neighbor and the zero entries reflect that both v0 and
v3 have no neighbors satisfying U1. The subsequent compu-
tation shows that v1 and v2 satisfy ϕ while v0 and v3 don’t.

The following result makes the connection between
EMLC and C2 explicit. A unary C2 formula is one in
which, at most, one variable occurs freely.

Theorem 2 (Barceló et al. (2020), Theorem D.3,
Lemma D.4). For every EMLC formula there is an
equivalent unary C2 formula. Conversely, for every unary
C2 formula there is an equivalent EMLC formula.

3.3 Decision Trees

A decision tree is a hierarchical, binary-tree structured, deci-
sion model. It assigns labels to samples through a sequence
of binary decisions. Each leaf of a decision tree can be in-
terpreted as a logical formula consisting of the conjunction
of decisions from the root of the tree to the leaf. All samples
satisfying this formula are assigned the label of the leaf. For
example, the leaf labeled v2 in Figure 1 can be interpreted as
¬U1∧¬U0, the leaf labeled v1 as ¬U1∧U0. Note that since
paths to a leaf of the decision tree correspond to a conjunc-
tion of decisions, sets of leaf nodes can express disjunctions
of conjunctions, e.g. the set of red leaves in Figure 1 express
the following disjunction of conjunctions

(¬U1 ∧ ¬U0) ∨ (¬U1 ∧ U0) ∨ (U1 ∧ U0).

Since two leaves in the set have the same parent node, we
can simplify the formula to

¬U1 ∨ (U1 ∧ U0)

in the above example. Formally, we have the following:

Definition 2. A decision tree is a binary rooted tree T in
which each inner node (i.e. not a leaf) u is labeled with a
splitting decision ϕu. For each leaf v we then define

χv :=
∧

{ϕu : u ∈ path(v)}

where path(v) is the path from the root to v. For each set of
leaves M we define

χM :=
∨

{χv : v ∈M}.

We often refer to the set of leaves as a leaf set.

U1

U0

v2

False

v1

True

False

U0

v0

False

v3

True

True

Figure 1: A simple decision tree. Each set of leaves can be in-
terpreted as a formula, e.g. set of red leaves can be interpreted as
(¬U1 ∧ ¬U0) ∨ (¬U1 ∧ U0) ∨ (U1 ∧ U0).

When learning from data, we can obtain a decision tree
by iteratively partitioning the sample space. Given a fea-
ture matrix U we choose a feature j such that each of the
partitions {vi : Uij = 1} and {vi : Uij = 0} have maximal
homogeneity according to some measure, e.g. partitions that
minimize the variance of the numerical labels. If U does not
only contain binary but also numerical features, in addition
to the feature j we determine a threshold t such that the ho-
mogeneity of {vi : Uij ≤ t} and {vi : Uij > t} is maximal.
This process is then recursively repeated for each partition
until a stopping criterion is met.

Example 4. Let us forget for a moment the graph structure
from Example 2 and consider just the feature matrix U , con-
sisting of four samples v0, v1, v2, v3, as well as the following
target values Y :

U =







0 1
1 0
0 0
1 1






Y =







0.2
0.8
0.9
0.1







Given our features U0 and U1, there are two possible splits,
splitting on U0 gives us the partition containing the sets
{v0, v2} and {v1, v3}, corresponding to U0 being true and
false respectively. While splitting on U1 gives us a partition
containing the sets {v1, v2} and {v0, v3}, corresponding to
U1 being true and false respectively. Note that when split-
ting to minimize the variance of the Y values within each
partition, U1 constitutes the preferable splitting criterion.

4 Iterated Decision Trees

In this section, we introduce the formal structure of our dis-
tillation model – the Iterated Decision Tree (IDT). IDTs con-
sist of a sequence of decision trees. Each leaf set of a deci-
sion tree layer in an IDT represents an EMLC formula with
a free variable. Each subsequent decision tree layer adds a
modal parameter or a new Boolean combination of leaf sets
of the previous layer. Hence, a k layer IDT can represent an
EMLC formula with up to k nested model parameters. In
the following we formally define a single IDT layer.

Definition 3. An iterated decision tree layer L consists of

• a decision tree T with splitting decisions of the form
Sϕ > n where S is a modal parameter, and n ∈ N,

• and a set of leaf sets {Mj}j∈[l] of T .

Example 5. Consider the following iterated decision tree
layer

AU1 > 0

M0,M2

False

AU1 > 1

M3

False

M1,M2

True

True

where at each leaf the respective sets that contain it are in-
dicated. That is, the left leaf appears in the leaf set M0 and
M2, the middle leaf in only the leaf set M3, and the right
leaf in the leaf sets M1 and M2. The resulting formulas ac-
cording to Definition 2 are then as follows:

χM0
⇐⇒¬(AU1 > 0)

χM1
⇐⇒ (AU1 > 0) ∧ (AU1 > 1)

χM2
⇐⇒¬(AU1 > 0) ∨ ((AU1 > 0) ∧ (AU1 > 1))

χM3
⇐⇒¬(AU1 > 0) ∧ ¬(AU1 > 1)

They simplify as follows:

χM0
⇐⇒ (AU1 = 0)

χM1
⇐⇒ (AU1 > 1)

χM2
⇐⇒¬(AU1 = 1)

χM3
⇐⇒ (AU1 = 1)

Definition 4. A sequence of k iterated decision tree layers
{Li}i∈[k] is an iterated decision tree if for every i ∈ [k] and
splitting decision Sϕ > n occurring in Li, ϕ is of depth 0
or ϕ ⇔ χM for some leaf set M of Ll for l < i. We write
M i

j for the j-th leaf set of Li and χi
j for χMi

j
.

Hence, the lth IDT-layer represents EMLC formulas with
one free variable and depth of up to l. Every subsequent
layer can add one additional modal parameter to the formu-
las represented by previous IDT layers and can also create
Boolean combinations of these new formulas.

Example 6. Consider an iterated decision tree consisting of
two layers, the first layer as in Example 5. Now we can add
a second layer that checks if there is more than one neighbor
for which χM2

= χM0

2

is true.

AχM0

2

> 1
False

M1
0

True

It has a single leaf set M1
0 containing only the right leaf.

Then

χ1
0 ⇐⇒A(¬(AU1 = 1)) > 1

Hence the combined formula labels any node one that has
more than one neighborw such thatw does not have exactly
one neighbor satisfying the node attribute U1.

We now show that any EMLC formula can be expressed
as an iterated decision trees.

Lemma 1. Given a finite set of EMLC formulas {ψi}i∈[l]

of depth at most k > 0 there is an iterated decision tree with

k layers such that χk−1
i is equivalent to ψi.

Before we prove it, we show the following auxiliary result:

Lemma 2. Let Φ = {ϕj}j∈[h] be a finite set of formulas.
There is a decision tree with splitting decisions in Φ such
that for every Boolean combinationψ of formulas in Φ there
is a leaf set M such that χM ⇔ ψ.

Proof. Let T be the complete binary tree of depth h such
that each node of depth j is labeled with the splitting de-
cision ϕj . Observe that for each conjunction c of the form
l0 ∧ · · · ∧ lh−1 where lj is ¬ϕj or ϕj there exists a leaf t in
T such that χt = c.

Suppose ψ is a Boolean combination of the ϕj . By the
Disjunctive Normal Form Theorem (Howson, 2005) there is
a set C of conjunctions of the form l0 ∧ · · · ∧ lh−1 where lj
is ¬ϕj or ϕj such that

ψ ⇔
∨

C.

The claim then follows by Definition 2.

Proof of Lemma 1. Note that Iϕ > 0 is equivalent to ϕ for
any formula ϕ. Therefore, we can rewrite any formula of
depth i as a formula of depth j for any j ≥ i. Thus, we can
view any formula ψ of depth k > 0 as a Boolean combina-
tion of formulas of the form Sϕ > n, where S is a modal
parameter and ϕ is of depth k−1. For instance, consider the
following formula of depth 2:

(1(AU0 = 0) > 2) ∧ (AU1 = 1) ∧ U0.

We can rewrite it to the equivalent formula

(1(AU0 = 0) > 2)∧(I(AU1 = 1) > 0)∧(I(IU0 > 0) > 0).

We proceed by induction on the maximal depth of the for-
mulas in {ψi}i∈[l], i.e., k.

Suppose k = 1. That is, each formula ψi is of depth at
most 1. As explained earlier, we can always add the modal
parameter I to get a formula of depth 1 from a formula of
depth zero. Hence, we may assume that there are formulas
{ϕj}j∈[h] such that

• each ϕj is of the form Sϕ > n where ϕ has depth 0

• and each ψi is a Boolean combination of a subset of
{ϕj}j∈[h].

By Lemma 2 there is an IDT Layer L0 with splitting deci-
sions in {ϕj}j∈[l] and leaf sets M0

0 . . .M
0
l such that ψi ⇔

χ0
i for i ∈ [l]. Thus L0 gives us the desired 1-layer IDT.
Now suppose the claim holds for a given k and the depth

of each ψi is bounded by k + 1. Again, we may assume
a set of formulas {ϕj}j∈[h] such that each ψi is a Boolean
combination of a subset of these formulas and each ϕj is
of the form Sϕ > n where ϕ has depth k. Applying the
induction hypothesis, there is an IDT L0 . . . Lk−1 with k

layers and leaf sets Mk−1
0 . . .Mk−1

h such that ϕj ⇔ χk−1
0 .

Lemma 2 gives us a decision tree with splitting decisions
in {ϕj}j∈[h] and leaf sets Mk

0 . . .M
k
l such that χk

i ⇔ ψi.
Thus L0 . . . Lk is the desired IDT.

The converse of Lemma 1 holds by definition. Hence, we
have the following theorem.

Theorem 3. For every EMLC formula ψ of depth k > 0
there is an iterated decision tree with k layers such that χk

0
is equivalent to ψ. Conversely, for every iterated decision

tree with k > 0 layers and associated formula χk−1
j , there

is an equivalent EMLC formula ψ of depth k.

5 Learning Iterated Decision Trees

We now show how an iterated decision tree (IDT) can be
learned from a given GNN. We are given a set of attributed
graphs G and a l layer GNN learned on G, using the true la-

bels of G. We useX (k) to denote the set of all node represen-
tations, for all the graphs in G, computed after k iterations

of the GNN (see Equation (1)). Note that X (0) are simply
the original node attribute matrices of all the graphs in G.

We define X (l+1) as the graph labels returned by the GNN.

Finally, let XGNN = {X (k) | k ∈ [l + 1]}. Algorithm 1 as-

sumes that a function LearnIDTLayer(G,U ,X (k+1)) is able
to learn an iterated decision tree layer given a set of graphs
G, a set U containing node attribute matrices for each graph

in G, and the labels X (l+1). The function LeafSets accepts
an IDT layer and returns its set of leaf sets {Mj}j∈[l] (see
Definition 3). We discuss the subroutine LearnIDTLayer in
Section 5.1.

Algorithm 1 Learning Procedure for Iterated Decision Trees

1: procedure LEARNIDT(G,XGNN)
2: IDT← ∅
3: U ← X (0)

4: for k ∈ [l + 1] do

5: L← LearnIDTLayer(G,U ,X (k+1))
6: for M ∈ LeafSets(L) do
7: U ← Append(U ,FeatureVector(G, χM))
8: end for
9: IDT← Append(IDT, L)

10: end for
11: return IDT
12: end procedure

In Algorithm 1, we initialize an empty IDT and the set U
with the original node attribute matrices. Each iteration of
the main loop (Line 4–10) computes a new IDT layer L (
Line 5), using the graphs G with updated node-attribute ma-

trices U , and target labels X (k+1) obtained from the GNN.
Each leaf set M identified by LeafSets (Line 6) corresponds
to a disjunction of conjunctions χM (cf. Definition 2). We
evaluate χM for every node in G and add an explicit fea-
ture vector to the node attribute matrices in U (Line 7). The
new set of node-attribute matrices U is then used as the node
attributes matrix in the subsequent loop iteration.

Example 7. Recall the graph from Example 2. Assume
that G consists of only this graph and graph label. Sup-
pose that LearnIDTLayer(G,U ,X0) yields the IDT layer
shown in Example 5. Then we extend the node attributes
with binary vectors representing χM for each leaf set M ∈

{M0,M1,M2,M3}. For M0 we add

(AU1 = 0) = (A(1 0 0 1)T = 0)

= ((0 2 1 0)T = 0)

= (1 0 0 1)T

For M1,M2,M3 we add

(AU1 > 1) = (0 1 0 0)T

¬(AU1 = 1) = (1 1 0 1)T

(AU1 = 1) = (0 0 1 0)T

respectively. The result is an extended node attribute matrix

U =







0 1 1 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
1 1 1 0 1 0







which is then used for learning the next IDT layer.

5.1 Learning Iterated Decision Tree Layers

We will now describe the procedure LearnIDTLayer. It con-
sists of two subprocedures, learning the underlying decision
tree and choosing the leaf sets.

Obtaining the Decision Tree Given a set of graphs G, a
set of node attribute matrices U and node representations

X (k+1), we organize them into a table as illustrated in Fig-
ure 2:

• There is a row for each node in the dataset.

• For each modal parameter S and considered feature Uj ,
there is one column labeled SUj . Additionally, there is a

final column for the GNN node representations X (k+1).

• The entry at the intersection of the row associated with a
vertex v and the column labelled with SUj contains the
number of nodes w ∈ εS(v) such that Uj(w) holds.

• The entries in the final column are the node representa-

tions X (k+1) which are prediction targets for learning the
decision tree.

We can learn a decision tree from this data using
conventional decision tree learning algorithms such as
Pedregosa et al. (2011). Note that splitting on the first col-
umn associated with modal parameter S and feature Uj with
threshold n corresponds to splitting on the EMLC formula
SUj > n.

Obtaining the Leaf Sets Finally, to obtain an IDT layer,
we need to determine the leaf sets. If we consider all 2k pos-
sible sets of leaves, this leads to an explosion of the number
of node attributes. We have observed that most formulas
obtained in this manner are also not used in the subsequent
layers. Hence, we propose a heuristic:

Since the decision tree was learned with numeric predic-
tion targets, each leaf of the decision tree is associated with
a numeric prediction. We group leaves with similar pre-
dictions since they are represented similarly by the GNN.
To this end, we perform agglomerative, hierarchical clus-
tering (Gan, Ma, and Wu, 2007). We start with all leaf sets

IU0 AU0 · · · X (k+1)

v0 · · · 0 4 · · · (0.32, . . . , 0.82)T

v1 · · · 1 1 · · · (0.92, . . . , 0.12)T

...
...

...
...

vn · · · 0 2 · · · (0.24, . . . , 0.55)T

Figure 2: Schematic representation of the data table.

containing a single leaf. Then we iteratively merge the pair
of leaf sets with the closest numerical values until one set
remains. This approach yields 2k− 1 instead of 2k leaf sets.

Our approach allows us to go from the formulas asso-
ciated with singleton leaf sets to formulas associated with
larger leaf sets, and finally the formula associated with the
set of all leaves, i.e. ⊤ which is always true. Adding ⊤ as a
feature allows representing the degree of a node in the next
layer, since (G, v) |= A⊤ > n if and only if dv > n.

5.2 Practical Considerations

We have made a number of choices to arrive at a practical
implementation of our proposed algorithm.

1. For all but the final iterated decision tree layer, we con-
sider only the modal parameters I, A, I+A, which corre-
spond to modal parameters quantifying only on the local
neighborhood. As the aggregation operation of the GNN
does not have access to features of non-neighbors, lo-
cal quantification captures operations performed by real-
world GNNs. Limiting ourselves to these modal parame-
ters did not make a notable difference in the model perfor-
mance and significantly reduced the computational cost.

2. As our experiments consist of graph classification tasks,
we only consider the modal parameter 1 for the final it-
erated decision tree layer. A formula with an outer-most
modal parameter 1 provides identical labels for all nodes.
Such a formula can thus be viewed as a graph classifier.

3. We limit the depth of all but the final iterated decision
tree layers to two to enhance interpretability. For the final
IDT layer, we don’t limit the depth but instead perform
minimal cost complexity pruning (Breiman et al., 1984).

4. Instead of a single decision tree, we train multiple deci-
sion trees with a randomized subset of the features at each
layer and add the formulas corresponding to each of their
leaf sets. Empirically, this leads to better generalization.

6 Relative Modal Parameters

In GNN architectures, such as the GCN, the aggregation is
normalized by the degree of the node. However, this normal-
ization is not expressible in EMLC and can, as such, not be
captured by the defined iterated decision tree. We argue that
a property like “more than half of the neighbors of v sat-
isfy U0” should be expressible in our model. Therefore, we
propose the following extension of EMLC:

Definition 5. An EMLC% formula is defined by the follow-
ing grammar:

ϕ ::= Uj | ⊤ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Sϕ > n | Sϕ > p

where S ranges over modal parameters (cf. Definition 1),
n over N and p over the open interval (0, 1). The se-
mantics of the first six cases agree with EMLC, while
(G, v) |= Sϕ > p holds if and only if there are more than
p · |εS(v)| vertices w ∈ εS(v) such that (G,w) |= Sϕ.
Note that we can always distinguish between Sϕ > n and
Sϕ > p , since n and p range over disjoint sets.

Example 8. Using the semantics defined in Definition 5, the
formula

1U0 > 0.5

holds if more than half the nodes in G satisfy U0.

Theorem 4. EMLC% is more expressive than EMLC.

Proof. Using Theorem 2 we have that every EMLC for-
mula is equivalent to a C2 formula. Furthermore, every
C2 formula can be captured in first-order logic (Grohe,
2021). We will now show that there is an EMLC% for-
mula that can not be expressed in first-order logic. Our
proof relies on zero-one laws on images as proved in
Coupier, Desolneux, and Ycart (2004).

Consider graphs with only one unary node attribute U0.
Assume for each node v that U(v) is true with a probability
0.5. Define ϕ := IU0 > 0.5. The probability of ϕ holding
in a graph converges to exactly 0.5 as the graph cardinality
grows. Hence, ϕ does not obey a zero-one law. Therefore,
ϕ is not definable in first-order logic.

The following result transfers from Barceló et al. (2020,
Theorem 5.2) by adapting case 4 of their proof to relative
modal parameters, which can be easily done by adding com-
parisons of the form Sϕ > p:

Theorem 5. EMLC% formulas can be computed by GNNs.

However, the property of a node having more red than
blue neighbors is still not expressible in EMLC%. Whereas,
this property can be computed by a GNN (Grohe, 2023).
This puts the expressivity of EMLC% strictly between the
expressivity of C2 and GNNs.

It is straightforward to extend IDTs to EMCL% since the
computational difference is a single division operation.

7 Experiments

There are seven models we consider for experiments1:

• We evaluate two GNN architectures, GCN+GraphNorm
and GIN+GraphNorm as described in Cai et al. (2021),
simply called GCN and GIN from here on. The number
of layers, hidden dimensions, and the learning rate are
determined experimentally.

• Two IDTs as described in Section 5. One leveraging the
GCN node representations, IDT(GCN), and the other one
leveraging the GIN node representations, IDT(GIN).

• Two IDTs as above. However, the final layer of each
IDT is learned using the true labels of the dataset in-
stead of the GNN outputs, denoted as IDT(GCN+True)
and IDT(GIN+True). Using the true labels for the final
layer allows for increased accuracy while still leveraging
the information of the underlying GNN.

1Available at github.com/lexpk/LogicalDistillationOfGNNs.

https://github.com/lexpk/LogicalDistillationOfGNNs

Test
GCN GIN

IDT IDT IDT IDT IDT
Accuracy (GCN) (GCN+True) (GIN) (GIN+True) (True)

AIDS 0.92± 0.02 0.92± 0.03 0.99± 0.01 1.00± 0.02 0.98± 0.01 1.00± 0.00 1.00± 0.00
BZR 0.81± 0.06 0.80± 0.08 0.79± 0.08 0.83± 0.06 0.80± 0.09 0.83± 0.06 0.81± 0.04

PROTEINS 0.72± 0.04 0.73± 0.04 0.73± 0.04 0.74± 0.03 0.73± 0.03 0.72± 0.02 0.71± 0.03
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.88± 0.02 0.88± 0.02 0.93± 0.02 0.97± 0.07 0.92± 0.04 0.95± 0.07 0.96± 0.04
ψ2 0.81± 0.02 0.82± 0.01 0.94± 0.01 0.96± 0.01 0.95± 0.01 0.94± 0.05 0.99± 0.03

BAMulti 0.99± 0.02 0.97± 0.03 1.00± 0.01 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

Table 1: Accuracy of our proposed IDT method and of GNN models we distill from.

F1-Score
GCN GIN

IDT IDT IDT IDT IDT
(macro) (GCN) (GCN+True) (GIN) (GIN+True) (True)
AIDS 0.88± 0.04 0.87± 0.03 0.98± 0.02 1.00± 0.00 0.97± 0.02 1.00± 0.00 1.00± 0.00
BZR 0.73± 0.07 0.72± 0.10 0.65± 0.12 0.63± 0.08 0.67± 0.13 0.64± 0.09 0.68± 0.05

PROTEINS 0.71± 0.04 0.72± 0.04 0.72± 0.04 0.73± 0.03 0.72± 0.04 0.70± 0.02 0.69± 0.04
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.86± 0.03 0.86± 0.02 0.92± 0.02 0.96± 0.09 0.91± 0.04 0.94± 0.09 0.95± 0.05
ψ2 0.80± 0.02 0.81± 0.01 0.94± 0.01 0.95± 0.01 0.94± 0.01 0.94± 0.05 0.99± 0.03

BAMulti 0.99± 0.02 0.97± 0.03 1.00± 0.01 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.01

Table 2: F1-Score with macro aggregation.

Fidelity
GIN

IDT IDT
(GCN) (GCN) (True)

AIDS 0.92± 0.02 0.92± 0.02 0.92± 0.02
BZR 0.90± 0.05 0.80± 0.06 0.79± 0.05

PROTEINS 0.90± 0.05 0.84± 0.04 0.80± 0.06
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.94± 0.01 0.92± 0.01 0.85± 0.02
ψ2 0.86± 0.01 0.83± 0.02 0.81± 0.02

BAMulti 0.97± 0.02 0.99± 0.02 0.98± 0.02

Table 3: Fidelity with regard to the predictions of the GCN.

Fidelity
GCN

IDT IDT
(GIN) (GIN) (True)

AIDS 0.92± 0.02 0.91± 0.03 0.91± 0.02
BZR 0.90± 0.05 0.80± 0.07 0.77± 0.05

PROTEINS 0.90± 0.05 0.87± 0.03 0.80± 0.04
ψ0 1.00± 0.00 1.00± 0.00 1.00± 0.00
ψ1 0.94± 0.01 0.91± 0.03 0.85± 0.03
ψ2 0.86± 0.01 0.82± 0.02 0.82± 0.01

BAMulti 0.97± 0.02 0.97± 0.03 0.97± 0.03

Table 4: Fidelity with regard to the predictions of the GIN.

• As a baseline we consider an IDT in which every layer
is learned with the true labels of the dataset. This model
operates purely on the data and is called IDT(True).

7.1 Datasets

Real world graph classification datasets are obtained from
the TU Dortmund collection (Morris et al., 2020). They are
commonly used in the GNN literature.

• AIDS (Riesen and Bunke, 2008) contains 2000 graphs
representing molecular compounds. The label represents
activity against HIV.

• BZR (Sutherland, O’brien, and Weaver, 2003) contains
405 graphs representing ligands for the benzodiazepine
receptor. The label represents whether a threshold mea-
suring binding affinity is crossed.

• PROTEINS (Borgwardt et al., 2005) contains 1113
graphs representing proteins. The label represents
whether a given protein is an enzyme or not.

Synthetic datasets are based on EMLC. We generate 1000
Erdős-Rényi graphs with n = 13 and p = 0.5 and add two
node features. The feature U0 is always 1 and the feature U1

is 1 with probability 0.5 for each node. Then, we label the
graphs according to an EMLC% formula. The following
formulas of increasing complexity are considered:

• ψ0 := 1U1 > 0.5.
“More than half of the nodes satisfy U1.”

• ψ1 := 1((AU0 < 4) ∨ (AU0 > 9)) > 0.
“There is a node v such that dv < 4 or dv > 9.”

• ψ2 := 1(A(AU0 > 6) > 0.5) > 0.5
“For at least half the nodes at least half of their neighbors
have degree greater than 6”

BAMultiShapes (Azzolin et al., 2023) is a synthetic dataset
based on subgraph motifs. The samples are generated from
Barabási-Albert graphs. Each node has a feature U0 which
is always 1. To each graph, either nothing, a wheel graph, a
house graph, or a grid graph is attached with a single edge,
or a combination of these shapes. Class zero consists of all
graphs with exactly two such shapes added. Class one of
graphs with zero, one, or all three shapes added. Generally,
the existence of such shapes is not expressible in EMLC%.

7.2 Metrics

We report the mean and standard deviation over a 10-fold
cross-validation. The same splits are used for all models.
The training is inductive, i.e., the test set is completely sep-
arated from the training process. We use three metrics for
evaluation:

• The accuracy of the model.

• Macro F1-score: The F1-score of each class is the har-
monic mean of precision and recall. These scores are then
averaged, resulting is a suitable metric for more imbal-
anced datasets, such as AIDS.

• Fidelity with regard to each GNN. This is the proportion
of predictions where the model and the GNN agree.

7.3 Quantitative Results

IDTs are able to match and beat the performance of the
GNNs. Table 1 shows that IDTs trained on GCN represen-
tations and true labels consistently achieve the highest accu-
racy, followed by IDTs trained on GIN representations and
true labels. This ranking remains the same under the F1-
score as shown in Table 2. While the performance benefits
are consistent, training on the true labels alone gives only
slightly worse results, suggesting that there could be merit
to IDTs as a stand-alone model.

Table 3 and Table 4 show the fidelity to the GCN and GIN
model, respectively. Using the GNN activations generally
results in IDT outputs which are closer to the GNN model,
than just using the training labels. However, the two GNNs
generally have larger fidelity between each other then when
compared to the IDTs. This suggests that the IDTs operate
in a fundamentally different way than GNNs. This point is
further reinforced by the fact that on synthetic datasets the
IDTs outperform both the GNNs.

7.4 Qualitative Results

We will now look at the interpretability of the distilled IDTs.
First, we discard all decision tree layers and node sets which
are not used for the final prediction. This procedure is auto-
mated and results in an equivalent, more compact IDT.

AIDS Figure 3 shows an IDT for the AIDS dataset. The
IDT is remarkably small. The decision tree in the first layer
does not have a split condition. Hence M0

0 = ⊤ and χ0
0

is true for every node. The second layer, therefore, simply
computes if there are more than twelve nodes in the graph.

BAMultiShapes Figure 4 shows one extracted IDT for the
BAMultiShapes dataset that achieves an accuracy of 1.0 on
the test set. After some calculation, we have

χ0
0 ⇐⇒AU0 < 2

χ1
0 ⇐⇒ (AU0 > 2) ∧ (AU0 < 12)

A graph is then classified as class 0, i.e., having exactly
two shapes, if

(1χ1
0 > 0.312) ∧ (1χ0

0 > 14)

is satisfied. Recall thatU0 is true for all vertices in BAMulti-
Shapes. Hence, if at least 31.2% of all nodes in a graph have

M0
0

1χ0
0 > 12

Class 1

False

Class 0

True

Layer 0

Layer 1

Figure 3: Distilled IDT for AIDS. At layer 0, we have just one leaf
set M0

0 containing only the tree root. Hence, the formula χ0

0 is
equivalent to ⊤. The rule derived for class 0 is thus 1⊤ > 12. It
expresses that the graph has more than 12 nodes.

AU0 > 2

AU0 > 1

M0
0

False

M1
0

True

False

M1
0

True

AU0 > 3

AU0 > 2

M1
0

False

M1
0

True

False

AU0 > 11

M1
0

False

M1
0

True

True

1χ1
0 > 0.312

Class 1

False

1χ0
0 > 14

Class 1

False

Class 0

True

True

Layer 0

Layer 1

Figure 4: Distilled IDT for BAMultiShapes. χ0

0 ⇔ AU0 < 2 and
χ1

0 ⇔ (AU0 > 2) ∧ (AU0 < 12). The rule derived for class 0 is
(1((AU0 > 2) ∧ (AU0 < 12)) > 0.312) ∧ (1(AU0 < 2) > 14).
It expresses that for more than 31.2% of nodes their degree dv
satisfies 2 < dv < 12 and for more than 14 nodes dv < 2.

degree between three and eleven and at least fifteen nodes
have degree zero or one, a graph is assigned to Class 0. Due
to the construction of the dataset, these observations about
the degree distribution correlate strongly with the label.

Other Datasets For the other real-world datasets BZR and
PROTEINS, the IDTs are more complex, often containing
more than 10 decision trees. Still, by carefully examining
the trees it is possible to deduce explainable logical infor-
mation which we leave for future work. For the synthetic
datasets labeled with EMLC formulas ψ0 and ψ1, we re-
cover the ground truth, i.e., an IDT equivalent to ψ0 and ψ1

respectively. For the deeper formula ψ2 we are not able to
recover the ground truth formula. The IDTs identify a more
complex formula that approximates ψ2.

8 Conclusion

We have presented Iterated Decision Trees (IDTs), a novel
model tailored towards distilling interpretable logical for-
mulas from Graph Neural Networks (GNNs). IDTs can ex-
press any logical formula expressible in first order logic with
two variables and counting quantifiers (C2) — a fragment of
first-order logic that is closely connected to the logical ex-

pressivity of GNNs. We have also introduced an extension
of C2 that captures operations commonly used in GNNs,
such as mean aggregation. This extension was easily in-
corporated into IDTs without any significant computational
overhead. The distilled IDTs often surpass the accuracy of
the underlying GNN while providing insight into the deci-
sion process. They also outperform the considered GNNs
when the ground truth is itself a logical formula. The classi-
fication decisions of the IDT are interpretable and enable us
to extract insights on multiple datasets.

9 Future Work and Limitations

In this work, we have applied IDTs only to simple undi-
rected graphs. Loops and multi-edges, however, can be in-
corporated into our model by allowing entries on the diag-
onal of the adjacency matrix A and allowing integer en-
tries respectively. Generalizing to directed graphs is also
possible. In this case the adjacency matrix is no longer
symmetric, so the modal parameter A only represents out-
neighbors. Thus, we need to introduce a new modal param-
eter AT to represent in-neighbors and its combinations with
the other modal parameters. Extending the proposed method
to multi-relational graphs and edge labels would require fur-
ther changes, which we will consider in future work.

While our approach has allowed us insights into the AIDS
and BAMultiShapes datasets, we found it more difficult
to extract meaningful explanations for other datasets. We
plan to further analyze the obtained explanations and apply
regularization techniques in order to obtain more human-
readable explanations. As IDTs perform reasonably even
without GNNs, we also look forward to further assessing
the merit of IDTs as an independent architecture.

Acknowledgments

This work was funded in part by the Vienna Science and
Technology Fund (WWTF), project StruDL (ICT22-059);
by the Austrian Science Fund (FWF), project NanOX-ML
(6728); and by the European Unions Horizon Europe Doc-
toral Network programme under the Marie-Skłodowska-
Curie grant, project Training Alliance for Computational
systems chemistry (101072930). SM would like to thank
Steve Azzolin for the fruitful discussions.

References

Azzolin, S.; Longa, A.; Barbiero, P.; Liò, P.; and Passerini,
A. 2023. Global explainability of gnns via logic combi-
nation of learned concepts. In International Conference
on Learning Representations, (ICLR).

Barceló, P.; Kostylev, E. V.; Monet, M.; Pérez, J.; Reutter,
J. L.; and Silva, J. P. 2020. The logical expressiveness
of graph neural networks. In International Conference on
Learning Representations, (ICLR).

Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan,
S.; Smola, A. J.; and Kriegel, H.-P. 2005. Protein function
prediction via graph kernels. Bioinformatics 21(1):47–56.

Boz, O. 2002. Extracting decision trees from trained neural
networks. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD).

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth.

Cai, T.; Luo, S.; Xu, K.; He, D.; Liu, T.-y.; and Wang, L.
2021. Graphnorm: A principled approach to accelerating
graph neural network training. In International Confer-
ence on Machine Learning (ICML).

Cai, J.; Fürer, M.; and Immerman, N. 1989. An optimal
lower bound on the number of variables for graph identi-
fication. In Symposium on Foundations of Computer Sci-
ence (FOCS).

Coupier, D.; Desolneux, A.; and Ycart, B. 2004. A zero-one
law for first-order logic on random images. In Mathemat-
ics and Computer Science III: Algorithms, Trees, Combi-
natorics and Probabilities. Springer. 495–505.

Craven, M. W., and Shavlik, J. W. 1995. Extract-
ing tree-structured representations of trained networks.
In Advances in Neural Information Processing Systems
(NeurIPS).

Dancey, D.; McLean, D.; and Bandar, Z. 2004. Decision
tree extraction from trained neural networks. In Inter-
national Florida Artificial Intelligence Research Society
Conference.

Gan, G.; Ma, C.; and Wu, J. 2007. Data clustering: theory,
algorithms, and applications. SIAM.

Grohe, M. 2021. The logic of graph neural networks. In
Symposium on Logic in Computer Science (LICS).

Grohe, M. 2023. The descriptive complexity of graph neural
networks. In Symposium on Logic in Computer Science
(LICS).

Howson, C. 2005. Logic with trees: an introduction to
symbolic logic. Routledge.

Kipf, T., and Welling, M. 2017. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR).

Köhler, D., and Heindorf, S. 2024. Utilizing description log-
ics for global explanations of heterogeneous graph neural
networks. arXiv 2405.12654.

Kontschieder, P.; Fiterau, M.; Criminisi, A.; and Bulò, S. R.
2016. Deep neural decision forests. In International Joint
Conference on Artificial Intelligence, (IJCAI).

Krishnan, R.; Sivakumar, G.; and Bhattacharya, P. 1999. Ex-
tracting decision trees from trained neural networks. Pat-
tern Recognition 32(12):1999–2009.

Longa, A.; Azzolin, S.; Santin, G.; Cencetti, G.; Liò, P.;
Lepri, B.; and Passerini, A. 2022. Explaining the explain-
ers in graph neural networks: a comparative study. arXiv
2210.15304.

Lutz, C.; Sattler, U.; and Wolter, F. 2001. Modal logic and
the two-variable fragment. In International Workshop on
Computer Science Logic (CSL).

Morris, C.; Kriege, N. M.; Bause, F.; Kersting, K.; Mutzel,
P.; and Neumann, M. 2020. Tudataset: A collection of
benchmark datasets for learning with graphs. In Workshop
on Graph Representation Learning and Beyond (GRL+).

Müller, P.; Faber, L.; Martinkus, K.; and Wattenhofer, R.
2024. GraphChef: Decision-tree recipes to explain graph
neural networks. In International Conference on Learning
Representations (ICLR).

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cour-
napeau, D.; Brucher, M.; Perrot, M.; and Duchesnay, E.
2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830.

Riesen, K., and Bunke, H. 2008. IAM graph database
repository for graph based pattern recognition and ma-
chine learning. In International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition.

Schaaf, N.; Huber, M. F.; and Maucher, J. 2019. En-
hancing decision tree based interpretation of deep neural
networks through L1-orthogonal regularization. In Inter-
national Conference On Machine Learning And Applica-
tions (ICMLA).

Setzu, M.; Guidotti, R.; Monreale, A.; Turini, F.; Pedreschi,
D.; and Giannotti, F. 2021. GLocalX - from local to
global explanations of black box AI models. Artificial
Intelligence 294:103457.

Sutherland, J. J.; O’brien, L. A.; and Weaver, D. F. 2003.
Spline-fitting with a genetic algorithm: A method for
developing classification structure- activity relationships.
Journal of chemical information and computer sciences
43(6):1906–1915.

Wu, M.; Hughes, M. C.; Parbhoo, S.; Zazzi, M.; Roth, V.;
and Doshi-Velez, F. 2018. Beyond sparsity: Tree reg-
ularization of deep models for interpretability. In AAAI
Conference on Artificial Intelligence (AAAI).

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In International
Conference on Learning Representations (ICLR).

Yang, Y.; Morillo, I. G.; and Hospedales, T. M. 2018. Deep
neural decision trees. arXiv 1806.06988.

Yuan, H.; Tang, J.; Hu, X.; and Ji, S. 2020. Xgnn: Towards
model-level explanations of graph neural networks. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

	Introduction
	Related Work
	Background
	Graph Neural Networks
	Graphs and Logic
	Decision Trees

	Iterated Decision Trees
	Learning Iterated Decision Trees
	Learning Iterated Decision Tree Layers
	Practical Considerations

	Relative Modal Parameters
	Experiments
	Datasets
	Metrics
	Quantitative Results
	Qualitative Results

	Conclusion
	Future Work and Limitations

