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Abstract

Economic decisions are noisy due to errors and cognitive imprecision. Often, they

are also systematically biased by heuristics or behavioral rules of thumb, creating behav-

ioral anomalies which challenge established economic theories. The interaction of noise and

bias, however, has been mostly neglected, and recent work suggests that received behavioral

anomalies might be just due to regularities in the noise. This contribution formalizes the

idea that decision makers might follow a mixture of rules of behavior combining cognitively-

imprecise value maximization and computationally simpler shortcuts. The model delivers

new testable predictions which we validate in two experiments, focusing on biases in proba-

bility judgments and the certainty effect in lottery choice, respectively. Our findings suggest

that neither cognitive imprecision nor multiplicity of behavioral rules suffice to explain re-

ceived patterns in economic decision making. However, jointly modeling (cognitive) noise

in value maximization and biases arising from simpler, cognitive shortcuts delivers a uni-

fied framework which can parsimoniously explain deviations from normative prescriptions

across domains.
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1 Introduction

Understanding inconsistencies in human decisions is of fundamental importance for eco-

nomics and other disciplines. Classical economic theory assumes deterministic and error-

free choices, but evidence shows that economic choice is stochastic and error-prone. Hu-

man decision makers very often make different choices when confronted with the same

set of options repeatedly, but choices are not purely random. On the contrary, individual

choice frequencies often display systematic patterns (e.g., Davidson and Marschak, 1959;

Tversky, 1969; Camerer, 1989; Hey and Orme, 1994; Agranov and Ortoleva, 2017). This

evidence has motivated probabilistic approaches going back to Fechner (1860), Thurstone

(1927), Debreu (1958), Luce (1959), and Block and Marschak (1960), and is currently

giving new impulse to the microeconomics literature on stochastic choice, which replaces

deterministic models of choice with probabilistic systems and Random Utility Models

(RUMs; McFadden, 2001; Anderson et al., 1992). The latter are widely used for pref-

erence estimation in economics, psychology, marketing (e.g., Baltas and Doyle, 2001),

political science (e.g., Nownes, 1992), and other fields.

These models, however, might be insufficient to understand errors in economic deci-

sions. This is because sometimes decisions are also biased in the sense that they exhibit

behavioral patterns which are systematic and predictable, but inconsistent with stan-

dard economic preferences. The interaction between these two fundamentally different

sources of errors in economic decisions has not been taken into account so far. This

work proposes and tests a new, simple model of economic choice taking into account

that decision errors are ubiquitous, but that there are different sources of errors that

interact in complex ways, which we refer to as “noise” and “bias.” To integrate these

two sources of errors, the model relies on insights from psychology and decision neu-

roscience (“neuroeconomics”; Camerer et al., 2005; Alós-Ferrer, 2018a), as well as on

recent developments in the nascent field of cognitive economics (Caplin, 2025).

The first source of errors can be thought of as (cognitive) noise. A recent literature

in economics argues that noise in economic decisions arises from cognitive imprecision.

Essentially, some anomalies in economic decision-making might occur because decision

values are perceived or computed in an imprecise way.1 One possible reason is per-

ceptual: decision errors might be due to noise because decision stimuli are imperfectly

perceived and the human brain functions as a decoder of an efficiently-coded but noisy

signal (Polańıa et al., 2019; Khaw et al., 2021; Frydman and Jin, 2022; Vieider, 2024).

Another reason might be computational: the complexity of decisions or of the available

options might result in noisier value computations due to cognitive limitations and hence

generate errors (Enke and Graeber, 2023; Oprea, 2024; Enke et al., 2025). This litera-

ture is aligned with earlier, extensive evidence from perceptual tasks in psychophysics,

1More generally, the view in decision neuroscience is that noise arises because the computation of
decision values in the human brain, linked to the dopaminergic system, is subject to neuronal noise that
creates choice inconsistencies at the individual level, even for simple tasks with objective answers (see,
e.g., Shadlen and Kiani, 2013; Shadlen and Shohamy, 2016).
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which has identified psychometric and chronometric regularities also known as “strength

of preference” phenomena: errors are more frequent and response times are longer when

the decision values are closer in the relevant scale (Cattell, 1893, 1902; Dashiell, 1937;

Laming, 1985; Klein, 2001; Wichmann and Hill, 2001). In a ground-breaking, classical

work, Mosteller and Nogee (1951) showed that these effects also appear in economic

decisions and that, for those, preferences might sometimes deliver the relevant scale.

Specifically, strength-of-preference phenomena occur in decisions under risk with esti-

mated utilities. Recent work has further shown that these phenomena are relevant for

(estimated, subjective) preferences in economic decisions (Chabris et al., 2009; Alós-

Ferrer and Garagnani, 2022a,b), and that these regularities can be used to improve both

preference revelation (Alós-Ferrer et al., 2021) and prediction out of sample (Alós-Ferrer

and Garagnani, 2024b).

The second source of errors is the systematic bias that can arise from the multiplicity

of decision processes in the human brain. A large literature in psychology has devel-

oped dual-process theories, which postulate that decisions result from the interaction

of multiple processes which differ along an automaticity continuum (see, among others,

Kahneman, 2003, 2011; Evans, 2008; Weber and Johnson, 2009; Alós-Ferrer and Strack,

2014). Some processes are more automatic (or intuitive): fast, unconscious, and requiring

few cognitive resources. They capture impulsive reactions and behavior along the lines of

stimulus-response schemes. Other processes are more deliberative (or controlled): slow,

consuming cognitive resources, and reflected upon (partly) consciously. Relatively au-

tomatic processes might include many heuristics studied in behavioral economics (e.g.,

the certainty heuristic, representativeness, etc.; Kahneman and Tversky, 1972, 1979;

Grether, 1980), and many boundedly-rational behavioral rules studied in game theory

(e.g., imitation, Alós-Ferrer and Weidenholzer, 2008, 2014; myopic best reply, Kandori

and Rob, 1995; aspiration levels, Oechssler, 2002). A number of dual-process (or dual-

self) models and applications have also explored this idea in economics, following up

on the analogy with the distinction between full and bounded rationality (Thaler and

Shefrin, 1981; Benhabib and Bisin, 2005; Fudenberg and Levine, 2006, 2012; Gennaioli

and Shleifer, 2010; Heller et al., 2017; Cerigioni, 2021). While most dual-process models

are essentially “as if,” previous work has shown that process data (response times, eye

tracking, and electroencephalography) can be used as diagnostic tools to reveal process

multiplicity (e.g., Achtziger and Alós-Ferrer, 2014; Achtziger et al., 2014, 2015; Alós-

Ferrer et al., 2021), although it has done so without taking into account possible interac-

tions with strength of preference effects. Further, empirically-estimated Hidden Markov

Models suggest that decision makers switch dynamically between alternative decision

processes even for simple economic decisions (Alós-Ferrer and Garagnani, 2023).

If human decisions are affected by both noise and bias, ignoring one or the other

might create severe confounds. First, as shown by Krajbich et al. (2015) and Evans

et al. (2015), apparent “fast and slow” effects might be observed even in the absence

of multiple processes because some decisions are fast or slow by virtue of being easy
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or hard (large or small utility differences, respectively). Second, a recent literature has

shown that some behavioral anomalies that are often explained through heuristics might

simply arise from standard preference models and regularities in noisy choice. This

includes the efficient coding literature mentioned above (Khaw et al., 2021; Frydman

and Jin, 2022; Vieider, 2024), which links noise to cognitive imprecision, and recent

work on inconsistencies generated by the subjective perception of complexity (Enke and

Graeber, 2023; Oprea, 2024).

Third, strength of preference might be enough to explain some apparent anomalies

which have been extensively accepted to reveal behavioral biases. For example, consider

the common ratio effect (Kahneman and Tversky, 1979). When choosing between a

sure but small amount and a larger but risky amount, most decision makers choose the

safe alternative, but when all probabilities are scaled down by a common ratio, most

people tend to choose the riskier option. This phenomenon has been widely replicated

(Ruggeri et al., 2020; Blavatskyy et al., 2023), contradicts Expected Utility Theory, and

is typically explained through a “certainty heuristic,” which is a bias-based explanation.

However, McGranaghan et al. (2024) have argued that standard RUMs can generate

this effect simply due to strength-of-preference patterns in the noise, i.e. the fact that

errors are more frequent when utility differences are smaller (see also Ballinger and

Wilcox, 1997; Hey, 2005, among others). If participants prefer a sure but small amount

to a larger but risky amount, there is still a (small) probability that they will choose

the latter due to noise. But when the winning probabilities are scaled down, utility

differences become much smaller, and the probability of an error becomes much larger.

This makes reversals of the type observed in the common ratio effect more likely than

the opposite ones. That is, it is unclear whether an effect due to regularities in the noise

has been misinterpreted as evidence for a bias.

This work formalizes the idea that people might be following qualitatively different

“rules of behavior” more or less at the same time. The intuition is that decision making

can be well captured as a mixture of cognitively-imprecise (and often subjective) value

maximization and computationally simpler shortcuts. The first part captures the view

of decision makers acting as imperfect maximizers of some subjective value subject to

cognitive constraints. That is, our model captures cognitive imprecision through well-

established strength-of-preference effects.

The computationally-simpler cognitive shortcuts in the second part of the framework

are akin to heuristic processes which can give rise to biases when they conflict with

value maximization, and hence link to the extensive heuristics and biases literature

(Kahneman, 2011). The idea is to formalize, under the same umbrella, different but

conceptually similar departures from rational behavior which are computationally less

involved and closer to simplified rules of behavior, ranging from be heuristics from the

judgment and decision making literature (representativeness, conservatism, etc.) and the

literature on decisions under risk (e.g., going for the sure outcome) and behavioral rules

as often studied in game theory (myopic best reply, imitation, reinforcement, etc.). The
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literature has studied many such rules, but a formalization of how they interact with

cognitive imprecision (strength of preference) is still missing and might bring crucial

insights to economic analysis. We show that a general framework which jointly models

noisy value maximization and simple rules of behavior lead to non-trivial predictions

relative to choice frequency, choice inconsistency, and response times. In particular, the

framework we propose provides a guideline for how to test for the presence of multiple

behavioral rules contributing to choices, and show that distinguishing this case from

behavior explained by a single rule behavior is far from straightforward.

Specifically, the model we propose considers both process multiplicity and strength

of preference effects, as well as their interaction, and hence is able to identify effects of

noise in the presence of bias and vice versa. The basic architecture assumes a (more)

deliberative, value-maximizing process, which is affected by cognitive imprecision and

hence exhibits psychometric (and chronometric) effects based on a cardinal (utility)

scale. This process, however, interacts with a cognitively-simpler, heuristic process,

whose prescriptions might be in conflict or in alignment with deliberation. In general,

the latter process might be non-psychometric, e.g. if it is triggered by binary properties

(win or lose; the presence of a riskless option; etc.), or it might exhibit a psychometric

dependence on a different scale. For instance, an imitative behavioral rule might depend

on a cardinal scale reflecting observed past performance.

The model predicts that strength of preference effects should be observed conditional

on decisions which exhibit the same kind of interactions between processes. That is,

psychometric effects (larger error frequency for smaller utility differences) should obtain

when looking at all decisions where the deliberative and the heuristic process are in

alignment (i.e., tend to make the same prescription), or when looking at all decisions

where they are in conflict (i.e., tend to make the same prescriptions), as well as for

decisions where the heuristic process is not triggered (which we call “neutral”). However,

if the analyst were to neglect classifying decisions in this way, the effects of strength of

preference might be difficult to observe. This is because, in addition to those effects,

whether decisions are in conflict or alignment results in shifts in the frequency of errors,

with alignment and conflict leading to less and more errors, respectively, for a given

strength of preference.

In many cases of economic interest, heuristic processes are triggered by specific fea-

tures of available alternatives, e.g. a certainty heuristic triggered by the presence of a

risk-free lottery. In those cases, an appropriate renaming of alternatives allows a clear

partition of decision problems, e.g. with all decisions in alignment (resp. in conflict) ex-

hibiting positive (resp. negative) utility differences. Whenever this classification is pos-

sible, the model delivers a strong prediction which allows to detect process multiplicity

even in the presence of strength-of-preference effects, hence providing empirical evidence

for multiple processes while avoiding possible confounds. The prediction takes the form

of a discontinuity at zero utility difference, with error rates jumping up as one moves

from negative to positive differences. This discontinuity, which can be detected with
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well-established regression discontinuity estimation techniques (Calonico et al., 2014), is

predicted to be absent for neutral decision problems, where the heuristic is not triggered.

To test these predictions, we conducted two different experiments. The first exper-

iment focused on a well-known bias from the literature on belief updating and decision

making: conservatism, i.e. the tendency to overweight prior probabilities when con-

fronted with new information, or even to completely ignore the new information (Ed-

wards, 1968; Grether, 1980; Fischhoff and Beyth-Marom, 1983; El-Gamal and Grether,

1995). In the terms of our model, the deliberative process is given by Bayesian updat-

ing, which prescribes to base behavior on the correctly updated posterior belief given

the sample information. Strength of preference effects are operationalized on the basis

of the cardinal payoff difference between the options. Hence the experiment belongs to

the objective domain, in the sense that the assumed cardinal scale is objective and fixed

before data is collected. The heuristic process models conservatism, and is active when-

ever there is an option with a higher prior probability (that is, it is inactive if the prior

is 50-50). This heuristic ignores the new information and simply prescribes to choose

the option with the higher prior probability.

The second experiment focused on the certainty effect in lottery choice, using lottery

pairs corresponding both to common ratio anomalies (mentioned above; Kahneman and

Tversky, 1979) and a common consequence construction (as in the Allais paradox; Allais,

1953). The certainty effect refers to the observation that many participants choose a sure

option if available but a risky one in lottery pairs with transformed probabilities which

should represent equivalent decisions in terms of Expected Utility Theory. As pointed

out by McGranaghan et al. (2024), recent doubts have been raised on whether certainty

effects uncover a bias or are merely due to strength-of-preference effects from the noise.

This is important, because the certainty effect is one of the most prominent behavioral

anomalies violating Expected Utility Theory, and was a crucial motivation in the de-

velopment of Prospect Theory (Kahneman and Tversky, 1979; Tversky and Kahneman,

1992). Accordingly, this anomaly has received extensive attention in economics, and has

sparked sparked the development of diverse models of non-expected utility theory be-

yond Prospect Theory, some of which were proposed with the specific aim to incorporate

the certainty effect (e.g., Schmidt, 1998; Dillenberger, 2010; Cerreia-Vioglio et al., 2015).

Our second experiment shows how our model can accommodate the certainty effect.

The deliberative process is given by expected utility maximization, with strength-of-

preference operationalized on the basis of utility differences. Hence the experiment be-

longs to the subjective domain, in the sense that the assumed cardinal scale is subjective,

subject-specific, and needs to be estimated. For this reason, the experiment included

a block of lottery pairs designed and used for individual-level utility estimation. This

allows an out-of-sample approach for the main analysis. That is, the predictions for

the deliberative process are not based on any estimation using the data for which the

predictions are made. The heuristic process models the certainty effect as a bias, and is

active whenever there is a risk-free lottery. This is hence an example of an application
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where an appropriate renaming of alternatives results in a clear partition partition of

decision problems, with all decisions in alignment (resp. in conflict) exhibiting positive

(resp. negative) expected utility differences.

We confirm the predictions of our model in both experiments. Strength-of-preference

effects can be observed once one classifies decision problems in alignment, conflict, or

neutral, with larger error rates for smaller cardinal differences between the options (pay-

offs in the first experiment and expected utilities in the second). However, error rates are

shifted when distinguishing decision problems according to whether they are in align-

ment or conflict, showing that the effects of noise and bias are observable separately

and when controlling for each other. Further, in the second experiment, we clearly ob-

serve the predicted discontinuities which reveal process multiplicity while controlling for

strength-of-preference effects.

The model also accounts for effects on response times. This is important, because

the predictions of noise and bias are quite different and can easily result in confounds

(Krajbich et al., 2015). In particular, a “fast and slow” intuition can often be misleading.

This is because the response times of processes are not observable, and simply classifying

decisions in fast and slow runs into a reverse inference fallacy (not all fast decisions are

automatic; Evans et al., 2015; Myrseth and Wollbrant, 2016). The model presented

here avoids those problems and makes testable predictions on response times which are

diagnostic of process multiplicity. First, correct (utility-maximizing) responses are less

frequent and slower under conflict than under alignment (generalizing the Stroop effect

in psychology, Stroop, 1935). Second, under conflict errors are on average faster than

correct responses, while under alignment the opposite is true. We find evidence for these

effects in both experiments, hence confirming the presence of multiple decision processes.

We remark that closely-related response-time effects have previously been docu-

mented in a variety of settings including such processes as reinforcement (Achtziger and

Alós-Ferrer, 2014; Spiliopoulos, 2018), brand recognition (Alós-Ferrer, 2018b), and imi-

tation vs. best-reply (Alós-Ferrer and Ritschel, 2021) in a Cournot oligopoly. Alós-Ferrer

and Garagnani (2024a) has recently reanalyzed data from 31 recent psychology studies,

and shown the predictions to be robust across paradigms in cognitive control, attention,

social cognition, memory, and decision making. The difference with the response-times

predictions in the present work is that, in the model considered here, the predictions arise

even when one controls for strength of preference effects, hence avoiding any possible

confound between the effects of process multiplicity and strength-of-preference (chrono-

metric) regularities (Krajbich et al., 2015).

Our results are also robust to some natural extensions. For instance, the basic model

considers an exogenous probability of inhibition of heuristic processes in favor of more

deliberative ones. In an extension, we show that the predictions survive if the probability

of inhibition increases when strength of preference is larger, i.e. when opportunity costs

increase (Benhabib and Bisin, 2005). This implies that biases resulting from heuristic

processes should become more prominent when people are more cognitively uncertain
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about their decisions, a phenomenon which has been recently documented by Enke and

Graeber (2023).

The remainder of the paper is structured as follows. Section 2 presents the basic

model. Section 3 focuses on interaction of strength of preference (noise) and process

multiplicity (bias). Subsection 3.1 derives the predictions on error rates arising from

this interaction (Theorem 1). Subsection 3.2 presents our first experiment (on conser-

vatism) and the results, which confirm the predictions of Theorem 1. Section 4 focuses

the model’s prediction of a discontinuity on error rates in the presence of multiple pro-

cesses. The formal result (Theorem 2) is presented in Subsection 4.1. Subsection 4.2

presents our second experiment (on the certainty effect) and the results, which confirm

the predictions of Theorems 1 and 2. Section 5 presents our analysis of response times.

Section 5.1 derives the generalized Stroop effect (Theorem 3) and displays the evidence

for this prediction in both experiments. Section 5.2 derives the prediction on the relative

speed of errors (Theorem 4), and displays the evidence for the predicted effects in both

experiments. Sections 5.3 and 5.4 report regression analyses on response times for the

two experiments. Section 6 reports on three extensions and additional analyses. Section

7 concludes.

2 A Model of Noise and Bias

Decision makers face binary decision problems among alternatives in a set A. Each

decision problem is modeled as a pair of the form ω = {Aω, Bω}, i.e., describes a binary

decision among two options Aω and Bω. The labels A and B might have particular

meanings for particular applications. For example, options labeled B might be riskier

than options labeled A in a well-defined sense, or might refer to an urn presented on

the left rather than on the right. The restriction to binary decisions is made mainly

for tractability, since the experiments we focus on entail binary decisions. However, the

model can be extended to decision problems with any finite number of alternatives.

Let the set of all decision problems faced by decision makers be denoted by Ω. A

decision process is a map b : Ωb 7→ A with b(ω) ∈ ω for each ω ∈ Ωb, where Ωb ⊆ Ω. That

is, a decision process singles out a particular alternative b(ω) for each decision problem

ω in a particular subset Ωb. The set Ωb captures the subset of decision problems where

a given process is triggered. The interpretation is that some decision processes might

be triggered only by specific features of ω. For example, a certainty heuristic might be

triggered by the presence of a riskless option. We say that a decision process b is active

in decision problem ω if ω ∈ Ωb.

We refer to b(ω) as the prescription or favored response of process b in decision

problem ω. The interpretation is that the actual implementation of any process is noisy,

and b(ω) is merely the most-frequent (modal) answer. That is, for a given decision

problem ω a process b selects its favored response b(ω) only with a certain probability
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1 > Pb(ω) ≥ 1
2 , given by a function Pb : Ωb 7→ [12 , 1), whereas with the remaining

probability it selects the other alternative.2

We assume that there is a distinguished process d with Ωd = Ω, which we call the

deliberative process. We refer to any other process h with Ωh ⊆ Ω that is not the

deliberative process as a heuristic process or simply a heuristic. The interpretation is

that the deliberative process is always active, whereas each heuristic is triggered by

certain cues that are present in some and absent in other decision problems.

2.1 The Internal Consistency of a Decision Process

Since the favored response of a decision process is simply its modal option, and not

necessarily a normatively desirable option, the probability Pb(ω) does not capture the

frequency of “correct” choices, but rather the level of internal consistency of process

b in decision problem ω. The concept of internal consistency will be helpful to model

both dual-process considerations and strength-of-preference effects. The first relates to

consistency across processes for a given decision problem, and the second to consistency

within a process across different decision problems.

Consider consistency across processes. Dual-process theories consider heuristics as

decision processes capturing more intuitive or impulsive behavioral tendencies than de-

liberation. In psychology, this corresponds to the concept of automaticity (Allport, 1954;

Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977; Cohen et al., 1990; Kahne-

man, 2003). More automatic processes are closer to stimulus-response reactions than

deliberation, and in particular they are faster and more internally consistent. In other

words, deliberation is generally less internally consistent than the more automatic reac-

tions associated with heuristics (e.g., Redish, 2016). In our terms, this will correspond

to the assumption that Ph(ω) > Pd(ω) for the appropriate set of decision problems. To

this end, we introduce the following notation.

Definition 1. Process b1 is more consistent than process b2 on a set of decision problems

Ω′ ⊆ Ωb1 ∩ Ωb2 if Pb1(ω) > Pb2(ω) for all ω ∈ Ω′.

We now turn to consistency within a process. Psychometric or strength-of-preference

effects state that, especially for deliberative processes, consistency varies systematically

with choice difficulty. In particular, consistency is systematically lower for options that

are more similar (Dashiell, 1937; Moyer and Landauer, 1967; Laming, 1985; Klein, 2001;

Wichmann and Hill, 2001), a regularity that has also been established for economic

decision making (Mosteller and Nogee, 1951; Alós-Ferrer and Garagnani, 2022a,b). To

capture this effect, each decision problem ω = {Aω, Bω} is endowed with a cardinal

difference ∆ω between the options Aω and Bω. The nature of ∆ω will depend on the

specific application. For example, in the context of lottery choice, a natural notion of

choice difficulty might be the difference in certainty equivalents between options. We say

2This allows for cases where the probability is exactly 1/2 and hence there are two modal options.
The choice of which alternative is considered favored in this knife-edge case is inconsequential.
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that a process is psychometric if the probability to select Aω from the decision problem

ω is an increasing function of ∆ω. To be able to formally state this, we first define

βA
b (ω) =







Pb(ω) if b(ω) = Aω

1− Pb(ω) if b(ω) = Bω,

i.e., the probability that process b selects Aω for decision problem ω. Strength of pref-

erence for a given process is then captured by the following definition.

Definition 2. The process b is psychometric if βA
b is a continuous, strictly increasing

function of ∆ω with βA
b (ω) =

1
2 for ∆ω = 0.

In particular, since b(ω) singles out the modal option if there is one, for a psycho-

metric process b it follows that d(ω) = Aω for every ∆ω > 0 and d(ω) = Bω for every

∆ω < 0.

2.2 Conflict, Alignment, and Neutral Decision Problems

We will consider applications where the researcher has two candidates as the likely de-

cision processes influencing actual decisions, a deliberative process d and an alternative,

heuristic process h. For example, in the objective domain, the researcher might be con-

trasting normatively optimal decisions in a belief-updating task against a particular bias,

e.g. conservativeness, the representativeness heuristic, etc. In the subjective domain, the

researcher might be comparing preference/based decisions (e.g., on the basis of expected

utility) and a heuristic hypothesized to underlie a particular behavioral anomaly.

For a given decision problem ω ∈ Ωh, we say that a heuristic process h is in conflict

with the deliberative process d if h(ω) 6= d(ω), and we say that it is in alignment (with

the deliberative process) if h(ω) = d(ω). The set of decision problems Ωh where a

heuristic h is active can thus be partitioned into the a set of alignment situations ΩA
h =

{ω ∈ Ωh | h(ω) = d(ω)} and a set of conflict situations ΩC
h = {ω ∈ Ωh | h(ω) 6= d(ω)}.

Further, recall that the deliberative process is always active (Ωd = Ω), whereas the

heuristic process is triggered by certain cues of the decision problem ω, and is hence only

active in a certain subset Ωh of decision problems. Thus, ΩN
h = Ω \ Ωh is the set of all

decision problems where the deliberative process d is the only active process and, thus,

determines behavior. We refer to these as neutral decision problems, which should be

identifiable for specific applications.

Let ρ(ω) denote the observable choice probability of Aω in decision problem ω. If both

processes are active, we assume that which process determines behavior is a stochastic

event. Specifically, with a probability (1 − α) the actual response is determined by

process d and with probability α by process h. In dual-process terms, 1 − α could be

conceived of as the probability of successful inhibition of the impulse represented by

h. This is assumed to be an exogenous constant for simplicity, but the results can be

extended to the case where α is a function of strength of preference (see Section 6.1).
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The observed stochastic choice function of a decision maker is thus given by

ρ(ω) =







(1− α)βA
d (ω) + αβA

h (ω) if ω /∈ ΩN
h

βA
d (ω) if ω ∈ ΩN

h ,

which takes into account that, for neutral decision problems, only the deliberative process

is active.

3 The Interaction of Noise and Bias

We consider a decision maker whose behavior is co-determined by a deliberative process

d and some heuristic process h. The deliberative process exhibits strength-of-preference

effects as described above, with d(ω) = Aω if ∆ω > 0 and d(ω) = Bω otherwise. Gen-

erally speaking, the heuristic process might also exhibit strength-of-preference effects,

possibly depending on a different attribute or characteristic of the decision problem than

that captured by ∆ω. However, in many applications heuristics depend on the presence

or absence of specific triggers, and hence it is reasonable to treat them as having con-

stant consistency, i.e., Ph(ω) = Ph for some fixed Ph > 1/2. For example, the certainty

heuristic might be triggered by the presence of a riskless option, or conservativeness

might simply focus on the event with the highest prior probability.

For simplicity, in the following we refer to the alternative prescribed by the delibera-

tive process as the correct choice and to the other alternative as an error. In the objective

domain, where the deliberative process will typically capture normative behavior, this

will correspond to actual, objectively/defined correct answers and errors. In the sub-

jective domain, if the deliberative process corresponds to preference maximization, an

error is simply a decision that contradicts the individual preferences, but not necessarily

a normatively incorrect choice. In particular, one decision maker’s errors might be an-

other decision maker’s correct choices. In any case, this means that ∆ω captures a value

difference between options such that A is objectively or subjectively correct if ∆ω > 0

and B is correct otherwise.

3.1 Error Rates and Choice Consistency

Theorem 1 below describes the stochastic choice function of a decision maker who dis-

plays both process multiplicity and strength-of-preference effects. As discussed above,

following the interpretation of a heuristic as a more automatic process than the delib-

erative one, we assume the former process to be more internally consistent than the

latter. The results are stated in terms of the probability of a correct answer, that is, the

probability of a choice that is in line with the prescription of the deliberative process d,

Prob(ρ(ω) = d(ω)).
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Theorem 1. Suppose the deliberative process d is psychometric and the heuristic h has

constant consistency Ph > 1/2. Then the following statements hold.

(a1) For neutral decision problems, ω ∈ ΩN
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0. Further, the

probability is 1/2 for ∆ω = 0

(a2) For decision problems in alignment, ω ∈ ΩA
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0.

(a3) For decision problems in conflict, ω ∈ ΩC
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0.

(b1) For any given ∆, the probability of a correct response is larger for decisions under

alignment compared to conflict decision problems. That is, for any fixed ∆ and

decision problems ωC ∈ ΩC
h , ω

A ∈ ΩA
h with ∆ωC = ∆ωA = ∆, it follows that

Prob(ρ(ωA) = d(ωA)) > Prob(ρ(ωC) = d(ωC)).

(b2) For any given ∆, the probability of a correct response is smaller for decisions

under conflict compared to neutral decision problems. That is, for any fixed ∆ and

decision problems ωC ∈ ΩC
h , ωh ∈ ΩN

h with ∆ωC = ∆ωN = ∆, it follows that

Prob(ρ(ωN ) = d(ωN )) > Prob(ρ(ωC) = d(ωC)).

(b3) Suppose the heuristic h is more consistent than d on Ωh. Then, for any given

∆, the probability of a correct response is larger for decisions under alignment

compared to neutral decision problems. That is, for any fixed ∆ and decision

problems ωA ∈ ΩA
h , ω

N ∈ ΩN
h with ∆ωA = ∆ωN = ∆, it follows that

Prob(ρ(ωA) = d(ωA)) > Prob(ρ(ωN ) = d(ωN )).

The proof of this theorem is in the Appendix. Figure 1 illustrates the result. In words,

if we restrict to a given class of decision problems (neutral, conflict, or alignment), the

probability of a correct response increases as the difference between the alternatives, as

captured by ∆ω, becomes larger. However, that probability is uniformly shifted down

for conflict, compared to neutral decision problems. For alignment, the probability of

a correct response is shifted up for decisions closer to indifference, but it might also be

shifted down (compared to neutral) for decisions very far away from indifference (Figure

1, right), but it will remain above the corresponding probability for conflict.

The intuition for Theorem 1 is as follows. First, focusing on neutral decision prob-

lems, where only the deliberative process is active, strength-of-preference effects result

in a pattern where errors are more frequent when the cardinal difference between the

12
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Figure 1: Illustration of Theorem 1, depicting the probability of a correct answer as a
function of the cardinal difference between the alternatives, ∆ω.

alternatives is smaller, because the decision is then more difficult, in the sense that al-

ternatives are harder to tell apart. Second, for decisions under alignment or conflict,

the pattern remains, but there is an additional probability that decisions are made by

the heuristic process instead. For conflict problems, the heuristic very often leads to an

error, which shifts the probability of a correct decision downwards. For alignment prob-

lems, the heuristic is very often correct, which in principle should shift the probability

of a correct decision upwards. However, there is an additional effect which is reflected

in part (b3) and the right-hand side of Figure 1.

This additional effect is related to the fact that none of the results of Theorem

1 depend on the additional assumption that the heuristic process is more consistent

than the deliberative one, except for part (b3). This is important, because strength of

preference effects imply that the deliberative process might be very inconsistent when

close to indifference, but it must also become very consistent when ∆ is large (easy

choices). Hence, if the heuristic process has constant or near-to-constant consistency,

the assumption that the deliberative process is more inconsistent will typically hold for

most decisions, but be violated if the design includes decision problems which are far

away from indifference. That is, one would in general expect Pd(ω) < Ph in most of

the relevant domain, but Pd(ω) > Ph as ∆ω grows large. As Theorem 1 shows, this

possibility does not affect any of the results above, except possibly for the comparison

of error rates between decisions in alignment and neutral decision problems. In other

words, while we expect the probability of correct responses in experiments to roughly

reflect the left-hand side of Figure 1, in designs including large values of ∆, they could

reflect the picture in the right-hand side. This is because, for such large values, even

though the heuristic process favors the correct response with a large probability, the

deliberative process would deliver the correct response with an even larger probability.

The interest of the results above lie on the fact that they deliver predictions that

are testable in any application where the researcher has good candidates for alternative

processes influencing behavior, but strength-of-preference effects and process multiplicity

13



might interact and confound each other. The next subsection shows the implications of

the result for testability in a specific application.

In particular, as Figure 1 illustrates, an important implication of Theorem 1 is that

the monotonic relation between error rates and cardinal differences between alternatives

in a specific application might only become clear if one distinguishes decision problems

according to process interaction, i.e. conflict or alignment (or neutral). Conversely, the

effects of the presence of a specific heuristic might only become clear if one considers the

psychometric relation between error rates and cardinal differences between alternatives.

In other words, if the data is analyzed without taking into account whether decision

problems involve conflict or alignment (or neither), the researcher might fail to realize

that decisions reflect strength-of-preference effects. Conversely, if the data is analyzed

without taking into account possible strength-of-preference effects, the researcher might

fail to identify process multiplicity and its consequences, for example if decisions under

conflict or alignment are not equally distributed along the ∆ axis.

3.2 Application: Conservatism

In this section, we apply the model from Section 2 to a new experiment which examines

a standard, well-known bias from the literature on belief updating and decision making:

conservatism. This bias (Edwards, 1968; Fischhoff and Beyth-Marom, 1983; El-Gamal

and Grether, 1995; Enke and Graeber, 2023) has been consistently observed in decision

making under uncertainty and corresponds to overweighting prior probabilities which

would need to be updated, using Bayes’ rule, when new information on an uncertain

event becomes available (or even fully ignoring the new information). This and other

biases in belief updating are frequently studied using experimental designs with different

urns containing balls of different colors in known proportions (e.g., Grether, 1980, 1992;

El-Gamal and Grether, 1995; Alós-Ferrer and Garagnani, 2023). Achtziger et al. (2014)

used electroencephalography to show that decision makers with a large proportion of

conservative errors started motor action preparation to give the conservative answer

before the new information was even presented, suggesting that conservativeness relies

on a highly automatic process which often ignores new sample information.

Thus, to model conservatism in our (first) experiment, we consider two processes:

Bayesian updating and Conservatism. The deliberative process d is given by Bayesian

updating, which prescribes to base behavior on the correctly updated posterior belief

given the sample information. That is, Bayesian updating relies on a cardinal difference

between the options. Strength of preference effects are hence operationalized based

on this cardinal difference. The heuristic process h is Conservatism, which is active

whenever there is an option with a higher prior probability. This heuristic, however,

ignores the sample information and prescribes to choose the option with the higher

prior probability. Thus, this process should exhibit constant consistency as assumed in

Theorem 1.

14



Urn (prior) Left Urn (p) Right Urn (1− p)

••••••◦◦◦ •••◦◦◦◦◦◦
Figure 2: Schematic representation of the task used in the Conservatism Experiment.
The figure shows an example with the urn compositions for S = 9, nL = 6, and nR = 3.

3.2.1 Experimental Design

For our conservatism experiment, we recruited a total of 166 participants (87 females)

from the student population of the University of Zurich, with a median age of 23 ranging

from 18 to 49. Participants took part in 5 experimental sessions, with between 30 and

36 individuals per session. The experiment was run at the Laboratory for Experimental

and Behavioral Economics of the University of Zurich and was programmed in PsychoPy

(Peirce, 2007).

The experiment used a variant of a well-established belief-updating task (Grether,

1980, 1992; El-Gamal and Grether, 1995; Achtziger et al., 2014). There are two urns

(left and right) containing S colored balls each (black or white). The left urn contains nL

black and S−nL white balls, and the right urn contains nR black and S−nR white balls

(see Figure 2 for an exemplary schematic representation). We implemented a symmetric

urn design, i.e., nR = S − nL. In each trial, the left urn was randomly selected with

a given, known probability p (the prior), and the right urn with a the complementary

probability 1− p. Then, a sample of four balls was extracted from the selected urn and

shown to the participant, who was then asked to guess whether the sample was drawn

from the left or the right urn.

There were a total of 300 trials divided into four blocks of 75 trials each, with a 30

seconds break between blocks. The order of blocks was as given in Table 1 for half the

subjects and counterbalanced by using the reverse order for the other half of subjects.

Each block used a different urn composition (fixed for all trials within a block) and

three different priors p1 < 1/2, p2 = 1/2, p3 > 1/2. See Table 1 for an overview of

the urn compositions and priors. In each block there were 30 trials with prior p1, 15

trials with prior p2 = 1/2, and 30 trials with prior p3. The participant was informed

about the urn composition at the beginning of the block. At the beginning of each

trial the participant was informed about the prior p for the current trial. Then one of

the two urns was randomly selected according to the prior p, but the participant was

not informed of which urn was selected. Subsequently, a sample of 4 balls was randomly

extracted with replacement from the selected urn and shown to the participant on screen.

Participants then guessed from which urn the sample was drawn and the trial ended.

Participants received no feedback before all 300 trials were completed. At the end of the

experiment, participants received 15 Rappen (0.15 Swiss Francs, CHF) for each correct

guess. Sessions lasted about 60 minutes, including instructions and payment. Average

payment was 50 CHF.
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Block S nL nR p1 p2 p3

1 10 7 3 3
10

1
2

7
10

2 9 6 3 1
3

1
2

2
3

3 8 5 3 3
8

1
2

5
8

4 10 6 4 2
5

1
2

3
5

Table 1: Conservatism Experiment. Urn compositions and priors for the four blocks.
Each block comprised 75 trials. Order of blocks was counterbalanced.

We consider two processes: Bayesian updating and Conservatism. Bayesian updating

prescribes to guess the most likely urn given the prior and the sample (except in case of

exact ties). Conservatism ignores the sample information and prescribes the urn with

the higher prior probability (if there is such an urn). For a given decision problem, the

two processes are in alignment if they prescribe the same choice. Otherwise, they are

in conflict. Whenever the prior is p2 = 1/2, Conservatism is not active, hence, those

decision problems are neutral.

For a given block, each decision problem ω is characterized by (p,m) where p ∈
{p1, p2, p3} is the prior probability that the sample is drawn from the left urn and

m ∈ {0, 1, 2, 3, 4} is the number of black balls in the sample. The design hence generates

15 different possible decision problems per block. The prescriptions of Bayesian updating

and Conservatism for all decision problems are summarized in Table 2. For each ω =

(p,m), the table reports the difference between the expected payoffs (in Rappen) of the

left urn (L) and the right urn (R), denoted by ∆ω. Note that, since correct guesses were

paid at a constant rate and incorrect guesses were not paid, expected payoffs are just a

linear transformation of the probabilities. The absolute value |∆ω| provides an inverse

measure of the difficulty for each (p,m)-problem. There are 24 alignment situations with

12 different levels of difficulty (|∆ω|), and 16 conflict situations with 8 different levels of

difficulty. The remaining 20 situations are neutral (p = 1/2), involving 9 different levels

of difficulty.3

3.2.2 Establishing the Presence of Conservatism: Grether Regression

Before analyzing the results in the light of Theorem 1, we briefly establish the presence of

conservatism bias in our data using a standard approach from the literature. Following

Grether (1980), we consider the following probit regression (see also Enke and Graeber,

2023)

Yit ∼ α+ β1 ln
P (m|L)
P (m|R)

+ β2 ln

(

p

1− p

)

+ εit, (1)

3In the knife-edge cases where the prior was 1/2 and exactly two balls of each type were extracted,
there is no “correct” answer and Bayesian updating should prescribe Pd = 1/2.
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Table 2: Expected Payoff Differences (Left minus Right urn) for a sample with m black
balls and prior p. Each cell shows the expected payoff differences (top), the prescription
of Conservatism (bottom left) and Bayesian updating (bottom right). Dark gray, light
gray, and white cells refer to conflict, alignment and neutral situations, respectively.

Block 1: Urns with 10 balls. Left urn 7 black, 3 white. Right urn 3 black, 7 white.

p \ m 0 1 2 3 4

3/10
-14.57 -12.81 -6.00 6.00 12.81

R R R R R R R L R L

1/2
-14.02 -10.34 0.00 10.34 14.02

- R - R - - - L - L

7/10
-12.81 -6.00 6.00 12.81 14.57

L R L R L L L L L L

Block 2: Urns with 9 balls. Left urn 6 black, 3 white. Right urn 3 black, 6 white.

p \ m 0 1 2 3 4

1/3
-14.09 -11.67 -5.00 5.00 11.67

R R R R R R R L R L

1/2
-13.24 -9.00 0.00 9.00 13.24

- R - R - - - L - L

2/3
-11.67 -5.00 5.00 11.67 14.09

L R L R L L L L L L

Block 3: Urns with 8 balls. Left urn 5 black, 3 white. Right urn 3 black, 5 white.

p \ m 0 1 2 3 4

3/8
-12.84 -9.67 -3.75 3.75 9.67

R R R R R R R L R L

1/2
-11.56 -7.06 0.00 7.06 11.56

- R - R - - - L - L

5/8
-9.67 -3.75 3.75 9.67 12.84

L R L R L L L L L L

Block 4: Urn with 10 balls. Left urn 6 black, 4 white. Right urn 4 black, 6 white.

p \ m 0 1 2 3 4

2/5
-11.51 -8.14 -3.00 3.00 8.14

R R R R R R R L R L

1/2
-10.05 -5.77 0.00 5.77 10.05

- R - R - - - L - L

3/5
-8.14 -3.00 3.00 8.14 11.51

L R L R L L L L L L

where Yit = 1 if the Left urn was chosen and 0 otherwise, P (m|L)
P (m|R) is the likelihood ratio

for L given the sample, p
1−p

is the prior odds in favor of L, and εit is an error term

with mean zero and finite variance. Bayes’ rule prescribes equal weight on the evidence

and the prior (β1 = β2 > 0) while conservatism prescribes greater weight on the prior
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Table 3: Random effects probit regression on the probability of an L choice, excluding
neutral situations.

L chosen

Likelihood ratio for L 0.825∗∗∗

(0.008)
Prior odds for L 1.532∗∗∗

(0.016)
Constant -0.033∗∗∗

(0.012)

Linear Combination test
Likelihood ratio for L - Prior odds for L 0.707∗∗∗

(0.014)

Observations 39840
Subjects 166

Notes: Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(β2 > β1 ≥ 0). The difference β2 − β1 can be seen as continuous measure of the bias.

We expected that actual behavior would exhibit conservatism, that is, β2 − β1 > 0 in

non-neutral situations.

Table 3 reports the results of this regression for non-neutral situations. Both co-

efficients are positive and significant. Importantly, however, a linear combination test

reveals that the weight on the prior is significantly larger than the weight on the likeli-

hood ratio, that is, β2 − β1 > 0. Thus, we conclude that conservatism is present in our

data.

3.2.3 Main Results (Conservatism)

We now test the predictions of the model outlined in Section 2 to the data from the

conservatism experiment described above. That is, we aim to distinguish noise, as

reflected by strength of preference effects, from the conservatism bias.

For the purposes of the application, a guess is correct if it is in line with the pre-

scription of Bayesian updating and an error otherwise. Theorem 1 provides predictions

on the relation between the cardinal difference ∆, which in this case captures differences

in expected payoffs, and the proportion of correct choices, assuming that Bayesian up-

dating is psychometric and that the conservatism bias reflects a heuristic process with

has constant consistency. The latter assumption is reasonable since conservatism essen-

tially focuses on the prior and ignores the sample information which underlies both the

cardinal difference ∆ and strength-of-preference effects.

In view of the literature described above, it is also reasonable to assume that, for

non-neutral decision problems, the heuristic process driving the conservatism bias is

more consistent than Bayesian updating, except for large values of ∆. However, recall

that this assumption is not necessary for the results, except for Theorem 1(b3).
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Figure 3 illustrates the results. Each dot in this figure depicts the proportion of

correct responses for all decision problems sharing the same value of (m, p) for a given

block (recall Table 1). In particular, each dot reflects a proportion of correct responses

for a given value of ∆, computed as the difference in expected values between Left and

Right. The figure distinguishes decision problems under alignment (green) or conflict

(red), and neutral decision problems (black). For better visibility, it also includes simple

regression lines for each type of decision problem, conditional on the sign of ∆.

As the figure shows, the probability of a correct answer increases as decisions are

further away from indifference, i.e., when ∆ is larger in absolute value. This holds

separately for conflict, alignment, and neutral decisions, as predicted by Theorem 1(a1–

a3). Hence, we directly observe the effects of strength of preference in our data. At

the same time, there is a very clear difference between decisions under conflict and

those under alignment, with the former having a much lower probability of a correct

response than the latter. This corresponds to Theorem 1(b1). The probability of a

correct response is also clearly shifted down for conflict compared to neutral decision

problems, as predicted by Theorem 1(b2). That is, we clearly observe the effects of

process multiplicity (bias) even after disentangling them from strength of preference

(noise).

The only prediction of Theorem 1 relying on an additional assumption (that the

heuristic process is more internally consistent) is (b3), which states that the probability

of a correct response should be larger for decisions under alignment compared to neutral

decision problems. This is not contradicted by the figure, even though the probabilities

seem to be similar, possibly due to a ceiling effect.4

For a formal test of the model’s predictions, we turn to random-effects probit regres-

sion analyses on correct guesses. Strength of preference effects (noise) are captured by

the independent variable |∆| (difficulty), while the effects of process multiplicity (bias)

will be reflected by dummy variables indicating Conflict and Alignment. To test for the

effects of strength of preference for different kinds of decision problems (as derived from

process multiplicity), we also include the interactions |∆|×Conflict and |∆|×Alignment .

Table 4 reports the results of these regressions. We exclude observations with ∆ =

0 (p2 = 1/2 and m = 2) as correct responses are not well defined. Models 1 to 3

are restricted to the subsamples of neutral decision problems, and decision problems

under alignment and conflict, respectively. For all three cases, the probability of a

correct answer is increasing in the difference in expected payoffs, |∆ω|, reflecting strength
of preference effects and as predicted by Theorem 1(a1–a3). Model 4 shows that the

probability of a correct answer is larger in decision problems under alignment and smaller

for those under conflict, compared to neutral ones. This is as predicted by Theorem

1(b1–b3).

4Note that the four data points at exactly ∆ = 0 for neutral decision problems corresponds to
problems with p2 = 1/2 where, by chance, exactly two balls of each color were sampled. In this case,
both answers are actually correct and the data points depict the proportion of “Left” answers, which
are of course close to 0.5.
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Figure 3: Proportion of correct choices as a function of ∆ = EV (L)−EV (R) separately
for alignment (green), conflict (red), and neutral (black) situations.

In model 5, we simultaneously examine the effects of noise and bias, and show that

their effects can be disentangled and observed simultaneously. That is, even in the com-

plete sample, which includes neutral decisions and decisions under conflict and align-

ment, the effects of strength of preference can be seen for all three types of decisions

(significantly positive coefficient of ∆ for neutral decisions, and significantly positive

interactions for decisions under alignment and conflict). Further, the dummy for con-

flict is significant and negative, showing that process conflict reduces the probability of

a correct response. The dummy for alignment, however, is not significant in the joint

regression model.

In conclusion, our analysis confirms the predictions of Theorem 1 and show that both

noise (strength of preference) and bias (process multiplicity) play a role in a classical

economic task. This supports our main message, i.e., that focusing on either cognitive

imprecision while ignoring process multiplicity or on dual-process effects while ignor-

ing strength-of-preference regularities is likely to result in an incomplete picture of the

determinants of errors in economic decision making.

4 Detecting Multiple Processes

The previous section has shown that errors in economic decisions arise both from cogni-

tive imprecision, in the form of strength-of-preference effects, and process multiplicity,

which generate dual-process effects. In the analyses we carried out in that section, we

show that each kind of effect can be detected in the data even when controlling for the

other kind of effect. In this section, we adopt a more diagnostic approach, showing that

20



Table 4: Random effects Probit regression on probability of a correct answer.

Correct Neutral Alignment Conflict All All
(1) (2) (3) (4) (5)

|∆| 31.638∗∗∗ 59.229∗∗∗ 120.008∗∗∗ 28.620∗∗∗

(9.570) (3.567) (6.101) (8.714)
Alignment 0.072∗∗ -0.069

(0.033) (0.075)
Conflict -1.261∗∗∗ -1.510∗∗∗

(0.034) (0.076)
|∆| × Alignment 28.861∗∗∗

(9.322)
|∆| × Conflict 78.083∗∗∗

(10.396)
Constant 2.111∗∗∗ 1.863∗∗∗ 0.437∗∗∗ 2.072∗∗∗ 1.878∗∗∗

(0.130) (0.071) (0.093) (0.069) (0.095)

Observations 6799 28915 10925 46639 46639
Subjects 166 166 166 166 166

Notes: Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

certain discontinuities in the data (which might be lost or overlooked in standard regres-

sion analyses) can be used to establish the presence of a heuristic (i.e., detect process

multiplicity) even in the presence of strength of preference effects.

To understand the approach, recall that we model decision problems as pairs ω =

{Aω, Bω}, with the understanding that the labels A and B might have particular mean-

ings for a specific application. This convention can be used to simplify notation by using

the labels to reflect particular cues or triggers on which the heuristic processes act. For-

mally, a heuristic process h is triggered by A (resp. B) if, for every ω ∈ Ωh, h(ω) = Aω

(resp. h(ω) = Bω).

For example, consider a dataset involving lottery choices in the gain domain. Each

lottery pair is of the form ω = {Sω, Rω}, where the R lottery is riskier than the S lottery.

Consider a certainty heuristic h, which always favors riskless lotteries (i.e., those with a

sure outcome), but is inactive if both lotteries in a pair involve some risk. The domain

of the heuristic, Ωh, contains all pairs where Sω is riskless, and only those. The certainty

heuristic prescribes h(ω) = Sω for all ω ∈ Ωh and is silent for ω ∈ ΩN
h = Ω \ Ωh. That

is, the certainty heuristic is triggered by S.

4.1 Choice Bias and Discontinuities in Error Rates

If decisions are affected by a heuristic which is triggered by a specific action, our model

predicts a clear discontinuity in the data. This is because, for this kind of heuristic, it

is possible the sharply separate decision problems under conflict and under alignment.

Recall that, if the deliberative process d is psychometric, then d(ω) = Aω for every

∆ω > 0 and d(ω) = Bω for every ∆ω < 0. If the heuristic process h is triggered by A,
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Figure 4: Illustration of Theorem 2, depicting the probability of a correct answer as a
function of the cardinal difference between the alternatives, ∆ω, when the heuristic is
triggered by an action. Left: Decision problems in conflict and alignment are separated
by the sign of ∆ω, creating a discontinuity. Right: There is no discontinuity for neutral
decision problems.

then every decision problem ω ∈ Ωh with ∆ω < 0 is in conflict, because d(ω) = Bω but

h(ω) = Aω. Analogously, every decision problem ω ∈ Ωh with ∆ω > 0 is in alignment,

because d(ω) = Aω = h(ω). Hence, for decision problems where the heuristic is actually

triggered, conflict and alignment are sharply (and even graphically) distinguished.

This intuition is illustrated by the comparison between Figures 1 and 4. By Theorem

1, the probability of a correct response is shifted up for decision problems in alignment

and shifted down for decision problems in conflict. If the heuristic is triggered by A,

decision problems in alignment are those with positive ∆, and decision problems in

conflict are those with negative ∆. Hence, the effects described in Theorem 1 create a

discontinuity (an upwards jump) at ∆ = 0 (Figure 4, left). In contrast, this discontinuity

should be absent for neutral decision problems (Figure 4, right). The following result

collects these observations. The proof is a straightforward application of Theorem 1 and

hence omitted.

Theorem 2. Suppose the deliberative process d is psychometric and the heuristic h has

constant consistency Ph > 1/2 and is triggered by A. Then the following statements

hold.

(a) The probability of a correct answer is increasing in ∆ω for ∆ω > 0 (alignment)

and decreasing in ∆ω for ∆ω < 0 (conflict).

(b) For decision problems where h is active, ω ∈ Ωh, there is a discontinuity at ∆ω = 0

with more correct answers in alignment (∆ω > 0) than in conflict (∆ω < 0).

(c) For neutral decision problems, there is no discontinuity and the probability of a

correct answer at ∆ω = 0 is 1/2.

Regression analyses, however, are not well-suited to detect the effects predicted in

Theorem 2. Analyses such as those illustrated in Figure 3 and reported in Table 4
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essentially estimate a linear (decreasing) trend for ∆ < 0 and another linear (increasing)

trend for ∆ > 0. While this is enough to test for the predictions of Theorem 1, if

the relationship between ∆ and error rates is nonlinear (as will generally be the case),

one will typically observe some jump between the intersects at ∆ = 0, and a dummy

capturing the sign of ∆ will typically be significant, but these results are mechanical and

do not reflect actual discontinuities.

To formally test and quantify the jump between conflict and alignment for a given

choice dataset, one can rely on a local polynomial regression discontinuity estimation

with robust bias-corrected confidence intervals as detailed in Calonico et al. (2014). The

idea is not to rely on bins (as in Figure 3) or on the difference between intersects (as

in regression tables), but rather use the observations around the predicted discontinuity

threshold to investigate statistical differences. Intuitively, this is analogous and closely-

related to the procedure used to test for the effectiveness of policies in regression discon-

tinuity designs (e.g., He et al., 2020). The procedure constructs robust, non-parametric

confidence intervals for the average “treatment effect” (the jump at zero) at the spec-

ified cutoff conditional on mean-squared-error optimal bandwidths. In the application

below, we will rely on this procedure to test the predictions of Theorem 2(b–c), and

present additional graphical and regression analyses for illustrative purposes, as well as

to confirm strength-of-preference effects (Theorem 2(a)).

The next corollary shows that the size of the discontinuity at ∆ = 0 is meaningful.

First, quantifying this discontinuity allows to back up a lower bound on the probability

α that the heuristic process makes the decision. Second, the jump at zero is predicted

to be symmetric, which affords a further opportunity to test the model.

Corollary 1. Suppose the deliberative process d is psychometric and the heuristic h has

constant consistency Ph > 1/2 and is triggered by A.

(a) For decision problems where h is active, the discontinuity at ∆ω = 0 is equal to

D̄ = α(2Ph − 1).

(b) In particular, the parameters α and Ph are partially identified by D̄. Specifically,

α > D̄ and Ph > D̄+1
2 .

(c) Further, the left and right parts of the discontinuity are symmetric. That is, if P−

and P+ are the limits of the probabilities of a correct response as ∆ω → 0− and

∆ω → 0+, respectively, then

1

2
− P− = P+ −

1

2
.

4.2 Application: Certainty Effect

The certainty effect refers to the robust empirical observation that, when choosing be-

tween a sure but small amount and a larger but risky amount, many participants choose

the safe alternative, but when the winning probabilities are reduced in ways that should
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not alter the decision of an expected utility maximizer, most people tend to choose the

riskier option instead. This effect, which is one of the most prominent empirical vi-

olations of Expected Utility Theory, can be observed in different ways, depending on

how the related choice pairs are constructed. The Allais paradox (Allais, 1953) reflects

a common consequence effect, where the same winning probability is transferred to a

losing outcome for both lotteries to construct the second pair. The common ratio effect

(Kahneman and Tversky, 1979) uses a different construction where winning probabili-

ties are scaled down by the same ratio. In both cases, the hypothesis is that choices for

the second pair, where no lottery is riskless, reflect the fact that most people are risk

averse, but choices for the first pair are affected by an additional decision process which

is triggered by the presence of a riskless (certain) alternative: a certainty heuristic. In

our terms, such a heuristic process would be triggered by the certain alternative.

The common ratio and common consequence effects have been widely replicated

(see, e.g., Ruggeri et al., 2020; Blavatskyy et al., 2023). Specifically, preference reversals

where participants choose the sure option if one is available but the risky one if not are

found to be much common than the opposite ones. However, a recent contribution by

McGranaghan et al. (2024) (see also Ballinger and Wilcox, 1997; Hey, 2005; Blavatskyy,

2007, 2010) has argued that previous evidence for the certainty effect might actually

be inconclusive and simply reflect strength-of-preference effects. The argument is as

follows. When participants choose between a small, sure amount and a larger, risky

one, they might choose the risky one by mistake (noise) even if they actually prefer

the sure amount. However, if the difference in utilities (strength of preference) is large,

such mistakes will be rare. In the common ratio and common consequence effects, the

winning probabilities are reduced (and transferred to zero outcomes) to create the second

pair. This essentially reduces the difference in utilities for that second pair, and hence

the strength of preference. Thus, as long as the distribution of noise remains largely

unchanged, the probability of an error becomes much larger for the second pair. This

means that reversals where the sure option is taken if available but the riskier one is

chosen for the second pair will be more likely than the opposite ones. McGranaghan

et al. (2024) argued that previous tests, which typically have used paired choices, do

not convincingly demonstrate the existence of a certainty effect. Using alternative tests

based on paired valuations, McGranaghan et al. (2024) failed to observe systematic

evidence for the common ratio effect, and concluded that previous reports of this effect

(which have motivated prominent developments as Prospect Theory) might just be due

to regularities in the noise, and, in particular, strength of preference.5

The certainty effect is hence a particularly interesting example where our model can

be applied. A candidate certainty heuristic would be, by definition triggered by the

sure option, and hence Theorem 2 applies. Thus, we should observe a discontinuity at

5Alós-Ferrer et al. (2024) conducted experiments with repetitions measuring response times, which
allows for preference revelation following the techniques introduced in Alós-Ferrer et al. (2021), and
concluded that both the common ratio and the common consequence effect are supported by empirical
preference revelation analyses.
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∆ = 0 when analyzing data for pairs which involve a sure option (conflict and align-

ment), and this discontinuity should be absent when both lotteries involve risk (neutral

decision problems). Also, this effect should obtain even though the model and the anal-

ysis directly control for strength-of-preference effects, which should still be reflected in

the monotonicity of error rates as a function of ∆. Hence, the application is both an

illustration of the use of our model to detect the presence of a heuristic process and an

answer to the criticism of McGranaghan et al. (2024) on the certainty effect.

For this purpose, we now apply the model to the certainty effect and test its pre-

dictions, in particular Theorem 2, in a new experiment. The deliberative process d

is assumed to be maximization of expected utility. This process is always active and

prescribes to choose the option with the larger expected utility (which we will need to

estimate out of sample). Strength-of-preference effects are operationalized based on the

cardinal difference between certainty equivalents of the options derived from individually-

estimated expected utilities (see Section 4.2.3 for details). The heuristic process h is

assumed to be the certainty heuristic, which is triggered by lotteries involving certain

outcomes. That is, if h is active, it prescribes to choose the lottery that gives a certain

outcome.

4.2.1 Experimental Design

For our certainty experiment, we recruited a total of 128 subjects (84 females) from

the student population of the University of Cologne, excluding students majoring in

psychology and economics as well as subjects who had already participated in similar

experiments involving lottery choice or in more than 10 experiments. The median age

was 24, ranging from 19 to 69. Participants took part in 4 experimental sessions with

32 subjects each. The experiment was run at the Cologne Laboratory for Economic

Research (CLER) and was programmed in PsychoPy (Peirce, 2007).

The main part of the experiment consisted of 132 pairs of binary lotteries, presented

to subjects sequentially. For each pair, subjects were asked to choose one of the two

lotteries. All lotteries were presented in the form of colored pie charts. The colors in the

pie charts (green and blue) were counterbalanced across subjects. To control for order

effects, each subject was randomly assigned to one of four different sequences of lottery

pairs. There was no feedback during the course of the experiment, that is, subjects did

not get any information regarding their earnings until the very end of the experiment.

All decisions were made independently and at a subject’s individual pace.

Before the beginning of the experiment, subjects read written instructions and an-

swered four control questions to ensure their understanding of the concept of a lottery

and its pie chart representation. Detailed instructions for the lottery choice part were

handed out only after all participants had answered the control questions correctly.6

Lottery choice was incentivized using the random incentive mechanism. That is, to de-

6A complete set of exemplary instructions can be found in Appendix E.
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termine a participant’s payoff, one of the 132 lottery pairs was randomly selected, and

the lottery actually chosen by the participant was played out. The participant received

the realized outcome as payoff. In addition, subjects received a show-up fee of 4e for

an average total remuneration of 14.43e. Sessions lasted between 45 and 60 minutes

including instructions and payment.

Among the 132 lottery pairs, 96 were based on the classical examples in Kahneman

and Tversky (1979) with the intention to trigger the certainty effect and related phenom-

ena. Specifically, 32 lottery pairs were designed to target the common ratio effect, and 32

the common consequence effect. A further 32 lottery pairs targeted an “almost-certainty

effect” not involving any certain outcomes, which we will discuss in the Appendix. Fur-

ther, we included 4 lottery pairs where one lottery first-order strictly dominated the

other. Those were intended as a basic rationality check. Last, we included a disjoint

set of 32 “neutral” lottery pairs which were used only to estimate the individual risk

attitude. We took special care to make sure that those lotteries were not affected by any

obvious bias. Subsection 4.2.3 below provides a detailed description of the procedure

used to estimate individual utility functions.

The focus of our experiment was the certainty effect. We used two types of con-

structions. The first relies on the common ratio effect (Kahneman and Tversky, 1979),

whereas the second is inspired by the common consequence effect (Allais, 1953) but

adapted to lotteries with only two outcomes.

The common-ratio lottery pairs are constructed as follows. Given X,Y, p with X >

Y > 0 and 0 < p < 1, we define for k ≥ 1 the pair of lotteries S1(k) and R1(k) by

S1(k) =







Y e with prob. 1/k

0e otherwise
R1(k) =







Xe with prob. p/k

0e otherwise.

Note that R1(k) is always the riskier lottery and S1(k) is always the safer lottery, in

the sense that the former has a larger probability for the zero outcome. For k = 1,

S1(1) is a sure gamble, whereas for k > 1 neither S1(k) nor R1(k) involve a certain

outcome. Abusing notation, we can write S1(k) = (1/k, Y ) and R1(k) = (p/k,X),

which just specifies the probability and magnitude of the non-zero outcome. For instance,

given S1(1) = (1, 16) and R1(1) = (0.80, 25) we obtain S1(4) = (0.25, 16) and R1(4) =

(0.20, 25) by dividing the probability of winning by k = 4.

The construction of common-ratio pairs is such that an expected utility maximizer

would prefer S1(1) over R1(1) if and only if she also prefers S1(k) over R1(k). Hence,

any reversal contradicts expected utility theory. The traditional common ratio effect

(Kahneman and Tversky, 1979) is the empirical observation that reversals where S1(1)

and R1(k) (for k > 1) are chosen in their respective pairs are more frequent than the

opposite ones.
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The common-consequence lottery pairs are as follows. Given X,Y, p with X > Y > 0

and 0 < p < 1, we define the pair of lotteries S2(π) and R2(π) for π < 1 by

S2(π) =







Y e with prob. 1− π

0e otherwise
R2(π) =







Xe with prob. p− π

0e otherwise.

Again, R2(π) is always more risky than S2(π), in the sense that the former has a larger

probability for the zero outcome that the latter. For π = 0, S2(0) offers a sure gain,

whereas for π > 0 both prospects S2(π) and R2(π) are risky. For example, given S2(0) =

(1, 25) and R2(0) = (0.96, 28) we obtain S2(0.44) = (0.56, 25) and R2(0.44) = (0.52, 28)

by reducing the probability of winning by π = 44 percentage points. That is, a common

probability π is shifted from the non-zero outcomes to the common consequence of a

zero outcome.

The common-consequence effect reflected by the Allais’ paradox Allais (1953) and

related phenomena (Kahneman and Tversky, 1979) uses lotteries with three outcomes to

guarantee that any reversal is incompatible with expected utility theory. Our construc-

tion simplifies the lotteries, making them comparable to the ones used for common-ratio

violations, but only the analogous reversals are inconsistent with expected utility theory.

Specifically, if an expected utility maximizer prefers S2(0) over R2(0), then this agent

must also prefer S2(π) over R2(π) for any π ∈ [0, 1), as long as the Bernoulli utility of

money is increasing. The argument is as follows. Let u be the Bernoulli utility of money,

and assume w.l.o.g. that u(0) = 0. Then,

EU(S2(π))− EU(R2(π)) = EU(S2(0))− EU(R2(0)) + π (u(X)− u(Y )) .

Hence, EU(S2(0)) > EU(R2(0)) implies that EU(S2(π)) > EU(R2(π)) since u(X) −
u(Y ) > 0 as X > Y . Thus any expected utility maximizer choosing S2(0) over R2(0)

must also choose S2(π) over R2(π), and reversals where R2(π) is chosen instead reflect

a “certainty effect.”

We constructed 32 certainty pairs involving certain outcomes. The first 16 pairs

followed the common-ratio construction above with k = 1, while the remaining 16 pairs

followed the the common-consequence construction with π = 0. For every certainty

pair, we constructed a matched neutral pair not involving certain outcomes to elicit

possible reversals reflecting the certainty effect. Specifically, for each common-ratio

pair (S1(1), R1(1)), we included a neutral pair (S1(k), R1(k)) with k > 1, and for each

common-consequence pair (S2(0), R2(0)) we included a neutral pair (S2(π), R2(π)) with

π > 0. We refer to the resulting 32 double-pairs consisting of a certainty pair and the

corresponding neutral pair as “Allais-double-pairs” (see Appendix D.1 for the complete

list of lottery pairs). For each Allais-double pair, observing the safe choice in the certainty

pair but the riskier choice in the neutral pair contradicts expected utility maximization

and suggests a certainty effect.
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Figure 5: Choice frequencies in Allais-double pairs showing the certainty effect.

4.2.2 Establishing the Traditional Certainty Effect

For the analysis below, we will not distinguish between Allais-double-pairs obtained via

the common-ratio or common-consequence constructions. Results are always similar for

both types, and we present pooled analyses only for brevity.

We first explore whether our data replicates the traditional certainty effect. We

remark that, following McGranaghan et al. (2024), this cannot be taken as sufficient

evidence for the presence of an anomaly (recall the discussion above), and we conduct

this analysis merely to show comparability with the previous literature.

For a fixed Allais-double-pair, denote the decisions in the neutral and certainty pairs

by SN vs. RN and SC vs. RC , respectively. Thus, RNSC indicates that the risky lottery

was chosen in the neutral pair and the safe lottery was chosen in the certainty pair. The

traditional certainty effect refers to the empirical observation that reversals of the form

RNSC (which are always violations of expected utility in our design) are frequent, and

in particular more frequent than reversals of the form SNRC . Figure 5 illustrates the

distribution of choices for all 128 subjects for the 32 Allais-double pairs. Violations of

expected utility suggesting a certainty effect, i.e. RNSC choice patterns, are frequent,

occurring in 34.64% of all Allais-double pairs. Importantly, these violations are system-

atic, and in particular significantly more frequent than the opposite choice pattern SNRC

(8.18%; Wilcoxon Signed-Rank (WSR) test, N = 128, z = 7.569, p < 0.001). This shows

that our design indeed elicited choice patterns in agreement with the well-documented

certainty effect.
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4.2.3 Utility estimation

The previous subsection has documented choice patterns suggesting a certainty effect

in our data. Our aim, however, is to apply our model to separate cognitive imprecision

(noise) as reflected by strength-of-preference effects from an actual heuristic process

capturing a bias towards certainty. Data from previous experiments is ill-suited for

this purpose, because, in order to account for strength-of-preference effects, we need an

estimation of individual-level utility differences for each lottery pair.

For this purpose, and unlike in comparable experiments on the certainty effect, we

included an additional, disjoint set of 32 lottery pairs used exclusively to estimate the

risk attitude of each participant out-of-sample. That is, the experiment started with

a separate phase where participants made binary choices for 32 lottery pairs different

from the ones used in the Allais-double-pairs which came later. The set of lotteries

used in this first phase was constructed with the aim to maximize the precision of the

estimated risk attitudes. To achieve this, we relied on optimal design theory (Silvey,

1980) in the context of non linear (binary) models (Ford et al., 1992), in agreement with

the recommendations of Moffatt (2015).

For utility estimation, we assume that the structure of errors follows an additive

random utility model (e.g., Thurstone, 1927; Luce, 1959; McFadden, 2001). Estimation

of individual risk attitudes relies on a maximum likelihood procedure (e.g., see Bellemare

et al., 2008; Train, 2009) as standard in the literature (Von Gaudecker et al., 2011; Conte

et al., 2011; Moffatt, 2015; Moffatt et al., 2015). See Appendix B for more details on

the estimation procedure.

All T = 32 trials used for utility estimation involved binary choices between lotteries

of the form A = (p, x) and B = (q, y). That is, A and B pay x with probability p and y

with probability q, respectively, and 0 otherwise. We index the trials in the experiment

by t = 1, . . . , 32. That is, at trial t subjects faced the choice between At = (pt, xt) and

Bt = (qt, yt). Further, we index the N = 190 subjects by i = 1, . . . , N . We assume

a normalized power-utility function with constant relative risk aversion (CRRA) as in

Conte et al. (2011), which is given by u(x) = xr

r
. We further restrict r to be strictly

positive, which is standard when lotteries include a zero outcome.

4.2.4 Main Results (Certainty Effect)

We now turn to a direct empirical test of the model. We operationalize strength-of-

preference via the difference in (estimated) certainty equivalents (CE) between the safe

option and the risky option. Specifically, for a given lottery pair (S,R) and decision

maker i with estimated utility function ui, we consider

∆i
ω = CEi(S)− CEi(R) = u−1

i (EUi(S))− u−1
i (EUi(R)).
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Figure 6: Proportion of correct choices as a function of ∆i
ω = CEi(S)−CEi(R) separately

for certainty/DP pairs (left) and normal/neutral pairs (right).
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Figure 7: Proportion of correct choices as a function of ∆i
ω = CEi(S)−CEi(R) separately

for certainty/DP pairs (left) and normal/neutral pairs (right).

Recall that we assume the deliberative process to be maximization of expected utility

and, thus, we refer to a choice as correct if it maximizes (estimated) individual expected

utility. More precisely, choosing S is correct for subject i if ∆i
ω ≥ 0 whereas choosing R

is correct for subject i if ∆i
ω ≤ 0. Theorem 1 provides predictions about the relationship

between differences in CEs, ∆i
ω = CEi(S) − CEi(R) and the proportion of correct

choices assuming that maximization of expected utility is psychometric and the certainty

heuristic has constant consistency.

For illustration purposes, Figure 6 depicts choice data using a binning procedure for

∆, creating bins of observations that potentially contain different trials and different

subjects.7 We then calculate the proportion of correct choices for each bin. Note that

this binning procedure is used only for a graphical illustration, and neither the formal

regression analyses nor the discontinuity tests below rely on it.

7To construct the bins, we first order all observations by the ∆i. We then divide the range of values
in 50 bins of equal width and calculate the mean, standard deviation, and 95% confidence interval for
each of them. We graphically highlight bins containing less than 10 observations in gray and interpolate
the plotted means using two separate linear regressions for positive and negative values of ∆.
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Figure 6 clearly shows the monotonicities and the discontinuity predicted by Theo-

rem 2. That is, as in Theorem 1, psychometric effects can be seen in the fact that the

probability of a correct response increases as ∆i
ω moves away from zero, and this regu-

larity is observed separately for neutral decision problems and for those in either conflict

or alignment. Crucially, for certainty pairs there is a clear upward jump at ∆i
ω = 0,

which separates conflict (∆i
ω ≤ 0) and alignment (∆i

ω ≥ 0) decision problems, with the

first clearly below 50% and the second clearly above that reference quantity. This is

diagnostic for the presence of a separate decision process reflecting the certainty heuris-

tic, which lowers the proportion of correct answers in conflict and raises it in alignment.

In contrast, this jump is absent for neutral pairs, where the heuristic is not triggered.

These results are in agreement with the predictions of Theorem 2.

To formally test and quantify the discontinuity for certainty pairs, as commented

above we rely on a local polynomial regression discontinuity estimation with robust bias-

corrected confidence intervals as detailed in Calonico et al. (2014). This does not use the

binning procedure and linear trends depicted in Figure 6, but rather tests for statistical

differences around the predicted threshold (∆ = 0).8 The test, which is often used in

regression discontinuity designs to test for the effectiveness of treatments and policies, is

based on robust, non-parametric confidence intervals for the average “treatment effect”

at the specified threshold conditional on mean squared error optimal bandwidths.

The procedure is illustrated in Figure 7 (left). The test detects a statistically signifi-

cant upward jump of 55.53% (z = 12.30, p < 0.0001) in the proportion of correct choices

at zero, with more correct choices in alignment than conflict, in line with Theorem 2(b).

To ensure that this result is not a mere mechanical effect driven by an unintended as-

pect of the experimental design, we ran the analogous estimation for neutral pairs. In

agreement with Theorem 2(c), we find no evidence for a similar jump (Figure 7, right;

the difference in intercepts is only -5.818% and not significantly different from zero,

z = −1.630, p = 0.103).

The magnitude of the discontinuity is computed as the difference between the in-

tercepts as ∆ approaches zero from the right and from the left. Corollary 1(a) states

that this upward jump should be of size α(2Ph − 1). By Corollary 1(b) this constrains

the parameters of the model, yielding lower bounds of α > 0.56 and Ph > 0.78. To

illustrate, suppose Ph was close to one, i.e. the heuristic process has large internal con-

sistency. This implies that α is close to 0.56, i.e., in the presence of a riskless option, the

certainty heuristic drives individual choices slightly more than half of the time. Analo-

gously, suppose α was close to 1, i.e., the certainty heuristics almost always drives choices

whenever a riskless option is available. This implies that Ph is close to 0.78. While we

cannot identify the parameters α, Ph beyond these bounds, Corollary 1 does imply that

8In particular, the procedure uses a 4th-degree polynomial fit to approximate the population-
conditional-mean functions left and right of the 0. It employs a kernel function to construct the global
polynomial estimators and a data-driven procedure to select the number of bins which are created to
compare observations on the left and on the right of the critical threshold. We use the default options
of this procedure, implemented by the command rdrobust in STATA.
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α(2Ph− 1) ≃ 0.56. That is, there is a tradeoff in the sense that to explain the data with

a larger α, a smaller Ph is required and vice versa.

Corollary 1(c) offers another opportunity to validate the model. Specifically, it pre-

dicts that the jump at ∆ = 0 must be symmetrically distributed between the left- and

the right-hand parts. Following the procedure described above (Calonico et al., 2014)

allows to derive the intercepts (Figure 7, left), i.e. the limits of the probabilities of correct

responses as ∆ approaches zero, conditional on conflict (∆ < 0) or alignment (∆ > 0).

Those are P− = 0.2354 and P+ = 0.7700, respectively. As predicted by Corollary 1(c),

(1/2)− P− = 0.2646 ≃ 0.23 = P+ − (1/2).

Last, we conduct random effects panel Probit regressions on the probability of a

correct answer, which are reported in Table 5. Models 1-3 consider only alignment, con-

flict, or neutral decision problems, respectively, with the absolute difference in certainty

equivalents (
∣

∣∆i
ω

∣

∣) as an independent variable. For all models we find highly significant

strength-of-preference effects, that is, the probability of a correct answer is increasing

in the absolute difference in certainty equivalents, separately for neutral decisions and

those in either conflict or alignment. This shows that the effects of cognitive imprecision,

as predicted in Theorems 1 and 2, are readily observable.

Model 4 considers all decision problems with ∆i
ω > 0, which includes both decision

problems in alignment and neutral decision problems where the deliberative response

should be S. The dummy for alignment decision problems is significantly positive,

showing that the certainty heuristic shifts up the probability of a correct response in this

case. Conversely, Model 5 considers all decision problems with ∆i
ω < 0, which includes

both decision problems in conflict and neutral decision problems where the deliberative

response should be R. The dummy for conflict decision problems is significantly negative,

showing that the certainty heuristic shifts down the probability of a correct response in

this case.

Model 6 considers all certainty pairs, i.e. all decision problems in either conflict

or alignment. The regression controls for a dummy for ∆i
ω > 0, which in this case

corresponds to decision problems in alignment. The coefficient for
∣

∣∆i
ω

∣

∣ is significantly

positive, which again shows the strength-of-preference effect for decisions under conflict.

The linear combination test including the interaction between the dummy and
∣

∣∆i
ω

∣

∣ is

significant and positive, showing the strength-of-preference effect for decision problems

under alignment. The dummy itself is significantly positive, reflecting the upper jump at

zero. However, we remark that this is not the correct way of testing for a discontinuity,

as it merely reflects the difference in intersect points of linear trends estimated above

and below zero, and might be misleading if the data displays a nonlinear relation to ∆.

The correct way to test for a discontinuity is the procedure we described above (Calonico

et al., 2014).

Model 7 is the analogue of Model 6 but considering only neutral decision problems.

That is, there is neither conflict nor alignment. The coefficient for
∣

∣∆i
ω

∣

∣ is significantly

positive, showing strength-of-preference effect for decisions where the deliberative pro-
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Table 5: Random effects Probit regressions on correct answers.

Correct Alignment Conflict Neutral ∆i
ω > 0 ∆i

ω < 0 Certainty Neutral
(1) (2) (3) (4) (5) (6) (7)

∣

∣∆i
ω

∣

∣ 0.083∗∗∗ 0.210∗∗∗ 0.423∗∗∗ 0.171∗∗∗ 0.250∗∗∗

(0.019) (0.029) (0.051) (0.025) (0.058)
Alignment 0.818∗∗∗

(0.053)
Conflict −1.147∗∗∗

(0.047)
∆i

ω > 0 (dummy) 1.539∗∗∗ −0.359∗∗∗
(0.079) (0.066)

∣

∣∆i
ω

∣

∣× (∆i
ω > 0) −0.115∗∗∗ 0.586∗∗∗

(0.001) (0.154)
Constant 1.537∗∗∗ −1.106∗∗∗ 0.283∗∗∗ 0.105 0.648∗∗∗ −0.690∗∗∗ 0.492∗∗∗

(0.241) (0.170) (0.056) (0.087) (0.104) (0.096) (0.070)

Linear Combination
∣

∣∆i
ω

∣

∣ +
∣

∣∆i
ω

∣

∣× (∆i
ω > 0) 0.056∗∗∗ 0.837∗∗∗

(0.013) (0.142)

Observations 1614 2482 4096 3565 4627 4096 4096

Notes: Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

cess favors S. The linear combination test including the interaction between the sign

dummy and
∣

∣∆i
ω

∣

∣ is significant and positive, showing the strength-of-preference effect for

decisions where the deliberative process favors S. The dummy itself is also significantly

positive, but, as commented above, this just reflects a difference in intersect points of

linear trends estimated above and below zero, and not an actual discontinuity (compare

the right-hand sides of Figures 6 and 7).

5 Response Times

The recent literature in economics has recognized the value of response times as an ad-

ditional source of data which can be used to reveal latent variables and processes in

economic decision making. On the one hand, it is a well-established fact that strength-

of-preference effects also affect response times. Specifically, response times are longer

when the alternatives are more similar, i.e. more difficult to discriminate (Cattell, 1893;

Dashiell, 1937; Moyer and Landauer, 1967; Laming, 1985; Klein, 2001; Wichmann and

Hill, 2001; Palmer et al., 2005). This chronometric effect has also been shown for

preference-based economic tasks, i.e. decisions are slower when decision makers are closer

to indifference (Chabris et al., 2009; Alós-Ferrer and Garagnani, 2022a,b). Alós-Ferrer

et al. (2021) showed that this property can be used to reveal preferences without distribu-

tional assumptions on noise terms, and Alós-Ferrer and Garagnani (2024b) demonstrated

that preferences revealed through response times improve out-of-sample prediction com-

pared to standard econometric estimations.

On the other hand, choice models based on the interaction of different processes in the

human brain are built upon the assumption that more heuristic or intuitive processes

are faster than more deliberative ones (Sloman, 1996; Kahneman, 2003; Evans, 2008;
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Weber and Johnson, 2009). A number of works in economics have built upon this

extensive literature from psychology to understand the role of intuition and impulses in

decision making (e.g., Rubinstein, 2007, 2016; Gennaioli and Shleifer, 2010; Cappelen

et al., 2016; Heller et al., 2017; Spiliopoulos and Ortmann, 2018). For example, Achtziger

and Alós-Ferrer (2014) derived testable predictions for a dual-process model applied to

belief-updating tasks, and Alós-Ferrer and Ritschel (2021) used a similar approach to

analyze the interplay of imitation and best-reply in Cournot oligopolies.

Since we consider both cognitive imprecision and process multiplicity, response times

in our model and applications should reflect both a chronometric effect linked to strength

of preference and speed differences across processes. However, these effects can interact

and create confounds. As Krajbich et al. (2015) pointed out, studies comparing response

times across individuals might mistakenly identify dual-process effects even in the ab-

sence of process multiplicity. For example, a group of people might make fast decisions

in, say, a binary dictator game, because they have strongly prosocial preferences and

they do not struggle when evaluating a fair allocation compared to a selfish decision.

A different group of people might make slow decisions in the same situation because

their social preferences are weaker, hence the decision is a closer one for them. This

just describes a chronometric effect, but an analyst might be led to believe that the first

group is faster because prosociality is intuitive, while the second group is slower because

selfishness is more deliberative. This is a confound (see also Myrseth and Wollbrant,

2016), which highlights the need for well-specified models distinguishing both effects.

Therefore, we now add response times to the model, which, as choices, are assumed

to be stochastic. Let Tb(ω) = E[RT | b, ω] denote the expected response time in decision

problem ω ∈ Ωb conditional on the response being selected by a given process b. To

keep the model tractable, we assume that, for a given decision problem, expected re-

sponse times do not depend on the actually-selected response, but only on which process

determined the response.

First, to incorporate the possible chronometric effects of cognitive imprecision, we

consider the analogous concept to psychometric processes (Definition 2). In words, a

process is chronometric if it reflects the standard relation between choice difficulty and

response times, with more difficult decisions being slower.

Definition 3. A process b is chronometric if Tb(ω) is a strictly decreasing function of

|∆ω|.

Second, to capture the distinguishing features of deliberative and heuristic processes,

it is useful to have a notion of when a process is “faster” than another one.

Definition 4. Process b1 is faster than process b2 on a set of decision problems Ωb1b2 ⊆
Ωb1 ∩ Ωb2 if Tb1(ω) < Tb2(ω) for all ω ∈ Ωb1b2 .

For instance, if d is a deliberative process with Ωd = Ω and h is a heuristic process

with Ωh ( Ω, the standard assumption in a dual-process model is that h is faster than
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d on Ωh, i.e. whenever h is active. It is, however, important to note that this standard

assumption concerns the unobservable response times of cognitive processes. What the

analyst actually observes are the response times conditional on either decision problems

or responses. Since processes are stochastic, the analyst does not know which process

generated which response and cannot infer whether a decision is, say, “more intuitive”

just from its response time. As we will see below, however, within the context of our

model, assumptions on the relative speed of processes do yield testable predictions on

observable response times.

For all results below, E[RT (ω)] denotes the expected observable response time for

a decision problem ω, i.e. the response time of the actual decision, and in particular

without conditioning on a process. That is,

E[RT (ω)] =







(1− α)Td(ω) + αTh(ω) if ω /∈ ΩN
h

Td(ω) if ω ∈ ΩN
h .

5.1 Slower Decisions Due to Process Conflict

Our first testable prediction parallels a well-known effect from psychology known as the

Stroop Effect (Stroop, 1935). This can be illustrated with the Stroop task, a widely-

used paradigm where participants are asked to verbally report the color in which certain

words are printed. Some of those words, however, name colors themselves. For instance,

a stimulus might be the word “blue” printed in blue, while another stimulus might be the

same word “blue” but printed in red. This classical task illustrates the conflict between

the process to read a word, which is rather automatic and fast, and the slower, more

deliberative process to identify the font color, recover it from memory, and name it.

The Stroop effect, which is one of the most robust effects in the psychological literature,

refers to the fact that correct responses in conflict trials (e.g., “blue” printed in red) are

systematically slower than those in alignment trials (e.g., “blue” printed in blue). This

is typically interpreted as resulting from the need to inhibit an automatic response (just

reading the word) in case of conflict.

The following result demonstrates that this effect generalizes to any situation where

a heuristic process interacts with a deliberative one, and shows how to detect it even

when response times are affected by chronometric effects. The result only requires that

the heuristic process is faster than the deliberative one. In particular, it does not require

an assumption on the relative consistency of processes or an additional “slowdown” due

to the resolution of a conflict between processes, as typically assumed in psychology.

Theorem 3 (Generalized Stroop effect). Consider a set of decision problems Ω. Suppose

Td and Th are functions of |∆ω|, d is psychometric, h is faster than d on Ωh, and

Ph(ω) > 1/2 on Ωh. Let ωA in ΩA
h (alignment) and ωC in ΩC

h (conflict). Then:
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(a) If ∆ωA = ∆ωC , then

E[RT (ωA) | ρ(ωA) = d(ωA)] < E[RT (ωC) | ρ(ωC) = d(ωC)],

that is, correct answers in alignment are faster than correct answers in comparable

conflict situations.

(b) Additionally, suppose d is symmetric in the sense that Pd(ω) = Pd(ω
′) if |∆ω′ | =

|∆ω|. Then, if |∆ωA | = |∆ωC |, the property in (a) also holds.

(c) If d is symmetric and ω, ω′ ∈ ΩN
h are neutral decision problems with |∆ω′ | = |∆ω|,

then E[RT (ω) | ρ(ω) = d(ω)] = E[RT (ω′) | ρ(ω′) = d(ω′)].

Note that the theorem does not actually assume that d is chronometric, because the

results are for fixed values of ∆. Parts (a) and (b) are the Stroop effect. Part (b) is

needed to spell out this effect when the heuristic is triggered by an action, and hence

conflict and alignment decision problems have different signs of ∆. Part (c) merely states

that, even in that case, the analogous statement of the Stroop effect should be absent

for neutral decision problems.

Note that dual-process models from psychology typically impose stronger assump-

tions (and considerably more parametric structure) than Theorem 3. For instance, to

capture conflict detection and resolution, one might assume an additional non-decision

time for decision problems under conflict (MacCleod, 1991). Since this imposes an addi-

tional slowdown for conflict compared to alignment, it would just make the effect in the

result above stronger. Additionally, note that we do not impose that h is more consistent

than d, even though this is a standard property of heuristic processes (Redish, 2016).

Last, note that the result does not need that h exhibits chronometric effects on ∆.

Theorem 3 provides a simple indicator for the presence of dual processes. Sections

5.3 and 5.4 below provide statistical tests for the predictions in this theorem in our

two experiments, which will take the form of regression analyses as this allows us to

show that the regularities identified in the theorem are not confounded by strength

of preference effects. However, we can already provide a simple graphical illustration

of both Theorem 3 and its empirical support in the two applications (conservatism

and certainty experiments). This is shown in Figure 8. The top-left panel depicts the

area where data should be expected to be if one plots the differences in response times

(conflict minus alignment) for correct responses as a function of ∆. For this purpose,

one must identify decision problems with the same value of ∆. For the conservatism

experiment, ∆ is the difference in expected payoffs between the urns. Recall that,

in that experiment, there were 8 different values of ∆ for conflict decision problems,

and 12 for alignment decision problems. Of those, there are 6 values of ∆ where we

have decision problems both in conflict and in alignment, and hence we can compute

E[RT (ωC) | ρ(ωC) = d(ωC)] − E[RT (ωA) | ρ(ωA) = d(ωA)] with ∆ωA = ∆ωC . The
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Figure 8: Top-left: Illustration of Theorem 3. RTC(correct) − RTA(correct) should
be positive when comparing decision problems in conflict and alignment while keeping
∆ constant, for any value of ∆. Top-right: the predicted effect is confirmed in the
conservatism experiment. Bottom-left: the predicted effect is also confirmed in the
certainty experiment. Here the comparison is for certainty pairs between negative CE
differences (conflict; ∆i

ω < 0) and positive CE differences (alignment; ∆i
ω < 0), as a

function of the binned distance in CEs (
∣

∣∆i
ω

∣

∣). Bottom-right: the effect is absent when
conducting the analogous comparison for neutral pairs, where the sign of ∆i

ω does not
indicate conflict or alignment.

top-right panel of Figure 8 depicts those differences in the data, which are all positive

as predicted by Theorem 3(a).

The bottom-left panel of Figure 8 shows the empirical support for Theorem 3 in the

certainty experiment. In this experiment, recall that ∆ is the difference in certainty

equivalents between the lotteries, and that positive values (resp. negative) correspond

to choice pairs in alignment (resp. conflict). Thus, to illustrate the result, we identify

certainty pairs in conflict and alignment with similar values of ∆ but opposite sign

(part (b) or the result). Specifically, we follow a binning procedure analogous to the

one described for Figure 6 above, but now applied to
∣

∣∆i
ω

∣

∣. The panel then plots the

difference between the average response time of correct answers in alignment (∆i
ω > 0)

and conflict (∆i
ω < 0) for each bin. As can be seen in the figure, the differences in

response times E[RT (ωC) | ρ(ωC) = d(ωC)] − E[RT (ωA) | ρ(ωA) = d(ωA)] are positive

for all but one bin, confirming the prediction of Theorem 3(b).
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Figure 9: Left: Illustration of Theorem 4. RT (correct) − RT (error) should be positive
for decision problems in conflict and negative for those in alignment, for any value of ∆.
Right: the predicted effect is confirmed in the conservatism experiment.

To ensure that these results are not a mere mechanical effect driven by some other

aspect of the experimental design, the bottom-right panel of Figure 8 plots the analogous

graph for neutral pairs, for which Theorem 3(a,b) does not apply and the sign of ∆ω does

not identify conflict or alignment. Here, the difference has different sign for different bins,

but is generally close to zero, reflecting Theorem 3(c), in stark contrast to the observed

result for certainty pairs, for which part (b) of the theorem applies.

5.2 The Relative Speed of Errors

Our second testable prediction concerns the relative speed of different responses, i.e.

whether errors are faster or slower than correct responses for a fixed decision problem.

There is a long discussion about the relative speed of errors in psychology (e.g., Laming,

1985; Luce, 1986; Alós-Ferrer and Garagnani, 2024a). The following result shows that

the answer depends on whether decision problems are in conflict or in alignment.

Theorem 4. Consider a set of decision problems Ω. If h is faster than d and Ph(ω) >
1
2

on Ωh, then the following statements hold.

(a) For any ω ∈ ΩC
h (conflict), errors are faster than correct answers.

(b) Suppose h is more consistent than d. For any ω ∈ ΩA
h (alignment), errors are

slower than correct answers.

Intuitively, for decision problems in alignment, errors are slower than correct answers

because h is more consistent than d, implying that relatively more errors result from d

than from h. Since d is slower than h, many errors are relatively slow and many correct

responses are relatively fast, and the result follows. Analogously, for decision problems

in conflict, errors are faster than correct answers because relatively more errors result

from the faster process h.

Theorem 4 provides a second simple indicator for the presence of dual processes.

Again, Sections 5.3 and 5.4 below provide statistical tests for the predictions in this
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Figure 10: Top: Illustration of Theorem 4 for heuristics triggered by an alternative.
RT (correct)−RT (error) as a function of ∆ω have different signs depending on conflict
and alignment (top left) but are unrestricted for neutral pairs (top right). Bottom:
Average difference in response times between correct choices and errors in the certainty
experiment, as a function of ∆i

ω = CEi(S)− CEi(R) (binned), separately for certainty
pairs (left) and neutral pairs (right). The predicted effect is confirmed for certainty
pairs, and is absent for neutral pairs, for which the result does not apply.

theorem in our two experiments, using regressions to ensure that the results are not

confounded by strength of preference effects. Before turning to the statistical analyses,

however, we illustrate the predictions and the empirical support in our two experiments

in Figures 9 and 10. Figure 9(left) illustrates that, when a heuristic is active, the dif-

ference in average response times between correct choices and errors should be positive

in conflict and negative in alignment. The right panel shows that this effect is over-

whelmingly present for decision problems in our conservatism experiment. That is, for

each decision problem in that experiment, we compute the difference in response times

between correct responses and errors and plot it as a function of ∆. We indeed find a

sharp separation, with all but one of the differences in case of conflict in the upper half

and all differences in case of alignment in the lower half of the figure.

Figure 10 illustrates Theorem 4 and its empirical support when the heuristic is trig-

gered by an alternative. In this case, all decision problems in conflict (resp. alignment)

have negative (resp. positive) values of ∆. Thus, plotting the data should result in a pat-

tern as in the top-left panel of the figure, while for neutral decision problems the pattern

is unrestricted (top-right panel). The bottom panels of the figure show the empirical
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support for these predictions in our certainty experiment. Using the same binning pro-

cedure as in Figure 6, the panels plot the difference between the average response time

of correct answers and errors against the average difference in certainty equivalents for

each bin.9 In case of conflict, which corresponds to bins with ∆i
ω < 0, this difference is

positive for almost all bins, indicating that indeed errors are faster than correct answers.

In stark contrast, for alignment situations, that is, bins with ∆i
ω > 0, the difference is

negative for all bins, showing that errors are slower than correct answers. To ensure that

this asymmetry in response time differences is evidence for process multiplicity and can-

not be explained by other elements of the experimental design, the bottom-right panel

of Figure 10 shows the analogous graph for neutral pairs. For those pairs, the certainty

heuristic is absent, hence no effects of process multiplicity should be present (and the

sign of ∆ω does not indicate conflict or alignment). Indeed, as expected, we no longer

observe an asymmetric pattern of response time differences in this case. Instead, the

differences are spread across all four quadrants.

A version of the response-time predictions in Theorems 3 and 4 was provided in

Achtziger and Alós-Ferrer (2014), which discussed a dual-process model and applied

it to an experiment on belief-updating where Bayesian updating potentially conflicted

with reinforcement learning. The model presented there, called the Dual-Process Diffu-

sion Model (DPDM), was given a psychological microfoundation in Alós-Ferrer (2018b),

where each of the decision processes was assumed to follow a Drift-Diffusion model

(Ratcliff, 1978, 1981; Fudenberg et al., 2018). The DPDM was also applied to ex-

perimental data on Cournot oligopolies in Alós-Ferrer and Ritschel (2021), where the

potentially-conflicting processes were myopic best reply and imitation, and to repeated

constant-sum games in Spiliopoulos (2018), where the conflict was between simple re-

inforcement and a more complex version of reinforcement involving detecting patterns

in the opponent’s play. Recently, Alós-Ferrer and Garagnani (2024a) have reanalyzed

31 experiments from publications in cognitive psychology and demonstrated that the

predictions of the DPDM are supported in a large variety of paradigms involving po-

tential conflict between processes. The difference with Theorems 3 and 4 as presented

here is that those works concentrated on the interaction between processes but ignored

possible strength-of-preference effects. In other words, the results presented here show

that the response-times predictions of the DPDM extend to our model and could not be

explained by potential confounds with strength of preference.

5.3 Response Time Analysis (Conservatism)

Figures 8, 9, and 10 have illustrated the empirical support for Theorems 3 and 4 in

our two experiments. Those figures already avoid possible confounds with strength of

preference (Krajbich et al., 2015), since they control for the magnitude of ∆. To provide

statistical tests of the predictions while taking into account both strength-of-preference

9Bins which did not contain both errors and correct choices are excluded from the graph.
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Table 6: Random effects regression on logRTs for the conservatism experiment, for
decision problems where h is active.

logRT Non-Neutral problems Neutral problems
(1) (2) (3) (4)

|∆| -18.246∗∗∗ -17.997∗∗∗ -33.319∗∗∗

(0.599) (0.593) (1.785)
Conflict 0.648∗∗∗ 0.831∗∗∗ 0.831∗∗∗

(0.012) (0.008) (0.013)
|∆| × Conflict 1.665 -10.491∗∗∗

(2.114) (2.114)
Error 0.153∗∗∗ 0.100∗∗∗ 0.062∗

(0.019) (0.019) (0.034)
Error × Conflict -0.582∗∗∗ -0.564∗∗∗

(0.023) (0.023)
Constant 0.459∗∗∗ 0.315∗∗∗ 0.453∗∗∗ 0.647∗∗∗

(0.024) (0.023) (0.024) (0.028)

|∆|+ |∆| × Conflict -16.581∗∗∗ -28.488∗∗∗

(2.027) (2.030)
Error + Error × Conflict -0.429∗∗∗ -0.464∗∗∗

(0.014) (0.014)
Observations 39840 39840 39840 6799

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

and dual-process effects, we now report linear regressions for the response times in the

experiments.

We start with the conservatism experiment. We ran linear random-effects panel

regressions on log-transformed response times with independent variables |∆| (difficulty),

and dummy variables for Conflict and Errors. Table 6 reports the results. Regression

models 1 to 3 consider all decision problems where the heuristic is active, i.e. those under

conflict or alignment. Model 1 focuses on strength of preference, i.e., the effect of |∆|,
Model 2 concentrates on dual-process effects, and Model 3 considers both. In Model 1,

the coefficient for |∆| is significantly negative, demonstrating the chronometric effect,

that is, response times are longer for larger values of |∆|. Since the regression includes a

conflict dummy, the effect captured by the coefficient for |∆| corresponds to decisions in

alignment. To show that the chronometric effect is also present for decisions in conflict,

we examine the linear combination test |∆|+ Conflict × |∆|, which is also significantly

negative. These effects also hold in Model 3, which controls for possible dual-process

effects.

Models 2 and 3 include dummies for conflict and errors, hence the reference category

are correct decisions under alignment. In Model 2, the coefficient for the conflict dummy

is significantly positive, showing that correct decisions under conflict are slower than

correct decisions under alignment, as predicted by Theorem 3 (the generalized Stroop
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effect). This effect is robust to controlling for strength-of-preference effects (Model 3).

The coefficient for the error dummy is also significantly positive in both models, showing

that, in alignment, errors are slower than correct responses, as predicted by Theorem

4(b), and this effect persists when controlling for chronometric effects. The interaction

of conflict and error is significantly negative, showing that this effect changes when

we switch attention to decisions under conflict, as expected from Theorem 4(a). The

linear combination test Error + Conflict × Error is significantly negative in Model 2, in

alignment with both Theorem 4(a) and Figure 9. This effect persists in Model 3, where

we control for strength of preference.

Model 4 considers neutral decisions (uniform prior), where the heuristic is not active

and all decisions should arise from the deliberative process (that is, there is neither

conflict nor alignment). Again, and as expected, the coefficient for |∆| is significantly

negative, demonstrating the chronometric effect also for neutral decision problems. The

coefficient for the dummy error is marginally positively significant (although also smaller

in magnitude compared to problems in conflict or alignment), suggesting that errors

arising from the deliberative process might be slightly slower than correct responses.

5.4 Response Time Analysis (Certainty Effect)

We now turn to the certainty experiment. We ran the analogous linear random-effects

regressions on log-transformed response times. We again include the independent vari-

able |∆| to capture strength of preference and a dummy variable for errors. Since in

this experiment decision problems in alignment and conflict correspond to positive and

negative values of ∆, respectively, we include a dummy for ∆ > 0.

Table 7 reports the results. Models 1-3 analyze response times for certainty pairs,

which are either in conflict or alignment. Models 4-6 are the corresponding analyses for

neutral pairs, where the sign of ∆ does not correspond to conflict or alignment.

Models 1 and 4 concentrate on possible strength-of-preference (chronometric) effects.

These are clear for neutral pairs (Model 4). Both the coefficient for |∆| and the linear

combination test |∆|+ |∆|× (∆ > 0) are significantly negative, indicating that decisions

further away from indifference (on either side) were made faster. However, in Model 1,

neither the coefficient for |∆| nor the linear combination test are significant, meaning

that the chronometric effect is too weak to be detected in pairs where the certainty

heuristic is active, both for conflict and alignment pairs. A possible interpretation is

that, for neutral pairs, all decisions are made by the (chronometric) deliberative process,

hence chronometric effects dominate. In contrast, for certainty pairs, many decisions are

made by the heuristic process, which is triggered by the presence of a riskless option and

hence is not chronometric on ∆.

Models 2 and 5 concentrate on possible dual-process effects. For certainty pairs, in

Model 2 the dummy for ∆ > 0 (alignment) is significant and negative, confirming the

prediction of Theorem 3 (generalized Stroop effect). That is, correct decisions in conflict
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are slower than correct decisions in alignment. The dummy for errors is significantly

negative, showing that errors in conflict are faster than correct responses, as predicted

by Theorem 4(a). In contrast, the linear combination test Error+Error ×(∆ > 0) is sig-

nificantly positive, showing that errors in alignment are slower than correct responses,

as predicted by Theorem 4(b). Both the Stroop effect and the asymmetry in the relative

speed of errors are absent for neutral pairs (Model 5), which should not involve a heuris-

tic. We observe that the dummy for errors and the corresponding linear combination test

are both significantly positive. This suggests that the errors of the deliberative process

are in general slower than correct responses.

Models 3 and 6 put together chronometric and dual-process effects. For certainty

pairs, Model 3 shows that all effects detected in Model 2 are robust to controlling for

strength of preference, i.e. the predictions of Theorems 3 and 4 hold even when con-

trolling for possible chronometric regularities. For neutral pairs, Model 6 shows that

the chronometric effects detected in Model 4 are robust to controlling for asymmetries

arising for the sign of ∆. However, in this model errors are not significantly slower than

correct responses for positive ∆.

Overall, the analyses in this and the previous subsection show that our experiments

support the predictions of theorems 3 and 4, which in turn suggest that in both cases

decisions are the result of the interaction of two cognitively-different processes. Our

analyses also show that these effects subsist when controlling for possible strength-of-

preference effects, i.e., the results suggest multiple processes while avoiding possible

confounds with strength of preference.

6 Extensions and Additional Analyses

6.1 Generalization I: Cognitive Control Costs

For simplicity, the model presented above considers a single parameter α ∈ (0, 1) to

capture the probability of process selection whenever both processes are active. Adopt-

ing a dual-process view, 1 − α is the inhibition probability, that is, the probability that

the decision maker will be able to inhibit an automatic or intuitive reaction (following

process h) and make a decision following process d instead. The view in psychology is

that process selection is a central executive function, associated to cognitive functions

and consuming cognitive resources as working memory (Baddeley, 1992). In particu-

lar, inhibition probability should be affected by the availability of cognitive resources

(cognitive load, time pressure, etc.) and also by motivational and attentional factors.

A particularly interesting extension of the model is to generalize the parameter α to

allow inhibition probability to depend on the importance and relevance of the decision.

Decision makers pay more attention when the possible consequences of a decision are

more substantial. Thus, it is natural to assume that the probability that the heuristic

process h will take over is smaller for larger values of |∆|, which measures the cardinal
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Table 7: Random effect regression on log-transformed response times.

Log.RT Certainty pairs Neutral pairs
(1) (2) (3) (4) (5) (6)

|∆| 0.027 0.000 -0.766∗∗ -0.664∗∗

(0.032) (0.032) (0.318) (0.321)
(∆ > 0) (dummy) -0.018 -0.757∗∗∗ -0.699∗∗∗ -0.243 -0.133 -0.125

(0.113) (0.135) (0.158) (0.170) (0.192) (0.210)
|∆| × (∆ > 0) -0.048 -0.017 0.531 0.440

(0.036) (0.036) (0.336) (0.339)
Error -0.723∗∗∗ -0.718∗∗∗ 0.482∗∗∗ 0.433∗∗

(0.119) (0.120) (0.180) (0.182)
Error ×(∆ > 0) 1.203∗∗∗ 1.176∗∗∗ -0.170 -0.141

(0.225) (0.227) (0.270) (0.271)
Constant 2.629∗∗∗ 3.148∗∗∗ 3.158∗∗∗ 4.906∗∗∗ 4.538∗∗∗ 4.703∗∗∗

(0.136) (0.136) (0.156) (0.191) (0.200) (0.211)

Linear combination tests
|∆|+ |∆| × (∆ > 0) -0.021 -0.017 -0.234∗∗ -0.224∗∗

(0.015) (0.015) (0109) (0.109)
Error+Error ×(∆ > 0) 0.480∗∗∗ 0.458∗∗∗ 0.312∗ 0.292

(0.171) (0.172) (0.189) (0.189)
Observations 4096 4096 4096 4096 4096 4096

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

scope of the consequences of the decision (opportunity costs). Specifically, assume that

α = α(|∆|), where α(·) is a continuous and strictly decreasing function of |∆| taking
values in (0, 1). For instance, this would be the result of a model where cognitive control

costs are stochastic and the heuristic process is inhibited only if the costs are lower than

the potential gains |∆|.
This approach is related to Benhabib and Bisin (2005), who postulated a neuroe-

conomic model applied to intertemporal consumption decisions where a supervisory at-

tention system overrode automatic processing whenever the utility difference between

the actions chosen by deliberative and automatic processes exceeded a fixed parameter

measuring attention costs. The difference is that here the utility difference is measured

by ∆ and not by the anticipated choices of both decision processes, and that the re-

lation is assumed to be gradual rather than binary. Also, this extension implies that

heuristic processes will be followed more often, and the biases resulting from them will

occur more frequently, when decision makers are less sure of their preferences. Enke and

Graeber (2023) find evidence for this implication, showing that a number of biases are

more prominent when people are more cognitively uncertain about their decisions.

We refer to this model as themodel with cognitive control costs. Almost all our results

hold for this more general case (Appendix A contains the sketched proofs for each result

when needed, after the corresponding proofs for the results of the main model). All
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predictions in Theorem 1 hold, except the prediction of psychometric effects for decision

problems in alignment. The intuition is as follows. In extreme cases, the heuristic process

might be very internally consistent, with Ph close to one. Under alignment, this means a

very low error rate. Hence, if ∆ becomes larger and the probability of inhibition increases,

this might be counterproductive as the deliberative process is selected more often but

has a larger error rate. This might partially counteract the positive, psychometric effect

resulting from a lower probability of error conditional on the deliberative process being

selected. In contrast, under conflict, an increase in ∆ is never counterproductive, as it

both increases the probability of a correct response for the deliberative process and the

chances of the heuristic process (which under conflict typically produces errors) being

selected.

All predictions in Theorem 2 also hold, with the exception of part (a) in case of

alignment, for the same reason as above. In particular, the discontinuity in the presence

of multiple decision processes is also a prediction of the model with cognitive control

costs. Corollary 1 also holds, replacing α with α(0).

Theorems 3 and 4 hold without change, as they concern either comparisons of decision

problems with the same |∆| (hence the same α) or comparisons involving a fixed decision

problem (hence α is just replaced by α(|∆|)).

6.2 Generalization II: Slow Process Errors

A large literature in psychology has discussed the issue of whether, in simple cognitive

tasks, errors are faster or slower than correct responses (e.g., Laming, 1968; Luce, 1986;

Ratcliff and Rouder, 1998, 2000; Ratcliff et al., 2004). Theorem 4 provides an answer to

this question, namely that errors are slower when underlying decision processes are in

alignment and faster when they are in conflict. This is consistent with previous evidence

from psychology. For example, White et al. (2011) and Mulder et al. (2012) showed that

errors tend to be slower than correct responses in certain simple tasks (the Flanker task

and a random-dot motion taks, respectively) when trials are “congruent,” meaning that

two underlying processes favor the same response, but the opposite is true in incongruent

trials. Alós-Ferrer and Garagnani (2024a) have found evidence for this asymmetry in a

large number of datasets from cognitive psychology.

However, the model is based on the simplifying assumption that, for a given, fixed

process, there are no differences in expected response times between errors and correct

responses. This is natural, as any other assumption would introduce an exogenous

asymmetry which would confound the effect identified in Theorem 4. That is, this

theorem predicts an asymmetry in response times even though no such asymmetry is

assumed at the individual-process level.

Also, in their most basic formulation, classical models from psychology predict no

asymmetry in the responses times of errors and correct responses. For example, the

original, symmetric-boundaries drift-diffusion model of Ratcliff (1978, 1981) predicts
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identical response times distributions for either response, unless trial-by-trial variability

in either drift rates or starting points is assumed. However, works as Fudenberg et al.

(2018) have found evidence for slow errors in tasks which should not involve multiple

processes, which can be generated in the drift-diffusion model through appropriate as-

sumptions on the shape of the boundaries or the trial-by-trial distribution of drift rates.

In terms of our model, this would replace the assumption that expected process response

times are independent of the selected answer with a “slow errors” assumption. Consider

a decision process b and a decision problem ω = (Aω, Bω) ∈ Ωb. Let x denote an option

in ω, that is, x ∈ {Aω, Bω}. Denote by Tb(ω, x) the expected response time of process b

conditional on the response x being selected.

Call this the model with alternative-dependent response times. The property that the

heuristic process is faster than the deliberative one needs to be reformulated as follows.

Definition 5. For the model with option-dependent response times, process h is faster

than process d on Ωh if Th(ω, h(ω)) < Td(ω, d(ω)) for all ω ∈ Ωh.

The slow errors property is then captured as follows.

Definition 6. For the model with option-dependent response times, a process b exhibits

slow process errors if Tb(ω, b(ω)) < Tb(ω, x) for x 6= b(ω).

Almost all our results hold for this more general case. First, Theorems 1 and 2 hold

without change, as they are unaffected by assumptions on response times. Theorem 3,

on the generalized Stroop effect, holds replacing the assumption that h is faster than d

in the sense of Definition 4 with the analogous, weaker property spelled out in Definition

5. Note that the condition that Tb is a function of |∆| needs to be weakened to the

statement that Tb(ω, b(ω)) is a function of |∆|.
Theorem 4 also holds without changes except for part (a). That is, observed errors

are still predicted to be slower than correct responses under alignment, but it might

not be true that they are faster than correct responses under conflict. This is because

slow process errors might counteract the prediction of fast observed errors in case of

conflict, while they compound the prediction of slow observed errors in case of alignment.

Appendix A contains the sketched proofs for Theorems 3 and 4 for this extended model.

6.3 The Almost-Certainty Heuristic

Our second experiment focused on the common ratio and common consequence effects

as expressions of the certainty heuristic, which is assumed to be triggered when a lottery

involves a sure outcome. However, it has been argued that similar behavioral anomalies

might occur when lotteries involve very likely but still uncertain outcomes. Kahneman

and Tversky (1979) included an example of the common ratio construction where the

probabilities of non-zero outcomes were substantial (but not one) in one pair ($6000

with probability 0.45 vs. $3000 with probability 0.9) and were scaled down to become

“minuscule” in the second, associated pair ($6000 with probability 0.001 vs. $3000 with
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probability 0.002). They argued that, in the first pair, most people chose the lottery

where winning was most probable. One could hence hypothesize that the certainty

heuristic could be weakened to an ‘almost-certainty” heuristic when the probabilities of

winning are close to but smaller than one.

To examine this hypothesis, the certainty-effect experiment described in Section 4.2

also included 32 lottery double-pairs that targeted this “almost-certainty effect,” using

the common-ratio construction from Kahneman and Tversky (1979). We can then apply

the model presented in Sections 2 and 4 to the almost-certainty effect and test its predic-

tions. For this purpose, the deliberative process d is again assumed to be maximization

of expected utility, and strength-of-preference effects are operationalized based on the

individually-estimated expected utilities already used for the rest of the experiment (re-

call Section 4.2.3). The “almost-certainty” heuristic h is triggered by lotteries involving

outcomes with probability close to one, i.e. it is a heuristic triggered by alternative S,

as described in Section 4.

Appendix C describes the design and the results. We find support for Theorems 1 and

2, and in particular both evidence for strength-of-preference effects and a discontinuity at

∆ = 0 as predicted due to process multiplicity (note that the almost-certainty heuristic

is triggered by S). We also find support for the response-times predictions in Theorems

3 and 4, further confirming the presence of dual-process effects when controlling for

possible confounds from strength of preference.

7 Discussion

Classical economic theories share the idea that all observed choices of an economic agent

should be organized as if arising from the maximization of a single, abstract preference

relation. However, there is abundant evidence that this interpretation is at odds with

actual human behavior. The reasons are twofold.

First, choice arises from noisy computations in the human brain, and is hence stochas-

tic and inherently linked to cardinal decision values. Cognitive imprecision in the percep-

tion, computation, and maximization of those values generates well-known psychometric

and chronometric effects which can be broadly described as “strength of preference.”

That is, errors are more frequent and choices are slower when decision values are closer

to each other.

Second, oftentimes choices are not determined by a single decision process, but rather

are the result of the interplay and even conflict between different decision processes, be-

havioral rules, or heuristics that can lead to fundamental inconsistencies in observed

behavior, which systematically contradict preference maximization. This creates a mul-

tiplicity of decision processes which generates error patterns that are fundamentally

different from the ones arising from cognitive imprecision.

In this work, we have proposed a simple, parsimonious model where decisions arise

from a mixture of cognitively-imprecise value maximization and simpler cognitive short-
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cuts or heuristics. Hence, economic errors arise both due to noise and as a result of

bias. In two different experiments, targeting anomalies in belief updating and decisions

under risk, respectively, we show that the model successfully predicts complex patterns

in choice frequencies, error rates, and response times. In a belief-updating experiment,

we find strength-of-preference patterns as predicted by cognitive imprecision, but only

when controlling for the interaction between (noisy) expected-value maximization and a

simple conservatism heuristic. In a lottery-choice experiment focused on the celebrated

certainty effect, we reproduce those findings and further find clear evidence (in the form

of a diagnostic discontinuity in error rates) for the existence of a heuristic favoring risk-

free alternatives which conflicts with noisy expected-utility maximization.

These findings emphasize the importance of accounting for both process multiplicity

(and, in particular, the presence of cognitive shortcuts) and cognitive imprecision in

value maximization (and, specifically, strength-of-preference effects). Neither one nor

the other suffice, in isolation, to explain observed patterns of behavior. We conclude

that jointly modeling noise, bias, and their interaction provides a parsimonious, unified

framework which can fully account for deviations from normative prescriptions across

different economic domains.
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Achtziger, A., C. Alós-Ferrer, S. Hügelschäfer, and M. Steinhauser (2015). Higher Incen-
tives Can Impair Performance: Neural Evidence on Reinforcement and Rationality.
Social Cognitive and Affective Neuroscience 10 (11), 1477–1483.

Agranov, M. and P. Ortoleva (2017). Stochastic Choice and Preferences for Randomiza-
tion. Journal of Political Economy 125 (1), 40–68.

Allais, M. (1953). Le Comportement de l’Homme Rationnel Devant le Risque, Critique
des Postulates et Axiomes de l’Ecole Americaine. Econometrica 21, 503–546.

Allport, G. (1954). The Nature of Prejudice. Reading, Massachusetts: Addison-Wesley.

Alós-Ferrer, C. (2018a). A Review Essay on Social Neuroscience: Can Research on
the Social Brain and Economics Inform Each Other? Journal of Economic Litera-
ture 56 (1), 1–31.

Alós-Ferrer, C. (2018b). A Dual-Process Diffusion Model. Journal of Behavioral Decision
Making 31 (2), 203–218.

Alós-Ferrer, C., E. Fehr, H. Fehr-Duda, and M. Garagnani (2024). Common Ratio and
Common Consequence Effects Arise from True Preferences. Working Paper (available
at alosferrer.github.io).

48



Alós-Ferrer, C., E. Fehr, and N. Netzer (2021). Time Will Tell: Recovering Preferences
when Choices are Noisy. Journal of Political Economy 129 (6), 1828–1877.

Alós-Ferrer, C. and M. Garagnani (2022a). Strength of Preference and Decisions Under
Risk. Journal of Risk and Uncertainty 64 (3), 309–329.

Alós-Ferrer, C. and M. Garagnani (2022b). The Gradual Nature of Economic Errors.
Journal of Economic Behavior and Organization 200, 55–66.

Alós-Ferrer, C. and M. Garagnani (2023). Part-Time Bayesians: Incentives and Behav-
ioral Heterogeneity in Belief Updating. Management Science 69 (9), 5523–5542.

Alós-Ferrer, C. and M. Garagnani (2024a). Errors, Fast and Slow. Submitted (available
at alosferrer.github.io).

Alós-Ferrer, C. and M. Garagnani (2024b). Improving Risky-Choice Predictions Using
Response Times. Journal of Political Economy: Microeconomics 2(2), 335–354.

Alós-Ferrer, C., A. Jaudas, and A. Ritschel (2021). Effortful Bayesian Updating: A
Pupil-dilation Study. Journal of Risk and Uncertainty 63 (1), 81–102.

Alós-Ferrer, C. and A. Ritschel (2021). Multiple Behavioral Rules in Cournot Oligopolies.
Journal of Economic Behavior and Organization 183, 250–267.

Alós-Ferrer, C. and F. Strack (2014). From Dual Processes to Multiple Selves: Implica-
tions for Economic Behavior. Journal of Economic Psychology 41, 1–11.

Alós-Ferrer, C. and S. Weidenholzer (2008). Contagion and Efficiency. Journal of Eco-
nomic Theory 143, 251–274.

Alós-Ferrer, C. and S. Weidenholzer (2014). Imitation and the Role of Information in
Overcoming Coordination Failures. Games and Economic Behavior 87, 397–411.

Anderson, S. P., J.-F. Thisse, and A. De Palma (1992). Discrete Choice Theory of
Product Differentiation. Cambridge, MA: MIT Press.

Atkinson, A. C. (1996). The Usefulness of Optimum Experimental Designs. Journal of
the Royal Statistical Society 51 (1), 59–76.

Baddeley, A. D. (1992). Working Memory. Science 255 (5044), 556–559.

Ballinger, T. P. and N. T. Wilcox (1997). Decisions, Error and Heterogeneity. Economic
Journal 107 (443), 1090–1105.

Baltas, G. and P. Doyle (2001). Random Utility Models in Marketing Research: A
Survey. Journal of Business Research 51 (2), 115–125.
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Polańıa, R., M. Woodford, and C. C. Ruff (2019). Efficient Coding of Subjective Value.
Nature Neuroscience 22 (1), 134–142.

Ratcliff, R. (1978). A Theory of Memory Retrieval. Psychological Review 85, 59–108.

Ratcliff, R. (1981). A Theory of Order Relations in Perceptual Matching. Psychological
Review 88, 552–572.

Ratcliff, R., P. Gomez, and G. McKoon (2004). A Diffusion Model Account of the Lexical
Decision Task. Psychological Review 111 (1), 159.

Ratcliff, R. and J. N. Rouder (1998). Modeling Response Times for Two-Choice Deci-
sions. Psychological Science 9 (5), 347–356.

Ratcliff, R. and J. N. Rouder (2000). A Diffusion Model Account of Masking in Two-
Choice Letter Identification. Journal of Experimental Psychology: Human Perception
and Performance 26 (1), 127–140.

Redish, A. D. (2016). Vicarious Trial and Error. Nature Reviews Neuroscience 17 (3),
147–159.

Rubinstein, A. (2007). Instinctive and Cognitive Reasoning: A Study of Response Times.
Economic Journal 117 (523), 1243–1259.

Rubinstein, A. (2016). A Typology of Players: Between Instinctive and Contemplative.
Quarterly Journal of Economics 131 (2), 859–890.
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ONLINE APPENDIX
Noise and Bias: The Cognitive Roots of Economic Errors

C. Alós-Ferrer, J. Buckenmaier, and M. Garagnani

A Proofs

Theorem 1. Suppose the deliberative process d is psychometric and the heuristic h has
constant consistency Ph > 1/2. Then the following statements hold.

(a1) For neutral decision problems, ω ∈ ΩN
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0. Further, the
probability is 1/2 for ∆ω = 0

(a2) For decision problems in alignment, ω ∈ ΩA
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0.

(a3) For decision problems in conflict, ω ∈ ΩC
h , the probability of a correct answer is

increasing in ∆ω for ∆ω > 0, and decreasing in ∆ω for ∆ω < 0.

(b1) For any given ∆, the probability of a correct response is larger for decisions under
alignment compared to conflict decision problems. That is, for any fixed ∆ and
decision problems ωC ∈ ΩC

h , ω
A ∈ ΩA

h with ∆ωC = ∆ωA = ∆, it follows that

Prob(ρ(ωA) = d(ωA)) > Prob(ρ(ωC) = d(ωC)).

(b2) For any given ∆, the probability of a correct response is smaller for decisions
under conflict compared to neutral decision problems. That is, for any fixed ∆ and
decision problems ωC ∈ ΩC

h , ωh ∈ ΩN
h with ∆ωC = ∆ωN = ∆, it follows that

Prob(ρ(ωN ) = d(ωN )) > Prob(ρ(ωC) = d(ωC)).

(b3) Suppose the heuristic h is more consistent than d on Ωh. Then, for any given
∆, the probability of a correct response is larger for decisions under alignment
compared to neutral decision problems. That is, for any fixed ∆ and decision
problems ωA ∈ ΩA

h , ω
N ∈ ΩN

h with ∆ωA = ∆ωN = ∆, it follows that

Prob(ρ(ωA) = d(ωA)) > Prob(ρ(ωN ) = d(ωN )).

Proof of Theorem 1. To show (a1), consider ω ∈ ΩN
h , i.e., neutral decision problems.

For these problems, the probability of a correct answer is simply Pd(ω) as only d is
active. For ∆ω > 0, we have that Pd(ω) = βA

d (ω), which is increasing in ∆ω because d
is psychometric. For ∆ω < 0 we have Pd(ω) = 1 − βA

d (ω), which is decreasing for the
same reason. Last, for ∆ω = 0 it follows that Pd(ω) = βA

d (ω) =
1
2 by Definition 2. This

completes the proof of (a1).
Consider now decision problems under alignment, ω ∈ ΩA

h . For ∆ω > 0 the probabil-
ity of a correct answer is (1−α)Pd(ω) +αPh = (1−α)βA

d (ω) +αPh, which is increasing
in ∆ω. For ∆ω < 0 the probability of a correct answer is (1 − α)Pd(ω) + αPh =
(1− α)(1− βA

d (ω)) + αPh, which is decreasing in ∆ω. This shows (a2).
The argument for decision problems under conflict, ω ∈ ΩC

h , is analogous. For
∆ω > 0 the probability of a correct answer is (1−α)Pd(ω)+α(1−Ph) = (1−α)βA

d (ω)+

1



α(1− Ph), which is increasing in ∆ω. For ∆ω < 0 the probability of a correct answer is
(1− α)Pd(ω) + α(1− Ph) = (1− α)(1− βA

d (ω)) + α(1− Ph), which is decreasing in ∆ω.
This shows (a3).

Fix ∆. To see (b1)–(b3), let ωC ∈ ΩC
h , ω

A ∈ ΩA
h , and ωN ∈ ΩN

h with ∆ωC = ∆ωA =
∆ωN = ∆. Since d is psychometric, it follows that Pd(ω

C) = Pd(ω
A) = Pd(ω

N ) = Pd.
Thus,

Prob(ρ(ωA) = d(ωA)) = (1−α)Pd+αPh > (1−α)Pd+α(1−Ph) = Prob(ρ(ωC) = d(ωC))

because 1− Ph < 1/2 < Ph. This shows (b1). Analogously,

Prob(ρ(ωN ) = d(ωN )) = Pd > (1− α)Pd + α(1− Ph) = Prob(ρ(ωC) = d(ωC))

because 1 − Ph < 1/2 ≤ Pd. This shows (b2). Last, assume that h is more consistent
than d. Then,

Prob(ρ(ωA) = d(ωA)) = (1− α)Pd + αPh > Pd = Prob(ρ(ωN ) = d(ωN ))

because Ph > Pd as h is more consistent than d. This shows (b3).

Proof of Theorem 1 with cognitive control costs. With cognitive control costs, α is re-
placed with α(|∆ω|), for a strictly decreasing function α(·). (a1) holds as h is not active,
hence the probability α plays no role. As explained in the main text, (a2) might not
hold. (b1), (b2), and (b3) hold, as they compare decision problems with a fixed ∆, hence
α is simply replaced by α(∆).

It just remains to prove (a3). Let ω, ω′ ∈ ΩC
h , and let α = α(|∆ω|) and α′ = α(|∆ω′ |).

Suppose first that ∆ω > ∆ω′ ≥ 0. The probability of a correct response is larger for
ω compared to ω′ if

(1− α)βA
d (ω) + α(1− Ph) > (1− α′)βA

d (ω
′) + α′(1− Ph)

This holds if and only if

(1− α)
[

βA
d (ω)− βA

d (ω
′)
]

+ (α′ − α)βA
d (ω

′) > (α′ − α)(1− Ph)

Since βA
d (ω) > βA

d (ω
′) (since βA

d is increasing) and α′ > α (since α(·) is strictly de-
creasing), the latter inequality holds if βA

d (ω
′) > (1 − Ph). However, βA

d (ω
′) ≥ 1/2 and

1− Ph < 1/2. Hence, the conclusion follows.
Suppose now that ∆ω < ∆ω′ ≤ 0. The probability of a correct response is larger for

ω compared to ω′ if

(1− α)(1− βA
d (ω)) + α(1− Ph) > (1− α′)(1− βA

d (ω
′)) + α′(1− Ph)

This holds if and only if

(1− α)
[

βA
d (ω

′)− βA
d (ω)

]

+ (α′ − α)(1− βA
d (ω

′)) > (α′ − α)(1− Ph)

In this case, βA
d (ω

′) > βA
d (ω) (since βA

d is increasing), and again α′ > α (since α(·)
is strictly decreasing in |∆|). Thus, the inequality above holds if 1 − βA

d (ω
′) > 1 − Ph.

However, 1−βA
d (ω

′) ≥ 1/2 (as ∆ω′ ≤ 0) and 1−Ph < 1/2, and the conclusion follows.
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Theorem 2. Suppose the deliberative process d is psychometric and the heuristic h has
constant consistency Ph > 1/2 and is triggered by A. Then the following statements
hold.

(a) The probability of a correct answer is increasing in ∆ω for ∆ω > 0 (alignment)
and decreasing in ∆ω for ∆ω < 0 (conflict).

(b) For decision problems where h is active, ω ∈ Ωh, there is a discontinuity at ∆ω = 0
with more correct answers in alignment (∆ω > 0) than in conflict (∆ω < 0).

(c) For neutral decision problems, there is no discontinuity and the probability of a
correct answer at ∆ω = 0 is 1/2.

Proof of Theorem 2. (a) For ∆ω > 0 (resp. ∆ω < 0), decision problems are in alignment
(resp. conflict). Hence, the probability of a correct answer is increasing (resp. decreasing)
in ∆ω by Theorem 1(a2, resp. a3).

(b) When h is active and ∆ω < 0, the probability of a correct response is

Prob(ρ(ωC) = d(ωC)) = (1− α)Pd(ω
C) + α(1− Ph).

Since d is psychometric (Definition 2), the limit of this value as ∆ω → 0− is

P− = (1− α)
1

2
+ α(1− Ph) =

1

2
+ α

(

1

2
− Ph

)

.

When h is active and ∆ω > 0, the probability of a correct response is

Prob(ρ(ωA) = d(ωA)) = (1− α)Pd(ω
A) + αPh.

Again, since d is psychometric, the limit of this value as ∆ω → 0+ is

P+ = (1− α)
1

2
+ αPh =

1

2
+ α

(

Ph −
1

2

)

.

Since Ph > 1
2 , it follows that P+−P− = α (2Ph − 1) > 0, i.e. there is a discontinuity

at zero, with a positive jump when moving from negative to positive values of ∆ω.
(c) When h is inactive (neutral decision problems), the probability of a correct re-

sponse is
Prob(ρ(ωN ) = d(ωN )) = Pd(ω

N ),

which is continuous and takes the value 1/2 at ∆ω = 0 since d is psychometric.

Proof of Theorem 2 with cognitive control costs. Let α = α(|∆ω|) for a strictly decreas-
ing function α(·). Part (a) for the case of conflict follows from Theorem 1(a3), which also
holds under cognitive control costs. For the case of alignment, as explained in the text,
the result might not hold. For part (b), the proof is as above with the only differences
that the expressions for limits P− and P+ involve α(0) instead of α. Last, part (c) holds
as it only involves neutral decision problems and α plays no role.

Corollary 1. Suppose the deliberative process d is psychometric and the heuristic h has
constant consistency Ph > 1/2 and is triggered by A.

(a) For decision problems where h is active, the discontinuity at ∆ω = 0 is equal to
D̄ = α(2Ph − 1).

3



(b) In particular, the parameters α and Ph are partially identified by D̄. Specifically,

α > D̄ and Ph > D̄+1
2 .

(c) Further, the left and right parts of the discontinuity are symmetric. That is, if P−

and P+ are the limits of the probabilities of a correct response as ∆ω → 0− and
∆ω → 0+, respectively, then

1

2
− P− = P+ −

1

2
.

Proof of Corollary 1. (a) and (c) follow from the expressions for P+ and P− computed in
the proof of Theorem 2. To see (b), note that Ph < 1 implies that D̄ = α(2Ph − 1) < α,
and α < 1 implies that D̄ < 2Ph−1, hence 1

2

(

D̄ + 1
)

< Ph. For the model with cognitive
control costs, the results follow replacing α with α(0).

Theorem 3 (Generalized Stroop effect). Consider a set of decision problems Ω. Suppose
Td and Th are functions of |∆ω|, d is psychometric, h is faster than d on Ωh, and
Ph(ω) > 1/2 on Ωh. Let ωA in ΩA

h (alignment) and ωC in ΩC
h (conflict). Then:

(a) If ∆ωA = ∆ωC , then

E[RT (ωA) | ρ(ωA) = d(ωA)] < E[RT (ωC) | ρ(ωC) = d(ωC)],

that is, correct answers in alignment are faster than correct answers in comparable
conflict situations.

(b) Additionally, suppose d is symmetric in the sense that Pd(ω) = Pd(ω
′) if |∆ω′ | =

|∆ω|. Then, if |∆ωA | = |∆ωC |, the property in (a) also holds.

(c) If d is symmetric and ω, ω′ ∈ ΩN
h are neutral decision problems with |∆ω′ | = |∆ω|,

then E[RT (ω) | ρ(ω) = d(ω)] = E[RT (ω′) | ρ(ω′) = d(ω′)].

Proof. The response time of a correct choice in alignment situation ωA is

E[RT (ωA) | ρ(ωA) = d(ωA)] =
(1− α)Pd(ω

A)Td(ω
A) + αPh(ω

A)Th(ω
A)

(1− α)Pd(ωA) + αPh(ωA)

and the response time of a correct answer in conflict situation ωC is

E[RT (ωC) | ρ(ωC) = d(ωC)] =
(1− α)Pd(ω

C)Td(ω
C) + α(1− Ph(ω

C))Th(ω
C)

(1− α)Pd(ωC) + α(1− Ph(ωC))
.

Thus, E[RT (ωC) | ρ(ωC) = d(ωC)] > E[RT (ωA) | ρ(ωA) = d(ωA)] if and only if

(1− α)2Pd(ω
A)Pd(ω

C)(Td(ω
C)− Td(ω

A))+

α(1− α)Pd(ω
A)(1− Ph(ω

C))(Th(ω
C)− Td(ω

A))

+ α(1− α)Pd(ω
C)Ph(ω

A)(Td(ω
C)− Th(ω

A))

+ α2Ph(ω
A)(1− Ph(ω

C))(Th(ω
C)− Th(ω

A)) > 0

Since Td is a function of |∆| and ∆ωA = ∆ωC , we have Td(ω
A) = Td(ω

C) = Td.
Further, since Th is also a function of |∆|, we have Th(ω

A) = Th(ω
C) = Th. Hence, the

above expression simplifies to

(Td − Th)
[

Pd(ω
C)Ph(ω

A)− Pd(ω
A)(1− Ph(ω

C))
]

> 0. (A.1)

4



Since d is psychometric and ∆ωA = ∆ωC , we have Pd(ω
A) = Pd(ω

C) = Pd > 0 and
Td > Th by assumption, it follows that inequality (A.1) holds if and only if Ph(ω

A) >
1 − Ph(ω

C). The latter follows from Ph(ω
A) > 1

2 > 1 − Ph(ω
C), which completes the

proof of part (a). To see part (b), note that, if |∆ωA | = |∆ωC | and d is symmetric,
then Pd(ω

A) = Pd(ω
C) and the argument to show (A.1) follows as above. Part (c) is

immediate by symmetry.

Proof of Theorem 3 with option-dependent response times. Note that part (c) does not
depend on the response times of process errors, and hence holds without change. For
parts (a) and (b), let Pd = Pd(ω

A) = Pd(ω
C). The response time of a correct choice in

ωA and is ωC are as given in the proof of Theorem 3 replacing Tb(ω) with Tb(ω, d(ω))
for b = h, d and ω = ωA, ωC . Note that, since Td(ω, d(ω)) and Th(ω, h(ω)) are functions
of |∆| and |∆ωA | = |∆ωC |, we have that Td(ω

A, d(ωA)) = Td(ω
C , d(ωC)) = Td and

Th(ω
A, h(ωA)) = Th(ω

C , h(ωC)) = Th. Further, Th(ω
A, d(ωA)) = Th(ω

A, h(ωA)) = Th

since ωA is in alignment. Thus, E[RT (ωC) | ρ(ωC) = d(ωC)] > E[RT (ωA) | ρ(ωA) =
d(ωA)] if and only if

α(1− α)Pd(1− Ph(ω
C))(Th(ω

C , d(ωC))− Td) + α(1− α)PdPh(ω
A)(Td − Th)

+ α2Ph(ω
A)(1− Ph(ω

C))(Th(ω
C , d(ωC))− Th) > 0

Further, applying the slow process errors property for h, Th(ω
A, d(ωA)) = Th(ω

A, h(ωA)) =
Th(ω

C , h(ωC)) < Th(ω
C , d(ωC)). Thus, the third summand in the expression above is

strictly positive as Th(ω
C , d(ωC)) > Th. Hence, a sufficient condition for the above

property to hold is

(1− Ph(ω
C))(Th(ω

C , d(ωC))− Td) + Ph(ω
A)(Td − Th) > 0

Since Th(ω
C , d(ωC)) > Th(ω

C , h(ωC)) = Th by slow errors, the expression in the last
inequality is strictly larger than

(1− Ph(ω
C))(Th − Td) + Ph(ω

A)(Td − Th) = (Td − Th)
[

Ph(ω
A)− (1− Ph(ω

C))
]

which is strictly positive as Ph(ω
A) > 1

2 > 1− Ph(ω
C).

Theorem 4. Consider a set of decision problems Ω. If h is faster than d and Ph(ω) >
1
2

on Ωh, then the following statements hold.

(a) For any ω ∈ ΩC
h (conflict), errors are faster than correct answers.

(b) Suppose h is more consistent than d. For any ω ∈ ΩA
h (alignment), errors are

slower than correct answers.

Proof. To see (a), consider a decision problem ω ∈ ΩC
h (conflict). The response time of

a correct answer in conflict is

E[RT | ρ(ω) = d(ω)] =
(1− α)Pd(ω)Td(ω) + α(1− Ph(ω))Th(ω)

(1− α)Pd(ω) + α(1− Ph(ω))

and the response time of an error in conflict is

E[RT | ρ(ω) 6= d(ω)] =
(1− α)(1− Pd(ω))Td(ω) + αPh(ω)Th(ω)

(1− α)(1− Pd(ω)) + αPh(ω)
.
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A straightforward computation shows that E[RT | ρ(ω) = d(ω)] > E[RT | ρ(ω) 6= d(ω)]
if and only if

α(1− α) [Pd(ω)Ph(ω)− (1− Pd(ω))(1− Ph(ω))] (Td(ω)− Th(ω)) > 0. (A.2)

Since h is faster than d, we have Td(ω) > Th(ω). Since Ph(ω) >
1
2 and Pd(ω) ≥ 1

2 , we
have Pd(ω)Ph(ω)− (1− Pd(ω))(1− Ph(ω)) > 0, which shows (a).

To see (b), consider a decision problem ω ∈ ΩA
h . The response time of a correct

choice in alignment is

E[RT | ρ(ω) = d(ω)] =
(1− α)Pd(ω)Td(ω) + αPh(ω)Th(ω)

(1− α)Pd(ω) + αPh(ω)

and the response time of an error in alignment is

E[RT | ρ(ω) 6= d(ω)] =
(1− α)(1− Pd(ω))Td(ω) + α(1− Ph(ω))Th(ω)

(1− α)(1− Pd(ω)) + α(1− Ph(ω))
.

A computation shows that E[RT | ρ(ω) 6= d(ω)] > E[RT | ρ(ω) = d(ω)] if and only if

α(1− α)(Ph(ω)− Pd(ω))(Td(ω)− Th(ω)) > 0. (A.3)

Since h is faster than d, we have Td(ω) > Th(ω). Since h is also more consistent, we also
have Ph(ω) > Pd(ω). Thus (A.3) holds, which shows (b).

Proof of Theorem 4 with option-dependent response times. As explained in the main text,
part (a) might not hold. To see part (b), let Td = Td(ω, d(ω)) and Th = Th(ω, h(ω)).
Since ω is in alignment, d(ω) = h(ω). Let x 6= d(ω) denote the other option in ω (the
error).

The expected response time of a correct answer is as given in the proof of Theorem
4(b) replacing Td(ω) and Th(ω) by Td and Th, respectively. The expected response time
of an error is as given in the proof of Theorem 4(b) replacing Td(ω) and Th(ω) by Td(ω, x)
and Th(ω, x), respectively. By the slow errors property, Td(ω, x) > Td and Th(ω, x) > Th.
Hence, the expected response time of an error is bounded below by the same expression
replacing Td(ω, x) by Td and Th(ω, x) by > Th.

Then, a computation analogous to the one in the proof of Theorem 4(b) shows that
a sufficient condition for E[RT | ρ(ω) 6= d(ω)] > E[RT | ρ(ω) = d(ω)] to hold is

α(1− α)(Ph(ω)− Pd(ω))(Td(ω)− Th(ω)) > 0.

Since h is faster than d (in the sense of Definition 5), we have Td > Th. Since h is also
more consistent, we also have Ph(ω) > Pd(ω). Thus part (b) holds.

B Utility Estimation

To be able to define what is a correct answer and to control for strength of preference
effects in our second experiment (certainty effect), we included 32 “neutral” lottery pairs
to estimate the risk attitude of each participant out-of-sample. To guide the choice of
lotteries for the utility estimation, we follow optimal design theory (Silvey, 1980) in the
context of non linear (binary) models (Ford et al., 1992; Atkinson, 1996). Given that
the experiment verged on the identification of the certainty bias, we also took care to
estimate the utility function from lotteries not affected by this bias.
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All T = 32 trials used for the utility estimation involved binary choices between
lotteries of the form A = (p, x) and B = (q, y), where is A and B pay x with probability
p and y with probability q, respectively, and 0 otherwise. We index the trials in the
experiment by t = 1, ..., 32, that is, at trial t subjects face the choice between At = (pt, xt)
and Bt = (qt, yt). Further, we index the N = 128 subjects by i = 1, ..., N . In the main
analysis we assume a normalized constant relative risk aversion (CRRA), which is given
by

u(x | r) =
{

x1−r

1−r
, if r 6= 1

ln(x), if r = 1

However, the results are qualitatively unchanged when we assume utility function
with constant relative risk aversion (CARA) instead. Under the assumption of Expected
Utility maximization, subject i with utility function u(x | ri) chooses At over Bt if the
difference in expected utilities is positive, that is,

∇t(ri) := ptu(xt | ri)− qtu(yt | ri) = pt
x1−ri
t

1− ri
− qt

y1−ri
t

1− ri
> 0. (B.4)

In order to be able to estimate the parameters of the model, we now add noise to the
model. We follow a standard approach based on a Random Utility Model (RUM). We
add an error term ǫit ∼ N(0, σ2) with σ2 > 0 to (B.4). That is, At is chosen if and only
if

∇t(ri) + ǫit > 0. (B.5)

Define the binary choice indicator for trial t by

γit =

{

1 if At chosen by subject i

−1 if B chosen by subject i.

The probability that subject i chooses At in trial t is

P (γit = 1) = P (∇t(ri) > −ǫit) = Φ

(∇t(ri)

σ

)

(B.6)

where Φ is the standard normal cumulative distribution function. Conversely, the prob-
ability of B is

P (γit = −1) = P (ǫit < −∇t(ri)) = Φ

(

−∇t(ri)

σ

)

. (B.7)

The conditional probabilities described in Equations B.6 and B.7 above were derived
conditional on a subject’s risk parameter ri. To account for individual heterogeneity,
we assume that the risk parameter is distributed over the population and we estimate
the parameters of this distribution (e.g., see Harless and Camerer, 1994; Harrison and
Rutström, 2008; Bellemare et al., 2008; Von Gaudecker et al., 2011; Conte et al., 2011;
Moffatt, 2015). This approach is standard by now, and is generally preferred to esti-
mating risk parameters separately for each individual (e.g., see Hey and Orme, 1994).
The main reason is that the former greatly reduces the degrees of freedom compared to
individual-level estimates, avoiding possible overfitting problems (see Conte et al., 2011,
for a more detailed discussion). Further, the population estimation allows to obtain
estimates even for extremely risk-averse or risk-seeking subjects, which is sometimes
impossible at the individual level due to identification issues (Moffatt, 2015). Last,
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population-level estimates are generally preferable when predicting the behavior of the
same or a similar group of individuals (Conte et al., 2011).

Assume that the individual risk attitudes are distributed normally in the population
(from which our subjects were drawn) according to

r ∼ N(µ, η2).

Hence, the log-likelihood of a sample given by the matrix Γ = (γit) consisting of T trials
and N subjects is

logL =
N
∑

i=1

ln

∫ ∞

−∞

T
∏

t=1

Φ

(

γit
∇t(r)

σ

)

f(r | µ, η)dr (B.8)

where f(r | µ, η) = 1√
2πη2

e
− 1

2

(

r−µ
η

)2

is the density function of the risk parameter r.

The log likelihood can be maximized by standard methods to obtain the maximum
likelihood estimates. Since the integral in the likelihood function does not have a closed-
form solution, we approximate it using standard simulation techniques (see Train, 2009,
for details). Specifically, we approximate this integral by the average

1

H

H
∑

h=1

(

T
∏

t=1

Φ

(

γit
∇t(rih(µ, η))

σ

)

)

(B.9)

using a sequence of H (transformed) Halton draws (ri1, . . . , riH) from N(µ, η2) for each
subject i (fixed across trials t). Halton draws, a by-now-standard procedure, are pseudo-
random draws that ensure even coverage of the parameter space (e.g. avoiding clustering)
using Halton sequences (Halton, 1960; Moffatt, 2015). For the estimation, we use the
Stata implementation “mdraws” of this procedure (Cappellari and Jenkins, 2003) for
a uniform distribution U(0, 1) and transform the resulting sequence (g1, g2, . . . , gH) to
obtain draws rih(µ, η) = µ+ ηΦ−1(gh) from N(µ, η2).

The maximum simulated likelihood (MSL) approach amounts to replacing the inte-
gral in (B.8) by (B.9) and then maximize the resulting function log L̂. Maximization
of log L̂ is carried out using standard MLE routines to obtain the estimates (µ̂, η̂, σ̂).
Given those estimates we obtain the posterior expectation of each subject’s risk attitude
r̂i conditional on their T choices approximating the conditional expectation by

r̂i = E(ri|γi1, ..., γiT ) ≈
1
H

∑H
h=1 rih

(

∏T
t=1Φ

(

γit
∇t(rih)

σ̂

))

1
H

∑H
h=1

(

∏T
t=1Φ

(

γit
∇t(rih)

σ̂

)) (B.10)

where rih = rih(µ̂, η̂). Given the estimated individual risk parameter r̂i, we obtain

ûi(x) =
1− e−r̂ix

1− e−r̂ixmax
for r̂i 6= 0

as the estimated utility function of subject i.
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C The Almost-Certainty Effect

There is mixed evidence regarding whether violations of expected utility based on the
presence of a sure option depend on the special nature of certainty, or whether similar
behavioral anomalies can be observed even in the absence of a completely risk-free option
(Machina, 1982; Conlisk, 1989). Consequently, the certainty-effect experiment described
in Section 4.2 also included 16 lottery pairs that targeted this “almost-certainty effect.”

C.1 Design

This additional set of lotteries followed an example in Kahneman and Tversky (1979,
Problems 7–8) aimed to trigger the common ratio effect without relying on certain
outcomes. Instead, the lotteries involved almost-certain outcomes, i.e. outcomes with
a probability smaller than but close to one. In contrast with the 32 Allais-double-
pairs used in Section 4.2.4, pairs with almost-certain outcomes were not paired with a
corresponding “neutral pair”, but instead with a pair that offered a long-shot, that is, a
lottery with a low probability of winning a relatively high amount of money.

In total, this part of the experiment involved 32 lottery pairs forming 16 Allais-
double-pairs. The construction is analogous to the one underlying the common-ratio
effect (Kahneman and Tversky, 1979). Specifically, given an outcome X > 0, a proba-
bility 0 < q < 1/2, and an integer k ≥ 1, we define for the pair of lotteries R3(k) and
S3(k) by

S3(k) =

{

X/2 e with prob. (2q)/k

0 e otherwise
R3(k) =

{

X e with prob. q/k

0 e otherwise

That is, S3(k) offers half the outcome with double the probability compared to R3(k),
and is hence safer. For k = 1 and q close to but smaller than 0.5, the probabilities of
winning in S3(k) are close to one, whereas for a large k > 1 the winning probabilities are
minuscule in both lotteries. For instance (abusing notation as in the main text), given
S3(1) = (0.9, 15) and R3(1) = (0.45, 30), we obtain S3(15) = (0.06, 15) and R3(15) =
(0.03, 30). This reflects the argument in Kahneman and Tversky (1979) that, in the
first pair, “the probabilities of winning are substantial [. . .], and most people choose
the prospect where winning is more probable,” while, in the second pair, “there is a
possibility of winning, although the probabilities of winning are minuscule [. . .] in both
prospects. In this situation where winning is possible but not probable, most people
choose the prospect that offers the larger gain.” Of course, such behavior contradicts
expected utility theory, which implies that a decision maker should choose S3(1) over
R3(1) if and only if he or she also chooses S3(k) over R3(k).

We constructed 16 almost certainty pairs from the family above, with k = 1 and
q close to 0.5. For every pair of lotteries (R3(1), S3(1)) we included a neutral pair
(R3(k), S3(k)) with k large enough to ensure that the probability of winning was below
10% for both lotteries. Note that the neutral pair could also be seen as a long-shot pair
because the involved lotteries have very small probabilities of relatively large outcomes.

We apply the model presented in Section 2 to the almost-certainty effect and test its
predictions. The deliberative process d is again assumed to be maximization of expected
utility. This process is always active and prescribes to choose the option with the larger
expected utility. The heuristic process is assumed to be an “almost-certainty” heuristic
h, which is triggered by lotteries involving outcomes with probability close to one. If
h is active, it prescribes to choose the safer (almost-certain) lottery. Hence, this is a
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heuristic triggered by alternative S, as described in Section 4. Strength-of-preference
effects are operationalized based on the cardinal difference between certainty equivalents
of the options derived from the individually-estimated expected utilities (recall Section
4.2.3).
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Figure C.1: Choice frequencies in double pairs showing the almost-certainty effect.

C.2 Results

We first check whether our data replicates the almost-certainty effect. For an almost-
certainty/long-shot double pair we denote by DL ∈ {RL, SA} and DA ∈ {RA, LA} the
decision in the long-shot and almost-certainty pair, respectively. Thus, RLSA indicates
that the risky lottery was chosen in the long-shot pair and the safe lottery was chosen
in the almost-certainty pair. The almost-certainty effect obtains when reversals of the
form RLSA are more frequent than reversals of the opposite type, SLRA. Figure C.1
illustrates the distribution of choices for all 128 subjects for the 16 double pairs. Choices
were inconsistent for 45.56% of all double pair choices. These violations are systematic
with inconsistencies of the form RLSA (41.50%) occurring significantly more than the
opposite pattern SLRA (4.05%; WSR test, N = 128, z = 8.628, p < 0.001). This
indicates that our subjects exhibit the typical behavioral asymmetry associated with
the almost-certainty effect.

We now turn to a direct empirical test of our model, which allows to separate noise
(strength-of-preference) from an actual bias towards almost-certain outcomes (almost-
certainty heuristic). Recall that a choice is called “correct” if it maximizes (estimated)
expected utility. Theorem 1 makes predictions about the relationship between ∆i

ω =
CEi(S) − CEi(R) and the proportion of correct choices. The illustrations below again
rely on a binning procedure similar to the one used in Section 4.2.4.

As Figure C.2 shows, we observe the monotonicities predicted by Theorem 1 for
alignment, conflict, and neutral situations. Reflecting strength of preference effects, the
proportion of correct choices increases with distance to indifference, both for alignment
decision problems (∆i

ω > 0) and for conflict ones (∆i
ω < 0). Reflecting process multiplic-

ity, and as predicted by Theorem 1, there is a clear jump at ∆i
ω = 0. For neutral pairs, the

monotonicity due to strength of preference can also be observed, but, as expected, there is
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Figure C.2: Proportion of correct choices as a function of ∆i
ω = CEi(S) − CEi(R)

separately for certainty/DP pairs (left) and normal/neutral pairs (right).

no jump at ∆i
ω = 0. To quantify the prediction, we test for an upward jump at zero using

a local polynomial regression discontinuity estimation (Calonico et al., 2014) as in Sec-
tion 4.2.4. The results show a statistically-significant jump at zero for almost-certainty
pairs (39.73%, z = 6.301, p < 0.001) but not for neutral pairs (10.43%, z = 1.135,
p = 0.256). Further, as predicted by Corollary 1(c), the jump at zero is symmetrically
distributed between the left- and the right-hand parts. The limits of the probabilities of
correct responses as ∆ approaches zero, conditional on ∆ < 0 or ∆ > 0 are P− = 0.258
and P+ = 0.750, respectively. Thus (1/2)− P− = 0.242 ≃ 0.250 = P+ − (1/2).

This test is also interesting for a different reason. Following Kahneman and Tversky
(1979), one could conclude that, in the case of long-shot pairs, decision makers might
be following a “long-shot heuristic” where minuscule probabilities are ignored and the
lottery with the largest non-zero outcome, i.e., lottery R, is picked. If this were the case,
neutral pairs would actually reflect dual-process effects with respect to this heuristic.
Specifically, in Figure C.2, decision problems with ∆i

ω = CEi(S)−CEi(R) > 0 would be
in conflict, as the hypothesized long-shot heuristic always favors R. Analogously, decision
problems with ∆i

ω = CEi(S) − CEi(R) < 0 would be in alignment. Hence, Theorem
2 would predict a discontinuity at zero, specifically a jump down in the frequency of
correct answers. This is not observed in the data, and hence we conclude that there is
no evidence for a long-shot heuristic in the data. However, an examination of Figure
C.2 shows an asymmetry between negative and positive values of ∆, with bins far away
from zero on the negative side exhibiting almost no errors. This might be consistent
with a long-shot heuristic playing a role for a subset of decision makers.

Table C.1 reports the results of random effects Probit regressions on the probability
of a correct answer, which is the equivalent of Table 5 in the main text for almost-
certainty pairs instead of certainty pairs. Models 1-3 consider only alignment, conflict,
or neutral decision problems, respectively, with the absolute difference in certainty equiv-
alents (

∣

∣∆i
ω

∣

∣) as an independent variable. For alignment and conflict we find significant
strength-of-preference effects, that is, the probability of a correct answer is increasing in
the absolute difference in certainty equivalents. However, we do not find psychometric
effects for neutral situations (model 3).

Model 4 considers all decision problems with ∆i
ω > 0, which includes both decision

problems in alignment and neutral decision problems where the deliberative response
should be S. The dummy for alignment decision problems is significantly positive,
showing that the almost-certainty heuristic shifts up the probability of a correct response
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Table C.1: Random effects Probit regressions on correct answers with a dummy for
positive differences in certainty equivalents (∆i

ω > 0).
Correct Alignment Conflict Neutral ∆i

ω > 0 ∆i
ω < 0 Certainty Neutral

(1) (2) (3) (4) (5) (6) (7)

|∆| 6.218∗∗ 3.226∗∗∗ 0.962 6.251∗∗ −2.315
(2.741) (0.451) (2.980) (2.662) (3.288)

Alignment 0.771∗∗∗

(0.183)
Conflict −0.556∗∗∗

(0.046)
∆ > 0 (dummy) 1.250∗ −11.143

(0.646) (6.933)
|∆| × (∆ > 0) −3.026 71.969

(2.699) (51.542)
Constant −0.758 0.483∗∗∗ 0.262 0.714∗ 0.722∗∗∗ −0.767 2.109∗∗

(0.668) (0.097) (0.445) (0.389) (0.071) (0.641) (0.824)

Linear combination tests
|∆| + |∆| × (∆ > 0) 3.225∗∗∗ 69.654

(0.451) (51.320)

Observations 208 1840 2048 416 3680 2048 2048

Notes: Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

in this case (Theorem 1(b1)). Conversely, Model 5 considers all decision problems with
∆i

ω < 0, which includes both decision problems in conflict and neutral decision problems
where the deliberative response should be R. The dummy for conflict decision problems
is significantly negative, showing that the almost-certainty heuristic shifts down the
probability of a correct response in this case (Theorem 1(b2)).

Model 6 considers all (almost-)certainty pairs, i.e. all decision problems in either
conflict or alignment. The regression controls for a dummy for ∆i

ω > 0, which in this case
corresponds to decision problems in alignment. The coefficient for

∣

∣∆i
ω

∣

∣ is significantly
positive, which again shows the strength-of-preference effect for decisions under conflict.
The linear combination test including the interaction between the dummy and

∣

∣∆i
ω

∣

∣ is
significant and positive, showing the strength-of-preference effect for decision problems
under alignment. The dummy itself is positive (albeit marginally significant, p = 0.055),
reflecting the upper jump at zero. However, we remark again that this is not the correct
way of testing for a discontinuity, as it merely reflects the difference in intersect points
of linear trends estimated above and below zero, and might be misleading if the data
displays a nonlinear relation to ∆. The correct way to test for a discontinuity is the
procedure we described above (Calonico et al., 2014).

Model 7 is the analogue of Model 6 but considering only neutral decision problems.
That is, there is neither conflict nor alignment. In contrast to Figure C.2, we do not
find evidence for strength-of-preference effects for these neutral decisions. As expected,
the dummy (∆i

ω > 0) for the discontinuity between positive and negative CEs values is
not significant.

We now turn to the analysis of response times. Figure C.3 provides a simple graphical
illustration of the empirical support for Theorem 3 for the almost-certainty effect.

The left panel plots the difference between the average response time of correct
answers in alignment (∆i

ω < 0) and conflict (∆i
ω > 0) following a binning procedure,

as in Figure 8. As predicted by Theorem 3(a), most points are above the 0 horizontal
line, indicating that correct answers are faster in alignment than in comparable conflict
situations (i.e., controlling for strength of preference). The right panel is the equivalent
graphical representation for neutral (long-shot) pairs, where the sign of ∆ does not
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Figure C.3: Difference in response times for correct answers between negative CE differ-
ences (∆i

ω < 0) and postive CE differences (∆i
ω < 0) as a function of the binned distance

in CEs (
∣

∣∆i
ω

∣

∣), separately for certainty pairs (left) and neutral pairs (right).

correspond to conflict or alignment. We see that the distribution of observations is more
dispersed around the zero line, with data points both below and above it.

Figure C.4 illustrates Theorem 4 and its empirical support when the almost-certainty
heuristic is triggered. As in the case of the certainty effect discussed in the main text, all
decision problems in conflict (resp. alignment) have negative (resp. positive) values of ∆.
Using the same binning procedure as in Figure 6, the left-hand panel of the figure plots
the difference between the average response time of correct answers and errors against
the average difference in certainty equivalents for each bin. In case of conflict, which
corresponds to ∆i

ω < 0, this difference is positive for all bins, indicating that indeed
errors are faster than correct answers as predicted (Theorem 4(a)). In stark contrast,
for alignment situations, that is, bins with ∆i

ω > 0, the difference is negative for almost
all bins, showing that errors are slower than correct answers (Theorem 4(b)). To ensure
that this asymmetry in response time differences is evidence for process multiplicity and
cannot be explained by other elements of the experimental design, the right panel of
Figure C.4 shows the analogous graph for neutral (long-shot) pairs. For those pairs, no
effects of process multiplicity should be present (and the sign of ∆ω does not indicate
conflict or alignment). Indeed, as expected, we no longer observe an asymmetric pattern
of response time differences in this case (although there are few observations with ∆ < 0).

We then turn to linear random-effects regressions on log-transformed response times.
Table C.2 has the same structure as Table 7. Models 1-3 analyze response times for cer-
tainty pairs, which are either in conflict or alignment. Models 4-6 are the corresponding
analyses for neutral pairs, where the sign of ∆ does not correspond to conflict or align-
ment.

Models 1 and 4 concentrate on possible strength-of-preference (chronometric) effects.
These are clear for neutral pairs (Model 4), but not for almost-certainty pairs (Model 1).
Model 2 concentrates on possible dual-process effects. For certainty pairs, in Model 2
the dummy for ∆ > 0 (alignment) is significant and negative, confirming the prediction
of Theorem 3 (generalized Stroop effect). That is, correct decisions in conflict are slower
than correct decisions in alignment. The dummy for errors is significantly negative,
showing that errors in conflict are faster than correct responses, as predicted by Theorem
4(a). In contrast, the linear combination test Error+Error ×(∆ > 0) is significantly
positive, showing that errors in alignment are slower than correct responses, as predicted
by Theorem 4(b). Crucially, Model 3 shows that all these results hold when we control
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Figure C.4: Average difference in response times between correct choices and errors as
a function of ∆i

ω = CEi(S)− CEi(R) (binned), separately for certainty pairs (left) and
neutral pairs (right).

for strength of preference, that is, the predictions of Theorems 3 and 4, i.e. the effects
arising from process multiplicity, are not confounded with chronometric effects.

Models 5 and 6 are the analogues of Models 2 and 3 for neutral pairs, where there
should be no dual-process effects. Indeed, there is no Stroop-analogue effect, and the
dummy for ∆ > 0 is instead significantly positive, and non-significant once one controls
for strength of preference. We observe generally slower errors in neutral situations,
independently of the sign of ∆. Model 6 further shows that the chronometric effects
detected in Model 4 are robust to controlling for asymmetries arising from the sign of
∆.

Table C.2: Random effect regression on log-transformed response times.

Log.RT Certainty pairs Neutral pairs
(1) (2) (3) (4) (5) (6)

|∆| 1.597 3.131 -0.095∗∗∗ -0.091∗∗∗

(5.143) (5.169) (0.028) (0.028)
∆ > 0 (dummy) -0.661 -1.578∗∗∗ -1.192∗∗ 1.078∗∗ 1.058∗∗ 0.788

(0.464) (0.440) (0.492) (0.496) (0.470) (0.523)
|∆| × (∆ > 0) -1.983 -3.493 0.055 0.077

(5.148) (5.173) (0.091) (0.091)
Error -0.528∗∗∗ -0.540∗∗∗ 0.627∗∗∗ 0.608∗∗∗

(0.192) (0.193) (0.176) (0.176)
Error ×(∆ > 0) 2.195∗∗∗ 2.141∗∗∗ 0.499 0.516

(0.812) (0.813) (0.478) (0.479)
Constant 3.565∗∗∗ 3.884∗∗∗ 3.837∗∗∗ 3.780∗∗∗ 3.366∗∗∗ 3.673∗∗∗

(0.158) (0.168) (0.185) (0.167) (0.146) (0.170)

Linear combination tests
|∆|+ |∆| × (∆ > 0) -0.386∗ -0.363 -0.040 -0.014

0.221 (0.222) (0.086) (0.087)
Err. + Err. ×(∆ > 0) 1.667∗∗ 1.601∗∗ 1.126∗∗ 1.124∗∗

(0.789) (0.790) (0.444) (0.445)

Observations 2048 2048 2048 2048 2048 2048

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D Lottery pairs (Certainty Experiment)

The tables below list the actual lottery double-pairs (and their expected values) used
in our second experiment. Table D.1 lists the common-ratio lotteries (S1 and R1 in
the main text), Table D.2 give the common-consequence lotteries (S2 and R2 in the
main text), and Table D.3 details the almost-certainty lotteries (S3 and R3) described
in Section 6.3 and Appendix C. Last, Table D.4 lists the lotteries used for the individual
estimation of utilities described in Section 4.2.3 and Appendix B.

Table D.1: Common-ratio double pairs used in Experiment 2.

Pair Nr p S EV (R) q Y EV (S)

33 0.85 20 17 1 15 15
34 0.28 20 5.67 0.33 15 5
35 0.85 19 16.15 1 13 13
36 0.21 19 4.04 0.25 13 3.25
37 0.85 18 15.3 1 12 12
38 0.17 18 3.06 0.2 12 2.40
39 0.85 17 14.45 1 14 14
40 0.14 17 2.41 0.17 14 2.33
41 0.8 26 20.8 1 18 18
42 0.27 26 6.93 0.33 18 6
43 0.8 25 20 1 16 16
44 0.2 25 5 0.25 16 4
45 0.8 24 19.2 1 15 15
46 0.16 24 3.84 0.2 15 3
47 0.8 23 18.4 1 17 17
48 0.13 23 3.07 0.17 17 2.83
49 0.75 27 20.25 1 18 18
50 0.25 27 6.75 0.33 18 6
51 0.75 26 19.5 1 16 16
52 0.19 26 4.88 0.25 16 4
53 0.75 25 18.75 1 15 15
54 0.15 25 3.75 0.2 15 3
55 0.75 24 18 1 17 17
56 0.13 24 3 0.17 17 2.83
57 0.7 35 24.5 1 20 20
58 0.23 35 8.17 0.33 20 6.67
59 0.7 34 23.8 1 18 18
60 0.18 34 5.95 0.25 18 4.50
61 0.7 33 23.1 1 17 17
62 0.14 33 4.62 0.2 17 3.40
63 0.7 32 22.4 1 19 19
64 0.12 32 3.73 0.17 19 3.17
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Table D.2: Common-consequence double pairs.

Pair Nr p X EV (R) q Y EV (S)

1 0.52 28 14.56 0.56 25 14
2 0.96 28 26.88 1 25 25
3 0.58 26 15.08 0.61 24 14.64
4 0.97 26 25.22 1 24 24
5 0.62 24 14.88 0.66 22 14.52
6 0.96 24 23.04 1 22 22
7 0.66 23 15.18 0.7 21 14.7
8 0.96 23 22.08 1 21 21
9 0.74 22 16.28 0.77 19 14.63
10 0.97 22 21.34 1 19 19
11 0.76 21 15.96 0.8 18 14.4
12 0.96 21 20.16 1 18 18
13 0.79 20 15.8 0.85 17 14.45
14 0.94 20 18.8 1 17 17
15 0.85 19 16.15 0.9 16 14.4
16 0.95 19 18.05 1 16 16
17 0.42 34 14.28 0.47 28 13.16
18 0.95 34 32.3 1 28 28
19 0.47 32 15.04 0.52 25 13
20 0.95 32 30.4 1 25 25
21 0.52 33 17.16 0.56 27 15.12
22 0.96 33 31.68 1 27 27
23 0.57 28 15.96 0.59 24 14.16
24 0.98 28 27.44 1 24 24
25 0.62 29 17.98 0.65 25 16.25
26 0.97 29 28.13 1 25 25
27 0.64 28 17.92 0.68 24 16.32
28 0.96 28 26.88 1 24 24
29 0.68 27 18.36 0.73 23 16.79
30 0.95 27 25.65 1 23 23
31 0.76 26 19.76 0.78 23 17.94
32 0.98 26 25.48 1 23 23
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Table D.3: Long-shot and almost-certainty pairs.

Pair Nr p X EV (R) q Y EV (S)

65 0.49 26 12.74 0.98 13 12.74
66 0.03 26 0.78 0.06 13 0.78
67 0.47 28 13.16 0.94 14 13.16
68 0.03 28 0.84 0.06 14 0.84
69 0.45 30 13.5 0.9 15 13.5
70 0.03 30 0.9 0.06 15 0.9
71 0.42 32 13.44 0.84 16 13.44
72 0.03 32 0.96 0.06 16 0.96
73 0.4 34 13.6 0.8 17 13.6
74 0.01 34 0.34 0.02 17 0.34
75 0.38 36 13.68 0.76 18 13.68
76 0.01 36 0.36 0.02 18 0.36
77 0.36 38 13.68 0.72 19 13.68
78 0.01 38 0.38 0.02 19 0.38
79 0.33 40 13.2 0.66 20 13.2
80 0.01 40 0.4 0.02 20 0.4
81 0.48 10 4.8 0.96 5 4.8
82 0.04 10 0.4 0.08 5 0.4
83 0.46 12 5.52 0.92 6 5.52
84 0.04 12 0.48 0.08 6 0.48
85 0.44 14 6.16 0.88 7 6.16
86 0.04 14 0.56 0.08 7 0.56
87 0.41 16 6.56 0.82 8 6.56
88 0.04 16 0.64 0.08 8 0.64
89 0.39 18 7.02 0.78 9 7.02
90 0.02 18 0.36 0.04 9 0.36
91 0.37 20 7.4 0.74 10 7.4
92 0.02 20 0.4 0.04 10 0.4
93 0.35 22 7.7 0.7 11 7.7
94 0.02 22 0.44 0.04 11 0.44
95 0.32 24 7.68 0.64 12 7.68
96 0.02 24 0.48 0.04 12 0.48
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Table D.4: List of lotteries used for the utility estimation.

Pair Nr p X EV q Y EV

1 0.05 20 1 0.8 10 8
2 0.1 20 2 0.7 10 7
3 0.2 20 4 0.8 10 8
4 0.3 20 6 0.8 10 8
5 0.1 30 3 0.8 5 4
6 0.4 20 8 0.8 10 8
7 0.3 30 9 0.8 10 8
8 0.2 25 5 0.8 5 4
9 0.4 20 8 0.7 10 7
10 0.2 20 4 0.6 5 3
11 0.4 30 12 0.8 10 8
12 0.2 25 5 0.6 5 3
13 0.4 20 8 0.6 10 6
14 0.5 30 15 0.8 10 8
15 0.3 20 6 0.65 5 3.25
16 0.3 25 7.5 0.6 5 3
17 0.4 30 12 0.8 5 4
18 0.5 20 10 0.6 10 6
19 0.4 25 10 0.7 5 3.5
20 0.6 20 12 0.7 10 7
21 0.7 20 14 0.8 10 8
22 0.7 30 21 0.8 10 8
23 0.5 25 12.5 0.7 5 3.5
24 0.6 25 15 0.8 5 4
25 0.5 20 10 0.65 5 3.25
26 0.5 25 12.5 0.6 5 3
27 0.6 25 15 0.7 5 3.5
28 0.7 25 17.5 0.8 5 4
29 0.5 25 12.5 0.55 5 2.75
30 0.65 30 19.5 0.7 5 3.5
31 0.75 25 18.75 0.8 5 4
32 0.77 25 19.25 0.8 5 4
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E Experimental Instructions

E.1 Instructions for Experiment 1: Conservatism

[These are the on-screen instructions for Experiment 1 given to subjects during the ex-
periment. The original instructions were in English. Text in brackets [...] was not
displayed to subjects.]

Welcome

Please read the instructions carefully.

When you have completely read a page, you can use the arrow-keys on the keyboard
to go to the next page. The end of the instructions are indicated by the “Done” button.

Please note the following rules:

1. Please do not talk to other participants.

2. If you have a question, please raise your hand. We will answer your question
privately.

3. Please do not use any feature of the computer that is not part of the experiment.

General Instructions

The experiment consists of multiple parts:

1. The instructions and some understanding questions about the instructions (you
are currently reading them).

2. A decision task which consists of 300 rounds divided in 4 blocks of 75 rounds.
There will be a short break of 30 seconds after each block.

3. A demographic questionnaire.

4. Information about your performance and your final payment depending on your
decisions.

The following pages will explain the decision task and how you can earn money in
this experiments.

One Round of the Decision Task (1/4)

The general procedure of a round is that the computer randomly selects one of two urns
and it is your task to guess which urn the computer selected. For each correct
guess you will earn money, for each incorrect guess you do not earn any money. All
details will be explained on this and the following pages.

The Urns:
There are always two urns, a left urn and a right urn. Both urns contain either 8, 9,
or 10 colored balls. Each urn will have some black balls and some white balls.
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At the beginning of each block, both urns will be displayed revealing the number of balls
in each urn and the composition of black and white balls.

Below is an example of the urn composition with 9 balls (see Figure below). The left
urn consists of 6 black and 4 white balls and the right urn consists of 3 black and
6 white balls.

The computer will randomly select one of the urns (how the computer selects the
urn will be explained later).

One Round of the Decision Task (2/4)

Urn Selection:
A the beginning of each round the computer randomly selects one of the urns. Above

each urn you will see the probability (in fractions) that each urn is selected. Below is an
example of “1/2-1/2” but other probabilities (fractions) may occur during the
experiment.

The fraction “1/2” means “1 out of 2” and you can visualize the likelihood of an urn
being selected by imagining a box of raffle tickets. For this example, there are 2 raffle
tickets in the box, on 1 there is written “left” and on the other one is written “right”.

Then all raffle tickets are shuffled around and one ticket is randomly picked from the
box. If the randomly drawn ticket has “left” written on it, then the computer selects
the left urn. If the ticket has “right” written on it, then the computer selects the right
urn.

One Round of the Decision Task (3/4)

The Sample:
After the computer selected one of the urns, you have to press the “Space bar.” Then
the computer will randomly draw balls with replacement from the selected urn.

“With replacement” means that the computer draws a ball, writes down the color,
puts the ball back in the urn, and then draws again from the same urn while the full
number of colored balls (either 8, 9, 10 balls). That means the computer always draws
from the same urn in the same round with the same number of balls.

The computer always draws a sample of 4 balls from the urn. For sake of clarity
we show the number of black balls in one row and the number of white balls in a second
row. The example draw below shows there were two black and two white balls drawn
from the urn.
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One Round of the Decision Task (4/4)

Your Decision:
After you have seen the sample you have to guess from which urn the sample

was drawn. You indicate your choice by pressing the “F” key for choosing the left urn
or pressing the “J” key for choosing the right urn. The computer will briefly confirm
your choice by highlighting the urn you chose in blue (see example below where the left
urn was chosen).

The computer will check whether you correctly guessed from which urn the sample
was drawn. But the computer will not inform you whether or not you selected the correct
urn.

After you made your choice, a new round will start directly. That means the com-
puter will select one of the two urns and wait for you to press the “Spacebar” to draw
the sample.

Your Payment

The computer keeps track after each round whether you guessed correctly the urn the
sample was drawn from.

You will be paid for the total number of correct guesses. For each correct guess, you
will earn 0.15 CHF. At the end of the experiment, we will show you an overview of the
number of correct guesses and how much you earned from your decisions.
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E.2 Instructions for Experiment 2: The Certainty Effect

[These are the written instructions for Experiment 2 given to subjects during the experi-
ment. The original instructions were in German. Text in brackets [...] was not displayed
to subjects.]

General Instructions

Welcome! In this experiment you will be asked to make a series of decisions that will de-
termine your earnings at the end of the experiment. The total duration of the experiment
is about 1 hour.

If you have a question, please raise your hand and remain seated. An experimenter
will come and answer your question.

It is important, that you read the instructions carefully before you make your deci-
sions.

During the experiment you are not allowed to talk or communicate in any other way
with the other participants. If you violate this rule, you might be excluded from the
experiment.

We now explain the general course of the experiment: The experiment consists of
a decision part and a questionnaire. In the decision part you have to make multiple
decisions.

In the decision part, you can earn money. How much money you earn will depend
on your decisions in that part and chance. Your earnings in the decision part will be
paid to you anonymously and in cash at the end of the experiment. In addition to this
amount you will receive e4 for your participation in the experiment.

Below you will find further general information for the experiment. Once you have
read them, please proceed to answer the comprehension questions on page three.

You will receive further specific instructions for the decision part directly before the
beginning of the decision part.

Instructions: Lotteries In the decision part of the experiment you will be asked to
make decisions about lotteries. Hence, we will now explain in detail what a lottery is:

A lottery consists of two potential outcomes, each of which will occur with a given
probability. One of the two outcomes is always e0 (zero). The other outcome will differ
from lottery to lottery. If a lottery is played out, this means that you will receive exactly
one of the two possible outcomes (in Euro).

In the experiment lotteries will be represented by pie charts as in the example below.
The colored areas of the pie chart illustrate the probabilities for the two corresponding
outcomes.
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Example:
The pie chart depicted above is an example of how we present a lottery. In this

example, the lottery pays e10 with a probability of 75%, which is represented by the
blue area. Additionally, this information is also shown numerically above the pie chart.
Accordingly, the lottery pays e0 with a probability of 25%, which is represented by the
green area. The second outcome is always e0 and occurs with the remaining probability.
Please note that this information is not repeated numerically on screen.

If a lottery is played out, this means that it will pay exactly one of the two outcomes.
In the example above, the lottery pays e10 with a probability of 75% and e0 with the
remaining probability of 25%.

Please note that the lottery shown above is only an example. The lotteries in the
experiment will have different outcomes and probabilities.

If you have a question, please raise your hand. If you have no further questions, you
may proceed to the comprehension questions on the next page.

Comprehension Questions: Lotteries

Below you see examples of two lotteries, similar to the ones you will face later on in the
experiment. Please note that these lotteries are only examples.

Lottery A Lottery B

Please answer the following comprehension questions:

1. What is the probability that Lottery A pays e10?

2. What is the probability that Lottery B pays e0?

3. Which amount does Lottery A pay with a probability of 25%?

4. Which amount does Lottery B pay with a probability of 55%?

Once you have answered all comprehension questions, please raise your hand. An
experimenter will then check your answers.

Specific instructions for the decision part

[These are the translated instructions for the decision part, which were distributed af-
ter all participants have answered the comprehension questions correctly. The original
instructions were in German. Text in brackets [...] was not displayed to subjects.]

Your decisions: In this part of the experiment you will be presented with a series
of lottery pairs. Your task is to choose one of the two lotteries from each pair.
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On the screen you will see a lottery pair (consisting of two lotteries) represented by
two pie charts. One of the lotteries will be shown on the left and the other will be shown
on the right. You choose one of the lotteries by pressing the left or right arrow key on
your keyboard. These keys are marked with a yellow sticker. To choose the lottery on
the left, press the left arrow key “←.” To choose the lottery on the right, press the right
arrow key “→.” Please note that your decisions will affect your earnings at the end of
the experiment (a detailed description of how your earnings are determined will follow
below).

There are no wrong or correct decisions. When you choose one of the lotteries, this
simply shows that you prefer to play this lottery over the other lottery.

After you have made your decision, you will see the next lottery pair. In the decision
part you will be presented with a total of 132 lottery pairs. After you have made a
decision for each of the pairs, the decision part ends and we will continue with a short
questionnaire.

How we determine your earnings in the decision part After you have made
a decision for each of the lottery pairs, the computer will randomly select one of the
132 lottery pairs. The computer then checks which of the two lotteries you have chosen
for this randomly selected pair. The lottery you have chosen will be played out. The
outcome of the lottery determines your earnings for the decision part.

If you have any further questions, please raise your hand and remain seated.
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