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Abstract

In this study we aim to test behavioural models of complexity aversion. In this frame-

work, complexity is defined as a function of the number of outcomes in a lottery. Using

Bayesian inference techniques, we re-analyse data from a lottery-choice experiment. We

quantitatively specify and estimate adaptive toolbox models of cognition, which we rigor-

ously test against popular expectation-based models; modified to account for complexity

aversion. We find that for the majority of the subjects, a toolbox model performs best both

in-sample, and with regards to its predictive capacity out-of-sample, suggesting that indi-

viduals resort to heuristics in the presense of extreme complexity.
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1 Intro

In the recent years, the economic environment has witnessed a noticeable surge in complexity,

driven by a confluence of interconnected factors. Technological advancements and globaliza-

tion have expanded choices and convenience, while at the same time they have introduced

overwhelming options that demand more of the consumers’ attention and time. Mortgages,

financial products, investment decisions and cryptocurrencies, all come with a plethora of

options and features, that can exacerbate consumer decision-making, contributing to their in-

creased cognitive fatigue.

In the field of choice under risk, complexity is often characterised by the number of payoff

outcomes in a particular lottery (see for example Sonsino et al. 2002, Moffatt et al. 2015, Zilker

et al. 2020, Fudenberg and Puri 2022, Puri 2024). Early research on this topic has found that

complexity aversion is a common attribute in subjects’ behaviour, that is they reveal a strong

preference for simple lotteries over complex ones (lotteries with higher number of outcomes).

Huck and Weizsäcker (1999) and Sonsino et al. (2002) were among the first to provide evidence

that individuals discriminate heavily against complicated lotteries, such that even when the

expected value was fixed, they still prefer the lotteries with fewer outcomes even when these

lotteries have a higher variance. On the other hand, Wakker (2023, section 6, p.4) provides an

extensive literature of studies that find either complexity seeking (see for example Birnbaum

2005 or Erev et al. 2017), or as much aversion as seeking (see among others Birnbaum et al. 2017

or Schmidt and Seidl 2014). Moffatt et al. (2015) estimate the distribution of attitudes towards

complexity, finding that 50% are complexity-averse, 33% complexity-neutral, and only 17%

complexity-loving. They also find that this rate of responsiveness to complexity reduces with

experience to the extent that the average subject becomes almost complexity neutral by the end

of the experiment. This convergence to complexity neutrality does not necessarily imply that

subjects no longer have a distaste for complex tasks, instead it could suggest that they merely
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adopted a different strategy to make their decision, one which meant the complexity of the

task was no longer hindering their decision process (i.e. heuristics).

From a theoretical modelling point of view, various expectation-based utility models (e.g.

mean-variance, Expected Utility, Cumulative Prospect Theory) have been modified to cap-

ture complexity aversion. Moffatt et al. (2015) test versions of the mean-variance model, and

expected utility, while Puri (2024) introduces Simplicity Theory which models decisions as ex-

pected utility less a cost for the complexity of the lottery, with several layers of generalization.

Fudenberg and Puri (2022), propose a model based on the latter, that combines the standard

cumulative prospect theory (CPT) model with a complexity cost. This model captures pref-

erences for lotteries with smaller number of outcomes and they show that both probability

weighting and complexity costs have an important role to play in predicting these risky alter-

natives. Diecidue et al. (2015) find that their results are consistent with prospect theory, but can

also be explained by a population with heterogeneous aspiration levels. On the other hand,

Bernheim and Sprenger (2020) find that PT and CPT fail rigorous tests that they design, and

conclude that there is a possibility that the observed behaviour reflects a combination of stan-

dard CPT and a form of complexity aversion linked to heuristics, while Georgalos and Nabil

(2023) show that the descriptive capacity of CPT is decreasing on the level of complexity in a

dataset.

Previous research has also suggested that when decisions are more complex, individuals

may avoid making a decision altogether, they might procrastinate, but more often than not

they decide to stick with a default option or strategy (Iyengar and Lepper 2001; Thaler and

Sunstein 2009). This led a strand of the literature to associate the distaste for complexity with

an increase in one’s cognitive load and therefore, an increase in reliance on simplified strate-

gies or heuristics (rules of thumb). Venkatraman et al. (2014) shows that when faced with

multiple-outcome gambles involving probabilities of both gains and losses, people often use

simple heuristics that maximise the overall probability of winning. Coricelli et al. (2018) find
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that subjects may employ both a simplifying strategy and a compensatory strategy, provid-

ing evidence in support of a multiple-strategy approach to decision making. Oberholzer et al.

(2024) report evidence of complexity aversion, suggesting a tendency to avoid cognitive effort

as a potential explanation. Zeisberger (2022) suggest that the more complex the decision prob-

lem, the more likely it is the decision-maker will apply heuristics. Further studies have also

supported the idea that complexity induces the use of heuristics with a focus on gain and loss

probabilities (Erev et al. 2010; Payne 2005).

While this literature hints towards the extensive use of heuristics and simplification strate-

gies as a response to the increased cognitive load that complexity causes, the relationship be-

tween heuristic decision making and complexity has not been thoroughly investigated. With

this study, we aim to contribute to a recent literature that explores the impact of complex-

ity on decision making. Recent work by Arrieta and Nielsen (2024) provides direct evidence

that individuals adapt their decision-making processes in response to complexity by resort-

ing to procedural strategies. They show that as decision environments become more complex

(i.e. lotteries include more outcomes), individuals are more likely to adopt describable, step-

by-step decision procedures. These procedural strategies simplify the decision process and

reduce cognitive load, leading to more consistent choices under complexity. In our study, we

take a different approach by examining complexity aversion and investigate how individuals

facing complex lotteries tend to avoid the complexity altogether, preferring simpler lotteries

and relying on a cognitive toolbox of heuristic strategies. Enke and Graeber (2023) introduce

the concept of cognitive uncertainty, which represents individuals’ subjective uncertainty over

their own decision-making, especially in complex or uncertain environments. This uncertainty

leads individuals to make decisions that are often simplified or “noisy”, leading to systematic

biases in economic decision-making, including probability weighting and conservatism in be-

lief updating. Enke and Shubatt (2023) develop quantitative indices to measure both objective

and subjective complexity in lottery choice problems, aiming to understand how increasing
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complexity leads to greater decision-making errors and biases. They show that as complexity

increases, decision-making becomes noisier, leading to biases like spurious risk aversion due

to the difficulty of accurately assessing complex lotteries. Finally, Georgalos and Nabil (2023)

show that increased complexity, and therefore the increased cognitive fatigue, lead agents to

resort to heuristic decision making (following simple rules of thumb) rather than using com-

plicated expectation utility models.

In this paper we aim to explore the relationship between complexity aversion and heuristic

decision making in the presence of extreme complexity. The heuristics literature assumes that

people are equipped with a repertoire of heuristics (strategies) and simplifying processes (rules

of thumb) to solve the tasks they face in daily life. This idea has been theoretically modelled

with the aid of a cognitive toolbox, from which people might adaptively choose their respec-

tive strategies. Payne et al. (1993) argued that the decision makers are equipped with a set

of strategies and select among them when faced with a decision; an approach which was later

extended in Gigerenzer (2002) who models decision making as probabilistic draws from a tool-

box of heuristic rules. Scheibehenne et al. (2013) propose a model of strategy selection. More

specifically, they suggest a framework on how to quantitatively specify a toolbox model of

cognition, and how to rigorously test it using Bayesian inference techniques. Using data from

an experiment designed to elicit preferences towards risk and complexity aversion, we imple-

ment the methodology suggested in Scheibehenne et al. (2013) to estimate cognitive toolbox

models. We then test these models against popular expectation-based utility models, modified

to account for complexity aversion. We compare the models based on both their in-sample

and out-of-sample (predictive) capacity. We find that for the majority of the subjects, a tool-

box model of simple heuristics has better descriptive and prescriptive capacity than competing

compensatory models.
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2 Theoretical Framework

In this section we present the theoretical models designed to capture preferences towards com-

plexity and risk. The subjective complexity of a choice task is generally characterised in the

literature by the number of alternatives on the decision maker’s choice set, or the number of

payoff outcomes in a particular lottery (see among others Sonsino et al. 2002, Moffatt et al. 2015,

Zilker et al. 2020, Fudenberg and Puri 2022, Puri 2024). In our comparison, we include three

expectation-based utility models that have been developed or modified to account for this type

of complexity, as well as a cognitive toolbox of heuristics. We include the two models tested

in Moffatt et al. (2015), namely the mean-variance complexity aversion and the Viscusi (1989)

Prospective Reference Theory, the CPT-Simplicity Theory, a recent Cumulative Prospect Theory

specification to account for complexity, as proposed in Fudenberg and Puri (2022), and a tool-

box model of simple heuristic rules, as proposed in Scheibehenne et al. (2013) and partially

implemented in Stahl (2018).

2.1 Mean-Variance Complexity Aversion

This model assumes that the utility function of the decision maker takes into consideration

the expected value of the lottery (mean), the variance (exposure to risk), and its complexity

(measured by the number of outcomes)1. The utility function for an individual i is given by:

U(p, x) = µ(p,x) − αiσ
2
(p,x) − γiC(p,x) (1)

where µ(p,x) is the expected value of the J-outcome lottery L = {p1, x1; · · · ; pJ , xJ} defined

as:
J

∑
j=1

pjxj

1This corresponds to the type 4 model in Moffatt et al. (2015, p. 158) and consists of a modification of the mean-
variance model to account for complexity aversion as a function of the number of outcomes. Similarly, this model
can be also considered as special case of Puri (2024) Simplicity Theory.
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σ2
(p,x) is the variance of the lottery defined as:

J

∑
j=1

pj

(
xj − µ(p,x)

)2

and C(p,x) is the measure of complexity of the lottery, operationalised as C=0 for a sure payoff,

C=1 for a simple lottery, C=2 for a complex, and C=3 for a very complex lottery. The parameter

α is closely related to the coefficient of absolute risk aversion, while γ represents the degree of

complexity aversion when γ > 0.

2.2 Prospective Reference Theory

This model assumes that the decision makers do not take the stated probabilities at face value,

but act as Bayesians, and view the prior probability of each outcome of the lottery L as 1/J.

The model follows the same specification as above but replaces the objective probabilities in

the expected value formula with transformed ones of the form:

p̃j =
δ 1

J + pj

δ + 1
, j = 1, . . . , J; J > 1 (2)

The parameter δ defines the degree of probability distortion. When δ → 0 the transformed

probabilities coincide with the objective ones. On the contrary, as δ → ∞, p̃j → 1/J.

2.3 CPT-Simplicity Theory

CPT-Simplicity theory, introduced in Fudenberg and Puri (2022), modifies the CPT model to

account for complexity aversion by introducing a complexity cost that captures a preference

for lotteries with fewer number of outcomes. The CPT-simplicity model is defined as:

U(p, x) =
J

∑
j=1

u(xj)

[
w

(
j

∑
k=1

pk

)
− w

(
j−1

∑
k=1

pk

)]
− C(|support(p)|) (3)

where C(x) is a three-parameter sigmoid cost function to account for complexity, specified as:
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C(x) =
ι

1 + e−κ(x−ρ)
− ι

1 + e−κ(1−ρ)
(4)

with x being the number of outcomes of a lottery, ι the height of the function, ρ the midpoint

of the rise, and κ the slope, with larger values of κ indicating a steeper slope2. The function

satisfies the condition C(1) = 0, while w(.) is the Tversky and Kahneman (1992) probability

weighting function3:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(5)

Finally, a power (CRRA) utility function is assumed for the monetary payoff transformation.

2.4 Cognitive Toolbox

Following Scheibehenne et al. (2013), a toolbox model can be represented by a set of different

psychological processes or strategies f , and each strategy predicts a particular course of action,

depending on the ecology of the decision environment. The outcome of this process can be

modelled with the aid of a mixture proportion parameter β, which indicates the probability of

choosing each strategy in the toolbox, where β a vector. For instance, for a particular toolbox TB

consisting of J strategies, each strategy f j will be selected with probability β j, with ∑J
j=1 β j = 1.

For instance, a potential toolbox with 4 strategies would be defined as:

• Pick the lottery with the highest payoff (MAXIMAX) with probability β1

• Pick the lottery with the highest minimum payoff (MINIMAX) with probability β2

• Pick the lottery with the highest most likely payoff (MOST LIKELY) with probability β3

• Calculate the arithmetic mean of all outcomes for each gamble and pick the lottery with

the highest mean. (EQUI) with probability 1 − ∑3
i=1 βi

2Sigmoid functions have been extensively used in the artificial neural networks literature.
3We also tried different specifications of the probability weighting function (both one and two-parameter func-

tionals) with TK being the best performing specification.
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This modelling specification allows for the underlying cognitive process of strategy selection

to remain unspecified, given that the value of the parameter vector β will be estimated by

the data, providing the empirical validation of the latent strategy mix. Given this mixture

specification, the compound probability of choosing lottery A can be specified based on the

sum of the individual likelihoods of each f j, weighted by the mixture probability β j:

p(A|TB) =
J

∑
j=1

[β j × P(A| f j)] (6)

where P(A| f j) is the individual predicted probability of each strategy. Since the most distin-

guishable feature of a toolbox model is its adaptive nature (each individual adopts their chosen

strategies depending on the choice environment), we deviate from the standard practice of fix-

ing a pre-determined set of strategies, and allow for heterogeneity between subjects, both in

terms of size (how many strategies) and in terms of content (which strategies). The toolbox

models we investigate can accommodate a variety of heuristics (out of a total of 10 heuristics

extensively utilised in the literature4) and sizes (ranging from 2 to 5 strategies per toolbox5).

We achieve so by estimating, subject-by-subject, every potential toolbox of size up to 5, that

is formed as a combination of a subset of the available 10 heuristics. This gives in total 627

toolbox models.

3 Data

We re-analyse the data from Moffatt et al. (2015). This dataset involves 80 subjects participating

in a 2-phase experiment, where in each phase subjects faced 27 tasks in which they were asked

to choose between two lotteries with the same expected value, but with differing degrees of

complexity and risk (phase 2 consisted of the same 27 tasks presented in a different order). The

experiment was incentivised using the random lottery incentive mechanism. The experimental

4We use the heuristics studied in Glöckner and Pachur (2012). In the Online Appendix there is the full list of
heuristics along with a description of the choice they prescribe.

5Scheibehenne et al. (2013) discuss how including too many strategies can lead to the strategy sprawl problem.
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design builds on Sonsino et al. (2002) and Sitzia and Zizzo (2011) single period tasks. The

construction of the lotteries is based on the two tasks presented below. The first task involves

the choice between a sure win (SW) and a simple 3-outcome lottery (S3).

SW =

{
107, with probability 1 S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

Using the S3 lottery and following a particular procedure 6, it is then possible to generate a

complex lottery, with nine outcomes7, and a very complex lottery with 27 outcomes. In vector

form, this lottery can be written as Sα = (p, x) =
(
(p1 p2 p3)′, (x1, x2, x3)′)

)
. A complex lottery

Cα can be generated from Sα using the formula:

Cα =

(
vec(pp′); vec

(
1
2

xi′3 +
1
2

i3x′
))

where i3 is a vector of size 3 consisting of ones and vec(A) is the function that transforms a

n × n matrix A into a n2 × 1 (column) vector consisting of the elements of A. This lottery

is equivalent to playing Sα twice and using the arithmetic mean from the two plays as the

outcome.

The new lottery will be more complex, but at the same time safer, since it will be charac-

terised by a lower variance. On top of the SW lottery, they generated six simple, six complex

and six very complex lotteries. Using three simple lotteries, they first generated three complex

and three very complex lotteries. Then, using the so-called safe version of the simple lotteries,

which has decreased spread of the extreme outcomes and an unchanged middle outcome, they

constructed three further complex and three very complex safe lotteries. The pairwise combi-

nations between a subset of these lotteries, along with the SW lottery, gives the total of the 27

6To save on space, we briefly describe the process in the Appendix and we refer the interested reader to the
original study (Moffatt et al. 2015, p.151).

7Nevertheless, some of this outcomes will be identical and therefore, the complex lottery consists of only 6
outcomes.
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tasks (see Moffatt et al. 2015, Table 2a, pp. 152-153 for the full set of tasks). All lotteries have

the same expected value which also contributes to the complexity of the task.

4 Econometric Analysis and Results

We estimate all the models using Hierarchical Bayesian econometric techniques, which allow

for the simultaneous estimation of individual level parameters and the hyper-parameters of

the group level distributions (see Balcombe and Fraser 2015; Ferecatu and Önçüler 2016; Bail-

lon et al. 2020; Alam et al. 2022 and Gao et al. 2022 for some recent applications of Bayesian

econometrics in risky choice). We compare models both in-sample, and out-of-sample. Testing

models both in-sample and out-of-sample is essential because in-sample testing evaluates how

well the model fits the data it was trained on, while out-of-sample testing assesses the model’s

ability to generalise and predict unseen data, ensuring that the model is not overfitting and

remains robust in real-world applications.

In all subsequent analyses, we fully leverage the flexibility of Bayesian methods to account

for individual heterogeneity. All comparisons are based on estimates obtained at the subject

level. Specifically, for both Toolbox and non-Toolbox models, we derive individual-level pa-

rameter estimates and use these to classify subjects into models for all subsequent analyses.

In particular, we first compare the models in-sample, based on the value of the Bayes Factor,

using the data from phase 1 of the experiment. We then compare the models based on their

out-of-sample predictive capacity (predicted log-likelihood) on the phase 2 tasks, using the es-

timates from phase 1. To capture stochasticity in choice, we model the error structure assuming

a logit link function. The probability of choosing lottery A is given by:

p(A, B) =
exp(ϕUA(p, x))

exp(ϕUA(p, x)) + exp(ϕUB(p, x))

where U(p, x) is the utility as defined in section 2, and ϕ an index of the sensitivity to differ-
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ences in utility, to be estimated. The overall likelihood is a Bernoulli distribution that can be

expressed as P(D) = ∏ p(A, B)I × (1 − p(A, B))(1−I), where I is an indicator function, taking

the value 1 when the subject chose A, otherwise 0.

For the toolbox model, since the heuristics generate ordinal choice propensities (i.e. deter-

ministic), we assume a constant-error choice rule to capture stochastic choice in the data, where

the decision maker chooses with constant probability 1 − ε, the option that the heuristic pre-

scribes, and with probability ε she makes a mistake8. The overall likelihood for a given subject

is therefore the product, across all the tasks, of the weighted sum of predicted probabilities

across the number of strategies in a given toolbox.

Table 1 reports the results of the classification. The first column classifies subjects to mod-

els based on the value of the Bayes Factor, while the second column, according to the models’

predictive capacity. In-sample, the toolbox model has the best performance for 51.3% of the

subjects, followed by the CPT-Simplicity Theory (22.5%), the mean variance complexity aver-

sion (17.5%), and the Prospective Reference model which was best for 8.8% subjects. A similar

pattern is also observed in our out-of-sample prediction exercise. The toolbox model is best for

70% of the subjects, followed by the mean variance complexity aversion (26.3%), the Prospec-

tive Reference Theory model (5%) and the CPT-Simplicity Theory model (3.8%).

In the results reported in the Table, we observe that, when considering confidence intervals,

the performance difference between the best and the second-best model exceeds one standard

error for all but two subjects. However, when applying a stricter criterion, requiring that the

performance difference between the first and second-best models, between the second and

third-best models, and so on, is greater than one standard error, we find that five subjects must

be excluded from the analysis. Of these, three are classified as Toolbox decision makers, and

two are classified as Mean-Variance Complexity Averse. Overall, for 14 subjects the Toolbox

model performs poorly and is classified as last.

8This is the part P(A| f j) in Equation 6.
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Model (1) (2) (3) (4) (5)

Toolbox 41 56 62 61 65

% 0.513 0.700 0.775 0.763 0.813

Mean-variance complexity aversion 14 21 15 1 7

% 0.175 0.263 0.188 0.013 0.088

Prospective Reference Theory 7 4 1 10 0

% 0.088 0.050 0.013 0.125 0.000

CPT-Simplicity Theory 18 3 2 8 8

% 0.225 0.038 0.025 0.100 0.100

TOTAL 80 80 80 80 80

Table 1: Number of subjects for which a model is classified as best, based on: (1) In-sample
fit (Bayes Factor), (2) Out-of-sample fit (predicted log-likelihood on phase 2 data), (3) K-fold
Cross Validation (mean predicted log-likelihood from 3 folds on phase 1 data), (4) In-sample fit
(Bayes Factor on a subset of Moffatt et al. (2015) tasks with similar skewness), and; (5) Out-of-
sample fit (predicted log-likelihood on phase 2 subset data using tasks with similar skewness).
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Model In-sample Out-of-sample TLBX MVCA PRT CPT-SIMPLE

TLBX 41 56 31 7 3 0

% 0.756 0.171 0.073 0.000

MVCA 14 21 6 7 0 1

% 0.429 0.333 0.000 0.143

PRT 7 4 5 1 0 1

% 0.714 0.143 0.000 0.143

CPT-SIMPLE 18 3 10 6 1 1

% 0.556 0.333 0.056 0.056

Table 2: The Table shows the transition matrix of model classifications. The first two columns
summarize the in-sample and out-of-sample classification of subjects. The remaining columns
display the percentage of subjects from each in-sample classification who were reclassified
into different models based on out-of-sample predictions. TLBX stands for Toolbox, MVCA for
Mean-variance Complexity Aversion, PRT for Prospective Reference Theory and CPT-SIMPLE,
for Simplicity Theory.

It is important to note that in-sample and out-of-sample model selection are distinct ap-

proaches that can yield different outcomes. In-sample selection identifies the model with the

best descriptive fit to the observed data, while out-of-sample selection prioritizes predictive

accuracy. Consequently, a subject classified as a Toolbox decision-maker in both contexts may

not necessarily rely on the same set of tools. For example, a subject might be identified as

a Toolbox decision-maker using four tools in-sample but classified as relying on only two

tools—possibly different ones—out-of-sample. As a result, one may wonder how stable is

this classification between in-sample and out-of-sample. Table 2 presents a transition matrix

of types. The first two columns provide the same information as Table 1, detailing the clas-

sification of subjects across different models in and out-of-sample. The remaining columns

show, within each model, how many subjects are classified as each model type based on out-

of-sample predictive performance. For example, in the first row, of the 41 subjects classified
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as toolbox decision makers in-sample, 75.6% remain classified as toolbox decision makers out-

of-sample, 17.1% are classified as Mean-variance Complexity Averse, 7.3% as Prospective Ref-

erence Theory decision makers, and none are classified according to CPT-Simplicity Theory.

This matrix provides a clearer picture of the stability of model classifications and allows for a

deeper understanding of how subjects’ classifications change between in-sample and out-of-

sample predictions. Furthermore, we investigated whether there was a pattern in the types of

heuristics used by subjects who were classified as Toolbox decision makers in-sample but were

classified differently out-of-sample. Among the seven subjects classified as Mean Variance

Complexity Averse, six included Maximax (MAXI) in their toolbox, while Minimax (MINI)

and Priority (PRIO) appeared in five out of seven. For the three subjects classified as Prospec-

tive Reference Theory, both Equal Weight (EQW) and Better Than Average (BTA) heuristics

were present in all their toolboxes.

Given the performance of the toolbox model, we next focus on the size and the content of

each toolbox. Figures 1 and 2 illustrate the distribution of the different sized toolboxes both in

and out-of-sample. In both cases the majority of subjects’ (who is classified as toolbox decision

makers) use 4 or 5 heuristics, while very few use only 2. This outcome is in line with previous

results in the literature (see Makridakis and Winkler 1983; Ashton and Ashton 1985; He et al.

2022). There seems to be a slight drop in the size of toolboxes, out-of-sample, which could be

the effect of learning and increased familiarity with the task.
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Figure 1: Frequency of toolbox sizes (in-sample).

Figure 2: Frequency of toolbox sizes (out-of-sample).

Regarding the content of these toolboxes, Figures 3 and 4 illustrate the distribution of
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heuristics across all toolboxes, in and out-of-sample, respectively. Three heuristics outper-

formed all others, both in and out-of-sample as they were present in the majority of the tool-

boxes, namely, the Minimax (MINI-choose the gamble with the highest minimum outcome),

the Least Likely (LL-identify each gamble’s worst outcome and choose the gamble with the

lowest probability of the worst outcome)and the Priority heuristic (PRIO-go through a num-

ber of reasons). Similarly, the three worst performing heuristics, both in and out-of-sample

were the Lexicographic (LEX-go through a number of pairwise comparisons on the outcomes),

the Equiprobable (EQUI-calculate the arithmetic mean of all outcomes for each gamble and

choose the gamble with the highest mean) and the Most Likely (ML-identify each gamble’s

most likely outcome and choose the gamble with the highest, most likely outcome). Given the

nature of these heuristics, it is easy to infer that subjects tend to resort to strategies that will

protect them from the worst case scenario (i.e. worst outcome) or by guaranteeing a minimum

payoff, while avoiding strategies that would expose them to higher levels of complexity due

to the requirement of demanding calculations (e.g. calculating the mean of a gamble). When

we compare in and out-of-sample we find strong evidence in favour of the Priority Heuristic

(PRIO), a heuristic that has received much attention in the literature because of its capacity

to explain risky choice. The PRIO is a lexicographic strategy that requires several rounds

of reason comparing payoffs and probabilities and is therefore more cognitively demanding

compared to simpler heuristics. This may be a potential explanation of the drop in complexity

averse and seeking subjects that Moffatt et al. (2015) find in the phase 2 data.
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Figure 3: Frequency of heuristics (in-sample).

A potential issue with the out-of-sample prediction exercise, using data from phase 2, is

that experience effects may drive the results, as subjects have already been exposed to the

lotteries. As a robustness check, we re-estimate the models using the data from phase 1 and

classifying subjects based on a K-fold cross validation exercise (James et al., 2013). In particular,

we divided the tasks into 3 folds, with 9 tasks in each fold. For each iteration, we used the data

from 2 folds to estimate the models (training set) and predicted the choices in the remaining

fold (test set). This process was repeated 3 times, ensuring that each fold was used once as

a test set and twice as part of the training set. Models were then classified based on their

mean predictive performance across these iterations in this K-fold out-of-sample validation

exercise. The results are reported in Table 1, column (3). The results are qualititavily similar to

those reported above, with the vast majority of the subjects being classified as toolbox decision

makers (77.5%).

A limitation in the experimental design in Moffatt (2016) is that it does not control for skew-
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ness, or in other words, the asymmetry in the distribution of outcomes. This could potentially

lead to confounding effects where any observed behaviour might be influenced by skewness

rather than just the number of outcomes (complexity). In a recent study Spiliopoulos and

Hertwig (2023) show that as the number of outcomes increases, the influence of skewness on

decision-making becomes more pronounced, finding that skewness-preference models were

more prevalent in more complex environments. Subsequent studies that adopt the definition

of complexity as the number of outcomes (Oberholzer et al. 2024; Puri 2024) control for skew-

ness to ensure that any aversion to complexity could be attributed to the number of outcomes

rather than the distribution. To control for differences in the skewness between lotteries, we re-

peat the same estimation using a sub-sample of the original data. In particular, using the data

from phase 1, we exclude all the pairs of tasks that have one option offering a certain amount (9

tasks) and we also exclude all the pairs for which the difference in skewness between two op-

tions is greater than 0.15, as a proxy of same-skewness lotteries. This leaves a sub-sample of 14

pairs of lotteries for each subject9. We classify subjects based both on the in-sample fit and the

out-of-sample predictive power from phase 2 data. Table 1 reports the results for both cases,

column (4) and (5) respectively. Again, a similar pattern is observed regarding the number of

subjects that are classified as toolbox decision makers.

9As there is no clear guidance on what constitutes a small difference, we opted for the 0.15 cut-off as it strikes a
balance between maintaining a sufficient number of data points per subject to ensure robust parameter estimation
and constraining the sample to lotteries with comparable skewness. For a cut-off value smaller than 0.05, only 5
lotteries satisfy this condition—a relatively low number given the complexity of the models. For cut-off values in
the interval [0.05, 0.14), the number of lotteries increases to 9. Similarly, for cut-off values in the interval [0.15, 0.19),
the number rises to 14, and for values greater or equal to 0.2, the number of lotteries reaches 18. We repeated the
same exercise for a cut-off of 0.1 and 0.2 which confirm that the qualitative result remains unchanged, with the
majority of the subjects being best described by a toolbox model.
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Figure 4: Frequency of heuristics (out-of-sample).

5 Conclusion

Our analysis highlights the importance of accounting for complexity when deciding on which

explanatory model to adopt to describe individual behaviour. We have shown that with overly

complex tasks comes increased cognitive fatigue in decision-making; a characteristic which

heightens one’s reliance on simple rules of thumb to make decisions. This results in an adap-

tive toolbox of heuristics outperforming other expectation-based models of decision-making,

even when complexity aversion is captured within these competing parametric models. We

provide a means of efficiently estimating structural models of decision-making, including a

toolbox model, in-sample via the use of Bayesian Hierarchical modelling, and illustrate the

robustness of these results in their alignment with our out-of-sample prediction results.

Ironically, analysing strategic processes and preferences in the face of increased complexity

is a complex matter in itself, and it is easy to neglect vital attributes of complexity. Whilst most
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studies use the number of alternatives in a choice set as the key metric, we would urge fu-

ture research to consider the works of Diecidue et al. (2015), Huck and Weizsäcker (1999) and

Georgalos and Nabil (2023) who discuss how the formatting of probabilities and outcomes, the

distribution moments (e.g. variance and mean) and other factors may well fall into the com-

plexity function. The latter design a metric as a benchmark to determine a data sets complexity

levels.

Finally we would urge future studies to expand decision-tasks beyond binary lotteries,

as research has suggested the impact of complexity on risk taking is largely dependent on

the decision format (Oberholzer et al., 2024). Before we jump to conclusions on complexity’s

effect on risky decision-making, we must ensure that numerous tasks of varying contexts and

characteristics are examined, as it may be that the nature of certain tasks lead people to specific

solutions.
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Appendix A Tasks

This Appendix briefly describes the procedure Moffatt et al. (2015) are using to generate the

lotteries for their experiment. Consider the following lottery Sα:

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

This simple lottery with 3 outcomes, can generate a complex lottery with 9 outcomes, and a

very complex lottery with 27 outcomes. In vector form, this lottery can be written as Sα =

(p, x) =
(
(p1 p2 p3)′, (x1, x2, x3)′)

)
. A complex lottery Cα can be generated from Sα using the

formula:

Cα =

(
vec(pp′); vec

(
1
2

xi′3 +
1
2

i3x′
))

where i3 is a vector of size 3 consisting of ones and vec(A) is the function that transforms a

n × n matrix A into a n2 × 1 (column) vector consisting of the elements of A. This lottery is

equivalent to playing Sα twice and using the arithmetic mean outcome from the two plays as

the outcome.

Applying this to the above lottery, we get:

vec(p × p′) =


0.16 0.12 0.12

0.12 0.09 0.09

0.12 0.09 0.09

 =

[
0.16 0.12 0.12 0.12 0.09 0.09 0.12 0.09 0.09

]

and vec(pp′ generates a vector of size nine with the element of the p × p′ matrix. Then, for the

payoffs:

vec
(

1
2

xi′3 +
1
2

i3x′
)
=

[
80 90 115 90 100 125 115 125 150

]
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which gives the lottery

C3 =



80, with probability 0.16

90, with probability 0.24

100, with probability 0.09

115, with probability 0.24

125, with probability 0.18

150, with probability 0.09

S3 =



80, with probability 0.40

100, with probability 0.30

150, with probability 0.30

Using a similar procedure, it is possible to create a very complex lottery with 27 outcomes. For

the full set of tasks please see Moffatt et al. (2015, Table 2a, pp. 152-153).
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Appendix B List of Heuristics

Table 3: Table of heuristics

Heuristic Description
1. Priority Heuristic

(PRIO)
Go through reasons in the order of: minimum gain, probability of
minimum gain, and maximum gain. Stop examination if the mini-
mum gains differs by 1/10 (or more) of the maximum gain; other-
wise, stop examination if probabilities differ by 1/10 (or more) of
the probability scale. Choose the gamble with the more attractive
gain (probability).

2. Equiprobable
(EQUI)

Calculate the arithmetic mean of all outcomes for each gamble.
Choose the gamble with the highest mean.

3. Equal-weight
(EQW)

Calculate the sum of all outcomes for each gamble. Choose the
gamble with the highest sum.

4. Better than aver-
age (BTA)

Calculate the grand average of all outcomes from all gambles. For
each gamble, count the number of outcomes equal to or above the
grand average. Then choose the gamble with the highest number
of such outcomes.

5. Probable (PROB) Categorize probabilities as probable (i.e., ≥ 1/2 for a two-outcome
gamble, ≥ 1/3 for a three-outcome gamble, etc.) or improba-
ble. Cancel improbable outcomes. Then calculate the arithmetic
mean of the probable outcomes for each gamble. Finally, choose
the gamble with the highest mean.

6. Minimax (MINI) Choose the gamble with highest minimum outcome.
7. Maximax (MAXI) Choose the gamble with the highest outcome.
8. Lexicographic

(LEX)
Determine the most likely outcome of each gamble and choose
the gamble with the better outcome. If both outcomes are equal,
determine the second most likely outcome of each gamble, and
choose the gamble with the better (second most likely) outcome.
Proceed until a decision is reached.

9. Least likely (LL) Identify each gamble’s worst outcome. Then choose the gamble
with the lowest probability of the worst outcome.

10. Most likely (ML) Identify each gamble’s most likely outcome. Then choose the gam-
ble with the highest, most likely outcome.

Heuristics are from Thorngate (1980) and Payne et al. (1993), later used in Brandstätter et al.
(2006) and Glöckner and Pachur (2012).
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