
TGRS-2024-06048.R1 1

Recurrent Semantic Change Detection in VHR

Remote Sensing Images Using

Vision Foundation Models
Jing Zhang, Lei Ding, Tingyuan Zhou, Jian Wang, Graduate Student Member, IEEE. Peter M. Atkinson and

Lorenzo Bruzzone, Fellow, IEEE

Abstract—Semantic change detection (SCD) involves the simul-
taneous extraction of changed regions and their corresponding
semantic classifications (pre- and post-change) in remote sensing
images (RSIs). Despite recent advancements in Vision Founda-
tion Models (VFMs), the Fast Segment Anything Model has
demonstrated insufficient performance in SCD. In this paper,
we propose a novel vision Foundation Model architecture for
SCD, designated as VFM-ReSCD. This architecture integrates
a side adapter (SA) into the VFM-ReSCD to fine-tune the Fast
Segment Anything Model (FastSAM) network, enabling zero-shot
transfer to novel image distributions and tasks. This enhancement
facilitates the extraction of spatial features from Very High-
Resolution (VHR) RSIs. Moreover, we introduce a Recurrent
Neural Network (RNN) to model semantic correlation and
capture feature changes. We evaluated the proposed methodology
on two benchmark datasets. Extensive experiments show that
our method achieves state-of-the-art performances over existing
approaches and outperforms other CNN-based methods on two
RSI datasets.

Index Terms—Remote Sensing, Semantic Change Detection,
Vision Foundation Model, Recurrent Neural Network.

I. INTRODUCTION

SEMANTIC Change Detection (SCD), also known tradi-
tionally as ”detection of land-cover transitions” or ”mul-

ticlass change detection” [1] [2] [3], has been reinvigorated
through the application of deep learning (DL) methodologies.
This is the relatively new task with DL. SCD is attracting
growing attention with considerable interest due to Earth
Observation (EO) applications. It is essential to identify both
the location and the categories of change in the SCD task [4]
[5] [6], which combines the two tasks semantic segmentation
and change detection: acquire the semantic map and change
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map, and subsequently overlay and analyze these maps to
derive the results map containing the semantic and change
information. SCD is very useful and meaningful in EO, as
it provides numerous practical benefits in many applications,
including resource management, environmental monitoring,
analysis of ecosystem change, urban planning, and land-cover
and land-use (LCLU) monitoring [4] [7]. In this paper, we
investigate employing the latest computer vision methods to
exploit more accurate semantic information from bi-temporal
images, to enhance accuracy.

Previous studies have focused on modeling the multitempo-
ral dependence and utilizing change vector analysis (CVA) [8]
to classify changes in different land cover (LC) types. Markov
chains were used in the study and prediction of changes using
multi-temporal data [9] [10]. Recently, SCD has emerged as
an innovative research area that utilizes the potential of DL
methodologies. For example, in [7], the authors present the
first large-scale, very high-resolution SCD dataset and use
predicted land-cover information to predict changes through
DL techniques.

Recent advances in DL applications for SCD have demon-
strated significant potential and effectiveness. Notably, a novel
convolutional neural network (CNN) approach introduced by
Ding et al. [5] was designed to learn the relationship be-
tween bitemporal images using a change detection (CD) unit,
which has achieved accurate results in SCD. This develop-
ment highlights the importance of understanding the temporal
differences within image pairs. Based on this, in [11], the
authors proposed a Temporal-Symmetric Transformer, which
learns feature representations that are highly discriminative
and temporally symmetric through spatio-temporal interaction
and symmetric fusion. The design of TST aims to mathemat-
ically avoid the risk of overfitting to the temporal order while
significantly enhancing the representational power through
spatio-temporal interaction. Then, Zhang et al. [6] employed
a recurrent neural network (RNN) method, which, unlike the
CNN approach, did not use a dedicated CD unit. Instead, their
method modeled the correlation between bi-temporal images
while learning the change features, further expanding the
repertoire of DL techniques for SCD. To address the challenge
of capturing long-distance dependencies, Chen et al. [12]
introduced the State Space Model for Change Detection, which
excels at capturing the dynamics of change and processing
unbalanced datasets. This research laid the foundation for
the mamba-based approach in SCD, emphasizing the model’s
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adaptability to datasets with varying class distributions and
its ability to track changes over time. Furthermore, in a
related development, Ding et al. [13] utilized VFM as an
encoder to extract vision representations in remote sensing
scenes. They proposed a convolutional adapter to focus on
specific ground objects and introduced a task-agnostic seman-
tic learning branch to leverage semantic features in bi-temporal
remote sensing images, thereby enhancing the model’s ability
to understand and interpret changes in the scene.

VFM can generalize to unfamiliar data distributions and
exhibit compatibility with various models for more complex
tasks. Wanyan et al. [14] present DINO-MC, a self-supervised
learning framework for remote sensing images that extends the
DINO model by incorporating multi-sized local views and pos-
itive temporal contrast pretext tasks. Then, in [15], the authors
introduce ChangeCLIP, a novel framework for Remote Sensing
CD that leverages semantic information from image-text pairs
using a modified CLIP model, and incorporates a differential
features compensation module to capture detailed semantic
changes. In VFM, especially the Segment Anything Model
[16] have achieved significant performance in segmentation
tasks, leading to a new paradigm in various remote sensing
technologies. In [17], the SAM pseudo-label optimizer refines
the initial pseudo-labels proposed to increase their accuracy. In
[18], authors employed SAM to segment agricultural land in
the context of research on spatio-temporal fusion. In general,
SAM has excellent identification capabilities in segmentation
tasks. Thus, we consider extending fastSAM [19], an efficient
version of SAM, to extract vision representation in the SCD
domain.

In SCD tasks, it is crucial to explore the relationship be-
tween semantic transitions and temporal dependencies. There
are two main challenges in SCD tasks. The first challenge
involves consideration of semantic relevance in detecting non-
salient changes within specific regions, such as the identifi-
cation of small objects. The challenge is exacerbated by the
frequent occurrence of false and missed alarms, which can
be attributed to the presence of external noise, as well as
variations in the quality of the input images. The second chal-
lenge emerges from the discrepancies between the outcomes
of SCD tasks and bi-temporal analyses, which directly impact
the quality of the results. This highlights the need to properly
consider semantic relevance.

This paper investigates the model of nuanced semantic
change transition patterns to reduce false alarms and dis-
crepancies. VFM has achieved significant performance in
various scenarios for object recognition and segmentation.
We introduce VFM as a context encoder for remote sensing
SCD, utilizing the parameter-efficient fine-tuning technique
known as the side adapter network [20]. The VFM and the
side adapter network jointly extract semantic features that
contain spatial details. This technique is designed to capture
semantic transitions and temporal dependencies. Moreover,
we introduce a Recurrent Neural Network (RNN) to model
the evolution of semantics over time, therefore precisely
detecting the semantic changes. Our method exhibits excellent
performance in our validation experiments on two benchmark
datasets. Our contributions can be summarized as follows.

1) Introducing VFM to the task of SCD. The proposed
VFM-ReSCD leverages the semantic embedding capa-
bility of VFM, and thus can better identify the LCLU
changes.

2) Proposing a side adapter for better adaptation of the VFM
semantics. This allows better exploitation of both the
general vision context as well as RS-specific knowledge.

3) Proposing a bi-directional RNN block to model the se-
mantic correlations between dual temporal branches, thus
achieving a better understanding of the LCLU transition.

This paper has been organized into the following parts.
Section II introduces the literature work on CD in RSIs.
Section III elaborates on the proposed VFM-ReSCD archi-
tecture. Section IV describes the experimental settings and the
evaluation metrics. Section V reports the results of an ablation
study and comparative experiments. Section VI summarizes
this work and draws conclusions.

II. RELATED WORK

SCD is a crucial task in remote sensing, which aims at
identifying and analyzing semantic changes in two satellite im-
ages taken in the same geographical area. This section reviews
previous related work in SCD, including traditional methods
and DL-based methods, which are introduced separately.

A. Binary Change Detection

Most traditional CD methods are based on image process-
ing techniques, which rely on simple pixel-level differences
or spectral analysis to detect changes in images [21] [22].
However, these approaches often struggle with complex sce-
narios due to their reliance on basic quantitative comparisons
of multi-temporal images. To overcome this limitation, DL
technologies have emerged as a powerful alternative due to
their ability to automatically extract complex features and
significantly improve detection accuracy. Specifically, convo-
lutional neural networks (CNNs) have demonstrated excellent
performance in image classification and feature extraction,
leading to their widespread application in CD for bitemporal
images. For example, Daudt et al. [23] proposed a Siamese
network based on a fully convolutional network, achieving
accurate results in CD tasks. Moreover, Zhang et al. [24] intro-
duced a deeply supervised image fusion network that enhances
accuracy and efficiency in high-resolution bi-temporal remote
sensing images through advanced fusion techniques and deep
supervised learning. However, the model is complex with high
computational costs. Building on the strengths of DL, RNNs
[25] have proven well-suited for processing time-series data,
as they can model temporal relationships between images
to identify change features more accurately. Nevertheless,
RNNs have limitations for capturing long-distance informa-
tion. Therefore, transformer-based approaches have introduced
additional advancements. For instance, Bandara et al. [26]
incorporated self-attention mechanisms and the parallel pro-
cessing capabilities of transformers to capture spatio-temporal
relationships between bi-temporal images, thereby improving
the detection accuracy of small objects. Likewise, Chen et
al. [27] proposed an object-guided transformer architecture
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that integrates paired OpenStreetMap (OSM) data and high-
resolution optical images, combining semantic object-level
information with spatial vision features to detect LC changes
effectively. In addition to these developments, recent research
highlights the potential of vision foundation models [28] [13],
which exhibit excellent generalization and model compatibil-
ity, enabling them to handle complex CD tasks and perform
well under varying data distributions. Moreover, Mamba-based
approaches have recently gained attention in CD. For instance,
Chen et al. [12] introduced the Mamba model for CD, SCD,
and semantic segmentation, offering new research directions
for Mamba-based approaches in remote sensing.

B. Semantic Change Detection

Binary change detection generates a change map without
category and location information, which limits its practical
applications. With advances in remote sensing technology and
DL methods, researchers have begun to focus on higher-
level representation changes in images, known as SCD. SCD
identifies changes in land-cover categories and includes un-
derstanding the semantic context underlying these changes.
For example, in the context of urban expansion, SCD not
only identifies the emergence of new buildings but also infers
changes in building types or uses [29]. SCD has attracted much
attention for enhancing the represented information. Teppei
[30] conducted a study on how to identify differences between
two images in a scene and represent them with semantic
information. The authors proposed the concept of SCD by
combining semantic segmentation and CD. Subsequently, un-
supervised CD methods have been developed. For instance, in
[31], the authors present Kernel Principal Component Analysis
(KPCA) convolution, which extracts features from multi-
temporal high-resolution remote sensing images and identifies
changes without requiring labeled data by utilizing deep twin
networks and polar domain mapping. Similarly, Saha et al.
[32] propose Deep Change Vector Analysis (DCVA), a novel
framework leveraging CNN features to effectively model spa-
tial context and analyze multitemporal VHR satellite images.
While these unsupervised methods have shown promise, they
still face challenges in providing sufficient accuracy in com-
plex scenarios. Many researchers have used CNN-based net-
works to achieve significant outcomes. For example, in [33],
the author proposed a deep object-based SCD framework for
building damage assessment that addresses semantic inconsis-
tency issues. In [34], a Siamese UNet architecture was used for
large-scale SCD, where semantic change maps were generated
with only coarse boundary or scarce category information. The
network mainly used two encoders and two decoders to share
weights and then used a multi-scale atrous convolution unit to
enlarge the receptive field and capture multi-scale information.
Finally, the authors proposed an attention mechanism and a
deep supervision strategy to improve network performance.

Recently, CNN-based methods have been developed for
SCD. In [5], two SCD methods with triple embedding
branches were introduced. Two branches segment temporal im-
ages into LCLU maps, while a CD branch detects the change
information. In [35], the triple branch was further extended by

introducing gating and weighting designs into the decoders
to improve the representations of the features. These works
also released benchmark datasets for SCD and task-specific
evaluation metrics. In [36], a CNN framework for SCD was
proposed, where a Siamese CNN was employed to extract
semantic features and a decoder module was designed to
detect changes. The study in [37] focuses on spatial-temporal
dependency to enhance the learning of semantic features. It is
worth noting that exploring spatial-temporal dependencies and
temporal dependencies for SCD are significant research topics.
This research work provides a foundation for the mamba-based
approach in SCD.

C. vision Foundation Models

Incorporating VFM into the SCD domain constitutes a
profound advance in technological innovation. These advanced
models are capable of capturing a more comprehensive set of
features and are significantly more efficient at processing mul-
timodal data and image information at different times, leading
to increased accuracy and robustness in SCD. This Challenge
is that we rely on the tack of well-annotated training data in
remote sensing images for SCD and CD tasks. To address this
issue, we found that one of the VFM, called SAM [16], can
segment natural images without annotations. Although SAM
performs excellently in natural image segmentation, the results
obtained by directly extending it to remote sensing are not
enough accurate. For example, Chen et al. [38] propose a
SAM-based method, taking advantage of SAM excellent zero-
shot transfer capability, which enables high-quality optical
image segmentation maps to be obtained. In [18] SAM was
employed to segment agricultural land in research on spa-
tiotemporal fusion. However, its ability to detect small objects
is limited in these tasks. Therefore, In [13], authors consider
using the adaptor to fine-tune the VFM to learn semantics in
RSIs that a CNN-based fastSAM as the backbone network for
CD. In [39] the author presented a dual encoder that combines
MobileSAM and CNN, which extracts asymptotic and local
features in parallel. However, in these studies, the adapter and
CNN are merely employed to fine-tune the backbone network
for feature extraction. Differently, in our research, we not
only employ an adapter to fine-tune the fastSAM but also
design an RNN to correlate semantic features in bi-temporal
images. There are differences between VFM-ReSCD and
SAM-CD. The SAM-CD [13] architecture utilizes FastSAM as
a frozen encoder, introduces a trainable adapter to improving
generalization in RSIs, and incorporates multi-scale features
in a UNet-like decoder with a change branch and a semantic
learning branch, thus enhancing its semantic awareness for
increased object change detection in VHR RSIs. Although
an adapter is introduced in SAM-CD, SAM-CD is hardly
effective for SCD. There are two reasons: 1) SCD provides
full supervision of the LCLU, so more trainable layers lead to
higher accuracy. The SAM-CD is generally light-weight and
includes only a few trainable parameters. Although its vision
encoder, to some extent, extracts the semantic representations,
it is not fully trained on VHR RSI, so it does not lead to higher
semantic learning accuracy; 2) SCD is a more complicated
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Fig. 1: Architecture of the proposed VFM-driven Recurrent Semantic Change Detection (VFM-ReSCD).

task than only extracting temporal semantics, as it requires
modeling of the correlations of semantic change. Thus, the
proposed VFM-ReSCD introduces a side adapter designed
specifically for semantic information and an RNN to model
semantic correlation and change features.

III. PROPOSED VFM-RESCD ARCHITECTURE FOR SCD

In this section, we introduce the VFM-ReSCD architecture
for SCD. Firstly, we present a summary of the VFM-ReSCD
approaches to SCD and introduce a novel task-specific ar-
chitecture that precisely models the correlation of semantic
changes in SCD. Secondly, we propose a bidirectional recur-
rent neural network (Bi-RNN) approach to learn the features
of change from SCD data. Finally, we introduce loss functions
in the VFM-ReSCD architecture which serve as the basis for
optimizing the performance of our proposed method.

A. Overview

Prior research on SCD tasks has predominantly relied
on DL methodologies that require labeled data. In contrast,
VFMs exhibit superior performance without labels in image
segmentation [16], obviating the need for labeled data in
SCD tasks. To mitigate excessive computational demands, we
propose substituting SAM with fastSAM, a variant of SAM
that operates as an encoder for the extraction of semantic
features. An overview of the VFM-driven recurrent semantic
change detection (VFM-ReSCD) framework is illustrated in
Fig. 1. The first step involves using a frozen encoder, fastSAM,
to extract features from the bi-temporal images. To enhance

the extraction of both global and local features, we employ
side adapters to fine-tune the fastSAM network. Subsequently,
the VFM-ReSCD network is fine-tuned to recover generalized
image features through the decoder. Finally, the RNN com-
ponent leverages modeling to capture the semantic relevance
and change features between the bi-temporal branches. This
methodology is meticulously designed to effectively discern
semantic alterations within SCD tasks. Let (I1, I2) indicate
bi-temporal images and ξ(·) represent the fastSAM encoder,
which is a VFM layer and a side adapter. ζ(·) represents the
decoder network. The relationship between these components
can be expressed as follows:

f1 = fv1 + fs1 (1)
f2 = fv2 + fs2 (2)

F ′C =Mchange = ζ[ξ(I1, I2)] (3)
F ′a = ζ(f1),F ′b = ζ(f2) (4)

We propose a novel architecture incorporating these compo-
nents to perform SCD tasks effectively. Here, f1 and f2 are the
features of the encoder. fv1 , fs1 , fv2 , and fs2 are the features
extracted from the VFM layer and the side adapter. Mchange is
change embeding, and F ′C is the feature of the change branch.
After ξ(·) and ζ(·), we obtain the features F ′C ,F ′a and F ′b,
which are the head of the bidirectional RNN network. This is
illustrated in Sec.III-C.

B. VFM Encoder

FastSAM, as a foundational model for segmentation tasks,
demonstrates robust efficacy in processing natural images [19],
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Fig. 2: Architecture of the Side Adapter Network (SAN).

but exhibits various limitations in different research domains
[40]. A particular challenge lies in the extraction of small and
irregular objects. To mitigate these limitations, we introduce a
side adapter [20] in Fig. 2, which has been demonstrated to be
adept at fine-tuning region recognition tasks, thus enhancing
the performance of SCD.
Firstly, we present FastSAM as an encoder that includes the
VFM layer and the side adapter. The VFM layer extracts
features at the spatial scales of 1/32, 1/16, 1/8, and 1/4,
denoted as ν1,ν2,ν3, and ν4, respectively. While the side
adapter adapts the extracted semantic features. Each feature
νi is processed by a corresponding side adapter san, denoted
as:

san(υi) = γ{bn[conv(υi)]} (5)
fi = (νi, san(υi)) (6)

where conv denotes a 1 × 1 convolutional layer, bn denotes
a batch normalization function, and γ() is a RELU function.
We consider that there are fewer object classes in RSI relative
to natural images. Thus, to reduce the feature redundancy, we
employ a strategy that reduces the number of fi channels. The
outputs f1 and f2 of this encoder provide a rich set of features
essential for SCD tasks.

C. Recurrent Neural Network for Semantic Learning

Recurrent neural networks (RNN) have demonstrated su-
perior performance in sharing learning results and learning
efficiency. To further increase the model’s ability to capture
temporal correlation, we propose a bi-directional RNN ar-
chitecture that models the correlation between bi-temporal
images and learns the change features simultaneously. The
proposed BiRNN module inputs bitemporal semantic features
and memory features into all neural units R, which conse-
quently output augmented semantic and memory features. Let
h0,

→
h1, and

→
h2 be the hidden states in the RNN (h0,

→
h1,

and
→
h2 are learning parameters), which represent memory

information. The bidirectional memory information contains
both pre-to-post and post-to-pre temporal datasets, ensuring a

comprehensive temporal understanding.
The first direction of change is computed as:

→
h1 = f(

→
W ∗f1 +

→
V ∗h0 +

→
b ) (7)

→
h2 = f(

→
W ∗f2 +

→
V ∗

→
h1 +

→
b ) (8)

The second change direction is calculated as:
←
h2 = f(

←
W ∗f1 +

←
V ∗

→
h2 +

←
b ) (9)

←
h1 = f(

←
W ∗f2 +

←
V ∗

←
h2 +

←
b ) (10)

Where h0,
→
h1, and

→
h2 represent the memory (change) infor-

mation in the time dimension, and the initial value of h0 is
0.
→
R and

←
R are the calculation units,

→
h1,

→
h2,

←
h2 and

←
h1 are

the results of the output from the computing units.
→
W ,

→
V and

b are model parameters. After calculations in both directions,
→
R and

←
R represent the information obtained on the changes

in the forward and backward directions, respectively. The last
step is to utilize the weight matrix

→
V to fuse

→
R to generate

the output feature f ′1 and f ′2 at the times a and b as:

f ′1 = g(U [
→
h1;

←
h1] + c) (11)

f ′2 = g(U [
→
h2;

←
h2] + c) (12)

where f , g, and U are activation functions, and c is a model
parameter (see (3)). Here,

→
h1 and

→
h2 are connected together.

Therefore, the proposed architecture can better correlate tem-
poral semantic information and change information. As a
result, two different training phases, high-level and low-level,
are used to obtain information on the low-level and high-level
semantic features that we expect to obtain. Low-level semantic
features with relatively lower spatial dependencies are learned
from cropped local patches. In contrast, high-level semantic
features that do not require accurate localization are learned
from a larger perspective. Thus, additional information can be
collected to make predictions for large-size images.

Finally, each attention map is analyzed for its relative
temporal branching to predict cross-temporal correlation:

X̃1 = X̂1 + (v1 × A2) (13)

X̃2 = X̂2 + (v2 × A1) (14)

where X̃1, X̃2 are the enhanced features.

D. Loss Functions

In the training of the VFM-ReSCD, we employ three distinct
loss functions: the semantic class loss Lsem, the binary change
loss Lchange, and the semantic consistency loss Lsc [5], which
is introduced in this study. The semantic loss Lsem is calculated
as the multiclass cross-entropy loss between the semantic
segmentation results P1, P2 and the corresponding ground
truth (GT) semantic change maps L1, L2. It is calculated on
a per-pixel basis as follows:

Lsem = −1

η

η∑
i=1

ϕilog(ψi) (15)
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In our model, η represents the total number of semantic
classes. Here, ϕi and ψirefer to the GT label and the predicted
probability associated with the i class, respectively. The value
of η is determined based on the number of LCLU classes.
The ’no-change’ class (indexed as ’0’) is deliberately excluded
from the loss calculation to encourage the temporal branches
to focus on extracting semantic features. The change loss, de-
noted as Lchange, quantifies the binary cross-entropy divergence
between the predicted binary change map C and a reference
change map Lc. Lc is constructed using either L1 or L2 by
substituting all non-zero labels with a changed label (indexed
as ’1’). The Lchange for each pixel is calculated as:

Lchange = −yclog(pc)− (1− yc)log(1− pc) (16)

where yc and pc indicate the GT label and the predicted
probability of change, respectively. Lsem and Lchange are de-
signed to drive the learning of semantic information and CD,
respectively. We extend our proposal by introducing a task-
specific semantic consistency loss (SCLoss) to link SS to CD.
SCLoss encourages consistent predictions in the no change
regions and penalizes discrepancies in changed regions. This
consistency is useful for integrating bi-temporal semantics
and change information in the SCD task. The SCLoss Lsc

is calculated between the predicted semantic maps T1, T2 and
the change map lc using the Cosine loss function:

Lsc =

{
1− cos(Tx1, Tx2), lc = 1
cos(Tx1, Tx2), lc = 0

(17)

where Tx1, Tx2 are the feature vectors of a pixel in P1 and
P2, respectively. The training of the two branches of feature
embedding is supervised directly by L1 and L2, with further
assistance provided by Lc through Lsc. Meanwhile, the CD
block is directly supervised by Lc. The relationships between
the 3 outputs T1, T2, C, and the GT maps L1, L2, and Lc are
crosswise and parallel. The total loss Lscd is calculated as:

Lscd = (Lsemt1
+ Lsemt2

)/2 + Lchange + Lsc (18)

Each temporal branch has its semantic loss Lsemt1 and Lsemt2

indicated in (14). Their summation is computed and averaged
to represent Lsem. Using Lsc, the joint consideration of tem-
poral semantic information from two images can enhance the
discrimination of critical areas.

IV. DATASET DESCRIPTION AND EXPERIMENTAL
SETTINGS

In this section, we describe the dataset, the evaluation
metrics, and the experimental settings.

A. Datasets

We perform experiments on two well-established SCD
benchmark datasets, namely the SECOND [35] dataset and
the Landsat [41] dataset.

SECOND Dataset.
The Semantic Change Detection Dataset (SECOND) is a

benchmark dataset for SCD, and it is well-annotated. It is
built using bi-temporal high-resolution optical images, which
include RGB channels, acquired from various aerial platforms

and sensors. These pairs of images are sourced from multiple
urban areas, including Hangzhou, Chengdu, and Shanghai.
Each image has the same size of 512×512 pixels. The spatial
resolution varies from 0.5 to 3 m (per pixel) [42].

The annotation of the SECOND was conducted by a group
of experts specialized in Earth vision applications, ensuring a
high degree of labeling accuracy. In each GT semantic change
map, one change class and six Land Cover (LC) classes are
annotated, including non-vegetated ground surface, tree, low
vegetation, water, buildings and playgrounds. These LC classes
were selected considering them as common and interesting LC
classes and their frequent geographical changes [43]. The bi-
temporal LC transitions create a total of 30 LC change types.
The changed pixels account for 19.87% of the total image
pixels. Among the 4662 pairs of temporal images, 2968 are
openly available. We further split them into a training set and
a test set with a proportion of 4 : 1 (i.e., 2375 image pairs for
training, 593 for testing).

Landsat Dataset.
The Landsat-SCD dataset is made up of Landsat images

collected between 1990 and 2020. The observation area is
Tumshuk, Xinjiang, China. The dataset contains 8468 pairs
of images, each of which has a fixed size of 416 × 416 pixels
with a spatial resolution of 30 m. The dataset contains a no-
change class and four land cover classes, including farmland,
desert, buildings, and water. Figure 5 shows sample images
from the Landsat-SCD dataset. The dataset contains many
complex detection scenes, where the buildings are small and
scattered. Changed pixels account for about 19 % of the total,
which provides a realistic evaluation dataset for SCD methods.

B. Evaluation Metrics

In this research, three SCD metrics were selected that are
commonly used to measure performance [7], [44]: overall
accuracy (OA), mean intersection over union (mIoU), and
Separated Kappa coefficient (SeK). OA has been commonly
adopted in both semantic segmentation tasks [45], [46] and
CD [7]. Let us denote Q = {qi,j} as the confusion matrix
where qi,j represents the number of pixels that are classified
into class i while their GT index is j (i, j ∈ {0, 1, ..., C} (0
represents no-change). OA is calculated as:

OA =

C∑
i=0

qii/

C∑
i=0

C∑
j=0

qij . (19)

Since OA is mainly determined by the identification of no-
change pixels, it cannot evaluate LCLU class segmentation
well. Additionally, it does not count the pixels that are identi-
fied as changed but are predicted into the wrong LCLU classes.
Alternatively, mIoU and SeK can evaluate the discrimination
of changed/no-change regions and the segmentation of LC
classes, respectively.

mIoU is the mean value of the IoU of no-change regions
(IoUnc) and that of the changed regions (IoUc), i.e.,

mIoU = (IoUnc + IoUc)/2 (20)
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Where:

IoUnc = q00/(

N∑
i=0

qi0 +

N∑
j=0

q0j − q00) (21)

IoUc =

N∑
i=1

N∑
j=1

qij/(

N∑
i=0

N∑
j=0

qij − q00) (22)

Calculation of the SeK coefficient depends on the
information provided by the confusion matrix Q̂ = {q̂ij},
where q̂ij = qij except that q̂00 = 0. This eliminates true
positive no-change pixels, whose number is dominant. It is
computed as follows:

SeK = eIoUc−1 · (ρ− η)/(1− η) (23)

Where:

ρ =

N∑
i=0

q̂ii/

N∑
i=0

N∑
j=0

q̂ij (24)

η =

N∑
i=0

(

N∑
j=0

q̂ij ∗
N∑
j=0

q̂ji)/(

N∑
i=0

N∑
j=0

q̂ij)
2 (25)

The mIoU and SeK directly evaluate the subtasks in SCD,
that is the CD and the SS of LCLU classes, respectively. In
addition, to more intuitively assess the segmentation of LCLU
classes in changed areas, we introduce a new metric Fscd

(derived from the F1 score on the segmentation and CD tasks
[23] [47]) denoted as follows:

Fscd =
2 ∗ Pscd ∗Rscd

Pscd +Rscd
(26)

Where:

Pscd =

N∑
i=1

qii/

N∑
i=1

N∑
j=0

qij (27)

Rscd =

N∑
i=1

qii/

N∑
i=0

N∑
j=1

qij (28)

Note that Pscd and Rscd are variants of the Precision and
Recall [45] which focus only on the changed areas. Fscd

describes the segmentation accuracy of the LCLU classes in
the changed areas.

Finally, three metrics are provided to measure the compu-
tational costs, including the number of parameters (Params),
the number of floating-point operations (FLOPs), and the
inference (Infer) time for 100 epochs. The FLOPs and Infer
time are measured by considering the calculations for a pair
of input images, each with 512× 512 pixels.

C. Implementation Details

The method we propose was implemented with PyTorch.
The training process involves 50 epochs. We set the ini-
tial learning rate at 0.1 and updated it at each iteration
to 0.1 ∗ (1 − iterations/total iterations)1.5. The adapted
gradient descent optimization method used was based on
Stochastic Gradient Descent (SGD) with Nesterov momentum.

The augmentation strategy included repetition and rotation
while loading the image pairs. We applied only simple geo-
metric augmentations to the input images, including repetition
and random cropping. During inference, we apply a test-time
augmentation operation which includes eight times flipping
operations to produce more stable prediction results. For more
implementation details, readers are encouraged to visit the
associated codes at: https://github.com/Gaia0811/VFM-SCD.

V. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to
evaluate the effectiveness of the proposed SCD approach and
its components within the VFM-ReSCD architecture. First,
ablation studies are performed to demonstrate quantitatively
the contribution of each component in the proposed technique.
Next, we present qualitative results obtained from sample test
data. Finally, we compare the performance of the proposed
methods with state-of-the-art (SOTA) SCD methods.

A. Ablation Study

1) Quantitative Results. To assess the effectiveness of
the methods proposed in Section 3, we used SSCD-l [5] as
a baseline. We perform an ablation study to evaluate the
components in the proposed VFM-ReSCDD. The quantitative
results are presented in Table I. First, we tested the effec-
tiveness of the VFM-ReSCD by adding it as an auxiliary
loss to train the SSCD-l. This increased the precision by
around 0. 82% in SeK and 0.76% in Fscd, indicating that the
semantic embedding of features improved. Taking this method
(SSCD-l with SCLoss) as the baseline, we further assessed the
performance of each SR block. The Siam-SR blocks on each
temporal branch lead to noticeable increases in accuracy (0.4%
in mIoU and 0.43% in Fscd). Meanwhile, the Cot-SR block
that models temporal coherence improves SeK by more than
0. 41% and Fscd by more than 0. 46%. This indicates that
both the VFM-ReSCD (without SAN and RNN models) and
the VFM-ReSCD (with RNN model) improved the semantic
embedding of temporal features. At the same time, the former
also increases the detection of change information. Then, we
evaluate the VFM-ReSCD, which contains SAN and RNN.
Compared to the standard SSCD-l, its increases are around
0.38% in OA, 0.78% in mIoU , 2.56% in SeK, and 2.65 % in
Fscd. As demonstrated by these results, a significant increase
in accuracy was achieved by incorporating all the proposed
components into VFM-ReSCD.

2) Qualitative Results. The qualitative results obtained in
some testing areas are presented in Fig.3 and Fig.4 from
SECOND and Landsat-SCD datasets. The prediction maps
from left to right are provided for the methods proposed in
Table I, which are organized in the sequence of the number of
contained components. Compared with the results of the stan-
dard SSCD-l, the predicted LC categories after the introduction
of the SCLoss and SR blocks are gradually increased. VFM-
ReSCD exhibits advantages in the discrimination in critical
areas. For example, in Fig.3 (a1)-(c2) and Fig. 4 (a1)-(c2),
identification of the ground, low vegetation and tree classes
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TABLE I: Quantitative results obtained in the ablation study.

Proposed Method Components SECOND Landsat-SCD
SAN RNN OA(%) mIoU (%) Sek(%) Fscd(%) OA(%) mIoU (%) Sek(%) Fscd(%)

SSCD-l (baseline) 87.28 72.55 21.45 61.62 94.75 85.25 50.17 84.91
VFM-ReSCD(w/o.SAN)

√
87.12 71.69 19.68 59.13 93.98 83.90 45.94 82.41

VFM-ReSCD(w/o.RNN)
√

87.50 73.28 23.23 63.21 95.80 88.03 57.32 87.74
VFM-ReSCD(w/o.SAN+RNN)

√ √
87.66 73.33 24.01 64.27 95.92 88.15 58.12 88.29

TABLE II: Comparison between the proposed VFM-ReSCD and some SOTA methods for SCD.

Method SECOND Landsat-SCD
OA(%) mIoU(%) Sek(%) Fscd(%) OA(%) mIoU(%) Sek(%) Fscd(%)

ResNet-GRU [44] 80.79 64.20 8.58 46.47 90.55 74.16 26.51 71.87
FC-Siam-conc [23] 84.65 68.33 16.32 55.28 92.89 79.86 36.94 78.29
FC-Siam-diff [23] 84.34 68.33 16.08 55.16 91.95 76.44 30.23 73.97

HRSCD-str.3 [7] 82.40 64.68 10.24 50.85 91.10 78.33 31.43 73.17
HRSCD-str.4 [7] 85.84 71.16 18.62 58.60 91.27 79.10 32.29 73.34

SCDNet [34] 87.43 70.91 19.79 60.03 94.94 85.23 50.05 85.00
SSCD-l [5] 87.28 72.55 21.45 61.62 94.75 85.25 50.17 84.91

Bi-SRNet [5] 87.60 73.23 23.04 63.12 94.91 85.53 51.01 85.35
HGINet [48] 34.77 70.76 19.34 59.48 - - - -
SSTNet [49] - 72.87 22.84 63.18 - 82.94 44.54 81.90

EGMS-Net [50] 86.88 72.89 23.03 62.92 94.53 85.65 51.14 85.47
VFM-ReSCD (proposed) 87.66 73.33 24.01 64.27 95.92 88.15 58.12 88.29

on the SECOND dataset, and also the farmland and building
classes on Landsat-SCD dataset, has significantly improved.

Through this ablation study, we find that: i) all the tested
auxiliary components demonstrate increases in semantic
embedding, as evidenced by the increases in SeK values;
and ii) the semantic reasoning designs in the VFM-ReSCD
increase not only the discrimination of LCLU categories but
also the detection of changes.

Computational Costs Table III reports the cost of compu-
tational resources of different methods. The size of model pa-
rameters (Params) and the number of floating point operations
(FLOPs) are used to measure the computational efficiency
of various SCD methods. Among the compared methods,
the SCDNet [34] has the highest Params. The FC-Siam-
Conc, FC-Siam-diff and HGINet have the lowest costs due
to their simplified architectures and modules. The proposed
VFM-ReSCD utilizing VFM increases the Params and FLOPs
compared to the baseline method (SSCD-l). However, since we
adopt an efficient VFM (FastSAM) as the backbone encoder,
the increases in computational cost are only marginal.

3) SAM and fastSAM In this section, we examine the
effectiveness of using different vision Foundation models
(VFMs) for SCD. Since SAM has excellent performance in
the semantic segmentation domain, when we use the VFM for
SCD tasks, the fastSAM exhibits better results than SAM both
in performance and speed. Therefore, we select fastSAM as
an encoder in our SCD architecture. The performance of the
SAM-CD, equipped with various versions of the SAM and the
FastSAM, is detailed in Table IV. The key component is the
image encoder in SAM, which uses VIT (Vision Transformer)
as the backbone. SAM is characterized by many parameters,
large models, and high equipment requirements. To address

TABLE III: Comparison of the computation costs of different
methods.

Method Params (Mb) FLOPs (Gbps)
ResNet-GRU [44] 21.45 182.53

FC-Siam-conv. [23] 1.55 21.78
FC-Siam-diff [23] 1.35 19.36

HRSCD-str.3 [7] 12.77 42.94
HRSCD-str.4 [7] 13.71 43.69

SCDNet [34] 37.09 145.94
SSCD-l [5] 23.31 189.76

Bi-SRNet [5] 23.38 190.30
HGINet [48] 27.68 12.63
SSTNet [49] - -

EGMS-Net [50] 23.92 216.08
VFM-ReSCD (proposed) 26.09 235.26

this issue, we propose a CNN-based fastSAM for SCD.
Since SAM-h is much more resource-intensive than SAM-b

and SAM-l, our evaluation only tested the accuracy of SAM-b,
SAM-l, and fastSAM (fastSAM here is the fastSAM encoder
we use in this paper.). It can be observed that the fastSAM
that we propose has a significant increase in terms of accuracy,
with an increase of SeK and Fscd of 2.72% and 2.23%,
respectively.

TABLE IV: Performance of the VFM-ReSCD using different
vision encoders (SECOND dataset).

VFM-ReSCD Accuracy
OA(%) mIoU(%) SeK(%) Fcsd(%)

SAM-b 87.16 71.92 21.39 60.42
SAM-l 87.24 71.85 21.28 61.05

fastSAM 87.66 73.33 24.01 64.27

In summary, this ablation study elucidates that: i) the
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Test image GT SSCD-l VFM-ReSCD
(w/o.SAN+RNN)

VFM-ReSCD
(w/o.RNN) VFM-ReSCD

Fig. 3: Example of results provided by different proposed methods in the ablation study on the SECOND dataset. The major
differences are highlighted in blue rectangles.
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

Test image GT SSCD-l VFM-ReSCD
(w/o.SAN+RNN)

VFM-ReSCD
(w/o.RNN) VFM-ReSCD

Fig. 4: Example of results provided by different proposed methods in the ablation study on the Landsat-SCD dataset.
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Test image GT FC-Siam-diff HRSCD-str.4 SSCD-l Bi-SRNet VFM-ReSCD
(proposed)

Fig. 5: Example of results provided by different methods in the comparative experiments. (a1)-(b2) results selected from the
SECOND dataset, (c1)-(d2) results selected from the Landsat-SCD dataset.
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proposed SAM framework and associated learning paradigm
enhance change detection and facilitate the extraction of
semantic information; ii) the VFM-ReSCD sharply advances
the exploration of temporal semantic data; and iii) utilizing
fastSAM as a foundational network confers a distinct advan-
tage to the proposed approach.

B. Comparative Experiments

To comprehensively evaluate the performance of the pro-
posed VFM-ReSCD architecture, we extended our com-
parative analysis to include several state-of-the-art (SOTA)
methodologies in both CD and SCD tasks.

1) Quantitative Results. To quantitatively assess the ef-
fectiveness of the proposed methodology, we compare its
performances with those of literature SOTA CD and SCD
methods in Table II.
• ResNet-GRU combines CNN and RNN for CD as derived

in [44]. As the methods for low-resolution RSIs with
few convolutional layers are unsuitable for HR RSIs, we
updated their encoders to ResNet34 [51].

• FC-Siam-conc and FC-siam-diff [23] are Siamese exten-
sions of the FC-EF [23] model, which is based on the
UNet network.

• HRSCD-str.3 and HRSCD-str.4 [7], both represent so-
phisticated methodologies introduced for SCD, incorpo-
rating residual blocks [51] and complex encoder-decoder
architectures. Both methodologies feature triple-encoding
branches.

• SCDNet [34] is a Siamese UNet-based architecture that
captures multi-scale information and generates detailed
change maps to enhance large-scale SCD.

• SSCD-l and Bi-SRNet [5]. Bi-SRNet is based on the
foundational SSCD-l architecture and incorporates cross-
temporal attention mechanisms.

• HGINet [48] uses a multilevel perceptual aggregation
network for semantic feature extraction and a temporal
correlation module to enhance the identification of un-
changed areas, while a semantic difference interaction
module based on graph convolutional networks measures
interactions between bitemporal features and their differ-
ences.

• SSTNet [49] integrates semantic, spatial, and tempo-
ral information and improves the detection accuracy of
changes in narrow-length objects. It contains a multi-
layer feature fusion module and a semantically changing
feature interaction module to enhance the exchange and
fusion of bi-temporal features.

• EGMS-Net [50] is a multitask Siamese network proposed
to enhance SCD in RSIs. It integrates a coarse-to-fine
multitask approach, an adaptive change information en-
hancement method, and a change information guidance
module.

Our approach enables profound and intrinsic modeling of
spatio-temporal dependencies within the SCD task. Thus, it
significantly outperforms compared methods in all metrics.
The proposed approach demonstrates an enhancement over
the second-best results, with an improvement of approximately

0.98% in SeK and approximately 1.35% in Fscd on the SEC-
OND dataset. Its improvements are around 2.5% in mIoU ,
6.98% in SeK, and 2.94% in Fscd on the Landsat dataset.

2) Qualitative Results. In Fig.5, we present segmentation
maps produced by various methods for vision comparison.
The initial four rows in Fig.5(a1)-(b2) depict the results
derived from the SECOND data set. One can observe that
existing methods struggle to detect non-salient changes, e.g.,
the emergence of a playground in Fig.5(a) and the removal
of small buildings in Fig.5(b). In addition, there are notable
inconsistencies within the results. For example, in the SCD re-
sults of HRSCD-str.4 and Bi-SRNet, some areas are segmented
as Low vegetation on both bitemporal segmentation maps,
which is contradictory with respect to the represented change
information. The results of the proposed methods mainly
address these concerns. Through the integration of semantic
learning objectives, there is an enhancement in detecting non-
salient changes, leading to considerably fewer discrepancies
in the bi-temporal results. The VFM-ReSCD further performs
in recognizing critical areas, e.g., discrimination between low
vegetation and playgroud in Fig.5(a).

Fig.5(c1)-(d2) present SCD results obtained on the Landsat-
SCD dataset. Due to the relatively low GSD of the dataset, the
utilization of the SCD model becomes essential for enhancing
spatial detail preservation. The proposed methods demonstrate
a notable capability to accurately capture nuanced changes
within LU types, such as river drying in Fig.5(c), and the
emergence of small farms in Fig.5(d). The VFM-ReSCD
method exhibits advantages in effectively discerning semantic
categories attributed to smaller objects.

3) Change Analysis. Fig. 3 and 4 present the VFM-
ReSCD results on the SECOND and Landsat-SCD data sets.
As anticipated, fastSAM performs poorly in detecting semantic
changes. To enhance fastSAM for this task, we fine-tune it
with a side adapter. This provides significant advantages in
the SECOND dataset for buildings, ground, and low vegetation
close, and in the Landsat dataset for all objects.

VI. CONCLUSIONS

Semantic Change Detection represents a pivotal task in
Earth observation. Extracting spatio-temporal changes, analyz-
ing pre- and post-change semantics, and modeling semantic-
change correlations are fundamental to the SCD task. We have
devised an architecture dedicated to the intricate modeling of
spatial-temporal dependencies, thereby, significantly improv-
ing semantic-change representations. First, we proposed VFM-
ReSCD, which outperforms mamba-based SCD architectures
and uses VFM-ReSCD, which is an advanced version of SAM,
to capture spatial features from ground objects and temporal
constraints in RSIs for task-agnostic semantic representation
learning. Thus, we used RNN to model spatiotemporal corre-
lations in terms of semantic representations.

Extensive experiments have been conducted to evaluate the
performance of the proposed method. Experiments on two
SCD datasets have shown better detection results than other
SOTA techniques. Future research will consider the potential
effects of new computer vision approaches, such as Vision
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Mamba and the denoising diffusion model, to improve the
accuracy of semantic-change relationships in SCD.
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