
The Kieker Observability Framework Version 2
Shinhyung Yang

shinhyung.yang@email.uni-kiel.de
Kiel University

Kiel, Schleswig-Holstein, Germany

David Georg Reichelt
d.g.reichelt@lancaster.ac.uk
Lancaster University Leipzig

& Universität Leipzig
Leipzig, Saxony, Germany

Reiner Jung
reiner.jung@email.uni-kiel.de

Kiel University
Kiel, Schleswig-Holstein, Germany

Marcel Hansson
marcel.hansson@uni-hamburg.de

University of Hamburg
Hamburg, Germany

Wilhelm Hasselbring
hasselbring@email.uni-kiel.de

Kiel University
Kiel, Schleswig-Holstein, Germany

ABSTRACT
Observability of a software system aims at allowing its engineers
and operators to keep the system robust and highly available. With
this paper, we present the Kieker Observability Framework Ver-
sion 2, the successor of the Kieker Monitoring Framework.

In this tool artifact paper, we do not just present the Kieker frame-
work, but also a demonstration of its application to the TeaStore
benchmark, integrated with the visual analytics tool ExplorViz.
This demo is provided both as an online service and as an artifact
to deploy it yourself.

CCS CONCEPTS
• Software and its engineering → Software reverse engineer-
ing; Traceability; Interoperability; Software performance.

KEYWORDS
Observability Engineering, Monitoring, Tracing, Microservices, Vi-
sual Analysis, Dynamic Analysis, Research Software Sustainability

1 INTRODUCTION
Observability is a fundamental property of a software system that
should be considered during system design [18]. Using telemetry
data allows various stakeholders to understand the system and
answer key questions. Monitoring and testing are integral parts
of observability, and both benefit from and contribute to it. Ob-
servability of a system has become significant as the architecture
of software systems is increasingly containerized with distributed
microservices. These requirements have conceived observability
tools that provide insights into the internal behavior of software
systems using traces, metrics, and logs [7].

In this tool artifact paper, we introduce the Kieker Observabil-
ity Framework Version 2, the successor of the Kieker Monitoring
Framework. We demonstrate Kieker’s observability, analysis, and
visualization with our TeaStore-Kieker-ExplorViz demo [26], which
includes our initial effort for the interoperability between Kieker
and OpenTelemetry [8].

The new contribution of this tool artifact paper is not just the
Kieker framework, but also a demonstration of its application to

This is the author’s version of the work for an arXiv submission. The definitive Version
of Record can be found at https://doi.org/10.1145/3680256.3721972, published in Com-
panion of the 16th ACM/SPEC International Conference on Performance Engineering
(ICPE Companion ’25), May 5–9, 2025, Toronto, ON, Canada.

the TeaStore benchmark [40], integrated with the visual analytics
tool ExplorViz [9]. This demo is provided both as an online service
and as an artifact to deploy it yourself.

Section 2 summarizes Kieker’s impact, so far. Observability Engi-
neering is introduced in Section 3, before instrumentation and data
collection for observability with Kieker is presented in Section 4.
The tool artifact is described in Section 5. Section 6 discusses some
related work, before the paper is summarized in Section 7 with an
outlook to future work.

2 IMPACT OF KIEKER
The Kieker Observability Framework started as a monitoring frame-
work in 2006 [11], supporting application performance monitoring
and analysis. Kieker enables observing software systems with Java
agents, which produce metrics, logs, and trace data. Using the trace
data, Kieker allows for reverse engineering and visualization of the
software architecture. The Kieker developers have been continu-
ously monitoring its performance overhead with the MooBench
monitoring overhead microbenchmark [29, 42].

Kieker allows for the analysis of observed data. The new Kieker
Version 2 incorporates the TeeTime pipe-and-filter framework [44],
which has restructured the analysis pipeline. It provides an intuitive
way for Kieker users to build new analysis applications.

Research areas in which Kieker was successfully employed are
performance analysis [4, 27, 28, 31, 48], benchmarking streaming
engines [46], anomaly detection [6, 22], online capacity manage-
ment [36, 41], analysis of software structure and metrics [1, 2, 15, 19,
24, 32], software architecture reconstruction [5], test case prioritiza-
tion [3], and extraction of load profiles [37, 39]. Martinez Saucedo
et al. [21] recently identified Kieker as the most cited tool to assist
with the migration of monolithic systems to microservices.

Several Kieker-related research projects have been and are being
conducted over the years. Examples are diagnoseIT (Expert-Guided
Automatic Diagnosis of Performance Problems) [12], DynaMod
(Dynamic Analysis for Model-Driven Software Modernization) [35],
and OceanDSL (Architecture analysis, interactive visualization)
[17]. As reported by Hasselbring and van Hoorn [10], Kieker was
also employed in several industrial collaborations and technology
transfer projects. More information on Kieker’s impact may be
found in Hasselbring and van Hoorn [11].

ar
X

iv
:2

50
3.

09
18

9v
1 

 [
cs

.S
E

] 
 1

2 
M

ar
 2

02
5

https://orcid.org/0000-0002-8997-9942
https://orcid.org/0000-0002-1772-1416
https://orcid.org/0000-0002-5464-8561
https://orcid.org/0009-0000-6524-037X
https://orcid.org/0000-0001-6625-4335
https://doi.org/10.1145/3680256.3721972


Shinhyung Yang, David Georg Reichelt, Reiner Jung, Marcel Hansson, and Wilhelm Hasselbring

Kieker is included in the SPEC Research Group’s repository of
peer-reviewed tools for quantitative system evaluation and analy-
sis.1 The review process and the final acceptance of Kieker for this
tool repository triggered manifold activities in the Kieker project
and helped to further improve Kieker’s product quality (both code
and documentation); Kieker’s visibility increased considerably, with
480 citations to the ICPE 2012 Kieker tool demo paper [38], so far.2

3 OBSERVABILITY ENGINEERING
The term observability has been introduced in the context of control
theory [18]. In this context, observability is a measure of how well
the internal states of a system can be inferred from knowledge of
its external outputs. For software systems, this means how well the
internal state of a software system can be inferred from its moni-
toring data. Observability Engineering [20] focuses on designing,
building, and maintaining systems that enable us to understand the
internal state of software systems based on monitoring data. It is
a crucial part of software engineering, especially in the context of
complex distributed systems such as microservices and cloud-native
architectures. Figure 1 (introduced by Peter Bourgon3) presents the
three pillars of observability: metrics, logging, and tracing [7]:

Metrics

Logging

aggregated numerics 
at regular intervals

text-based records of 
discrete events, activities

Tracing

Collection of information 
about a request path

D
at

a 
V
ol

um
e

Figure 1: Visual illustration of metrics, logging, and tracing.
They are ordered vertically with a higher data volume at the
bottom.

• Metrics are aggregated numerical data representing the
performance and behavior of systems (e.g., CPU usage, re-
sponse time, error rates), which are collected at regular
intervals.

• Logging is the collection of text-based records of discrete
events or activities within a system (e.g., status and debug-
ging messages).

• Tracing is the collection of information about the path a
request takes as it moves through a distributed system.
Traces are aggregations of highly structured log events,
which are called spans [8].

Observability is not a substitute for monitoring, nor does it obviate
the need for monitoring; they are complementary. Observability is

1https://research.spec.org/tools/overview/
2https://scholar.google.com/scholar?cluster=11724904481060384258 (Jan. 15, 2025)
3https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html

a fundamental property of a software system that must be inten-
tionally considered during system design [20]. It enables different
stakeholders to understand the system and answer key questions by
utilizing telemetry data. Monitoring and testing are integral parts
of observability, and both benefit from and contribute to it.

4 INSTRUMENTATION AND DATA
COLLECTIONWITH KIEKER

The three pillars of observability [7] are addressed with Kieker as
follows:

• Metrics are sampled using Kieker’s periodic sampler. It
allows for the incorporation of different samplers to col-
lect metrics. Kieker currently supports sampling the JVM
garbage collector and sampling CPU and memory informa-
tion.

• Logs are supported by Kieker as a generic way to handle
event-centric messages.

• Traces are recorded by Kieker’s tracing agents. Kieker fea-
tures distributed tracing that records the internal behaviors
of the target system in the scopes of components in the
deployed microservices. Kieker traces consist of records
that are spans.

Kieker enables observability of a software system by collecting data
with Kieker agents. Furthermore, Kieker is designed to analyze and
visualize the observed software system. Below, we take a look at
instrumenting software applications with Kieker (Section 4.1), and
on benchmarking the incurred overhead (Section 4.2).

4.1 Instrumentation
Observability data can be obtained either using instrumentation of
code or sampling of existing data collection interfaces, e.g., JMX
beans or tracepoints of the Linux kernel. Kieker focuses on instru-
mentation of application code. This can be done either automati-
cally or via manual source code instrumentation. With Java, the
automated instrumentation is performed by the “-javaagent” in-
terface of the JVM, which allows developers to change the bytecode
during application loading. Kieker supports instrumentation via
AspectJ, ByteBuddy, DiSL, and Javassist [25]. Kieker also supports
automated instrumentation of existing source code [30], if the Java
source code is available. Additionally, Kieker supports automated
injection into servlets and Spring applications, and sampling CPU
metrics using various OSHI (Operating System and Hardware Infor-
mation library) samplers. Besides its Java instrumentation, Kieker
allows to instrument C, Fortran and Python code [16, 33].

4.2 Benchmarking Observability Overhead
The instrumentation for observability imposes overhead, which
should be minimized in production environments. Kieker’s over-
head has been continuously measured since 20154 using the Moo-
Bench microbenchmark [42]. It measures both the overall overhead
of Kieker tracing and the overhead that is incurred by different
factors, which are the instrumentation itself, the measurement, and
the final serialization of data. Since the measurement of overhead

4https://kieker-monitoring.net/performance-benchmarks/

https://research.spec.org/tools/overview/
https://scholar.google.com/scholar?cluster=11724904481060384258
https://peter.bourgon.org/blog/2017/02/21/metrics-tracing-and-logging.html
https://kieker-monitoring.net/performance-benchmarks/


The Kieker Observability Framework Version 2

in the JVM requires coping with its non-determinism, the measure-
ment requires the repetition of the measured workload. Therefore,
MooBench repeats a method call for a specified iteration count.
This method recursively calls itself for a given recursion depth 𝑑 ,
and waits for a specified duration 𝑡 in the leaf node.

MooBench also measures the overhead of the tracing tools Open-
Telemetry and inspectIT. Studies show that the overhead incurred
by these tools is significantly higher than the overhead of Kieker’s
instrumentation [29]. This is partially achieved by the complete
decoupling of the application thread and the log writer thread. The
application thread executes asynchronously immediately after a
Kieker record has been written into the queue [34, 43].

5 THE TOOL ARTIFACT
The architecture of our tool artifact is illustrated in Figure 2. Our
tool artifact consists of four software systems (top-level compo-
nents), which are available as an online services (non-installation)
and an offline docker compose file.

The TeaStore software systems consists of seven microservices,
each deployed in its own Docker container. The TeaStore microser-
vices, except the database (MariaDB), are instrumented via Kieker
agents. The ExplorViz software system consists of eleven microser-
vices, again each deployed in its own Docker container. The con-
nection between the TeaStore system and the ExplorViz system
is accomplished via the embedded Kieker agents that send the
monitoring data to the Kieker OpenTelemetry Transformer, which
forwards it after transformation to the OpenTelemetry Collector.5
The OpenTelemetry Collector is part of the ExplorViz system, as
one of its microservices.

First, JMeter load tests the TeaStore microservices via a con-
figurable number of requests. The Kieker agents in the TeaStore
microservices then send the traces to the Kieker OpenTelemetry
Transformer. The Kieker OpenTelemetry Transformer consists of
several TeeTime stages [44], which translate the received Kieker
traces into OpenTelemetry spans. The ExplorViz tool receives the
translated spans and renders the dynamic visualization of the TeaS-
tore architecture.

The online service has two URLs, one for the TeaStore Web
UI,6 and another URL for the ExplorViz Web UI.7 Kiel University
hosts the online service, which is available on the SustainKieker
homepage.

Installation. Our tool artifact runs with a Docker compose script
file. We use it to (1) retrieve Docker images from DockerHub, or
(2) build the Docker images locally for archival purposes. The script
simplifies the deployment of the TeaStore and ExplorViz software
systems, JMeter, and the Kieker OpenTelemetry Transformer. We
tested the out-of-the-box experience on all major platforms, Linux,
macOS, andWindows. For the open-source access, we use a GitHub
repository8 to provide our tool artifact. A Zenodo upload is available
to download and run the current snapshot of the tool artifact.9

5https://opentelemetry.io/docs/collector/
6https://teastore.sustainkieker.kieker-monitoring.net/
7https://explorviz.sustainkieker.kieker-monitoring.net/
8https://github.com/kieker-monitoring/tool-artifact
9https://doi.org/10.5281/zenodo.14989908

The tool artifact requires installation of Docker and Git (optional)
on all platforms. The installation and launching of our tool artifact
follows Listing 1.

git clone https :// github.com/kieker -monitoring/tool -artifact

cd tool -artifact

docker compose up -d

Listing 1: Installing and launching the tool artifact

After the tool artifact launches, two web servers become avail-
able: the TeaStore WebUI on the TCP port 8080 (Figure 2.(1)) and
the ExplorViz frontend on the TCP port 8082 (Figure 2.(2)).

ExplorViz [9] is an open-source research visualization tools,
which uses dynamic analysis techniques to provide a live trace
visualization of software landscapes, in our case the microservices
of the TeaStore. ExplorViz targets system and program compre-
hension for software landscapes or single applications while still
providing details on the communication within an application. It
utilizes the 3D city metaphor combined with an interactive concept
of showing only details that are in focus of the analysis.

The JMeter load driver initially launches a TestPlan that gen-
erates 6400 requests on the TeaStore. This way, ExplorViz can vi-
sualize those parts of the TeaStore that were called for this load.
Afterwards, only the interaction of a user with the TeaStore Web
interface is observed and visualized with ExplorViz.

Documentation. Comprehensive documentation, including an
introduction and a quick start guide for Kieker Version 2 is available
online.10 In addition, a (JavaDoc) API documentation11 provides
insights for developers to further expand or work with the Kieker
source files.

6 RELATEDWORK
Related work exists in the field of observability tools and software
visualization.

Concerning observability tools, a variety of alternatives to Kieker
exists [14]. Example proprietary tools are DataDog12 and the Dy-
naTrace One Agent.13 Example open source tools, are Jaeger14 and
Elastic APM.15 For these observability tools integrations with Open-
Telemetry exist, as presented in our work. Therefore, they could
also be used for TeaStore instrumentation and the date export to
ExplorViz; however, there is currently no available implementation.

Yang et al. [45] present Cloudprofiler, a tool for profiling of
systems that are processing streaming workloads. They focus on
the synchronization of multiple virtual machines and compress the
logs to reduce I/O usage. They benchmark Cloudprofiler using the
Yahoo streaming benchmark and measure an overhead of 2.2 %. The
MooBench benchmark with Cloudprofiler finds that the overhead of
Cloudprofiler is close to the overhead of Kieker [47]. An integration
of Cloudprofiler and the OpenTelemetry standard does not exist
currently, therefore, it could not be used to instrument the TeaStore
and export observability data to ExplorViz.

Concerning visualization, different visualizations of Kieker traces
exist. Müller and Fischer [23] provide an alternative visualization
10https://kieker-monitoring.readthedocs.io/en/latest/index.html
11https://api.kieker-monitoring.org/2.0.2/
12https://docs.datadoghq.com/agent
13https://www.dynatrace.com/platform/oneagent/
14https://www.jaegertracing.io/
15https://www.elastic.co/observability/

https://opentelemetry.io/docs/collector/
https://teastore.sustainkieker.kieker-monitoring.net/
https://explorviz.sustainkieker.kieker-monitoring.net/
https://github.com/kieker-monitoring/tool-artifact
https://doi.org/10.5281/zenodo.14989908
https://kieker-monitoring.readthedocs.io/en/latest/index.html
https://api.kieker-monitoring.org/2.0.2/
https://docs.datadoghq.com/agent
https://www.dynatrace.com/platform/oneagent/
https://www.jaegertracing.io/
https://www.elastic.co/observability/


Shinhyung Yang, David Georg Reichelt, Reiner Jung, Marcel Hansson, and Wilhelm Hasselbring

software system
TeaStore

container
Recommender

component
Kieker Agent

container
MariaDB

container
Persistence
component
Kieker Agent

container
Image

component
Kieker Agent

container
WebUI
component
Kieker Agent

container
JMeter Load
Generator

container
Kieker

OpenTelemetry
Transformer

software system
ExplorViz

container
Collaboration Service

container
Adapter Service

container
User Service

container
Span Service

container
Frontend

container
Schema Registry

container
Kafka

container
MongoDB

container
Redis

container
Cassandra

container
OpenTelemetry

Collector

container
Registry
component
Kieker Agent

container
Auth

component
Kieker Agent

(1) http://localhost:8080 (2) http://localhost:8082

Figure 2: Architecture of the tool artifact. The provided Docker compose file launches all the containers in the component
diagram, and it is accessible with two web servers on the Ports 8080 (1) and 8082 (2).

of Kieker traces based on jQAssist. Although they also visualize
call trees, their visualization is less flexible than the ExplorViz UI.
Alternative approaches use static software analysis data [13]. While
they can also visualize the component structure of an application,
they cannot present runtime information such as the number of
calls between the components, since these data need to be obtained
by instrumentation.

7 SUMMARY AND OUTLOOK
The application of the Kieker observability framework to the TeaSt-
ore benchmark, integrated with the visual analytics tool ExplorViz
is presented in this paper. This tool artifact is provided both as an
online service and as an artifact to deploy it yourself.

With our current SustainKieker project,16 we intend to further
sustain Kieker as a reusable, high-quality observability framework
that will be employed in a wider variety of research areas and used
by a larger community. The online version of the tool artifact, as

16https://sustainkieker.kieker-monitoring.net/

presented in this paper, also serves as a demo application to use
Kieker for observability.

Several demo applications to be developed in SustainKieker will
serve as basis for new interactive tutorial examples for Kieker.
Besides the online manual and step-by-step instructions in tutorials,
we aim to produce screencasts based on the demos illustrating core
features of Kieker. We will also empirically evaluate the effect of
our new tutorials with the embedded online demos.

ACKNOWLEDGMENT
This research is funded by the Deutsche Forschungsgemeinschaft
(DFG – German Research Foundation), grant no. 528713834.

REFERENCES
[1] Bernardo Andrade, Samuel Santos, and Antonio Rito Silva. 2023. A Comparison

of Static and Dynamic Analysis to Identify Microservices in Monolith Systems.
In Software Architecture. 354–361. https://doi.org/10.1007/978-3-031-42592-9_25

[2] Lingli Cao and Cheng Zhang. 2022. Implementation of Domain-oriented Mi-
croservices Decomposition based on Node-attributed Network. In ICSCA 2022
(ICSCA 2022). 136–142. https://doi.org/10.1145/3524304.3524325

[3] Jianlei Chi, Yu Qu, Qinghua Zheng, Zijiang Yang, Wuxia Jin, Di Cui, and Ting
Liu. 2020. Relation-based test case prioritization for regression testing. Journal of

https://sustainkieker.kieker-monitoring.net/
https://doi.org/10.1007/978-3-031-42592-9_25
https://doi.org/10.1145/3524304.3524325


The Kieker Observability Framework Version 2

Systems and Software 164 (2020), 110539. https://doi.org/10.1016/j.jss.2020.110539
[4] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht, Genc Mazlami,

and Harald Gall. 2018. PerformanceHat: augmenting source code with runtime
performance traces in the IDE. In ICSE 2018. 41–44. https://doi.org/10.1145/
3183440.3183481

[5] Robert Dabrowski. 2012. On Architecture Warehouses and Software Intelligence.
In FGIT 2012. 251–262. https://doi.org/10.1007/978-3-642-35585-1_35

[6] Jens Ehlers, André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2011. Self-
Adaptive Software System Monitoring for Performance Anomaly Localization.
In Proc. ICAC 2011. 197–200. https://doi.org/10.1145/1998582.1998628

[7] Radoslav Gatev. 2021. Observability: Logs, Metrics, and Traces. Apress, 233–252.
https://doi.org/10.1007/978-1-4842-6998-5_12

[8] Daniel Gomez Blanco. 2023. Practical OpenTelemetry: Adopting Open Observabil-
ity Standards Across Your Organization. Apress. https://doi.org/10.1007/978-1-
4842-9075-0

[9] Wilhelm Hasselbring, Alexander Krause, and Christian Zirkelbach. 2020. Ex-
plorViz: Research on software visualization, comprehension and collaboration.
Software Impacts 6 (Nov. 2020). https://doi.org/10.1016/j.simpa.2020.100034

[10] Wilhelm Hasselbring and Andre van Hoorn. 2015. Open-Source Software as
Catalyzer for Technology Transfer: Kieker’s Development and Lessons Learned. TR-
1508. Kiel Univ. https://nbn-resolving.org/urn:nbn:de:gbv:8:1-zs-00000275-a1

[11] Wilhelm Hasselbring and André van Hoorn. 2020. Kieker: A monitoring frame-
work for software engineering research. Software Impacts 5 (2020), 100019.
https://doi.org/10.1016/j.simpa.2020.100019

[12] Christoph Heger, André van Hoorn, Dusan Okanovic, Stefan Siegl, and Alexander
Wert. 2016. Expert-Guided Automatic Diagnosis of Performance Problems in
Enterprise Applications. In EDCC 2016. https://doi.org/10.1109/EDCC.2016.16

[13] Adrian Hoff, Lea Gerling, and Christoph Seidl. 2022. Utilizing Software Archi-
tecture Recovery to Explore Large-Scale Software Systems in Virtual Reality. In
VISSOFT 2022. 119–130. https://doi.org/10.1109/VISSOFT55257.2022.00020

[14] Andrea Janes, Xiaozhou Li, and Valentina Lenarduzzi. 2023. Open tracing tools:
Overview and critical comparison. JSS 204 (2023), 111793.

[15] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng.
2021. Service Candidate Identification from Monolithic Systems Based on Ex-
ecution Traces. IEEE Transactions on Software Engineering 47, 5 (May 2021),
987–1007. https://doi.org/10.1109/TSE.2019.2910531

[16] Reiner Jung, Sven Gundlach, and Wilhelm Hasselbring. 2021. Instrumenting
C and Fortran Software with Kieker. In CEUR workshop proceedings. CEUR.
http://ceur-ws.org/Vol-3043/

[17] Reiner Jung, Sven Gundlach, Serafim Simonov, and Wilhelm Hasselbring. 2021.
Developing Domain-Specific Languages for Ocean Modeling. In CEUR workshop
proceedings. CEUR, 1–12. http://ceur-ws.org/Vol-2814/

[18] Rudolf E. Kálmán. 1960. On the general theory of control systems. IFAC Proceed-
ings Volumes 1, 1 (1960), 491–502. https://doi.org/10.1016/S1474-6670(17)70094-8
1st International IFAC Congress on Automatic and Remote Control.

[19] Bo Liu, Jingliu Xiong, Qiurong Ren, Shmuel Tyszberowicz, and Zheng Yang. 2022.
Log2MS: a framework for automated refactoring monolith into microservices
using execution logs. In ICWS 2022. https://doi.org/10.1109/icws55610.2022.00065

[20] Charity Majors, Liz Fong-Jones, and George Miranda. 2022. Observability engi-
neering: achieving production excellence. O’Reilly.

[21] Ana Martinez Saucedo, Guillermo Rodriguez, Fabio Gomes Rocha, and Rodrigo
Pereira dos Santos. 2025. Migration of monolithic systems to microservices: A
systematic mapping study. Information and Software Technology 177 (Jan. 2025),
107590. https://doi.org/10.1016/j.infsof.2024.107590

[22] Nina S. Marwede, Matthias Rohr, André van Hoorn, and Wilhelm Hasselbring.
2009. Automatic Failure Diagnosis in Distributed Large-Scale Software Systems
based on Timing Behavior Anomaly Correlation. In Proc. CSMR’09. 47–57. https:
//doi.org/10.1109/CSMR.2009.15

[23] Richard Müller and Matteo Fischer. 2019. Graph-based analysis and visualization
of software traces. Softwaretechnik-Trends 39, 4 (2019), 26–28.

[24] Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Lidan Wang, Yuqiao Hou, and
Zijiang Yang. 2015. Exploring community structure of software call graph and
its applications in class cohesion measurement. Journal of Systems and Software
108 (2015), 193–210. https://doi.org/10.1016/j.jss.2015.06.015

[25] David Georg Reichelt, Lubomír Bulej, Reiner Jung, and André van Hoorn. 2024.
Overhead Comparison of Instrumentation Frameworks. In Companion of the
15th ACM/SPEC ICPE. https://doi.org/10.1145/3629527.365226

[26] David Georg Reichelt, Malte Hansen, Shinhyung Yang, and Wilhelm Hasselbring.
2024. Interoperability From Kieker to OpenTelemetry: Demonstrated as Export
to ExplorViz. https://arxiv.org/abs/2411.07982

[27] David Georg Reichelt and Stefan Kühne. 2016. Empirical Analysis of Performance
Problems on Code Level. In ICPE 2016. https://doi.org/10.1145/2851553.2892038

[28] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2019. PeASS:
A Tool for Identifying Performance Changes at Code Level. In Proc. ASE 2019.
ACM, 1146–1149. https://doi.org/10.1109/ASE.2019.00123

[29] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2021. Overhead
Comparison of OpenTelemetry, inspectIT and Kieker. In SSP 2021. http://ceur-
ws.org/Vol-3043/

[30] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2023. Towards
solving the challenge of minimal overhead monitoring. In ICPE ’23 Companion.
381–388. https://doi.org/10.1145/3578245.35848

[31] Matthias Rohr, André van Hoorn, Simon Giesecke, Jasminka Matevska, Wilhelm
Hasselbring, and Sergej Alekseev. 2008. Trace-context sensitive performance
profiling for enterprise software applications. In SIPEW2008. Springer, 283–302.
https://doi.org/10.1007/978-3-540-69814-2_18

[32] Henning Schnoor and Wilhelm Hasselbring. 2020. Comparing Static and Dy-
namic Weighted Software Coupling Metrics. Computers 9, 2 (March 2020), 1–21.
https://doi.org/10.3390/computers9020024

[33] Serafim Simonov, Thomas Duellmann, Reiner Jung, and Sven Gundlach. 2023.
Instrumenting Python with Kieker. Softwaretechnik-Trends 43, 1 (2023), 26–28.
https://dl.gi.de/handle/20.500.12116/43639

[34] Hannes Strubel and Christian Wulf. 2016. Refactoring Kieker’s monitoring
component to further reduce the runtime overhead. In SSP 2016. https://dl.gi.de/
handle/20.500.12116/40624

[35] André van Hoorn et al. 2011. DynaMod Project: Dynamic Analysis for Model-
Driven Software Modernization. In MDSM 2011. http://ceur-ws.org/Vol-708/.

[36] André van Hoorn, Matthias Rohr, Imran Asad Gul, and Wilhelm Hasselbring.
2009. An Adaptation Framework Enabling Resource-efficient Operation of Soft-
ware Systems. In Proc. WUP 2009. 37–40. https://doi.org/10.1145/1527033.1527047

[37] Andre van Hoorn, Christian Vögele, Eike Schulz, Wilhelm Hasselbring, and Hel-
mut Krcmar. 2014. Automatic Extraction of Probabilistic Workload Specifications
for Load Testing Session-Based Application Systems. In Proc. ValueTools 2014.
139–146. https://doi.org/10.4108/icst.valuetools.2014.258171

[38] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: a Frame-
work for Application Performance Monitoring and Dynamic Software Analysis.
In ICPE 2012. 247–248. https://doi.org/10.1145/2188286.2188326

[39] Christian Vögele, André van Hoorn, Eike Schulz, Wilhelm Hasselbring, and
Helmut Krcmar. 2018. WESSBAS: extraction of probabilistic workload specifi-
cations for load testing and performance prediction—a model-driven approach
for session-based application systems. Software & Systems Modeling 17, 2 (May
2018), 443–477. https://doi.org/10.1007/s10270-016-0566-5

[40] Joakim Von Kistowski, Simon Eismann, Norbert Schmitt, Andre Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In MASCOTS 2018. 223–236. https://doi.org/10.1109/MASCOTS.2018.00030

[41] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. 2011. Per-
formance Simulation of Runtime Reconfigurable Component-Based Software
Architectures. In Proc. ECSA 2011 (LNCS, Vol. 6903). Springer, 43–58. https:
//doi.org/10.1007/978-3-642-23798-0_5

[42] JanWaller, Nils C. Ehmke, andWilhelmHasselbring. 2015. Including Performance
Benchmarks into Continuous Integration to Enable DevOps. SIGSOFT Softw. Eng.
Notes 40, 2 (March 2015). https://doi.org/10.1145/2735399.2735416

[43] Jan Waller and Wilhelm Hasselbring. 2012. A Comparison of the Influence of
Different Multi-Core Processors on the Runtime Overhead for Application-Level
Monitoring. In MSEPT 2012. https://doi.org/10.1007/978-3-642-31202-1_5

[44] Christian Wulf, Wilhelm Hasselbring, and Johannes Ohlemacher. 2017. Parallel
and Generic Pipe-and-Filter Architectures with TeeTime. In ICSAW 2017. 290–293.
https://doi.org/10.1109/ICSAW.2017.20

[45] Shinhyung Yang, Jiun Jeong, Bernhard Scholz, and Bernd Burgstaller. 2022. Cloud-
profiler: TSC-based inter-node profiling and high-throughput data ingestion for
cloud streaming workloads. https://doi.org/10.48550/arXiv.2205.09325

[46] Shinhyung Yang, Yonguk Jeong, ChangWan Hong, Hyunje Jun, and Bernd
Burgstaller. 2018. Scalability and State: A Critical Assessment of Through-
put Obtainable on Big Data Streaming Frameworks for Applications With
and Without State Information. In Euro-Par 2017. Springer, 141–152. https:
//doi.org/10.1007/978-3-319-75178-8_12

[47] Shinhyung Yang, David Georg Reichelt, and Wilhelm Hasselbring. 2024. Evalu-
ating the Overhead of the Performance Profiler Cloudprofiler With MooBench.
Softwaretechnik-Trends 44, 4 (2024). https://dl.gi.de/handle/20.500.12116/45534

[48] Christian Zirkelbach, Wilhelm Hasselbring, and Leslie Carr. 2015. Combining
Kieker with Gephi for Performance Analysis and Interactive Trace Visualization.
Softwaretechnik-Trends 35, 3 (2015). https://dl.gi.de/handle/20.500.12116/40767

https://doi.org/10.1016/j.jss.2020.110539
https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1007/978-3-642-35585-1_35
https://doi.org/10.1145/1998582.1998628
https://doi.org/10.1007/978-1-4842-6998-5_12
https://doi.org/10.1007/978-1-4842-9075-0
https://doi.org/10.1007/978-1-4842-9075-0
https://doi.org/10.1016/j.simpa.2020.100034
https://nbn-resolving.org/urn:nbn:de:gbv:8:1-zs-00000275-a1
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1109/EDCC.2016.16
https://doi.org/10.1109/VISSOFT55257.2022.00020
https://doi.org/10.1109/TSE.2019.2910531
http://ceur-ws.org/Vol-3043/
http://ceur-ws.org/Vol-2814/
https://doi.org/10.1016/S1474-6670(17)70094-8
https://doi.org/10.1109/icws55610.2022.00065
https://doi.org/10.1016/j.infsof.2024.107590
https://doi.org/10.1109/CSMR.2009.15
https://doi.org/10.1109/CSMR.2009.15
https://doi.org/10.1016/j.jss.2015.06.015
https://doi.org/10.1145/3629527.365226
https://arxiv.org/abs/2411.07982
https://doi.org/10.1145/2851553.2892038
https://doi.org/10.1109/ASE.2019.00123
http://ceur-ws.org/Vol-3043/
http://ceur-ws.org/Vol-3043/
https://doi.org/10.1145/3578245.35848
https://doi.org/10.1007/978-3-540-69814-2_18
https://doi.org/10.3390/computers9020024
https://dl.gi.de/handle/20.500.12116/43639
https://dl.gi.de/handle/20.500.12116/40624
https://dl.gi.de/handle/20.500.12116/40624
https://doi.org/10.1145/1527033.1527047
https://doi.org/10.4108/icst.valuetools.2014.258171
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1007/s10270-016-0566-5
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1007/978-3-642-31202-1_5
https://doi.org/10.1109/ICSAW.2017.20
https://doi.org/10.48550/arXiv.2205.09325
https://doi.org/10.1007/978-3-319-75178-8_12
https://doi.org/10.1007/978-3-319-75178-8_12
https://dl.gi.de/handle/20.500.12116/45534
https://dl.gi.de/handle/20.500.12116/40767

	Abstract
	1 Introduction
	2 Impact of Kieker
	3 Observability Engineering
	4 Instrumentation and Data Collection with Kieker
	4.1 Instrumentation
	4.2 Benchmarking Observability Overhead

	5 The Tool Artifact
	6 Related Work
	7 Summary and Outlook
	References

