
Evaluating the Overhead of the Performance Profiler Cloudprofiler

With MooBench

Shinhyung Yang1, David Georg Reichelt2, and Wilhelm Hasselbring1

1Kiel University, Kiel, Germany
2Lancaster University Leipzig & Universität Leipzig, Leipzig, Germany

{shinhyung.yang,hasselbring}@email.uni-kiel.de, d.g.reichelt@lancaster.ac.uk

Abstract

Performance engineering has become crucial for the
cloud-native architecture. This architecture deploys
multiple services, with each service representing an or-
chestration of containerized processes. OpenTeleme-
try is growing popular in the cloud-native industry
for observing the software’s behaviour, and Kieker
provides the necessary tools to monitor and analyze
the performance of target architectures. Observability
overhead is an important aspect of performance engi-
neering and MooBench is designed to compare differ-
ent observability frameworks, including OpenTeleme-
try and Kieker.

In this work, we measure the overhead of Cloud-
profiler, a performance profiler implemented in C++
to measure native and JVM processes. It minimizes
the profiling overhead by locating the profiler process
outside the target process and moving the disk writ-
ing overhead off the critical path with buffer blocks
and compression threads. Using MooBench, Cloud-
profiler’s buffered ID handler with the Zstandard loss-
less data compression ZSTD showed an average execu-
tion time of 2.28 microseconds. It is 6.15 times faster
than the non-buffered and non-compression handler.

1 Introduction

Cloud-native applications are best characterized by
distributed services provided to concurrent users, and
deployment of microservices that scale horizontally
and vertically through container orchestration, often
with Kubernetes [2, 3, 5].

Performance measurement of a cloud-native appli-
cation is instrumental in preventing failures and allevi-
ating regressions such as prolonged response times [6].
Ongoing efforts include the observability frameworks
Kieker [8] and OpenTelemetry [11]. OpenTelemetry
defines its data model with the Protocol Buffers se-
rialization framework1, generating portable API and
data exports. Kieker is an observability framework
that instruments an application for performance and
behavioral analysis.

1https://protobuf.dev/

MooBench addresses another important dimension
to the performance engineering of cloud-native ap-
plications: performance overhead yielded by perfor-
mance observability frameworks [1, 10, 16]. It contin-
uously evaluates the performance regression of its tar-
gets. In empirical software engineering, benchmarks
can be used for comparing different methods, tech-
niques and tools [9]. MooBench is designed for re-
gression benchmarking within continuous integration
pipelines [1] of individual monitoring frameworks, not
for comparing such frameworks against each other.

Cloudprofiler [15] can instrument both C/C++ and
JVM-based applications. Its use case includes profil-
ing distributed matrix computations [13]. Its logging
interface is called handler, and the identity (ID) han-
dler performs the disk I/O per each log entry. The
buffered ID handler reduces the overhead by writing
log entries to memory (buffer blocks) instead of disk.
The buffered and compressed ID handler further ex-
ploits the performance by (1) redirecting buffers from
the I/O thread to parallel compression threads, which
(2) increases the logs-per-second I/O bandwidth.

In this paper, we use MooBench to evaluate the
overhead of Cloudprofiler instrumentation. We added
Cloudprofiler to MooBench. MooBench evaluates five
Cloudprofiler handlers: the null handler, the non-
buffered ID handler, the buffered and binary-encoded
ID handler, and two buffered and compressed ID han-
dlers. A buffered and compressed ID handler can be
configured with one compression codec, the Zstandard
lossless data compression ZSTD codec, or the real-
time data compression LZO1X codec. We present the
results in Section 4, and share the code2 and datasets3.

In the remainder of the paper, we (1) describe how
Cloudprofiler is incorporated into MooBench, and go
over (2) the experimental setup and (3) results, (4) re-
lated work, and (5) finalize in the conclusion section.

2 Instrumenting with MooBench

Cloudprofiler comprises two modules: the target in-
terface via JNI and the C++ shared library. Fig. 1 de-

2https://github.com/shinhyungyang/cloud_profiler
3https://doi.org/10.5281/zenodo.13940072

https://protobuf.dev/
https://github.com/shinhyungyang/cloud_profiler
https://doi.org/10.5281/zenodo.13940072


Workload
(instrumentated)

Cloudprofiler
target interface

via JNI I/O thread

Compression threads

MooBench

Cloudprofiler
C++ shared library

JVM

Host OS

Figure 1: Cloudprofiler Deployment in MooBench

picts the Cloudprofiler modules within the MooBench
architecture running as a JVM process on the Host
OS. The MooBench workload is instrumented at the
source code level with the Cloudprofiler interface. We
incorporated the instrumentation structure from [16],
which evaluated different instrumentation technolo-
gies for JVM applications, including source code-level,
and bytecode-level instrumentations.

1 long monitoredMethod(long time , int depth) {
2 cloud_profiler.logTS(ch_start , depth);
3 try {
4 return extractedMethod(time , depth);
5 } finally {
6 cloud_profiler.logTS(ch_end , depth);
7 }
8 }
9

10 long extractedMethod(long time , int depth) {
11 if (depth > 1) {
12 return monitoredMethod(time , depth - 1);
13 } else {
14 long exitTime = System.nanoTime () + time;
15 long curTime;
16 do {
17 curTime = System.nanoTime ();
18 } while (curTime < exitTime);
19 return curTime;
20 }
21 }

Listing 1: monitoredMethod is instrumented to
measure the execution time of extractedMethod.

The extractedMethod function in Listing 1 is
MooBench’s synthetic workload that represents a
trace: the depth of the trace and the time spent
are required. The method is invoked recursively
for the number of depth and the last invocation
returns after a duration of time ns. MooBench
targets without aspect weaving, e.g., Cloudprofiler,
utilize monitoredMethod to manually instrument
extractedMethod. During execution, it deploys two
Cloudprofiler channels, ch start and ch end, which
measures the span of of extractedMethod.

3 Experimental Setup

We extended the main branch of MooBench4 to incor-
porate the Cloudprofiler framework. We measured the
overhead of three frameworks: Cloudprofiler, Kieker
for Java, and OpenTelemetry.

4https://github.com/kieker-monitoring/moobench

The benchmark is deployed on a bare metal server,
operated by Debian 12.6, running OpenJDK 17.0.2,
and GCC 12.2.0. It has two Intel Xeon E5-2650 CPUs
with eight physical cores on each, and 64GiB RAM
on each NUMA domain. It uses a 480GB SSD.

We used MooBenchs default configurations, that
includes 2M iterations, where each iteration starts by
calling monitoredMethod with 10 for depth, and 0
for time. After an iteration, MooBench collects the
elapsed time, the garbage collection counts, and the
current used heap memory size. We report the results
in Section 4. The measurement repeats 10 times and
20M results are collected in total. Measuring an ob-
servability framework involves more than one configu-
ration, including non-instrumentation, deactivated in-
strumentation, and other configurations specific to the
target framework. MooBench selects 10M execution
results to create statistics for each configuration.

Cloudprofiler configurations We selected five
configurations: (1) the null handler, (2) the non-
buffered ID handler, (3) the buffered and binary-
encoded ID handler, (4) the buffered and ZSTD-
compressed ID handler, and (5) the buffered and
LZO1X-compressed ID handler. The null handler is
an empty JNI function without logging. A buffered
handler has 32 buffer blocks, where one block can
store up to 1M log entries. Four compression threads
dequeue a non-compressed block from a non-blocking
multi-producer/multi-consumer (MPMC) queue, and
enqueue a compressed block to another MPMC queue
for the I/O thread.

4 Evaluation

We report the execution time results in Fig. 2: the
non-instrumentation configuration (1) is the baseline
for other configurations. Cloudprofiler’s null han-
dler (2) performed 0.461 µs, close to (7) at 0.717 µs.
The buffered and binary-encoded ID handler per-
formed 2.294 µs (4), and the buffered and compressed
ID handlers performed 2.28 µs (5–6). The Kieker con-
figurations (9, 10) exhibited 5.485 µs and 7.127 µs, re-
spectively. Kieker and OpenTelemetry configurations
rarely exhibited GC, less than 10 times during 2M
iterations. We used coefficient of variation (CV) to
observe the changes in the used heap memory size.
Cloudprofiler, Kieker, and OpenTelemetry exhibited
maximum CVs of 11.78%, 50.39%, and 54.35%, re-
spectively.

5 Related Work

Our work aims for measuring the observability over-
head, which is the base for overhead reduction. Eder
et al. [12] compare the overhead of distributed tracing
in cloud environments. They use a microbenchmark
that is comparable to MooBench and find that Zip-
kins agent’s overhead is lower than OpenTelemetry’s.
Reichelt et al. [14] aim for overhead reduction by re-

https://github.com/kieker-monitoring/moobench


10-1

10-0.5

100

100.5

101

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Performance Benchmark Configurations

E
x
ec
u
ti
on

T
im

e
(µ
s,

lo
g-
sc
al
ed

)
(1) non-instrumentation

Cloudprofiler Java

(2) null handler

(3) non-buffered ID handler

(4) buffered & binary-encoded ID handler

(5) buffered & ZSTD-compressed ID handler

(6) buffered & LZO1X-compressed ID handler

(7) Kieker Java: deactivated probe

(8) Kieker Java: no logging

(9) Kieker Java: binary file

(10) Kieker Java: binary TCP

(11) OpenTelemetry Java: no logging

(12) OpenTelemetry Java: Zipkin

Figure 2: MooBench’s evaluation comparison of Cloudprofiler, Kieker, and OpenTelemetry

ducing the values created by Kieker. They find that
the overhead can be reduced from 4.77µs to 0.39µs
(compared to a baseline of 0.05µs). Lengauer et al. [4]
proposed a Java memory tracing techniques. Each
tracer thread may compress its buffer before enqueing,
which will be read by separate I/O threads. Gebai
and Dagenais [7] compared the overhead of system-
level tracers with a tight loop microbenchmark that
invokes a probe function hooked to a tracepoint in-
strumentation in application code.

6 Conclusion

In this research, we incorporated Cloudprofiler into
MooBench for regression benchmarking, and eval-
uted its instrumentation overhead differentiated by
the use of memory buffers and parallel compression
threads. We intend to utilize MooBench for contin-
uously benchmarking Cloudprofiler as well as other
frameworks.

Acknowledgment This research is funded by the
Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation), grant no. 528713834.

References

[1] J. Waller, N. C. Ehmke, and W. Hasselbring.
“Including Performance Benchmarks into Con-
tinuous Integration to Enable DevOps”. In:
SIGSOFT Softw. Eng. Notes 40.2 (Mar. 2015).

[2] B. Burns et al. “Borg, Omega, and Kubernetes”.
In: Commun. ACM 59.5 (Apr. 2016), pp. 50–57.

[3] W. Hasselbring. “Microservices for Scalability”.
In: Proceedings of the 7th ACM/SPEC on Inter-
national Conference on Performance Engineer-
ing. 2016, pp. 133–134.

[4] P. Lengauer, V. Bitto, and H. Mössenböck. “Ef-
ficient and Viable Handling of Large Object
Traces”. In: ICPE. ICPE ’16. Delft, The Nether-
lands: Association for Computing Machinery,
2016, pp. 249–260.

[5] D. Gannon, R. Barga, and N. Sundaresan.
“Cloud-Native Applications”. In: IEEE Cloud
Computing 4.5 (2017), pp. 16–21.

[6] C. Heger et al. “Application Performance Man-
agement: State of the Art and Challenges for
the Future”. In: ICPE. 2017, pp. 429–432.

[7] M. Gebai and M. R. Dagenais. “Survey and
Analysis of Kernel and Userspace Tracers on
Linux: Design, Implementation, and Overhead”.
In: ACM Comput. Surv. 51.2 (Mar. 2018).

[8] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (2020).

[9] W. Hasselbring. “Benchmarking as Empirical
Standard in Software Engineering Research”.
In: International Conference on Evaluation and
Assessment in Software Engineering (EASE
2021). ACM, June 2021, pp. 365–372.

[10] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“Overhead Comparison of OpenTelemetry, in-
spectIT and Kieker”. In: SSP. Gesellschaft für
Informatik eV, 2021.

[11] D. G. Blanco. Practical OpenTelemetry: Adopt-
ing Open Observability Standards Across Your
Organization. APress, 2023.

[12] C. Eder, S. Winzinger, and R. Lichtenthäler.
“A Comparison of Distributed Tracing Tools in
Serverless Applications”. In: 2023 IEEE SOSE.
IEEE. 2023, pp. 98–105.

[13] J. H. Lee et al. “Julia Cloud Matrix Ma-
chine: Dynamic Matrix Language Accelera-
tion on Multicore Clusters in the Cloud”. In:
PMAM’23. ACM, 2023.

[14] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“Towards Solving the Challenge of Minimal
Overhead Monitoring”. In: Companion of the
2023 ACM/SPEC ICPE. 2023, pp. 381–388.

[15] S. Yang et al. “Cloudprofiler: TSC-based inter-
node profiling and high-throughput data in-
gestion for cloud streaming workloads”. In:
arXiv:2205.09325 (2023).

[16] D. G. Reichelt et al. “Overhead Comparison of
Instrumentation Frameworks”. In: Companion
of the 15th ACM/SPEC ICPE. 2024.


	Introduction
	Instrumenting with MooBench
	Experimental Setup
	Evaluation
	Related Work
	Conclusion

