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Few-shot 3D Point Cloud Segmentation via Relation
Consistency-guided Heterogeneous Prototypes

Lili Wei, Congyan Lang, Member, IEEE, Zheming Xu, Liqian Liang, Jun Liu, Senior Member, IEEE

Abstract—Few-shot 3D point cloud semantic segmentation is a
challenging task due to the lack of labeled point clouds (support
set). To segment unlabeled query point clouds, existing prototype-
based methods learn 3D prototypes from point features of the
support set and then measure their distances to the query
points. However, such homogeneous 3D prototypes are often of
low quality because they overlook the valuable heterogeneous
information buried in the support set, such as semantic labels
and projected 2D depth maps. To address this issue, in this paper,
we propose a novel Relation Consistency-guided Heterogeneous
Prototype learning framework (RCHP), which improves proto-
type quality by integrating heterogeneous information using large
multi-modal models (e.g. CLIP). RCHP achieves this through two
core components: Heterogeneous Prototype Generation module
which collaborates with 3D networks and CLIP to generate
heterogeneous prototypes, and Heterogeneous Prototype Fusion
module which effectively fuses heterogeneous prototypes to obtain
high-quality prototypes. Furthermore, to bridge the gap between
heterogeneous prototypes, we introduce a Heterogeneous Rela-
tion Consistency loss, which transfers more reliable inter-class
relations (i.e., inter-prototype relations) from refined prototypes
to heterogeneous ones. Extensive experiments conducted on
five point cloud segmentation datasets, including four indoor
datasets (S3DIS, ScanNet, SceneNN, NYU Depth V2) and one
outdoor dataset (Semantic3D), demonstrate the superiority and
generalization capability of our method, outperforming state-of-
the-art approaches across all datasets.

Index Terms—Few-shot, point cloud semantic segmentation,
heterogeneous prototype, relation consistency

I. INTRODUCTION

SEMANTIC segmentation is a fundamental task in computer
vision, encompassing diverse areas such as image seg-

mentation [1], video segmentation [2], [3]), 3D point cloud
segmentation [4]–[7], etc. Among these, point cloud seman-
tic segmentation (3DSeg) aims to assign semantic labels to
each point in a 3D point cloud. Over the past decade, fully
supervised 3DSeg methods [4]–[7] have achieved remarkable
progress. However, these methods rely heavily on extensive
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(c) Ours: Relation Consistency-guided Heterogeneous Prototype Learning

(b) CLIP-based Methods
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Fig. 1. Illustration of the FS-3DSeg methods. (a) Previous prototype-based
FS-3DSeg methods only exploit 3D support information. (b) PointCLIP [16]
bridges the gap between point clouds and texts by projecting depth maps.
(c) Our method leverages inherent heterogeneous information of the support
set to obtain the heterogeneous-enhanced prototypes guided by heterogeneous
relation consistency loss.

labeled data and struggle to segment novel categories in open-
set scenarios. To tackle these issues, recent years have wit-
nessed the development of few-shot 3D point cloud semantic
segmentation (FS-3DSeg) [8]–[15] which aims to segment
unlabeled point clouds (i.e., query set) of new categories by
leveraging knowledge learned from a few labeled point clouds
(i.e., support set).

The key challenge in FS-3DSeg lies in effectively utiliz-
ing the limited support set, including 3D point clouds and
corresponding ground truth (GT) label masks. As shown
in Fig. 1 (a), most FS-3DSeg methods [8]–[14] typically
adopt prototype-based paradigms, learning 3D prototypes from
support point features, and measuring distances between query
point features and 3D prototypes to assign labels to the query
set. However, their performance is still far from satisfactory
since they only leverage partial, incomplete and biased seman-
tic information in limited support point clouds as guidance,
overlooking valuable heterogeneous information buried in the
support set that could enhance 3D representation. We can
observe two phenomenons: 1) due to the scarcity of support
point clouds, they lack intra-class diversity, whereas labels
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names from GT masks provide richer semantic guidance; 2)
due to the sparsity and irregularity of support point clouds,
they only capture geometric structures of objects without
perceiving visual information such as shapes and boundaries.
In contrast, 2D depth maps [16] projected from point clouds
provide clearer visual cues, as most points tend to fall along
the boundary edges after projection. Driven by these facts,
we aim to fully unleash the potential of the support set by
simultaneously harvesting inherent heterogeneous information
from the support set, including original point clouds, label
names buried in GT masks, and visual information from
projected 2D depth maps.

To leverage heterogeneous support information, we draw
inspiration from Large Multi-modal Models (LMM), such
as CLIP [17], which is pre-trained on large-scale visual-
language data and has obtained a strong capacity to process
data in multi-modalities. As shown in Fig. 1 (b), PointCLIP
[16] projects point clouds into depth maps and leverages
CLIP’s image-text alignment for depth map classification.
However, the sparsity and irregularity of point clouds, as well
as information loss during projection and feature extraction,
make this method unsuitable for directly handling FS-3DSeg
task. In contrast, we aim to leverage the diversity and comple-
mentarity of heterogeneous support information and use CLIP
to generate auxiliary class-specific text and visual features to
enhance 3D prototypes, which not only preserves the geomet-
ric structural information of point clouds but also enriches
with richer semantic and visual information. To achieve this,
we propose a simple yet effective framework that integrates
heterogeneous prototypes from point clouds, label texts, and
projected 2D depth maps, as shown in Fig. 1 (c). To the best of
our knowledge, this is the first approach to fully leverage the
diversity and complementarity of heterogeneous information
hidden in the support set in FS-3DSeg. For this approach to be
beneficial, effectively fusing different prototypes into refined
prototypes is crucial. However, there exist huge heterogeneous
gaps between heterogeneous prototypes, posing challenges to
coordinating or unifying multimodal information, potentially
impacting segmentation performance.

Ultimately, in this paper, we propose a Relation
Consistency-guided Heterogeneous Prototype learning frame-
work (RCHP) for FS-3DSeg. Specifically, we first design
a heterogeneous prototype enhancement (HPE) module that
generates several heterogeneous class-wise prototypes (includ-
ing 3D, text, and 2D prototypes), followed by a simple yet
effective heterogeneous prototype fusion scheme to derive
refined prototypes. Benefiting from the HPE module, the
refined prototypes encompass richer semantics and visual cues,
and can better associate with the query points. For example,
given the support set and query set containing “table legs”
and “table surface” respectively, the 3D prototype and refined
prototype can represent “table legs” and “table”, the latter
can better match with the query. Additionally, the refined
prototypes preserve more reliable inter-prototype structural
relations (IPR), such as distance-wise IPR between a pair of
prototypes and angle-wise IPR among a triplet of prototypes.
Based on this, we further propose a heterogeneous relation
consistency (HRC) loss to transfer more reliable inter-class

relations (i.e., IPR) from refined prototypes to heterogeneous
prototypes, guiding the learning process of the model. By
collaborating the HRC loss with the HPE module, we enable
mutual promotion and bidirectional optimization between the
refined prototypes and heterogeneous ones, thereby effectively
reducing heterogeneous gaps and improving the performance
of the model. We conduct extensive experiments on five
datasets, spanning both indoor and outdoor scenes. Experi-
mental results show that our method achieves state-of-the-art
performance and demonstrates strong generalization.

Our main contributions can be summarized as follows:
• To fully exploit the limited support set, we propose a

simple yet effective FS-3DSeg framework, named RCHP,
that simultaneously learns and fuses heterogeneous pro-
totypes, including 3D, 2D, and text. To the best of our
knowledge, we are the first to unify prototype-based and
CLIP-based methods into a unified framework to address
the FS-3DSeg task.

• We propose a heterogeneous prototype enhancement
(HPE) module, which generates and fuses heterogeneous
class-wise prototypes to enhance prototype representation
ability.

• To bridge the heterogeneous gap, we introduce a het-
erogeneous relation consistency (HRC) loss to facilitate
the mutual enhancement of refined and heterogeneous
prototypes.

II. RELATED WORK

A. 3D Point Cloud Semantic Segmentation

3D point cloud semantic segmentation (3DSeg) aims to
assign semantic labels to 3D point clouds. Supervised 3DSeg
approaches can be broadly categorized into two groups: voxel-
based [18], [19] and point-based methods [4]–[7], with the
latter gaining more attention for their simplicity and effective-
ness. DGCNN [5] introduced the EdgeConv module to capture
local structures. Recently, [6], [7] design self-attention-like
networks to model long-range contexts from distant neigh-
bors. Several recent approaches [20]–[24] have significantly
advanced 3D feature learning and scene understanding. Some
methods focus on efficient module designs [20] or effective
feature learning strategies [22]. However, these methods re-
quire large amounts of labeled points. To reduce reliance on
large-scale labeled points, other methods explore data-efficient
3D learning strategies, such as self-supervised learning [21],
unsupervised learning [23] and weakly supervised learning
[24]. However, these methods are inconvenient to segment
novel categories. In this paper, following mainstream FS-
3DSeg methods [8], [10], [14], we utilize DGCNN as the point
encoder and extend its capability to segment novel classes.

B. Few-shot learning

Few-shot learning methods, aiming to generalize a classifier
to new classes with very few labeled samples, comprise three
groups: augmentation-based methods enhance data diversity
using augmentation techniques [25], [26] or extra data [27],
[28]; optimization-based methods [29]–[31] learn transferable
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knowledge through meta-learning; and metric-based methods
[32]–[35] measure distances between query and support sam-
ples to predict the class. Specifically, the prototype learning
frameworks [32]–[35] which learn semantic prototypes from
the support set have achieved effective results. We follow this
line to address a more complicated FS-3DSeg problem.

C. Few-shot 3D Point Cloud Segmentation

Few-shot 3D point cloud semantic segmentation (FS-
3DSeg) aims to train a model on base classes and effectively
segment novel 3D classes using only a few annotated point
cloud samples. Current FS-3DSeg methods [8]–[14] mostly
follow the metric-based prototype learning paradigms, which
represent each class by prototypes from support set and
segment query points based on their similarity to prototypes.
Specifically, AttMPTI [8] proposed the first FS-3DSeg method,
which adopts an attention-aware multi-prototype transductive
inference framework. BFG [9] embedded global perception
into local point features and their prototypes in a mutually
enhancing fashion. Furthermore, [10]–[12], [14] enhanced the
performance by reducing contextual gaps between support pro-
totypes and query features via cross attention [36]. In addition
to prototype learning, SCAT [15] applied transformer blocks
[36] to explore class-specific relations between all query and
support features without using pooling operations. However,
these methods focus solely on analyzing 3D support data
and overlook the inherent heterogeneous support information,
such as 2D depth maps and label names, resulting in low-
quality prototypes. Our approach simultaneously leverages
the diversity and complementarity of heterogeneous support
information to enhance FS-3DSeg.

D. Large Multi-modal Models

Large multi-modal models (LMMs) have gained significant
attention for their ability to process and integrate information
across multiple modalities, such as text, images, videos, and
audio. These models are repositories of extensive knowledge
for pre-training on large-scale multi-modal datasets. Notable
examples include CLIP [17] and BLIP [37], which can asso-
ciate visual and text information and perform well in tasks
such as image-text matching and visual question answering.
LLaVA [38], GPT-4 Vision [39] and MiniGPT [40] further
combined language models with visual understanding capa-
bilities. More recently, there also emerge several 3D-LMMs
(e.g., Point-LLM [41], MiniGPT-3D [42], Uni3D-LLM [43],
PointCLIP [16] and PointCLIP V2 [44]) which associate point
clouds with texts and other modalities. Nevertheless, current
3D-LMMs are not tailored for segmenting novel classes in
meta-learning-based FS-3DSeg. Our approach aims to leverage
the capabilities of CLIP to solve the FS-3DSeg problem by
leveraging its rich multimodal features.

III. METHOD

A. Problem Formulation and Overview

1) Problem Formulation: According to the few-shot learn-
ing paradigm [8], [45], we adopt the episode paradigm to train

and test our model. Each episode instantiates an ‘N -way K-
shot’ segmentation task. The data used by each task contains
a support set S = {(Pn,k

s ,Mn,k
s )

K

k=1}Nn=1 and a query set
Q = {(Pi

q,M
i
q)}Ti=1, where N , K and T denote the number

of classes, the number of support point clouds for each class,
and the number of query point clouds. Pn,k

s and Pi
q denote

the support and query point cloud, each contains M points.
Mn,k

s ∈ {0, 1}M×1 denotes support ground-truth (GT) binary
mask, and Mi

q ∈ {0, ..., N}M×1 denote the query GT mask.
Beyond the original S, we reformulate a heterogeneous sup-
port set S̃ by integrating inherent heterogeneous information
of S:

S̃ =
{(

Pn,k
s ,Mn,k

s , (Dn,k,v
s , D̂n,k,v

s )Vv=1

)K
k=1

,Wn
s

}N

n=1
, (1)

where Wn
s denotes semantic text (label names) from support

GT mask, Dn,k,v
s ∈ RH×W and D̂n,k,v

s ∈ RH×W denote the
depth map projected from Pn,k

s for class n and background,
V denotes the number of projection views.

In this paper, our goal is to learn a model Fθ using S̃ to
predict the mask M̂i

q for Pi
q . The optimization target is to

minimize label prediction errors through a segmentation loss
LSEG, i.e., a standard cross-entropy loss, expressed as:

LSEG =

T∑
i=1

LCE(M̂
i
q,M

i
q). (2)

2) Overview: Fig. 2 illustrates the architecture of the RCHP
framework, comprising two key components: an HPE module
and an HRC loss. Specifically, HPE contains support and
query flows. In the support flow, HPE adopts a shared point
encoder to extract query point features Fi

q and support point
features Fn,k

s for Q and S, and utilize CLIP to extract
visual and text features for support set. Then HPE generates
several heterogeneous prototypes (3D, text, and 2D) from S̃,
followed by a fusion scheme to obtain refined prototypes P̈.
Additionally, during training, an HRC loss is employed to
mitigate the heterogeneous gap. In the query flow, similarity
maps between Fi

q and P̈ are calculated using cosine distance.
Each point cloud in the query set is then assigned the label of
the most similar prototype. During testing, we use the HPG
module to extract point features from both the support and
query sets, and generate heterogeneous prototypes from the
support set. Then we fuse these prototypes by the HPF module
to obtain refined prototypes. The final segmentation results are
predicted by measuring the distance between query features
and the refined prototypes.

Subsequently, we provide a detailed description of the HPE
module and HRC loss as below.

B. Heterogeneous Prototype Enhancement

1) Heterogeneous Prototype Generation: To fully exploit
the potential of S, inspired by [16], [46], [47] which incorpo-
rates multi-modal heterogeneous features to enhance features,
we reformulate S as S̃ by incorporating the inherent heteroge-
neous information of S. Then several class-wise heterogeneous
prototypes can be generated: 3D prototypes, text prototypes,
and 2D prototypes.
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Fig. 2. Architecture overview of our proposed method. The support flow is responsible for Heterogeneous Prototype Enhancement (HPE), including
heterogeneous prototype generation and fusion processes, where 3D, 2D and text prototypes are integrated together to obtain refined prototypes. Heterogeneous
relation consistency loss further enhances the prototype enhancement process by distilling relations between prototypes. The query flow calculates the distance
between query point features and refined prototypes to predict segmentation results. The figure illustrates a 2-way 1-shot setting.

(1) 3D Prototypes. Given support point cloud Pn,k
s and

query point cloud Pi
q , following common practice [8], [10],

we utilize a shared point encoder to extract their per-point
features, represented as Fn,k

s ∈ RM×d and Fi
q ∈ RM×d

respectively, where d denotes the feature dimension. Then we
apply masked average pooling (MAP) [10] to generate class-
wise 3D prototypes P3D = {Pn

3D}Nn=0 ∈ R(N+1)×d from
support features, including a background prototype and N
foreground prototypes.

(2) Text Prototypes. Due to S containing limited semantic
information, vanilla 3D prototypes P struggle to associate with
Q. To cope with the lack of semantics, inspired by CLIP’s [17]
extensive training on diverse visual-text data and capturing
rich semantic information, we aim to leverage a frozen CLIP
text encoder to generate text prototypes. Specifically, given
label names Ws = {Wn

s }Nn=0 for both background and N
sampled classes, we place each of them to the class token
position of a predefined 3D-specific template: “point cloud
of a [CLASS].”, utilize a frozen CLIP text encoder ET to
extract text features, and employ a trainable semantic projec-
tion network FT following [10] to generate text prototypes
Ptext = {Pn

text}Nn=0 ∈ R(N+1)×d, formulated as:

Pn
text = FT (ET (W

n
s )), n ∈ {0, ..., N}. (3)

(3) 2D Prototypes. Compared to sparse and unordered point
clouds that provide incomplete geometric structures, projecting
them into 2D space provides clearer boundary details, more
defined shapes, and richer visual context, highlighting edges
and contours less noticeable in 3D. Inspired by this, we project
the original Pn,k

s from V different views to generate class-
specific multi-view 2D depth maps,formulated as:{

Dn,k,v
s = Proj(Pn,k

s ⊙Mn,k
s , v), v ∈ {1, ..., V }

D̂n,k,v
s = Proj(Pn,k

s ⊙ ¬Mn,k
s , v), v ∈ {1, ..., V }

, (4)

where Dn,k,v
s , D̂n,k,v

s ∈ RH×W represent depth maps with
the size of H ×W for class n and background. Next, we use
a frozen CLIP visual encoder EV to extract a visual feature
from each depth map. After globally averaging these visual
features per class, a visual projection network FV generates
2D prototypes P2D = {Pn

2D}Nn=0 ∈ R(N+1)×d, formulated as:

Pn
2D =


FV

( 1

KV

K∑
k=1

V∑
v=1

EV (Dn,k,v
s )

)
, n ∈ {1, ..., N}

FV

( 1

NKV

N∑
c=1

K∑
k=1

V∑
v=1

EV (D̂c,k,v
s )

)
, n = 0

. (5)

2) Heterogeneous Prototype Fusion: To incorporate text
knowledge and visual cues into vanilla prototypes P, we in-
troduce a simple but well-performed heterogeneous prototype
fusion scheme. For simplicity and scalability, we conduct
a flexible feature-level averaging operation to produce the
fused prototypes Ṗ = {Ṗn}Nn=0 ∈ R(N+1)×d, where each is
calculated by:

Ṗn =
1

3
(Pn

3D + Pn
text + Pn

2D), n ∈ {0, ..., N}. (6)

To mitigate the feature channel distribution gap [10], [48]
between prototypes and query features, QGPA [10] proposed
a Query-Guided Prototype Adaption (QGPA) module, which
utilizes cross-attention [36] to enhance the prototype by query-
support feature interaction. Following this, we adopt QGPA
to generate a set of refined prototypes P̈i = {P̈n,i}Nn=0 ∈
R(N+1)×d for each query point cloud Pi

q , where each formu-
lated by:

P̈n,i =

{
QGPA

(
Fi

q, (F
n,k
s )Kk=1, Ṗn

)
, n ∈ {1, ..., N}

QGPA
(
Fi

q, {(Fc,k
s )Kk=1}Nc=1, Ṗn

)
, n = 0

, (7)

where i ∈ {1, ..., T}. After that, we can obtain T sets of
refined prototypes P̈ = {P̈0, ..., P̈T } for T query point clouds.
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Finally, we calculate similarity scores using cosine distance
between Fi

q and its P̈i. Each point is then assigned the label
with the most similar prototype to generate M̂i

q .

C. Heterogeneous Relation Consistency Loss
To further reduce heterogeneous gaps and enhance proto-

type refinement, inspired by relational knowledge distillation
(RKD) loss [49], which unidirectionally transfers structural
relations between features from teacher to student in the same
image modality, we introduce a Heterogeneous Relation Con-
sistency (HRC) loss. HRC loss facilitates the transfer of more
reliable inter-class relations (i.e., inter-prototype relations,
IPR) from refined prototypes to heterogeneous prototypes, as
shown in Fig. 3. Specifically, we treat the refined prototype
as the teacher and the heterogeneous prototypes from different
modalities (e.g., 3D, 2D, text) as student prototypes. The HRC
loss distills IPRs from the teacher (refined prototype) to each
student (3D, 2D and text prototypes), aligning heterogeneous
relationships while maintaining each modality’s unique char-
acteristics.

Besides, unlike RKD, as shown in Fig. 3, our HRC loss
first decomposes each prototype feature into two comple-
mentary subspaces based on the channel dimension before
transferring IPR, enabling more precise capturing of fine-
grained feature relations across multiple subspaces, which
is particularly important for complex 3D data. This reduces
redundancy and improves relational transfer accuracy, al-
lowing the model to focus on modality-specific information
while ensuring precise prototype relation transfer. Moreover,
through the interaction between the HPE module and HRC
loss during training, our model enables mutually beneficial
and bi-directional optimization between heterogeneous and
refined prototypes. This process narrows the heterogeneous
gap and facilitates bidirectional learning, ultimately improving
the refinement of prototypes across different modalities and
enabling more effective transfer of relational knowledge.

Specifically, for each prototype set P, we divide it into
two subsets according to the channel, i.e., P = P1 c⃝P2,
where each prototype P = P1 c⃝P2, c⃝ denote the channel-
wise concatenation operation. Then HRC loss constrains the
consistency of distance-wise IPRs and angle-wise IPRs by two
loss functions, i.e., distance-wise relation consistency loss and
angle-wise relation consistency loss.

1) Distance-wise Relation Consistency Loss: Distance-wise
IPR measures the second-order relation between a pair of
prototypes (Pa,Pb) within the same prototype set P. It can
be calculated by the Euclidean distance ψD:

ψD(Pa,Pb) =

2∑
c=1

1

µc
∥Pa

c − Pb
c∥2

where µc =
1

|P2
c |

∑
(Pa

c ,Pb
c )∈P2

c

∥Pa
c − Pb

c∥2
. (8)

Using the distance-wise IPR measured in the final refined
prototype set P̈ and each heterogeneous prototype set P, a
distance-wise relation consistency loss is defined as:

LRCD(P̈,P) =
∑
i,a,b

Lδ

(
ψD(P̈a,i, P̈b,i), ψD(Pa,Pb)

)
, (9)
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Split

𝑳𝑳𝑹𝑹𝑹𝑹𝑹𝑹

𝑳𝑳𝑹𝑹𝑹𝑹𝑹𝑹

(a) Distance-wise Relation Consistency Loss

(b) Angle-wise Relation Consistency Loss

Channel 

Split

Channel 

Split

𝑳𝑳𝑹𝑹𝑹𝑹𝑨𝑨

𝑳𝑳𝑹𝑹𝑹𝑹𝑨𝑨

Refined  
Prototypes

Refined  
Prototypes

Heterogeneous  
Prototypes

Heterogeneous  
Prototypes

Euclidean distance Cosine angle Second-order Relations Third-order Relations

Fig. 3. Our Heterogeneous Relation Consistency (HRC) Loss consists of
two parts, i.e., distance-wise relation consistency loss and angle-wise relation
consistency loss.

where a, b ∈ {0, ..., N}, P ∈ {P3D,Ptext,P2D}, Lδ is the
Huber loss.

2) Angle-wise Relation Consistency Loss: Angle-wise IPR
measures the third-order relation of the triplet (Pa,Pb,Pk) in
the same prototype set, calculated by cosine angle ψA:

ψA(Pa,Pb,Pk) =

2∑
c=1

〈 Pa
c − Pb

c

∥Pa
c − Pb

c∥2
,

Pk
c − Pb

c

∥Pk
c − Pb

c∥2
〉
. (10)

Using the angle-wise IPR measured in both the final refined
prototype set P̈ and each heterogeneous prototype set P, an
angle-wise relation consistency loss is defined as:

LRCA(P̈,P) =
∑

i,a,b,c

Lδ

(
ψA(P̈a,i, P̈b,i, P̈c,i), ψA(Pa,Pb,Pc)

)
,

(11)
where a, b, c ∈ {0, ..., N}, P ∈ {P3D,Ptext,P2D}.

Total loss. We combine LRCD and LRCA with a balancing
weight γ to form the total relation consistency loss LRC ,
formulated as:

LRC =
∑

P∈{P3D,Ptext,P2D}

(
LRCD(P̈,P) + γ × LRCA(P̈,P)

)
.

(12)
During training, the overall loss is a weighted combination

of a standard cross-entropy loss LSEG and the proposed HRC
loss LRC with a balancing weight λ, represented as:

Ltotal = LSEG + λ× LRC . (13)

IV. EXPERIMENTS

A. Datasets & Evaluation Metrics

Dataset. In accordance with AttMPTI [8], we conduct
experiments on two indoor datasets: i.e., S3DIS [50] and
ScanNet [51]. To further verify the generalization of the
model, we conduct additional experiments on three more
datasets, i.e., 1) two indoor datasets (SceneNN [52], [53] and
NYU Depth V2 [54]) which pose greater challenges due to
increased class diversity, significant class imbalance, occlusion
and the presence of small object classes; 2) one outdoor dataset
(Semantic3D [55]) which contains unstructured objects and
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TABLE I
TEST CLASS NAMES FOR EACH SPLIT OF DIFFERENT DATASETS.

S0 S1

S3DIS (6 classes) beam, board, bookcase, ceiling, chair, column (6 classes) door, floor, sofa, table, wall, window
ScanNet (10 classes) bathtub, bed, bookshelf, cabinet, chair, counter,

curtain, desk, door, floor
(10 classes) otherfurniture, picture, refrigerator, show curtain,
sink, sofa, table, toilet, wall, window

SceneNN (16 classes) bed, bookshelf, cabinet, chair, counter, curtain,
desk, door, floor, pillow, dresser, box, television, lamp, mirror,
whiteboard

(17 classes) picture, fridge, sink, sofa, table, wall, window,
structure, floor mat, clothes, books, bag, night stand, prop,
paper, towel, shelves

(7 classes) blinds, ceiling, shower curtain, person, toilet, bathtub, furniture
(These classes are filtered as background because no corresponding annotated point clouds are provided.)

NYU Depth V2 (20 classes) wall, cabinet, chair, door, bookshelf, counter,
desk, curtain, pillow, floor mat, ceiling, refrigerator, towel,
box, person, toilet, lamp, bag, otherstructure

(20 classes) floor, bed, sofa, table, window, picture, blinds,
shelves, dresser, mirror, clothes, books, television, paper,
shower curtain, whiteboard, night stand, sink, bathtub, oth-
erfurniture, otherprop

Semantic3D (4 classes) buildings, cars, hard scape, high vegetation (4 classes) low vegetation, man-made terrain, natural terrain,
scanning artefacts

complex outdoor scenes. (1) S3DIS [50] collects 3D-RGB
point clouds from 272 rooms across six indoor scenes. Each
point is labeled with 12 semantic categories and the clutter. (2)
ScanNet [51] contains 1,513 point clouds derived from 707
different indoor scenes. Every point, excluding unannotated
areas, is assigned one of 20 semantic classes. (3) SceneNN
[52] consists of more than 100 indoor scenes. For point cloud
semantic segmentation, [53] annotated 76 scenes from the
SceneNN dataset with 40 categories defined by the NYU
Depth v2 dataset [54]. (4) NYU Depth V2 [54] consists of
1,449 RGBD images collected from various commercial and
residential buildings in three US cities. The dataset contains
35,064 distinct objects across 894 classes, which are mapped
to 41 semantic classes, including 40 foreground classes and
one background class. (5) Semantic3D [55] contains over
4 billion points, covering diverse outdoor urban scenes. It
includes 8 categories and 1 unannotated category.

Data preprocess. Since the original rooms contain an
excessive number of points for direct processing, we divide
each room into several smaller blocks. For S3DIS and ScanNet
datasets, we follow the pre-processing strategy in [8], [10] to
divide the rooms into blocks using a non-overlapping sliding
window of 1m×1m on the xy plane, yielding 7,547 blocks
for S3DIS and 36,350 blocks for ScanNet, respectively. For
SceneNN dataset, we follow [53] to use a 2×2 sqm. window
with a stride of 0.2 meters and a height of 2 meters to
scan the floor area, resulting in a total of 48,714 blocks.
For NYU Depth V2 dataset, following 1 we convert each
RGBD image to point clouds with a scale of 1, and then
divide each point cloud into blocks with a window size of
0.5 and stride of 0.5, resulting in a total of 51,704 blocks.
For Semantic3D dataset, we scan each scene with a 5×5
sqm windows and a stride of 5 meters, resulting in a total
of 4,825 blocks. During training/testing, we randomly sample
M = 2, 048 points from each block. For S3DIS, ScanNet
and NYU Depth V2 datasets, each point is represented by
a 9D vector, including XYZ, RGB, and normalized spatial
coordinates. For SceneNN dataset, each point is represented
by a 15D vector, including XYZ, 9 attributes, and normalized
spatial coordinates. For Semantic3D dataset, each point is

1https://github.com/parkie0517/NYUDepthV2 PointCloud Converter

represented by a 10D vector, including XYZ, intensity, RGB
and normalized spatial coordinates. For meta-training/testing,
following [8], semantic classes are evenly split into two non-
overlapping subsets, denoted as S0 and S1, as shown in Table
I. When training our model on one fold (e.g., S0), we test
the model on another fold (e.g., S1). Vice versa for cross-
validation.

Evaluation Metrics. Following conventions in the 3DSeg
community, we report the mean Intersection-over-Union
(mIoU) across all test classes.

B. Implementation Details

Framework details. We select QGPA [10] as our FS-
3DSeg baseline equipped with a segmentation loss, a self-
reconstruction loss, and an alignment loss. Specifically, we
utilize DGCNN [5] (with SAN) as 3D point encoder, a pre-
trained frozen CLIP [17] (CLIP rn50 with feature dimension
of 1,024) as text encoder and visual encoder. Note that textual
features can be pre-computed and stored offline, avoiding
redundant computation using CLIP text encoder online train-
ing/testing. In contrast, the CLIP visual encoder is essential for
extracting visual features online, as it processes dynamically
generated multi-view 2D depth maps from 3D point clouds.
For 3D to 2D projection, the total projection view V is set
to 6, including {Front, Right, Behind, Left, Top, Down}. The
size of projected images are set to 128×128 and later resized
to 224 × 224 to serve as input to the CLIP visual encoder.
Both the semantic projection network and visual projection
network adopt a Linear+LeakyReLU+Dropout+Linear archi-
tecture, with input/hidden/output dimensions of 1024/320/320,
respectively. For our proposed HRC loss in Eq. 12, the weight
γ for balancing LRCD and LRCA is set to 2 following [49].
For the total loss in Eq. 13, the weight λ for balancing
segmentation loss and HRC loss is set to 1.

Training details. Our method is implemented by Pytorch
and runs on an NVIDIA RTX A4000 GPU. Before few-shot
learning, following [8], [10], we pre-train the point encoder
on the training set for 100 epochs with a batch size of 32,
using the Adam optimizer with a learning rate of 0.001, a
weight decay of 0.0001, and a decay step of 50. In the few-
shot training process, we randomly sample 40,000 training

https://github.com/parkie0517/NYUDepthV2_PointCloud_Converter/tree/main
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TABLE II
RESULTS ON S3DIS DATASET USING MEAN-IOU METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING.

Methods
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

ProtoNet [8] 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24
AttMPTI [8] 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86

BFG [9] 55.60 55.98 55.79 63.71 66.62 65.17 46.18 48.36 47.27 55.05 57.80 56.43
SCAT [15] 54.92 56.74 55.83 64.24 69.03 66.63 - - - - - -

QGPNet [12] 56.30 57.62 56.96 65.34 69.01 67.17 47.00 50.12 48.56 55.80 58.54 57.17
2CBR [13] 55.89 61.99 58.94 63.55 67.51 65.53 46.51 53.91 50.21 55.51 58.07 56.79
QGE [11] 58.85 60.29 59.57 66.56 79.46 73.01 - - - - - -

QGPA [10] 59.45 66.08 62.76 65.40 70.30 67.85 48.99 56.57 52.78 61.27 60.81 61.04
DPA [14] 66.08 74.30 70.19 71.10 77.03 74.07 50.67 59.53 55.10 64.52 63.34 63.93

RCHP 67.50 74.43 70.97 72.30 77.93 75.12 61.01 68.62 64.82 64.56 66.46 65.51

TABLE III
RESULTS ON SCANNET DATASET USING MEAN-IOU METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING.

Methods
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

ProtoNet [8] 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17
AttMPTI [8] 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77

BFG [9] 42.15 40.52 41.34 51.23 49.39 50.31 34.12 31.98 33.05 46.25 41.38 43.82
SCAT [15] 45.24 45.90 45.57 55.38 57.11 56.24 - - - - - -

QGPNet [12] 44.63 42.18 43.40 54.75 51.81 53.28 37.86 34.50 36.18 47.45 42.74 45.09
2CBR [13] 50.73 47.66 49.20 52.35 47.14 49.75 47.00 46.36 46.68 45.06 39.47 42.27
QGE [11] 43.10 46.79 44.95 51.91 57.21 54.56 - - - - - -

QGPA [10] 57.08 55.94 56.51 64.55 59.64 62.10 55.27 55.60 55.44 59.02 53.16 56.09
DPA [14] 62.75 63.04 62.90 67.19 64.62 65.91 61.97 61.72 61.85 66.13 64.67 65.40

RCHP 71.56 70.33 70.95 76.36 73.86 75.11 66.02 66.25 66.14 72.11 72.07 72.09

TABLE IV
RESULTS ON SCENENN DATASET USING MEAN-IOU METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING. ∗ INDICATES THAT THE

EXPERIMENTAL RESULTS WERE REPRODUCED BY US.

Methods
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

ProtoNet∗ [56] 21.90 21.38 21.64 29.81 26.83 28.32 17.23 16.13 16.68 23.47 20.24 21.86
QGPA∗ [10] 23.85 24.18 24.02 42.11 43.82 42.97 30.96 30.61 30.79 36.79 43.60 40.20

RCHP 32.91 32.29 32.60 53.03 48.93 50.98 32.82 39.44 36.13 47.62 45.32 46.47

TABLE V
RESULTS ON NYU DEPTH V2 DATASET USING MEAN-IOU METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING. ∗ INDICATES THAT THE

EXPERIMENTAL RESULTS WERE REPRODUCED BY US.

Methods
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

ProtoNet∗ [56] 23.34 25.99 24.67 51.26 34.16 42.71 18.02 19.71 18.87 24.38 26.54 25.46
QGPA∗ [10] 27.72 30.09 28.91 64.28 69.10 66.69 32.23 48.33 40.28 60.12 62.07 61.10

RCHP 33.49 34.51 34.00 67.71 77.49 72.60 53.19 63.42 58.31 66.14 64.43 65.29

TABLE VI
RESULTS ON SEMANTIC3D DATASET USING MEAN-IOU METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING. ∗ INDICATES THAT THE

EXPERIMENTAL RESULTS WERE REPRODUCED BY US.

Methods
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

ProtoNet∗ [56] 34.56 39.90 37.23 45.52 39.91 42.72 27.25 34.17 30.71 37.45 40.32 38.89
PAP∗ [10] 37.09 41.60 39.35 51.41 46.24 48.83 41.61 38.92 40.27 47.26 42.45 44.86

RCHP 45.17 44.35 44.76 59.82 47.61 53.72 45.22 42.55 43.89 48.41 44.13 46.27
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Fig. 4. Qualitative results of our method in ‘2-way 1-shot S0’ point cloud semantic segmentation on the S3DIS and ScanNet datasets in comparison to the
GT mask and QGPA [10]. Best viewed in color.

episodes from the training set to train our model using the
Adam optimizer with a learning rate of 0.001, a decay step of
5000, and a decay ratio of 0.5. For the query set, the number
of query point clouds T is set to 1 for each class. During
testing, we sample 100 episodes from the S3DIS, ScanNet
and Semantic3D datasets for each feasible class combination
from the testing set and report the average results across all
episodes. Note that for datasets like SceneNN and NYU Depth
V2, which contain much more classes, we test more efficiently
by setting the number of test episodes to 100 for the SceneNN
dataset under the 2-way setting and to 20 episodes across all
other settings.

C. Comparison With State-of-the-Art Methods
Results on S3DIS. Table II shows the experimental results

of our method compared with state-of-the-art (SOTA) FS-
3DSeg methods on the S3IDS dataset. Our method substan-
tially improves the baseline QGPA [10] by 3.29%∼12.05%
across different split settings, marking a significant improve-
ment on FS-3DSeg. Furthermore, our approach consistently
outperforms all SOTA methods, particularly surpassing DPA
[14] by up to 10.34% under ‘3-way 1-shot S0’ setting,
showcasing our effectiveness and superiority. We analyze that,
unlike 3D prototypes that only capture limited geometric
information, our HPE module and HRC loss enhance FS-
3DSeg by integrating rich semantic information from texts and
visual cues from depth maps into 3D prototypes, effectively
addressing the issue of limited support information.

Results on ScanNet. Table III shows the results of our
method compared with SOTA FS-3DSeg methods on ScanNet.
We were very pleased to observe that our method signifi-
cantly outperforms baseline QGPA [10] by a large margin
of 10.65%∼18.91%, marking a significant enhancement for
the challenging FS-3DSeg problem. Especially for the ‘2-
way 1-shot’ setting, RCHP improves the baseline by 14.44%

(70.95% of ours vs. 56.51% of QGPA), respectively. For ‘3-
way 5-shot’ setting, our RCHP even surpass SOTA by 16.00%
(72.09% vs. 56.09%). Besides, we significantly outperform
the SOTA methods, especially surpassing DPA [14] by large
margins of 4.05%∼9.24%. Notably, our model shows even
greater improvement on ScanNet compared to S3DIS because
ScanNet’s wider range of classes and more complex scenarios
challenge 3D prototype quality, our HPE module and HRC loss
effectively improve prototype quality by coping with the lack
of inherent support information, thus improving performance.

Generalization validation. We reproduce our method and
two SOTA baselines, ProtoNet [56] and QGPA [10], on
SceneNN, NYU Depth V2 and Semantic3D datasets. Results
in Tables IV, V and VI show that our method consistently
outperforms ProtoNet and QGPA across all settings, demon-
strating its robustness and effectiveness in both indoor and
outdoor segmentation datasets. Besides, we find that all models
perform lower on SceneNN compared to other datasets, likely
due to differences in input feature dimensions. While S3DIS,
ScanNet, and NYU Depth V2 use 9D features (XYZ, RGB,
normalized coordinates) that effectively capture essential se-
mantics, SceneNN’s 15D features include additional attributes
that may introduce noise or redundancy, making it more
challenging for the model to learn effectively, thereby affecting
its overall performance.

Comparison with CLIP-based Method. We reproduce
PointCLIP [16] in our FS-3DSeg task by training the model on
the few-shot support set and testing on the query set. To seg-
ment point clouds by PointCLIP, we project each point cloud
into depth maps, extract pixel-wise feature maps, and match
pixel features with text features. As shown in Table VII, Point-
CLIP performs much worse than ours by 13.69%∼21.75%
and 30.81%∼35.98% on S3DIS and ScanNet, respectively.
This is because the sparsity and irregularity of the point
cloud cause geometric information loss during projection, and
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TABLE VII
COMPARISON WITH CLIP-BASED METHOD USING MEAN-IOU METRIC

(%). Si DENOTES THE SPLIT i IS USED FOR TESTING. THE BEST RESULTS
ARE MASKED IN BOLD.

Dataset Methods 2-way 1-shot 3-way 1-shot
S0 S1 mean S0 S1 mean

S3DIS PointCLIP [16] 51.21 52.68 51.95 47.32 47.65 47.49
RCHP 67.50 74.43 70.97 61.01 68.62 64.82

ScanNet PointCLIP [16] 40.75 37.22 38.99 31.50 30.27 30.89
RCHP 71.56 70.33 70.95 66.02 66.25 66.14

TABLE VIII
ANALYSIS OF COMPUTATIONAL COST AND EXPERIMENTAL RESULTS
UNDER 2-WAY 1-SHOT SETTING. OUR METHOD BETTER BALANCES
BETWEEN COMPUTATION COST AND EXPERIMENT RESULTS. HERE

TinyCLIP-8M REFERS TO TinyCLIP-ViT-8M-16-Text-3M MODEL.

Methods #Params FLOPs (G) FPS S3DIS ScanNet
attMPTI 357.82K 152.65 1.47 54.86 41.69
QGPA 2.79M 16.30 38.68 62.76 56.51
DPA 4.85M 15.49 32.35 70.19 62.90

RCHP (CLIP rn50) 38.32M + 3.95M 164.20 35.17 70.97 70.95
RCHP (TinyCLIP-8M) 8.28M + 3.46M 55.41 36.97 70.37 68.96

extracting 2D feature maps further loses visual detail. In
contrast, our method effectively preserves geometric structure
while incorporating auxiliary guidance (i.e., visual cues and
semantic information), leading to superior performance.

Computational Complexity. In Table VIII, we present the
number of parameters and computational complexity of our
proposed method. Compared to prior methods, our approach
(using CLIP rn50) contains more parameters, primarily due
to the CLIP visual encoder, which is more parameter-heavy.
Nevertheless, other modules remain relatively moderate in size
compared to state-of-the-art (SOTA) methods. To optimize
computational efficiency, we use lightweight CLIP, i.e., Tiny-
CLIP [57], to replace standard CLIP rn50. Notably, TinyCLIP
effectively reduces the size and computational cost while
maintaining competitive performance. Experimental results
show that our model (using TinyCLIP-ViT-8M-16-Text-3M)
provides a favorable trade-off between computational cost
and performance, making it ideal for resource-constrained
environments. In conclusion, our model effectively balances
performance with computational complexity, offering superior
segmentation results with reasonable efficiency.

Qualitative Results. We visualize the segmentation results
on S3DIS and ScanNet under ‘2-way 1-shot S0’ setting. We
compare our segmentation results with the GT mask and
predictions from QGPA [10]. As shown in Fig. 4, QGPA
often yields inaccurate segmentation results across various
regions, notably incorrectly distinguishing background classes
as foreground and confusing distinct foreground classes. In
contrast, our method equipped with the HPE module and HRC
loss, gradually corrects these errors. This success demonstrates
the effectiveness of integrating heterogeneous prototypes.

D. Ablation Study

We conduct ablation experiments on the S3DIS dataset to
evaluate the proposed components, including the HPE module
and HRC loss. Additionally, we analyze the impact of different
texts, as well as visual information and view selection strate-

(a) Baseline (QGPA) (b) RCHP (w/o HRC Loss)  (c) RCHP

acc=55.57 acc= 78.15 acc= 92.85

acc=63.50 acc= 74.39 acc=87.08

ceiling chairbeam columnbookcaseboardclutter
query 
feature

support 
feature 

3D 
prototype

refined 
prototype

Fig. 5. Comparison of feature distribution and support prototype distribution.
Take the ‘2-way 1-shot S0’ setting on S3DIS as an example. ‘acc’ denotes
the segmentation accuracy for the selected episode. Best viewed in color.

gies. For the HRC loss, we analyze its weight and compare
it with other knowledge distillation (KD) methods. For the
HPE module, we compare it with other multimodal fusion
variants. Finally, we verify the effectiveness of our model
under different baseline settings.

Effects of Different Components. We adopt QGPA as the
baseline and verify the benefits of the proposed HPE module
and HRC loss, as shown in Table IX.

1) Benefits of HRC loss: Compared with the baseline,
applying LRCD and LRCA respectively can increase the model
performance, with the latter one being more effective on ‘3-
way 1-shot’ setting because the third-order angle relations can
better model more complex relations between more classes.
Joint using LRCD and LRCA further boost segmentation re-
sults, exceeding the baseline by 1.38%∼7.41%, demonstrating
the effectiveness of HRC loss to reduce heterogeneous gaps.

2) Benefits of HPE module: When the HPE module only
integrates text prototypes or 2D prototypes into refined pro-
totypes, our model outperforms the Baseline by a margin
of 1.09%∼7.22% and 0.38%∼9.94% in terms of mIoU, re-
spectively. Here, compared to 2D prototypes, text prototypes
achieve a larger improvement in most settings, as 2D proto-
types are still generated from the projections of incomplete
point clouds, while label text contains more comprehensive
semantic information. The collaborative effect of three types
of prototypes further improves the baseline by a large margin
of 2.09%∼11.44%.

3) Benefits of combining HPE module and HRC loss:
After applying both HPE module and HRC loss to learn re-
fined prototypes, RCHP achieves very significant improvement
compared to the baseline, with a margin of 3.58%∼11.88%,
showing that HPE module and HRC loss mutually benefit each
other to learning relation-consistent heterogeneous prototypes,
thus improving performance.

4) Effects of different modalities during inference: Using
only 2D information with HRC loss results in poor perfor-
mance due to limited semantics and loss of geometric details
in 3D-to-2D projection. Text information with HRC loss
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Fig. 6. Ablation study of different heterogeneous support information, hyper-parameters, distillation loss, and heterogeneous fusion strategies on S3DIS dataset
under 2-way 1-shot setting.

TABLE IX
EFFECTS OF DIFFERENT COMPONENTS ON S3DIS USING MEAN-IOU

METRIC (%). Si DENOTES THE SPLIT i IS USED FOR TESTING.

Methods HPE module HRC loss 2-way 1-shot 3-way 1 shot
3D Text 2D LRCD LRCA S0 S1 mean S0 S1 mean

Baseline ✓ 58.96 63.08 61.02 47.86 59.48 53.67

+ HRC

✓ ✓ 60.18 66.89 63.54 49.44 63.31 56.38
✓ ✓ 59.65 65.14 62.40 48.94 64.32 56.63
✓ ✓ ✓ 60.34 67.24 63.79 52.50 66.89 59.70

✓ ✓ ✓ 54.00 60.61 57.31 43.86 65.74 54.80
✓ ✓ ✓ 62.52 71.89 67.21 54.39 72.02 63.21

+ HPE
✓ ✓ 60.05 70.30 65.18 52.34 64.21 58.28
✓ ✓ 59.96 67.10 63.53 49.15 65.25 57.20
✓ ✓ ✓ 61.23 71.31 66.27 54.24 68.26 61.25

RCHP ✓ ✓ ✓ ✓ ✓ 67.50 74.43 70.97 61.01 68.62 64.82

outperforms individual 2D or 3D modalities by offering rich
semantic knowledge. Combining 3D, 2D, and text prototypes
with HRC loss achieves the best performance by integrating
3D’s geometric precision, 2D’s spatial context, and text’s
semantic richness.

5) Comparing feature and prototype distribution: In order to
more intuitively compare the effects of different components,
we also compare the feature distribution and class prototype
distributions with the t-SNE visualization tool [58], as shown
in Fig. 5. Here, prediction accuracy is also given for clearer
comparison. We observe that the prototypes produced by
QGPA exhibit confusion between different classes, and gaps
persist between 3D prototypes and their refined prototypes. In
contrast, our method not only ensures a continuous improve-
ment in accuracy with the refined prototypes but also reduces
the gap between the 3D prototype and refined prototypes
for each class. This indicates that our refined prototypes are
more discriminative, and HRC loss can effectively reduce the
heterogeneous gap, facilitating a more effective feature space.

Effects of Different Text Information. In RCHP, we also
explore other types of text information, such as word2vec
[59] and diverse text descriptions generated by large language
models (e.g., GPT-3 [60]). As shown in Fig. 6 (a), using
word2vec gains limited improvement compared to CLIP text,
due to its lack of visual context and less robust semantic
representation, which are crucial for enhancing 3D point cloud
segmentation. Using LLM-generated descriptions significantly

improves the baseline but is still less effective than CLIP text,
as LLMs tend to generate longer paragraphs with potentially
class-unrelated details, thus introducing noise into the proto-
types. Consequently, we opt for choosing CLIP texts for their
stability and reliability as a text representation.

Effects of Different 2D Visual Information. In RCHP,
we also investigate the impact of different types of 2D visual
information projected from support 3D point clouds, including
boundary maps, RGB images and depth maps. As shown in
Fig. 6 (b), using boundary maps exhibit limited improvement
over the baseline, due to their sparse and chaotic nature. RGB
images notably improve the baseline but are less effective
than depth maps, as lighting changes, shadows, and reflections
lead to more noise to RGB information. Using depth maps
achieves the best performance among the different 2D visual
representations, as they exhibit smaller heterogeneous gaps to
the 3D point cloud. Hence, we choose depth maps as a more
stable and reliable 2D representation.

Ablation of 2D View Selection. As shown in Table X,
fusing individual views yields limited and relatively similar
improvements, as each view only captures specific visual
details and lacks a holistic perspective. By contrast, jointly
fusing all views achieves the best performance, as it combines
the strengths of each view to provide the most comprehensive
visual information. This fusion allows the model to leverage
a more complete representation of the 3D structure. Thus we
choose to fuse all views rather than relying on specific views.

Effects of λ for HRC Loss. Fig. 6 (c) illustrates the impact
of the weight λ of the HRC loss in Eq. 13. Compared to λ = 0
(i.e., HRC loss is deprecated), a rather small λ (e.g., 0.5)
results in performance degradation. This is because relation
consistency with a rather small weight may introduce slight
noise into heterogeneous prototype fusion to some extent,
interfering with prototype discrimination. As λ increases, the
consistency of IPR starts to enhance heterogeneous prototype
fusion, resulting in significant performance improvement, and
achieving the best performance when λ = 1. This demon-
strates that HRC loss effectively alleviates heterogeneous gaps
between prototypes. However, a larger λ (e.g., 2) does not yield
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TABLE X
EFFECTS OF FUSING DIFFERENT VIEWS OF 2D DEPTH MAPS ON S3DIS USING MEAN-IOU METRIC (%).

Settings 3D 2D
Front Right Behind Left Top Down All

2-way 1-shot 61.02 62.93 63.26 62.10 62.89 63.29 62.62 63.53
3-way 1-shot 53.67 56.45 56.73 57.10 54.85 56.78 56.88 57.20

TABLE XI
EFFECTIVENESS OF OUR METHOD UNDER DIFFERENT BASELINES.

Methods 2-way 1-shot 3-way 1-shot
S0 S1 mean S0 S1 mean

ProtoNet [8] 48.39 49.98 49.19 40.81 45.07 42.94
RCHP 54.08 60.88 57.48 51.89 62.23 57.06

2CBR [13] 55.89 61.99 58.94 46.51 53.91 50.21
RCHP 62.93 67.54 65.24 56.33 66.83 61.58

QGPA [10] 58.96 63.08 61.02 47.86 59.48 53.67
RCHP 71.56 70.33 70.95 66.02 66.25 66.14

higher performance and may even harm model performance.
In summary, an appropriate value of λ = 1 yields the best
results.

Ablation of Different Prototype Distillation Methods. We
compare the proposed HRC loss with other knowledge dis-
tillation methods, such as feature-level prototype distillation
(PD) [14] and relational knowledge distillation (RKD) [49].
As shown in Fig. 6 (d), PD performs worst due to its
inability to capture and transfer complex relational knowledge
between heterogeneous prototypes. Our HRC loss outperforms
the original RKD loss due to enabling finer-grained feature
interaction, highlighting important features, and enhancing
feature discriminability.

Ablation of Heterogeneous Fusion Modes. We also de-
sign other heterogeneous information fusion modes. Mode1:
Project heterogeneous support information into a shared fea-
ture space, and extract class prototypes to match with query
points. Mode2: Extract heterogeneous class prototypes, match
query points with each set of prototypes separately, and
ensemble the matching results. Mode3 and Mode4 replace the
prototype averaging operation in our HPE module with cross
attention and learnable weighted sum, respectively. As shown
in Fig. 6 (e), Mode1 and Mode2 are greatly affected by hetero-
geneous gaps, resulting in much poorer performance. Mode3
and Mode4 yield similar results to our prototype averaging
operation in our HPE module because simple averaging is
already effective for integrating class-wise prototypes across
three modalities. Hence, we opt for average fusion for its
simplicity and clarity.

Effectiveness on Different Baselines. To further verify the
robustness and generalization of our method, in addition to
QGPA [10] as the baseline, we also verify the effectiveness of
the proposed HPE module and HRC loss on more baselines,
including ProtoNet [8] and 2CBR [13]. As depicted in Table
XI, our method demonstrates remarkable improvements on
ProtoNet [8] and 2CBR [13], up to 5.55%∼17.16%, as we
fully exploit the support set to provide powerful guidance
information. Based on QGPA [10] as the baseline, our method
achieves the best performance on all settings.

V. CONCLUSION

In this paper, we propose a Relation Consistency-guided
Heterogeneous Prototype Learning Framework (RCHP) to
address the FS-3DSeg challenge. RCHP effectively utilizes
heterogeneous information from the original support set, gen-
erating and fusing diverse prototypes to enhance segmentation
performance. To bridge the heterogeneous gap, we introduce
a heterogeneous relation consistency loss. Extensive experi-
ments on two indoor 3D segmentation datasets further demon-
strate significant improvements over the baseline, achieving
up to 12.05% and 18.91% higher mIoU on each dataset,
outperforming state-of-the-art methods. Besides, experiments
on SceneNN and NYU Depth V2 datasets further demonstrate
the generalization of the proposed method. Our approach
offers a novel and effective solution for FS-3DSeg. Main
limitation of our works lies in that integrating CLIP into
the framework introduces additional computational overhead,
which could be a limitation for large-scale applications. Future
work will focus on optimizing computational efficiency by
model quantization and pruning, and leveraging large visual-
language models to further enhance performance.
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