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1 Introduction

It was a pleasure to be entrusted with setting the EVA 2023 Data Challenge and we
were really pleased to have received entries from seven very committed teams, which
in alphabetical order by team name are genEVA (Geneva), Lancopula Utopiversity
(Lancaster and Maynooth), SHSmultiscale (Sejong and Seoul), Uniofbathtopia (Bath),
Wee Extremes (Glasgow), Yahabe (Montréal and Kanpur) and Yalla (KAUST). Here,
the names in parentheses are the institutions where the team members are from, with
teams not being formal representatives of these institutions.

In designing the challenge, we decided to create problems that capture the vari-
ety of contexts we have experienced in the analysis of environmental extremes data.
Specifically, we wanted to replicate the role of an applied statistician with the need
to estimate quantiles and probabilities for extreme events in univariate and multi-
variate settings, driven by end-user considerations. We set four challenges, labelled
C1-C4, with the first (last) two focusing on univariate (multivariate) analyses. These
four components were assessed and ranked separately over the teams, before being
combined into a single score and ranking.

The univariate extremes problems involve inference for extreme quantiles, with
teams being asked to obtain point estimates and reliable, useful confidence intervals.
However, with environmental data we are faced with additional complications such as

1



covariates; data missing completely at random; and the need to convert the inference
into design levels which account for different losses from over- and under-design.

In the multivariate extremes problems, we wanted to assess the teams’ performance
in a way that focused entirely on the dependence modelling component. Consequently,
the multivariate problems relate to data where the univariate marginal distributions
are all known. Here, the complexity comes from estimating probabilities of extreme
events in different dimensions and with respect to different marginal quantiles.

This editorial for the data challenge is structured as follows: Section 2 presents
details of the data, covariates and the information provided to the teams about the
true generating processes of the data; Section 3 presents the challenges we set, with
some clarifications and minor modifications that were introduced during the course of
the challenge, as well as details of the assessment methods. In Section 4, we present
our underlying stochastic models and computational details of how we derived the
true values for each challenge. Section 5 summarizes the performances of the seven
teams that entered the competition. Finally, in Section 6, we provide an overview of
the methods described in the papers published in this special issue and discuss their
suitability with respect to the four challenges.

2 Data, Covariates and Known Properties

Our data come from a rather unique and special country, called Utopia, where every-
thing is a bit idealised. We have data from its capital city, Amaurot, and from two of
its islands, Coputopia and Utopula. We are interested in extreme values of the envi-
ronmental variable denoted by Y , with the notation Yi,t identifying the variable Y at
site i on day t. On each individual island, there may be dependence between the Y
variables at different sites on that island, but they are known to be independent of
the variables Y on the other island and at Amaurot.

For Amaurot and Coputopia there are 70 years of daily data, but only 50 years
for Utopula. In Utopia, spatial information is irrelevant and no knowledge of any
environmental process on Earth is applicable. However, like Earth, Utopia suffers from
data recording problems, with 11.7% of the provided observations for Amaurot having
at least one missing value, which it is reasonable to assume are missing completely at
random.

For each day, we have a vector of covariates XXXt = (V1,t, . . . , V8,t), with
(V5, V6, V7, V8) corresponding to (season, WS = windspeed, WD = wind direction,
atmosphere), but with the other covariates (V1, V2, V3, V4) unnamed. Given the covari-
ates, the {Yi,t} are independent over t for each given i. Utopia has experienced a very
stable climate over the observation period, and experts predict that this won’t change
in the next decades, so it is reasonable to assume that observed covariate patterns
in the data are representative over all time periods - WS and WD data exhibited
non-stationarity, but it was communicated to the teams that this property was cre-
ated unintentionally (the data should have been additionally randomised over these
features) and so should be ignored. Only season and atmosphere have a changing struc-
ture (over 1 and 70 years, respectively), in a cyclically repeating pattern. In Utopia,
each year consists of 12 months with 25 days each, and it is equally split into seasons
1 and 2.
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On each of the islands, the marginal distributions are known to be identical across
all sites and over time, with standard Gumbel distributions. On Coputopia there are
three sites, and teams were provided with information on season and atmospheric
conditions. In contrast, on Utopula there are 50 sites, split equally over two regions
U1 and U2, for which the joint distribution of Yi,t across sites is identical over time.

3 The Challenges and their Assessment

In this section, we summarise the four challenges that the teams were asked to com-
plete.

C1: For Amaurot, build a model for the distribution of Y |XXX and estimate the 0.9999-
quantile of the conditional distribution and associated 50% confidence intervals for
100 different provided covariate combinations. Specifically, the quantiles {q(xxxi) : i =
1, . . . , 100} satisfy

Pr(Y < q(xxxi) |XXX = xxxi) = 0.9999,

for covariate combinations {xxxi : i = 1, . . . , 100}.
Here, the assessment of a team’s performance was based on the accuracy of the

actual coverage of their confidence intervals over the 100 produced intervals, i.e., how
close they are to having 50% coverage of the true values. To avoid any teams gaming
the problem, e.g., by producing 50 very narrow intervals and 50 very wide intervals,
we also looked at the proximity of their point estimates to the truth and asked for
their code to verify they were implementing a genuine statistical algorithm for the
confidence interval construction.

C2: Again for Amaurot, estimate the marginal quantile q such that Pr(Y > q) =
(6× 104)−1. This quantile corresponds to a once in 200 years level, if the process was
independent and identically distributed.

As this quantile estimate is to be used for design purposes, the challenge is to
account for the potential losses that could be incurred from over- or under-estimating q.
Over-estimating would mean more has to be spent to protect against Y than necessary.
Under-estimating q would lead to more regular environmental damage to Amaurot
than is expected, thus resulting in large insurance claims. A small error in the estimate
q̂ of q is acceptable but an under-estimation is considered worse than an equal level
of over-estimation. So, quantile inference should minimise the loss function

L (q, q̂) =


0.9 (0.99q − q̂) , if 0.99q > q̂,

0, if |q − q̂| ≤ 0.01q,

0.1 (q̂ − 1.01q) , if 1.01q < q̂.

(1)

Assessment in this case is based simply on the team with the smallest loss function
value L (q, q̂) for their selected q̂. In the case of multiple teams having L (q, q̂) = 0, the
value of |q− q̂| provides a secondary ranking rule, where smaller values are preferable.
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C3: For the three towns on the island of Coputopia, estimate the probabilities p1
and p2 below, corresponding to a combination of extreme and non-extreme events
simultaneously:

p1 = Pr(Y1 > 6, Y2 > 6, Y3 > 6); p2 = Pr(Y1 > 7, Y2 > 7, Y3 < m),

where m = − log(log 2) is the median of Y3, having a standard Gumbel distribution.
The assessment for both C3 and C4 involved a probability-based scoring rule taken

from Smith (1999). Specifically, for the two required estimates (p̂1, p̂2) we used the
metric

P12 =

2∑
i=1

|pi log (pi/p̂i) + (1− pi) log [(1− pi)/(1− p̂i)]| , (2)

with smaller values of P12 being better.

C4: For Utopula, sites i1 = 1, . . . , 25 are in U1 and sites i2 = 1, . . . , 25 are in U2. The
current design standards give greater protection for sites in U1 than in U2. Specifically,
let s1 (s2) denote the marginal level exceeded once in a year (in a month) on average.
Then, the associated marginal exceedance probabilities are ϕ2 = 12 × ϕ1 with ϕ1 =
1/300, and so s1 = − log{− log(1− ϕ1)} and s2 = − log{− log(1− ϕ2)}. Estimate the
joint probability

p1 = Pr(Yij ,t > sj : ij = 1, . . . , 25; j = 1, 2).

Now suppose the design standard is made uniform across the island, with U2 standards
raised to those of U1. Estimate the updated joint probability

p2 = Pr(Yij ,t > s1 : ij = 1, . . . , 25; j = 1, 2).

4 Underlying Truth

4.1 Truth for C1 and C2

The covariates XXXt were generated according to the following joint model:

• The variables V1 and V2 were simulated as V1 = W + ϵ1 and V2 = W + ϵ2,
where the distribution of W is a mixture of the two normal random variables
W (1) ∼ Normal(30, 9) and W (2) ∼ Normal(36, 6.25), with about 40% of observa-
tions being drawn from W (1). The variables W , ϵ1 and ϵ2 are independent, and
ϵ1 ∼ Normal(0, 4) and ϵ2 ∼ Gamma(1.2, 0.3).

• The distribution of the variable V3 varied across the two seasons. For season 1, a

skewed-normal distribution, restricted to the positive real line, with location ξ
(1)
V3

=

4, scale ω
(1)
V3

= 4 and shape α
(1)
V3

= 5, was employed. Values for season 2 were
generated using a generalized extreme value (GEV) distribution, GEV(µ, σ, ξ), with
cumulative distribution function (CDF)

G(z | µ, σ, ξ) = exp

[
−
{
1 + ξ

(
z − µ

σ

)}−1/ξ

+

]
, z ∈ R, (3)
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where {x}+ = max(x, 0). Specifically, we sampled from GEV(4, 4, 0.2) restricted to
the positive real line, that is, the CDF of V3 for season 2 is given as

FV3
(v) =

G(v | µ = 4, σ = 4, ξ = 0.2)−G(0 | µ = 4, σ = 4, ξ = 0.2)

1−G(0 | µ = 4, σ = 4, ξ = 0.2)
, v > 0.

• Values for V4 were drawn from a GEV(0,1,0.1), with any sampled negative values
set to zero. As such, using the notation in expression (3), the CDF of V4 is given as

FV4(v) =

{
0 for v < 0

G(v | µ = 0, σ = 1, ξ = 0.1) for v ≥ 0

• The distribution of the wind direction was based on a two-component mixture of
von-Mises distributions on the unit sphere S1 = {www ∈ R2 : w2

1 + w2
2 = 1}, with the

mixture probability set to 40%. The density of the von-Mises distribution is

h(www;µµµ, κ) = c0(κ) exp
(
κwwwTµµµ

)
forwww ∈ S1, where µµµ ∈ S1 and κ > 0 are termed the mean direction and concentration
parameter, respectively, and c0(κ) is a normalising constant. The parameters were
set to µµµ = (0.3, 0.5) and κ = 2 for the first mixture component, and µµµ = (−0.4,−0.4)
and κ = 4 for the second mixture component. Given a sampled value www = (w1, w2),
the value for WD was defined as arctan(w2/w1).

• Values for wind speed were sampled from a normal distribution restricted to the
positive real line with parameters µWS = 3 + 2 sin(WD) and σWS = 1.

• Finally, we used monthly values of the North Atlantic Oscillation (NAO) index
for 1950-2019 to generate the values of the atmosphere variable, applying linear
detrending to the mean such that the resulting covariate values are zero-centred
(and therefore reasonable to repeat over a 70-year cycle).

The response variable Yt depends both on the covariates XXXt and a latent variable
Zt, where we drop the index t in the following. Specifically, the distribution of Z
conditional on XXX is described by the generalized Pareto distribution (GPD),

Z | (XXX = xxx) ∼ GPD
(
σ(xxx)/10,−π−2

)
, (4)

where σ(xxx) = exp(−1) + 18.7
√
V2 + 9 [1 + log(V3)]

2
+ 5.71WS1.5. The CDF of the

GPD(σ, ξ) is formally given by

H(z | σ, ξ) = 1−
(
1 + ξ

z

σ

)−1/ξ

+
,

where {z}+ = max(z, 0). Since ξ < 0 in (4), Z | (XXX = xxx) has a bounded upper tail.
To generate observations for the random variable Y | (XXX = xxx) considered in the

data challenge, we used rejection sampling which gives that Y | (XXX = xxx) and Z | (XXX =
xxx) have the same tail distribution above a high threshold. We set the thresholds to
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u1 = 112 − 6|WD| and u2 = 110 − 5|WD|0.9 for seasons 1 and 2 respectively. If the
sampled value z for Z | (XXX = xxx) exceeds the associated threshold, the observation is
kept as an observation for Y | (XXX = xxx). Otherwise, we keep z as an observation for
Y | (XXX = xxx) with probability sampled from a Beta(z, u1) distribution for season 1, and
from a Beta(exp{2 + (z − u2)/30}, 1) for season 2. Consequently, the distribution of
Y | (XXX = xxx, Y > 112) corresponds to a GPD, with the scale parameter dependent on
three explanatory variables, while Y | (XXX = xxx) depends on a larger set of explanatory
variables and is not GPD.

For the 100 values of XXX used in the validation set of C1, we sampled 50 data
points from the joint distribution of XXX, and 50 data points from the joint tail. More
specifically, we sampled ten data points each from XXX | [Vj > q0.99(Vj)] (j = 1, . . . , 4)
and ten data points from XXX | [WS > q0.99(WS)], where qp(V ) is the pth marginal
sample quantile of covariate V .

Monte Carlo methods were used to find the true quantiles considered in the chal-
lenge questions. For C1, we sampled 30 × 106 realisations of Z for each validation
point xxxi (i = 1, . . . , 100), which gave between 1.5 × 106 and 10 × 106 values for
Y | (XXX = xxxi). This sample was used to obtain an estimate p̂i for the exceedance
probability Pr(Y > 112 | XXX = xxxi); we considered this threshold because (Y − 112) |
(Y > 112 | XXX = xxxi) is GPD. Since C1 asks for the 99.99% quantile of Y | (XXX = xxxi),
we first consider whether p̂i > 0.0001 or p̂i ≤ 0.0001. For p̂i > 0.0001, the 99.99%
quantile of (Y − 112) | (XXX = xxxi) corresponds to the (p̂i − 0.0001)/p̂i × 100% quan-
tile of a GPD

(
σ(xxxi)/10− 112/π2,−1/π2

)
, with σ(xxxi) as defined in (4), and this was

our estimate for the quantiles in C1. For the small number of the validation points
with p̂i ≤ 0.0001, we used the empirical quantile estimate for Y | (XXX = xxxi), which we
obtained from our sample from the distribution of Y | (XXX = xxxi).

To find the true quantile for C2, we sampled 50 × 106 data points for XXX and
generated a value for Y | (XXX = xxx) for each sampled combination of XXX. The estimate
used for evaluating the predictions was set to the empirical quantile of these 50× 106

sampled values for Y . Our simulation gave the true quantile of 196.6 to 4 significant
figures.

4.2 Truth for C3

In this challenge, the joint distribution of (Y1, Y2, Y3) is obtained via the max-mixture
construction defined in (5) below (see also Simpson et al. (2020), for example). To
introduce some complexity into the joint tail behaviour of the variables, the mix-
ture components are chosen to exhibit both asymptotic dependence and asymptotic
independence, and some of the dependence parameters and mixing probabilities are
functions of the atmosphere covariate, V8.

First, for each time t, we generate observations from three bivariate extreme value
(BEV) copulas with logistic models (Gumbel, 1960) on Fréchet margins. The strength
of dependence in these models is controlled by a constant parameter α ∈ (0, 1], with
values closer to zero resulting in stronger dependence. Specifically, we take

WWW 12,t =
(
W

(1)
12,t,W

(2)
12,t

)
∼ BEV-logistic(0.85),
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WWW 13,t =
(
W

(1)
13,t,W

(3)
13,t

)
∼ BEV-logistic(0.60),

WWW 23,t =
(
W

(2)
23,t,W

(3)
23,t

)
∼ BEV-logistic(0.72).

Next, we generate observations from a trivariate extreme value (TEV) copula with
logistic model and Fréchet margins, this time allowing the dependence parameter αt

to depend on atmosphere. That is, we have

WWW 123a,t =
(
W

(1)
123a,t,W

(2)
123a,t,W

(3)
123a,t

)
∼ TEV-logistic(αt),

with αt = (1− |V8,t|/6). Finally, we generate observations from a trivariate Gaussian
copula with Fréchet margins; the pairwise correlations are set to ρt = V 2

8,t/12 and the
resulting values are denoted

WWW 123b,t =
(
W

(1)
123b,t,W

(2)
123b,t,W

(3)
123b,t

)
.

The specific forms of αt and ρt are chosen such that αt, ρt ∈ (0, 1) for all given values
of the atmosphere covariate, i.e., maxt |V8,t| <

√
12.

We then apply a max-mixture construction to the values generated from the five
copulas listed above. For the first location, at time t, we set

W ∗
1,t =

max
(
W

(1)
12,t,W

(1)
13,t,W

(1)
123a,t

)
/3, if V8,t > 0,

max
(
W

(1)
12,t,W

(1)
13,t,W

(1)
123b,t

)
/3, if V8,t ≤ 0,

(5)

with W ∗
2,t and W

∗
3,t defined analogously. Finally, each W ∗

i,t, i = 1, 2, 3, is transformed
to Gumbel margins, with the resulting values corresponding to Yi,t.

Again, we used Monte Carlo techniques to calculate the true values of p1 and p2.
As part of the data challenge, teams were given 70 × 300 = 21, 000 observations; we
repeated this 20,000 times to obtain our final values for the truth, resulting in a total
of 4.2 × 108 observations. We checked for convergence in our Monte Carlo estimates,
to ensure that this size of simulation gave us sufficient accuracy to score and rank the
teams. The true values we obtained were p1 = 5.38 × 10−5 and p2 = 2.98 × 10−5, to
three significant figures.

4.3 Truth for C4

Let YYY = (Y1, . . . , Y50), with standard Gumbel distributed univariate margins. Further-
more, at time t the variable YYY is denoted by YYY t, and the set of vector random variables
{YYY t} are independent and identically distributed over time t. We took YYY to follow a
clustered hierarchical model, with five clusters, with variables in different clusters (in
the same cluster) being conditionally independent (conditionally dependent) of each
other, given a 5-dimensional latent variable ZZZ. Only the ith component of ZZZt has any
effect on the behaviour of cluster i at time t. The vector random variables {ZZZt} are
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independent and identically distributed over time t with a standard marginal multi-
variate Gaussian distribution, with correlation matrix Σ with the off-diagonal entries
being Σi,j = 0.4 (i ̸= j). As a consequence of this set up, the joint survivor function
F̄YYY of YYY is given by

F̄YYY (yyy) =

∫
zzz∈R5

{
5∏

i=1

F̄i(yyyi; zi)

}
ϕZZZ(zzz; Σ)dzzz, (6)

where F̄i is the joint survivor function for cluster i, yyyi corresponds to the ith cluster
components of yyy, ϕZZZ is the multivariate normal joint density of ZZZ and zzz = (z1, . . . , z5).
We additionally assume that each joint survivor function F̄i is exchangeable, i.e., it is
equal across any permutation of its arguments. The clustered variables are

CCC1,t = (Y1,t, . . . , Y8,t), CCC2,t = (Y9,t, . . . , Y20,t), CCC3,t = (Y21,t, . . . , Y33,t), (7)

CCC4,t = (Y34,t, . . . Y41,t), CCC5,t = (Y42,t, . . . Y50,t).

Here, CCC1,t and CCC4,t each have Gumbel distributed margins and a multivariate extreme
value distribution copula with symmetric logistic form (Tawn, 1990), where the param-
eters are 0 < αt < 1 and 0 < γt < 1, respectively. For example, the form of the copula
distribution function C1,t associated with CCC1,t is

C1,t(u1,t, . . . , u8,t;αt) = exp

[
−

{
8∑

i=1

(− log ui,t)
1/αt

}αt
]
,

with ui,t ∈ [0, 1] for i = 1, . . . , 8, for each Ui,t ∼ Uniform(0, 1) random variable asso-
ciated with the corresponding Yi,t in (7). Similarly, CCC2,t and CCC5,t each have Gumbel
margins and an inverted multivariate extreme value distribution copula with symmet-
ric logistic form (Ledford and Tawn, 1997), where the parameters are 0 < βt < 1
and 0 < δt < 1, respectively. For instance, for CCC2,t, the corresponding copula survivor
function C̄2,t has the form

C̄2,t(u9,t, . . . , u20,t;βt) = exp

−

[
20∑
i=9

{− log(1− ui,t)}1/βt

]βt
 ,

with ui,t ∈ [0, 1] for i = 9, . . . , 20, where each Ui,t ∼ Uniform(0, 1) is associated
with the corresponding Yi,t in (7). Cluster variables CCC3,t have Gumbel margins and a
Gaussian copula with dependence parameter 0 < ρct < 1, where ρct = 1 − ρt, and ρt
is the pairwise correlation coefficient parameter (in Gaussian margins) for all pairs of
variables in CCC3,t.

Let θθθt = (θ1,t, . . . , θ5,t) = (αt, βt, ρ
c
t , γt, δt). We imposed that each θi,t would vary

over t to avoid any team being able to recognise the within-cluster dependence struc-
ture, particularly as the core copulas we used are relatively standard, and feature
widely as examples in our past research.
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The parameter of each of the five copulas lies in the range (0, 1) for all t, with
dependence decreasing as each parameter increases, and with zero (one) correspond-
ing to the vector variable having perfect dependence (independence) respectively; we
imposed constraints on our parameter values to clearly avoid these boundary cases.
In particular, we model the copula parameters at time t as functions of the latent
variable ZZZt via the relationship

θi,t(zi,t) = 0.4 + 0.5Φ(zi,t) for i = 1, 2, 4, 5, and θ3,t(z3,t) = 0.1 + 0.6Φ(z3,t)

where Φ is the standard univariate Gaussian distribution function and zi,t is a
realisation of the ith component of ZZZt.

Between them, the five clusters exhibit both asymptotic dependence (AD) and
asymptotic independence (AI), where we summarise the levels of each of these forms
of extremal dependence through the multivariate versions of the measures χ and χ̄
introduced by Coles et al. (1999). We give the multivariate formulas for these quantities
in Appendix A. Clusters 1 and 4 exhibit AD across all variables for all t with the
coefficient of AD of the multivariate variable CCC1 being

χCCC1,t = 8− 28× 2αt + 56× 3αt − 70× 4αt + 56× 5αt − 28× 6αt + 8× 7αt − 8αt

and χCCC4,t similarly with γt replacing αt. In contrast, clusters 2, 3 and 5 all exhibit AI
jointly across all variables, and for all pairs of variables, with bivariate χ̄ values being
χ̄CCC2,2,t = 21−βt − 1, χ̄CCC3,2,t = ρt, and χ̄CCC5,2,t = 21−δt − 1. The associated multivariate
values of χ̄ are

χ̄CCC2,t = [121−βt − 1]/11,

χ̄CCC3,t = ρt (see Appendix B), and χ̄CCC5,t = [91−δt − 1]/8.
The final aspect of our specification is the allocation of the 50 sites to two sets, I1

and I2, corresponding to the regions U1 and U2, respectively. We did this allocation
at random, subject to 25 sites being in each region and all clusters having at least
one member in each region. When listed in the order as they appear in the simulated
random vector YYY , the sets linking the components YYY to the regions U1 and U2 are

I1 = {5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 31, 32, 33, 36, 37, 38, 39, 41, 44, 45, 46, 47, 48, 49, 50}
I2 = {1, 2, 3, 4, 6, 10, 12, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 40, 42, 43}.

For the data challenge, the indices in I1 and I2 were not in ascending order, but instead
a random permutation was applied, giving

I1 = {46, 44, 37, 8, 50, 11, 47, 32, 45, 41, 17, 9, 19, 7, 39, 13, 49, 38, 5, 48, 33, 36, 20, 16, 31}
I2 = {22, 14, 2, 34, 3, 42, 27, 26, 21, 10, 12, 15, 6, 18, 23, 29, 30, 4, 1, 35, 43, 40, 28, 24, 25},

which should be read as that the samples for Y46 were given as the data points for the
first location of region U1 to the teams.
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For computational evaluation of F̄YYY (yyy), we used a Monte Carlo integration scheme
for the five-dimensional integral in expression (6), i.e.,

F̄YYY (yyy) ≈
∑m

j=1

[∏5
i=1 F̄i

{
yyyi; θi(z

∗
i,j)

}]
/m,

where we used the exact values for the cluster survivor functions and z∗i,j is the ith
component of a simulated value of the random variable ZZZj . We took m = 250, 000 to
get the required level of accuracy in the estimate. To evaluate the joint cluster survivor
functions we exploited the R functions pmvevd in the package evd (Stephenson, 2002)
and pmvnorm in the package mvtnorm (Genz et al., 2021), as closed form expressions
are not simple when ϕ1 ̸= ϕ2.

To give some insight into the formulations, here we present the expressions for F̄i

when yyy = y111, such that Pr(Y1 > y) = ϕ, i.e., as required for the evaluation of p2. We
now drop the t subscript from all notation, given that the data are independent and
identically distributed over time. Specifically, with ψ = 1− ϕ, and as |CCC1| = 8,

F̄1(y111;α) = 1− 8ψ + 28ψ2α − 56ψ3α + 70ψ4α − 56ψ5α + 28ψ6α − 8ψ7α + ψ8α ,

with the result derived using the inclusion-exclusion formula from the simple expres-
sion for the joint distribution function. The expression is similar for cluster 4, as

|CCC4| = 8. For cluster 2, |CCC2| = 12, resulting in F̄2(y111;β) = ϕ12
β

and similarly for
cluster 5 with |CCC5| = 9. Finally, for cluster 3, with |CCC3| = 13, the simplest evaluation
is via the property F̄3(y111; ρ

c) = Φ̄13(yN111; | Σρ), where Φ̄13 is a 13-dimensional joint
survivor function of the standardised multivariate normal variable, yN = Φ−1(1− ϕ),
and Σρ is a correlation matrix with all off-diagonal entries being ρ = 1− ρc.

The true values we obtained through the approach described above were p1 =
8.4× 10−23 and p2 = 5.4× 10−25, to two significant figures.

5 Performances of Teams

The rankings for each sub-challenge C1-C4, the cumulative points achieved and overall
ranking are given for the teams by order of performance in Table 1. Congratulations
to all teams, with every team achieving a top three finish in at least one of the four
sub-challenges. Given this, all seven teams were invited to submit their methodology,
results and subsequent reflections for review in the Extremes journal. We invited the
top four teams in Table 1 to present two of the sub-challenges each at the EVA2023
conference in Milan. Specifically, Yahabe on C1 and C2, genEVA presented on C1 and
C2, SHSmultiscale on C1 and C4, and Yalla on C3 and C4. Particular congratulations
and recognition goes to Yalla from KAUST, who performed with excellence across all
four sub-challenges. They were awarded a certificate at the conference dinner.

We should explain a little more about how the overall ranks were achieved. Our
methods were set out in the initial announcement of the data challenge. Specifically,
we identified that in the event of an overall tie in points between teams, the team
with the better ranking in C4 would be overall ranked higher. Given the close nature
of the competition between all of the teams after Yalla, it was not surprising that this
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Place Team C1 C2 C3 C4 Points
1 Yalla 3 2 2 1 40
2 SHSmultiscale 1 6 7 2 31
3 genEVA 5 1 4 5 31
4 Yahabe 2 3 6 4 30
5 Uniofbathtopia 7 4 1 6 28
6 Lancopula Utopiversity 6 5 5 3 25
7 Wee Extremes 4 7 3 7 23

Table 1 Final rankings of the competing teams, showing the ranking
for each of the four sub-challenges and the overall points total.

tie-break rule was required to separate teams placed 2nd and 3rd. Other split decision
rules were set out for sub-challenge ties.

The conversion of sub-challenge rankings to overall points also needs clarification.
For each sub-challenge, we converted ranks into a points score according to the method
used by the Eurovision Song Contest, i.e., 1st is 12 points, 2nd is 10, 3rd is 8, and
then points decaying linearly (in steps of 1) with rank. We summed the points from
the four sub-challenges to give the overall points for each team.

Of course, ranking can hide large and small differences between teams on individual
challenges. It also does not reveal the improvement of skill levels over the period of
the data challenge. In particular, at a mid-point we ranked the teams that entered
their current best estimates for each sub-challenge and reported back to them only
their ranking on each of the four sub-challenges. So, next we look at the estimates
provided by the teams at the mid-point and end of the challenge to better understand
the outcomes.
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Fig. 1 Results for C1: for each team separately the estimated conditional quantile values {q̂(xxxi) :
i = 1, . . . , 100} against the corresponding true values {q(xxxi) : i = 1, . . . , 100}, with the line of equality
shown. Vertical bars show the associated 50% confidence intervals for each of the estimates.
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Fig. 2 Results for C2: showing estimated quantiles q̂ both mid-point and final and the true q (solid
line) across teams. Teams are ordered alphabetically along the x-axis.

For sub-challenge C1, the 100 intervals provided by the teams at the final stage of
the challenge covered the true quantile values the following number of times: genEVA
(30), Lancopula Utopiversity (6), SHSMultiscale (41), Wee Extremes (64), Yahabe
(36), Yalla (36) and Uniofbathtopia (3). Other than Wee Extremes, all teams pro-
duced under-estimated intended coverage, though with the exception of two teams the
coverages are reasonable approximations to the nominal level. To give greater insight
into these performances, in Figure 1 we present a comparison between estimated con-
ditional quantiles q̂(xxxi) and the associated true quantiles q(xxxi) for i = 1, . . . , 100; this
plot also shows the associated 50% confidence intervals for each of the 100 conditional
quantile estimates. This figure immediately explains the coverage problems for the two
lowest-ranked teams, given the bias in their quantile estimates, with the other teams
tending to perform well across the majority of estimates. The team best centred on
the truth are genEVA, but they have very narrow confidence intervals, which is pre-
sumably why they slightly under-estimate coverage. Yalla mostly have estimates well
centred on the truth, with exceptions for a few of the larger true values (indicating a
key covariate may be missing in their model), but with wider confidence intervals the
coverage is good. SHSmultiscale and Yahabe have their weakest performance when
estimating the highest quantiles, with Wee Extremes performing less well for lower
(than higher) quantiles and having large confidence intervals, leading to over-coverage.

Figure 2 shows the teams’ estimates of the marginal (1 − (6 × 104)−1)th quantile
for Y at Amaurot, both at the mid-point review and at the final submission. Recall
that scoring is based on the loss function (1) that penalises errors in q̂ below the
true q more than an equal size error in q̂ above q. Although team Yahabe’s mid-point
estimate was below q, their final submission gave an estimate above q, whilst all other
teams’ estimates were above q at both assessment times; hence, the final ranking was
based on how close each team’s estimate was to the true q. The top four teams were
all very close on this sub-challenge. Given the analysis in C1, at first it is not too
surprising that genEVA and Yalla did very well here as well. However, that outcome
did not actually necessarily follow from the C1 analysis as it appears that most teams
tackled C2 as a purely univariate series in Y rather than by marginalising out the
covariates, as in Eastoe and Tawn (2009) or Rohrbeck et al. (2018), say.
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We now turn our attention to the multivariate challenges. Both Figures 3 and
4 have an identical structure, showing estimates p̂1 and p̂2 and scoring metric P12,
for C3 and C4, respectively. For C3, the teams typically under-estimated the two
probabilities. For C4, the true probabilities are very small, probably smaller than any
probability anyone has been set to estimate using extreme value methods! Despite the
true values being so small in C4, the final performance across teams is very good, with
the collective set of log-probability estimates, i.e., log(p̂i), centred on the true values.
For each of C3 and C4, no team’s performance deteriorated between the assessment
times, but two teams only submitted their estimates at the final assessment round.
For C3 and C4, the ranking was achieved based on the metric (2), with the smallest
values for P12 being best. Here, we see that for C3 the top two teams were exceptional,
whereas the five top teams were very close for C4.

6 Overview of the different approaches taken

6.1 Challenge C1

This challenge required point estimates for the conditional quantiles that exhibited low
bias, in addition to confidence intervals that sufficiently represented the uncertainty
in these point estimates and provided appropriate coverage. As seen from Figure 1,
different teams performed well on the separate elements of this task, but to score well
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overall a good performance was required from both perspectives. The top team, SHS-
multiscale, performed very well across almost the entire range of the true conditional
quantile values.

For obtaining point estimates of the conditional quantiles, all the teams started
from a similar perspective by taking a GPD model for threshold exceedances and a
threshold exceedance rate model, both of which could depend on covariates. Given
that the starting point for all teams was so similar, it is very interesting to see such
different performances being achieved. This is very revealing in terms of the level of
subjectivity with respect to implementer choice when applying what are core tools in
extreme value analysis.

The majority of teams used generalised additive models (GAMs) to allow smooth,
but not fully parametric, variation in how the parameters of the tail models changed
with covariates. The threshold choices varied from taking it as a constant to allowing it
to change smoothly, dependent on covariates. Exceptions to this were the approach of
genEVA (5th in this task), who used random forests for threshold selection and neural
network formulations for both the scale and shape parameters, and the approach of
Uniofbathtopia (7th in the task) who pooled response variation over covariates which
were judged to have come from the same cluster - as Figure 1 shows, the latter approach
placed too much restriction on the possible variation in quantile estimates over the
different covariates.

There were important differences in the implementation of model fitting and check-
ing. In particular, the top two teams in C1 (in terms of having the lowest bias in
the point estimates) were the only teams using scoring rules; SHSmultiscale used
the method of Gandy et al. (2022) and Yahabe used an interval scoring method of
Gneiting and Raftery (2007). Wee Extremes (4th on C1), with low bias in estimates,
addressed the complexity of modelling in the GAM-GPD framework by performing
model averaging.

The problem we set had the added challenge of 11.7% of covariate values being
missing at random. The majority of teams simply discarded the entire data vector if
any element was missing, which was a reasonable approach here given the relatively
small proportion of the missingness and the large sample size of the data. However,
Yahabe, Yalla and genEVA all used some form of imputation, and the variety of
approaches they considered is interesting to contrast.

A key part of this challenge was to produce confidence intervals for the esti-
mated conditional quantiles. Bootstrapping methods were at the core of the methods
used: SHSmultiscale, Yalla, and Wee Extremes used nonparametric approaches; while
genEVA and Lancopula Utopiversity used semi-parametric approaches. In contrast,
Yahabe used posterior predictive intervals. It appears that making more assumptions
in the bootstrapping, via taking a semi-parametric rather than full non-parametric
approach, has led to uniformly narrower intervals. These narrower intervals appear to
be too short, as this has led to under-estimation of the intended coverage probabili-
ties. This indicates that when using a form of semi-parametric confidence interval, one
really needs to be sure that the truth is very close to the fitted model. We chose a par-
ticularly complex truth, so it was unlikely that any team’s model would be sufficiently
close to be able to rely on semi-parametric bootstrapping.
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6.2 Challenge C2

This challenge required teams to optimise the choice of q̂ such that it minimised the
expected loss, i.e., to find q̂ such that

q̂ = argminy∈RL(q, y), (8)

where L is defined by expression (1) and q is given by Pr(Y > q) = (6× 104)−1, but
q is unknown as the distribution of Y is unknown. So the core effort in this problem
is to estimate the marginal distribution of Y , far into its upper tail, or equivalently
to obtain an estimate of the required value of q, before performing optimisation (8).
We were pleased to see that almost all teams got to grips well with the non-standard
extreme value problem of working with an asymmetric loss function, penalising under-
estimation for their quantile estimation. There were also different ways that the loss
function was incorporated into teams’ solutions, e.g., SHSmultiscale embedded this
into a measure of fit within their use of methods from Stupfler and Usseglio-Carleve
(2021).

As this challenge was explicitly about the marginal distribution of Y , and we did
not directly state that the use of the conditional model was required, it is maybe not
too surprising that all but team Yahabe (3rd for this challenge) took the approach
to model the distribution of Y without reference to the effects of covariates. In fact,
Yahabe also tried a purely marginal approach but found it to perform less well than
using their C1 models as a basis for their proposed answer. Teams other than Yahabe
analysed the observed marginal sample of Y data, fitting models motivated by univari-
ate extreme value theory. The two top teams, genEVA and Yalla, were very successful
with their approaches, which combined classical extreme value methods with modern
statistical/machine learning techniques. For example, Yalla used used their conditional
model from C1 to generate data for their training set for a neural Bayes estimator.

If we were given this challenge, we expect that our approach, like Yahabe, would
instead have been to use the information from the covariates, particularly given the
substantial modelling effort that the teams had already invested in challenge C1.
Specifically, we would have estimated the marginal for Y by exploiting the formulation

Pr(Y > y) =

∫
xxx∈X

Pr(Y > y |XXX = xxx)dFXXX(xxx),

where X and FXXX are the domain and the joint distribution respectively, of the covari-
ates XXX. As FXXX is unknown, we had expected the teams to use the empirical joint
distribution of the sample of N = 21, 000 realisations from XXX in the observed data.
The empirical estimator should be reliable, as the C1 set up pointed to the periodic
behaviour in the covariates over the span of the observations. Using this empirical
estimator leads to the estimated marginal survivor function of Y being

Pr(Y > y) =
1

N

N∑
i=1

Pr(Y > y |XXX = xxxi), (9)
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where {xxxi : i = 1, . . . , N} is the sample of covariate realisations. Then, using the
estimator of Pr(Y > y |XXX = xxx) from C1 in expression (9), the value of q can be used
in expression (8) to estimate q̂.

We view that there is a drawback of using a univariate approach in this problem, as
you lose all information about the covariates, despite knowing a lot about their distri-
bution from the large observed sample and from the contextual information provided
in the challenge brief. Ignoring the covariates leaves the analysis at the mercy of the
specifics of the extremes in the observed random sample of Y , which we feel can be
avoided through our suggested conditional approach. Clearly, the univariate approach
requires much less modelling effort than the conditional approach, and if the fit of the
univariate model seems sufficient in the tail, that added simplicity is highly appealing.

6.3 Challenge C3

It was particularly interesting to see that this challenge was addressed by a wide range
of different methods across the teams. Despite the variation in strategies, it is notable
from Figure 3 that almost all teams under-estimated p1 and p2 for this challenge.

The most successful team in this challenge was Uniofbathtopia. They adopted a
modelling approach based on multivariate max-linear models (Fougères et al., 2013),
sparse projections (Meyer and Wintenberger, 2024) and the estimation procedure for
joint tail probabilities by Kiriliouk and Zhou (2022). Such an approach works ideally
for this problem, as the true generating process for the data covered a mixture of
AD (over the triple) and at least one component of the triple being independent of
the other components which were AD (pairwise). In particular, the max-linear model
handled the mixture structure very well. Furthermore, the sparse projections ensure
that the AI terms are likely to be correctly identified as placing mass on the associated
boundaries of the spectral measure, i.e., the edge faces of the triangular simplex.

Yalla, Yahabe and SHSmultiscale (2nd, 6th and 7th on this challenge, respectively)
all used the conditional multivariate extreme value models stemming from Heffernan
and Tawn (2004), which allows the dependence in the AI components of the multi-
variate variable to be modelled, not simply to be treated as independent and AD as
by Uniofbathtopia. So Yalla’s approach is very successful as it performs well with-
out making such strict (but correct here) assumptions as made by Uniofbathtopia.
However, Yahabe’s and SHSmultiscale’s less strong placing suggests that the way the
method was implemented may be important. It was interesting to see that Yahabe
had implemented a wide range of models but their benchmark testing at less extreme
levels led to their choice of a conditional multivariate extreme value model as the basis
for their submitted challenge entry.

The teams in 3rd to 5th places all performed rather similarly in their overall score,
despite their very different approaches: Wee Extremes taking an off-the-shelf vine cop-
ula approach (Dissmann et al., 2013), in no way tuned for extreme value problems;
genEVA either breaking down the problems into univariate formulations to avoid hav-
ing to fully model dependence (for p2), or using a Gaussian copula model (for p1); and
Lancopula Utopiversity extending the joint survivor function asymptotic approach of
Murphy-Barltrop and Wadsworth (2024), which allows for both AD and AI. Yahabe
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were extensive in their analysis, applying a wide range of methods including devel-
oping an extension of the conditional approach of Heffernan and Tawn (2004), which
can also capture both AD and AI, to allow for a fully parametric joint model for the
residuals in this structure.

A number of teams explored using the suggested covariates in their analysis. Some
teams found no clear cut effect of the covariates, so they opted for a simpler approach
of assuming all vector variables to be independent and identically distributed. This
finding indicates that these covariates, though present, were not very informative for
this challenge. This interpretation is further supported by the fact that the teams who
excluded covariates from their models performed well. Although Lancopula Utopiver-
sity, SHSmultiscale and Yalla all include the suggested covariates in the parameters of
their models. There were also a range of very helpful exploratory analyses. For exam-
ple, we particularly liked SHSmultiscale’s assessment of the probability values relative
to cases of all components in the triple exhibiting perfect dependence and indepen-
dence, and the use by genEVA and Lancopula Utopiversity of pairwise estimates of the
measures of AD and AI, χ and χ̄ respectively (Coles et al., 1999), to assess whether
the given covariate influenced the extreme values of the variables of interest.

6.4 Challenge C4

With the exception of Yalla who did consistently very well on both C3 and C4, it
is worth noting that the teams who did particularly well (less well) on C3 tended to
do worse (better) on C4. There does not appear to be any particular reason for this
outcome, but perhaps the more simplified methods that worked well in the straight-
forward context of C3, were exposed in their application to the higher dimensional
challenge of C4, which required explicit use of methods tailored to describing the sub-
asymptotic dependence between AI variables. We found the teams’ performances to be
highly impressive, as the complex dependence structure we used to generate the data
does not arise in any previously published multivariate extreme value problems. In
particular, we had clusters of sites which had different forms of extremal dependence
(AD or AI) and different levels of dependence within each of these clusters.

It was pleasing that almost all teams correctly identified the clustering structure
that we used in the simulated data generation. To help in this identification of clusters,
the teams used rather similar pairwise estimates of rank-based correlation measures
and the χ and χ̄ measures of AD and AI respectively (Coles et al., 1999) (or variants
of these such as the extremal variogram (Davis and Mikosch, 2009), the F-madogram
(Guillou et al., 2014), and extremal dependence measure of (Larsson and Resnick,
2012)) and methods from factor analysis. From these exploratory analyses, the teams
seemed to pick out the cluster structure well. Although the cluster structure was
correctly identified, Yahabe were unique in investigating evidence for, and correctly
finding, that the dependence within each of these clusters was exchangeable, for which
they should be highly commended.

After identifying the clusters, the teams assumed independence between variables
in different clusters which, as seen from Section 4.3, was incorrect. However, the depen-
dence between variables from different clusters is very weak, coming only through our
hierarchical model, so the parameters of the copulas for different clusters are dependent
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but the observations are conditionally independent given these parameters. Conse-
quently, we do not believe the team’s incorrect assumption of independence between
clusters was very influential in their performance.

As with C3, again the teams used a range of methods. As Figure 4 shows, five of
the teams performed very well, relative to the other two teams. So our discussion will
focus on the top group, covering them in ranking order from the top. Here we focus
on their within-cluster dependence modelling. Yalla used a non-parametric estimator
proposed by Krupskii and Joe (2019) for estimation of joint exceedance probabili-
ties; SHSmultiscale and Lancopula Utopiversity applied the conditional multivariate
extremes model of Heffernan and Tawn (2004); Yahabe investigated whether clusters
could be classified as AD or AI, and for the former fitted parametric models and for
the latter they used the semi-parametric methods of Heffernan and Tawn (2004); and
genEVA used empirical estimates for clusters they identified as AD, and exploited
factorisations into univariate probabilities for the AI clusters which could each be
modelled using a GPD.

This challenge was particularly difficult as the true probabilities were so very small,
given the very weak dependence between clusters, and the fact that there was a wide
variety of different AD or AI dependence forms within each cluster. The issue of dealing
with a 50-dimensional problem, and clusters up to 12-dimensions, was probably outside
of the experience range of all extreme value analysts, so we would really like to praise
all the teams for their efforts on this challenge.
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Appendix A Multivariate extremes measures of
AD and AI

Let D = {1, . . . , d} be the indices of d marginally identically distributed random
variables (Y1, . . . , Yd), with upper marginal endpoint yF . Here, we define the natural
extensions of the bivariate measures χ of AD and χ̄ of AI given by Coles et al. (1999)
to give equivalent versions of these two tail indices for multivariate variables, i.e.,
(Y1, . . . , Yd) with d ≥ 2, with the expressions being identical to those in Coles et al.
(1999) when d = 2. Specifically, the coefficient of AD of a multivariate variable is given
by

χD = lim
y→yF

Pr(Y2 > y, . . . , Yd > y | Y1 > y),

and the coefficient of AI of a multivariate variable is χ̄D = (dηD − 1)/(d − 1), where
ηD is defined implicitly through the expression

Pr(Y1 > y, . . . , Yd > y) = LD {1/Pr(Y1 > y)} {Pr(Y1 > y)}1/ηD , (A1)
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as y → yF , with LD a slowly varying function at infinity. The ηD term in the power
decay of the joint probability that all components of the vector variable are large has
the property 0 < ηD ≤ 1, so it follows that −1/(d − 1) < χ̄D ≤ 1. Both χD and ηD
have been considered previously by Eastoe and Tawn (2012), with larger values of χD

(and χ̄D) indicating stronger levels of AD (and AI) respectively.
If (Y1, . . . , Yd) are AD (AI), then χD > 0 (χD = 0) respectively, with the value

of χD measuring the degree of AD. However, χD = 0 does not imply that the lower
dimensional joint distributions of the variables indexed by D are not AD, that issue
would need to be separately considered by the evaluation of χB , for the appropriate
B ⊂ D. If χ̄D = 1 and LD(y) ̸→ 0 as y → ∞ then (Y1, . . . , Yd) are AD otherwise they
are AI with the degree of AI given by χ̄D. When all variables are mutually indepen-
dent, χ̄D = 0, and when they are all perfectly dependent, χD = 1. Positive extremal
dependence corresponds to max{χD, χ̄D} > 0, with negative extremal dependence
giving χ̄D < 0.

Appendix B Value of χ̄D for a Gaussian copula
with equal pairwise correlations

For one of the clusters in challenge C4, we are interested in a d-dimensional Gaussian
copula with covariance matrix Σ having elements σi,i = 1, i = 1, . . . , d, and all σi,j =
ρ ∈ [0, 1), i ̸= j. From results in Nolde (2014) and Nolde and Wadsworth (2022), it can
be deduced that in this case, ηD, defined in (A1), is equal to |Σ−1|−1, where |·| is the
sum of all the elements of the matrix. We now show that this corresponds to χ̄D = ρ.

First, note that
Σ = (1− ρ)Id + ρ111111T ,

where Id is the d × d identity matrix and 111 is a column vector of length d where all
elements are one. Then, applying the Sherman-Morrison formula (see, e.g., Bartlett
(1951)) gives the inverse of the correlation matrix as

Σ−1 = (1− ρ)−1Id −
{

ρ

(1− ρ)2 + d(1− ρ)ρ

}
111111T ,

from which we have

|Σ−1| = d(1− ρ)−1 − d2
{

ρ

(1− ρ)2 + d(1− ρ)ρ

}
=

d(1− ρ) + d2ρ

(1− ρ)2 + d(1− ρ)ρ
− d2ρ

(1− ρ)2 + d(1− ρ)ρ

=
d

1 + (d− 1)ρ
.

This yields ηD = {1 + (d− 1)ρ} /d, and substituting this into the equation for χ̄D in
Appendix A, we have χ̄D = (dηD − 1)/(d− 1) = ρ.
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