
Decoupling Interday and Intraday Volatility Dynamics

with Price Durations∗

Yifan Li† Ingmar Nolte‡ Sandra Nolte§ Shifan Yu¶

This Version: May 5, 2025

Abstract

This paper introduces a novel framework for volatility estimation based on price durations with

an adaptive price change threshold. This innovation allows us to disentangle daily and intraday

volatility dynamics from price durations, which greatly simplifies the parametric modelling

of price durations and hence leads to more accurate volatility estimators. Simulation results

demonstrate superior finite-sample performance of our duration-based estimators for both spot

and integrated volatility compared to some established methods. An empirical application based

on intraday data for the SPDR S&P 500 ETF highlights the improved forecasting accuracy

of our integrated volatility estimator within a standard daily volatility forecasting framework.

Furthermore, an intraday analysis of spot volatility estimation shows that our method can capture

the immediate and substantial impact of FOMC news announcements on market volatility.
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1 Introduction

Volatility is an important topic in financial econometrics and a crucial input for any asset pricing,

portfolio allocation and risk management framework (Taylor, 2005). It is a latent process that

describes the return variability over a local horizon which needs to be estimated from price

observations. The increased availability of high-frequency financial data has motivated a shift of

volatility estimation techniques from monthly or daily frequencies, such as the GARCH models

(Engle, 1982; Bollerslev, 1986) and stochastic volatility models (Taylor, 1982, 1986, 1994), to various

high-frequency volatility measures (Aı̈t-Sahalia and Jacod, 2014). As the most representative

and widely applied high-frequency volatility estimator, the realized volatility (RV) introduced by

Andersen and Bollerslev (1998) is constructed by summing up all squared intraday log-returns, and

is well-known to be a consistent and efficient estimator of the integrated variance (IV) of a univariate

Itô semimartingale over fixed time intervals. The return-based RV estimator has well-established

statistical properties and can be modified to accommodate more accurate volatility measures that

are robust to various market frictions, e.g., Barndorff-Nielsen and Shephard (2004), Jacod et al.

(2009), and Mancini (2009).

The seminal work of Engle and Russell (1998) provides a compelling alternative approach

to return-based volatility estimation methods. Unlike the RV-type estimators that measure the

magnitude of price changes over a given time interval, this alternative method measures the time it

takes for the price to change by a certain size, i.e., a selected price change threshold. Motivated

by Engle and Russell (1998), the duration-based volatility estimation has been further studied

in Gerhard and Hautsch (2002), Andersen et al. (2008), Tse and Yang (2012), Fukasawa and

Rosenbaum (2012), Vetter and Zwingmann (2017), Li et al. (2019, 2021), Hong et al. (2023), and

Pelletier and Wei (2024), among others. Specifically, the parametric structure of the duration-based

volatility estimators facilitates more flexible intraday inference for local volatility. As summarized by

Tse and Yang (2012), the parametric duration-based estimators can benefit from the data beyond

the estimation window to enhance parameter estimates, and potentially achieve more accurate

volatility estimates relative to the conventional nonparametric return-based ones. Furthermore, the

parametric structure facilitates the inclusion of other covariates such as seasonality and market

microstructure covariates, which can not only improve the quality of volatility estimation, but also

provide a framework to further explore the relation between volatility and other covariates at a

high-frequency level.

The existence of market frictions requires the utilization of “not-too-finely” sampled data, which

further restricts the data availability for both return- and duration-based methods in practice

(Äıt-Sahalia et al., 2005; Liu et al., 2015). For example, both Andersen et al. (2008) and Hong et al.

(2023) recommend a moderate to large threshold to ensure a small number of durations relative to

the available price observations on each day. Although the parametric structure offers the flexibility

to estimate the duration models, e.g., the autoregressive conditional duration (ACD) model of Engle

and Russell (1998), with the data beyond a specific day, the incorporation of intraday durations
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across multiple days introduces complexities. Specifically, the durations obtained with the same

threshold from different days will encompass different daily volatility dynamics, which leads to

challenges in both model estimation and the analysis of volatility patterns. Although there has

been extensive investigations on either daily or intraday volatility dynamics in the literature, a joint

analysis of both is nearly infeasible due to their fundamentally different characteristics.

In this paper, we propose a new methodology to (i) disentangle the daily and intraday volatility

dynamics inherent in the durations collected across multiple days, and (ii) parametrically estimate

both spot and integrated volatility with price durations. Distinct from the existing literature which

adopts a fixed threshold (see, e.g., Tse and Yang, 2012; Hong et al., 2023), we employ a daily

predicted threshold that adapts to changes in daily IV. As a result, interday volatility dynamics is

subsumed into the daily adaptive thresholds, which homogenizes the price durations from different

days by attenuating its long-run persistence, allowing more convenient parametric duration modelling

that focuses on intraday volatility dynamics. Furthermore, we derive a relationship between spot

volatility and the conditional density of durations for a semimartingale under some mild conditions,

which formalizes the heuristic arguments in Hautsch (2011) and Tse and Yang (2012), and also

extends the theoretical framework of Pelletier and Wei (2024).

Simulation results reveal that our new duration-based method delivers reliable finite-sample

performance for both spot volatility and IV estimation. We benchmark our duration-based estimators

against several localized return-based estimators in the spirit of Foster and Nelson (1996) for spot

volatility estimation, and also compare them with various RV-type estimators for IV estimation.

The results show that our duration-based estimators exhibit superior robustness to price jumps and

variations in sampling frequencies, when compared to the selected competitors. In our first empirical

application, we focus on the prediction of out-of-sample IV estimates of the SPDR S&P 500 ETF

Trust (SPY) with the heterogeneous autoregressive (HAR) model of Corsi (2009). We find that

HAR models based on our duration-based IV estimators outperform most of the selected benchmark

models with significantly smaller forecast errors. Furthermore, we conduct an intraday analysis to

evaluate the short-term impact of regular press releases by the Federal Reserve, i.e., the Federal

Open Market Committee (FOMC) news announcements, on spot volatility. Our results confirm the

well-documented fact that FOMC announcements at 14:00 have an instant and substantial impact

on spot volatility (see, e.g., Bollerslev et al., 2021, 2024), which evidences the credibility of our

duration-based spot volatility estimator.

The remainder of this paper is structured as follows: Section 2 details our estimation procedure,

which includes both the daily threshold prediction and parametric volatility estimation. Section 3

presents an extensive Monte Carlo study to evaluate the finite-sample performance of our duration-

based methods for spot and integrated volatility estimation. Section 4 provides empirical applications

for both daily and intraday volatility of SPY. Section 5 concludes. Proofs and additional results can

be found in the Appendix.
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2 Econometric Framework

We consider a one-dimensional underlying process X = (Xt)t≥0 for the efficient logarithmic price of

a financial asset. We assume that X follows a semimartingale defined on a filtered probability space

(Ω,F , (Ft)t≥0,P):

Xt = X0 +

∫ t

0
σsdWs +X ′t, (1)

where t stands for time, W = (Wt)t≥0 is a standard Brownian motion, σ = (σt)t≥0 is a càdlàg

Ft-adapted process assumed to be locally bounded and bounded away from zero. We assume that X

is observed on [0, T )∪ [T, 2T )∪ . . .∪ [(d− 1)T, dT )∪ . . ., where the interval [(d− 1)T, dT ) represents

the d-th trading day of length T > 0. Price movements during market closures are modelled as jumps

occurring at dT , i.e., ∆Xd = XdT −XdT−, and are cumulatively incorporated into the discontinuous

component X ′t =
∑bt/T c

d=1 ∆Xd. We assume T = 1 for ease of notation in subsequent discussions.

Remark 1. We do not consider price jumps during the regular trading sessions due to the natural

robustness of duration-based methods to finite-activity jumps. Some relevant discussions can be

found in Andersen et al. (2008), Tse and Yang (2012), Hong et al. (2023), Pelletier and Wei (2024),

and Li et al. (2025). Empirical evidence from the analysis of some liquid S&P 500 stocks in

Christensen et al. (2025) reveals a significantly higher occurrence of price jumps during after-hours

sessions, which often coincide with the release of earnings announcements.

We are interested in the estimation of spot variance σ2
t for some t as well as the integrated

variance (IV) over some interval [s, t]:

V (s, t) =

∫ t

s
σ2
udu. (2)

When the interval [s, t] = [d − 1, d] is one trading day, we write Vd = V (d − 1, d) as the IV for

day d and V (t) = V (0, t) to denote the IV process up to time t. To construct an estimator for

V (t), we extend the duration-based methods of Tse and Yang (2012) and Hong et al. (2023). In

contrast to those return-based estimators that fix a time interval ∆ and measure the change in X,

the duration-based estimators fix a threshold δ > 0 and measure the durations when X increases or

decreases by δ. Specifically, we generalize the price duration sampling (PDS) method of Hong et al.

(2023) by incorporating a time-varying stopping rule. We choose a sequence of “daily” thresholds

(δd)d=1,2,..., where each δd is positive and adapted to the information Fd−1 available up to time d− 1.

We then sample price observations within each trading day based on the following stopping rule:

τd,0 = d− 1, τd,i = inf
τd,i−1<t≤d

{∣∣Xt −Xτd,i−1

∣∣ ≥ δd} , (3)

with the convention that inf{∅} = ∞. Consequently, for each day d, we obtain a sequence of

sampling times (τd,i)0≤i≤Nd
, where τd,i denotes the i-th price event, xd,i = τd,i − τd,i−1 the i-th

inter-event price duration, and Nd =
∑

i≥0 1{τd,i∈(d−1,d]} counts the number of price events within
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the d-th day.

In essence, when the realized sample path X(ω) is fully observable, the absolute return between

each pair of consecutive sampled price observations equals δd, i.e., |Xτd,i − Xτd,i−1
| = δd for all

1 ≤ i ≤ Nd. Consequently, Nd can be interpreted as the frequency of price path changes by δd,

which is proportional to the nonparametric duration-based IV estimator proposed by Hong et al.

(2023). This argument is formalized by Theorem 1 of Hong et al. (2023), which implies that

Nd =
Vd
δ2
d

+Md + op(1), (4)

where (Md)d=1,2,... is a Gaussian martingale difference sequence, and op(1) vanishes as δd → 0. By

taking conditional expectations on both sides of Eq. (4), the Fd−1-adaptedness of δd further implies:

E[Nd|Fd−1] =
E[Vd|Fd−1]

δ2
d

+ o(1). (5)

Therefore, for a fixed δ, E[Nd|Fd−1] ∝ E[Vd|Fd−1], implying that daily price event counts effectively

capture the volatility dynamics on a daily horizon. This can be further modelled parametrically

with the durations or intensities of point processes (Engle and Russell, 1998; Tse and Yang, 2012;

Hong et al., 2023).

As an important innovation of this paper, we notice that one does not need to choose a fixed

δ. Instead, we introduce an adaptive choice of δd =
√
K−1E[Vd|Fd−1] for some constant K, which

ensures that the expected number of price events on day d is approximately K, i.e., E[Nd|Fd−1] ≈ K.

The adaptive choice of δd has two advantages over a constant δ. Firstly, it offers a natural

mechanism for controlling daily sampling frequencies. In practice, the full trajectory of X(ω) is not

observable, and is instead recorded on a grid of discrete times with the contamination of market

microstructure noise. Previous studies on duration-based volatility estimation recommend selecting

a moderate to large δ to ensure that the sampling frequency is sufficiently low relative to the total

number of observations (Andersen et al., 2008; Li et al., 2021; Hong et al., 2023). However, achieving

this “not-too-finely” sampling is feasible only on average with a fixed δ. As shown in Eq. (5), the

expected daily sampling frequency depends on the daily IV, which can vary substantially across

multiple days. With an appropriate choice of K (for example, K = 78 represents an average price

duration of five minutes), the adaptive threshold δd allows for direct control over the expected

sampling frequency for each day, which provides adaptive protection against market imperfections

on a daily basis.

Secondly, the construction of δd implies that Kδ2
d can be interpreted as the optimal forecast of Vd

in terms of mean squared error (MSE). The persistence of volatility dynamics at the daily level has

been extensively studied in the literature (Corsi, 2009; Gatheral et al., 2018), and these benchmark

models provide empirically reliable methods to construct δd that fully reflects the daily volatility

dynamics. For example, since the squared threshold is essentially a scaled IV proxy, some predictive

models for one-day-ahead RV, such as the HAR model of Corsi (2009), can be directly applied. As
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a result, the sampling times (τd,i)0≤i≤Nd
within each day only preserve intraday volatility dynamics,

as the interday persistence in the IV process is subsumed into the adaptive thresholds (δd)d=1,2,....

This decomposition allows us to model interday and intraday volatility separately, which greatly

increases the flexibility of point-process-based parametric volatility models, such as those proposed

by Hong et al. (2023) and Pelletier and Wei (2024). It also considerably simplifies the econometric

analysis, offering a clearer and more intuitive understanding of volatility dynamics over extended

periods spanning multiple days.

2.1 Spot and Integrated Volatility Estimation with Price Durations

We proceed to explain how we estimate both spot and integrated variances from the observed

price durations (xd,i)1≤i≤Nd
based on some Fd−1-adapted threshold. Let Fd,i denote the filtration

generated by X up to the sampling time τd,i. We will demonstrate that the Fd,i−1-conditional

density of xd,i is intrinsically linked to the spot variance σ2 of the continuous martingale X.

To this end, we introduce some additional notation: Let Vd,i = V (d − 1, d − 1 + τd,i) denote

the IV accumulated up to the i-th price event on day d, and thus ∆d,iV = Vd,i − Vd,i−1 represents

the i-th duration in the IV clock. The sequence of IV increments (∆d,iV )1≤i≤Nd
has the following

important property:

Proposition 1. Assume (∆d,iV )1≤i≤Nd
is generated from the price model in Eq. (1) with the

Fd−1-adapted threshold δd. Then it holds that

∆d,iV = δ2
dZi, (6)

where (Zi)1≤i≤Nd
is a sequence of independent and identically distributed (i.i.d.) positive random

variables such that for all i, Zi
d
= inft>0{|Bt| ≥ 1} for some standard Brownian motion B with Zi

independent of Fd,i−1.

Remark 2. Proposition 1 stems from the well-known Dambis-Dubins-Schwarz theorem that all

continuous martingales are time-changed Brownian motions under the IV clock, or the business

time (Barndorff-Nielsen and Shiryaev, 2015). As the price events commute with time changes,

(∆d,iV )1≤i≤Nd
is, up to a constant scaling, identical in distribution to (Zi)1≤i≤Nd

. The i.i.d.-ness

thus follows from the strong Markov property and time homogeneity of the Brownian motion. The

density of Zi is well-known in the literature with the following probability density function (PDF)

and cumulative distribution function (CDF):

fZ(z) =
∞∑

k=−∞

2(1 + 4k)√
2πz3/2

e−
(1+4k)2

2z , FZ(z) = 2− 2
∞∑

k=−∞
erf

1 + 4k√
2z

, (7)

where erf x = (2/
√
π)
∫ x

0 e
−t2dt is the error function (Andersen et al., 2008). In particular, we have

E[Zi] = E[Zi|Fd,i−1] = 1, which implies that the expected IV increment between two price events is

precisely δ2
d for all continuous martingales, i.e., E[∆d,iV |Fd,i−1] = δ2

d.

6



A key insight from Proposition 1 is that the IV-based time change converts xd,i into ∆d,iV for

each i, where the latter is, conditional on Fd,i−1, an i.i.d. duration in the IV clock. Consequently,

it is natural to expect that the Fd,i−1-conditional distribution of xd,i contains information about

IV. To formalize this link, we define a counting process Nd(t) =
∑

i≥1 1{τd,i≤t} which counts the

number of price events on day d up to time t ∈ [d− 1, d], and a piecewise constant price process

Xt = Xτd,Nd(t)
, which is constant on each inter-event interval [τd,i−1, τd,i). Let F t ⊂ Ft denote the

natural filtration generated by Xt up to time t. Similarly, let Fd,i = Fτd,i denote the filtration at

the i-th sampling time. With these definitions in place, we establish the following results:

Proposition 2. Assume the same conditions in Proposition 1 hold and further assume that V (t)

is adapted to F t. Let ∆d,iV (h) = V (τd,i−1, τd,i−1 + h) denote the IV increment over the interval

[τd,i−1, τd,i−1 + h]. Let f(h|Fd,i−1) and F (h|Fd,i−1) denote the Fd,i−1-conditional PDF and CDF of

xd,i, respectively. For all d, i, it holds for all h ∈ (0, xd,i] that:

∆d,iV (h) = δ2
dGd,i(h), (8)

where Gd,i(h) = F−1
Z (F (h|Fd,i−1)) and F−1

Z (·) is the inverse function of the CDF in Eq. (7).

Furthermore, for almost all h ∈ (0, xd,i], we have:

σ2
τd,i−1+h =

δ2
df(h|Fd,i−1)

fZ(Gd,i(h))
. (9)

Remark 3. The use of the restricted filtration F t instead of Ft as well as the F t-adaptedness of

V (t) require some elaboration. First, to reflect the PDS procedure on X, it is natural to consider

the filtration generated only by sampled observations. This restriction is implicit in the existing

work (Tse and Yang, 2012; Hong et al., 2023), which is intended to avoid using the full (potentially

noisy) price paths in Ft. The adaptedness of V (t) to F t also ensures the validity of Proposition 1.1

More importantly, it ensures that V (t) on [τd,i−1, τd,i) is Fd,i−1-adapted. This allows us to construct

an observation-driven model for a continuous-time stochastic process, which can be easily estimated

based on standard econometric tools. We show in our simulation section that a F t-adapted volatility

process can still provide accurate approximation to V (t) fully driven by a stochastic volatility

process that violates the F t-adaptedness restriction.

Proposition 2 leads to the following representation of IV over any finite interval [s, t] in day d:

V (s, t) = δ2
d

 Nd(t)∑
i=Nd(s)

Gd,i(xd,i)

−Gd,Nd(s)(s− τd,Nd(s)) +Gd,Nd(t)+1(t− τd,Nd(t))

 , (10)

where the last two terms correct for the (left and right) edge effects due to a mismatch between the

interval [s, t] and [τd,Nd(s), τd,Nd(t)]. Taking [s, t] = [d− 1, d] gives the IV for day d, where the left

correction is no longer needed. The right correction, termed the end-of-day correction in Hong et al.

(2023), typically exhibits a smaller magnitude compared to the leading term and is often ignored in
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practical applications.

It is worth noting that Proposition 2 only identifies the spot variance σ2
t for almost all t up to

a Lebesgue null set. Intuitively, this is due to the fact that the spot variance process is identified

through IV, whose value does not change by altering σ2
t on a Lebesgue null set. This also indicates

that the point-wise result in Proposition 2 may not be very informative about the spot volatility at

finitely many t. Instead, we propose to approximate σt by the localized IV over the interval [t− h, t]
for some small h > 0:

σt =

√
1

h
V (t− h, t), (11)

where V (s, t) is given in Eq. (10). This smooths out any potential point-wise divergence from

Eq. (9), which is adopted in our simulation and empirical analyses.

As an interesting special case of Proposition 2, we derive a condition for σ2 to be almost

everywhere piecewise constant:

Corollary 1. Suppose (γd,i) is a sequence of Fd,i−1-adapted positive random variables, such that

xd,i =
δ2
d

γd,i
Zi, (12)

for all d and i, then it holds for almost all h ∈ (0, xd,i] that

∆d,iV (h) = hγd,i and σ2
τd,i−1+h = γd,i. (13)

Corollary 1 implies that σ2 is almost everywhere piecewise constant on [τd,i−1, τd,i] under the

following two conditions: (i) The duration xd,i satisfies Eq. (12) for all d and i, and (ii) γd,i is

Fd,i−1-adapted, which means xd,i is proportional to Zi conditional on Fd,i−1. This is at odds with

some of the existing point-process-based volatility estimators in the literature, to which we shall

turn. The existing methods, e.g., Hautsch (2011), Tse and Yang (2012), and Hong et al. (2023),

typically adhere to two equivalent methodologies: the duration-based method of Engle and Russell

(1998), and the intensity-based method of Gerhard and Hautsch (2002). Both methods employ a

heuristic argument that each price event contributes δ2
d to Vd, and thus they decompose the spot

variance multiplicatively as the product of the squared threshold δ2
d and the intensity or hazard rate

of price events, i.e.,

σ2
τd,i−1+h = δ2

d λ(h|Fd,i−1), h ∈ [0, xd,i), (14)

where λ(h|Fd,i−1) is the Fd,i−1-conditional hazard function of the price events at time τd,i−1 + h, as

defined in Daley and Vere-Jones (2003):

λ(h|Fd,i−1) =
f(h|Fd,i−1)

1− F (h|Fd,i−1)
. (15)

This model offers a convenient formulation for the spot variance in a multiplicative structure.

Despite this relatively simpler specification of σ2
t , this decomposition cannot hold for the
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continuous martingale model in Eq. (1).2 With the spot variance in Eq. (14), the IV increment

between τd,i−1 and τd,i is given by

∆d,iV =

∫ τd,i

τd,i−1

σ2
sds = δ2

d

∫ xd,i

0
λ(h|Fd,i−1)dh = −δ2

d ln(1− F (xd,i|Fd,i−1))). (16)

In this case, with a copula transformation argument, ∆d,iV follows an exponential distribution

with the intensity parameter δ−2
d , which clearly contradicts Proposition 1. Specifically, it implies

that the likelihood of a (time-changed) Brownian motion exiting a symmetric barrier [−δd, δd]
is time-invariant. Such a memoryless property is impossible due to the continuity of Brownian

diffusions, see, e.g., Eq. (3.0.2) in Borodin and Salminen (2002). Therefore, σ̃2 cannot coincide with

the spot variance process of a continuous martingale.

Taking a different approach, Pelletier and Wei (2024) adopt the local volatility approximation

of Andersen et al. (2008) and assume that σ is piecewise constant on all intervals of the form

[τd,i−1, τd,i). Jointly with Proposition 1, it implies that, for each 1 ≤ i ≤ Nd,

xd,i
d
=

δ2
d

σ2
τd,i−1

Zi. (17)

The difference between the above result and our Corollary 1 is two-fold. On the one hand, Pelletier

and Wei (2024) allow σ2
τd,i−1

to depend on concurrent information up to time τd,i through an

additional stochastic component, while our Corollary 1 requires σ2
τd,i−1

to be adapted to Fd,i−1.

This can be considered as a stochastic extension of our approach, which can potentially provide

more flexibility to model the volatility dynamics. However, the resulting model becomes fully

parameter-driven, which requires computationally intensive estimation techniques and considerably

complicates its empirical implementation (Koopman et al., 2016). On the other hand, Proposition 2

demonstrates that the piecewise constant assumption can be relaxed to a piecewise adaptedness

condition, which allows for a more flexible specification for σ even within our observation-driven

framework. We will thus focus on Proposition 2 in developing volatility models and leave the

generalization to a fully parameter-driven model for future research.

2.2 A Joint Model for Daily and Intraday Volatility Dynamics

In this section, we describe our econometric model for both the daily thresholds (δd)1≤d≤D and the

intraday price durations xd,i, where D denotes the total number of trading days in the in-sample

period. We start with a model for (δd)1≤d≤D: Let K ∈ Z+ denote a predetermined “expected”

sampling frequency. The realized K-adaptive threshold on the d-th day is defined as

δd = sup
δ>0

argmin
δ
|K −Nd| , (18)

where the supremum is taken to ensure the uniqueness of δd. Intuitively, δd is the largest threshold

that generates a sampling frequency Nd closest to K, which can be easily constructed from the
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price observations on day d in practice. Note that Kδ2
d actually serves as a daily IV estimator and

can be treated as a proxy for Vd. Based on a burn-in sample of (δd)−h≤d≤0, we estimate the HAR

model of Corsi (2009):

δ2
d = ω0 + ω1δ

2
d−1 + ω2

5∑
i=1

δ2
d−i + ω3

22∑
i=1

δ2
d−i + εd, (19)

which can be easily estimated via ordinary least squares (OLS). The HAR model is designed to

parsimoniously capture the dependence structure of IV across different horizons, and therefore aims

to approximate its long memory which has been extensively confirmed by the empirical literature.

Renowned for its consistent and remarkable predictive performance, the HAR model serves as the

predominant benchmark in modelling and forecasting daily IV dynamics. With the parameter

estimates ω̂ = (ω̂0, ω̂1, ω̂2, ω̂3), we set δ̂2
1 as the one-step-ahead forecast of δ2

1 with the optimal MSE:

δ̂2
1 = E[δ2

1 |F0] = ω̂0 + ω̂1δ
2
0 + ω̂2

5∑
i=1

δ2
1−i + ω̂3

22∑
i=1

δ2
1−i, (20)

and the values of (δ̂d)2≤d≤D can be obtained with recursive model estimation and prediction in

a rolling-window fashion. The construction of δ̂d ensures that δ̂2
d = E[δ2

d|Fd−1] ≈ K−1E[Vd|Fd−1],

which is the desired threshold adaptive to daily volatility dynamics.

With the sequence of thresholds (δ̂d)1≤d≤D, we obtain all durations across all D days, which can

be modelled parametrically with standard duration-based point process models (Hautsch, 2011).

For example, we consider the log-ACD-GARCH model of Allen et al. (2008) as follows:

lnxd,i = Ψd,i + sd,i + εd,i, εd,i =
√
hd,iud,i,

Ψd,i =

p∑
j=1

φjΨd,i−j +

q∑
j=1

θjεd,i−j ,

hd,i = s̃d,i +

p∗∑
j=1

αjε
2
d,i−j +

q∗∑
j=1

βjhd,i−j ,

(21)

where (ud,i) is a sequence of i.i.d. random variables with zero mean and unit variance, with a

parametric PDF fu(x;γ) governed by the parameter vector γ. The processes (Ψd,i) and (hd,i) are

standard conditional mean and variance specifications used in ACD- and GARCH-type models,

which are both Fd,i−1-adapted. The variables sd,i and s̃d,i are also Fd,i−1-adapted components that

capture the seasonality in the mean and variance of log-durations, respectively, and are specified

in flexible Fourier forms following Andersen and Bollerslev (1997). For example, a Q-th-order

flexible-Fourier-form specification for sd,i is given by

sd,i = ν0 + ν1τ̄d,i−1 + ν2τ̄
2
d,i−1 +

Q∑
j=1

(νc,j cos(2πj · τ̄d,i−1) + νs,j sin(2πj · τ̄d,i−1)), (22)
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where the parameters {ν0, ν1, ν2, νc,1, ..., νc,Q, νs,1, ..., νs,Q} for sd,i, and similarly {ν̃0, ν̃1, ν̃2, ν̃c,1, ...,

ν̃c,Q, ν̃s,1, ..., ν̃s,Q} for s̃d,i, are jointly estimated with other model parameters. We follow Hautsch

(2011) to reset the autoregressive structure of lnxd,i and hd,i in Eq. (21) at the beginning of each

trading day, as we do not expect the end-of-day duration to impact the first duration of the

subsequent day.

Given that the log-ACD-GARCH-s, s̃ model in Eq. (21) is in essence a variant of the cele-

brated GARCH model of Engle (1982) and Bollerslev (1986), its related estimation techniques and

asymptotic properties are well-understood in the literature. Specifically, since the Fd,i−1-conditional

density of xd,i is determined by fu(x;γ), all model parameters can be jointly estimated with stan-

dard maximum likelihood estimation (MLE). Under the correct model specification and standard

regularity conditions (see, e.g., Amemiya, 1985), the MLE estimator is consistent and asymptotically

normal as the number of days D →∞.

Furthermore, the volatility dynamics implied by the log-ACD-GARCH-s, s̃ model in Eq. (21)

need some discussions. The Fd,i−1-adaptedness of Ψd,i, sd,i, and hd,i indicates that

E[xd,i|Fd,i−1] = eΨd,i+sd,iE[e
√
hd,iud,i |Fd,i−1]. (23)

The term exp(Ψd,i + sd,i) multiplicatively captures the autoregressive structure and seasonality of in-

traday price durations. The GARCH-type conditional variance hd,i further allows non-multiplicative

autoregressive structure and seasonality to be modelled through the conditional moment generating

function of ud,i. As a special case under the conditions in Corollary 1, if ud,i ∼ lnZi − E[lnZi],

where Zi is defined in Proposition 1, and hd,i = 1, then by Eq. (17) we have

xd,i = eΨd,i+sd,iZi and σ2
τd,i−1

= δ2
de
−Ψd,i−sd,i , (24)

where lnZi can be subsumed into the seasonality factor sd,i. This implies that σ is piecewise constant

on [τd,i−1, τd,i), and can be viewed as a càdlàg (i.e., right-continuous with left limits) process in

continuous time that is only updated when the sampling occurs. The changed value of σ on τd,i

depends on both the self-dependence structure exp(−Ψd,i) and the seasonal pattern exp(−sd,i).
By allowing for different distributional assumptions of ud,i with the further inclusion of the

conditional variance component hd,i, the model permits time-varying spot volatility both between

and within price durations, which enriches the intraday volatility dynamics implied by duration-

based models. For example, Fig. 1 illustrate the impact of different distribution assumptions of ud,i

to the shape of spot volatility and IV as time elapses from the previous price event. In particular,

the dark dash lines in Fig. 1 corroborate the result in Corollary 1 that when xd,i
d
= Zi, the spot

volatility is constant between price durations, implying a linearly increasing IV as a function of

time. By changing the distributional assumption of xd,i, our method allows different shapes of the

“baseline” spot volatility that evolves solely with respect to the time elapse since the last event,

which echoes the F t-adaptedness property of the spot volatility. Therefore, the choice of the density

of xd,i mirrors the choice of the baseline function in the autoregressive conditional intensity (ACI)

11



model (Russell, 1999; Hautsch, 2011), which specifies the evolution of spot volatility between price

events as a deterministic function of time.
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Figure 1: Examples of spot volatilities and IV increments over [τd,i−1, τd,i−1 + h] with h ∈ (0, xd,i], assuming a unit

sampling threshold and three different distributional assumptions for durations xd,i normalized to have a unit mean:

(i) the Brownian exit time Zi defined in Proposition 1, (ii) the unit exponential distribution Exp(1), and (iii) the

Lognormal(−1/2,1) distribution.

3 Simulation Results

This section contains a Monte Carlo study to examine the finite-sample performance of our duration-

based volatility estimators, which corresponds to the results developed in Sections 2.1 and 2.2.

3.1 Simulation Design

We simulate a Heston model for the efficient price process X (Heston, 1993):

dXt = µdt+ σtdW1,t + dJt, σt = σ̆tγt,

dσ̆2
t = α

(
θd − σ̆2

t

)
dt+ ησ̆tdW2,t,

(25)

where W1 and W2 are standard Brownian motions with Corr(W1,t,W2,t) = ρ, and J is a compound

Poisson process, i.e.,

Jt =

Nt∑
i=1

Di, (26)

where N is a Poisson process with rate λ, and Di follows a normal distribution N (0, ς2). For the

spot volatility σt = σ̆tγt, we follow Hasbrouck (1999), Andersen et al. (2012), and Christensen et al.

(2018) to model the diurnal pattern of intraday volatility in γt with a sum of two exponentials:

γt = C +Ae−a1t +Be−a2(1−t). (27)

We set A = 0.75, B = 0.25, C = 0.88929188, and a1 = a2 = 10. This realistically calibrated

specification produces a pronounced, asymmetric reverse J-shape in σu,t, with variance at t = 0

12



(resp. t = 1) more than three times (resp. about 1.5 times) the midday variance (t = 1/2).

The annualized parameters for Eq. (25) are fixed at (µ, α, θ0, η, ρ) = (0.05, 5, 0.16, 0.5,−0.5),

where the volatility parameters satisfy the Feller’s condition 2αθ0 ≥ η2 which ensures the positivity

of σ. The parameter choices follow both Aı̈t-Sahalia and Jacod (2009) and Aı̈t-Sahalia et al.

(2012), which are calibrated according to the empirical estimates in Äıt-Sahalia and Kimmel (2007).

Specifically, for the annualized daily variance parameter θd, we assume a HAR structure as follows:

θd = ω0 + ω1θd−1 + ω2

5∑
i=1

θd−i + ω3

22∑
i=1

θd−i + εθd, with εθd ∼ i.i.d. N (0, κ2), (28)

where (ω0, ω1, ω2, ω3, κ) = (0.03, 0.2, 0.4/5, 0.2/22, 0.03). Additionally, the process J simulated with

λ = 1/5 and ς = 2% implies an average of one jump per week, and the jump variation is about 20%

of the daily IV on average, which is consistent with Andersen et al. (2023). Fig. 2 illustrates the

intraday variation of returns and annualized RVs of a simulated path in each one-minute interval.

The return variation exhibits an asymmetric U-shaped or reverse J-shaped pattern over the trading

hours, which is in line with some prior empirical findings (Harris, 1986; Wood et al., 1985; Andersen

and Bollerslev, 1997; Christensen et al., 2018; Andersen et al., 2018, 2019, 2024).
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Figure 2: Intraday variation of returns and annualized RVs of a simulated Heston process. The tick-level observations

are simulated with the Heston model in Eq. (25), with a pronounced, asymmetric reverse J-shape exhibited in spot

volatility. The returns and annualized RVs are computed at a granularity of one minute.

We simulate second-by-second observations for 500 consecutive days. The realized K-adaptive

thresholds over the first 200 days, i.e., the burn-in sample {−h, . . . , 0}, are used to estimate the

HAR model in Eq. (19) and predict the threshold δ̂1 for the 201-st day. In this section, we focus on

both the spot volatility and IV estimation for the last 300 days.

3.2 Model Estimation

For the K-adaptive thresholds, we consider three different values of K, i.e., K = 78, 39, and 26, for

the burn-in sample, which correspond to similar levels of sparsity of 5, 10 and 15-minute calendar-

time sampling (CTS), respectively. The durations observed in the last 300 days are obtained with

the predicted thresholds from the HAR model in Eq. (19) estimated in a rolling-window fashion.
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As mentioned in Section 2, by controlling the daily K-adaptive thresholds, we remove the interday

volatility dynamics from the sequence of durations across all 300 days. To obtain the conditional

CDF of durations, we estimate the log-ACD-GARCH-s, s̃ model in Eq. (21) with MLE (with ud,i

assumed as a standard Gaussian white noise). Table 1 reports the mean and standard deviation of

the estimated parameters for the log-ACD-GARCH-s, s̃ model, where we select the lags (1, 1) for

both the ACD and GARCH parts, with second-order flexible-Fourier-form specifications for both

seasonality terms s and s̃.3

Table 1: Parameter estimates of log-ACD-GARCH-s, s̃ model

Parameters K = 78 K = 39 K = 26 Parameters K = 78 K = 39 K = 26

φ1 0.8776 0.7291 0.7283 α1 0.0012 0.0029 0.0017

(0.0134) (0.0292) (0.0314) (0.0044) (0.0059) (0.0081)

θ1 -0.8018 -0.6315 -0.6357 β1 0.8418 0.8739 0.8009

(0.0185) (0.0311) (0.0345) (0.2040) (0.1270) (0.0692)

ν0 0.2970 0.9896 0.9998 ν̃0 0.1174 0.0390 0.2327

(0.0616) (0.1648) (0.2459) (0.1305) (0.0863) (0.0857)

ν1 2.1313 3.6763 4.1018 ν̃1 -0.0403 0.1693 -0.8568

(0.1346) (0.2959) (0.8327) (0.1339) (0.1897) (0.4269)

ν2 -2.0959 -3.4849 -3.7677 ν̃2 0.0195 -0.1225 0.9965

(0.1488) (0.2944) (0.8411) (0.1419) (0.2011) (0.4285)

νc,1 0.1749 0.2815 0.3137 ν̃c,1 -0.0052 0.0124 -0.1045

(0.0119) (0.0304) (0.0892) (0.0138) (0.0216) (0.0454)

νc,2 0.0194 0.0679 0.1277 ν̃c,2 -0.0075 0.0192 0.0492

(0.0095) (0.0109) (0.0145) (0.0098) (0.0132) (0.0150)

νs,1 0.0307 0.0475 0.0440 ν̃s,1 0.0006 0.0132 -0.0258

(0.0043) (0.0102) (0.0273) (0.0052) (0.0076) (0.0156)

νs,2 0.0099 0.0345 0.0676 ν̃s,2 -0.0008 0.0091 0.0523

(0.0045) (0.0080) (0.0115) (0.0039) (0.0126) (0.0130)

Total No. of durations 23218 11327 7292

log-likelihood -28526 -14145 -9297

Parameter estimates (standard errors in parentheses) for the log-ACD-GARCH model (with seasonality components s and s̃) in

Eq. (21). The data-generating process (DGP) follows the Heston model in Eq. (25). Durations are obtained with the K-adaptive

thresholds for K = 78, 39, and 26. The log-ACD-GARCH-s, s̃ model is estimated via MLE with the assumption that the white

noise ud,i follows a standard normal distribution. We select the lags (1, 1) for both the ACD and GARCH components, and

employ the second-order flexible-Fourier-form specifications in Eq. (22) with Q = 2 for both seasonality terms s and s̃.

3.3 Spot Volatility Estimation

In this section, we utilize the results in Section 2.1 to estimate the intraday spot volatility with a

local IV estimator:

σ̂t =

√
1

∆
V̂ (t−∆, t), (29)

where V̂ (t−∆, t) is defined in Eq. (10), and can be estimated with the conditional CDFs of price

durations with both the left and right correction. Fig. 3 illustrates an example of spot volatility

estimation for each equidistant intervals with ∆ = 5 minutes, 30 minutes, and one hour. The

solid line represents a simulated path of the spot volatility process σ from the Heston model in

Eq. (25). All annualized spot volatility estimates are calculated from Eq. (29) based on the log-
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ACD-GARCH-s, s̃ model in Eq. (21), with durations obtained with the daily K-adaptive thresholds

for K = 78.
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Figure 3: Annualized spot volatility estimates for each equidistant intervals with ∆ = 5 minutes, 30 minutes, and

one hour. The DGP follows the Heston model in Eq. (25). Durations are obtained with the K-adaptive threshold

with K = 78. The duration-based spot volatility estimator is constructed based on the log-ACD-GARCH-s, s̃ model

in Eq. (21).

Throughout this section, we evaluate the finite-sample performance with the root-mean-square

error (RMSE), i.e., for each spot volatility estimate σ̂i over the i-th interval,

RMSE =

√√√√ 1

N

N∑
i=1

(σ̂i − σi)2, (30)

where N represents the total number of intervals (number of intervals per day × 300 days), and the

“true value” σi is the local average of all annualized spot volatilities (tick-level) within each interval.4

Table 2 reports the RMSE results for our duration-based spot volatility estimators across

equidistant intervals with ∆ = 5, 10, 15, 30, and 60 minutes, based on durations obtained with

three different levels of K = 78, 39, and 26. These results are derived from four parametric duration

models: (i) the multiplicative ACD model (Engle and Russell, 1998; Tse and Yang, 2012), (ii) the

log-ACD model, (iii) the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃ model in

Eq. (21). For model estimation, we follow Section 3.2 to assume that (ud,i) follows a standard

Gaussian white noise process for all three log-ACD models, while the residuals for the multiplicative

ACD model are assumed to be exponentially distributed, i.e., Exp(1).

The RMSE results for all out-of-sample days are reported in Panel A. We observe that the spot
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Table 2: Monte Carlo RMSEs for duration-based spot volatility estimation

Panel A: All Out-of-Sample Days (300 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 5.55 6.64 7.31 5.39 6.27 6.58 5.39 6.27 6.58 4.57 5.23 5.61

10 min 5.08 6.06 6.57 5.15 6.17 6.52 5.15 6.17 6.52 4.32 5.14 5.53

15 min 4.89 5.66 6.35 4.98 5.85 6.59 4.98 5.85 6.59 4.17 4.76 5.24

30 min 4.57 5.18 5.69 4.61 5.36 5.96 4.62 5.36 5.96 3.93 4.31 4.92

60 min 4.15 4.76 5.26 4.16 4.85 5.36 4.16 4.85 5.36 3.77 4.17 4.65

Panel B: Days with Jumps (51 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 5.73 6.80 7.43 5.48 6.41 6.74 5.48 6.41 6.74 4.52 5.15 5.43

10 min 5.11 6.20 6.69 5.09 6.32 6.73 5.09 6.32 6.73 4.05 5.05 5.44

15 min 4.93 5.55 6.09 4.94 5.80 6.40 4.94 5.80 6.40 3.92 4.40 5.01

30 min 4.56 5.18 5.77 4.54 5.45 6.14 4.54 5.45 6.14 3.66 4.13 4.76

60 min 4.08 4.71 5.06 4.04 4.87 5.36 4.05 4.87 5.35 3.48 3.97 4.30

Panel C: Days without Jumps (249 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 5.52 6.61 7.28 5.37 6.24 6.55 5.38 6.24 6.55 4.58 5.24 5.64

10 min 5.08 6.02 6.55 5.16 6.14 6.48 5.17 6.14 6.48 4.37 5.16 5.55

15 min 4.89 5.68 6.41 4.99 5.87 6.63 5.00 5.87 6.63 4.22 4.83 5.34

30 min 4.57 5.18 5.67 4.63 5.34 5.92 4.63 5.34 5.92 3.98 4.34 4.96

60 min 4.17 4.78 5.30 4.18 4.84 5.36 4.19 4.84 5.36 3.83 4.21 4.72

RMSE results (×102) for the duration-based spot volatility estimators based on four parametric duration models: (i) the

multiplicative ACD model, (ii) the log-ACD model, (iii) the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃

model in Eq. (21). The DGP follows the Heston model in Eq. (25). Durations are obtained with the K-adaptive thresholds for

K = 78, 39, and 26. The RMSE results are calculated based on the annualized spot volatility estimate and the local average of

all tick-level spot volatilities (as true value) over each equidistant interval.

volatility estimators based on log-ACD models tend to achieve better finite-sample performance

than the ACD-based counterpart, particularly for shorter interval lengths. While the inclusion of

GARCH components offers little improvement, the inclusion of seasonality components significantly

reduces RMSEs across all interval lengths. This underscores the importance of periodic patterns in

intraday durations to improve the accuracy of local volatility estimation, and also highlights the

flexibility of parametric structures in incorporating additional information.

Table 2 also compares the RMSE results between days with jumps (Panel B) and days without

jumps (Panel C). For relatively small local intervals, the RMSEs on days with jumps are slightly

higher than those on days with only continuous price movements. However, the difference is minimal

and can even be reversed by finite-sample bias as the interval length increases. As highlighted

in Remark 1, the inherent robustness of duration-based methods ensures the reliability of our

volatility estimator in the presence of relatively large and sudden price changes. To further assess

the sensitivity of our duration-based spot volatility estimator to price jumps, we insert a single

jump randomly between 12:55 and 13:00 on the same day illustrated in Fig. 3. As demonstrated in
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Fig. 4, such a discontinuous shift in the price process has almost no impact on our duration-based

estimator but can significantly bias the localized RV over the block where the jump occurs.
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Figure 4: Comparisons of 5-minute spot volatility estimates in the presence of jumps. The DGP follows the Heston

model in Eq. (25). Durations are obtained with the K-adaptive threshold for K = 78. The duration-based spot

volatility estimator is constructed based on the log-ACD-GARCH-s, s̃ model in Eq. (21). The localized RV estimator

are constructed from all 5-second returns within each block.

To evaluate the finite-sample performance of our spot volatility estimator, we compare it with

some conventional benchmarks. The first one we consider is the classical spot volatility estimator

introduced by Foster and Nelson (1996), which is a localized version of RV (Barndorff-Nielsen and

Shephard, 2002; Andersen et al., 2003a). Suppose there are kn price observations with the lag ∆n

over the block [t−∆, t], i.e., ∆ = kn∆n. The localized RV estimator is defined as

σ̂t =

√
1

∆
RV∆,kn , RV∆,kn =

kn∑
i=1

r2
i , (31)

where ri = Xt−∆+i∆n −Xt−∆+(i−1)∆n
is the i-th return between consecutive observations.

In addition to the localized RV, we consider localized versions of two jump-robust realized

measures, i.e., the realized bipower variation (BV) of Barndorff-Nielsen and Shephard (2004) and

the truncated realized volatility (TRV) of Mancini (2009):5

BV∆,kn =
π

2

kn
kn − 1

kn∑
i=2

|ri||ri−1|, TRV∆,kn =

kn∑
i=1

r2
i 1{|ri|≤ζ∆$

n }, (32)

with the truncation parameters $ = 0.49 and ζ determined with the data-adaptive method of

Andersen et al. (2023). Specifically, ζ is defined as

ζ = Cζ
√

MedRVd, (33)
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where we select Cζ = 3, and MedRV is the daily median RV estimator of Andersen et al. (2012),

constructed from all one-minute returns within day d.

Panel A of Table 3 presents the RMSE results for various return-based spot volatility estimators

for all out-of-sample days. All these estimators are constructed from more granular returns (1-second,

5-second, 30-second, and 1-minute) within each block of ∆. In the absence of market microstructure

noise, the second-by-second “tick-level” observations provides the most precise estimates of local

volatility for each “not-too-finely” sampled interval. Among the benchmarks, the localized RV

estimator demonstrates the largest RMSE values overall. In contrast, the localized BV and TRV

achieve significantly lower RMSEs. The breakdown in Panel B and C demonstrates the impact of

jumps on these estimators. On days without jumps (Panel C), the localized RV obtains the smallest

RMSEs, which is consistent with well-established theoretical results in the literature. However,

on days with jumps (Panel B), the localized BV and TRV outperform RV by avoiding drastically

inflated RMSEs.

Table 3: Monte Carlo RMSEs for return-based spot volatility estimation

Panel A: All Out-of-Sample Days (300 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 11.05 11.49 13.87 16.23 1.93 4.16 10.21 14.38 2.10 3.71 8.35 11.73

10 min 10.53 10.76 12.14 13.57 1.39 2.95 7.42 10.31 1.81 2.84 6.06 8.46

15 min 10.19 10.36 11.34 12.37 1.16 2.42 6.14 8.44 1.69 2.48 5.03 6.99

30 min 9.53 9.62 10.16 10.74 0.85 1.74 4.43 6.02 1.51 2.03 3.75 5.10

60 min 8.39 8.46 8.83 9.19 0.63 1.34 3.43 4.59 1.30 1.68 2.98 3.99

Panel B: Days with Jumps (51 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 26.57 26.78 27.96 29.27 2.60 4.97 12.31 15.91 2.04 3.75 8.48 12.11

10 min 25.43 25.54 26.18 26.94 1.95 3.69 9.21 11.85 1.72 2.90 6.08 8.87

15 min 24.64 24.73 25.19 25.71 1.66 3.07 7.92 9.89 1.60 2.53 5.01 7.30

30 min 23.07 23.12 23.34 23.62 1.24 2.25 5.89 7.28 1.42 2.03 3.68 5.24

60 min 20.33 20.37 20.53 20.63 0.90 1.71 4.70 5.47 1.21 1.66 2.99 3.96

Panel C: Days without Jumps (249 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 1.55 3.48 8.47 11.91 1.77 3.98 9.80 14.04 2.12 3.71 8.32 11.65

10 min 1.10 2.44 6.11 8.56 1.25 2.78 6.99 9.96 1.82 2.83 6.05 8.38

15 min 0.90 1.99 5.00 6.99 1.03 2.26 5.70 8.11 1.71 2.47 5.04 6.92

30 min 0.65 1.43 3.58 4.99 0.74 1.62 4.07 5.73 1.53 2.03 3.76 5.07

60 min 0.50 1.10 2.75 3.82 0.56 1.25 3.11 4.39 1.31 1.69 2.88 4.00

RMSE results (×102) for the localized return-based estimators based on 1-second, 5-second, 30-second, and 1-minute returns.

The DGP follows the Heston model in Eq. (25). The RMSE results are calculated based on the annualized spot volatility

estimate and the local average of all tick-level spot volatilities (as true value) over each equidistant interval.

Moreover, we observe from Table 3 that the accuracy of return-based volatility estimation depends

significantly on the granularity of local observations. The localized BV and TRV constructed from

1-second and 5-second returns outperform our duration-based estimator in Table 2 in terms of

RMSE. However, in real financial markets, very fine sampling introduces the challenge of market
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microstructure noise. The noise captures various idiosyncrasies inherent in the trading process, such

as bid-ask bounces and the discreteness of price changes, which becomes increasingly dominant and

distorts the volatility estimates as the sampling frequency increases.

Market Microstructure Noise. To examine the impact of market microstructure noise on the

finite-sample performance of both the duration-based and return-based estimators, we incorporate

a noise component into our simulation framework. Specifically, we augment the Heston model in

Eq. (25) with an additive heterogeneous Gaussian noise term for the simulation of all second-by-

second transactions, which follows the simulation specifications in Aı̈t-Sahalia et al. (2012) and

Christensen et al. (2022):

Yi = Xi + εi, εi ∼ N (0, ω2
i ), where ωi = γ

√
σ2
i

n
, (34)

for i = 0, 1, . . . , n, where the noise-to-volatility ratio is set to γ = 1.5.6

Table 4 reports the RMSE results for our duration-based spot volatility estimators in the presence

of market microstructure noise. While the RMSEs show slight inflation compared to the results

in Table 2, the performance remains largely comparable to the no-noise scenario. Consistent with

the noise-free results, the log-ACD-GARCH-s, s̃ model continues to outperform the other models

in terms of RMSE. As discussed in Section 2, the adaptive choice of sampling thresholds provides

a natural control for the daily expected sampling frequencies, which parallels the common use of

sparsely sampled data in both financial econometrics literature and practice (typically equidistant in

calendar time) to mitigate the impact of market microstructure noise (Aı̈t-Sahalia et al., 2005; Liu

et al., 2015). The results in Table 4 confirm the effective protection against market imperfections

provided by the adaptive PDS algorithm, and demonstrate the robustness of duration-based volatility

estimators under noise contamination.

The RMSE results in Table 5 illustrate the impact of market microstructure noise on localized

return-based estimators. Across all panels, the presence of noise significantly inflates the RMSEs

for estimators constructed from local observations at finer intervals, such as 1-second and 5-second

returns. As the sampling interval increases, e.g., from 1-second to 1-minute returns, the influence

of noise diminishes, and thus the RMSEs decrease across all estimators. However, this reduction

in noise sensitivity comes at the cost of losing granular information, which leaves the performance

uniformly inferior to that of the duration-based estimators reported in Table 4.

Furthermore, we consider localized versions of noise-corrected return-based estimators that

leverage all noise-contaminated tick-level transactions, such as the pre-averaged realized volatility

(PRV) and bipower variation (PBV), as detailed in Jacod et al. (2009), Podolskij and Vetter (2009),

and Christensen et al. (2025). These estimators are designed to retain granular information but also

mitigate the impact of market microstructure noise. In our simulations, the pre-averaging window

for both localized PRV and PBV is set to dθ
√
kne, where θ ∈ {0.3, 0.5, 0.7, 1.0}, and kn counts the

total number of “tick-level” second-by-second returns within each interval of ∆.
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Table 4: Monte Carlo RMSEs for duration-based spot volatility estimation under market microstructure noise

Panel A: All Out-of-Sample Days (300 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 9.83 10.00 10.10 9.57 9.61 9.70 9.56 9.61 9.69 8.52 8.28 8.14

10 min 9.49 9.54 9.60 9.31 9.49 9.74 9.30 9.49 9.73 8.29 8.18 8.20

15 min 9.38 9.23 9.34 9.19 9.20 9.63 9.18 9.62 9.62 8.19 7.85 8.10

30 min 9.19 8.97 9.00 8.93 8.90 9.30 8.93 8.90 9.29 8.03 7.63 7.81

60 min 8.96 8.69 8.56 8.65 8.50 8.69 8.64 8.50 8.69 8.04 7.53 7.44

Panel B: Days with Jumps (51 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 8.83 9.26 9.53 8.65 8.92 9.05 8.62 8.89 9.05 7.53 7.50 7.33

10 min 8.85 8.77 8.92 8.44 8.94 9.09 8.42 8.91 9.09 7.35 7.55 7.38

15 min 8.41 8.60 8.77 8.35 8.71 8.99 8.33 8.68 8.98 7.29 7.31 7.30

30 min 8.25 8.30 8.62 8.10 8.35 8.96 8.09 8.33 8.96 7.16 7.04 7.39

60 min 7.85 7.83 7.83 7.63 7.74 8.02 7.61 7.73 8.02 6.95 6.70 6.60

Panel C: Days without Jumps (249 Days)

(i) (ii) (iii) (iv)

ACD log-ACD log-ACD-GARCH log-ACD-GARCH-s, s̃

Interval K = 78 39 26 K = 78 39 26 K = 78 39 26 K = 78 39 26

5 min 10.02 10.15 10.21 9.74 9.74 9.83 9.74 9.74 9.82 8.71 8.43 8.30

10 min 9.68 9.69 9.74 9.48 9.60 9.86 9.48 9.60 9.86 8.46 8.30 8.36

15 min 9.56 9.36 9.45 9.35 9.30 9.75 9.35 9.30 9.74 8.36 7.96 8.26

30 min 9.37 9.10 9.08 9.09 9.01 9.37 9.09 9.01 9.36 8.20 7.75 7.89

60 min 9.17 8.85 8.70 8.84 8.65 8.82 8.84 8.65 8.82 8.25 7.69 7.60

RMSE results (×102) for the duration-based spot volatility estimators based on four parametric duration models: (i) the

multiplicative ACD model, (ii) the log-ACD model, (iii) the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃

model in Eq. (21). The DGP follows the Heston model in Eq. (25) with an additive heterogeneous Gaussian noise term in

Eq. (34). Durations are obtained with the K-adaptive thresholds for K = 78, 39, and 26. The RMSE results are calculated

based on the annualized spot volatility estimate and the local average of all tick-level spot volatilities (as true value) over each

equidistant interval.

Table 6 presents the RMSE results for both localized pre-averaged estimators. We observe that

PRV and PBV exhibit stable finite-sample performance across different pre-averaging window sizes.

Compared to the results based on second-by-second local observations in Table 4, the pre-averaging

approach proposed by Jacod et al. (2009) significantly mitigates the impact of market microstructure

noise. Moreover, consistent with the results for localized RV and BV in Table 3, the RMSEs for

PRV are drastically inflated on days with jumps (Panel B). In contrast, PBV demonstrates excellent

robustness to price jumps, with consistently lower RMSEs across all interval lengths and θ choices.

More importantly, the comparison of RMSEs between Tables 4 and 6 shows that our duration-based

estimator performs comparably, with slightly better results than the more granular PRV and PBV.

This underscores the reliability and practical effectiveness of our new duration-based method.
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Table 5: Monte Carlo RMSEs for return-based spot volatility estimation under market microstructure noise

Panel A: All Out-of-Sample Days (300 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 55.95 21.66 16.69 18.34 58.67 19.55 13.97 16.88 26.39 15.31 12.08 14.32

10 min 55.86 21.24 15.16 15.92 58.62 19.21 11.81 13.39 26.39 15.08 10.51 11.68

15 min 55.81 21.03 14.50 14.89 58.60 19.09 10.98 11.90 26.34 15.00 9.90 10.60

30 min 55.73 20.69 13.56 13.56 58.58 18.96 10.08 10.31 26.28 14.89 9.27 9.43

60 min 55.85 20.32 12.68 12.42 58.84 19.01 9.74 9.54 26.00 14.83 9.04 8.95

Panel B: Days with Jumps (51 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 59.63 31.96 29.20 30.02 57.09 18.81 14.60 17.59 25.71 14.08 11.65 14.16

10 min 59.28 30.99 27.47 27.74 57.03 18.38 12.25 14.15 25.17 13.83 9.99 11.37

15 min 59.08 30.40 26.51 26.60 57.01 18.24 11.17 12.31 25.15 13.74 9.24 10.22

30 min 58.73 29.31 24.83 24.68 56.99 18.04 10.07 10.67 25.09 13.61 8.58 9.03

60 min 58.28 27.49 22.25 21.91 57.25 17.98 9.50 9.46 24.78 13.53 8.30 8.39

Panel C: Days without Jumps (249 Days)

localized RV localized BV localized TRV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 55.17 18.87 12.69 14.86 58.98 19.70 13.84 16.73 26.63 15.56 12.17 14.35

10 min 55.13 18.62 11.06 12.16 58.94 19.38 11.72 13.23 26.59 15.33 10.62 11.74

15 min 55.11 18.53 10.45 11.06 58.92 19.27 10.94 11.82 26.57 15.25 10.03 10.67

30 min 55.10 18.44 9.79 9.84 58.90 19.15 10.08 10.24 26.51 15.13 9.40 9.51

60 min 55.34 18.51 9.60 9.36 59.16 19.21 9.79 9.56 26.24 15.08 9.19 9.06

RMSE results (×102) for the localized return-based estimators based on 1-second, 5-second, 30-second, and 1-minute returns.

The DGP follows the Heston model in Eq. (25) with an additive heterogeneous Gaussian noise term in Eq. (34). The RMSE

results are calculated based on the annualized spot volatility estimate and the local average of all tick-level spot volatilities (as

true value) over each equidistant interval.

3.4 Integrated Variance Estimation

Similar to the localized IV estimator used in Section 3.3, the theoretical results in Section 2.1 can

also be employed to estimate the daily IV:

V̂d = V̂ (d− 1, d) = δ2
d

[
Nd∑
i=1

Ĝd,i(xd,i) + Ĝd,Nd+1(d− τd,Nd
)

]
, (35)

where the second term in the summand represents the end-of-day correction between the last price

event and the market closing time. To estimate the daily IV, we compute all durations between

price events over a 300-day period with the predicted K-adaptive thresholds for K = 78, 39, and 26.

The conditional CDFs of durations are then used to obtain the IV estimates.

For the comparative analysis, we consider the daily RV, BV, TRV, MinRV, and MedRV as

benchmarks. All selected return-based IV estimators are constructed from 5, 10, and 15-minute

sampled returns, corresponding to the sampling frequencies of the adaptive PDS with the chosen

values of K. For the truncation threshold of TRV, we follow the instruction in Section 3.3.

Table 7 presents the RMSE results for both duration-based and return-based IV estimators in

the absence of market microstructure noise. Panel A compares their overall performance across
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Table 6: Monte Carlo RMSEs for localized PRV and PBV

Panel A: All Out-of-Sample Days (300 Days)

localized PRV localized PBV

Interval θ = 0.3 0.5 0.7 1.0 θ = 0.3 0.5 0.7 1.0

5 min 14.94 14.09 14.38 14.57 11.51 9.42 9.34 9.68

10 min 13.14 13.59 13.64 13.94 8.53 8.65 8.89 9.12

15 min 12.83 13.13 13.28 13.53 8.24 8.42 8.61 8.83

30 min 12.35 12.54 12.70 12.81 8.04 8.22 8.43 8.63

60 min 12.36 12.39 12.46 12.46 9.11 9.16 9.28 9.43

Panel B: Days with Jumps (51 Days)

localized PRV localized PBV

Interval θ = 0.3 0.5 0.7 1.0 θ = 0.3 0.5 0.7 1.0

5 min 27.28 27.27 28.34 28.52 12.16 9.85 9.66 10.13

10 min 25.92 26.89 26.91 27.30 8.68 8.77 9.06 9.48

15 min 25.35 25.82 26.08 26.31 8.30 8.49 8.74 9.09

30 min 24.08 24.35 24.51 24.51 7.85 8.15 8.36 8.63

60 min 22.16 22.13 22.07 22.03 9.00 9.08 9.24 9.31

Panel C: Days without Jumps (249 Days)

localized PRV localized PBV

Interval θ = 0.3 0.5 0.7 1.0 θ = 0.3 0.5 0.7 1.0

5 min 10.80 9.05 9.02 9.45 11.37 9.33 9.27 9.59

10 min 8.38 8.62 8.79 9.19 8.51 8.64 8.75 9.15

15 min 8.18 8.37 8.57 8.83 8.08 8.21 8.31 8.68

30 min 8.05 8.25 8.43 8.63 8.08 8.23 8.42 8.61

60 min 9.11 9.15 9.26 9.35 8.91 9.15 9.19 9.35

RMSE results (×102) for the localized pre-averaged realized volatility (PRV) and bipower variation (PBV) constructed from

all second-by-second observations. The DGP follows the Heston model in Eq. (25) with an additive heterogeneous Gaussian

noise term in Eq. (34). The pre-averaging window is set to dθ
√
kne. The RMSE results are calculated based on the annualized

spot volatility estimate and the local average of all tick-level spot volatilities (as true value) over each equidistant interval.

all out-of-sample days, which demonstrates that the duration-based estimators, derived from four

different duration models, consistently outperform return-based estimators with lower RMSEs across

all selected sampling frequencies. On days with jumps (Panel B), the duration-based estimators

exhibit superior robustness. While jump-robust return-based estimators, such as BV and TRV,

show some improvement over the standard RV, their RMSEs remain higher than those of the

duration-based estimators.

Furthermore, we account for the impact of market microstructure noise by incorporating the

additive heterogeneous Gaussian noise term in Eq. (34). In Table 8, we include all duration-based

and return-based IV estimators from Table 7, while also adding pre-averaged estimators, specifically

PRV and PBV. Both of them are constructed from the “tick-level” second-by-second and “finely

sampled” 5-second price observations. Compared with the noise-free results in Table 7, the presence

of noise only slightly deteriorates the finite-sample performance of both duration-based and return-

based estimators based on sparse sampling. Notably, our duration-based estimators demonstrate

superior robustness and achieve more stable accuracy across various choices of duration models and

sampling frequencies.

While the pre-averaged estimators are specifically designed to mitigate the impact of noise

and to utilize the most granular information, our duration-based estimators achieve RMSE results
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Table 7: Monte Carlo RMSEs for IV estimation

Panel A: All Out-of-Sample Days (300 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV

78 2.60 2.06 2.06 2.05 6.37 3.01 2.78 3.42 2.90

39 2.19 2.21 2.21 2.13 7.07 4.15 3.97 5.09 4.23

26 2.41 2.40 2.29 2.25 7.57 4.84 4.38 5.31 4.90

Panel B: Days with Jumps (51 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV

78 2.59 1.90 1.90 1.88 14.51 3.94 3.99 3.38 2.97

39 2.03 2.13 2.13 1.99 15.37 4.91 4.41 4.62 3.86

26 2.26 2.37 2.30 2.08 16.31 7.29 5.77 5.97 6.29

Panel C: Days without Jumps (249 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV

78 2.61 2.09 2.09 2.60 2.41 2.78 2.81 3.42 2.88

39 2.22 2.23 2.23 2.16 3.43 3.98 3.87 5.18 4.31

26 2.45 2.40 2.29 2.26 3.80 4.16 4.04 5.17 4.56

RMSE results for both duration-based and return-based IV estimators in the absence of market microstructure nose. The

duration-based estimators are derived from four parametric duration models: (i) the multiplicative ACD model, (ii) the log-

ACD model, (iii) the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃ model in Eq. (21). The DGP follows the

Heston model in Eq. (25). Durations are obtained with the K-adaptive thresholds for K = 78, 39, and 26. For comparison,

all selected return-based IV estimators are constructed from 5, 10, and 15-minute sampled returns, which maintain the same

sampling frequencies as the adaptive PDS. The RMSE results are calculated based on based on the annualized IV estimates for

300 out-of-sample days.

comparable to those of PBV and outperform PRV, particularly on days with jumps. These results

highlight the robustness and effectiveness of our duration-based method as a reliable alternative to

return-based approaches for high-frequency IV estimation.

4 Empirical Analysis

In this section, we first utilize our duration-based IV estimator as the basis for daily volatility

forecasting under the HAR framework for the SPDR S&P 500 ETF Trust (SPY), which is the best-

recognized and oldest U.S. listed ETF and by far the most widely traded S&P 500 ETF. Subsequently,

we employ our duration-based spot volatility estimator to assess how intraday volatility responds to

some specific macroeconomic events, such as FOMC news announcements.

4.1 Overview

We obtain all high-frequency transaction records of SPY from the daily Trade and Quote (TAQ)

dataset, with the sample period ranging from January 2, 2014 to December 30, 2022. The tick-by-tick

transactions are timestamped in milliseconds until mid-2015 and in microseconds since then.7 As

is standard in empirical research with TAQ data, we use the filters as in Barndorff-Nielsen et al.

(2009) to eliminate data errors, remove all transactions in the original record that are later corrected,

cancelled or otherwise invalidated. In addition, we remove all trading days with an early market
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Table 8: Monte Carlo RMSEs for IV estimation under market microstructure noise

Panel A: All Out-of-Sample Days (300 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV K PRV PBV

78 2.85 2.65 2.64 2.56 6.71 3.49 3.04 3.91 3.41 23,400 6.43 2.24

39 2.86 2.69 2.68 2.66 7.21 4.69 3.99 5.32 4.71 4,680 6.64 2.83

26 3.01 2.82 2.81 2.76 8.13 5.43 4.79 6.34 5.60 – – –

Panel B: Days with Jumps (51 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV K PRV PBV

78 2.86 2.73 2.70 2.64 15.05 4.58 3.07 3.59 3.17 23,400 15.00 2.66

39 2.86 2.70 2.68 2.65 15.45 6.99 4.49 6.71 6.04 4,680 15.14 3.57

26 2.99 2.81 2.80 2.72 17.04 7.49 5.34 7.08 6.44 – – –

Panel C: Days without Jumps (249 Days)

Duration-based estimators Return-based estimators

K (i) (ii) (iii) (iv) RV BV TRV MinRV MedRV K PRV PBV

78 2.84 2.64 2.62 2.54 2.81 3.23 3.03 3.97 3.46 23,400 1.96 2.14

39 2.86 2.69 2.68 2.66 3.71 4.06 3.89 4.98 4.39 4,680 2.50 2.65

26 3.02 2.83 2.82 2.76 4.49 4.90 4.67 6.18 5.42 – – –

RMSE results for both duration-based and return-based IV estimators in the presence of market microstructure nose. The

duration-based estimators are derived from four parametric duration models: (i) the multiplicative ACD model, (ii) the log-

ACD model, (iii) the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃ model in Eq. (21). The DGP follows the

Heston model in Eq. (25) with an additive heterogeneous Gaussian noise term in Eq. (34). Durations are obtained with the

K-adaptive thresholds for K = 78, 39, and 26. For comparison, all selected return-based IV estimators are constructed from

5, 10, and 15-minute sampled returns, which maintain the same sampling frequencies as the adaptive PDS. For PRV and PBV,

the pre-averaging window is set to dθ
√
ne with θ = 0.5. The RMSE results are calculated based on based on the annualized IV

estimates for 300 out-of-sample days.

closure, and restrict our sample to transactions between 9:30:00 – 16:00:00 Eastern Time (ET) for

all individual stocks.

To obtain the durations with the adaptive PDS, we utilize all trading days from January 2014

to December 2016 as the burn-in period, which allows us to predict the first K-adaptive daily

threshold in 2017. Fig. 5 compares the autocorrelations of log-durations (from 2017 to 2022, 1499

days in total) obtained with the predicted daily thresholds (with K = 78) to those obtained with a

fixed threshold for all days. It is notable that the utilization of daily adaptive thresholds effectively

alleviates the long memory observed in log-durations over extended multi-day periods.

As an example, we estimate the log-ACD-GARCH-s, s̃ model in Eq. (21) via MLE with all

log-durations from 2017 to 2022. In line with Section 3, we select the lags (1, 1) for both the ACD

and GARCH parts, with second-order flexible-Fourier-form specifications for both seasonality terms

s and s̃. The parameter estimates (with standard errors) are reported in Table 9.8 All parameters

in both ACD and GARCH components are statistically significant. Both the conditional means and

variances demonstrate strong positive autocorrelation. For the intraday seasonality terms s and s̃,

most of the estimated parameters in the first sine-cosine summand (νc,1, νs,1, ν̃c,1) are significant.

Fig. 6 illustrates the intraday seasonality for the conditional mean and variance of durations (with

K = 78), respectively.
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Figure 5: Correlograms of log-durations obtained with (a) a fixed threshold and (b) the predicted daily thresholds

with K = 78. We choose the fixed threshold as the mean value of ex-post K-adaptive thresholds in Eq. (18) for all

trading days.

Table 9: Parameter estimates of the log-ACD-GARCH-s, s̃ model

Parameters K = 78 K = 39 K = 26 Parameters K = 78 K = 39 K = 26

φ1 0.9774 0.9185 0.9271 α1 0.0924 0.0945 0.0514

(0.0007) (0.0142) (0.0032) (0.0029) (0.0091) (0.0037)

θ1 -0.7668 -0.6674 -0.6558 β1 0.6883 0.5779 0.8511

(0.0028) (0.0142) (0.0073) (0.0127) (0.1317) (0.0146)

ν0 -0.1063 0.0266 -0.1419 ν̃0 0.4172 0.5682 0.2273

(0.0126) (0.1591) (0.0214) (0.0273) (0.1504) (0.0164)

ν1 1.4692 2.7307 3.5099 ν̃1 -0.9631 -0.9972 -0.8827

(0.0716) (0.6385) (0.0890) (0.1150) (0.1034) (0.0493)

ν2 -1.5433 -2.7181 -3.4330 ν̃2 0.9999 0.9994 0.9996

(0.0721) (0.7036) (0.0971) (0.1130) (0.1121) (0.0514)

νc,1 0.1306 0.2147 0.2806 ν̃c,1 -0.1166 -0.1599 -0.1104

(0.0076) (0.0754) (0.0098) (0.0111) (0.0431) (0.0062)

νc,2 0.0020 0.0501 0.0886 ν̃c,2 0.0022 -0.0257 0.0380

(0.0020) (0.0336) (0.0066) (0.0042) (0.0201) (0.0067)

νs,1 0.0322 0.0643 0.0813 ν̃s,1 0.0018 0.0040 -0.0064

(0.0024) (0.0244) (0.0048) (0.0043) (0.0189) (0.0042)

νs,2 -0.0029 0.0204 0.0318 ν̃s,2 0.0273 0.0620 0.0339

(0.0017) (0.0153) (0.0051) (0.0034) (0.0329) (0.0063)

Total No. of durations 111716 52015 34079

log-likelihood -169462 -79913 -53264

Parameter estimates (standard errors in parentheses) for the log-ACD-GARCH-s, s̃ model in Eq. (21). The white noise ud,i is

assumed to follow a standard normal distribution. We select the lags (1, 1) for both the ACD and GARCH components, and

utilize the second-order flexible-Fourier-form specifications in Eq. (22) with Q = 2 for both seasonality terms s and s̃.

4.2 Daily Volatility Forecasting

We denote the benchmark IV estimator at day d by V̂ ∗d , and V̂d represents a generic IV estimator.

We define the following moving averages of V̂d as:

V̂
(w)
d =

1

5

5∑
i=1

V̂d−i+1 and V̂
(m)
d =

1

22

22∑
i=1

V̂d−i+1, (36)
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Figure 6: Intraday seasonality exp(sd,i) and exp(s̃d,i) for the conditional mean and variance of durations (with

K = 78). The parameter estimates are reported in Table 9.

where V̂
(w)
d represents the one-week average and V̂

(m)
d denotes the one-month average of daily IV

estimates, respectively. The standard one-day-ahead HAR model has the following structure:

V̂d = ω + β(d)V̂d−1 + β(w)V̂
(w)
d−1 + β(m)V̂

(m)
d−1 + εd. (37)

As demonstrated in prior empirical studies, incorporating a volatility measure of the continuous

component on the right-hand side (RHS) can effectively improve the predictive power of the HAR

model for the left-hand side (LHS) target variable V̂ ∗d (Andersen et al., 2007a). In this section, we

evaluate the predictive accuracy of HAR models augmented with various IV measures, including

our duration-based IV estimators derived from different parametric duration models.

To construct our duration-based IV estimators with the adaptive PDS, we utilize all trading

days from January 2014 to December 2016 as the burn-in period, which allows us to forecast the

first K-adaptive daily threshold in 2017. The initial in-sample period includes 1000 days from

January 3, 2017. Consistent with the Monte Carlo simulations in Section 3, we estimate four

parametric duration models, i.e., (i) the multiplicative ACD model, (ii) the log-ACD model, (iii)

the log-ACD-GARCH model, and (iv) the log-ACD-GARCH-s, s̃ model in Eq. (21), to obtain all

IV estimates in the initial in-sample period, and then forecast the first out-of-sample IV proxy (on

the 1001-th day) with the HAR model in Eq. (37). This procedure of in-sample estimation and

out-of-sample forecasting is repeated in both rolling-window (RW) and expanding-window (EW)

fashion. For the actual values of out-of-sample duration-based IV estimates on subsequent days, we

repeatedly re-estimate the duration models with all durations in the corresponding “in-sample plus

one day” period.

In addition to the standard HAR model augmented with duration-based estimators and several

return-based estimators discussed in Section 3.4, we also consider two important extensions of the

original HAR-RV model of Corsi (2009). The first is the quarticity expanded HAR (HARQ) model

of Bollerslev et al. (2016). Motivated by the fact that the persistence of RV is influenced by temporal

variations in its measurement errors, the HARQ-RV model incorporates a time-varying coefficient
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for the previous day’s RV on the RHS. The coefficient is determined by realized quarticity (RQ),

which captures the heteroskedasticity in the measurement error:9

V̂d = ω +
(
β(d) + β(q)

√
RQd−1

)
RVd−1 + β(w)RV

(w)
d−1 + β(m)RV

(m)
d−1 + εd, (38)

where RQd = 3−1n
∑n

i=1 r
4
d,i. Inspired by the intuition that “good” and “bad” volatilities have

different effects, the semivariance HAR (SHAR) model of Patton and Sheppard (2015) stands out

as another important HAR-RV extension:

V̂d = ω + β
(d)
− RS−d−1 + β

(d)
+ RS+

d−1 + β(w)RV
(w)
d−1 + β(m)RV

(m)
d−1 + εd, (39)

where the realized semivariances (RS) are introduced by Barndorff-Nielsen et al. (2010):

RS−d =

n∑
i=1

r2
d,i1{rd,i<0} and RS+

d =

n∑
i=1

r2
d,i1{rd,i>0}. (40)

In this section, we adopt K = 78 for the adaptive PDS algorithm, which aligns with the sampling

frequency of the commonly used 5-minute CTS. With a uniform threshold applied throughout the

day, an important property of PDS is that more samples are generated during periods of higher

volatility. An alternative approach for achieving a similar importance-sampling effect adapted to the

volatility level is tick-time sampling (TTS), also known as transaction-time sampling. Under TTS,

each interval contains a fixed number of trades (ticks) rather than a fixed duration, which makes it

convenient to control the sample size (Andersen et al., 2012; Hautsch and Podolskij, 2013). For our

empirical application, we construct the return-based estimators from returns sampled under both

CTS and TTS, with a sampling frequency of K = 78. Moreover, we construct both PRV and PBV

from all available tick-level transaction data with the pre-averaging approach of Jacod et al. (2009).

We evaluate the out-of-sample forecasting performance via two widely used loss functions, i.e.,

the mean squared error (MSE) and the quasi-likelihood (QLIKE) function:

MSE =
1

M

M∑
d=1

(V̂ ∗d − Ṽ ∗d )2 and QLIKE =
1

M

M∑
d=1

(
V̂ ∗d

Ṽ ∗d
− ln

(
V̂ ∗d

Ṽ ∗d

)
− 1

)
, (41)

where V̂ ∗d and Ṽ ∗d denote the ex-post estimate and the forecast of the target IV proxy on day d,

respectively, and M represents the total number of out-of-sample days.

Table 10 presents the MSE and QLIKE results for one-day-ahead out-of-sample forecasts of

two target IV proxies: (i) 5-minute RV and (ii) duration-based IV estimator derived from the

log-ACD-GARCH-s, s̃ model with K = 78. Among all models, the HAR model augmented with

our duration-based IV estimators (referred to as the “duration-based HAR”) consistently achieves

substantially lower MSE and relatively reduced QLIKE results, as shown in Panel A. Since the MSE

function heavily penalizes outliers and is highly sensitive to excessively inaccurate forecasts, the

results in Panel A suggest that the duration-based HAR models effectively reduce the occurrence of
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Table 10: Daily out-of-sample HAR volatility forecasts

RV log-ACD-GARCH-s, s̃

RW EW RW EW

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

Panel A: Duration-based estimators with adaptive PDS (K = 78)

HAR-ACD 2.68 0.42 2.67 0.38 1.52 0.15 1.52 0.14

HAR-log-ACD 2.66 0.42 2.65 0.39 1.51 0.15 1.50 0.15

HAR-log-ACD-GARCH 2.65 0.41 2.64 0.38 1.50 0.15 1.50 0.14

HAR-log-ACD-GARCH-s, s̃ 2.66 0.41 2.65 0.38 1.50 0.15 1.50 0.14

Panel B: Return-based estimators with CTS (5-minute)

HAR-RV 2.96 0.44 2.95 0.41 1.86 0.19 1.86 0.19

HAR-BV 2.99 0.44 2.99 0.41 1.88 0.19 1.88 0.18

HAR-MinRV 3.01 0.46 3.01 0.44 1.88 0.20 1.89 0.19

HAR-MedRV 2.96 0.43 2.96 0.41 1.86 0.18 1.86 0.18

HAR-TRV 2.87 0.42 2.87 0.40 1.75 0.17 1.76 0.16

HARQ-RV 3.07 0.38 3.05 0.36 1.93 0.18 1.91 0.18

SHAR-RV 2.80 0.42 2.75 0.41 1.76 0.18 1.73 0.17

Panel C: Return-based estimators with TTS (K = 78)

HAR-RV 2.81 0.42 2.80 0.39 1.65 0.17 1.65 0.16

HAR-BV 2.92 0.44 2.91 0.40 1.74 0.17 1.73 0.16

HAR-MinRV 3.01 0.45 3.00 0.40 1.82 0.18 1.82 0.17

HAR-MedRV 2.88 0.42 2.86 0.39 1.73 0.17 1.72 0.16

HAR-TRV 2.79 0.43 2.78 0.40 1.63 0.17 1.63 0.16

HARQ-RV 3.40 0.37 3.31 0.34 1.91 0.16 1.86 0.16

SHAR-RV 2.73 0.41 2.72 0.38 1.60 0.16 1.60 0.15

Panel D: Noise-corrected return-based estimators with all tick-level data

HAR-PRV 2.79 0.40 2.77 0.36 1.63 0.15 1.62 0.14

HAR-PBV 2.82 0.40 2.80 0.37 1.64 0.15 1.63 0.14

HAR-PTRV 2.82 0.40 2.80 0.37 1.64 0.15 1.63 0.14

MSE (×105) and QLIKE of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust (SPY). The HAR model

is re-estimated via OLS with both rolling windows and expanding windows, respectively. Durations are obtained with the

K-adaptive thresholds for K = 78. Return-based estimators are constructed from returns sampled with both CTS and TTS

with the same sampling frequency. For PRV and PBV, the pre-averaging window is set to dθ
√
ne with θ = 0.5.

extremely misinformative forecasts in the tails.

In Panels B and C, which evaluate standard HAR models with return-based estimators, the

HAR-TRV model achieves the lowest MSEs across all cases. For the HAR-RV extensions, both the

HARQ and SHAR models deliver improved QLIKE results compared to the original HAR-RV model,

while the HARQ model tends to produce more inaccurate forecasts in the tails, as indicated by its

higher MSE results. A comparison between Panels B and C reveals that HAR models augmented

with TTS-based realized estimators outperform those with CTS-based estimators. This improvement

highlights the advantages of incorporating trade intensity adapted to the volatility level, which

helps mitigate the underperformance of return-based estimators, aligning with the prior findings

by Andersen et al. (2012) and Hautsch and Podolskij (2013). Finally, as shown in Panel D, the

HAR-PRV and HAR-PBV models, which utilize all tick-level transaction data, offer substantial

improvements over both CTS- and TTS-based methods, which achieve performance comparable to

the duration-based HAR models.

Table 11 reports the p-values of the modified Diebold-Mariano test based on MSE, which compares
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Table 11: Diebold-Mariano p-values for HAR-log-ACD-GARCH-s, s̃ volatility forecasts

RV log-ACD-GARCH-s, s̃

RW EW RW EW

Panel A: Return-based estimators with CTS (5-minute)

HAR-RV 0.0627 0.0546 0.0076 0.0065

HAR-BV 0.0237 0.0200 0.0038 0.0031

HAR-MinRV 0.0159 0.0132 0.0025 0.0019

HAR-MedRV 0.0320 0.0271 0.0073 0.0058

HAR-TRV 0.0794 0.0685 0.0128 0.0107

HARQ-RV 0.0081 0.0080 0.0020 0.0013

SHAR-RV 0.1569 0.1842 0.0468 0.0649

Panel B: Return-based estimators with TTS (K = 78)

HAR-RV 0.1710 0.1630 0.1118 0.1099

HAR-BV 0.0357 0.0324 0.0276 0.0275

HAR-MinRV 0.0201 0.0180 0.0155 0.0129

HAR-MedRV 0.1060 0.1104 0.0525 0.0560

HAR-TRV 0.1290 0.1254 0.1125 0.1069

HARQ-RV 0.0063 0.0083 0.0137 0.0184

SHAR-RV 0.2724 0.2465 0.2788 0.2932

Panel C: Noise-corrected return-based estimators with all tick-level data

HAR-PRV 0.2744 0.3057 0.1165 0.1345

HAR-PBV 0.1331 0.1500 0.0647 0.0747

Diebold-Mariano p-values for HAR-log-ACD-GARCH-s, s̃ volatility forecasts. The null hypothesis is that

the accuracy of duration-based IV forecasts derived from the HAR-log-ACD-GARCH-s, s̃ model is inferior

to the forecasts from an alternative return-based HAR model.

the predictive accuracy of the duration-based HAR model (based on the log-ACD-GARCH-s, s̃

model) with alternative return-based models. Across all panels in Table 11, most p-values are

well below 50%, which indicates a consistent preference for the duration-based HAR forecasts.

In Panel A, the p-values for most HAR models with CTS-based realized estimators are below

conventional significance levels, particularly for HAR-MinRV, HAR-BV, and HARQ-RV. Similar

trends are observed for HAR models with TTS-based estimators in Panel B, although the p-values

are generally higher compared to their CTS-based counterparts. In Panel C, the noise-corrected

PRV and PBV estimators further reduce the gap between return-based and duration-based HAR

forecasts, while they do not surpass the duration-based HAR model in terms of forecast accuracy.

Overall, the findings highlight the superior forecasting performance of the duration-based HAR

model, particularly compared to return-based models that are less adaptive to intraday volatility

dynamics.

To further investigate the impact of price jumps on both duration-based and return-based HAR

models, we partition the out-of-sample period into two complementary subsets of days: those with

jumps and those without. The presence of jumps is identified with the statistical test proposed

by Aı̈t-Sahalia et al. (2012). Table 12 reports the MSE results for all selected HAR models on

each subset. Across all models, MSEs are consistently higher on days with jumps, while the

duration-based HAR models, particularly the one based on the log-ACD-GARCH-s, s̃ model, are

less affected and consistently outperform all return-based models in the presence of jumps.

Motivated by the results in Table 12, we extend the standard HAR model by incorporating
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Table 12: MSE results of out-of-sample HAR volatility forecasts on days with/without jumps

RV log-ACD-GARCH-s, s̃

RW EW RW EW

Jumps? Yes No Yes No Yes No Yes No

Panel A: Duration-based estimators with adaptive PDS (K = 78)

HAR-ACD 3.13 2.53 3.11 2.53 1.92 1.39 1.91 1.40

HAR-log-ACD 3.10 2.51 3.08 2.52 1.89 1.39 1.88 1.39

HAR-log-ACD-GARCH 3.05 2.52 3.02 2.52 1.88 1.37 1.87 1.38

HAR-log-ACD-GARCH-s, s̃ 2.98 2.54 2.95 2.54 1.82 1.39 1.81 1.40

Panel B: Return-based estimators with CTS (5-minute)

HAR-RV 3.47 2.78 3.43 2.79 2.28 1.72 2.25 1.73

HAR-BV 3.37 2.87 3.33 2.88 2.20 1.77 2.17 1.78

HAR-MinRV 3.35 2.89 3.33 2.90 2.18 1.78 2.16 1.80

HAR-MedRV 3.41 2.82 3.38 2.82 2.25 1.73 2.21 1.74

HAR-TRV 3.21 2.76 3.19 2.77 2.16 1.62 2.14 1.63

HARQ-RV 3.49 3.03 3.44 2.92 2.43 1.76 2.38 1.76

SHAR-RV 3.21 2.69 3.12 2.63 2.15 1.63 2.09 1.61

Panel C: Return-based estimators with TTS (K = 78)

HAR-RV 3.67 2.52 3.63 2.52 2.40 1.41 2.37 1.41

HAR-BV 3.83 2.62 3.80 2.61 2.49 1.49 2.46 1.49

HAR-MinRV 3.91 2.71 3.86 2.71 2.55 1.58 2.51 1.58

HAR-MedRV 3.73 2.59 3.69 2.59 2.47 1.48 2.43 1.48

HAR-TRV 3.53 2.54 3.50 2.54 2.28 1.42 2.26 1.42

HARQ-RV 4.74 2.96 4.56 2.90 3.06 1.53 2.92 1.51

SHAR-RV 3.23 2.44 3.19 2.43 2.14 1.31 2.10 1.30

Panel D: Noise-corrected return-based estimators with all tick-level data

HAR-PRV 3.11 2.68 3.08 2.66 2.05 1.49 2.02 1.49

HAR-PBV 3.10 2.73 3.07 2.71 2.02 1.52 1.99 1.51

MSE (×105) of daily out-of-sample volatility forecasts on days with and without jumps for the SPDR S&P 500 ETF Trust

(SPY). The HAR model is re-estimated via OLS with both rolling windows and expanding windows, respectively. Durations

are obtained with the K-adaptive thresholds for K = 78. Return-based estimators are constructed from returns sampled with

both CTS and TTS with the same sampling frequency. For PRV and PBV, the pre-averaging window is set to dθ
√
ne with

θ = 0.5. Jumps are identified with the statistical test of Aı̈t-Sahalia et al. (2012).

both the continuous and jump components of total variation on the RHS, i.e., the HAR-J model of

Andersen et al. (2007a). Specifically, for all standard HAR models with jump-robust IV estimators,

referred to as HAR-CV models, we extend them to HAR-J-CV models by including J2
d = max{RVd−

CVd, 0} on the RHS to explicitly account for jump variation. Furthermore, Patton and Sheppard

(2015) demonstrate that it is beneficial to include signed jump variation components:

∆J2+
d = (RS+

d − RS−d )1{RS+
d >RS−

d }
and ∆J2−

d = (RS+
d − RS−d )1{RS+

d <RS−
d }
, (42)

which is denoted as the HAR-SJ model. Table 13 presents the MSE and QLIKE results for all

selected HAR-J and HAR-SJ models. The results indicate that incorporating (signed) jump variation

significantly reduces both MSE and QLIKE for both duration-based and return-based HAR models,

with duration-based models showing more pronounced benefits. Among the HAR-J models, the

HAR-J-log-ACD-GARCH-s, s̃ achieves the lowest MSE values. Similarly, within the HAR-SJ models,

the one based on the log-ACD-GARCH-s, s̃ model outperforms all others with both the lowest MSE
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and QLIKE results across all cases.

Table 13: Daily out-of-sample HAR-J volatility forecasts

RV log-ACD-GARCH-s, s̃

RW EW RW EW

MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE

Panel A: Duration-based estimators with adaptive PDS (K = 78)

HAR-J-ACD 2.07 0.27 2.08 0.26 1.42 0.14 1.42 0.13

HAR-J-log-ACD 2.08 0.27 2.08 0.26 1.42 0.13 1.42 0.13

HAR-J-log-ACD-GARCH 2.02 0.26 2.02 0.25 1.38 0.13 1.39 0.12

HAR-J-log-ACD-GARCH-s, s̃ 2.01 0.26 2.02 0.25 1.38 0.13 1.38 0.12

HAR-SJ-ACD 1.72 0.23 1.73 0.22 1.16 0.11 1.17 0.10

HAR-SJ-log-ACD 1.73 0.22 1.73 0.21 1.17 0.10 1.17 0.10

HAR-SJ-log-ACD-GARCH 1.71 0.22 1.71 0.21 1.14 0.10 1.15 0.10

HAR-SJ-log-ACD-GARCH-s, s̃ 1.70 0.22 1.71 0.21 1.14 0.10 1.15 0.10

Panel B: Return-based estimators with CTS (5-minute)

HAR-J-BV 2.45 0.31 2.46 0.29 1.80 0.17 1.81 0.16

HAR-J-MinRV 2.47 0.32 2.48 0.30 1.81 0.17 1.83 0.17

HAR-J-MedRV 2.45 0.30 2.46 0.29 1.79 0.17 1.80 0.16

HAR-J-TRV 2.30 0.27 2.31 0.26 1.66 0.15 1.67 0.15

HAR-SJ-BV 1.92 0.25 1.94 0.24 1.43 0.13 1.45 0.13

HAR-SJ-MinRV 1.92 0.26 1.93 0.24 1.45 0.14 1.47 0.14

HAR-SJ-MedRV 1.89 0.25 1.94 0.25 1.43 0.13 1.44 0.13

HAR-SJ-TRV 1.84 0.23 1.90 0.24 1.35 0.12 1.36 0.12

Panel C: Return-based estimators with TTS (K = 78)

HAR-J-BV 2.23 0.28 2.24 0.27 1.59 0.15 1.59 0.14

HAR-J-MinRV 2.30 0.29 2.31 0.28 1.67 0.15 1.67 0.15

HAR-J-MedRV 2.26 0.29 2.26 0.27 1.61 0.15 1.62 0.15

HAR-J-TRV 2.18 0.29 2.18 0.27 1.52 0.15 1.53 0.14

HAR-SJ-BV 1.90 0.26 1.90 0.25 1.31 0.12 1.32 0.12

HAR-SJ-MinRV 1.99 0.27 1.99 0.26 1.39 0.13 1.39 0.13

HAR-SJ-MedRV 1.91 0.26 1.91 0.25 1.34 0.13 1.34 0.13

HAR-SJ-TRV 1.81 0.25 1.82 0.24 1.24 0.12 1.25 0.12

Panel D: Noise-corrected return-based estimators with all tick-level data

HAR-J-PBV 2.18 0.25 2.18 0.25 1.48 0.14 1.48 0.14

HAR-SJ-PBV 1.72 0.22 1.73 0.22 1.19 0.11 1.19 0.11

MSE (×105) and QLIKE of daily out-of-sample volatility forecasts for the SPDR S&P 500 ETF Trust (SPY). Both HAR-J

and HAR-SJ models, which follow Andersen et al. (2007a) and Patton and Sheppard (2015), are re-estimated via OLS with

both rolling windows and expanding windows, respectively. Durations are obtained with the K-adaptive thresholds for K = 78.

Return-based estimators are constructed from returns sampled with both CTS and TTS with the same sampling frequency. For

PRV and PBV, the pre-averaging window is set to dθ
√
ne with θ = 0.5.

4.3 Intraday Volatility Dynamics Around FOMC Announcements

The short-term impact of macroeconomic news announcements on high-frequency intraday price,

volume and volatility dynamics has received a lot of attention from the financial economics and

econometrics literature (Andersen et al., 2003b, 2007b; Lee and Mykland, 2008; Lee, 2012; Bollerslev

et al., 2018, 2021). Some recent macroeconomics literature also identifies monetary shocks based on

the assumption that the market volatility tends to spike during specific public news announcements

such as those associated with FOMC meetings (Nakamura and Steinsson, 2018). Here we apply
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our duration-based spot volatility estimator to examine the short-term impact of FOMC news

announcements on intraday volatility dynamics.

We split our sample period from 2017 to 2022 (with the burn-in period before 2017 excluded)

into two subsets: 49 days with pre-scheduled FOMC announcements (“FOMC days”), and those

without FOMC announcements (“non-FOMC days”). Fig. 7 illustrates the average annualized

spot volatility estimates for 5-minute intervals on both FOMC and non-FOMC days, respectively,

calculated based on the log-ACD-GARCH-s, s̃ model with K = 78.10

The results reveal an immediate and pronounced volatility spike in the 5-minute interval starting

at 14:00 ET on FOMC days, but it is absent on non-FOMC days. Moreover, post-announcement

volatility remains significantly elevated on FOMC days compared to non-FOMC days. These

empirical findings are in line with Bollerslev et al. (2021, 2024).

In addition, the estimated spot volatilities across all 5-minute intervals exhibit a clear asymmetric

U-shaped or reverse J-shaped pattern over trading hours. This pattern aligns with our simulation

specifications in Section 3 and corroborates empirical findings in the literature, e.g., Christensen

et al. (2018), and Andersen et al. (2018, 2019, 2024).

10:00 11:00 12:00 13:00 14:00 15:00 16:00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 7: Annualized spot volatility estimates based on the log-ACD-GARCH-s, s̃ model for each equidistant intervals

with ∆ = 5 minutes. Durations are obtained with the K-adaptive thresholds with K = 78.

5 Conclusions

This paper introduces an innovative framework for duration-based volatility estimation. We employ

daily adaptive thresholds to separate daily volatility dynamics from the intraday durations over

an extended period spanning multiple days. Both spot and integrated volatility estimators are

formulated based on classical parametric duration models. This methodology to disentangle daily

and intraday volatility dynamics greatly enhances the data availability for model estimation, which
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overcomes the limitations of sparse sampling widely adopted in both the financial econometrics

literature and by practitioners, and potentially leads to more accurate volatility estimates. The

simulation results demonstrate the superior finite-sample performance of our duration-based volatil-

ity estimators compared to selected competitors. In an empirical illustration of daily volatility

forecasting, we find that the HAR model augmented with our duration-based IV estimator effectively

reduces the occurrence of highly misleading forecasts and improves forecasting accuracy according

to standard out-of-sample loss functions. Furthermore, based on our spot volatility estimator, we

identify an immediate and substantial short-term impact of FOMC news announcements on intraday

volatility.

Notes

1Note that Proposition 1 does not hold under Ft in the sense that Zi is not i.i.d. when conditioned on Ft for

t ∈ (τd,i−1, τd,i), as knowing the value of Xt after τd,i−1 immediately alters the conditional density of Zi. However,

this issue does not arise under F t, since it does not contain the value of Xt between price events.
2This multiplicative decomposition holds exactly when the price process follows a pure-jump process such as a

compounded Poisson process as in Oomen (2006).
3In this section, we also examine three additional duration models within our volatility estimation framework: the

ACD model (with Exp(1) residuals), the log-ACD model, and the log-ACD-GARCH model without seasonality effects.

The parameter estimates for these models are reported in Appendix B.1. Additional simulation results, including

those with different distributions of ud,i, various choices of ACD and GARCH lags, and different values of Q ≥ 1 for

the seasonality terms, which do not alter the qualitative results in this section, are available upon request.
4Alternatively, the “true” σt sampled at the mid-point of each interval can be used, which has minimal impact on

the results presented in the subsequent tables and does not affect our conclusions.
5Furthermore, we also evaluate other benchmarks, including localized versions of the MinRV and MedRV estimators

of Andersen et al. (2012), as well as the differenced-return volatility (DV) estimator of Andersen et al. (2023). The

results for these additional benchmarks are provided in Appendix B.2.
6The simulation of market microstructure noise can be more realistically calibrated to capture several well-

documented empirical features in financial markets, including temporal heteroskedasticity, persistent serial correlation,

intraday seasonality, dependence on the latent efficient price, and rounding errors due to discrete tick sizes. In this

paper, we focus on the widely studied case of i.i.d. additive Gaussian noise and leave more comprehensive calibration

for future research.
7We use the SAS code from Holden and Jacobsen (2014) to extract all tick-by-tick transaction records matched

with relevant ask/bid quotes from the daily TAQ dataset available on the Wharton Research Data Services (WRDS).
8Additional estimation results with various choices of ACD and GARCH lags, and Q ≥ 1 for the seasonality terms,

which do not alter the qualitative results throughout this section, are available upon request.
9Following Bollerslev et al. (2016), the “insanity filter” of Swanson and White (1997) is applied: For each rolling or

expanding window, the minimum, maximum, and average of in-sample estimates are re-calculated. All one-step-ahead

out-of-sample forecasts that are greater (smaller) than the maximum (minimum) in-sample value will be replaced by

the in-sample mean.
10The spot volatility estimates based on alternative duration models are provided in Appendix B.3.
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Appendix A Proofs

A.1 Proof of Proposition 1

Proof. As the claimed result holds for every d = 1, 2, . . ., it suffices to prove the result for d = 1

on the interval [0, 1] with X0 = 0 and some threshold δ adapted to F0, and we shall suppress

the notation of d in this proof for brevity. We start from the celebrated Dambis-Dubins-Schwarz

theorem, which states that all continuous martingales are time-changed Brownian motions under

the IV clock (Barndorff-Nielsen and Shiryaev, 2015), i.e., Xt =
∫ t

0 σsdWs = W̃Vt is a standard

Brownian motion under the V -time Vt =
∫ t

0 σ
2
sds. Consider the price durations (xi)1≤i≤Nd

generated

by Eq. (3), its V -time counterpart can be generated by the same algorithm under a time change:

∆iV = inf
s>0

{∣∣∣W̃Vi−1+s − W̃Vi−1

∣∣∣ ≥ δ} , Vi =

i∑
j=1

∆jV, (A.1)

since the stopping rule commutes with a time change, i.e., |W̃Vi − W̃Vi−1 | = |Xτi −Xτi−1 | = δ. By

the Brownian scaling law:

Zi =
∆iV

δ2
= inf

s>0

{∣∣∣W̃ ∗
Ṽi−1+s

− W̃ ∗
Ṽi−1

∣∣∣ ≥ 1
}
, (A.2)

where W̃ ∗
Ṽt

= δ−2W̃Vt/δ2 is again a Brownian motion that normalizes the stopping threshold to 1.

By the strong Markov property of the Brownian motion, Zi is independent of Fi−1 and δ ∈ F0. The

time homogeneity of Brownian motion implies that Zi must have the same distribution of the first

exit time of a Brownian motion B with respect to a symmetric unit interval, i.e., inft>0{|Bt| ≥ 1},
and hence (Zi) is a sequence of i.i.d. random variables. This completes the proof.

A.2 Proof of Proposition 2

Proof. Similar to the proof of Proposition 1, we shall assume d = 1, X0 = 0, and suppress the

notation of d for brevity. We start with an analysis on the sub-σ-field F t. We clearly have F0 = F0,

which implies that δ ∈ F0. Moreover, N(t) is adapted to F t by construction. Since by assumption

V (t) is adapted to F t, the counting process under the IV clock, Ñ(V (t)), is also adapted to F t.
Specifically, both N(t) and Ñ(V (t)) are F t-submartingales, which implies the following Doob-Meyer

decompositions:

N(t) = M(t) + Λ(t), Ñ(V (t)) = M̃(V (t)) + Λ̃(V (t)), (A.3)

where M(t) = M̃(V (t)) are F t-martingales, and Λ(t) = Λ̃(V (t)) are the compensators for N(t) and

Ñ(V (t)), which are F t-predictable strictly increasing processes with the following representations:

Λ(t) =

∫ t

0
λsds, Λ̃(V (t)) =

∫ V (t)

0
λ̃V (s)dV (s), (A.4)
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where λt and λ̃V (t) are F t-adapted, positive-valued, and càglàd processes known as the F t-conditional

intensity processes of N(t) and Ñ(V (t)), respectively (Hautsch, 2011). Since the two integrals above

are identical for all t, we have for any h:∫ t+h

t
λsds =

∫ V (t+h)

V (t)
λ̃V (s)dV (s). (A.5)

With the definition of conditional intensity (Definition 4.1, Hautsch, 2011), we have for almost all

t ≥ 0:

λt = lim
h↓0

1

h

∫ t+h

t
λsds = lim

h↓0

1

h

∫ V (t+h)

V (t)
λ̃V (s)dV (s)

= lim
h↓0

V (t+ h)− V (t)

h
lim
h↓0

1

V (t+ h)− V (t)

∫ V (t+h)

V (t)
λ̃V (s)dV (s)

= σ2
t λ̃V (t),

(A.6)

where we utilize the fact that σ2
t is a càdlàg process to deduce the first limit above, and one should

verify that both sides of the above equation is adapted to F t by assumption. In particular, the

equality λt = σ2
t λ̃V (t) holds for almost all t ∈ [0, 1] except a set with Lebesgue measure zero, which

is enough to ensure the equality of the corresponding integrals.

To connect the conditional intensity process with the conditional density of the durations, we

use the relationship between the conditional hazard function and the conditional intensity, see, e.g.,

Eq. (4.1) in Hautsch (2011). In detail, we can write λt and λ̃V (t) in terms of the F t-conditional

hazard function of xi and ∆iV , i.e., for all h ∈ (0, xi]:

λτi−1+h =
f(h|F i−1)

1− F (h|F i−1)
, λ̃V (τi−1+h) =

f̃(∆iV (h)|F i−1)

1− F̃ (∆iV (h)|F i−1)
, (A.7)

where f̃(·|F i−1) and F̃ (·|F i−1) are the F i−1-conditional PDF and CDF of ∆iV , respectively.

Integrating the conditional intensities over [τi−1, τi−1 + h], we find that:

− ln(1− F (h|F i−1)) =

∫ h

0

f(s|F i−1)

1− F (s|F i−1)
ds

=

∫ ∆iV (h)

0

f̃(s|F i−1)

1− F̃ (s|F i−1)
ds = − ln(1− F̃ (∆iV (h)|F i−1)),

(A.8)

from which we deduce that F (h|F i−1) = F̃ (∆iV (h)|F i−1) for all i and h ∈ (0, xd,i]. Finally, it suffices

to notice that, conditioning on F i−1 ⊂ Fi−1, it holds that ∆iV
L
= δ2Zi where Zi is independent of

F i−1. Therefore, it implies that

F (h|F i−1) = F̃ (∆iV (h)|F i−1) = FZ(δ−2∆iV (h)), (A.9)

40



which proves Eq. (8) with the inverse function of FZ(·).
For Eq. (9), we utilize the fact that λt = σ2

t λ̃V (t) holds for almost all t (see Eq. (A.6)). Substituting

Eq. (A.7) into this, with the Jacobian transformation δ−2fZ(δ−2∆iV (h)) = f̃(∆iV (h)|F i−1), we

find that, for almost all h ∈ (0, xi]:

σ2
τi−1+h =

λτi−1+h

λ̃V (τi−1+h)

=
f(h|F i−1)

f̃(∆iV (h)|F i−1)
=

δ2f(h|F i−1)

fZ(δ−2∆iV (h))
. (A.10)

Substituting ∆iV (h) = δ2F−1
Z (F (h|F i−1)) into the above yields the desired result. This completes

the proof.

A.3 Proof of Corollary 1

Proof. Similar to the proof of Proposition 1, we shall assume d = 1, X0 = 0, and suppress the

notation of d for brevity. The relation xi = δ2Zi/γi implies the following relations of the conditional

PDF and CDF of xi and Zi:

F (h|F i−1) = FZ

(
hγi
δ2

)
, f(h|F i−1) =

γi
δ2
fZ

(
hγi
δ2

)
. (A.11)

We substitute the above F (h|F i−1) and f(h|F i−1) into Eqs. (8) and (9):

∆iV (h) = δ2Gi(h) = δ2F−1
Z (FZ(δ−2hγi)) = hγi, (A.12)

σ2
τi−1+h =

δ2f(h|F i−1)

fZ(Gi(h))
=

γi−1fZ(δ−2hγi)

fZ(F−1
Z (FZ(δ−2hγi)))

= γi. (A.13)

This completes the proof.
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Appendix B Supplementary Materials

B.1 Estimation Results of Other Duration Models

In addition to the log-ACD-GARCH-s, s̃ model considered in Section 3.2, we also consider three

additional duration models: the ACD model (with Exp(1) residuals), the log-ACD model, and the

log-ACD-GARCH model without seasonality effects. Table B.1 summarizes the parameter estimates

for these models.

Table B.1: Parameter estimates of other models (without seasonality)

Parameters K = 78 K = 39 K = 26 Parameters K = 78 K = 39 K = 26

Panel A: ACD(1, 1)

φ1 0.1299 0.1595 0.1697

(0.0056) (0.0102) (0.0146)

θ1 0.7996 0.6682 0.5285

(0.0085) (0.0205) (0.0368)

ν0 21.3672 105.5405 281.9996

(1.5878) (9.4895) (29.0604)

log-likelihood -156973 -85884 -59351

Panel B: log-ACD(1, 1)

φ1 0.9213 0.8345 0.7130

(0.0046) (0.0023) (0.0279)

θ1 -0.7933 -0.6773 -0.5392

(0.0069) (0.0083) (0.0334)

ν0 0.4193 0.9998 1.8549

(0.0244) (0.0155) (0.1806)

log-likelihood -29166 -14581 -9669

Panel C: log-ACD-GARCH(1, 1, 1, 1)

φ1 0.9222 0.8351 0.7130 α1 0.0108 0.0041 0.0009

(0.0043) (0.0185) (0.0280) (0.0052) (0.0060) (5.0934)

θ1 -0.7951 -0.6786 -0.5393 β1 0.6194 0.8371 0.6882

(0.0066) (0.0182) (0.0336) (0.0237) (0.0753) (0.0105)

ν0 0.4148 0.9962 1.8548 ν̃0 0.2587 0.1142 0.2325

(0.0230) (0.1088) (0.1810) (0.0170) (0.0503) (3.8048)

log-likelihood -29164 -14581 -9669

Parameter estimates (standard errors in parentheses) for three additional duration models: the ACD model (with Exp(1)

residuals), the log-ACD model, and the log-ACD-GARCH model without seasonality effects. The DGP follows the Heston

model in Eq. (25). Durations are obtained with the K-adaptive thresholds for K = 78, 39, and 26.
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B.2 Monte Carlo RMSE Results of Other Estimators

In addition to the localized return-based estimators in Table 3 and Table 5, we also evaluate the

finite-sample performance of the localized versions of MinRV and MedRV proposed by Andersen

et al. (2012), as well as the differenced-return volatility (DV) estimator of Andersen et al. (2023).

The RMSE results for these return-based estimators are reported in Table B.2 and Table B.3,

corresponding to scenarios without and with market microstructure noise, respectively.

Table B.2: Monte Carlo RMSEs for return-based spot volatility estimation

Panel A: All Out-of-Sample Days (300 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 2.15 4.83 11.89 17.02 1.90 4.29 10.79 15.62 2.34 4.37 10.23 14.52

10 min 1.52 3.39 8.43 12.01 1.34 3.00 7.55 10.94 1.95 3.26 7.28 10.36

15 min 1.25 2.76 6.88 9.75 1.10 2.44 6.15 8.78 1.79 2.81 6.00 8.48

30 min 0.89 1.97 4.88 6.88 0.78 1.74 4.31 6.13 1.57 2.22 4.37 6.11

60 min 0.67 1.51 3.73 5.29 0.60 1.33 3.28 4.70 1.33 1.80 3.45 4.74

Panel B: Days with Jumps (51 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 2.24 4.90 12.26 17.51 1.97 4.37 11.10 16.05 2.31 4.49 10.21 14.99

10 min 1.54 3.43 8.67 12.12 1.35 3.10 7.70 11.04 1.88 3.40 7.10 10.70

15 min 1.27 2.83 7.08 9.76 1.12 2.55 6.20 8.87 1.71 2.93 5.90 8.75

30 min 0.87 2.03 4.90 6.72 0.76 1.85 4.16 6.04 1.49 2.29 4.18 6.27

60 min 0.67 1.55 3.85 5.19 0.59 1.39 3.34 4.61 1.27 1.82 3.43 4.88

Panel C: Days without Jumps (249 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 2.13 4.82 11.81 16.92 1.89 4.27 10.73 15.53 2.35 4.34 10.23 14.54

10 min 1.51 3.38 8.38 11.99 1.34 2.98 7.52 10.92 1.96 3.23 7.32 10.28

15 min 1.24 2.75 6.84 9.75 1.10 2.42 6.14 8.76 1.80 2.79 6.02 8.42

30 min 0.89 1.96 4.88 6.91 0.79 1.72 4.34 6.15 1.59 2.20 4.41 6.08

60 min 0.67 1.50 3.71 5.31 0.60 1.32 3.26 4.72 1.34 1.80 3.46 4.71

RMSE results (×102) for the localized return-based estimators based on 1-second, 5-second, 30-second, and 1-minute returns.

The DGP follows the Heston model in Eq. (25). The RMSE results are calculated based on the annualized spot volatility

estimate and the local average of all tick-level spot volatilities (as true value) over each equidistant interval.
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Table B.3: Monte Carlo RMSEs for return-based spot volatility estimation under market microstructure noise

Panel A: All Out-of-Sample Days (300 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 61.61 20.22 15.41 19.25 58.95 19.51 14.48 18.09 26.75 18.01 13.14 16.15

10 min 61.54 19.77 12.62 14.84 58.90 19.15 12.00 13.94 26.75 17.94 11.25 12.73

15 min 61.52 19.62 11.53 12.96 58.88 19.02 11.06 12.21 26.75 17.91 10.56 11.44

30 min 61.50 19.45 10.36 10.86 58.86 18.88 10.07 10.39 26.70 17.84 9.81 9.95

60 min 61.78 19.49 9.89 9.87 59.12 18.93 9.69 9.60 26.33 17.75 9.51 9.30

Panel B: Days with Jumps (51 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 59.83 18.89 15.11 19.20 57.19 18.22 14.06 17.90 25.67 16.81 12.97 16.19

10 min 59.76 18.41 12.20 14.72 57.13 17.81 11.51 13.69 25.68 16.70 10.85 12.56

15 min 59.74 18.28 10.85 12.68 57.11 17.69 10.30 11.91 25.67 16.65 9.94 11.12

30 min 59.72 18.09 9.67 10.65 57.09 17.54 9.30 10.05 25.62 16.58 9.14 9.50

60 min 60.02 18.09 9.22 9.46 57.38 17.55 8.91 8.99 25.22 16.45 8.70 8.80

Panel C: Days without Jumps (249 Days)

localized MinRV localized MedRV localized DV

Interval 1s 5s 30s 1 min 1s 5s 30s 1 min 1s 5s 30s 1 min

5 min 61.96 20.48 15.47 19.26 59.31 19.77 14.53 18.13 26.96 18.25 13.18 16.15

10 min 61.90 20.04 12.70 14.86 59.26 19.41 12.10 13.99 26.97 18.18 11.33 12.77

15 min 61.88 19.88 11.66 13.02 59.24 19.28 11.20 12.27 26.96 18.15 10.69 11.51

30 min 61.86 19.72 10.49 10.90 59.22 19.15 10.22 10.46 26.91 18.09 9.95 10.04

60 min 62.13 19.77 10.02 9.95 59.47 19.20 9.84 9.72 26.55 18.01 9.67 9.40

RMSE results (×102) for the localized return-based estimators based on 1-second, 5-second, 30-second, and 1-minute returns.

The RMSE results are calculated based on the annualized spot volatility estimate and the local average of all tick-level spot

volatilities (as true value) over each interval.
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B.3 Empirical Spot Volatility Estimation with Other Duration Models

Similar to the analysis of intraday volatility around FOMC announcements in Section 4.3, Fig. B.1

presents spot volatility estimates based on three additional duration models: (i) the ACD model,

(ii) the log-ACD model, and (iii) the log-ACD-GARCH model (with no seasonality component).

All these alternative estimators produce relatively consistent results, which further support the

conclusions summarized in Section 4.3. We note that, on FOMC days, the estimates based on

the ACD model exhibit a slightly more pronounced spike compared to those from the other three

models. This minor discrepancy likely reflects finite-sample variation and does not imply any model

deficiency, while it suggests potential scope for refinement in future research.
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Figure B.1: Annualized spot volatility estimates based on (i) the ACD model, (ii) the log-ACD model, and (iii)

the log-ACD-GARCH model (with no seasonality component), for each equidistant intervals with ∆ = 5 minutes.

Durations are obtained with the K-adaptive thresholds with K = 78.
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