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Abstract 

The objective of this paper is to model and solve the hazardous materials distribution problem 

in which a set of orders is serviced by a heterogeneous fleet of tank trucks. The objective of 

the problem is to determine the delivery routes of the trucks so that all the orders are serviced 

at the minimum traversed distance and transportation risk. A new transportation risk measure 

is proposed, which takes into account: i) the population exposed within a load-dependent, 

impacted area around the truck, and ii) the travel speed of the vehicle. Moreover, the proposed 

problem incorporates the effect of the scheduling of the loading operations performed at the 

depot into the routing problem. The proposed problem is modeled by a bi-objective vehicle 

routing and scheduling problem, which apart from determining delivery routes, deals 

simultaneously with the scheduling of the loading operations at the depot. To address the bi-

objective routing and scheduling problem, we have developed an NSGA-II algorithm, known 

as a non-dominated sorting genetic algorithm, with various novel features. The results of the 

performed experiments indicate that the proposed risk measure substantially reduces the 

duration that the population stays under the risk of a HazMat shipment. 
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1. Introduction 

The transportation of hazardous materials (HazMat) is an essential aspect of modern society, 

but it also poses a significant risk to public safety and the environment. A HazMat accident 

may result in environmental and economic damages and put at risk human lives residing within 

an extended area around the accident location. An effective proactive way of mitigating the 

risk associated with HazMat shipments is to incorporate safety criteria and constraints in 

planning transportation activities. HazMat transportation is performed by many different 

means of transport, however we focus our study on road transportation. This type of 

transportation activity accounts for 83 % of the total HazMat quantity transported in the U.S. 

(U.S. DOT, 2017) while road incidents involving HazMat have a share of 93% out of all 

HazMat-related incidents in the U.S. (U.S. DOT, 2022).  

The work presented in this paper is on the Hazardous Materials Vehicle Routing Problem 

(HMVRP) which aims to determine distribution routes for delivering a set of HazMat orders 

by a given fleet of trucks at minimum transportation cost and risk. The HMVRP entails the 

distribution of a diverse set of perilous substances across several sectors, encompassing 

chemicals, healthcare, and manufacturing, like collecting explosive wastes for recycling (Zhao 

& Zhu, 2016) or the distribution of liquefied petroleum gas (LPG) (Panicker & Mohammed, 

2018).  

The field of Hazardous Materials routing problems has witnessed extensive research efforts, 

reflecting its critical importance in ensuring the safe and efficient transportation of hazardous 

materials. A considerable amount of academic research has been devoted to finding optimal 

and safe pathways for transporting hazardous materials through a roadway network (Zero et 

al., 2019; Bronfman et al., 2015; Androutsopoulos & Zografos, 2010; Carotenuto et al., 2007; 

Erkut and Alp, 2007; Frank et al., 2000; Erkut and Glickman, 1997; Zografos & Davis, 1989; 

Batta & Chiu, 1988). The research conducted on this particular subject involves the 

development of bi-objective or dissimilar shortest-path formulations. These approaches are 

specifically designed to improve both the safety and efficiency of single-origin and destination 

transportation routes.  

Moreover, considerable research has been dedicated to determining multi-stop delivery routes 

for the distribution of hazardous materials, referred to as Hazardous Materials Vehicle Routing 

Problems (HMVRP) (Zografos & Androutsopoulos, 2004; Pradhananga et al., 2014). A major 

feature of the HMVRP is that it involves the optimization of both business-related (e.g., 

distance) and transportation risk objectives. Zografos and Androutsopoulos (2004) introduced 

a bi-objective HazMat vehicle routing problem with time windows, aiming to minimize 

transportation costs and risk, the latter being measured by the expected population exposure. It 

is assumed that trucks move from one customer to another through the corresponding shortest-

distance road paths. A sequential insertion algorithm was proposed, enhanced with the 

capability of relocating routed customers. Pradhananga et al. (2014) enhanced the work of 

Zografos and Androutsopoulos (2004) by considering multiple alternative Pareto-efficient road 

paths between any pair of stops. Hence, in addition to forming delivery routes, the problem 

involved the selection of paths between subsequent stops. They proposed a multi-objective Ant 

Colony Optimization algorithm for solving the emerging bi-objective vehicle routing and 

scheduling problem. Wang et al. (2017) introduced an additional safety constraint to avoid the 
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domino effect in case of an accident. They studied a bi-objective hazardous materials vehicle 

routing problem in which the delivery vehicles are forbidden to simultaneously move in the 

same road path. The risk of any solution was expressed by the maximum routes' risk value 

instead of the sum of the routes' risk. The emerging bi-objective routing problem was solved 

by applying the ε-constraint technique, utilizing a big TSP route heuristic algorithm for large-

scale problems. Zhang et al. (2018) provided a refined risk model that incorporates the effect 

of the load of the truck on the potentially impacted area in the event of an accident. The 

emerging HazMat Vehicle Routing problem aims at minimizing the transportation cost and the 

maximum route risk. It was solved by applying the ε-constraint method. Large-scale instances 

were solved by a big TSP route heuristic. Along this line, Bula et al. (2019) model 

transportation risk as a piecewise linear function of the load of the truck. They incorporate this 

model in a heterogeneous bi-objective vehicle routing problem and propose two solution 

algorithms: a multi-objective neighborhood dominance-based algorithm and an ε-constraint 

meta-heuristic. Men et al. (2020) addressed the inherent uncertainty associated with 

transportation risk by considering different scenarios for the HazMat release probability on any 

transportation link in case of an accident. They proposed a robust optimization model for the 

multi-objective vehicle routing problem with time windows that simultaneously minimizes the 

number of vehicles and the transportation risk. They additionally proposed a hybrid 

evolutionary algorithm for addressing the emerging robust counterpart. Chai et al. (2023) 

provided an Analytic Hierarchy Process based model that assesses the driving risk associated 

with a driver, taking into account his driving habits and personal characteristics (e.g., age, 

gender, etc.). Moreover, they incorporate the assignment of drivers to trucks into the bi-

objective HazMat vehicle routing problem. They additionally provide a non-dominated genetic 

algorithm (NSGA-II) for solving the emerging bi-objective vehicle routing problem.  

Finally, the class of HMVRPs has been enhanced with multi-depot vehicle routing problems 

mostly arising in the waste collection systems, wherein multiple waste processing units may 

be involved. Araee et al. (2020) studied the multi-depot vehicle routing problem for collecting 

and moving hazardous waste from the facilities producing the waste to the available depots 

(processing units). Various economic, social, and risk objectives are incorporated. The 

MOPSO and NSGA-II algorithms are employed to address the emerging multi-objective 

problem. Zhang et al. (2023) enhance the HMVRP by allowing trucks to visit multiple depots 

hence modeling the emerging problem as a bi-objective multi-depot heterogeneous vehicle 

routing problem with time windows. In this work, each depot has a certain capacity of HazMat. 

Transportation risk is assumed load-dependent. They proposed a multi-objective hybrid genetic 

algorithm for solving the problem.  

The vast majority of the research on HMVRPs assumes transportation risk as the expected 

consequences of an accident, computed by the product of the probability of an accident times 

the potential (usually worst-case) consequences (e.g., population exposed). This classic 

definition of risk i.e. in Erkut and Verter (1998) where risk is defined as the product of the 

probability of an incident occurrence and the related population exposure, falls short in 

capturing the fact that not all potentially affected areas (and the residing population) stay at 

risk for the same time duration, especially in urban regions. In this work, we enhance the 

transportation risk definition by incorporating the time duration that the population stays at risk 

(i.e., lies within the area of impact of a HazMat accident). The time duration of the population 
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exposed at risk depends on two major factors: i) the travel speed of the truck (the higher the 

speed the lower the time duration that a resident remains within the potentially impacted area) 

Niu and Ukkusuri (2020), after studying real-life data, also conclude that the average speed of 

the vehicle has a significant impact on the non-accident mileage, similarly Wang et al. (2024) 

have established a correlation between average vehicle speed and accident risk. and ii) the load 

of the truck, i.e., the larger the load of the truck, the larger the size of the potential impacted 

area. As travel speeds are assumed to be time-dependent (in this work), the transportation risk 

measure under consideration is time and load-dependent.  

Moreover, this work introduces a feature of Hazardous Materials distribution not previously 

addressed, concerning the effect of the schedule of the loading activities of the trucks at the 

depot on the routing decisions. The process of loading the trucks with the requested quantity 

of hazardous materials is carried out at the depot, using one or more loading facilities/positions. 

When the number of trucks waiting to get loaded exceeds the number of available loading 

facilities, the dispatcher confronts a scheduling problem in which he/she has to assign each 

truck to a loading facility for a certain time period (needed for performing the corresponding 

loading activity). However, the allocation of loading facilities to trucks has a direct effect on 

the earliest departure time of each truck route, a parameter that may severely affect the 

proposed (time-dependent) risk value of the route.  

The work presented in this paper provides a bi-objective time-dependent vehicle routing and 

scheduling problem that aims to minimize the traveled distance and the total time duration of 

the population exposure due to hazardous materials shipments (risk metric). In addition to 

determining delivery routes, the proposed problem aims to provide the schedule of the 

corresponding loading activities. An NSGA-II (Non-dominated Sorting Genetic Algorithm II) 

algorithm with various novel features has been developed to address the proposed problem.  

The remainder of this paper includes four sections. Section two discusses the major features 

of the proposed Hazardous Materials Vehicle Routing and Scheduling Problem. Section three 

presents the heuristic algorithm developed to address the proposed problem. In section four, 

we provide and discuss our computational experiments and results. Finally, in section five, we 

provide concluding remarks and outline future research directions. 

 

2. Problem Definition 

We assume a set of customers’ orders for a given Hazardous Material. Each order 𝑖 involves 

quantity 𝑤𝑖. The service time of customer 𝑖 is denoted by 𝑡𝑖
𝑠. The orders are serviced by a 

heterogeneous fleet of trucks 𝑣 ∈ 𝑉 located in a single depot. Each truck has a capacity of 𝑄𝑣. 

The objective of the problem is to determine a set of truck routes starting and terminating at 

the depot under the following constraints: 

- Each order is delivered by a single truck through a single visit. 

- Each truck is used at most once. 

- The trucks move between stops (i.e., customers’ premises and the depot) 

through the shortest-distance roadway paths. 

- The trucks start their route at the depot and return to it within the time window 

[𝑎𝑜 ,  𝑏𝑜]. 
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The ordered quantities are loaded on the trucks within the day of delivery through a limited 

number 𝜉 of loading positions/stations located at the depot. Each loading position can serve up 

to one truck at a time with a fixed flow rate 𝜌. Each truck is served entirely by a single loading 

position. When the number of trucks needed is higher than the number of loading positions, a 

scheduling problem arises involving the allocation of every engaged truck to a single loading 

position for a period of time, referred to as loading time. To facilitate the allocation of trucks 

to loading positions, the daily time horizon is partitioned into a set of time intervals 𝐿 of equal 

length 𝛾 (e.g., 10 minutes), called time slots. Depending on the load assigned to a truck, the 

corresponding loading activity might last for one or more time slots. In general, if a loading 

activity of a vehicle requires a loading time 𝑡, then it engages the loading station for ⌈
𝑡

𝑡𝑠
⌉ time 

slots. For instance, if each time slot is 10 minutes long and a loading station requires one slot 

for loading 1.000 lt of a HazMat liquid, then a shipment of 3.500 would engage the loading 

station for 35 minutes or 4 slots. The finish time of any loading activity designates the earliest 

departure time of the corresponding truck. Hence, there is an interplay between the scheduling 

problem of the loading activities and the routing problem, since the risk performance of a truck 

route depends on the departure time of the truck (i.e., the proposed risk metric is time-

dependent).  

The proposed HazMat routing problem aims to simultaneously schedule the loading activities 

of the delivery and determine the truck routes so that the total travel distance and the total 

transportation risk are minimized.  

 

2.1 Definition of Exposure Duration Metric  

In this work, transportation risk is expressed by the duration that the population stays in danger 

due to a Hazardous Materials shipment passing nearby. Along this line, we define 

transportation risk as the aggregate exposure time of the members of the population exposed 

to the danger emanating from a given HazMat shipment, i.e., the sum of the exposure duration 

over all members of the potentially impacted population.  

The transportation risk along a road path 𝑃𝑖𝑗 connecting any two stops (customers/depot) 𝑖 

and 𝑗, is equal to the sum of the risk metric values over the constituent road segments of the 

path, i.e., 𝑃𝑖𝑗 = {(𝑔0, 𝑔1), (𝑔1, 𝑔2), … , (𝑔𝓃−1, 𝑔𝓃)}, where  𝑔0 = 𝑖 and 𝑔𝓃 = 𝑗. We assume that 

any truck carrying hazardous materials through any of these road segments sets at risk the 

population lying within a square area around the position of the truck (the truck is located in 

the middle of the square). It is worth noticing that the impact area around the HazMat vehicle 

is modeled by a square area rather than a circular area, as commonly used in relevant studies, 

i.e., Erkut and Verter (1998). While a circular representation provides a more accurate 

depiction of the potential impact zone, the square area representation simplifies the 

mathematical formulation of the problem. In addition, this simplification reduces 

computational complexity, especially in route optimization algorithms. Moreover, the square 

impact area is greater than that of a circle, which amplifies the significance of the HazMat risk. 

The size of the potential square impacted area depends on the type and the quantity of the 

transported hazardous material. Any single person in the population around the road segment 

is exposed to the risk associated with the HazMat shipment traversing that segment for as long 
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as he/she remains within the corresponding square (potentially impacted) area. Hence, the 

aggregate exposure time over the traversed segment is the sum of the exposure times of the 

entire population that stays for some time within this moving square area. 

For instance, assume a HazMat shipment that traverses a roadway segment of length 1 𝑘𝑚 

with a travel speed of 30 𝑘𝑚/ℎ and the side of the square impacted area around the truck is 

200 m. (i.e., 200mx200m or 40,000 𝑚2 ). If the population density around the road segment is 

uniform and equal to 0.2 persons per 𝑚2, then the population within the square impacted area 

is 4,000 persons (irrespective of the position of the truck on the segment). As the truck traverses 

the road segment, the impacted area around it moves along as well. Hence, any person located 

in a zone of width 200 m around the segment will remain within the impacted area for the time 

period that it takes for the truck to travel 200 𝑚 (i.e., 24 sec or 0.4 minutes). The total population 

along the road segment that will be exposed at some point in time is equal to (200x1000)x0.2 

or 40,000 persons. Hence, the total population exposure duration is equal to (40,000 persons x 

0.4 minutes) or 16,000 person-minutes. It is evident that the proposed risk metric depends on 

the travel speed of the truck (i.e., the faster the truck moves along a roadway segment, the less 

time each resident stays within the area of impact) and the size of the impact area.  

It is worth noticing that the travel speed in the example above was assumed constant 

throughout the link (for the sake of simplicity). However, in this work the travel speed on any 

road segment (𝑔𝑘, 𝑔𝑘+1) of length 𝑑𝑔𝑘𝑔𝑘+1
, is assumed time-dependent, modelled as a step 

function of the departure time from the upstream node 𝑔𝑘. The daily time horizon is partitioned 

into time periods [𝜏ℎ, 𝜏ℎ+1]  for ℎ = 0,1, … ,𝑚 − 1 , for which the average travel speed in any 

roadway segment (𝑔𝑘, 𝑔𝑘+1) is 𝑢𝑔𝑘𝑔𝑘+1ℎ. Thus, the travel speed 𝑢𝑔𝑘𝑔𝑘+1
(𝜏) on segment 

(𝑔𝑘, 𝑔𝑘+1) when the truck departs from 𝑔𝑘 at time 𝜏𝜖[𝜏ℎ, 𝜏ℎ+1]  is equal to 𝑢𝑔𝑘𝑔𝑘+1ℎ and  the 

travel time on (𝑔𝑘, 𝑔𝑘+1) is computed by equation (1),  

 

𝑡𝑡𝑔𝑘𝑔𝑘+1
(𝜏) =

𝑑𝑔𝑘𝑔𝑘+1

𝑢𝑔𝑘𝑔𝑘+1ℎ
, 𝜏𝜖[𝜏ℎ, 𝜏ℎ+1]  for ℎ = 0,1, … ,𝑚 − 1 (1) 

  

where 𝜏 represents the departure time from the upstream node 𝑔𝑘. 

 

The size of the square (potentially) impacted area is fully determined by the length of its side. 

Given a shipment of HazMat type 𝜁 and quantity 𝑤, the length 𝑟(𝑤, 𝜁) of the side of the relevant 

square impacted area around the shipment is defined by the piecewise linear function (2). 

Parameter 𝑟𝛿𝑡𝜁
𝑜  is constant and parameter 𝑎𝛿𝑡𝜁 expresses the rate of change of the length of the 

side of the impacted area with respect to the shipment weight and type of HazMat.   

𝑟(𝑤, 𝑡) = 𝑟𝛿𝑡𝜁
𝑜 + 𝑎𝛿𝑡𝜁 ∙ (𝑤 − 𝑤𝛿),   𝑤 ∈ [𝛽𝛿 , 𝛽𝛿+1], 𝛿 = 0,… , |𝛥| − 1. (2) 

 

We now define the proposed risk metric associated with a HazMat shipment of type 𝜁 and 

weight 𝑤 traversing a roadway segment (𝑔𝑘, 𝑔𝑘+1). Figure 1 illustrates such a case. It is 

assumed that the truck departs from 𝑔𝑘 at time 𝜏. The impacted area moves along the segment 

accompanying the truck movement with travel speed denoted by 𝑢𝑔𝑘,𝑔𝑘+1
(𝜏). The average 

population density around (𝑔𝑘, 𝑔𝑘+1) is denoted by 𝑝𝑜𝑝𝑔𝑘,𝑔𝑘+1
.  
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We assume a marginal area section (as described in Figure 1) vertical to (𝑔𝑘, 𝑔𝑘+1), with 

width 𝛥𝑥 and length equal to 𝑟(𝑤, 𝜁) (or 𝑟 for simplicity).  

𝑔𝑘
Truck

Impacted Area

Population Segment

𝑟

𝑟

  

 

𝑔𝑘+1

 
Fig. 1: Representation of the impacted area when a truck traverses the roadway segment 

(𝑔𝑘, 𝑔𝑘+1). 

 

Figure 2 presents two snapshots from the truck’s traversal over (𝑔𝑘, 𝑔𝑘+1) at the following 

points in time: i) when the impacted area around the truck starts to cover the area marginal 

section (top of Fig. 2), and ii) when the marginal area section gets out of the coverage from the 

truck’s impacted area (bottom of Fig. 2). It is evident (Fig. 2) that the marginal area section 

will lie within the truck’s impacted area while the truck will be moving along (𝑔𝑘, 𝑔𝑘+1) from 

position A until it reaches position B, covering a distance of length 𝑟(𝑤, 𝜁).   

𝑔𝑘 𝑔𝑘+1

Impacted Area

Population Segment

𝑔𝑘 𝑔𝑘+1
Truck

Impacted Area Population Segment

𝑟

Total Distance travel from the point
of time that the population center
gets within the impacted area until
the time it is no more covered by the
impacted area.

Truck

A

B

 
Fig. 2: Representation of two snapshots of the impacted area when the truck traverses the 

segment (𝑔𝑘, 𝑔𝑘+1). 

 

Hence, if 𝛥𝑥 is small enough, any member of the population within this marginal area section 

will be exposed to the risk of the HazMat shipment carried by the truck for a duration equal to 
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(
𝑟(𝑤,𝜁)

𝑢𝑔𝑘𝑔𝑘+1(𝜏)
). The total duration of the population exposure within this marginal area section is 

equal to the product of the total population in the section (i.e., 𝑝𝑜𝑝𝑖𝑗 ∙ (𝑟(𝑤, 𝜁) ∙ 𝛥𝑥)) with the 

duration of exposure per population member. Equation (3) presents the total exposure time of 

the population around link (𝑔𝑘, 𝑔𝑘+1). 

𝑅𝑔𝑘𝑔𝑘+1
(𝜏, 𝑤, 𝜁) =  ∫

𝑟(𝑤,𝜁)

𝑢𝑔𝑘𝑔𝑘+1(𝜏)

𝜆

0
∙ 𝑝𝑜𝑝𝑖𝑗 ∙ 𝑟(𝑤, 𝜁)𝑑𝑥  (3) 

 

By moving out of the integral all the parameters that do not depend on the position of the 

truck, equation (4) is derived. 

 

𝑅𝑔𝑘𝑔𝑘+1
(𝜏, 𝑤, 𝜁) =  

𝑟(𝑤,𝜁)

𝑢𝑔𝑘𝑔𝑘+1(𝜏)
 𝑝𝑜𝑝𝑖𝑗 ∙ 𝑟(𝑤, 𝜁) ∫ 𝑑𝑥

 

0
 (4) 

The integral is equal to  , leading to equation (5). 

𝑅𝑔𝑘𝑔𝑘+1
(𝜏, 𝑤, 𝜁) = 𝑟2(𝑤, 𝜁) ∙  𝑝𝑜𝑝𝑖𝑗 ∙

 

𝑢𝑔𝑘𝑔+1(𝜏)
 

(5) 

 

Finally, given that the ratio 
 

𝑢𝑔𝑘𝑔𝑘+1(𝜏)
 expresses the travel time on the segment (𝑔𝑘, 𝑔𝑘+1) we 

get the formula (6) for the proposed transportation risk measure on the segment (𝑔𝑘, 𝑔𝑘+1).  

 

𝑅𝑔𝑘𝑔𝑘+1
(𝜏, 𝑤, 𝜁) = 𝑟2(𝑤, 𝜁) ∙  𝑝𝑜𝑝𝑔𝑘𝑔𝑘+1

∙ 𝑡𝑡𝑔𝑘𝑔𝑘+1
(𝜏) (6) 

 

The corresponding transportation risk 𝑅𝑃𝑖𝑗
(𝜏, 𝑤, 𝜁) of a HazMat type 𝜁 and weight 𝑤 departing 

from the upstream stop 𝑖 at time 𝜏𝑖 on a path 𝑃𝑖𝑗 is given by formula (7). 

 

𝑅𝑃𝑖𝑗
(𝜏, 𝑤, 𝜁) = ∑𝑅𝑔𝑘𝑔𝑘+1

(𝜏𝑔𝑘
, 𝑤, 𝜁)

𝑛−1

𝑘=0

 

(7) 

 

Where 𝜏𝑔0 = 𝜏, and 𝜏𝑔𝑘
= 𝜏𝑔𝑘−1

+ 𝑡𝑡𝑔𝑘−1𝑔𝑘
(𝜏𝑔𝑘−1), for 𝑘 = 1,… , 𝑛 

 

Henceforth, the proposed risk metric will be referred to as the Population Aggregate Exposure 

Duration.  

 

2.3 Mathematical Formulation 

The proposed problem has been formulated as a Mixed Integer Linear Programming (MILP) 

model. The problem is defined in a graph 𝐺(𝑁, 𝐴) where 𝑁 is the set of nodes representing the 

customers’ locations, the point of origin 0 and the point of destination 𝑛 + 1, both referring to 

the depot and 𝐴 is the set of arcs (𝑖, 𝑗) representing the travel from node 𝑖 to node 𝑗. To facilitate 

the formulation, the time horizon of the problem is discretized to a set of time units (e.g., 5 

minutes) denoted by 𝑇 and the travel time of a truck on arc (𝑖, 𝑗)  𝑁 departing from node 𝑖 at 

time 𝜏 ∈ 𝑇 is denoted by 𝑡𝑡𝑖𝑗𝜏. Moreover, we assume that 𝑡𝑡𝑖𝑗𝜏 is an integer multiple of the time 
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unit used. The variables used for the model formulation are presented and explained in the table 

below (table 1). 

 

Decision Variables 

𝑥𝑖𝑗𝑣𝜏  {0,1} , (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇,  if  𝑥𝑖𝑗𝑣𝜏 = 1 then vehicle 𝑣 departs from stop 𝑖 

heading to 𝑗 at time 𝜏 𝑇,  

𝑦0𝑣 ≥ 0, 𝑣 ∈ 𝑉, departure time from the depot for vehicle 𝑣 

𝑦(𝑛+1)𝑣 ≥ 0 , 𝑣 ∈ 𝑉, return time to the depot for vehicle 𝑣 

𝑦𝑖𝑣 ≥ 0 , 𝑖 ∈ 𝑁\{0, 𝑛 + 1}, 𝑣 ∈ 𝑉 departure time of vehicle 𝑣 from the customer 𝑖   

𝜎𝑣𝑙    {0,1} , 𝑣 ∈ 𝑉, 𝑙 𝐿,  if 𝜎𝑣𝑙 = 1 then the vehicle 𝑣 starts to get service (loading 

process starts) at slot 𝑙 𝐿 

𝑧𝑣𝑙   {0,1} ,  𝑣 ∈ 𝑉, 𝑙 𝐿, if 𝑧𝑣𝑙 = 1 then the vehicle 𝑣 is still under service (is being 

loaded) during slot 𝑙 𝐿 

𝑆𝑣𝑙 {0,1},  𝑣 ∈ 𝑉, 𝑙 𝐿, if 𝑆𝑣𝑙 = 1 then the loading of vehicle 𝑣 has started before or 

during slot 𝑙 

𝐹𝑣𝑙 {0,1}, 𝑣 ∈ 𝑉, 𝑙 𝐿, if 𝐹𝑣𝑙 = 1 then the loading of vehicle 𝑣 has been completed before 

slot 𝑙 

𝑤𝑖𝑣𝜏 ≥ 0 ,  𝑖 ∈ 𝑁\{𝑛 + 1}, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇, the quantity of the load on vehicle 𝑣 when it 

leaves stop 𝑖 

𝑢𝑖𝑗𝑣𝜏 ≥ 0 , (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇, the quantity of the load on vehicle 𝑣 when it traverses 

arc (𝑖, 𝑗) 𝐴 

𝑓𝑖𝑗𝑣𝛿𝜏
𝐿  {0,1} , (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇, 𝛿 = 0,… , |𝛥| − 1,  if 𝑓𝑖𝑗𝑣𝛿𝜏

𝐿 =1 then the quantity of 

the load of truck 𝑣 (i.e., 𝑢𝑖𝑗𝑣𝜏 ) as it traverses arc (𝑖, 𝑗) is below 𝛽𝛿  

𝑓𝑖𝑗𝑣𝛿𝜏
𝑐  {0,1} , (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇, 𝛿 = 0,… , |𝛥| − 1, if 𝑓𝑖𝑗𝑣𝛿𝜏

𝐶 =1 then  𝑢𝑖𝑗𝑣𝜏 [𝛽𝛿,𝛽𝛿+1) 

𝑓𝑖𝑗𝑣𝛿𝜏
𝑢  {0,1} , (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 𝜏 ∈ 𝑇, 𝛿 = 0,… , |𝛥| − 1, if   𝑓𝑖𝑗𝑣𝛿𝜏

𝑢 = 1 then   𝑢𝑖𝑗𝑣𝜏 ≥ 𝛽𝛿 

Table 1: Decision variables used in the model formulation. 

 

The mathematical formulation of the problem is expressed by (8)-(35). The proposed model 

contains two objective functions. Objective function (8) expresses the total traveled distance 

whereas objective function (9) expresses the HazMat risk. The trade-off between the two 

objectives of the MILP formulation introduced above is evaluated and presented in Appendix 

A. 

 

Objective function 1 (Distance) 

𝑀𝑖𝑛(∑ ∑ (∑ 𝑥𝑖𝑗𝑣𝜏 ·𝜏 𝑑𝑖𝑗)𝑖,𝑗𝑣 )  (8) 

 

Objective function 2 (Risk)  

𝑀𝑖𝑛(∑ ∑ ∑ (∑ 𝑓𝑖𝑗𝑣𝛿𝜏
𝑐 ·𝛿 𝑟𝛿

2)𝑖,𝑗𝑣𝜏 · 𝑡𝑡𝑖𝑗𝜏 · 𝑝𝑜𝑝𝑖𝑗)  (9) 

 

Constraint (10) implies that each customer is visited by a single vehicle exactly once. 

Constraint (11) indicates that if vehicle 𝑣 arrives at customer 𝑖 then the same vehicle should 
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service and leave from 𝑖. Constraint (12) defines that if a truck starts from node 0 (depot) it 

must return to node 𝑛 + 1 (depot). 

∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝜏𝜏𝑣𝑖∈𝑁\{𝑛+1} = 1 ∀ 𝑗 ∈ 𝑁\{0, 𝑛 + 1}  (10) 

∑ ∑ 𝑥𝑗𝑖𝑣𝜏𝜏𝑗 − ∑ ∑ 𝑥𝑖𝑗𝑣𝜏𝜏𝑗 = 0 ∀ 𝑖 ∈ 𝑁\{0, 𝑛 + 1}, 𝑣𝑉 (11) 

∑ ∑ 𝑥0𝑗𝑣𝜏𝜏𝑗∈𝑁\{0} − ∑ ∑ 𝑥𝑖𝑛+1𝑣𝜏 = 0𝜏𝑖∈𝑁\{𝑛+1}    ∀ 𝑣 ∈ 𝑉  (12) 

 

Constraints (13) to (15) are used as flow conservation constraints. In detail, constraint (13) 

implies that if a vehicle departs from a customer 𝑖 at time 𝜏, it should have left from the previous 

stop at  𝜏𝑘΄. Constraints (14) and (15) imply that the load of the truck entering a customer minus 

the load of the truck upon leaving the customer must be equal to the ordered quantity of the 

customer.  

∑ 𝑥𝑘𝑖𝑣𝜏𝑘΄𝑘∈𝑁\{𝑛+1} − ∑ 𝑥𝑖𝑗𝑣𝜏𝑗∈𝑁\{0} = 0 , ∀ 𝑁\{0, 𝑛 + 1}, 𝑣 ∈ 𝑉, 𝜏 𝛵,  𝜏𝑘΄ = 𝜏 −

𝑡𝑖
𝑠 − 𝑡𝑡𝑘𝑖𝜏 

(13) 

𝑤𝑖𝑣𝜏 − 𝑤𝑗𝑣𝜏΄ + (1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀 ≥ 𝑞𝑗   ∀ (𝑖, 𝑗)  𝑁\{𝑛 + 1}, 𝑣𝑉, 𝜏 𝛵,  𝜏 ΄ = 𝜏 +

𝑡𝑡𝑖𝑗𝜏 + 𝑡𝑗
𝑠  

(14) 

∑ ∑ ∑ 𝑢𝑖𝑗𝑣𝑡𝜏𝑣𝑖𝑁/{𝑛+1} −∑ ∑ ∑ 𝑢𝑗𝑖𝑣𝑡𝜏𝑣𝑖𝑁/{𝑛+1} = 𝑞𝑗    ⩝  𝑗  𝑁\{0, 𝑛 + 1} (15) 

Constraint (16) states that the load of a truck traversing any link of the network should not 

exceed its capacity. In addition, it implies that if a link (𝑖, 𝑗) isn’t traversed by vehicle 𝑣 at time 

𝜏 then no HazMat quantity is carried by vehicle 𝑣 at time 𝜏 across the link (𝑖, 𝑗) (i.e., 𝑢𝑖𝑗𝑣𝜏 is 

forced to 0). Constraint (17) indicates that the truckload on an arc (𝑖, 𝑗) is equal to the load of 

the truck upon leaving 𝑖. Constraint (18) implies that all trucks return to the depot (𝑛 + 1)  

empty. 

𝑢𝑖𝑗𝑣𝜏 ≤ 𝑥𝑖𝑗𝑣𝜏 · 𝑄𝑣     ⩝ (𝑖, 𝑗) ∈ 𝐴, 𝑣𝑉, 𝜏 𝛵  (16) 

∑ 𝑢𝑖𝑗𝑣𝜏𝑗∈𝑁\{0} = 𝑤𝑖𝑣𝜏  ⩝ 𝑖 ∈ 𝑁\{𝑛 + 1}, 𝑣𝑉, 𝜏 𝛵  (17) 

∑ ∑ 𝑢𝑖(𝑛+1)𝑣𝜏𝑖𝑁/{𝑛+1} = 0 ⩝𝜏  𝑣𝑉  (18) 

 

Constraints (19) to (28) relate to scheduling the loading operations at the depot. In detail, 

constraint (19) indicates that every truck gets a starting loading slot at the depot. Constraint 

(20) indicates no more than 𝜉 trucks can be serviced in parallel during any slot 𝑙 ∈ 𝐿. 

Constraints (21) and (22) imply that the total number of slots allocated to servicing truck 𝑣 

should cover the corresponding loading duration required to load the truck (with the total 

volume (∑ 𝑤0𝑣𝜏𝜏 ) allocated to 𝑣). Note that 𝑀 denotes a very large number. Constraints (23) 

to (26) determine the consecutive slots allocated for loading any truck 𝑣. Constraint (27) 

ensures that the departure time of a truck from the depot coincides with the time that its loading 

operation terminates. Note that 𝑒𝑙 denotes the point in time that the corresponding slot interval 

𝑙 begins. Constraint (28) forces the departure of each truck from the depot to occur within the 

time window [𝑎𝑜 ,  𝑏𝑜]. 

∑ 𝜎𝑣𝑙𝑙 = 1    ⩝  𝑣𝑉  (19) 

∑ 𝑧𝑣𝑙 ≤𝑣 𝜉   ⩝ 𝑙 ∈ 𝐿  (20) 
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(1-𝜎𝑣𝑙)·M+(∑ 𝑧𝑣𝑠
|𝐿|
𝑠=𝑙 )∙ 𝛾 ≥ (∑ 𝑤0𝑣𝜏𝜏 ) · 𝜌  , ∀ 𝑙 ∈ 𝐿, 𝑣 ∈ 𝑉  (21) 

(1-𝜎𝑣𝑙)·M+(∑ 𝑤0𝑣𝜏𝜏 )∙ 𝜌 ≥ [(∑ 𝑧𝑣𝑠
|𝐿|
𝑠=𝑙 ) · 𝛾] − 1  ∀ 𝑙 ∈ 𝐿, 𝑣 ∈ 𝑉 (22) 

𝑆𝑣𝑙 = ∑ 𝜎𝑣𝑙
𝑙
𝑠=0   ⩝ 𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿  (23) 

∑ 𝜎𝑣𝑙
𝑙
𝑠=0 ≥ 𝐹𝑣𝑙   ∀  𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿  (24) 

𝐹𝑣(𝑙+1) ≥ 𝐹𝑣𝑙     ⩝ 𝑣 ∈ 𝑉, 𝑙 = 0,… , | 𝐿| − 1  (25) 

𝑧𝑣𝑙 = 𝑆𝑣𝑙 − 𝐹𝑣𝑙    ⩝ 𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿  (26) 

𝑦0𝑣 = ∑ 𝜎𝑣𝑙
|𝐿|
𝑙=0 ·  𝑒𝑙 + (∑ 𝑧𝑣𝑙 ∙𝑙  𝛾)   ⩝  𝑣𝑉 (27) 

𝑎𝑜 ≤ 𝑦0𝑣 ≤ 𝑏𝑜   ⩝  𝑣𝑉  (28) 

  

Constraints (29) to (35) are used to determine the interval [𝛽𝛿 , 𝛽𝛿+1) that the load carried by 

a truck falls in as it traverses link (𝑖, 𝑗). Constraints (29) and (30) imply that for any load value 

and any interval [𝛽𝛿 , 𝛽𝛿+1) one of the variables 𝑓𝑖𝑗𝑣𝛿𝜏
𝐿 , 𝑓𝑖𝑗𝑣𝛿𝜏

𝑐 , 𝑓𝑖𝑗𝑣𝛿𝜏
𝑢  should be equal to one. Note 

that 𝑀2 denotes a large number. Constraints (31) and (32) imply that if 𝑢𝑖𝑗𝑣𝜏 is higher than or 

equal to 𝛽 δ  then 𝑓𝑖𝑗𝑣𝛿𝜏
𝐿  must be equal to 0. Similarly, constraints (33) and (34) imply that if 

𝑢𝑖𝑗𝑣𝜏 is higher than 𝛽 δ+1 then 𝑓𝑖𝑗𝑣𝛿𝜏
𝑈  must be equal to 1. Constraint (35) implies that if vehicle 

𝑣 does not traverse the link (𝑖, 𝑗) at time 𝜏, then 𝑓𝑖𝑗𝑣y𝜏
𝐶  should be equal to zero for any 𝛿. 

𝑓𝑖𝑗𝑣𝛿𝜏
𝐿 + 𝑓𝑖𝑗𝑣𝛿𝜏

𝐶 + 𝑓𝑖𝑗𝑣𝛿𝜏
𝑈 ≤ 1 + (1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2  ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿 = 0,… |𝛥| − 1    (29) 

(1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2 + 𝑓𝑖𝑗𝑣𝛿𝜏
𝐿 + 𝑓𝑖𝑗𝑣𝛿𝜏

𝐶 + 𝑓𝑖𝑗𝑣𝛿𝜏
𝑈 ≥ 1 ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿 = 0,… |𝛥| − 1    (30) 

(1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2 + 𝑢𝑖𝑗𝑣𝜏 − 𝛽 𝛿 ≥ −𝑓𝑖𝑗𝑣𝛿𝜏
𝐿 · 𝛭 ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿 = 0,… |𝛥| −

1      

(31) 

1

2
+ 𝑢𝑖𝑗𝑣𝜏 − 𝛽 𝛿 ≤ (1 − 𝑓𝑖𝑗𝑣𝛿𝜏

𝐿 ) · 𝛭 + (1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2  ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿 =

0, … |𝛥| − 1        

(32) 

1

2
+ 𝑢𝑖𝑗𝑣𝜏 − 𝛽 𝛿+1 ≤ 𝑓𝑖𝑗𝑣𝛿𝜏

𝑈 · 𝛭 + (1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2  ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿

= 0,… |𝛥| − 1     

(33) 

(1 − 𝑥𝑖𝑗𝑣𝜏) · 𝑀2 + 𝑢𝑖𝑗𝑣𝜏 − 𝛽 𝛿+1 ≥ −(1 − 𝑓𝑖𝑗𝑣𝛿𝜏
𝑈 ) · 𝛭 ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇, 𝛿 =

0, … |𝛥| − 1         

(34) 

𝑥𝑖𝑗𝑣𝜏 ≥ ∑ 𝑓𝑖𝑗𝑣𝛿𝜏
𝐶𝑦=|𝛥|−1

𝛿=0  ⩝ 𝑖, 𝑗 𝑁, 𝑣𝑉, 𝜏𝑇 (35) 

 

 

 

3. Solution Algorithm 

An NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm II) (Deb et. al 2000 & 

2002) has been developed to address the problem under study. NSGA-II is a genetic algorithm 

that uses a non-dominated sorting mechanism to rank solutions based on their Pareto 

dominance. The algorithm operates on a population of solutions and iteratively applies 

reproduction operators to generate new solutions. In the context of the proposed problem, the 

initial population is generated by a Reactive Grasp algorithm. Overall, the proposed algorithm 
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involves the following novel features: i) a new one-point reproduction (cross-over) operator, 

ii) a new multi-point reproduction operator aiming to enhance the diversity of the population 

created by the NSGA-II algorithm, and iii) the development of a post-optimization procedure 

that deals with scheduling the loading activities emerging from the truck routes determined. In 

addition, the risk is dynamically recalculated throughout the algorithm for all solutions 

generated, including those produced by the novel reproduction operators and the post-

optimization procedures, as it depends on both the truck's load and its departure time from the 

depot, in alignment with the formulation detailed in Section 2.1. In what follows we present 

the main steps and the various components of the proposed algorithm. 

 

3.1 Chromosomes and Genes  

To facilitate the implementation of the proposed NSGA-II algorithm, any problem solution is 

represented by a list of tuples of the form (vehicle id, customer id), where vehicle id corresponds 

to the vehicle that services the customer associated with the customer ID. This structure is 

called a chromosome and each of the tuples is called a gene. Given a problem solution, its 

representation as a chromosome is built by concatenating the sequence of customers of the 

routes of the solution. Figure 3 provides an example that illustrates how a problem solution is 

transformed into a chromosome. For convenience, each chromosome is depicted by a matrix 

of two rows: the first row refers to the customer ID, and the second to the corresponding vehicle 

ID (each column represents a gene of the chromosome).  

Cust 1

Cust 4

Cust 2

Cust 7

Cust 6

Cust 3

Cust 5

Route assigned to Veh1

Route assigned to Veh2

Route assigned to Veh3

Cust5Cust3Cust6Cust7Cust2Cust4Cust1

Veh3Veh3Veh3Veh2Veh2Veh1Veh1

 
Fig. 3: Representation of a problem solution as a chromosome 

 

3.2 Main Steps  

The proposed NSGA-II algorithm involves the following steps, (the pseudocode is presented 

in Appendix B): 

1. An initial population of 𝑁 solutions is created using a Reactive Grasp algorithm.  

2. A predefined number of iterations are performed in which: 
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- Step 2.1: An offspring population of size 𝑁 is created out of the initial population by 

applying a reproduction operator. 

- Step 2.2: The objective value (for each objective) of each solution is calculated. 

- Step 2.3: The offsprings’ population is merged with the parents’ population. The 

solutions of the enhanced population are grouped to Pareto dominance fronts, i.e., 

solutions that are not dominated by any other solution are placed in the first group 

(front). The second front of non-dominated solutions is determined from the pool of the 

remaining solutions after removing those in the first front, etc. 

- Step 2.4: The solutions belonging to the best 𝑘 Pareto dominance fronts, are added to 

the final population until no more than 𝑁 solutions are passed to the final population. 

- Step 2.5: The 𝑘 + 1 Pareto front is selected and the crowding distance of each solution 

is calculated as per formula (36). 

- Step 2.6: The best solutions in terms of crowding distance are sequentially selected and 

passed to the final population until its final size is equal to 𝑁. 

- Step 2.7: Return to step 2 or terminate the algorithm when the stopping criterion of the 

maximum number of iterations is met. 

A solution is said to be non-dominated if there is no other solution in the population that scores 

equal to or higher than it across all objectives. Hence, the Pareto dominance rank evaluates the 

quality of a solution by considering its dominance relationship with the other solutions in the 

population (i.e. the solutions in the 1st Pareto dominance front dominate the solutions to all the 

other fronts, the solutions of the 2nd front dominated the solutions to the remaining fronts, i.e., 

3rd, 4th, etc.).  

The crowding distance of a solution is a measure of the "crowdedness" of its neighboring 

solutions. A solution with a high crowding distance value is located in a neighborhood of 

solutions that are more diverse and spread out in the two-dimensional objective space. On the 

contrary, a solution with a low crowding distance value is located in a more dense 

neighborhood of solutions. The crowding distance (𝑐𝑖 ) of a solution 𝑖 is defined as the average 

distance between the solution and its neighboring solutions in the population, with respect to 

the different objectives being optimized. To compute this value, the solutions of the population 

are placed on 𝑀 lists (𝑀 is the number of objective functions, in our case 𝑀 = 2), each one 

ranked based on a different objective function. Then, for each solution 𝑖 in the emerging sorted 

lists 𝑚 = 1, . . , 𝑀 (apart from the first and the last), the crowding distance as presented also by 

Deb et al. (2002) is determined by the following steps: 

- Calculating the differences (𝑓𝑖+1
𝑚 − 𝑓𝑖−1

𝑚 ), where 𝑓𝑖+1
𝑚  is the value of solution 𝑖 + 1 (i.e., 

the one next to solution 𝑖 in list 𝑚) under objective function 𝑚 and 𝑓𝑖−1
𝑚  is the value of 

solution in the rank  𝑖 − 1  of the list 𝑚 (i.e., the previous one to solution 𝑖) under 

objective function 𝑚 

- Each of these differences is normalized by dividing them by the difference between the 

max and min values of the objective function (𝑓𝑚𝑎𝑥
𝑚 − 𝑓𝑚𝑖𝑛

𝑚 )  

- The normalized differences are then summed over all 𝑚 = 1, . .𝑀. The purpose of 

crowding distance is to facilitate the algorithm to maintain a diverse set of non-

dominated solutions.  
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𝑐𝑖 = ∑
𝑓𝑖+1
𝑚 − 𝑓𝑖−1

𝑚

𝑓𝑚𝑎𝑥
𝑚 − 𝑓𝑚𝑖𝑛

𝑚

𝑀

𝑚=1

 (36) 

 

The reproduction phase of the algorithm is performed by three alternative operators: i) a one-

point crossover operator, ii) a new multi-point crossover operator, and iii) a mutation operator 

supported by a binary tournament selection procedure. The emerging offspring are assessed in 

terms of feasibility. If infeasibilities are detected then two alternative processes are applied to 

obtain feasibility: i) the Relocation method, and ii) the Route Splitting method. In what follows 

we present the reproduction operators, the two chromosome feasibility methods and the 

Reactive Grasp used for producing the initial population.  

 

3.3 One-Point Crossover  

The basic idea of a crossover operator is to create new offspring solutions by exchanging 

genetic information (genes) between two parent solutions. Two parents are initially chosen and 

a crossover point that splits both parents into two parts is randomly selected (arrow in Figure 

4). Given the structure of the chromosome (each gene involves linking a customer to a vehicle), 

a novel implementation of the one-point crossover operator is proposed, in which the vehicle 

ids of the genes of the parents are held in place. It is only the customers swapped between the 

genes of the parents.  

In more detail, if the crossover point is right after gene 𝑘, then the customer ID of the ℎ𝑡ℎ 

gene for ℎ = 𝑛 − 𝑘 + 1 up to 𝑛, of parent 1 will be changed to the customer ID of the 

corresponding ℎ𝑡ℎ gene of parent 2, if and only if this customer ID is not already present in 

one of the (𝑘 + ℎ − 1) genes of the offspring under development. To make sure that the 

emerging offspring includes all customers with no duplicates, we define a list 𝑍1 (or 𝑍2 for 

parent 2) that contains all customers of parent 1 included in genes 𝑛 − 𝑘 + 1 up to 𝑛. Every 

time the customer in gene ℎ of the offspring is fixed it is removed from the list  𝑍1. By the end 

of building the offspring chromosome, 𝑍1 should be empty. The example that follows clarifies 

the crossover operator. As depicted in Figure 4, the crossover point is positioned immediately 

after the third gene. This implies that customers 2, 7, 3, and 6 from genes 4-7 of parent 2 are to 

be extracted and subsequently inserted into the corresponding genes 4-7 of parent 1. The list 

𝑍1 is as follows: (5, 2, 6, 7) i.e., the customers currently contained in genes 4-7 of parent 1. It 

is worth noting that we only move the customers, not the entire genes. Hence, gene 4 of 

chromosome 1 (Fig. 4) will still contain Veh2, but customer 5 will be considered to be replaced 

by customer 2. A verification process is conducted to determine whether customer 2 is already 

present in the preceding genes of the partial offspring. Given that the customer is not present 

in prior genes, the customer is subsequently inserted into the fourth gene of the partial offspring 

chromosome. 𝑍1 is updated to: (5, 6, 7), i.e. customer 2 is removed from 𝑍1. Similarly, customer 

7 does not exist in any earlier positions of offspring 1, and therefore it replaces customer 2 in 

the 5th gene. 𝑍1 is updated to: (5, 6). However, in the 6th gene of offspring chromosome 1, 

customer 3 cannot replace customer 6, since it is already present in the 3rd gene. In this case, 

the customer of the 6th gene (i.e., customer 6) is not replaced. Given that Customer 6 is not 

present in any of the previous genes, it remains in place. 𝑍1 is updated to: (5). Finally, customer 
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6 cannot replace customer 7 in the final (7th) gene. Moreover, customer 7 cannot remain in 

place since it is already present in the 5th gene. In this case, the initial step involves identifying 

the first available customer in list 𝑍1 who has not been present in any of the previous genes 

(i.e., customer 5). Subsequently, this customer is placed in the 7th gene. A similar procedure is 

executed for parent 2. Through this reproductive process, two offspring are generated from a 

pair of parents (Fig. 4). 

 
Fig. 4: Example of the One-Point Crossover 

 

3.4 Multi-Point Crossover Operator  

A new Multi-Point Crossover Operator has been developed as an alternative procedure to the 

one-point crossover operator. The objective of this technique is to have a better mix of the 

parent chromosomes for developing two offspring substantially different from the parents. We 

outline the proposed Multi-Point Crossover Operator and present a visual representation of 

how the offsprings are built (Figure 5). The proposed operator involves the following steps: 

- Start with Parent 1 and copy the top 𝑎% (e.g., 40%) of the genes to the offspring, where 𝑎 

is a random number, e.g., customers 2, 4, 5, 6 (underlined) in Fig. 5. 

- Go to Parent 2 and find the location of the last inserted gene as per the previous step i.e. 

customer 6, and then copy to the offspring the 𝛽% (e.g., 30%) of the genes after the specific 

location which are not already in the offspring i.e. customers 1, 3 and 10. 

- Go back to Parent 1 find the location of the last inserted individual i.e. customer 10 

(underlined), and then copy to the offspring the 𝛾%  (e.g. 𝛾=10%) of the remaining unused 

genes (positioned after the specific location) which have not been already inserted to the 

offspring i.e. customer 8. 

- Go to Parent 2 and find the location of the last inserted gene i.e. customer 8, and after that 

add all the remaining unused genes to the offspring i.e. customers 9 and 7. 

The above steps create the first offspring out of two parents. Replicating this procedure 

starting from Parent 2 this time, 

 and then continue with Parent 1 in step 2 and so on, would lead to the second offspring.  

As depicted in Figure 5, each customer is paired with a vehicle. In the Multi-Point Crossover 

Operator, both the customer and its connected vehicle are transferred to the offspring. Initially, 

the offspring may not be feasible. However, the feasibility of the offspring is subsequently 

attained using the methods described in the following subsections. 
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Fig. 5: Example of the new Multi-Point Crossover operator. 

 

3.5 Mutation  

The selection of the chromosomes for mutation is performed through a binary tournament. It 

is a simple and efficient selection scheme that involves randomly picking two individuals from 

the population and comparing the values of their objective functions to determine which one is 

better. In detail, the values of the objective functions of the two individuals are compared and 

the winner is selected while the loser is no longer a candidate to produce an offspring. In the 

case of a tie (i.e. non non-dominated solutions), a chromosome is randomly selected. The 

winning chromosome goes through mutation, which applies random changes in the 

chromosome. In this work, the mutation involves the exchange of customers between two 

randomly selected genes.  

 

3.6 Feasibility Methods 
A common feature of the reproduction operators is that the emerging offspring solutions may 

violate the capacity constraint of one or more trucks. To detect any capacity violation, the 

chromosome is decomposed to truck routes. This is straightforward since each gene of the 

chromosome involves: a customer ID and the ID of the truck it has been assigned to. Moreover, 

the sequence of customers per route is identical to the sequence of the corresponding genes in 

the chromosome. Each of the emerging truck routes is then checked for any capacity violation. 

If a violation is found, then one of the following two routines is applied: i) Customer 

Relocation, and ii) Route Splitting.  

 

3.6.1 Customer Relocation 
This routine tries to relocate the customers of a capacity infeasible route to the first available 

truck that has sufficient capacity to accommodate the customer under consideration. The 

relocation search stops when one of the customers can be feasibly relocated to another route. 

The position of the relocated customer in the identified route is determined by a sorting 

technique that determines the alternative candidate positions along the route that may result in 

a non-dominated solution. Then the routine randomly chooses one of the alternative positions 

to serve as the optimal relocation position for the customer under consideration.  
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The aforementioned procedure is iteratively executed for every single truck. If a capacity 

violation cannot be resolved by relocation, we initiate a corrective procedure. In detail, the first 

half of the customers already assigned to the route are removed. This ensures that the route's 

capacity constraints are adhered to and paves the way for creating feasible routes. 

Subsequently, the assignment process restarts, allowing for the creation of revised, compliant 

routes. The corrective procedure can be repeated as many times as needed until a feasible 

solution is provided. 

Figure 6 illustrates an example in which a chromosome is mutated, resulting in an offspring 

that violates the capacity constraint. In particular, the total quantity assigned to vehicle 2 

exceeds its capacity. By using the above presented method, the first customer of vehicle 2 is 

relocated to vehicle 3. The pseudocode is also presented in Appendix C. 

 
Fig. 6: Representation of creating feasible solutions using the Customer Relocation Method. 

 
 

3.6.2 Route Splitting 
We have also created a split procedure that treats the sorted list of customers of an offspring 

as a large TSP route and breaks it down to truck routes forming a new solution (chromosome). 

The split method ignores the assignment of customers to trucks that are stored as vehicle IDs 

in the genes of the chromosome. This routine iteratively selects a truck from the top of the list 

of vehicles 𝑉 (sorted in descending order of their capacity) and assigns the largest possible first 

segment of the TSP route that does not violate the capacity of the selected truck. Both the truck 

and the customers are removed from list 𝑉 and the TSP route respectively, and the process is 

repeated. This process is iterated as long as the TSP route remains non-empty.  

 

3.7 Generating the Initial Population  

The proposed Reactive GRASP (Jaikishan & Patil, 2019) algorithm generates the initial 

population of solutions through a semi-random insertion heuristic that uses candidate lists of 

customers (Marinakis et al., 2007; Moura & Oliveira, 2009). The main idea is to rank the 

unrouted customers based on different metrics and create one sorted list of customers per 
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metric. The higher a customer is positioned in these lists, the higher the probability of being 

the next one to be selected and routed. An overall priority index is developed for each customer 

combining its position in each of the lists. In this work, we create three sorted lists by sorting 

the unrouted customers under three metrics: i) the customer’s order quantity, ii) the population 

density in the area of the customer’s premises, and iii) the proximity of the customer’s premises 

to the last routed customer.  

In what follows, we outline the steps of the insertion procedure in an iteration 𝜂 of the 

procedure.  

i. A customer is semi-randomly selected from the set of 𝜈𝑢 unrouted customers, through 

a random wheel experiment. The selection probabilities of the customers are calculated 

as follows:  

a. The 𝜈𝑢 unrouted customers are placed in three different lists sorted in each one 

as follows:  

- List 1: The unrouted customers are sorted in descending order of the requested quantity. 

Then the customer 𝑖 ranked at the 𝑘𝑡ℎ position in List 1 is assigned a priority weight 

denoted by 𝑧1𝑖
𝜂

, equal to (𝜈𝑢 − 𝑘). For example, in a sorted list of ten customers, the one 

at the top of the list is assigned a priority weight of 9, the next customer in line is 

assigned 8, and so forth.  

- List 2: The unrouted customers are sorted in ascending order based on the population 

density of the area around their location. Similarly, a priority weight (denoted by 𝑧2𝑖
𝜂

) 

of (𝜈𝑢 − 𝑘) is assigned to customer 𝑖 at 𝑡ℎ𝑒 𝑘𝑡ℎ position in List 2, 

- List 3: The unrouted customers are sorted in ascending order based on their proximity 

to the customer last included in a route (or the depot if the route is empty). A priority 

weight (denoted by 𝑧3𝑖
𝜂

) of (𝜈𝑢 − 𝑘) is assigned to customer 𝑖 at the 𝑘𝑡ℎ position in List 

3. This list differs from the previous two as it gets updated in every iteration of the 

procedure (since the last customer of the route under construction might change). If the 

route is empty, then proximity from the depot is used. It is this last metric that justifies 

the term “reactive” used to characterize the proposed GRASP algorithm.  

b. An overall priority (𝜀𝑖
𝜂
) is assigned to customer 𝑖, computed by the weighted 

sum of the corresponding priority weights (𝑧1𝑖
𝜂
, 𝑧2𝑖

𝜂
, 𝑧3𝑖

𝜂
), 

𝜀𝑖
𝜂
= 𝜋1 ∙ 𝑧1𝑖

𝜂
+ 𝜋2 ∙ 𝑧2𝑖

𝜂
+ 𝜋3 ∙ 𝑧3𝑖

𝜂
 

where 𝜋1 + 𝜋2 + 𝜋3 = 1 and they are randomly selected to enhance the 

randomization of the algorithm.  

c. The customers are sorted once more, this time in ascending order of the overall 

priorities 𝜀𝑖
𝜂
, and a ranking weight (𝜈𝑢 − 𝑘)  (denoted by 𝜔𝑖

𝜂
 ) is assigned to customer 

𝑖 ranked at the 𝑘𝑡ℎposition of the list. This last sorted list is called the Candidate 

List. For each customer in the Candidate List, we calculate a cost value by dividing 

the number of unrouted customers (𝜈𝑢), with the ranking weight 𝜔𝑖
𝜂
 of the specific 

customer in the Candidate List (equation (37)). The emerging cost value  𝑆𝑖
𝜂
  of 

customer 𝑖 is normalized (equation (38)) by dividing it with the average of the past 

cost values of customer 𝑖 calculated in the previous 𝜂 − 1 iterations (denoted by 𝐴𝑖
𝜂
). 
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The resulting normalized value is denoted by 𝜑𝑖
𝜂
 and 𝐴𝑖

𝜂
=

∑ 𝜑𝑖
𝜂𝜂−1

𝒾=1

(𝜂−1)
. Finally, based 

on the normalized values 𝜑𝑖
𝜂
 we calculate the probability 𝜀𝑖

𝜂
 of selecting customer 𝑖 

by formula (39) (Ríos-Mercado & Fernández, 2009).  

𝑆𝑖
𝜂
=

𝜈𝑢

𝜔
𝑖
𝜂  (37) 

𝜑𝑖
𝜂
=

𝑆𝑖
𝜂

𝐴
𝑖
𝜂  (38) 

𝜀𝑖
𝜂
=

𝑓𝑖
𝜂

∑ 𝑓ℎ
𝜂𝑛𝑢

ℎ=1

  (39) 

 

where:  

- 𝑆𝑖
𝜂
: Cost value of customer 𝑖 in iteration 𝜂 

- 𝜈𝑢: Νumber of customers remaining to be inserted in a route  

- 𝑧𝑖
𝜂
: Rank of customer 𝑖 in Candidate List (in iteration 𝜂) 

- 𝜑𝑖
𝜂
: Frequency of customer 𝑖 

- 𝐴𝑖
𝜂
: Average cost value for customer 𝑖, resulting from all the previous (𝜂 −

1) iterations 

- 𝜀𝑖
𝜂
: Probability of selection for customer 𝑖 in iteration 𝜂 

ii. The selected customer in step (i) is assigned to the first available truck with the greatest 

volume capacity that the order fits in. If no truck has enough remaining capacity for the 

specific customer, a new route is initiated. In any case, the selected customer is inserted 

in the position of the route that induces the minimum increase of the average 

transportation risk. It is worth noticing that the risk calculation during the route 

construction process assumes average travel speeds on the links. This assumption is 

essential since at this phase the loading start time of the trucks and the corresponding 

departure time of the routes have not been determined yet.  

iii. After the insertion of the selected customer, it is removed from the ranking lists and the 

Candidate List, and the process returns to step (i). The process terminates when all the 

customers have been assigned to a truck. 

The output of this insertion procedure is a list of routes assigned to a list of delivery trucks 

servicing all the orders. The emerging solution is enhanced with a feasible schedule of the 

corresponding loading activities, i.e., the assignment of each route to a loading station for a 

certain number of subsequent slots. It is worth noticing that the start time of each loading 

activity is determined so that the corresponding route risk is minimized. The scheduling process 

is provided in Appendix D.  

 

 

4. Experiments and Results 

 

4.1 Experimental Data 
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The proposed algorithm was coded in Java. The experiments were performed on a computer 

with a 3.60GHz Intel® CoreTM  i7-4790 CPU and a 16 GB RAM. The purpose of our 

experiments is to assess: i) the effectiveness of the novel components of the proposed algorithm 

(i.e., the new One-Point Crossover operator and the new Multi-point Crossover operator) in 

determining the efficient frontier of the problem, and ii) the efficiency of the two feasibility 

methods in resolving any capacity violation issues. Three alternative configurations of the 

proposed algorithm were tested:  

- Configuration 1 (Conf-1): The NSGA-II was tuned to use solely the Multi-point 

Crossover operator for reproduction and the Route Splitting method for resolving any 

capacity violation issues.  

- Configuration 2 (Conf-2): The NSGA-II was tuned to use the conventional 

reproduction operators (one-point crossover and the mutation supported by binary 

tournament, where the use of each operator is randomly selected for each NSGA-II 

iteration) and the Relocation method for resolving any capacity violation issues. 

- Configuration 3 (Conf-3): The NSGA-II was tuned to use the conventional 

reproduction operators (one-point crossover and mutation supported by binary tournament) 

and the Route Splitting method for resolving any capacity violation issues. 

The experiments were carried out on the benchmark instances GT_13-20 introduced by 

Golden et al. (1984), customized accordingly to fit the proposed problem. Each of the test 

problems was solved by the proposed algorithm under the configurations 1-3. The specific 

instances contain 50, 75, or 100 customers and a fleet of 7 to 14 vehicles grouped into 6 

different types (Cruz et al., 2014). For the purpose of the experiments, a base travel speed of 

40 km/h is assumed, which is adjusted dynamically by 0% to 50% depending on the time of 

day. Additionally, the links between customers are assumed to have an average population 

density ranging from 1,000 to 15,500 people per square kilometer. Moreover, Table 2 presents 

the value of the impact radius as a function of the load of the truck (in liters).  

The experiments aimed at the comparative assessment of: i) the performance of the New 

Multi-Point Crossover Operator over the performance of the One-point Crossover operator and 

mutation supported by binary tournament by comparing the results of  Conf-1 vs. the results of 

Conf-3, and ii) the performance of the two different methods for attaining feasibility 

(Relocation Method vs Splitting method) by comparing the results of Conf-2 vs. the results of 

Conf-3.  

 

Transported Quantity (lt) Impact Radius (m) 

0 0 

(0-5,000] 40 

(5,000-10,000] 60 

(10,000-15,000] 80 

(15,000-20,000] 100 

>20,000 120 

Table 2: Assumed impact radius according to the transported volume quantity. 
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The metrics used for the evaluation of the algorithm’s results are presented below. The 

Spacing metric and the Hypervolume indicator have been widely utilized in the evaluation of 

results for various Bi-objective Vehicle Routing Problems. For example, in Baños et al. (2013) 

both metrics have been used for the result evaluation of an NSGA-II algorithm used over a 

multi-objective vehicle routing problem. 

1. The spacing metric measures the distribution of solutions in a solution set, where a 

larger value indicates a more spread-out or diverse set of solutions, reflecting greater 

variation among them. The formulation and the detailed analysis of the metric is provided 

in Appendix E. 

2. Hypervolume indicator measures the quality of a set of solutions based on their 

coverage of the objective space. A higher hypervolume value indicates that the non-

dominated solutions determined are diverse and well-distributed across the objective space. 

The formula and further details are provided in Appendix E.  

3. Risk Values Range expressed by the minimum and maximum risk values (min risk, max 

risk) over the set of solutions. The risk is expressed in person hours. 

4. Distance Values Range expressed by the minimum and maximum traveled distance 

(min distance, max distance) over the set of solutions. The data sets used for the 

experiments utilize fabricated coordinates that do not correspond directly to any specific 

units of measurement. Consequently, we can say that our distance results are expressed in 

travel units.  

5. Computational Time (seconds) required for the execution of the proposed algorithm. 

Each of the experimental runs involved the generation of an initial population of 50 solutions 

through the GRASP method followed by 500 iterations of the NSGA-II algorithm.  

 

4.2 Tuning the Multi-Point Crossover Operator 
The Multi-Point Crossover Operator is a crucial component of the proposed algorithm which 

employs a reproduction process consisting of four distinct steps. Each step selectively 

introduces a predetermined percentage of customers from the parental solutions into the 

offspring population. In Figure 7, we present the hypervolume % results obtained by examining 

different percentage scenarios (Conf-1 for GT_20). The four scenarios of percentages are 

outlined as follows in Table 3:   

 

Combination Step 1 Step 2 Step 3 Step 4 

Selection-1 40% 30% 10% 20% 

Selection-2 20%  10% 30% 40% 

Selection-3 20% 20% 20% 40% 

Selection-4 20% 30% 30% 20% 

Table 3: Percentage combinations for each step of the Multi-Point Crossover used for the 

percentage exploration. 
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Fig. 7: Hypervolume% comparison for different percentage combinations utilized in the 

Multi-Point Crossover Operator (Conf-1 for GT_20). 

 

Our analysis of the results presented in Figure 7 reveals that the percentage scenario Selection-

1 consistently yields marginally superior outcomes in terms of the Hypervolume % metric. As 

a result, we have selected to employ the Selection-1 scenario for all the tests presented above 

which utilize the Multi-Point Crossover Operator. 

 

 

4.3 Assessing the Operators’ Performance 
Graphs 1-8 illustrated in Figure 8, present the hypervolume indicator of the population of 

solutions determined at various stages of the proposed algorithm for problem instances GT_13 

to GT_20 respectively. Each graph shows the hypervolume indicator evolution with a step of 

100 iterations starting with the initial population of solutions until 500 iterations are completed. 

The graphs indicate the results for each of the three configurations separately, using a different 

color and shape (blue & square for Conf-1, red & triangle for Conf-2, and green & circle for 

Conf-3).  

Upon careful examination of graphs 1-8, the following remarks can be made:  

- The performance of the algorithm under Conf-1 (with the Multi-point Crossover 

operator) is similar to or higher than the performance of the algorithm under Configuration 

3 (with the conventional reproduction operators i.e. one-point crossover and mutation 

supported by binary tournament). In more detail, it can be observed that the performance 

of Conf-1 (blue line with squares) is similar to the performance of Conf-3 (green line & 

circles) in 4 out of the 8 graphs and superior in 3 out of the 8 graphs. This observation 

indicates that the new Multi-Point Crossover operator (used in Conf-1) yields solutions that 

exhibit closer proximity to the Pareto Front than the solutions determined by the one-point 

crossover & mutation supported by binary tournament operators (used in Conf-3). 

- The hypervolume indicator of the solutions determined by the proposed algorithm 

under Conf-2 (one-point crossover & mutation supported by binary tournament enhanced 

with the Relocation method) surpasses the corresponding hypervolume indicator of the 

solutions determined under Conf-3 (one-point crossover & mutation supported by binary 

tournament enhanced with the Route Splitting method) in 7 out of out the 8 instances. This 

observation suggests that fixing capacity violation issues with the Relocation Method (used 
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in Conf-2) has the potential to enhance the algorithm's performance more than the 

corresponding implementation with the Route Splitting Method (used as in Conf-3).  

 

 

 

 

Fig. 8: Graphs 1-8 presenting the Hypervolume indicator of Conf. 1, 2 & 3 for the instances 

GT_13 to GT_20. 

Table 4 presents the percentage increase of the hypervolume indicator throughout the 

execution of the 500 iterations of NSGA-II using the hypervolume indicator achieved by Grasp 

as a reference value. The data presented in the table indicates that the most significant 
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enhancement in the hypervolume outcomes occurs during the first 100 iterations. Each dataset 

features a fixed fleet of vehicles, with capacities closely aligned with the total ordered volume. 

As a result, there is limited room for improvement due to the constrained capacity, presenting 

a challenging environment for optimization. Moreover, we notice that in most of the cases, the 

initial solutions of Grasp provide a relatively high Hypervolume value. Consequently, as in 

some cases NSGA-II tries to avoid being trapped in local optimum, we have observed that the 

NSGA-II algorithm can provide worse results in its first iterations vs the Reactive Grasp 

algorithm, before resulting in improved solutions (GT_19 in Conf-2). 

DATASET 
Type of 

Test 

Multi-Point 

Crossover 
SPLIT 

100 

ITER 

200 

ITER 

300 

ITER 

400 

ITER 

500 

ITER 

GT_13 

Conf-1 YES YES 3% 3% 3% 3% 3% 

Conf-2 NO NO 3% 3% 3% 3% 6% 

Conf-3 NO YES 3% 3% 3% 3% 3% 

GT_14 

Conf-1 YES YES 8% 8% 8% 8% 8% 

Conf-2 NO NO 3% 3% 3% 3% 3% 

Conf-3 NO YES 3% 3% 3% 3% 6% 

GT_15 

Conf-1 YES YES 9% 9% 9% 9% 9% 

Conf-2 NO NO 10% 10% 10% 10% 10% 

Conf-3 NO YES 6% 6% 6% 6% 6% 

GT_16 

Conf-1 YES YES 8% 8% 8% 8% 8% 

Conf-2 NO NO 15% 16% 17% 17% 17% 

Conf-3 NO YES 11% 11% 11% 11% 11% 

GT_17 

Conf-1 YES YES 7% 7% 7% 7% 7% 

Conf-2 NO NO 2% 2% 9% 15% 15% 

Conf-3 NO YES 8% 8% 8% 8% 8% 

GT_18 

Conf-1 YES YES 105% 105% 105% 105% 105% 

Conf-2 NO NO 113% 113% 113% 113% 113% 

Conf-3 NO YES 90% 90% 90% 90% 90% 

GT_19 

Conf-1 YES YES 2% 2% 2% 2% 2% 

Conf-2 NO NO -13% 0% 2% 10% 10% 

Conf-3 NO YES 0% 0% 0% 0% 0% 

GT_20 

Conf-1 YES YES 36% 36% 36% 36% 36% 

Conf-2 NO NO 30% 46% 65% 65% 65% 

Conf-3 NO YES 37% 37% 37% 37% 37% 

Table 4: Percentage improvement of the Hypervolume indicator during the 500 iterations of 

NSGA-II compared with the Grasp output. 

 

Figure 9 illustrates graphs 9 to 16 that present the spacing metric performance of the proposed 

algorithm in problem instances GT_13 to GT_20, respectively. No definite indication can be 

deduced from these graphs. It can be noticed that the spacing metric of the solutions determined 

by the proposed algorithm under Conf-1 (using the New Multi-point Crossover Operator) 

surpasses the corresponding metric of the solutions determined by Conf-3 (using the one-point 

crossover & mutation supported by binary tournament) in 5 out of the 8 graphs. Moreover, 

Graphs 9-16 indicate that the spacing metric of the solution determined by Conf-2 (using the 

Relocation Method for fixing capacity violations) surpasses the corresponding metric of the 

solutions determined by Conf-3 (using the Route Splitting method) in 6 out of the 8 graphs.  
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Fig. 9: Graphs 9-16 presenting the Spacing metric of Conf. 1, 2 & 3 for the instances GT_13 

to GT_20 

 

Table 5 presents the average value of the assessment metrics Hypervolume % and Spacing 

across all 500 iterations.  In addition, the table also presents the min Risk and min Distance 

retrieved over all NSGA-II iterations (500 in total) executed for Conf. 1-3. From Table 5 we 

can observe that: 

- The avg hypervolume % of Conf-1 (using the Multi-Point Crossover Operator) outperforms 

in all instances the corresponding results of Conf- 3 (using the one-point crossover and 

mutation supported by binary tournament). The same observation was also made from 
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graphs 1 to 8 (Fig. 8) which suggests that the Multi-Point Crossover Operator outperforms 

the conventional reproduction operators. 

- The avg hypervolume % of Conf-2 that uses the Relocation method for generating feasible 

solutions outperforms in most instances the results of Conf-3 that uses the Splitting method 

for the same purpose (both using the one-point crossover and mutation supported by binary 

tournament for the solution generation). Similar results have also been driven by the graphs 

1 to 8 (Fig. 8). 

- The average spacing of Conf-2 outperforms in most instances the results of Conf-3. The 

same observation was also made from graphs 9 to 16 (Fig. 9).  

 

DATASET 
Cust 

# 

Type 

of Test 

Multi-

Point 

Crossover 

SPLIT 
Avg 

Hypervol.% 

Avg 

Spacing 

Min 

Risk 

Min 

Dist 

GT_13 50 

Conf-1 YES YES 76,6% 2536 553 1578 

Conf-2 NO NO 76,6% 2603 527 959 

Conf-3 NO YES 72,3% 3424 503 837 

GT_14 50 

Conf-1 YES YES 76,3% 2992 515 1492 

Conf-2 NO NO 68,3% 7991 503 870 

Conf-3 NO YES 72,0% 3809 501 1046 

GT_15 50 

Conf-1 YES YES 67,5% 3779 529 1662 

Conf-2 NO NO 66,9% 4806 512 711 

Conf-3 NO YES 65,7% 3208 511 824 

GT_16 50 

Conf-1 YES YES 73,4% 4706 514 1592 

Conf-2 NO NO 71,7% 2584 501 963 

Conf-3 NO YES 69,8% 3501 515 835 

GT_17 75 

Conf-1 YES YES 68,4% 6423 602 2195 

Conf-2 NO NO 60,3% 6817 509 1500 

Conf-3 NO YES 52,4% 10723 519 1323 

GT_18 75 

Conf-1 YES YES 55,1% 9957 505 2265 

Conf-2 NO NO 43,5% 22144 509 1409 

Conf-3 NO YES 50,2% 13165 509 1007 

GT_19 100 

Conf-1 YES YES 54,3% 2818 2394 3241 

Conf-2 NO NO 47,5% 8392 670 2117 

Conf-3 NO YES 47,9% 4040 510 1829 

GT_20 100 

Conf-1 YES YES 45,4% 4369 567 2997 

Conf-2 NO NO 50,3% 5218 855 1735 

Conf-3 NO YES 44,7% 5766 512 1759 

Table 5: Results for the Datasets GT_13 to GT_20 when performing Conf. 1, 2 & 3. 

Based on the reported data, it can be deduced that the adoption of the New Multi-Point 

Crossover Operator and the Customer Relocation method, may yield more advantageous 

outcomes in comparison to employing the original operators of NSGA-II alongside the 

straightforward Route Splitting method. Moreover, the utilization of the suggested model 

formulation enables us to mimic real-world scenarios and provide an optimized routing 

solution that takes into account the HazMat risk. 

 

4.4 Computational Time Performance 
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Table 6 provides the computational time required for each of the two phases of the proposed 

algorithm: i) the execution of the Grasp algorithm, and ii) the execution of 500 iterations of the 

NSGA-II. It becomes evident that the computational time of the Grasp algorithm is exceedingly 

minimal. Moreover, it is worth noting that the use of the Multi-Point Crossover Operator 

requires double the computational time compared with the one-point crossover & mutation 

supported by binary tournament operators. It also can be observed that increasing the 

population or expanding the fleet size for a given population leads to a corresponding increase 

in computational time mainly when the Multi-Point Crossover Operator is used (Conf.1) e.g. 

from GT_18 with 75 customers to GT_19 with 100 customers. 

 

DATASET 
Cust 

# 

Veh. 

# 

Type of 

Test 

Multi-Point 

Crossover 
SPLIT 

Comp. Time 

GRASP (sec) 

Comp. Time 

NSGA-II (sec) 

GT_13 50 17 

Conf-1 YES YES 2 117 

Conf-2 NO YES 1 70 

Conf-3 NO NO 1 68 

GT_14 50 7 

Conf-1 YES YES 2 118 

Conf-2 NO YES 2 54 

Conf-3 NO NO 1 51 

GT_15 50 9 

Conf-1 YES YES 1 121 

Conf-2 NO YES 1 57 

Conf-3 NO NO 1 61 

GT_16 50 9 

Conf-1 YES YES 2 114 

Conf-2 NO YES 2 58 

Conf-3 NO NO 1 59 

GT_17 75 11 

Conf-1 YES YES 2 144 

Conf-2 NO YES 2 75 

Conf-3 NO NO 2 75 

GT_18 75 14 

Conf-1 YES YES 2 153 

Conf-2 NO YES 3 75 

Conf-3 NO NO 2 76 

GT_19 100 10 

Conf-1 YES YES 4 185 

Conf-2 NO YES 4 71 

Conf-3 NO NO 5 73 

GT_20 100 13 

Conf-1 YES YES 3 188 

Conf-2 NO YES 4 91 

Conf-3 NO NO 2 87 

Table 6: Computational time of Grasp and NSGA-II method for Conf-1, 2 & 3 for the 

instances GT_13 to GT_20. 

 

5. Conclusion 

This paper focuses on the vehicle routing problem in urban areas for the transportation of 

Hazardous Materials. The research presents a novel element, in particular the scheduling of the 

loading operations at the available loading station, which enriches the current framework. A 

bi-objective formulation has been developed with the first objective being the total traveled 

distance whereas the second objective is risk minimization. With our model formulation, we 

have tried to approach real-life scenarios by taking into consideration the start time of each 
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vehicle’s route which is respectively correlated with the actual travel time and the risk. In our 

risk assessments, we have also taken into account the actual load being transported by 

each truck at every point along its route. The genetic algorithm NSGA-II was employed to 

address the model, as it is a highly effective approach for addressing bi-objective vehicle 

routing problems. In our formulation, we have incorporated supplementary techniques that 

encompass all aspects of our model. One of the methods implemented is the New Multi-Point 

Crossover operator, which seeks to enhance the level of diversity within the solution space. 

The evaluation of our formulation's outcomes has been conducted using the Hypervolume and 

Spacing metrics. The analysis demonstrates that the inclusion of the New Multi-Point 

Crossover operator in the NSGA-II formulation yields a more diverse set of solutions and 

achieves a better tradeoff between the two objectives. Nevertheless, after including the risk 

factors in our model, it becomes evident that there is an increase in the overall traveled distance.  

In conclusion, the inclusion of load and time dependency in our model enhances the accuracy 

of risk calculations, allowing for a more realistic representation of real-life scenarios. This, in 

turn, facilitates a more precise evaluation of potential risks and enables effective risk mitigation 

strategies. 
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Appendix A: The trade-off between Distance and HazMat Risk 

 
The Mixed Integer Linear Programming (MILP) formulation presented in section 2.3 is solved 

to optimality through the implementation of the ε-constraint method. This approach allows us 

to address the bi-objective nature of the problem by prioritizing one objective while 

constraining the other. Specifically, the ε-constraint formulation is implemented through the 

CPLEX API in Java, where risk is kept as the objective function, and distance is constrained 

by the parameter ε. This methodology highlights the trade-offs between the two objectives and 

provides a set of solutions from which a decision-maker can choose, balancing cost (distance) 

and risk. 

To illustrate this, a problem instance involving two trucks with capacities of 21,000 liters and 

15,000 liters, respectively, and six customers are considered. The average population density 

per square kilometer along the routes between customers and the depot varies significantly, 

ranging from 1,600 to 12,000 individuals per square kilometer. Additionally, the travel speed 

across these links is influenced by the time of day the trucks traverse each segment, resulting 

in travel times that range between 5 and 55 minutes. The order volumes for each customer are 

displayed in Table 1a. 

The risk measure, in this case, expresses the time duration during which the potentially 

affected population remains in danger. Thus, the trade-off in routing trucks is expressed as the 

additional population time exposure incurred per kilometer reduction in travel distance. By 

analyzing these results, we gain valuable insights into how the prioritization of one objective 

impacts the outcomes related to the other, aiding decision-makers in selecting the most 

appropriate solution based on their preferences. 

 

Customer Order vol (lt) 

1 5,000 

2 3,000 

3 6,000 

4 7,000 

5 9,000 

6 2,000 

Table 1a: Order volume in liters per customer 

 

The table below (table 2a) demonstrates the results of Risk and Distance for all the trade-off 

points when distance is constrained. A notable observation is that, as the distance decreases, 

reflecting more efficient routing, the associated risk increases significantly. For example, 

reducing the distance from 198 to 88 units (a 55% decrease) leads to a rise in risk from 7,127 

to 15,217 (a 113% increase). The relationship is non-linear, as seen between points 1 and 2, 

where a substantial distance reduction occurs with only a slight increase in risk, while between 

points 5 and 6, the risk escalates significantly for a more modest distance gain. These results 

emphasize the complexity of balancing efficiency and safety, showing that minimizing distance 

may lead to considerable compromises in safety, while prioritizing lower risk may result in 

longer travel routes. This analysis underscores the importance of weighing priorities carefully 



31 

 

based on the specific requirements of the decision-making context. The trade-off described 

above is also demonstrated in Fig. 1a. 

 

Trade-off 

points 

Risk Distance 

1 7127 198 

2 7178 156 

3 8803 153 

4 9723 137 

5 12345 122 

6 15217 88 

 

Table 2a: Results of Risk and Distance for all the Trade-off points. 

 

 
Fig. 1a: Trade-off between Risk and Distance. 
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Appendix B: NSGA-II Algorithm Pseudocode 

 
NSGA-II MAIN LOOP 

Function NSGA_II 

INPUT: parent_pop // of size N 

WHILE child_pop <N 

    FOR i=0 to parent_pop 

     PERFORM: randomly crossover OR binary tournament & mutation to parent_pop 

      CREATE child 

      child_pop++ 

      END FOR 

   END WHILE 

pop= parent_pop+ child_pop 

 

FOR i=0 to pop.size 

   CALCULATE: risk[i], dist[i] 

END FOR 

PERFORM: Non Dominated Sort of pop 

WHILE final_pop.size<N 

   FOR j=0 to set.size //population sets after non-dominated rank 

        IF set[j].size+ final_pop.size <N 

            final_pop.add(set[j]) 

         ELSE  

             Calculate: Crowding distance of set[j] 

                UNTIL final_pop.size ==N 

      SELECT item of set[j] with biggest crowding distance AND 

final_pop.add(pop.set[j].item[k]) 

                 END 

             END IF 

      END FOR 

END WHILE 
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Appendix C: Pseudocode for Customer Relocation Method 
 

INPUT: route, veh, distances 

 

FOR v = 0 to veh_no 

        Calculate:  loaded quantity in vehicle v 

 

    Select: the vehicle v to be assessed for feasibility 

 

    FOR each customer c in c_route 

        IF loaded_qty[v]+ customer_qty[c]<max_weight[v] //the order volume can fit in the 

current vehicle 

            Assign: customer c to vehicle v 

           loaded_qty[v]= loaded_qty[v]+ customer_qty[c] //Update the remaining volume 

assigned vol. of vehicle  

        ELSE 

             limit_exceeded =true 

            z=0 

            WHILE limit_exceeded =true 

                  //search if the order can fit in other vehicles  

                 IF loaded_qty[z]+ customer_qty[c]<max_weight[z] 

                         Assign: customer c to vehicle z 

                         loaded_qty[z]= loaded_qty[z]+ customer_qty[c] 

                         limit_exceeded=false 

                ELSE 

                        z++ 

               END IF 

                 

                 IF   z==total_vehs -1 AND limit_exceeded==true 

                   Remove: from route ½assigned customers 

                  Start the assessment process from the beginning 

              END IF 

 

           END WHILE 

         END IF 

 

      FOR v = 0             

         //re-arrange the route to give the best customer sequence by considering risk and 

distance    

         CALL Re-assignment method (new_route, veh V)   

     END FOR 

           

  RETURN new_route 
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Appendix D: Pseudocode for Scheduling the Loading Activities 

 
    FOR v=0 to total_vehicles 

         Compute: assigned order volume q[v] per vehicle v 

         Compute: required service time t[v] of vehicle v at a pump p according to q[v] 

         Compute: required number of slots s at loading station p according to t[v] 

    END FOR 

   FOR  p=0 to loading stations 

        Assign: available start time of service per loading station 𝑠𝑒 = open time of depot 

   END FOR 

 

WHILE there are vehicles v that have been assigned with orders and remain unassigned to a 

loading station  

         

           Select: earliest available loading station p 

              FOR v=0 to total_vehicles 

                   Calculate: Risk of vehicle v if assigned to loading station p 

               END FOR 

        Get: v that results in minimum risk 

        Assign: v to selected loading station p 

        Set: the new available start time of loading station 𝑠𝑒 = 𝑠 ∗ 𝑥 + 𝑠𝑡    // x is an integer 

number 

 

 END WHILE 

 

RETURN Loading Stations Schedule 
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Appendix E: Analysis and Definition of Performance Metrics 
 

Spacing Metric 

 

The spacing metric is used to measure the distribution or spread of solutions in a multi-

objective optimization problem. It assesses how well the solutions are spaced across the 

objective space, with the goal of ensuring diversity in the set of solutions. The metric takes into 

account the pairwise distances between solutions, aiming to evaluate how dispersed the 

solutions are without considering their exact values in terms of the objectives. 

 

The formula for the calculation of the spacing metric is: 

 

𝑆𝑝𝑎𝑐𝑖𝑛𝑔 =
1

𝑛0(𝑛0−1)
∑ ∑ 𝑑(

𝑛0
𝜇=1,𝜇≠𝜅

𝑛0
𝜅=1 𝑃𝜅 , 𝑃𝜇)  

                     where:  

 

- 𝑃𝜅, 𝑃𝜇: represent the 𝜅thand μthsolutions in the set 

- 𝑑(𝑃𝜅, 𝑃𝜇): denotes the Euclidian distance between solutions 𝑃𝜅 and 𝑃𝜇 in the 

objectives space (defined by distance and risk) 

- 𝑛0: number of solutions 

 

 

Hypervolume indicator 

 

The hypervolume indicator is a performance metric used to evaluate the quality of a Pareto 

front in multi-objective optimization problems. It provides a quantitative measure of the 

volume of the objective space that is dominated by the Pareto front, bounded by a predefined 

reference point. A higher hypervolume value indicates a better approximation of the true Pareto 

front, as it covers a larger portion of the objective space. 

The calculation of the hypervolume indicator begins by defining a reference point in the 

objective space. This reference point is typically selected based on the worst values for each 

objective function, such as the maximum value of each objective in the obtained set of 

solutions. Once the reference point is established, the hypervolume is calculated as the volume 

of the objective space that lies between the Pareto front and the reference point. 

 

Calculation Formula 

The hypervolume percentage is given by: 

 

𝐻𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒 % =
∑ 𝐻𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝜅
𝑛𝑜
𝜅=0

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 
∙ 100  

              
    where: 
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- 𝑛𝑜: number of solutions 

- 𝜇: number of objectives 

- ∑ 𝐻𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝜅
𝑛0
𝜅=0 =The incremental volume contributed by the 𝜅-th solution to 

the overall hypervolume. 

Incremental Hypervolume Calculation 

The incremental hypervolume contribution from each solution is calculated as follows: 

 

∑ 𝐻𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝜅
𝑛0
𝜅=0 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑜𝑙𝜅 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑜𝑙  

 
    where: 
 

- 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑜𝑙𝜅 =The hypervolume of the objective space dominated by the 

solution 𝜅. 

- 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑜𝑙𝑖 =   𝑇ℎ𝑒 hypervolume contributed by the previous solution 𝜅 − 1. 

 

           𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑜𝑙𝜅 is calculated using: 
 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑜𝑙𝜅 = 𝛱𝑗=1
𝜇

ma  (0, 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑗 − 𝑂𝑏𝑗𝑉𝑎𝑙𝑢𝑒𝑖𝑗) 

 

           where: 
- 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑗:  The upper bound value for objective 𝑗 as defined by the 

reference point. 

- 𝑂𝑏𝑗𝑉𝑎𝑙𝑢𝑒𝑖𝑗; The objective value for solution 𝜅 concerning objective 𝑗. 
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