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Abstract. We show that if a singly-periodic bar-joint framework in the
Euclidean plane is derived from a pointed pseudotriangulation on the
flexible flat cylinder, then it has a one-parameter deformation, which
is expansive, i.e. the motion does not decrease the distance between
any pair of joints. For the proof, we consider singly-periodic versions of
Maxwell-Cremona liftings and adapt the proof of C. Borcea and I. Streinu
for the doubly-periodic version of this statement.

1 Introduction

An expansive motion in a bar-joint framework is one that does not decrease
the distance between any pair of joints. Applications of expansive motions in-
clude reconfigurable mechanisms and collision-free motion planning in robotics.
In material science, they help design meta-materials with auxetic behaviour.

C. Borcea and I. Streinu previously showed that every doubly-periodic pointed
pseudotriangulation in the plane has a one-parameter deformation (under a flex-
ible lattice representation), which is expansive [2]. J. Cruickshank and B. Schulze
[3] recently extended the concept of a pointed pseudotriangulation to other orb-
ifolds beyond the flat torus, specifically the flat cylinder and flat cones. They
noted that the Maxwell count of pointed pseudotriangulations on the flexible flat
cylinder (whose liftings are singly-periodic frameworks in the plane) indicates ex-
actly one non-trivial degree of freedom, and conjectured that such frameworks
have an expansive motion. We verify this conjecture here.

We adapt Borcea and Streinu’s proof for the doubly-periodic case to the
singly-periodic case. This involves using singly-periodic versions of Maxwell-
Cremona liftings. We show that a self-stress is translation-invariant (constant
on each edge orbit) if and only if it is induced by a singly-periodic lifting. The
proof differs from the doubly-periodic case due to the existence of two unbounded
faces, which alters the arguments to show that the stress-weighted sum over a
face-path from a bounded face to its translations is zero. Moreover, this re-
sult requires only translation-invariance of the self-stress, not periodicity (i.e.
fulfillment of the extra condition arising from the flexibility of the cylinder),
distinguishing it further from the doubly-periodic scenario.

We then demonstrate that pointed pseudotriangulations on the flexible flat
cylinder have no non-trivial periodic liftings and thus no non-zero periodic self-
stresses, implying a one-dimensional periodicity-preserving deformation space.
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Finally, we adapt another argument from Borcea and Streinu to show that these
deformations are expansive.

Throughout this paper, we will use standard notation from rigidity theory,
see e.g. [5]. A d-dimensional (bar-joint) framework is a pair (G, p) consisting of a
simple graph G = (V,E) and an injective map p : V → Rd. When it’s clear from
the context we will use p(v) and v interchangeably. An infinitesimal motion of
a framework (G, p) is a map u : V → Rd such that, for all vivj ∈ E,

(p(vi)− p(vj)) · (u(vi)− u(vj)) = 0. (1)

The infinitesimal motion u is trivial if it corresponds to a rigid body motion,
and non-trivial otherwise. The matrix corresponding to (1) is called the rigidity
matrix, denoted R(G, p), and (G, p) is infinitesimally rigid if G is complete on
at most d+ 1 vertices or R(G, p) has maximum rank (equal to d|V | −

(
d+1
2

)
).

A self-stress of (G, p) is a map s : E → R such that, for every vertex v ∈ V ,
the vector equation

∑
vvi∈E se(p(vi)−p(v)) = 0 holds. If a framework has no non-

zero self-stress, then it is called independent. An independent and infinitesimally
rigid framework is called minimally rigid.

2 Periodic frameworks

An infinite graph G̃ is called singly-periodic if there is a free action from Z to
Aut(G̃). A framework (G̃, p̃) in R2 is singly-periodic if G̃ is a singly-periodic graph
and there exists λ ∈ R2\{(0, 0)} such that, for every vertex orbit representative
v and r ∈ Z, we have p̃(v, r) = p̃(v, 0) + rλ. W.l.o.g. we assume in this paper
that λ = (1, 0), so the periodicity is along the horizontal axis. Singly-periodic
frameworks can alternatively be thought of as frameworks on the flat cylinder.
It is important to note that, in our model, the flat cylinder is allowed to deform
under a motion.

It is a common approach to represent frameworks with symmetry group Γ
in terms of their group-labelled quotient graphs, also known as Γ -gain graphs.
See [4, 1] for details. We use this here for Γ = Z.

Let (G,m) be a Z-gain graph with vertex set V , edge set E, and gain function
m : E → Z. For brevity, for an edge e = (vi, vj ;m(e)), we write p(e) = p(vi) −
p(vj)− (m(e), 0), which is the vector along the bar derived by e.

Let (G,m) be a Z-gain graph with vertex set V and edge set E. Let (G̃, p̃) be a
singly-periodic framework on the plane, derived from (G,m). Let (s(e,k))(e,k)∈E×Z
be a self-stress of (G̃, p̃). The self-stress s is translation-invariant if, for every
e ∈ E and k ∈ Z, we have s(e,k) = s(e,0). When a self-stress is translation-
invariant, s(e,k) can be abbreviated to se.

The self-stress s is periodic if it is translation-invariant and it satisfies∑
e=(vi,vj ;m(e))∈E

sem(e)p(e) = 0. (2)
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Equivalently, a self-stress is periodic if it corresponds to an element of the cok-
ernel of the flexible-lattice periodic rigidity matrix Rfper(G̃, p̃) [1, 2]. The row for
an edge e = (vi, vj ;m(e)) in this matrix has the form:

[ vi vj
e 0 ... 0 (p(e))T 0 ... 0 −(p(e))T 0 ... 0 m(e)[p(e)]x

]
,

where [p(e)]x denotes the x-coordinate of p(e). Removing the final column corre-
sponding to the flexibility of the cylinder yields the fixed-lattice periodic rigidity
matrix whose co-kernel corresponds to the translation-invariant self-stresses.

Note that not all translation-invariant self-stresses are periodic. Consider,
for example, a Z-gain graph on K1

1 (a single vertex with a loop), where the
loop has gain 1. Any derived singly-periodic framework from this gain graph
has a translation-invariant self-stress defined by assigning weight 1 to every bar.
However, this is not periodic, as it does not satisfy Equation (2).

We say that a continuous motion of a (possibly infinite) framework (G, p)
is expansive if it does not decrease the distance between any pair of joints. An
infinitesimal motion u of (G, p) is expansive if it corresponds to an expansive
continuous motion, that is, for all pairs vi, vj ∈ V , we have (u(vi) − u(vj)) ·
(p(vi)− p(vj)) ≥ 0. Similarly, u is contractive if, for all pairs vi, vj ∈ V , we have
(u(vi) − u(vj)) · (p(vi) − p(vj)) ≤ 0. Clearly, an expansive infinitesimal motion
exists if and only if a contractive one exists (via multiplication by −1).

3 Pointed pseudotriangulations

3.1 Preliminaries

Let (G, p) be a non-crossing framework in R2, i.e. p : G → R2 is a planar
embedding in R2, such that no edge-crossings are allowed. Note that p is uniquely
determined by the configuration of V , so we may abuse notation. A face of (G, p)
is a connected component of R2\p(G).

Let (G, p) be a (possibly infinite) non-crossing framework in R2 and let U1

and U2 be a pair of faces of this framework. A face-path U1 → U2 consists of a
sequence of directed edges that are crossed in a path through the plane from U1

to U2, with the standard orientation that edges are directed from left to right,
relative to the direction of the path [2, Subsection 2.3].

In this paper, we will use techniques involving Maxwell-Cremona liftings.
Let (G, p) be a non-crossing framework in the plane R2. A lifting of (G, p) is a
continuous function H : R2 → R where the restriction to any face of (G, p) is
an affine function. A lifting is trivial if it is affine on R2. Let (G̃, p̃) be a singly-
periodic framework in the plane R2 with periodicity vector λ ∈ R2. A lifting H of
(G̃, p̃) is periodic if, for all q ∈ R2, H(q + λ) = H(q). To discuss liftings further,
we use the notation from [2]. Let H be a lifting of a non-crossing framework
(G, p) in R2. Let F denote the set of faces of (G, p). Then the restriction of H to
some face U ∈ F takes the form H(q) = νU · q+CU , where CU ∈ R and νU ∈ R2

is the projection of the normal of the lifted face to the reference plane. With
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this notation, a lifting H can be defined in terms of the faces of the framework:
H = (νU , CU )U∈F [2].

Proposition 1. [2, Proposition 1] Let (G, p) be a non-crossing framework in
R2 with lifting H = (νU , CU )U∈F . Then there is a unique self-stress se of (G, p)
such that, for every edge e = (vi, vj) with arbitrary direction putting a face Ui

on the right and Uj on the left,

νUj
− νUi

= se(p(vj)− p(vi))
⊥.

The self-stress given by Prop. 1 is known as the self-stress induced by the lifting.

3.2 Pointed pseudotriangulations on the flat cylinder

Let F be a face of a non-crossing framework. We say that a vertex v in the
boundary of F is F -convex (resp. F -concave) if the internal angle of v with
respect to F is strictly smaller (resp. greater) than π. The face F is called a
pseudotriangle if it has exactly 3 F -convex vertices. A joint v ∈ V is said to be
pointed if it is concave with respect to one of its incident faces. A framework in
R2 is pointed if all of its joints are pointed.

A pseudotriangulation in a space X is a non-crossing connected framework
in which every bounded face is a pseudotriangle, and each unbounded face has
no convex vertices if X is the plane, and exactly one convex vertex if X is the
flat cylinder [3]. A pointed pseudotriangulation in X is a pointed framework in
X that is also a pseudotriangulation in X.

We aim to prove the following main result.

Theorem 1. Every pointed pseudotriangulation on the flexible flat cylinder has
a 1-parameter continuous deformation, and this deformation must be expansive.

To begin, note that a pointed pseudotriangulation counts to have a one-dimensional
space of non-trivial infinitesimal motions on the flexible flat cylinder, as pointed
out in [3]. So if we can show that the pseudotriangulation has no non-zero peri-
odic self-stress, then the configuration is regular (i.e. the flexible-lattice periodic
rigidity matrix has maximum rank) and hence the single non-trivial infinitesimal
motion must correspond to a continuous motion.

In the following lemma, we show that translation-invariant self-stresses on
the flat cylinder also satisfy an additional condition regarding stress-weighted
sums over face-paths. This condition is needed to make the connection between
self-stresses and singly-periodic liftings.

Lemma 1. Let (G̃, p̃) be a non-crossing framework on the flat cylinder with a
translation-invariant self-stress s = (se)e∈Ẽ. Let U be a bounded face of (G̃, p̃),
let t ∈ Z and let U+ t be the face formed by a t-translation of U . Then, for every
face-path U → U + t, ∑

e∈U→U+t

sep(e) = 0. (3)
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Proof. By considering the self-stress constraints around each joint, it can be
seen that the sum from Equation (3) will be the same for every choice of face-
path from U to U + t. It is therefore only necessary to prove that Equation (3)
holds for one such face-path. Let U0 be one of the two unbounded faces of (G̃, p̃)
and consider any face-path of the form U → U0. Reversing and translating this
gives a corresponding face-path U0 → U + t. For t = 2, this is illustrated in
Figure 1. Translating the face-path does not affect this sum and reversing the
face-path merely changes the sign on each summand. Hence

∑
e∈U→U0

sep(e) =

−
∑

e∈U0→U+λ

sep(e). It follows that

∑
e∈U→U+t

sep(e) =
∑

e∈U→U0

sep(e) +
∑

e∈U0→U+t

sep(e) =
∑

e∈U→U0

(sep(e)− sep(e)) = 0.

U U + 2

U0 U0

Fig. 1: An illustration of an example of an application of the proof of Lemma 1.
The dashed line shows the face-path from U to U + 2 via U0.

Proposition 2. Every translation-invariant self-stress of a non-crossing frame-
work on the flat cylinder is induced by a periodic lifting.

Proof. Considering Lemma 1, the proof of [2, Proposition 5] can be applied
directly to reach this result.

It is worth noting that Proposition 2 does not require the translation-invariant
self-stress to be periodic. Note that not every periodic lifting induces a periodic
self-stress, as demonstrated by the following example.

v1

v2

v3

1

1

1

Fig. 2: The Z-gain graph for Example 1 (left) and its derived graph (right).

Example 1. Let (G,m) be the Z-gain graph seen in Figure 2 (left). Define a
periodic configuration p̃ of the derived graph G̃ by setting p̃(v1, 0) = (0, 0),
p̃(v2, 0) = (0.5, 0.5) and p̃(v3, 0) = (0.5,−0.5).
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Define a periodic lifting H : R2 → R of (G̃, p̃) as follows. For all k ∈ Z, set
H(p(v1, k)) = 0, H(p(v2, k)) = 1 and H(p(v3, k)) = 1. Intuitively, this lifting can
be thought of as “folding” the plane along the straight line through the edges
derived by the loop at v1. The self-stress induced by this lifting is translation-
invariant but not periodic, since it is only non-zero on edges derived from the
loop at v1. So, it fails Equation (2) for periodicity. However, this self-stress still
corresponds to a dependence in the fixed-lattice periodic rigidity matrix.

Note that such examples do not occur in the flat torus, as the analogous
property to Equation (3) is only satisfied by periodic self-stresses. In particular,
Equation (2) is equivalent to an analogue of Equation (3) in the flat torus, as
seen in [2, Main Theorem].

A non-flat edge e = vw is said to be a mountain (resp. valley) of a lift-
ing H : R2 → R if H is concave (resp. convex) on an open neighbourhood of
p(e)\{p(v), p(w)}. Equivalently, an edge is a mountain of the lifting if it has a
positive stress value in the induced self-stress and a valley otherwise [2]. Moun-
tains and valleys are important in the study of extrema of H. It’s trivial to
see that if H has a minimum (resp. maximum) at a single vertex v, then v is
adjacent to three valley (resp. mountain) edges vw1, vw2, vw3, and v is a non-
pointed vertex on the framework induced by {v, w1, w2, w3}. We say that the
edges vw1, vw2, vw3 form a non-pointed triple of incident valley (resp. moun-
tain) edges.

Lemma 2. Let (G, p) be an independent finite pointed non-crossing framework
in R2 in which every bounded face is a pseudotriangle (the unbounded face need
not be a pseudotriangle). Form a new graph G′ from G by adding two new edges:
ea and eb. Suppose that (G′, p) has exactly a 1-dimensional space of self-stresses,
spanned by (se)e∈E′ . Then the self-stress values sea and seb have opposite signs.

Proof. Assume first that (G′, p) is non-crossing. If the unbounded face of (G, p)
has no convex vertices, then (G, p) is a pointed pseudotriangulation. By [6, Corol-
lary 2.4 and Theorem 3.6], (G, p) is minimally rigid, so adding ea and eb would
admit a 2-dimensional space of self-stresses. Hence the unbounded face F has a
convex vertex, say v.

The non-zero self-stress on (G′, p) is induced by a non-trivial lifting H [2,
Proposition 2], so it is sufficient to show that one of ea or eb is a valley and that
the other is a mountain for H. Since the restriction of H to any face of (G′, p)
is an affine function, each extremum must be at a single non-pointed vertex, or
a single edge, or at all vertices on a particular face or union of adjacent faces.
If the minimum (resp. maximum) is on a single vertex or a single edge, then
it must have a non-pointed triple of incident valley (resp. mountain) edges. If
the extremum is at all vertices on a union of adjacent bounded faces, we can
remove edges, so that the extremum is on only one face that still has convex
vertices. If the minimum (resp. maximum) is on a bounded face, then each of its
convex vertices must have a non-pointed triple of incident valley (resp. mountain)
edges. Since the original framework (G, p) is pointed, one of these valley (resp.
mountain) edges must be ea or eb.
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Consider now the case where the entire unbounded face F ′ is an extremum
of H, w.l.o.g. say a minimum. Since H is non-trivial, it has a maximum on a
vertex, edge or finite face that is not on the boundary of F ′. In all cases, this
gives a non-pointed triple of incident mountain edges, so either ea or eb is a
mountain, say ea. Assume that each edge on the boundary of F ′ has a non-zero
stress value, as otherwise they can be removed to give a smaller framework that
satisfies the same properties. Let v be the convex vertex of the unbounded face F
in (G, p). If, after the edge additions, v is still on the boundary of F ′, then it has
a non-pointed triple of incident valley edges, so eb is one of these valley edges.
If v is not incident to F ′, then eb is on the boundary of F ′. This is illustrated in
Figure 3.

v

eb

ea

Fig. 3: An example where eb is on the exterior face in the proof of Lemma 2.

Since F ′ is a minimum for H, all edges around it are valleys and therefore
eb is a valley.

It remains to remove the assumption that (G′, p) is non-crossing. For this,
we follow the approach described in [2]. For the case where a pair of bars cross
at a position that is not incident to a joint, a new framework can be formed by
inserting a new joint at the position of the crossing and replacing the crossing
bars with new bars incident to the new joint. This new framework inherits a
self-stress from the previous one, which satisfies all of the required properties to
use the same method as before to show that either sea and seb have opposite
signs or one of them is 0. A similar process can be performed in the case where
a bar crosses the position of a joint. This completes the proof.

Proof (Proof of Theorem 1). Let (G̃, p̃) be a pointed pseudotriangulation on the
flat cylinder and let (G,m) be its underlying Z-gain graph. We first show that
(G̃, p̃) has only one non-trivial infinitesimal motion (up to scale). For this, we
just need to show it has no non-zero periodic self-stress. To see this, note that
any non-zero periodic self-stress is induced by a non-trivial periodic lifting. Such
a lifting must have a maximum and a minimum. If both extrema are either
at single vertices, at single edges or at faces with convex vertices, then, by the
same argument used in the proof of Lemma 2, there must be a non-pointed joint.
If an extremum is formed by multiple coplanar faces that form an unbounded
face when put together, then it may be that this combined face has no convex
vertices. However, this can only occur for one extremum, so the other must be
formed of either a single vertex or a bounded flat face. Hence, there must be a
non-pointed joint. Since the configuration is pointed, this is not possible.
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Now, let u be a non-trivial periodic infinitesimal motion of (G̃, p̃). We aim to
show that u is either expansive or contractive. For two non-adjacent vertex pairs
in (G̃, p̃), add an edge to the gain graph that corresponds to a hypothetical edge
between the pair. Call these ea and eb. Form the gain graph (G′,m) from (G,m)
by adding ea and eb. Suppose that (G

′,m) derives the singly-periodic framework
(G̃′, p̃). We aim to show that the entries of Rfper(G̃

′, p̃)u that correspond to ea
and eb either have the same sign or one of them is 0.

If adding ea alone admits a non-zero self-stress, then it is clear that the entry
of Rfper(G̃

′, p̃)u that corresponds to ea is 0, so the desired conclusion is reached.
The same applies in the case where adding eb alone admits a non-zero self-stress.
Hence, it remains to consider the case where neither new edge addition alone
admits a non-zero self-stress. Since we added two edges to the gain graph, the
derived framework (G̃′, p̃) admits a non-trivial periodic self-stress s = (se)e∈E′ .
Suppose that neither ea nor eb admits a self-stress alone, so sea ̸= 0 and seb ̸= 0.
Note that the self-stress s must be orthogonal to Rfper(G̃

′, p̃)u. This means that

the entries of Rfper(G̃
′, p̃)u that correspond to ea and eb have the same sign if

and only if the stress values sea and seb have opposite signs. Hence, the objective
is now to show that sea and seb have opposite signs.

By the same method used for Lemma 2, it can be assumed that (G̃′, p̃′) is
non-crossing. If the periodic self-stress s is non-zero on only a balanced subgraph
of G′, then applying Lemma 2 with this balanced subgraph shows that the signs
of sea and seb are different. It remains to consider the case where s is non-zero
on all edges in some unbalanced subgraph of G′. While ignoring any edges that
have stress value 0, it can be seen that every face of (G̃′, p̃) has a convex vertex.
By Proposition 2, the periodic self-stress s is induced by a non-trivial periodic
lifting. Clearly, this lifting must have both a minimum and a maximum. The
same idea from the proof of Lemma 2 and [2, Theorem 1] can then be used to
show that one of ea or eb is a valley and that the other is a mountain. Hence,
sea and seb have opposite signs, as desired.
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