
 | P a g e

An evaluative case study of the program debugging behaviour of the

paired Software Development Technician Apprentice in a

geographically distributed environment.

Olajide Olayemi Jolugbo, BSc (Hons), MSc

March 2025

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Department of Educational Research

Lancaster University

UK

i | P a g e

Declaration

I declare that this thesis is my own original work and has not been submitted for a degree at

this or any other university. The thesis does not exceed the 50,000-word limit, including

footnotes and text in diagrams, tables, or figures, but excluding the title page, contents,

abstract, appendices, and references. The word count is 58,608.

Signed: ___________________________

ii | P a g e

Acknowledgements

I extend my deepest gratitude to my supervisor, Prof. Don Passey, for his unparalleled support

and patience, without which I could not have completed this thesis. His expertise, exceptional

guidance, and empathy offered stability throughout the difficult period. I also owe special

thanks to Mrs. Alice Jesmont, TEL Programme Administrator, for her consistent support and

timely reminders, which were essential to the success of the program.

Also, I deeply appreciate my family for their support and understanding. My daughters have

been my source of joy and motivation for demonstrating exceptional understanding and being

my pillar of support during this programme. My partner has been an unwavering source of

strength and encouragement. Her support and faith in me never wavered, providing me with

consistent motivation. I am grateful to the organisations and volunteers who contributed to my

study. The research significantly benefited from the essential contributions of these individuals.

Lastly, I dedicate this work to my loving parents, who have been my moral and emotional

anchor. Losing my father during this PhD was one of the most challenging experiences of my

life. This thesis is in his honour; he continually supported my efforts to finish this program. His

memory and spirit remain my constant inspiration. For this demanding and enriching journey, I

am most grateful to God for His help. His support was crucial to my resilience and success.

In addition, I am deeply grateful to everyone who contributed to this journey. Your backing has

led me to a major accomplishment and fostered both my personal and career development.

iii | P a g e

An evaluative case study of the program debugging behaviour of the paired Software

Development Technician Apprentice in a geographically distributed environment.

Olajide Olayemi Jolugbo, BSc (Hons), MSc

Abstract

This empirical study investigates the collective efforts of paired novice programmers working

on rectifying Python code using technology-mediated tools. It aims to uncover: 1) the types of

errors they encountered; 2) the debugging strategies and tactics employed by these apprentice

pairs to locate and fix bugs within the Python code; 3) insights into how the pairs share the

cognitive load; 4) the influence and efficacy of technological tools in the debugging process; and

5) the challenges faced by the pairs while working remotely to identify and resolve bugs, along

with the underlying reasons for these challenges. It is methodically qualitative in nature and

adopts a multi-case approach to closely examine each instance in its real-life context, utilising

various data collection methods such as in-depth interviews, participant observations, code

analysis, and focus groups.

Furthermore, this study examines 15 dyads as they work collaboratively to debug Python code,

showing the challenges they confront as well as their diverse debugging strategies and tactics.

It also demonstrates the importance of integrating debugging tools, as well as how dyads

strategically distribute cognitive tasks. By focusing on the relatively unexplored area of

distributed pair debugging, this study offers a fresh perspective on collaborative problem-

solving among novice programmers working in remote settings. It notably presents a

conceptual framework for understanding dyad’s debugging in disparate settings, contributing

significantly to computing education and integrating technology into educational practices.

iv | P a g e

However, despite its contributions, the study acknowledges its limitations and suggests

directions for further research to enhance the generalisability and applicability of its

conclusions. Ultimately, this thesis advances our understanding of the debugging processes of

paired novice programmers in remote settings, offering empirical insights and technical

recommendations to improve computing education and practice.

Keywords: Distributed Pair Debugging, Debugging Strategies, Remote Collaboration, Cognitive

Load Management, Computer Science Education Education.

v | P a g e

Table of Contents

Chapter 1: Introduction ... 1

1.0 Introduction ... 1

1.1 Motivation for the Study ... 5

1.2 Research Background .. 9

1.2.1 SDT Apprenticeship ... 10

1.2.2 Novice Programmers ... 12

1.3 The Rationale for this Study .. 16

1.4 Aims and Objectives .. 18

1.5 Research Questions ... 19

1.6 Structure of the Thesis .. 21

Chapter 2: Literature Review... 24

2.0 Introduction ... 24

2.1 Choice of a Review Type .. 29

2.2 Methods .. 29

2.2.1 Review question .. 30

2.2.2 Sampling .. 31

2.2.3 Critical appraisal (CA) of sample (data collection) .. 37

2.2.4 Data analysis (Data extraction and synthesis, and thematic analysis) 38

2.2.5 Presentation .. 42

2.3 Discussion .. 57

2.4 Summary .. 64

Chapter 3: Conceptual Framework ... 66

3.0 Introduction ... 66

3.1 Information Foraging Theory (IFT) .. 66

3.2 Distributed Cognition .. 67

3.3 Integration of IFT and Distributed Cognition .. 69

3.4. Critical Analysis of Distributed Pair Debugging Conceptual Framework 70

3.4.1 Layer 1: Debugging Environment Layer .. 73

3.4.2 Layer 2: Information Foraging Layer ... 74

3.4.3 Layer 3: Distributed Cognition .. 75

3.4.4 Layer 4: Innermost Circle: Cognitive Processes .. 76

3.4.5 Centre: The Debuggers .. 77

vi | P a g e

3.5 Deployment for data collection and data analysis .. 78

3.6 Summary .. 83

Chapter 4: Methodology .. 84

4.0 Introduction ... 84

4.1 Research Question ... 84

4.2 Context and Study Site .. 87

4.3 Philosophical Perspectives of this Study ... 89

4.3.1 Paradigm ... 90

4.3.2 Ontology .. 91

4.3.3 Epistemology ... 92

4.4 Methodological Framework .. 93

4.4.1 Case study design and rationale ... 94

4.4.2 Sampling .. 96

4.4.3 Participants .. 98

4.4.4 Data Analysis ... 104

4.5 Empirical Research Process ... 114

4.5.1 Step 1: Debugging sessions. .. 117

4.5.2 Step 2: Analysis of recorded debugging session ... 121

4.5.3 Step 3: Interview sessions ... 122

4.5.4 Step 4: Analysis of the dyadic interview session ... 124

4.5.5 Step 5: Focus group session .. 125

4.5.6 Step 6: Analysis of recorded focus group session ... 126

4.5.7 Limitation of the Chosen Methodology .. 127

4.6 Reliability and Validity ... 128

4.7 Ethical Issues and Concerns... 131

4.8 Summary .. 133

Chapter 5: Findings .. 135

5.0 Introduction ... 135

5.1 Dyads Debugging Session Findings .. 135

5.1.1 Theme 1: Technology Utilisation ... 136

5.1.2 Theme 2: Debugging Strategies and Tactics ... 140

5.1.3 Theme 3: Error Spectrum .. 150

5.1.4 Theme 4: Cognitive Load Management .. 154

5.1.5 Theme 5: Challenges Faced .. 157

5.2 Python Code Analysis Findings .. 164

vii | P a g e

5.3 Interview Session Findings .. 169

5.3.1 Theme 1: Error Spectrum .. 169

5.3.2 Theme 2: Technical and Cognitive Skills ... 174

5.3.3 Theme 3: Challenges ... 182

5.4 Focus Group Discussion Findings .. 188

Theme 2: Technology’s Role in Debugging Processes. .. 190

5.4.1 Theme 1: Nature and Handling of Debugging Errors .. 190

5.4.2 Theme 2: Technology’s Role in Debugging Processes .. 191

5.4.3 Theme 3: Strategies and Challenges in Debugging ... 193

5.5 Summary .. 196

Chapter 6: Conclusion .. 199

6.0 Introduction ... 199

6.1 Evaluation of Dyad’s Case Studies ... 199

6.2 Research Questions ... 202

6.3 Refined Conceptual Framework Linking Research Outcomes to Distributed Debugging

Processes .. 238

6.4 Novelty of this Work .. 243

6.5 Contributions ... 245

6.6 Significance of the Study ... 248

6.7 Trustworthiness of the Study .. 251

6.8 Limitations of the Study .. 253

6.9 Further Research and Recommendations ... 257

6.10 Conclusion ... 259

References .. 261

Appendix A: Participants Information Sheet - Apprentices ... 282

Appendix B: Participants Information Sheet - Work Based Mentors & Trainers 285

Appendix C: Participant Consent Form – Apprentices ... 287

Appendix D: Participant Consent Form – Work-Based Mentors & Trainers 288

Appendix E: Ethics Approval .. 290

Appendix F: The Bugged Python Code .. 291

Appendix G: Sample DYADs End of Session Codes ... 293

Appendix H: DYAD Interview Protocols .. 295

Appendix I: Focus Group Protocols ... 296

Appendix J: Sample Transcript of the Debugging Session .. 297

viii | P a g e

Appendix K: Sample Transcript of Dyad’s Interview .. 299

Appendix L: Sample of Included Studies for the Critical Analysis 301

Appendix M: Debugging Session Codebook ... 304

Appendix N: DYAD Interview Codebook ... 305

Codes\\Interview\\Stage 1 & 2 - Familiarisation & Coding ... 305

Codes\\Interview\\Stage 3 - Theme Generation ... 313

Codes\\Interview\\Stage 4 - Theme Review .. 324

Codes\\Interview\\Stage 5 - Theme Definition ... 336

Appendix O: Focus Group Codebook .. 349

Codes\\Focus Group\\Stage 1 & 2 - Familiarisation & Coding .. 349

Codes\\Focus Group\\Stage 3 - Theme Generation .. 353

Codes\\Focus Group\\Stage 4 - Theme Review ... 358

Codes\\Focus Group\\Stage 5 - Theme Definition ... 364

List of Tables

Table 1: Sample of a summary document for the critical analysis (CA) of selected studies 38
Table 2: Sample data extraction .. 39
Table 3: Sample data extraction (Continuation) ... 40
Table 4: Themes identified from data synthesis. ... 41
Table 5: Strengths and weaknesses of the distributed pair debugging conceptual framework 73
Table 6: Relationship between the theoretical framework and the research methods (Layers 1 & 2) 79
Table 7: Relationship between the theoretical framework and the research methods (Layers 3 & 4) 80
Table 8: Relationship between the theoretical framework and the research methods (Centre Layer) 81
Table 9: Participant details for the debugging sessions and the dyad’s interview .. 102
Table 10: Evidence triangulation. .. 106
Table 11: List of bugs, bug type and difficulty level. .. 120
Table 12: Characteristics of the bugs’ difficulty levels. ... 121
Table 13: Interview protocol matrix adapted from Castillo-Montoya (2016). .. 124
Table 14: Overview of key themes in dyads debugging sessions .. 136
Table 15: Technology Utilisation Subthemes in Dyadic Debugging Sessions .. 136
Table 16: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions 140
Table 17: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions (Continuation) 141
Table 18: Error Spectrum Subthemes in Dyadic Debugging Sessions ... 151
Table 19: Cognitive Load Management Subthemes in Dyadic Debugging Sessions 154
Table 20: Challenges Faced Subthemes in Dyadic Debugging Sessions .. 157
Table 21: Outline of the debugging sessions’ core findings.. 162
Table 22: Outline of the debugging sessions’ core findings (Continuation) ... 163
Table 23: Summary of bugs discovery, successful fixing and unsuccessful fixing .. 167
Table 24: Summary of specific syntax errors breakdown by discovery and resolution. 168
Table 25: Summary of specific logical errors breakdown by discovery and resolution. 168

ix | P a g e

Table 26: Summary of specific runtime errors breakdown by discovery and resolution 168
Table 27: Overview of key themes in interview sessions .. 169
Table 28: Error Spectrum Subthemes in Interview Sessions .. 170
Table 29: Technical and Cognitive Subthemes in Interview Sessions ... 175
Table 30: Challenges Subthemes in Interview Sessions .. 182
Table 31: Overview of key themes in Focus Group Sessions .. 190
Table 32: Overarching themes across the study ... 198

x | P a g e

List of Figures

Figure 1: Integrative literature review (adapted from Lubbe et al., 2020) .. 30
Figure 2: Flow diagram for ILR (adapted from PRISMA – Preferred Reporting Items for Systematic Reviews &
Meta-Analysis (Moher et al. (2009) cited in (Lubbe et al., 2020)). ... 35
Figure 3: AI tool connected papers ... 36
Figure 4: Distributed pair debugging conceptual framework .. 71
Figure 5: Participant demographic infographics recruited for the study. .. 104
Figure 6: The thematic analysis approach adapted from Braun and Clarke (2006). 107
Figure 7: Empirical research process. .. 116
Figure 8: Timeline of data collection and data analysis. .. 117
Figure 9: Debugging session research approach. .. 118
Figure 10: Python code seeded with syntax, logical and runtime bugs ... 119
Figure 11: Refined Conceptual Framework Aligning Research Outcomes to Distributed Debugging
Processes ... 242

1 | P a g e

Chapter 1: Introduction

1.0 Introduction

Dating back to the era of Adam Smith, economists have recognised the substantial impact

of a skilled workforce on an economy’s productivity (Johnson, 1937). Such understanding

brings to the fore the renewed focus on apprenticeships as a mechanism to bolster the

upcoming workforce’s skills (Guile & Young, 1998; Nash & Jones, 2013) , although a study

suggests that the primary positive impact on employment is achieved by retaining

apprentices within the company where they received their training (Pierre & Jérémy,

2024).

Furthermore, as organisations strive to align their people, processes, and culture for long-

term digital success (Kiron et al., 2016), digital transformation initiatives continue to drive

up demand for talented software and technology workers. Against this backdrop,

apprenticeships serve as a viable pathway for individuals to enter the labour market and

contribute to the growing technology industry (Heyes, 2013; Hoeckel & Schwartz, 2010),

and are proposed to be a promising answer to soaring youth unemployment (Steedman,

2012). In addition, England has been experiencing a digital skills crisis, with increasing

demand from employers for skilled professionals to keep up with the ever-evolving

technological landscape roles (Nania et al., 2019; Taylor-Smith et al., 2019). However, to

effectively address unemployment and skill shortages in the software development

sector, apprentices must acquire debugging abilities, which are an essential component

of software development.

2 | P a g e

Moreover, the SDT apprenticeship standard (IfATE, 2024) is designed to offer specifics

about what the apprentice will be doing and the abilities expected of them, allowing them

to integrate into modern software development teams. These entry-level apprentices are

also entrusted with developing a range of computer software and work in a variety of

businesses, from huge enterprises to government organisations, and regularly contribute

to multibillion-pound software solutions (Carter, 2015).

Therefore, the core of this role focuses on interpreting requirements, creating designs,

and building and testing software solutions for bugs based on system specifications to

achieve optimal results (IfATE, 2022). It is, however, crucial to highlight that software

varies in size, complexity, and quality standards; even small applications are susceptible

to defects. Therefore, regardless of the language used, bugs are an inevitable part of

programming (Tsan et al., 2022). According to Lee et al. (2014), debugging is a significant,

cognitively demanding process that is essential to the practice of programming rather

than merely a supplementary activity.

Besides, Rich et al. (2019) contend that debugging is a distinct skill set that may be

acquired outside of specific programming environments. Additionally, studies show that

inexperienced programmers, such as those in the SDT apprentice category, frequently

have trouble identifying bugs. According to Decasse and Emde (1988), this challenge

stems from a lack of critical abilities required for bug isolation, understanding

programming constructs, comprehending programme execution, and implementing

efficient debugging procedures.

3 | P a g e

In the same vein, a plethora of studies have examined different aspects of debugging,

including its challenges (Coker et al., 2019; Eisenstadt, 1993; Jeffries, 1982; Vessey, 1985),

strategies (Katz & Anderson, 1987), and tools (Petrillo et al., 2019). Additionally, some

research indicates that the most challenging part of debugging is identifying the bugs

(Fitzgerald et al., 2008; Katz & Anderson, 1987). Successful completion of this stage

typically results in the bugs being removed (Fitzgerald et al., 2010). However, more recent

studies, such as those by Tsan et al. (2022), are increasingly focusing on how novice

programmers approach debugging, which aligns with the focus of this investigation.

Nonetheless, some research suggests that collaborative interactions, such as pair

debugging, can help mitigate the challenges associated with debugging (Jayathirtha et al.,

2020; Murphy et al., 2010). In keeping up with this, modern software development

practices often employ pair programming, in which two developers collaborate on a

single code. This strategy minimises the cognitive load of an individual programmer

(Kavitha & Ahmed, 2015) and reduces the potential for programming errors (Hannay et

al., 2009).

Given the context of this study, pair debugging can be viewed as a subset of pair

programming. Murphy et al. (2010) characterise it as “an important facet of pair

programming” (p. 51), in which two developers collaborate to identify and rectify code

issues while using a single computer. This implies that pair debugging involves the

collaborative effort of two individuals, known as a dyad, often linked with the shared goal

of debugging the code, with each providing their knowledge of the task. While this often

4 | P a g e

occurs with the dyad physically present in the same location, the concept also applies to

distributed teams collaborating on the same programming code from separate locations.

With this in mind, the purpose of this study is to broaden the scope of pair debugging by

examining its applicability in a distributed pair setting. It aims to investigate the transition

of bug fixing from the traditional co-location setting to a distributed one, where

debugging is heavily influenced by technology. Technology assumes a crucial role as a

mediator in bug fixing, aiding in facilitating pair discourse and adopting debugging

strategies. Simultaneously, the study intends to contribute to a better understanding of

novice programmer debugging behaviours, particularly those of SDT apprentices, in

distributed locations during collaborative pair debugging activities in the software

development context.

The study specifically looks into the debugging strategies and tactics employed by

geographically dispersed SDT trainees who collaborate to fix Python code issues utilising

technology-mediated agents. The research does this by concentrating on a number of

different areas, including compiler errors, verbal and non-verbal interactions between

pairs, the roles of technology agents, the patterns of debugging activities, and how they

resolve issues when they arise. Notably, while debugging research has been extensive,

this study addresses a gap by specifically investigating distributed pair debugging in an

educational context. While some research has centred on distributed pair programming,

distributed pair debugging remains relatively unexplored, especially concerning

debugging strategies within the educational context. This study aims to fill this gap and

5 | P a g e

contribute to understanding distributed pair debugging practices within educational

settings.

1.1 Motivation for the Study

The motivation for this research stems from over 15 years of my professional experience

within the apprenticeship system, particularly in digital education. In my roles as a

director of training & assessment, curriculum manager, curriculum specialist, trainer,

assessor, job coach, internal quality assurer, and end-point assessor, I have come to

understand the paramount importance of practical, hands-on learning and skill

development in apprenticeships. My involvement in educating apprentices on the

standards for data technicians, data analysts, software development technicians,

development and operations (DevOps) engineers, and network engineers at Levels 3 and

4 (Levels 3 and 4 are UK qualifications, with Level 3 akin to high school diplomas and Level

4 to first-year university studies) has exposed me to their challenges, especially in

debugging, problem-solving, and collaborative programming. Over the years, I have

worked closely with both apprentices and employers to ensure the effective delivery of

digital learning programmes that align with the evolving needs of the industry (Fuller &

Unwin, 2013; Lave & Wenger, 1991).

A major challenge I have observed is the difficulty apprentices experience with debugging,

which is a critical aspect of software development. Debugging is an essential yet

cognitively demanding process that often frustrates novice programmers. Research has

shown that debugging requires a distinct set of skills, including isolating and identifying

faults in code, an area where many apprentices struggle (Fitzgerald et al., 2008; Katz &

6 | P a g e

Anderson, 1987). In my professional experience, apprentices often struggle to

understand programming constructs and apply debugging strategies effectively. These

challenges are heightened in remote working environments, where limited access to peer

support or mentorship exacerbates the difficulty. Hence, the motivation to explore

distributed pair debugging arises from the need to address these challenges and improve

apprentices’ capacity to work collaboratively, even in geographically dispersed settings

(Murphy et al., 2010).

This motivation is further informed by my role as an internal quality assurer and assessor,

which has provided a unique perspective on the development of apprentices throughout

their learning journeys. My experience highlights the importance of fostering practical

problem-solving skills, especially in the context of distributed work environments. The

shift towards remote work, accelerated by the COVID-19 pandemic, has underscored the

need for new strategies for collaboration and skill development, particularly in the digital

sector (Agerfalk et al., 2005; Espinosa et al., 2007). To adapt to these changes,

apprenticeship programmes must integrate collaborative practices such as pair

programming and debugging into their curricula, enabling apprentices to thrive in a world

where remote work is becoming the norm (Cockburn & Williams, 2000).

Building on these insights, my professional background within the apprenticeship

framework has significantly influenced my approach to this research. Through my active

involvement in shaping, delivering, and assessing apprenticeship standards across various

digital sectors, I have seen how apprenticeships are pivotal in equipping young

professionals with essential workforce skills. However, I have also identified gaps in how

7 | P a g e

current frameworks prepare apprentices for the complexities of debugging in real-world

scenarios, particularly in distributed environments. The apprenticeship model,

traditionally rooted in hands-on learning, now faces the challenge of equipping

apprentices to collaborate effectively across remote settings (Guile & Young, 1998). My

insider knowledge of curriculum development has enabled me to critically assess how

distributed pair debugging can bridge the gap between theory and practical application.

This study aligns with broader research, which suggests that debugging is often treated

as a supplementary skill rather than a core component of the curriculum, leaving many

apprentices underprepared for industry demands (Eisenstadt, 1993; Jeffries, 1982). From

my perspective as a curriculum specialist, I have observed how this oversight limits the

apprenticeship experience, preventing learners from acquiring the structured problem-

solving skills necessary for industry success. By embedding systematic debugging

strategies into the curriculum, apprentices could not only develop a more methodical

approach to identifying and resolving software bugs but also enhance their technical

competence, confidence, and workplace readiness. This integration would represent a

critical step in modernising apprenticeship programmes to meet the demands of a rapidly

evolving digital workforce.

The relevance of these changes is further underscored by the growing importance of

remote work in software development. Studies have demonstrated that collaborative

debugging practices, such as pair programming, lead to higher quality code, improved

communication, and greater knowledge transfer (Hannay et al., 2009). However, the

challenges of working in distributed teams, particularly for apprentices, remain

8 | P a g e

underexplored (Smite et al., 2021). This study seeks to address this gap by investigating

how apprentices manage the cognitive load of debugging in distributed pair settings and

how technology, such as integrated development environments, can facilitate this

process (Beasley & Johnson, 2022). By doing so, it aims to provide actionable insights for

designing apprenticeship programmes that equip learners with the skills and resilience

needed for a remote-first workplace.

Building on these findings, my familiarity with apprenticeship standards, such as those

established by the Institute for Apprenticeships and Technical Education, underscores the

pressing need for these programmes to evolve in line with the demands of the digital

workforce. While current standards emphasise knowledge, skills, and behaviours, the

integration of collaborative problem-solving techniques, such as distributed pair

debugging, remains underdeveloped. Through this research, I aim to bridge this gap by

contributing insights that can inform the enhancement of apprenticeship standards,

particularly in the digital sector, where collaboration and debugging are essential

competencies (IfATE, 2022).

In conclusion, this research is deeply informed by my professional experience as a

curriculum specialist and quality assurer and my understanding of the challenges

apprentices face in developing collaborative debugging skills. As the demands of remote

work reshape the modern workforce, it is critical that apprenticeship programmes adapt

to equip learners with the skills needed to thrive in distributed environments. By

investigating the debugging behaviours of SDT Apprentices in collaborative, remote

settings using technology-mediated tools, this study will address a significant gap in the

9 | P a g e

literature. The findings aim to contribute to the advancement of apprenticeship

programmes, ensuring they align more closely with the realities of the digital workforce

and prepare apprentices for sustained success in their careers.

1.2 Research Background

Apprenticeship within the framework of collaborative learning represents a unique and

effective approach to holistic skill development. In contrast to traditional classroom

instruction, apprenticeships prioritise practical experience, allowing novices to acquire

skills through direct observation and collaboration with experts who play an important

role in imparting knowledge, skills, and guidance (Lave, 1995; Lave & Wenger, 1991),

effectively embodying the “learning by doing” approach. This technique has received

recognition for its effectiveness in traditional learning environments, notably in

developing strategic and metacognitive skills (Sawyer, 2014) which are required for

career success and modern workforce demands.

To add to that, apprenticeships in the modern period are great platforms for combining

theory and practice (Mirza-Davies, 2015), allowing participants to use their newly gained

skills in real-world scenarios (Wolter & Ryan, 2011). This suggestion is consistent with the

arguments stated by Engeström et al. (2001), which emphasises the necessity of a

balanced mix of theoretical learning and practical application. Similarly, apprenticeships,

according to Lave and Wenger (1991), are intensive experiences that shape an individual's

identity within a community of practice while also encouraging active learning and

engagement with seasoned professionals. Thus, apprentices learn through active

participation, progressing from peripheral to key members of their work communities

10 | P a g e

(Lave, 1996). In essence, this holistic approach teaches specific skills and prepares

apprentices for meaningful workplace participation.

In relation to this research, the new apprenticeship standards replace the previous, more

generalised framework-based apprenticeships and come with distinct

characteristics such as Employer-Led Standards, Endpoint Assessment, and Funding

Reforms (DfE/BIS, 2013). These new criteria were developed by groups of employers

known as "trailblazers" and are intended to closely correlate with the specific skills,

knowledge, and competencies required for each occupation (Fuller & Unwin, 2010,

2013). The associated Skills, Knowledge, and Behaviours (KSBs) were intended to make

apprenticeships more relevant and challenging.

Not only that, the shift to employer-led standards serves a dual purpose: it fulfils both

the skill demands of England's diverse sectors and the requirements of those seeking

career advancement or a fresh start. As of August 2023, the standards have been

customised to fifteen diverse industries, including agriculture, digital, and legal. This

range ensures that a broad spectrum of skills and vocations is covered, reflecting the

diverse demands of the national economy. Importantly, these apprenticeship standards

are not static; they are constantly revised to reflect the ever-changing demands of the

workforce and the economy.

1.2.1 SDT Apprenticeship

As of August 2023, the SDT Apprenticeship Standard in England, the standard that the

SDT apprentices are learning, is one of 29 digital apprenticeship standards (IfATE, 2023)

11 | P a g e

developed and approved as a result of the Richard Review and following Trailblazer

project. Following the Richard Review in 2012, the government introduced the Trailblazer

programme, which enables employer-led groups to create new apprenticeship standards.

The SDT Apprenticeship was one of the new standards (DfE/BIS, 2013; Richard, 2012),

and it was intended to be more employer-led and occupation-focused.

The SDT Apprenticeship is a Level 3 qualification that normally lasts from 15 to 24 months.

It addresses the fundamental skills, knowledge, and attitudes required to function as a

software developer. Similarly, the SDT Apprenticeship standard is a customised

occupational standard that specifies the fundamental 'knowledge, skills, and behaviours'

(KSBs) required for proficiency in the job role. According to the Institute for

Apprenticeships and Technical Education (IfATE), this standard has 62 KSBs divided into

25 knowledge, 32 skills, and 5 behavioural criteria (IfATE, 2024). These KSBs are further

aligned with the 15 occupational duties that an apprentice is expected to perform. The

standard also defines any qualifications required to complete the apprenticeship and

how they connect with professional recognition, if applicable.

Also, apprentices are classified as novices (see Section 1.1.2) who have been trained to

create, test, and maintain code, interpret design requirements, and communicate within

a development team. They are generally responsible for assisting with software

development throughout the whole software development life cycle. Given this, SDTs are

entry-level team members who work in a variety of industries, ranging from financial

services to public sector organisations. In addition, they are required to use basic

debugging techniques as part of their occupational duties. Techniques include but are not

12 | P a g e

limited to interactive debugging, print debugging, and remote debugging. On top of that,

the standard highlights the use of structured problem-solving methodologies, such as

basic code debugging, in identifying and resolving issues (IfATE, 2024).

1.2.2 Novice Programmers

The gradual development of an individual's talents is described by the five-stage

phenomenological model of skill acquisition proposed by Dreyfus and Dreyfus (2005).

Although Dreyfus et al. (2000) classified these levels as novice, advanced beginning,

competent, proficient, and expert. At the novice level, people use rules and drills to

complete tasks without the benefit of real-world experience, frequently failing to grasp

the context. The journey through these phases is a change from inexperience to mastery,

where the novice is at the starting point and lacks perception and situational awareness.

In variance to Dreyfus and Dreyfus’s suggestion, Shneiderman (1976) identified four

levels of programming experience, namely naive, novice, intermediate, and advanced.

Naive individuals are entirely new to programming; novices have completed an

introductory course. Intermediates have finished two or three courses, while advanced

programmers include graduate students, faculty, or professionals in the field. Based on

Shneiderman’s framework, the terms ‘novice’ and ‘beginner’ can be used

interchangeably, and there is a suggestion that the first three categories might be too

finely distinguished.

However, looking at the literature suggests a varied description of what constitutes a

"novice". Allwood (1986) defines novice as either someone with minimal experience or

someone completely new to programming, regardless of their actual knowledge. In

13 | P a g e

contrast, experts, on the other hand, effortlessly master tasks and respond intuitively to

challenges (Dewey, 1922). Nonetheless, this thesis aligns with Dreyfus and Dreyfus (2005)

in suggesting that novices rely on deliberative reasoning due to their limited contextual

understanding, a limited repertoire of situational discrimination, and a detached

comprehension of the phenomenon. This research reveals that while novices may have

tacit knowledge that aids them in executing tasks, their reliance on stringent rules is

evident, limiting their overall effectiveness.

In a related vein, Luxton-Reilly (2016) and Savage and Piwek (2019) argue that

novice programmers lacking a solid understanding of core programming constructs like

variables, arrays, recursion, and loops face challenges in crafting efficient functions and

procedures. Similarly, Barbosa Rocha et al. (2022) emphasised novices' difficulty in

properly integrating and implementing programming principles, which affected their

abilities to develop and test code. Likewise, Klahr and Carver (1988) and Liu et al. (2017)

argue that newbie programmers struggle because they lack particular domain knowledge

and problem-solving skills.

Building on this, scholars such as Ahn et al. (2022), Denny et al. (2022), and Hassan and

Zilles (2022) appear to agree that novice programmers frequently struggle with

programming, albeit with differing perspectives on the root causes and potential

solutions (Karvelas, 2019; Malik et al., 2022; Smith & Rixner, 2019; Tsan et al., 2019;

Whalley et al., 2021).

14 | P a g e

Furthermore, other studies contend that novices, unlike experts, have fragmented

knowledge structures, resulting in a shallow grasp of tasks and more frequent errors

(Allwood, 1986). This is consistent with Jenkins (2002), who indicates that novices

frequently underestimate the complexities of programming structures. Bonar and

Soloway (1983) investigated whether rookie issues resulted from the nature of

programming and the tools utilised. After closely observing and interviewing a subset of

novice Pascal programmers, they inferred that using natural language influenced their

early programming efforts. The incorrect utilisation of natural language strategies in

programming seemed to be the root cause of their challenges. This conclusion echoes

Soloway et al. (1981), who argued that traditional programming languages do not align

well with the intuitive cognitive strategies used by novices familiar with natural language,

causing discrepancies and misunderstandings.

Elaborating on this, a collection of research papers edited by Soloway and Spohrer on

novice programmers reveals that their understanding often transcends mere rule

memorisation but remains at a superficial level, focusing on line-by-line coding rather

than grasping meaningful program structures (Soloway & Spohrer, 2013). Winslow (1996)

deepens the understanding of this phenomenon by further noting that while novices

might understand individual syntax and semantics, they struggle to combine them into

coherent programs. This is echoed by Blackwell et al. (2002) and Lahtinen et al. (2005),

highlighting novices’ difficulties with programming constructs like loops, conditional

statements, pointers, and recursion (Pane & Myers, 1996; Soloway & Spohrer, 1989). Du

Boulay (1986) contends that insufficient domain comprehension and syntactic and

semantic limitations are the primary causes of beginners' compounded problems. This is

15 | P a g e

supported by Pennington (1987), who adds that a shaky grasp of programming structures

exacerbates their challenges.

Continuing from this, many studies pinpoint learners’ attributes as the root cause of the

challenges novices face (Guzdial, 1994; Lahtinen et al., 2005; McCracken et al., 2001;

Robins et al., 2003; Soloway & Spohrer, 1989; Winslow, 1996). Buttressing this point,

McCracken et al. (2001) address the challenges novice programmers face and emphasise

common struggles such as understanding fundamental concepts and applying problem-

solving techniques; this is further exacerbated by their shaky grasp of core programming

concepts and inconsistent methodologies. Guzdial (1994), in his study, asserts the

difficulty in grasping abstract notions and bridging the gap between theory and practice.

Following that, Robins et al. (2003) draw attention to the challenge as the cognitive strain

associated with problem-solving and comprehending programming principles. In their

study, Soloway and Spohrer (1989) discuss frequent misunderstandings and mistakes,

such as misinterpreting loops and conditionals. According to Lahtinen et al. (2005), other

problems include a lack of past knowledge and overwhelming programming

environments. Winslow (1996) in his study reiterates the huge difference between

novices and experts, notably in algorithmic thinking and task management complexity.

Adelson and Soloway (1985) and Mayer (1981) both affirm the critical role of a well-

formed mental model in programming. The latter also points out issues like problem

decomposition and syntax arising from immature mental models. Overall, these

investigations demonstrate the layered and interconnected obstacles that novice

programmers confront. However, reflecting on my personal experiences with teaching

novices, these observations resonate.

16 | P a g e

Moreover, many novices perceive programming as daunting (Hanks et al., 2004; Jenkins,

2002; Robins et al., 2003). Jenkins (2002) attributes this to the extensive skill set needed

while Sloane and Linn (1988) describe it as a layered skill acquisition, from basics to

complexity. Jenkins (2002) and McKeithen et al. (1981) both present programming as a

phased approach, transitioning from specifications to algorithms and, ultimately, to code.

Other studies on novice programming have found that they struggle with fundamental

concepts such as variables, control structures, and problem-solving strategies (de Raadt,

2007; Glezou & Grigoriadou, 2010; Hooper & Thomas, 1990; Lister et al., 2004; Papadakis

& Orfanakis, 2018; Sajaniemi & Kuittinen, 2008; Van Someren, 1990). Novices often

struggle with the complexities of language syntax and semantics (Robins et al., 2003),

demonstrate alternative concept comprehension, and face difficulties in planning,

writing, and debugging programs (Lister et al., 2004), owing to their limited

understanding of programming (Kurniawan et al., 2019; Müller et al., 2019; Teague &

Roe, 2007). While these struggles are well-documented, there is a noticeable gap in

exploring the unique challenges faced by paired novice programmers debugging in a

distributed environment (Kurniawan et al., 2019), suggesting a need for deeper

investigation in this niche area.

1.3 The Rationale for this Study

The increasing prevalence of remote work has highlighted the need for insights into

collaborative activities such as paired debugging, particularly in geographically dispersed

contexts. While existing research has highlighted the benefits of paired programming in

terms of code quality, improves team communication, fosters knowledge transfer, self-

17 | P a g e

efficacy, expertise sharing, and team collaboration (Bipp et al., 2008; Cockburn &

Williams, 2000; Hughes et al., 2020), the specific challenges of working in geographically

dispersed teams have been underemphasised (Jayathirtha et al., 2020; Murphy et al.,

2010).

Moreover, while some research on distributed software development predates COVID-

19, the practice has gained momentum since the early 2000s, with the COVID-19

pandemic further accelerating the shift to remote work (Agerfalk et al., 2005; Espinosa et

al., 2007; Lacave & Molina, 2021; Miller et al., 2021; Neto et al., 2020; Sokolic, 2022).

Thus, understanding how apprentices’ debugging behaviours adapt in remote settings

offers insights into apprentices’ strategies and collaboration techniques during debugging

(Adeliyi et al., 2021; Ying et al., 2021). Similarly, as remote work becomes more prevalent,

it is crucial to understand the debugging strategies and technological usage of

geographically distributed apprentices (Beasley & Johnson, 2022; Lynch et al., 2023;

Smite et al., 2021). This research is both timely and crucial for sustaining software quality

and efficiency.

Furthermore, the function of digital tools such as Integrated Development Environments

(IDEs) in supporting the debugging practices of apprentices in remote paired

programming scenarios (Hassan & Zilles, 2022) remains insufficiently examined.

Considering the growing dependence on these tools in distributed settings, exploring

their effectiveness and potential obstacles is important, thereby addressing a notable

void in current studies.

18 | P a g e

1.4 Aims and Objectives

This empirical study examines the debugging strategies utilised by geographically

dispersed Software Development Technician (SDT) apprentices debugging Python codes.

The study zeroes in on their collective endeavours to rectify Python code using

technology-mediated instruments. Additionally, it aims to uncover the factors influencing

their debugging methods and identify their challenges.

To fulfil the aim of this investigation, the study will pursue the following objectives:

▪ Examine the types of errors made by geographically dispersed dyad apprentices when

collaboratively identifying and correcting bugs in the provided Python code and errors

they might miss or fail to rectify.

▪ To investigate the debugging strategies and tactics employed by these apprentice

pairs in locating and fixing bugs in Python code and attempt to understand their

problem-solving approaches.

▪ Gain insights into how geographically dispersed dyad apprentices share cognitive load

during their bug detection and correction processes.

▪ Investigate the influence and efficacy of IDE tools and other technology-mediated aids

in assisting or impeding the debugging tasks the geographically separated dyad

apprentices tackled.

▪ Lastly, explore the challenges confronted by paired SDT apprentices working from

different locations as they collaborate on bug identification and resolution and

identify the underlying causes of these challenges.

19 | P a g e

By addressing these objectives, the study intends to provide an in-depth understanding

of the synergies involved in remote, collaborative debugging among apprentice

programmers.

1.5 Research Questions

Debugging is a costly and time-intensive task where programmers utilise a variety of tools

and approaches for bug identification and resolution (Hirsch & Hofer, 2022). Although

debugging is traditionally a solitary activity, paired debugging turns it into a collaborative

effort that promotes engagement and accountability between pairs (Baker et al., 2004).

This process necessitates a deep understanding of how they collaboratively reason

through and resolve errors by investigating their mental models (Oman et al., 1989) and

the ability to link observed behaviours to potential defects (Perscheid et al., 2017).

Current literature shows a paucity of research on paired debugging among novice

programmers, especially in distributed settings using technology as a mediator. Thus,

adapting industry practices for educational contexts is logical but needs exploration,

particularly when pairing remote novice programmers. Therefore, this study aims to

understand the debugging behaviours of SDT Apprentices in collaborative, remote

settings.

To this end, this central question steers this study:

“How do the paired SDT in geographically distributed locations

work collaboratively to fix Python programming bugs using the

technology-mediated medium?”

20 | P a g e

Leedy and Ormrod (2021, p. 26) suggest that from a research design standpoint, the

central research question can be broken down into several smaller, focused questions.

By answering these sub-questions, researchers are better positioned to address the

central question comprehensively. This approach allows for a more granular investigation

of the subject matter and can lead to a fuller understanding of the studied issue. So, given

this and in investigating this central question, this study proffers answers to the following

five specific research questions:

▪ RQ1: What bugs are generated by the paired geographically distributed SDT

apprentices working collaboratively to solve a given problem using Python?

▪ RQ2: What bug locating strategies and tactics are deployed by the paired

geographically distributed SDT apprentices while attempting to fix defects in the given

Python code? How do they go about finding the bugs in the program code?

▪ RQ3: How do the paired geographically distributed SDT apprentices distribute

cognitive load when resolving bugged code?

▪ RQ4: How does leveraging IDE tools enhance the capabilities of distributed pair

debugging and mitigate the challenges encountered in debugging programs?

▪ RQ5: What challenges are experienced by paired geographically distributed SDT

apprentices working collaboratively on debugging programming bugs, and why are

they facing such challenges?

Based on Maxwell (2012), the study employs multiple research questions to provide a

focused framework for investigating the debugging behaviour of remote, dyad SDT

apprentices. The first question aims to identify the types of bugs these apprentices

generate while working on Python code. These data are then compared with bugs

21 | P a g e

generated by solo and co-located novice programmers in previous studies (Miller et al.,

2021; Neufeld & Fang, 2005; Ralph et al., 2020). This comparison helps us understand if

remote settings influence bug generation.

The second question focuses on the debugging behaviour of these apprentices, aiming to

inform workplace mentors and training providers on how best to support them. The third

research question uses the vocalised thoughts of apprentices to understand how they

distribute the cognitive load during debugging, leveraging the theories of distributed

cognition (Hutchins, 1995) and information foraging (Pirolli & Card, 1999). These theories

provide a framework for data collection and analysis, offering insights into thought

processes and debugging techniques. The fourth question explores the role of

technology, including integrated development environments and collaboration tools, in

the debugging process. The question asks whether technology enhances or complicates

remote debugging, contrasting with its role in co-located settings. Lastly, the fifth

research question investigates the challenges remote dyad apprentices face in debugging

Python code and seeks to identify the root causes of these challenges.

However, it is essential to note that the value of this research is premised on

understanding how dyad SDT apprentices approach debugging.

1.6 Structure of the Thesis

The structure of this thesis facilitates the exploration of the debugging strategies of

novice programmers, with a specific focus on distributed pair debugging, the role of

22 | P a g e

technology, and the conceptual framework guiding the study. Each chapter serves a

distinct purpose and contributes to the overall research endeavour.

Chapter 1 - Introduction: This chapter introduces the research topic, explaining the

rationale behind the study and its primary research question. It also offers background

information on the apprenticeship system in England and describes the characteristics of

novice programmers. The study's goals and objectives are presented, and the chapter

concludes with an overview of the thesis format.

Chapter 2—Literature Review: This chapter critically reviews research on novice

programmers’ debugging strategies and errors. It defines key debugging concepts,

analyses current knowledge, and identifies common debugging strategies and challenges.

It then inquires about distributed pair debugging, explores the role of technology, and

reviews relevant research. The chapter establishes a theoretical basis for the study by

addressing gaps in existing literature that the thesis aims to fill.

Chapter 3 - Conceptual Framework: This chapter presents the conceptual framework that

serves as the foundation for the study, detailing essential ideas and relationships that

drive data collection and interpretation.

Chapter 4 - Research Methodology: This chapter provides an in-depth discussion of the

research design, methods, and tools used in the study. It describes the approach to data

collection, participant selection, and data analysis, detailing the steps taken to ensure the

validity and reliability of results. The chapter also discusses ethical considerations

23 | P a g e

associated with the research, highlighting measures to protect participants’ rights and

ensure research integrity.

Chapter 5 - Data Analysis and Findings: This chapter presents and analyses the data

collected during the research within the conceptual framework and literature review

context. It identifies patterns, trends, and insights emerging from the data, addressing

the research question. The chapter provides a detailed interpretation of the results,

discussing the implications of the findings for novice programmers’ debugging strategies,

especially within the apprenticeship model of learning.

Chapter 6 - Conclusion and Future Research: This chapter summarises the main findings

and discusses their implications for novice programmers, educators, and software

development teams. It outlines the study’s contributions to the existing knowledge on

debugging strategies among novices within distributed settings and apprenticeship

learning, highlighting potential areas for future research. The chapter concludes by

acknowledging research limitations and providing recommendations for practitioners

and researchers in computer science education.

24 | P a g e

Chapter 2: Literature Review

2.0 Introduction

A plethora of studies, like those by Dyba and Dingsoyr (2008), Mens et al. (2019) and

Nosek (1998), highlights substantial advancements in embracing collaborative practices

in the realm of software development. These advancements have accelerated the

adoption of pair programming as a pivotal educational strategy (Hanks et al., 2011;

Sobral, 2020), gaining traction across diverse learning environments due to its inherent

benefits (Baheti et al., 2002; Chorfi et al., 2020; da Silva Estacio & Prikladnicki, 2015; Dyba

& Dingsoyr, 2008; Faja, 2014). Notably, such practices enhance the learning experience

and aptly support learners in future workforce demands (National Research Council,

2013; Yett et al., 2020).

Building on this foundation, the traditional Implementation of pair programming or, in its

extended form, pair debugging, has typically been a co-located activity centred around

continuous communication and collaboration (Smite et al., 2021). However, the COVID-

19 pandemic has significantly heightened the use of digital technologies in coding

education (Chorfi et al., 2020; Lacave & Molina, 2021), leading to the mainstreaming of

virtual collaborative programming. In a way, this transition bolstered interest in its

pedagogical advantages. As a result, educational institutions and training providers began

adapting to industry-aligned collaborative models, integrating collaborative

programming to provide learners with industry-relevant experiences, skills, and

environments (Phillips et al., 2021; Smite et al., 2021). This practice reaffirms the

25 | P a g e

necessity and value of remote pair programming and debugging in contemporary

education.

Given this growing emphasis on remote collaboration, this literature review examines the

current state of research on distributed pair debugging, which remains a relatively under-

explored area despite its increasing relevance in modern software development and

education. Distributed pair debugging, also referred to in the literature as “virtual pair

debugging” or “remote collaborative debugging” (Baheti et al., 2002; Hanks, 2008; Smite

et al., 2021), involves two individuals collaborating remotely to identify and resolve

programming errors. As distributed software development expands, understanding how

debugging is conducted in these environments is critical. This review aims to identify

current knowledge, gaps, and the specific strategies, tools, and challenges related to

distributed pair debugging.

Building on this focus, previous studies have extensively explored pair programming, a

practice where two programmers work together at one workstation, sharing the roles of

driver and observer (Williams et al., 2000). Traditionally, pair programming has been a

co-located activity, allowing for direct interaction and immediate feedback (Hanks et al.,

2011; Nosek, 1998). However, with the rise of distributed software teams, particularly

driven by the global shift towards remote work, there is increasing interest in how this

co-located collaborative approach translates to remote settings, often termed

“distributed pair programming” or “virtual pair programming” (Baheti et al., 2002; da

Silva Estacio & Prikladnicki, 2015). Despite this interest, there is limited understanding of

26 | P a g e

how the practice adapts to the debugging phase, a process that demands effective

collaboration and communication.

This gap becomes even more pronounced in distributed pair programming, which

introduces unique challenges in remote settings. These include a heavy reliance on digital

tools and the absence of face-to-face communication, both of which are critical to the

debugging process (Olson & Olson, 2000; Smite et al., 2021). This literature review

examines how such challenges influence debugging performance, particularly for novice

programmers, who often find debugging difficult even in co-located environments.

Additionally, the review evaluates whether existing tools for remote pair programming,

such as shared integrated development environments (IDEs) and screen-sharing

applications, provide adequate support for debugging in distributed contexts (Phillips et

al., 2021; Tsai et al., 2015).

At its core, debugging is a cognitively demanding task that requires identifying, isolating,

and correcting errors in code. For novice programmers, this process is further

complicated by their limited experience and the high cognitive load it entails (Fitzgerald

et al., 2008; Katz & Anderson, 1987). When conducted in a distributed setting, debugging

becomes even more complex due to the separation between collaborators, which can

cause delays in communication and misunderstandings about code functionality (Wetton,

2021). This review explores how these additional factors affect the debugging process

and examines the strategies novice programmers employ to overcome them. By

understanding these dynamics, the review aims to provide valuable insights into

improving distributed pair debugging practices.

27 | P a g e

Effective collaboration in distributed pair debugging also depends on the availability and

functionality of tools designed for real-time interaction. Integrated Development

Environments (IDEs) with built-in debugging tools, screen-sharing applications, and real-

time code editors have become central to distributed pair programming (Lacave &

Molina, 2021; Smite et al., 2021). However, research suggests that these tools are often

not fully optimised to meet the iterative demands of debugging, such as testing and error

correction (Hanks, 2008; Tsai et al., 2015). This review evaluates the performance of these

tools in distributed contexts, where delays in the feedback loop between driver and

observer can hinder the debugging process. By assessing these tools’ strengths and

limitations, the review seeks to identify practical improvements that can enhance their

effectiveness for distributed pair debugging.

Beyond the tools themselves, effective distributed pair debugging also relies on cognitive

strategies employed by programmers. Research on pair debugging in co-located settings

has shown that novices often depend on trial-and-error methods, which are inefficient

and time-consuming (Khalid et al., 2021; Murphy et al., 2010). In distributed

environments, where non-verbal feedback is limited and coordination occurs via digital

platforms, these challenges can become even more pronounced (Khalid et al., 2021). This

review examines the literature on cognitive load management in distributed pair

debugging, focusing on how programmers allocate tasks, share information, and maintain

effective collaboration despite physical separation. By understanding these strategies,

the review aims to provide insights into improving both the technical and cognitive

aspects of distributed pair debugging.

28 | P a g e

In addressing these complexities, this literature review synthesises findings from various

studies to clarify the current state of research on distributed pair debugging. It maps the

existing research landscape, identifies gaps, and proposes future directions for studying

the strategies and tools that can enhance debugging performance in distributed settings.

By doing so, this review contributes to developing best practices for novice programmers

working in distributed environments, ensuring that they are equipped with the necessary

skills and tools to debug effectively.

To conclude, it is essential to establish a methodological foundation to ensure the

review’s findings are grounded in rigorous academic practice. The following sections

outline the approaches taken in conducting this literature review, beginning with the

choice of review type in Section 2.1, which explains the rationale for selecting an

integrative literature review. This method synthesises diverse streams of research,

offering comprehensive insights into the field. Section 2.2 provides a detailed account of

the methods used to gather and analyse relevant studies, drawing on established

systematic review practices (Arksey & O'Malley, 2005; Randolph, 2019). In Sections 2.3

and 2.4, the focus shifts to the critical appraisal and synthesis of the literature, where key

themes are identified using best practices in thematic analysis (Braun & Clarke, 2006) and

integrative reviews to address complex and interdisciplinary research questions (Hopia et

al., 2016). Together, these sections lay the groundwork for systematically reviewing the

current state of knowledge in this under-explored field of distributed pair debugging,

ensuring a robust and comprehensive analysis (Greenhalgh & Peacock, 2005; Hart, 1998).

29 | P a g e

2.1 Choice of a Review Type

Literature review methodologies vary widely in focus and application. Hart (1998)

describes narrative reviews as broad overviews suitable for initial explorations but lacking

detailed critique. Arksey and O'Malley (2005) focus on scoping reviews which map

research landscapes broadly without the constraints of systematic reviews. Jesson et al.

(2011) discuss critical reviews that analyse methodologies profoundly but are limited in

scope, while Randolph (2019) describes state-of-the-art reviews that highlight recent

innovations but may not cover the broader field. Integrative Literature Reviews (ILRs),

detailed by Whittemore and Knafl (2005) and Torraco (2005), blend various research

types, enhancing theory building and filling gaps, especially in emerging fields where

conventional reviews are inadequate, as noted by (Greenhalgh & Peacock, 2005).

In comparison to the other forms of literature reviews discussed above, the ILR technique

stands out for its methodological flexibility and interdisciplinary scope, which allow it to

handle complicated research questions. It integrates diverse sources across research

methods, including published articles, grey literature, with both qualitative and

quantitative studies, as noted by Broome (2000), Hopia et al. (2016), and Whittemore and

Knafl (2005). This makes it a particularly effective approach for scholarly investigations

requiring a detailed and all-encompassing examination, as required in this study.

2.2 Methods

To map existing knowledge and identify gaps in research on novice paired programmers’

debugging in distributed environments, this study used an Integrative Literature Review

(ILR) as a primary lens to synthesise various streams of literature, following the

30 | P a g e

framework proposed by Lubbe et al. (2020). In determining the most appropriate ILR

methodology, this research scrutinised and contrasted various approaches

recommended by leading academics. Notably, Whittemore and Knafl (2005), Torraco

(2005) and Russell (2005) advocate for a five-phase model, albeit with slight differences

in the objectives of particular phases, whereas Souza et al. (2010) suggest a six-phase

technique. After evaluating the outlined ILR methods, the study embraced the concise

five-step strategy that Lubbe et al. (2020) put forward, as depicted in Figure 1. This

decision was influenced by its clarity and structured approach, which provides a

straightforward path through the complex process of conducting an ILR. This clarity helps

in systematically addressing the research objectives and ensuring that each step of the

review is purposeful and contributes to the overarching goals of the study.

Figure 1: Integrative literature review (adapted from Lubbe et al., 2020)

2.2.1 Review question

The first step involves clearly defining the research question or problem that the review

aims to address (Lubbe et al., 2020). This is crucial as it guides the search for relevant

literature and the subsequent analysis. Through this exploration, the literature review

establishes a solid foundation upon which the research questions can be thoroughly

31 | P a g e

examined and answered, enhancing the scholarly discourse surrounding the topic

(Torraco, 2016).

The central question that steers this study centres on:

“How do the paired Software Development Apprentices in

geographically distributed locations work collaboratively to fix Python

programming bugs using the technology-mediated medium?”

As seen in the research question, this study explicitly explores the debugging strategies

deployed, the tools employed and their effectiveness in addressing geographical

separation. It also examines the types of programming bugs encountered and how paired

novice programmers manage cognitive load. Ultimately, the study seeks to understand

the interaction between technology, collaboration methods, task distribution, and the

unique challenges of remote debugging.

2.2.2 Sampling

The literature sampling process consisted of two main steps, namely searching and

screening. Relevant material was located during the searching phase by scanning

academic databases, search engines, and other sources using precise keywords, Boolean

operators, and search filters. Subsequently, titles and abstracts were screened for

relevance using predetermined criteria such as subject relevancy, research type, and

publication date. To complete the selection for data synthesis, the full texts of possibly

relevant publications were compared to the inclusion criteria (Lubbe et al., 2020). This

32 | P a g e

methodical strategy ensured comprehensive coverage while excluding irrelevant or low-

quality sources.

Searching

To answer the research question more fully, it becomes imperative to identify and collect

relevant literature, a crucial step that typically involves database searches, manual

journal reviews, and citation checks. Whittemore and Knafl (2005) emphasise a

methodical and transparent approach and Carnwell and Daly (2001) stress the

importance of a well-defined search strategy. In line with these recommendations,

researchers, as highlighted by Kraus et al. (2022), frequently utilise multifaceted search

techniques, including keyword searches, Boolean operators, and time-framed queries, to

enhance their research effectiveness. Please refer to the visually illustrated processes

presented in Figure 2.

In conducting the literature search for this study, a wide range of databases were

utilised to ensure comprehensive coverage. These included Scopus, ProQuest, JSTOR,

ERIC, IEEE Xplore Digital Library, ACM Digital Library, ScienceDirect, EBSCO, SAGE

Journals, Web of Science, Education Full Text, PsycINFO, Academic Search Ultimate, and

Google Scholar. The search was conducted between May 2021 and April 2024, using a

structured query designed to enhance the relevance of the outcomes. The query

employed specific terms and combinations: (“Distributed Pair Debugging” OR “Remote

Pair Debugging” OR “Remote Collaborative Debugging” OR “Virtual Pair Debugging” OR

“Distributed Pair Programming” OR “Virtual Pair Programming” OR “Distributed

33 | P a g e

Cognition” OR “Bug Location” OR Dyad*) AND (Error OR Bug OR “Bug Type*” OR “Error

Type*”) AND (Debug* OR “Pair Debug*”).

This carefully constructed query represents a systematic approach to identifying relevant

academic literature on distributed pair debugging. By using Boolean operators (“AND”,

“OR”) and wildcards, it balances breadth and focus to capture studies spanning diverse

contexts and terminologies. Terms like “Distributed Pair Debugging,=”, “Remote Pair

Debugging

” and “Virtual Pair Debugging” target collaborative debugging practices in distributed

settings, while broader concepts such as “Distributed Cognition” and “Bug Location”

ensure that related theoretical and practical dimensions are also covered. Wildcards (e.g.,

“Debug*” and “Dyad*”) allow for variations in terminology, ensuring no relevant results

are overlooked, and quotation marks around exact phrases maintain precision by

avoiding irrelevant results. However, the complexity of the query may lead to an

overwhelming number of results in less sophisticated databases, and terms like

“Distributed Cognition” may retrieve studies beyond the primary focus on debugging.

Additionally, the absence of exclusion criteria, such as the “NOT” operator to filter

unrelated topics, could affect precision. Despite these limitations, the query is robustly

designed to map the current state of research and identify gaps in distributed pair

debugging, aligning closely with the study’s objectives.

However, given the qualitative focus of this study on behaviour and experiences rather

than quantifiable scientific data, the SPIDER tool (Cooke et al., 2012) was utilised to

identify crucial aspects of the research question. This approach aimed to guide and unify

34 | P a g e

the search strategy, aligning it with the SPIDER tool’s framework. Additionally, search

terms were truncated as needed in both searches to ensure all pertinent articles were

captured. Thus, entering this query into research databases facilitated a thorough and

precise search. The terms were specifically selected to generate focused results,

encapsulating the main areas of interest within the study.

35 | P a g e

Figure 2: Flow diagram for ILR (adapted from PRISMA – Preferred Reporting Items for Systematic Reviews

& Meta-Analysis (Moher et al. (2009) cited in (Lubbe et al., 2020)).

36 | P a g e

Furthermore, the AI tool Connected Papers was employed to represent cited works

visually, providing an extensive overview of the research landscape pertinent to the topic

(see Figure 3). Connected Papers facilitates an innovative approach to academic research

by visualising interconnections between papers, thus streamlining literature reviews,

discovering trends, and identifying collaboration opportunities.

Figure 3: AI tool connected papers

Screening

In the preliminary literature review phase, as visualised in Figure 2, the titles and abstracts

of papers identified through the initial search were examined. This process adhered to

predefined inclusion and exclusion criteria to ensure the relevance and specificity of the

study’s objectives. Any duplicate papers identified during this review process were

promptly eliminated to maintain the integrity and originality of the research material.

Following this screening, full-text versions of the selected articles were procured for a

more detailed evaluation, where they were once again scrutinised against the established

inclusion and exclusion criteria. This approach ensured that only the most pertinent and

informative papers were included in the study, thereby bolstering the research’s

foundational literature base.

37 | P a g e

2.2.3 Critical appraisal (CA) of sample (data collection)

Following Whittemore and Knafl's methodology (2005), the data were evaluated based

on three essential criteria, specifically, methodological rigour, analytic precision, and

conceptual relevance to the study aims. In adherence to this, this study adopted the

Joanna Briggs Institute (JBI) checklists (Joanna Briggs Institute, 2017) to assess the

methodological quality of various research types, including randomised controlled trials,

cohort studies, case-control studies, cross-sectional studies, and systematic reviews.

These checklists, tailored to each study type, feature specific criteria for assessing

relevant methodological aspects, ensuring thorough evaluation of research designs.

The JBI checklist does not use a numerical scoring system. However, this study adapts it

to a 0 to 1 scale for clear, quantifiable evaluation - 0 for “No”, 0.5 for “Partially”, and 1 for

“Yes”. Since JBI does not set a specific quality cut-off, score interpretation varies by

context. Thus, specific guidelines are applied for this study:

▪ Outstanding (90-100%): Papers in this range meet most or all criteria, indicating well-

executed research with thorough methodology and ethical considerations.

▪ Good (75-89%): Papers in this range are good to very good, meeting most criteria with

minor areas for improvement.

▪ Fair (60-74%): Papers in this range are deemed adequate, but several areas need

improvement.

▪ Poor (<60%): Scores below 60% indicate significant methodological weaknesses and

such papers might require considerable revision to be of high quality.

38 | P a g e

Table 1 (refer to Appendix L for a full list) displays a sample summary document of studies

appraised using the JBI checklist at the full-text screening stage. Critical appraisal from

this study’s perspective is a detailed, systematic review that assesses studies’

methodological quality, validity, reliability, and relevance in a specific context (Porritt et

al., 2014).

Table 1: Sample of a summary document for the critical analysis (CA) of selected studies

2.2.4 Data analysis (Data extraction and synthesis, and thematic analysis)

Data extraction

Data extraction involves systematically gathering relevant details from selected studies

to fulfil the research objectives (Lubbe et al., 2020). This includes identifying study

39 | P a g e

characteristics (e.g., author, publication year), aims/purpose, research design,

population, and main findings. The aim is to compile comprehensive information from

each study for comparison, synthesis, and interpretation, organised in a structured

format such as a table, as seen in Tables 2 and 3.

Table 2: Sample data extraction

40 | P a g e

Table 3: Sample data extraction (Continuation)

41 | P a g e

Data synthesis and analysis

After completing the critical analysis of the included studies outlined in the previous

section, the synthesis phase began, focusing on identifying themes, relationships,

patterns, and gaps. Hart (2018) describes data synthesis as connecting components

identified during analysis initiated as soon as the literature is compiled. Adhering to Braun

and Clarke’s (2006) guidelines, this stage involved compiling various studies already

critically analysed to uncover new insights. Specifically, a thematic synthesis was carried

out, as detailed by Braun and Clarke (2006), aiming to distil the evidence into coherent

themes that respond directly to the research question. Please refer to Table 4 for a

detailed understanding of the themes that emerged from this synthesis and to see how

these themes are connected to the studies that informed them.

Table 4: Themes identified from data synthesis.

42 | P a g e

 2.2.5 Presentation

After analysis, the findings are presented in a structured format, including a narrative

summary, making it easy to understand the main findings. An initial search across chosen

databases produced 924 papers. After reviewing titles and abstracts, applying exclusion

criteria, and eliminating duplicates, 53 articles were shortlisted for closer examination.

Following an in-depth full-text review, 14 articles were excluded for not directly

addressing the review topic, and an additional 4 papers were excluded due to poor

methodological quality, leaving 35 papers deemed suitable for inclusion in this review

(see Figure 2).

Based on the review of the literature and alignment with the guidelines provided by

Braun and Clarke (2006), the key themes that emerged, influencing the debugging

behaviours of novice programmers across various settings were Complexity and Diversity

of Errors, Tapestry of Debugging Strategies, Team Cognitive Management, IDE Debugging

Efficiency, and Navigating Debugging Complexities. These themes collectively cover the

factors influencing debugging behaviours, providing a comprehensive framework for

understanding and enhancing the debugging skills of novice programmers in various

settings.

Theme 1 - Complexity and Diversity of Errors

The studies reviewed, which span several decades, provide insights into the diverse types

of errors encountered by novice programmers in various programming languages and

environments.

43 | P a g e

This theme presents an overview of the findings regarding the different types of errors or

bugs encountered by novice programmers, detailing commonalities and insights across

various studies.

The study conducted by Gould and Drongowski categorised the debugging challenges

faced by beginners in Java programming into syntax, logic, and runtime errors, providing

early insights into the distinct categories of errors encountered by novice programmers

(1974). Leveraging these insights, Katz and Anderson (1987) further emphasised the

importance of understanding these categories to improve debugging efficiency,

highlighting how different types of errors necessitate different approaches (Michaeli &

Romeike, 2019). Offering a comparative angle, Vessey (1985) documented higher error

rates among novices compared to experts in COBOL programming, illuminating the steep

learning curve novices encounter and the more efficient debugging strategies experts

use. Similarly, Yen et al. (2012) explored differences in debugging strategies between

novice and expert programmers in C, revealing that novices struggle significantly with

semantic and logic errors due to less effective use of compiler feedback.

Within specific software development environments, Ahmadzadeh et al. (2005) and

Kölling et al. (2019) focused on how novices handle compiler errors and logical mistakes

within environments like the BlueJ IDE, noting frequent logical missteps by novices.

Fitzgerald et al. (2008), Murphy et al. (2008) and Murphy et al. (2010) elaborated on the

particular types of Java errors, such as arithmetic bugs, malformed statement bugs, and

incorrect logical expressions, pointing out the particular difficulties novices face in Java

44 | P a g e

environments. These studies collectively highlight the challenges and learning obstacles

presented by Java programming.

Further investigations into novice errors in different programming languages were

conducted by Alqadi and Maletic (2017), who explored how novices misapply logical

operators and control structures in Java, emphasising the need for a deep understanding

of logic to navigate debugging. Smith and Rixner (2019) focused on Python-specific errors,

identifying frequent runtime errors such as TypeErrors and IndexErrors that persist

among novices, highlighting the persistent challenges in modern programming

languages.

Focusing on young learners and specific error types, Júnior et al. (2019) and Kohn (2019)

documented Python coding mistakes among high school students, such as unclosed

scanners and incorrect indentation, emphasising the need for clear compiler error

messages and effective pedagogical methods to aid students in overcoming these

foundational hurdles.

Moreover, in studies exploring physical computing and hardware-related errors,

Jayathirtha et al. (2020) conducted a study that revealed programming errors such as

missing initialisation, incorrect logical expressions, and mismatched variables, alongside

circuitry issues like loose connections and reverse polarity problems, which were included

intentionally to mimic real-world scenarios. Similarly, the study by Jayathirtha et al.

(2024) further probed into pre-designed bugs affecting both hardware and software,

45 | P a g e

identifying errors like faulty conditional logic, wiring issues, sensor inaccuracies, and LED

malfunctions.

Other miscellaneous studies provide broader insights into the challenges faced across

various environments. The study conducted by Allwood and Bjorhag (1990) looked into

Berkeley-Pascal programming errors on UNIX, categorising errors into syntax, semantic,

and logic errors and underlining the distinct challenges in this environment. Ettles et al.

(2018) analysed prevalent logic errors in C programming among first-year students,

providing insights into common misconceptions and algorithmic mistakes. Jeffries et al.

(2022) and Zhang et al. (2023) provided insights into syntax and runtime errors in Python

and Java, respectively. Jeffries et al. (2022) focused on Python, identifying frequent

mistakes such as indentation errors, incorrect use of variables, and misunderstanding of

functions. Zhang et al. (2023), on the other hand, examined Java and pointed out typical

errors like class and object mismanagement, improper exception handling, and issues

with data types.

Lastly, Akinola (2014) compared debugging effectiveness between solo and pair

programmers in Java, noting that collaborative approaches might mitigate some common

errors, suggesting that pair programming could be a beneficial strategy in educational

settings where teamwork and collaboration are emphasised. This study, among others,

reinforces the varying dynamics of learning and debugging within programming

education and points towards potential strategies for enhancing novice programmers’

skills.

46 | P a g e

Together, these studies demonstrate the variety of programming errors and the critical

need for all-encompassing instructional approaches that equip novice programmers with

robust debugging skills. This foundational knowledge is pivotal for programming

education as it aims to enhance learning outcomes by providing novices with the tools

and methodologies to tackle the broad spectrum of debugging challenges they

encounter.

Theme 2 - Tapestry of Debugging Strategies

This theme highlights debugging strategies across various studies, offering a deep insight

into the complex techniques that novices use to tackle the task of debugging. This

overview showcases the diversity of debugging strategies and tactics employed and

reflects the evolution of debugging as a pivotal skill in software development.

Beginning with Gould and Drongowski (1974), the study laid the groundwork for

understanding debugging strategies such as print debugging, code inspection, trial and

error, collaboration, and utilising IDEs. These strategies highlight fundamental

interactions between programmers and code, emphasising a dynamic approach to

identifying and resolving errors. Following this, Vessey (1985) introduces a cognitive

dimension by contrasting experts’ holistic, systematic strategies with the more linear,

focused approaches of novices, underlining the impact of cognitive processes on

debugging effectiveness.

Adding further depth, Allwood and Bjorhag (1990) describe the debugging processes of

novices using Pascal, incorporating error hypotheses, systematic problem-solving, and

47 | P a g e

iterative debugging phases. They emphasise understanding code logic and scrutinising

error messages, which are crucial for a structured debugging approach. Katz and

Anderson (1987) complement this by exploring debugging in LISP programming,

identifying strategies like simple mapping, test-case execution, and causal reasoning.

They note the use of both backward and forward reasoning, varying by whether novices

debug their code or that of others, which introduces strategic flexibility in debugging. This

observation is echoed by findings from Fitzgerald et al. (2008), Horwitz et al. (2009),

LaToza et al. (2020), and Vourletsis et al. (2021). However, a deviation was reported by

Yen et al. (2012), who found that students, while debugging C language programs crafted

by others, also favoured the backward reasoning approach. Notably, Katz and Anderson

observed a heightened use of causal reasoning, contrasting Jeffries (1982) earlier

observation of its limited application. However, a deviation was reported by Yen et al.

(2012), who found that students, while debugging C language programs crafted by others,

also favoured the backward reasoning approach. Notably, Katz and Anderson observed a

heightened use of causal reasoning, contrasting Jeffries (1982) earlier observation of its

limited application.

The discussion of tactical debugging continues with Ahmadzadeh et al. (2005), who

observe novice computer science students employing print statements, code

commenting, and active code running to isolate bugs. This hands-on approach reflects an

interactive engagement with the code, where manipulation and direct observation are

crucial to understanding and fixing errors. Similarly, Chintakovid et al. (2006) extend

debugging to spreadsheet environments, focusing on iterative debugging, testing values,

and using visual cues to enhance error detection in formula-based contexts. Further

48 | P a g e

contributions from Fitzgerald et al. (2008) introduce pattern matching and different

reasoning strategies, adding a layer of structured creativity to debugging. This is echoed

by Murphy et al. (2008), who emphasise tracing, selective commenting of code sections,

and systematic testing. Fitzgerald et al. (2010) then expand the range of strategies to

include understanding code, gaining domain knowledge, and utilising resources, which

deepen the cognitive and resource-based aspects of debugging.

Alqadi and Maletic (2017) emphasise logical errors, advocating strategies such as error

hypothesis formation, systematic testing, code tracing, incremental and iterative testing,

backtracking, and peer review. These methods emphasise the importance of a

collaborative, iterative approach to uncovering syntactically correct but logically flawed

errors. Jayathirtha et al. (2020) and their subsequent study in 2024 investigate debugging

in electronic textiles and Arduino projects (Jayathirtha et al., 2024), highlighting the

multidimensional challenges of integrating code with physical components through

strategies like hypothesis generation, solution testing, and iterative problem-solving.

Lastly, Liu and Paquette (2023) incorporate modern data analytics to explore debugging

through submission logs, revealing strategies such as minor code edits that contrast

traditional debugging perceptions. Whalley et al. (2023) focus on effective strategies

among novice Python programmers, emphasising the importance of understanding code,

hypothesising and using deliberate actions to locate bugs.

Overall, these studies illustrate a complex tapestry of debugging strategies, highlighting a

domain where technical, analytical, collaborative, and cognitive skills converge to address

49 | P a g e

one of the most challenging aspects of programming. Each study contributes unique

insights, enriching our understanding of how diverse debugging strategies are applied

across different contexts, languages, and platforms, underscoring the need for adaptive,

context-sensitive, and collaborative approaches in both education and professional

practice.

Theme 3 – Team Cognitive Management

Team Cognitive Management aptly encapsulates the cognitive strategies presented in the

studies by Chintakovid et al. (2006), Jayathirtha et al. (2020), and Jayathirtha et al. (2024).

This theme emphasises the efficacy of paired or group collaboration in managing

cognitive load within programming and debugging contexts. The studies investigate the

collaborative mechanisms participants use to distribute and share cognitive

responsibilities, thereby enhancing the overall problem-solving process. Each study

distinctly contributes to understanding how these synergies facilitate effective cognitive

load management, demonstrating a range of strategies from role division and task

coordination to adaptive problem-solving and joint attention.

In the study conducted by Chintakovid et al. (2006), the participants, all university

students with limited programming experience, utilised several collaborative strategies

to distribute cognitive load while engaging in programming tasks. They adopted Driver-

Observer roles, allowing one person to handle direct manipulation of the code (the driver)

while the other provided strategic oversight (the observer). This role division facilitated a

balanced approach to task management and enhanced mutual support and effective

communication. Participants also actively engaged in collaborative decision-making,

50 | P a g e

discussing potential solutions and strategies, which helped distribute cognitive

responsibilities evenly across the pair. Moreover, task coordination was emphasised, with

both members staying actively involved throughout the debugging process, ensuring that

cognitive load was shared and not concentrated on a single individual.

Transitioning to the study by Jayathirtha et al. (2020), similar collaborative dynamics were

observed among participants working on electronic textiles projects. Here, the divide-

and-conquer strategy was notably effective, with tasks split between circuitry and coding

based on individual expertise and task complexity. Such division allowed each participant

to focus intensively on a specific project segment, reducing individual cognitive load.

Collaborative task allocation was another significant strategy, where tasks were assigned

based on each participant’s skills, facilitating parallel progress and shared responsibility.

The concept of joint attention to problem spaces was critical in this context; by co-

investigating issues and verifying connections, participants could leverage their combined

expertise to tackle complex problems effectively. Similarly, adaptive collaboration was

highlighted as participants shifted strategies based on task demands, showing flexibility

in managing cognitive load dynamically.

Finally, in a recent study by Jayathirtha et al. (2024), the focus shifted slightly towards

more integrated collaborative strategies in debugging e-textile projects. Establishing joint

attention was crucial, as students aligned their focus on various project elements,

enhancing coordination and collective problem-solving. Sharing cognitive load was

achieved through dynamic task division and continuous dialogue about strategies and

solutions, enabling efficient use of collective cognitive resources. Collaborative problem-

51 | P a g e

solving was evident as students discussed, tested, and refined their approaches together.

Fluid task division allowed for flexible role adjustments based on the immediate needs of

the debugging process, further supporting effective cognitive load management.

Coordinated strategies across different modalities ensured that all aspects of the projects

were addressed comprehensively, facilitating a thorough approach to problem-solving.

These studies show that effective collaborative cognitive load management in

programming and debugging involves a mixture of strategic role division, adaptive task

allocation, and sustained mutual support. Each study highlights the benefit of

collaborative approaches in distributing cognitive load and enhancing overall problem-

solving efficiency and project success.

Theme 4 – IDE Debugging Efficiency

IDE Debugging Efficiency highlights how using IDE tools and related technologies

significantly aids programmers in debugging tasks, enhancing efficiency and reducing

cognitive load through various technological interventions.

In the work of Smite et al. (2021), technological tools were leveraged to facilitate remote

pair programming sessions. Tools such as Tuple and various IDE extensions enabled

screen sharing, control of each other’s computers, and simultaneous programming.

These tools significantly enhanced the collaborative experience and enabled real-time

collaboration and code editing, thus boosting the debugging process’s effectiveness and

efficiency.

52 | P a g e

Fitzgerald et al. (2008) focused on the role of debuggers within IDEs like Eclipse, which

automatically detect and highlight semantic errors such as missing brackets. This

capability speeds up the identification and correction of errors and reduces the

programmers’ cognitive load. Additionally, the study emphasised the importance of

online resources and programmers’ familiarity with the IDE, noting that these factors

significantly contribute to successful debugging efforts.

Moreover, Whalley et al. (2023) observed how novice programmers utilised IDE tools to

manage their workspaces efficiently and execute code changes effectively. The

participant’s ability to organise their workspaces and engage in modify-and-test cycles

showcased how IDE tools could simplify and streamline the debugging process. However,

the study also noted challenges related to the participants’ familiarity with IDE

functionalities, emphasising the need for full training to leverage these technologies.

Lastly, Jayathirtha et al. (2024) examined using the Arduino IDE in debugging electronic

textiles projects. This study highlighted the IDE’s features, such as syntax highlighting,

error detection, interactive debugging, and integrated tools and libraries. These

functionalities facilitated the programming process and supported students in managing,

navigating, and debugging their code more effectively.

Overall, each study contributes to the overarching theme by demonstrating how IDE tools

and technologies are integral to enhancing debugging efficiency, which is the focus of this

study. These studies jointly reinforce the transformative impact of these technologies in

53 | P a g e

programming education and practice, providing essential insights into their benefits and

the necessity of familiarity with these tools for effective debugging.

Theme 5 – Navigating Debugging Complexities

The literature reviewed explores the diverse challenges novices encounter during

programming debugging tasks. This theme captures novices’ experiences across various

educational backgrounds as they navigate the complexities of identifying and resolving

errors within code. The subsequent findings detail the specific challenges and underlying

reasons identified in each study, shedding light on the common obstacles faced during

the debugging process.

Michaeli and Romeike (2020) introduce a complex educational scenario where

participants face seven distinct challenges while debugging, namely, generating

hypotheses, undoing changes, systematic testing, cognitive load, use of external

representations, collaboration and communication, and application of domain

knowledge and heuristics. Thus, the inability to generate effective hypotheses and the

reluctance to undo changes post-failure indicate a lack of prior debugging experience,

which hampers effective problem-solving strategies. Systematic testing is compromised

by a shallow understanding of isolating and verifying system components, exacerbated

by the high cognitive demands of managing multiple variables simultaneously.

Ineffectiveness in using external representations and challenges in collaboration and

communication are linked to insufficient collaborative skills and the inappropriate

application of heuristics, compounded by the unique pressures of an escape room setting

that distracts from focused debugging efforts. These challenges are intertwined with

54 | P a g e

reasons such as environmental novelty, educational gaps, and a lack of practical

debugging exercises, which highlight the necessity for educational reforms to better

prepare students for real-world debugging tasks.

Alqadi and Maletic (2017) detail the struggles of novice programmers with five primary

challenges, such as difficulty with logical errors, lack of experience, understanding error

messages, cognitive load, and time management. Logical errors, particularly challenging

due to their requirement for a deeper understanding of the program’s intent, highlight

the novices’ inadequate exposure to complex debugging and systematic strategies.

Misinterpretation of error messages and an overwhelmed cognitive capacity due to the

simultaneous management of multiple debugging elements like program flow and

variable states further complicate the debugging process. These issues are often

deepened by educational shortcomings that fail to equip students with necessary

debugging skills and are exacerbated by psychological factors such as anxiety and

frustration, which negatively impact problem-solving capabilities.

In Fitzgerald et al.’s (2008) research, seven challenges surface, encompassing

understanding the system, testing the system, locating and repairing errors, using

debugging tools, cognitive load, and fragile knowledge. Each challenge is rooted in a

combination of lack of experience and insufficient foundational knowledge, which

hinders effective engagement with debugging tools and systematic problem-solving.

Cognitive overload and fragile knowledge, where concepts are not fully grasped, stress

educational gaps that fail to prepare students for debugging’s unpredictable nature. This

55 | P a g e

calls for an educational approach emphasising practical experience and systematic

problem-solving skills in programming curricula.

Fitzgerald et al. (2010) explore the debugging experiences of novice programmers,

identifying five main challenges, for example, fragile knowledge, troubleshooting, causal

reasoning, understanding debugging tools, and reading complex code. The reasons for

these challenges are intricately linked to the novices’ superficial understanding of

programming and debugging, compounded by high cognitive loads and ineffective use of

debugging tools. The study suggests that enhancing educational practices to include more

focused debugging exercises could alleviate these challenges.

Murphy et al. (2010) focus on the collaborative mechanics of debugging in pairs, noting

five challenges related to transactive communication, cognitive load, collaborative

dynamics, level of discussion, and strategic application of debugging methods. The

additional cognitive burden and the need for effective transactive communication

highlight the complexity of collaborative debugging, which is often not adequately

supported by educational frameworks that fail to emphasise collaborative skills and

systematic debugging strategies.

Smite et al. (2021) document the adaptation to remote pair programming, identifying

challenges such as disruptions in communication and collaboration, adaptation to remote

tools, loss of informal communication, psychological impacts, and adjustments to new

work rhythms. These challenges stem from technological and organisational shifts

56 | P a g e

necessary for remote work, highlighting the need for better support systems and training

to facilitate effective remote collaboration and debugging.

Another relevant study by Kim et al. (2022) on block-based programming involving early

childhood teacher candidates identifies six challenges influenced by the presence of

scaffolding. These include complex problem-solving, persistence, collaborative dynamics,

cognitive load, technical understanding, and trial-and-error approaches. Prominent

issues such as lack of experience and cognitive overload suggest that structured

scaffolding could significantly aid in managing these challenges.

Whalley et al. (2023) investigate the debugging practices of novice programmers,

identifying six key challenges, including difficulties with debugging tools, code navigation,

strategy application, cognitive load, problem-solving constraints, and interpreting

feedback. These challenges are predominantly due to limited experience with debugging

tools and an inadequate understanding of code structure and flow, which could be

mitigated by more comprehensive programming education emphasising practical

debugging skills and tool usage.

Moreover, Jayathirtha et al. (2024) study the debugging of electronic textiles by high

school students, identifying five challenges, including, complex multimodal debugging,

distributed tasks, collaborative coordination, limited engagement, and system

integration difficulties. The all-encompassing nature of these projects introduces unique

challenges that require both collaborative efforts and an integrated understanding of

57 | P a g e

diverse systems, pointing to the need for educational tools and resources that support

such complex, interdisciplinary learning environments.

Overall, these studies highlight novice programmers’ broad challenges, particularly in

collaborative and distributed settings. The findings suggest that debugging effectiveness

heavily depends on managing cognitive load, proficiently utilising debugging tools, and

maintaining effective communication and collaboration. For paired novices in distributed

environments, these challenges are magnified by the additional barriers of remote

collaboration.

2.3 Discussion

This section attempts to critically analyse and synthesise the findings from multiple

studies relating to the five themes already identified in the previous section. It aims to

integrate these diverse insights, providing an understanding of the study patterns and

divergences. By examining these themes, which are the Complexity and Diversity of

Errors, the Tapestry of Debugging Strategies, Team Cognitive Management, IDE

Debugging Efficiency, and Navigating Debugging Complexities, the discussion will give a

comprehensive analysis of the data. In this vein, this examination seeks to contextualise

these findings within novice programming behaviour and highlights the broader

implications for programming education. It also suggests potential strategies for

improving novice programmers’ learning experiences and outcomes.

Although the examined studies span several decades, they reveal profound educational

insights, particularly highlighting the diverse types of errors encountered by novice

58 | P a g e

programmers across different languages and environments. In their foundational study

on Java programming, Gould and Drongowski (1974) categorised debugging challenges

into syntax, logic, and runtime errors, setting a precedent for recognising the diversed

nature of programming errors. This fundamental categorisation reinforced the necessity

for distinct pedagogical approaches tailored to different error types, a notion further

bolstered by Katz and Anderson (1987). They stressed that understanding these

categories is crucial for enhancing debugging efficiency (Robins et al., 2006), indicating

that a one-size-fits-all approach to teaching debugging is insufficient. It thereby

emphasises the need for a differentiated approach to teaching debugging tailored to the

specific types of errors novices face (Lewis & Gregg, 2016). For example, novices tend to

adopt a trial-and-error approach for syntax errors, while logic errors often require more

structured problem-solving techniques (Ettles et al., 2018). Runtime errors frequently

necessitate understanding dynamic program behaviour and error handling (Alqadi &

Maletic, 2017). This detailed insight is essential for creating effective educational

strategies that address novice programmers’ specific needs to become more proficient

and efficient in debugging their code.

Also, the steep learning curve faced by novices, as documented by Vessey (1985), and the

differential debugging strategies employed by experts versus novices, as explored by Yen

et al. (2012), highlight the critical need for specialised instructional methods. Vessey’s

work illustrates that novices are slower and less effective in debugging, which explains

why Youngs (1974) observes that novices often spot fewer bugs and take longer to fix

than experts. This suggests that educational interventions should focus on bridging this

gap by imparting expert strategies to beginners. Yen and colleagues (2012) further

59 | P a g e

expand on this by showing how novices struggle with semantic and logic errors, primarily

due to ineffective use of compiler feedback. This research aligns with Chen et al. (2013),

whose findings suggest that, without proper guidance and extensive practice, beginners

often misinterpret error messages and inefficiently use debugging aids. This supports Yen

et al. (2012), who emphasised the need for curriculum designs incorporating real-world

tools and environments to improve novices' debugging skills. However, though valuable,

Yen et al.'s recommendation may be impractical for institutions with limited resources,

indicating a need for adaptable, resource-sensitive strategies.

Likewise, research by Ahmadzadeh et al. (2005) and Kölling et al. (2019) reveals that

novices often struggle with compiler errors and logical mistakes, particularly in

environments like the BlueJ IDE. This finding implies that hands-on learning experiences,

which allow novices to engage with code directly, are vital. Fitzgerald et al. (2008),

Murphy et al. (2008), and Murphy et al. (2010) suggest that such an approach enhances

technical proficiency and builds confidence in handling real-world programming

challenges. By practising in realistic settings, novices can develop a deeper understanding

of the complexities involved in debugging, making them better equipped to handle similar

issues in professional scenarios (Robins et al., 2003; Soloway & Spohrer, 2013).

In addition, the consistent finding across studies that novices frequently misapply logical

operators and control structures (Alqadi & Maletic, 2017; Smith & Rixner, 2019) indicates

a persistent gap in understanding fundamental programming concepts. This calls for

deeper instruction in programming logic, highlighting that a robust grasp of these basics

is essential for effective debugging. Júnior et al. (2019) and Kohn (2019) also noted

60 | P a g e

common Python coding mistakes among high school novices, further supporting the need

for early programming education to include clear compiler error messages and effective

pedagogical methods. Addressing these issues early can prevent the accumulation of bad

coding habits and foster a more intuitive grasp of programming principles, which is crucial

for developing proficient programmers (Grover & Pea, 2013; Guzdial, 2015).

Besides, the role of collaborative learning environments in mitigating common errors and

enhancing learning outcomes is another critical insight from these studies. A study

conducted by Akinola (2014) comparing solo and pair programmers suggests that

collaborative approaches, such as pair programming, can significantly benefit educational

settings. This is echoed in studies by Chintakovid et al. (2006), Jayathirtha et al. (2020)

and Jayathirtha et al. (2024), which highlights the importance of strategic role division,

task coordination and adaptive problem-solving in managing cognitive load and

improving problem-solving efficiency. Educators can foster peer learning and mutual

support by incorporating collaborative projects into programming curricula, creating a

dynamic and interactive learning environment that mirrors real-world software

development practices. This approach can help distribute the cognitive load as well as

encourage the development of critical teamwork skills essential in the professional realm

(Bennedsen & Caspersen, 2007; McDowell et al., 2006).

On top of that, it is important to note that exploring diverse debugging strategies across

various studies has implications for programming education. The research emphasises

the complexity and evolution of effective debugging practices from techniques like print

debugging and code inspection (Gould & Drongowski, 1974) to more advanced methods

61 | P a g e

involving systematic problem-solving and error hypothesis formation (Alqadi & Maletic,

2017). This suggests that programming education should focus on technical skills and

teach cognitive and strategic approaches to problem-solving, helping novices develop a

more holistic understanding of debugging. By integrating these strategies into the

curriculum, educators can better prepare novices for the multifaceted nature of

debugging in professional settings. Such an approach ensures that novices are technically

proficient and capable of thinking critically and strategically about problem-solving (Linn

& Dalbey, 1985).

Furthermore, integrating modern tools and technologies in debugging, as demonstrated

by Smite et al. (2021) and Jayathirtha et al. (2024), highlights the transformative impact

of these technologies in programming education. Using IDE tools (Fitzgerald et al., 2010),

remote collaboration technologies, and data analytics to enhance debugging efficiency

and reduce cognitive load suggest that educational programs should keep pace with

technological advancements. Familiarity with these tools can streamline the debugging

process and improve overall productivity, highlighting the necessity for novices to be

proficient in using the latest programming tools and platforms (Fitzgerald et al., 2008;

Whalley et al., 2023). Consequently, integrating these technologies into educational

settings can provide novices with practical experience and prepare them for the

technological demands of the modern workplace (Grover et al., 2014; Resnick et al.,

2009).

Moreover, the literature also points to the critical need for structured support systems

and scaffolding to aid novice programmers. Studies involving young learners and early

62 | P a g e

childhood teacher candidates (Júnior et al., 2019; Kim et al., 2022; Kohn, 2019) suggest

that clear error messages and structured guidance are essential for managing cognitive

load and enhancing learning outcomes. This implies that educational institutions should

provide scaffolding that gradually increases task complexity, ensuring novices are not

overwhelmed by the cognitive demands of debugging. Such an approach can help

maintain novice engagement and foster a progressive learning curve, making learning

more manageable and effective for all levels (Wing, 2006).

Additionally, the research by Allwood and Bjorhag (1990) and Ettles et al. (2018) provide

broader insights into the challenges faced in different environments, such as UNIX and C

programming. Their findings suggest that novices struggle with syntax and logical errors

and face significant challenges in understanding the operating environment. This

highlights the importance of contextual learning, where novices are taught programming

languages and the environments in which these languages operate. By fostering an

understanding of the broader technical ecosystem, educators can better prepare novices

for the diverse contexts they will encounter in their professional careers (Spohrer &

Soloway, 1986).

To add to that, the role of cognitive and collaborative strategies in debugging, as explored

by Chintakovid et al. (2006), Jayathirtha et al. (2020) and Jayathirtha et al. (2024),

reinforces the importance of cognitive load management and strategic collaboration in

effective problem-solving. Their studies suggest that educational programs should focus

on individual problem-solving skills (Wing, 2006) and collaborative skills that can enhance

cognitive efficiency (Chintakovid et al., 2006; Murphy et al., 2010). For instance, the use

63 | P a g e

of strategic role division and adaptive problem-solving in team settings can help distribute

cognitive load and improve overall problem-solving efficiency. This approach mirrors real-

world software development practices, where collaboration and teamwork are essential

(Palumbo, 1990).

Despite this, research on integrating modern data analytics and remote collaboration

tools (Liu & Paquette, 2023; Smite et al., 2021) indicates that the future of programming

education lies in the effective use of technology. By incorporating these tools into the

curriculum, educators can provide novices with the skills to navigate the software

industry’s increasingly digital and collaborative nature. This prepares learners for current

industry practices and ensures they are adaptable to future technological advancements

(McDiarmid & Zhao 2023).

By and large, these insights collectively highlight the urgent need for comprehensive

educational strategies that equip novice programmers with robust debugging skills.

Addressing the diverse challenges identified in the research, including technical,

cognitive, and collaborative difficulties, requires a holistic approach. This approach should

integrate targeted instructional methods, practical hands-on experiences, collaborative

learning environments, and modern technological tools. By doing so, programming

education can better prepare learners to tackle the broad spectrum of debugging

challenges they encounter, ultimately improving debugging proficiency and contributing

to software development practices’ overall quality and efficacy.

64 | P a g e

2.4 Summary

As novice programmers commence their developmental journey, they demonstrate

various debugging strategies, varying significantly in effectiveness. This literature review

critically evaluates existing research, highlighting emergent patterns and pinpointing

deficiencies. As Colquitt (2013) advocates, it is vital to juxtapose new research against

established work, thus paying an ‘intellectual debt’ and ensuring a comprehensive grasp

of the relevant scholarly landscape. In this vein, this chapter examines the characteristics

and common bugs of novice programmers, the impact of IDE tools, and the variety of

debugging strategies used by novices, particularly those working solo, co-located, and in

distributed settings. This analysis is crucial as it prepares the ground for a detailed

synthesis of research on paired debugging by novices in both co-located and distributed

environments. Despite the growing literature on pair programming and debugging, a

significant research gap exists in distributed pair debugging among novices, with no

studies specifically focusing on the debugging strategies of paired novices in distributed

settings.

Taking this into account, while the lack of targeted research is a limitation, the broader

literature does provide some basis for understanding how factors such as

communication, expertise distribution, and task complexity could potentially impact the

success of pair debugging in distributed settings. Thus, the existing research serves as a

starting point, highlighting the need for more focused studies to comprehensively

understand the unique challenges and the debugging strategies that novice deployed

distributed pair debugging among novice programmers.

65 | P a g e

Considering the current research, while the lack of specific studies is a limitation, the

existing literature offers insights into how communication, expertise distribution, and

task complexity might affect pair debugging in distributed settings. This establishes a

foundation, pointing to the need for targeted research to fully understand the challenges

and strategies of novice programmers in distributed pair debugging. Given this backdrop,

this review identifies a clear gap in the literature and emphasises the need for dedicated

studies in this less-explored area. Future research should focus on debugging techniques

suitable for novices in diverse educational settings and ages, particularly in distributed

environments. Such endeavours could unveil more detailed insights, facilitating the

creation of bespoke strategies and tools to enhance the debugging process for novice

pairs operating in remote environments.

66 | P a g e

Chapter 3: Conceptual Framework

3.0 Introduction

This chapter presents the conceptual framework that provides a structure for examining

both individual and collaborative aspects of debugging within disparate settings, guiding

the data collection and analysis. It approaches this by contextualising the study and

linking it to underlying theories that provide a solid foundation for investigating and

interpreting findings. For the purpose of this study, which examines the debugging

process among novice programmers, the conceptual framework draws on two

complementary theories, as exemplified by Information Foraging Theory (IFT) (Pirolli &

Card, 1999) and Distributed Cognition (Hutchins, 1995). These complementary theories

will now be reviewed, followed subsequently by the presentation of the Critical Analysis

of the Distributed Pair Debugging Conceptual Framework.

3.1 Information Foraging Theory (IFT)

IFT provides insightful perspectives on information navigation and extraction within

digital environments, focusing on debugging strategies by novices. Previous research

validated this approach (Fleming et al., 2013; Lawrance et al., 2008; Piorkowski et al.,

2012) and emphasised its effectiveness in software maintenance. Drawing from biological

foraging analogies, IFT takes the information seeker as a ‘predator’ in pursuit of ‘prey’,

valuable information within a network of interconnected information patches. This model

introduces ‘information scent’, perceived from environmental cues, as a fundamental

component in information-seeking tasks (Chi et al., 2001). However, applying IFT’s

constructs, this study explores novice programmer pairs’ decision-making and

67 | P a g e

navigational challenges in distributed debugging settings, aiming to enrich our

understanding of debugging practices within the contemporary networked programming

landscape.

Furthermore, the intersection of information foraging and sensemaking processes

highlights a dual-phase learning loop of information gathering and interpretation within

software development, particularly in debugging, as Pirolli and Card (2005) discussed.

This theoretical approach is pivotal in understanding programmers’ foraging behaviours,

with studies like Grigoreanu et al. (2012) emphasising the foraging loop’s dominance in

sensemaking activities. Thus, IFT offers a comprehensive framework for analysing

programmers’ information-seeking behaviours, providing a more integrated view of the

processes involved compared to theoretical efforts and ultimately enriching the discourse

on programming practices in the networked era.

3.2 Distributed Cognition

As Hollan et al. (2000) and Hutchins (1995) expound, distributed cognition offers a

comprehensive framework that transcends the traditional, individual-focused cognitive

science by considering cognitive processes as inherently shared among people, tools, and

various representations. This approach, which Hutchins describes as encompassing

cognitive activities across individuals, artefacts, and environmental factors, has seen

application in a variety of domains ranging from ship navigation and emergency medical

dispatch to aviation and call centres, thereby demonstrating its versatility in analysing

teamwork and the integration of technology within human activities. Furthermore,

Rogers (1997) highlights that distributed cognition enriches our understanding of

68 | P a g e

cognition by weaving together cognitive science, anthropology, and social sciences,

thereby exploring the complex interdependencies inherent in collaborative efforts and

how both social and organisational contexts shape them.

Furthermore, this paradigm shift provides a detailed insight into human-computer

interaction, as suggested by Hollan and colleagues, by extending the analysis of cognitive

processes to encompass broader systems beyond the confines of individual minds. It

asserts that cognition is a collective phenomenon distributed across social groups,

internal and external structures, and temporal dimensions, thereby providing a robust

toolkit for examining the dynamic interplay between humans and technology. This shift

is crucial for understanding the collaborative nature of cognitive tasks, including software

development and debugging, where distributed cognition has only begun to make its

mark, notably through the work of Flor and Hutchins (1991) in software maintenance.

Building on this foundation, Tsai et al. (2015) observe that pair programming, and by

extension, pair debugging, significantly alleviates cognitive load, particularly in the

context of distributed settings where the challenge of debugging error-prone code is

compounded by the interplay of various factors including individual cognitive abilities,

technological tools, and the social dynamics of using debugging tools effectively.

However, while distributed cognition provides a deep analysis of socially distributed

cognitive activities, Artman and Wærn (1999) critique it for potentially neglecting the

non-cognitive artefacts within complex systems. To address this, IFT is introduced as a

complement, aiming to shed light on the behavioural patterns of pairs as they navigate

through code in search of errors.

69 | P a g e

Ultimately, this study seeks to bridge the gap in the application of distributed cognition

within software development research, particularly in understanding the debugging

strategies employed by novice programmers working collaboratively in distributed

environments. Through a conceptual framework grounded in distributed cognition and

complemented by IFT, this research aims to provide a richer, more cohesive

understanding of pair debugging behaviours, thereby contributing to both theoretical

knowledge and practical applications in software development.

3.3 Integration of IFT and Distributed Cognition

The combination of Information Foraging Theory (IFT) and Distributed Cognition in this

research provides a nuanced exploration of how apprentices interact with their peers and

tools in debugging code. Specifically, the study opines that apprentices use information

foraging strategies to efficiently locate resources and scents that may assist in solving

bugs. Subsequently, once these resources and scents are identified, apprentices engage

in distributed cognitive activities to collaboratively implement the solutions. For instance,

while one apprentice might search for external resources and suggest potential solutions

(information foraging), the other apprentice simultaneously works to implement and test

these solutions within the debugging environment. Thus, this dynamic illustrates how

cognition and problem-solving are effectively shared and distributed across the pair (see

Section 5.1.4).

Building on this foundation, integrating these theoretical frameworks seeks to explore

how apprentices manage the challenges of remote collaboration, especially in debugging

70 | P a g e

code within distributed settings. Moreover, technological tools, such as shared IDEs and

debugging interfaces, serve as communication channels that extend and support the

cognitive processes involved. As a result, by distributing cognitive load between

individuals and tools, these technologies either facilitate or, in some cases, hinder the

debugging process. Therefore, this distribution of cognitive effort is key in determining

how effectively apprentices can collaborate to resolve complex issues.

In conclusion, this approach illuminates the interplay between information foraging,

distributed cognition, and the use of technology in enabling or constraining apprentices’

problem-solving capabilities.

3.4. Critical Analysis of Distributed Pair Debugging Conceptual Framework

This conceptual framework melds Information Foraging Theory and Distributed Cognition

to address the multi-dimensional aspects of debugging, with the Bug being central.

Designed to encapsulate debugging’s complexity in paired and distributed environments,

it portrays each layer as distinct, contributing insights into the debugging process.

The framework provides a detailed examination of debugging in distributed

environments, merging individual cognition, collaborative interaction, and environmental

factors. As seen in Figure 4, arrows as visual metaphors demonstrate the impact of both

individual and collective cognition on tool selection, aligning with the findings of Chalmers

(2003) and Endsley’s (1995) perspectives on the relationship between cognition,

situational awareness, and tool usage.

71 | P a g e

Furthermore, it demonstrates the external debugging environment’s role in shaping

cognitive processes, resonating with Hutchins’ (1995) insights on socio-technical systems

cognition. The inclusion of bidirectional arrows between debuggers emphasises shared

cognitive space, reinforcing the emphasis on shared cognition in solving complex

problems by Salas et al. (2005) and Salas et al. (2008). Highlighting its dynamic nature,

the framework presents a comprehensive approach to improving the understanding of

debugging across research, education, and practical applications.

Accompanying this, Figure 4 presents a visual representation of each layer, delineating

their inherent characteristics, data points, information flow dynamics, as well as their

respective strengths and weaknesses. This framework thus stands as a tool for dissecting

the intricacies of debugging within distributed settings, underpinned by seminal

references in the field.

Figure 4: Distributed pair debugging conceptual framework

72 | P a g e

As a pioneering approach to understanding the intricacies of collaborative debugging in

distributed settings, the conceptual framework offers valuable insights into the cognitive

and collaborative processes involved. Although this framework has its limitations, it

provides a thorough perspective on the complex nature of debugging tasks. It integrates

theories of Distributed Cognition and Information Foraging to examine how pairs

navigate and solve problems in a distributed debugging environment.

Furthermore, for a concise summary highlighting the strengths and weaknesses of the

Distributed Pair Debugging Conceptual Framework, refer to Table 5. This table delineates

the framework’s key advantages and potential limitations, offering a visual

representation to aid in understanding its comprehensive impact on debugging practices

within distributed settings.

The following provides a thorough analysis of each layer and also evaluates its benefits

and drawbacks, clarifying the different facets of each layer. As a result, this framework

emerges as a tool for investigating the complexity of debugging in distributed contexts,

backed up by fundamental references in the field.

73 | P a g e

Table 5: Strengths and weaknesses of the distributed pair debugging conceptual framework

3.4.1 Layer 1: Debugging Environment Layer

This layer delves into the debugging ecosystem within a remote setting. It brings to the

fore the complexities due to geographical distances among novice programmers,

74 | P a g e

impacting collaboration, information sharing, and task allocation. This layer contains a

broad spectrum of resources accessible to debuggers, including IDEs like PyCharm and

VSCode, debugging tools, code repositories such as GitHub, and online forums or

documentation, supplemented by communication platforms like Slack for enhanced

collaboration in distributed debugging. The environment’s data points are diverse,

tracking debugger interactions with resources, tool usage, access frequency and

duration, and forum contributions, demonstrating a reciprocal relationship between the

environment and debuggers’ information foraging tendencies. The environment has

obstacles in spite of its abundance of resources, which provide a variety of ways for

problem-solving and dynamic engagement through information exchange. The obstacles

include potential cognitive overload from the environment’s complexity, uneven

resource utility, and shortcomings in current techniques for capturing refined human-

environment interaction. This scrutiny reveals how novice debuggers within distributed

contexts navigate and collaborate, marking the facilitators and barriers encountered.

3.4.2 Layer 2: Information Foraging Layer

This layer emphasises debuggers’ search for information, grounded in Pirolli and Card

(1999) Information Foraging Theory. This exploration highlights how debuggers traverse

the debugging environment, seeking information akin to animals foraging. It focuses on

the dynamic interaction between the debugging environment and foraging behaviours, a

relationship depicted through bidirectional arrows linking this layer with both the

Debugging Environment and Distributed Cognition layers, as detailed by Hollan et al.

(2000). The layer captures a variety of data points, including the types and numbers of

information sources accessed, engagement durations, and perceived relevance, blending

75 | P a g e

quantitative and qualitative assessments to evaluate information-seeking effectiveness,

following Marchionini (1995). Its strengths encompass a thorough data collection

approach and flexible exchange of information, mirroring the adaptability of debuggers’

information-seeking within their operational context. Nonetheless, it acknowledges

obstacles like the complexity of real-time data analysis and the subjective nature of

determining information relevance.

Ultimately, Information Foraging is a crucial aspect of the framework, merging the

theoretical perspectives of Pirolli and Card (1999) with Hollan et al. (2000) observations

on distributed cognition. This layer sheds light on debuggers’ methods and challenges in

sourcing and applying information and elucidates the interplay between individual and

shared cognitive processes, thereby enriching discussions on debugging methodologies

in distributed computing settings.

3.4.3 Layer 3: Distributed Cognition

This layer highlights the synergy of collective intelligence in debugging, rooted in the

foundational works of Hutchins (1995) situated within the "Information Foraging"

framework. It examines how cognitive tasks are dispersed and managed among debugger

pairs, informed by Hollan et al. (2000), illustrating that cognition is a shared function

extending beyond individuals to encompass a network of collaborators and tools. Metrics

such as communication patterns, task distribution, and decision-making processes, as

detailed by Rogers and Ellis (1994), provide an analysis of how cognitive labour is

dynamically shared and executed. Also, the integration with adjacent layers depicts a

seamless flow of information and cognitive activities, promoting a comprehensive view

76 | P a g e

of the debugging strategy. Moreover, its strengths lie in its facilitation of collaboration

and presenting a detailed view of the interaction. At the same time, challenges include

the complexity of data interpretation and the potential variability in the effectiveness of

distributed cognition. This layer, therefore, serves as a critical component of the

conceptual framework, synthesising insights from Hollan et al. (2000) and Rogers and Ellis

(1994) to deepen understanding of collaborative debugging within distributed settings,

thereby paving the way for future inquiries into the complex interplay of cognitive

processes and socio-technical dynamics.

3.4.4 Layer 4: Innermost Circle: Cognitive Processes

This layer encapsulates debugger-specific mental activities, from problem

comprehension to hypothesis testing and learning, grounded in cognitive theories

(Anderson, 2015). It utilises methods like think-aloud protocols and, possibly, eye-

tracking to explore debuggers’ mental models and decision-making processes (Oh et al.,

2013), demonstrating the complexity of individual cognitive efforts. Interlinking with the

“Distributed Cognition” layer shows the symbiosis between individual and collective

cognition in debugging (Hutchins, 1995), emphasising the significance of understanding

personal cognitive tasks alongside shared efforts. Despite its comprehensive approach to

cognitive analysis, the layer faces challenges like potential data collection intrusiveness

and high demands on resources, suggesting a need for further methodological

development. Overall, the layer significantly contributes to the framework by elucidating

the individual cognitive basis of debugging within a collective context, emphasising the

need for dynamic and diverse methodological approaches to fully grasp cognitive

dynamics in debugging in distributed settings.

77 | P a g e

3.4.5 Centre: The Debuggers

The Distributed Pair Debugging Conceptual Framework's "Debuggers" layer is symbolised

by two avatars representing the debugging participants. This layer is pivotal, emphasising

human-centred design and marking where conceptual layers merge with human action,

as discussed by Rogers and Ellis (1994). It facilitates an exploration of the debuggers’

roles, responsibilities, and skills, highlighting the essential human element in debugging.

Through this layer, a rich array of data is collected, ranging from quantitative metrics like

success rates to qualitative insights on joint efforts, illustrating the symbiotic cognitive

relationship between debuggers (Hollan et al., 2000).

This methodology’s strengths include its ability to analyse how debuggers’ traits influence

debugging, acknowledging the bug’s dynamic evolution and the complexity of debugging

scenarios more comprehensively. This approach would better align the framework with

the debugging process’s realities, leveraging insights from Hutchins (1995), Endsley

(1995) and Zhang and Norman (1994).

The conceptual framework integrates Information Foraging Theory (Pirolli & Card, 1999)

and Distributed Cognition (Hutchins, 1995) to offer a comprehensive model for examining

paired novice debuggers in distributed environments. Moving beyond the notion of

debugging as merely an individual cognitive activity, it embraces the complexity of

effective information foraging and the distribution of cognitive tasks among team

members. This approach highlights the importance of both individual and collective

cognitive efforts and their interactions within the debugging context. As such, the

78 | P a g e

framework presents a mechanism for advancing research in collaborative software

development and human-computer interaction.

Employing a qualitative methodology, the framework incorporates methods, such as

interviews and observations for in-depth exploration of debuggers’ experiences, drawing

on Creswell’s (2014) emphasis on contextual richness, adhering to the empirical

standards of human-computer interaction research (Card et al., 2018). This approach

enables a thorough investigation of the pluralistic debugging process, particularly suited

to the complexities of distributed settings. While the research predominantly employs a

qualitative approach, the framework’s design is inherently flexible, allowing for rigorous

empirical studies.

3.5 Deployment for data collection and data analysis

To demonstrate how the conceptual framework is applied, Tables 6-8 show the

connections between each layer of the framework and the specific methods utilised for

data collection and analysis. Emphasis is placed on showing how each layer has directly

shaped the selection of data collection methods and how these, in turn, have contributed

to the insights generated during the analysis process. This detailed mapping helps to

clarify the relationship between the theoretical foundation and the practical research

methods employed.

79 | P a g e

Table 6: Relationship between the theoretical framework and the research methods (Layers 1 & 2)

Layer Description Data Collection
Methods

Data Analysis
Approach

Layer 1: Debugging

Environment

Focuses on tools,

technologies, and

the remote setting

in which debugging

occurs.

Screen and voice

recordings capture

how participants

interact with the

tools (e.g., IDEs,

version control).

Logs from tools and

documentation

websites track

which resources are

accessed during

debugging.

The collected data

are analysed to

understand the

frequency and

types of tool usage.

Patterns such as

tool-switching,

reliance on

documentation, or

using IDE features

(e.g., debuggers,

version control) are

tracked. These

insights help assess

how well the

environment

supports or hinders

debugging efforts.

Layer 2:

Information

Foraging Layer

Based on

Information

Foraging Theory

(IFT), examines

how participants

search for and

gather information.

Screen recordings

and think-aloud

protocols capture

the information

search processes,

revealing how

participants look for

information (e.g.,

documentation,

StackOverflow,

forums, code

navigation, etc.).

This layer

investigates the

cognitive strategy

of

“information

foraging”.

The collected data

are coded to

categorise search

strategies, such as

direct queries or

exploratory

navigation.

Successful foraging

is identified when

information

retrieved directly

contributes to bug

resolution, while

unsuccessful

attempts highlight

areas where further

learning is required.

80 | P a g e

Table 7: Relationship between the theoretical framework and the research methods (Layers 3 & 4)

Layer Description Data Collection
Methods

Data Analysis
Approach

Layer 3:

Distributed

Cognition

Examines how

cognitive tasks are

shared between the

pair and

technology.

This layer captures

how cognitive tasks

are distributed

across team

members and tools,

focusing on

collaboration and

shared

understanding.

Transcripts from

debugging sessions

and interview, focus

group discussions

explore how

cognitive tasks (e.g.,

task switching,

communication) are

distributed

between

participants and

across tools.

A content analysis

approach maps

how the pair shares

cognitive

responsibilities. The

focus is on how

tasks are allocated

and communicated

during debugging.

Key insights

regarding

collaboration

efficiency are

drawn, such as

which partner

assumes leadership

in specific

debugging

activities.

Layer 4: Cognitive

Processes

The innermost layer

deals with each

debugger’s mental

activities (e.g.,

problem

comprehension and

hypothesis testing).

Focuses on

individual mental

activities such as

problem

comprehension and

hypothesis

formation.

The think-aloud

protocols and post-

session interviews

focus on individual

cognitive processes

during debugging

(e.g., hypothesising

bug causes and

formulating

solutions).

Cognitive processes

are thematically

coded into

categories such as

problem-solving

tactics (e.g., trial-

and-error,

hypothesis testing).

The analysis also

tracks shifts in

cognitive load and

mental strategies as

the debugging

session progresses.

81 | P a g e

Table 8: Relationship between the theoretical framework and the research methods (Centre Layer)

Layer Description Data Collection
Methods

Data Analysis
Approach

The Debuggers

(Centre Layer)

The roles and

interactions of the

two participants

focus on their

collaboration and

individual

contributions.

This is the core of

the framework,

symbolising their

human-centred

activity.

Demographic

surveys and

performance logs

collect metrics on

individual

debuggers, such as

experience,

expertise, and bug

resolution

performance.

Demographics of

participants (skills,

experience).

- Dyadic

performance

metrics.

Combining

performance

metrics and

qualitative insights

(from interviews

and focus groups)

helps explore

individual

contributions and

teamwork

dynamics.

Statistical analysis

can also be applied

to debugging

success rates.

Data Collection: Tables 6-8 illustrate how different aspects of the conceptual framework

are tied to specific data collection methods. Screen recordings and think-aloud protocols

provide insight into the debugging environment and cognitive processes layers.

Interviews and focus groups also gather data on distributed cognition and individual

contributions.

Data Analysis: Each layer of the conceptual framework informs distinct parts of the data

analysis process. For example, the Information Foraging Layer drives thematic analysis of

search patterns, while Distributed Cognition focuses on the content analysis of

communication and task allocation. The Debuggers (Centre) layer integrates both

quantitative (performance metrics) and qualitative (collaboration dynamics) insights.

82 | P a g e

Within this context, the study adopts a rigorous approach by systematically linking each

phase of the conceptual framework to the corresponding data collection and analysis

methods. This alignment ensures a focused exploration of how novice programmers

operate within a distributed debugging environment. Central to this process are the

tables provided (Tables 6-8), which serve as crucial tools for establishing explicit

connections between the theoretical constructs underpinning the framework, such as

Information Foraging Theory and Distributed Cognition, and their practical application

during the data collection and analysis stages.

Furthermore, this structured mapping ensures that the conceptual elements transcend

theoretical abstractions, being operationalised in a way that directly guides the research

process. By deconstructing the debugging process into its fundamental components, the

framework enables a systematic and thorough analysis of novice programmers’

behaviours and cognitive strategies in distributed settings.

In addition, this approach illuminates the interactions between individuals and their tools

and provides critical insights into how these factors influence collaboration, problem-

solving, and the overall efficiency of the debugging process. Ultimately, deploying this

conceptual framework enhances the clarity, depth, and relevance of the study’s findings

in understanding the complexities of distributed debugging for novice programmers.

83 | P a g e

3.6 Summary

This study employs Information Foraging Theory and Distributed Cognition to analyse the

debugging process, particularly focusing on novice programmers in networked

environments. Information Foraging Theory (Pirolli & Card, 1999) assesses how novices

navigate and extract valuable information, with previous studies validating its application

in understanding software maintenance challenges (Fleming et al., 2013; Lawrance et al.,

2008; Piorkowski et al., 2012). Distributed Cognition extends the analysis beyond

individual cognition to include social and technological interactions, impacting fields from

aviation to software development (Hollan et al., 2000; Hutchins, 1995). This chapter

explores explicitly how these frameworks apply to novice programmers working in pairs

in distributed settings, aiming to illuminate the collaborative aspects of debugging and

the role of tools in this context.

84 | P a g e

Chapter 4: Methodology

4.0 Introduction

This chapter describes the research’s methodological structure, including key principles

and strategic direction. It begins by presenting the chosen research paradigm, tailored to

unravel the complexities of the subject, thereby identifying the need for a solid

foundation for inquiry. Following this, the chapter explores the specific methods and

research designs employed, leading to detailed scrutiny of the theoretical foundations

and highlighting methodological integrity’s paramount importance. By evaluating these

methodological aspects, the chapter strives to carve out a definitive path for the research

endeavour, aiming to augment the scholarly landscape significantly.

4.1 Research Question

Drawing on existing studies, debugging is acknowledged as an integral, yet time-intensive

component of software development projects (Beller et al., 2018; Zhao et al., 2008),

necessitating programmers to identify and rectify software glitches and look deeply into

the intricate architecture of the software (Oman et al., 1989; Perscheid et al., 2017).

Unfortunately, there is a noticeable lack of studies on how novice programmers debug

code while working together, whether in the same location or across diverse geographies.

Additionally, there is a reasonable tendency to tailor existing industry methods to fit

educational environments. Nevertheless, the changes in circumstances, particularly with

novice programmers working together from distant locations, require careful analysis.

To this end, this central question steers this study:

85 | P a g e

“How do the paired Software Development Apprentices in

geographically distributed locations work collaboratively to fix

Python programming bugs using the technology-mediated medium?”

However, according to Leedy and Ormrod (2021), a researcher from a design standpoint

splits the central question into several smaller questions where the outcome of each

smaller question can possibly answer the central question. So, given this and in

investigating this central question, this study proffers answers to the following five

specific research questions:

▪ RQ1: What bugs are generated by the paired geographically distributed SDT

apprentices working collaboratively to solve a given problem using Python?

▪ RQ2: What bug locating strategies and tactics are deployed by the paired

geographically distributed SDT apprentices while attempting to fix defects in the given

Python code? How do they go about finding the bugs in the program code?

▪ RQ3: How do the paired geographically distributed SDT apprentices distribute

cognitive load when resolving bugged code?

▪ RQ4: How does leveraging Integrated Development Environment (IDE) tools enhance

the capabilities of distributed pair debugging and mitigate the challenges

encountered in debugging programs?

▪ RQ5: What challenges are experienced by paired geographically distributed SDT

apprentices working collaboratively on debugging programming bugs, and why are

they facing such challenges?

86 | P a g e

Building upon the premise established by Maxwell (2012) that research questions hone

the focus of a study; this research primarily seeks to identify the bugs produced by dyad

SDT apprentices working remotely on Python tasks. Given their novice status, the study

aims to discern patterns or similarities in the bugs they produce, especially compared to

collocated novices. The goal is also to ascertain if being in remote dyads influences the

type of bugs, especially given the documented challenges faced by remote teams, such

as collaboration, productivity, and communication issues (Miller et al., 2021; Neufeld &

Fang, 2005; Ralph et al., 2020). By addressing this question, the study endeavours to draw

parallels in the bugs from each dyad and cross-reference them with existing literature on

bugs from solo and collocated novice programmers, shedding light on potential bug

causatives in remote novice settings.

Following the elucidation of the types of bugs encountered, understanding how dyad SDT

apprentices, situated remotely, identify and rectify these programming inconsistencies

becomes paramount for this study. Consequently, the inquiry encapsulated in the second

research question is instrumental in unravelling the debugging behaviours. Building upon

any insights garnered about debugging behaviours; the third research question aims to

understand how dyad SDT apprentices distribute cognitive load during their bug-

searching and fixing endeavours. This question employs a verbal protocol to vocalise

thoughts, thereby shedding light on the manifestation of distributed cognition within the

dyad (Hutchins, 1995). In parallel, this exploration delves into how thought processes

inform specific actions undertaken while pursuing bugs in the programming code, aligning

with the premises of information foraging theory (Pirolli & Card, 1999). The combination

of distributed cognition and information foraging theory forms a key framework, which

87 | P a g e

seeks to capture the complex cognitive processes and detailed debugging methods, thus

shaping the direction of data gathering and analysis.

Expanding upon previous research, the fourth research question delves into the intricate

relationship between technology and debugging. Specifically, it investigates the roles of

integrated development environments, compilers, and synchronous collaboration tools

in potentially streamlining the bug foraging and rectification processes. The inquiry is

centred on how SDT pairs utilise these technologically-mediated tools to potentially

enhance distributed pair debugging capabilities, thereby mitigating challenges

encountered during debugging. While evidence suggests that technological tools have

been instrumental in collocated dyad debugging scenarios, this research seeks to

investigate if their impact remains consistent or introduces new facets to the remote

debugging process.

Building on the exploration of technology’s role, the fifth research question focuses on

the challenges remote dyad apprentices encounter during their synchronised and

collaborative efforts to debug Python codes. This inquiry extends beyond merely

identifying the challenges, aiming also to uncover the underlying causes behind such

difficulties in collaborative debugging scenarios.

4.2 Context and Study Site

Drawing from the insights of Dey (2001), which emphasises the vital role of context in

shaping an entity’s implicit situational information, whether that pertains to an individual,

location, or object, it becomes clear that empirical studies are intricately bound to the

88 | P a g e

inherent nature of human behaviour. As Van Oers (1998) articulated, this context-driven

behaviour aids in refining specific meanings, ensuring they are holistically intertwined

within a broader spectrum rather than isolated instances.

Expanding upon this, the current study zeroes in on distinct contexts involving 30 SDT

apprentices dispersed across twelve diverse organisations. The primary focus revolves

around the debugging strategies of 15 dyad apprentices, who, as novice programmers,

operate under the guidance of workplace mentors. As characterised by Bonar and

Soloway (1983) and reaffirmed by Lau and Yuen (2009) and Jenkins (2002), these novices

stand at the initial stages of programming, often lacking expertise in crucial areas such as

problem-solving, abstraction, and, notably, debugging. Also, despite a plethora of reasons

pinpointed for the debugging struggles of novice programmers (de Raadt, 2007; Denny

et al., 2022; Lahtinen et al., 2005; McCauley et al., 2008; Vourletsis et al., 2021; Whalley

et al., 2021), mapping out these patterns could further help understand their challenges.

It is imperative to highlight that the study’s milieu was predominantly digital, leveraging

technology-driven platforms like Microsoft Teams and specialised debugging software. In

this regard, Visual Studio Live Share, commonly referred to as “Live Share”, serves as the

specialised debugging software and is a collaborative development tool introduced by

Microsoft for Visual Studio and Visual Studio Code. This extension empowers apprentices

to share synchronously and co-edit code with peers, fostering joint coding, debugging,

and issue resolution. This eliminates the necessity for participants to share a local

network or identical development configurations. As a result, Live Share offers a fluid co-

89 | P a g e

coding platform, proving indispensable for apprentices collaborating from distant or

varied locations.

Also, this multi-layered study spans a wide range of elements, from individual cognitive

aspects and technological infrastructures to the intertwined socio-technical dynamics

related to optimal debugging tool usage. Similarly, the research also inquires into the

interaction between external (software tools and share code) and internal

representational (mental models, problem-solving strategies, knowledge base)

frameworks. In essence, this aspect of the research attempts to bridge the gap between

the tangible tools and methods used in debugging and the intangible cognitive processes

programmers employ, especially in the context of collaborative, distributed

environments. This complex interplay includes discussions in pairs using the think-aloud

protocol, the debugging patterns of the SDT, joint efforts in addressing software bugs,

how the use of a particular debugging platform shapes or guides an apprentice’s internal

thought process or problem-solving strategy, and the specific code being examined.

4.3 Philosophical Perspectives of this Study

Beginning with the foundational principles posited by Lincoln et al. (2011) and Cresswell

and Plano Clark (2011), it is evident that a researcher’s philosophical leanings and

worldviews deeply inform every facet of the research process, especially concerning the

origins and nature of knowledge. These predispositions hold tangible ramifications. Thus,

a lucid understanding of one’s philosophical principles becomes indispensable, offering a

robust foundation to delve into the study’s paradigm, ontology, epistemology, and

methodology, as elucidated by Fitzgerald and Howcroft (1998).

90 | P a g e

Building on this idea, this study’s approach is deeply influenced by embedded

philosophical perspectives, as highlighted by Creswell and Poth (2018) and Crotty (1998).

These perspectives inform the research questions and data collection methods while

supporting the study's paradigm, ontology, epistemology, and methodology. According

to Saunders et al. (2019), research philosophy acts as a belief system that critically

informs the methodology, strategy, and analysis of data, reflecting the interplay between

a researcher’s philosophical stance and their investigative approach. The study navigates

the objectivism-subjectivism continuum, recognising the dichotomy between viewing

reality as an external, observable entity and understanding it as a socially constructed

mosaic. This philosophical grounding provides a robust foundation for exploring the

specific research strategies and analytical frameworks employed in this study. The

position of this research, in relation to these philosophical underpinnings, is further

elaborated in subsequent sections.

4.3.1 Paradigm

This study adopts an interpretive paradigm, conceptualising it as a set of philosophical

assumptions about the nature of reality and methods to understand it, as suggested by

Mittwede (2012) and elaborated by Christensen et al. (2020) and Creamer (2017). This

paradigm serves as a lens through which the research on SDT apprentices’ debugging

strategies is viewed, aligning with Kuhn (1970) interpretation of paradigms as collective

exemplars that influence evidence collection. Within this framework, the study embraces

the comprehensive paradigm dimensions, ontology, epistemology, methodology, and

91 | P a g e

axiology, as described by Guba and Lincoln (1994), which dictate diverse perspectives on

knowledge and its formation.

Concluding, this interpretive approach enables a deep exploration of the human aspects

of software debugging, focusing on apprentices’ experiences, behaviours, and

perceptions. By understanding these elements, the research provides qualitative insights

into the apprentices’ interactions and learning processes in debugging within a

collaborative environment. This aligns with Cohen et al. (2007), who advocate for the

interpretive paradigm’s utility in examining complex human behaviours and social

interactions, thus offering a detailed perspective of educational and professional

practices in technological settings. Further details on the study’s paradigm position are

explored in subsequent sections.

4.3.2 Ontology

Ontology stands out as a crucial dimension, encapsulating philosophical assumptions

pertinent to the nature of truth and reality. Connecting these ontological perspectives to

the current study, the interpretive paradigm is utilised, encapsulating the belief in “reality

as socially and discursively constructed by human actors” (Grix, 2004, p. 61). From an

ontological standpoint, the study asserts the pluralistic nature of reality, suggesting

diverse experiences and approaches among SDT apprentices in program debugging.

Consequently, acknowledging diverse experiential worldviews, the study is geared

towards exploring multiple realities (Lincoln & Guba, 2000), wherein each apprentice

constructs meaning through interactions and engagements (Bryman, 2016). This

approach is proposed by Guba and Lincoln (1994), who propose that relativism serves as

92 | P a g e

the ontology for interpretivism, advocating the subjective and individualistic perception

of reality.

Given these considerations, this study adheres to a pluralist view of reality, ensuring a

harmonious alignment of the adopted ontology with the epistemological perspective

and, consequently, influencing the research design.

4.3.3 Epistemology

This research aligns with the perspective that epistemology is intertwined with

assumptions analysing the relationship and dependencies between the researcher and

the research focus, affecting the objectivity and detachment inherent in research

processes (Creswell & Poth, 2018; Leavy, 2017).

In the context of this study, the epistemological perspective of qualitative research

implies a substantial investment of time in engaging with participants to gain insights

through detailed descriptions of their lived experiences and viewpoints. It emphasises the

co-creation of knowledge and subjective reality, considering the influence of social

interactions and the researcher's interpretations of contextual actions. In this light, a

deeper understanding of knowledge and meaningful reality will be attained regarding the

approaches of paired SDT apprentices in debugging Python’s bugged code within specific

social settings facilitated by interaction with technology agents (Guba & Lincoln, 1994).

However, the richness of the interpretive paradigm’s descriptions is juxtaposed with

challenges in validity and trustworthiness, stemming from the subjective nature of the

data and varying participant interpretations (Rolfe, 2006). In order to tackle these

93 | P a g e

potential vulnerabilities, this research incorporates Maxwell’s strategies for addressing

validity concerns (Maxwell, 2008), laying a robust foundation for the research effort (see

Section 4.7).

4.4 Methodological Framework

This study aligns with a qualitative research methodology, drawing from the interpretive

paradigm to explore the debugging behaviours of SDT apprentices in distributed settings.

This choice is underpinned by the study’s ontological belief in the subjective construction

of reality and its epistemological stance that knowledge is best understood through

interpreting these subjective experiences.

Leedy and Ormrod (2021) emphasise research as a process that goes beyond mere data

collection to include deep analysis and interpretation to enrich understanding of a

specific phenomenon. This perspective shapes the research methodology, which, as

Cameron (2011) and Brannen (2005) articulate, is inherently linked to the researcher’s

ontological and epistemological assumptions. These assumptions inform the choice of

qualitative research for this study, which seeks to capture apprentices’ complex, intricate

interactions with their work environments.

According to Leavy (2017), research methodology involves harmonising methods and

theoretical frameworks guided by underlying philosophical convictions. This approach is

vital for understanding apprentices' subjective and constructed realities as they navigate

debugging tasks, making qualitative methods particularly suitable. Gray (2021) and

Saunders et al. (2019) further argue that the choice of methodology influences the

94 | P a g e

research design, which in this case focuses on multiple case studies to provide in-depth

insights into each apprentice’s experiences and interactions within natural settings.

While quantitative research offers a systematic exploration of variables and mixed

methods provide a comprehensive blend of quantitative and qualitative data, the

qualitative approach was chosen for its strengths in generating rich, contextual, and

detailed narratives (Christensen et al., 2020; Gray, 2021). Such depth is necessary to grasp

the full scope of apprentices’ debugging experiences and the dynamic, often tacit aspects

of their skill development in real-world contexts.

Therefore, this study’s methodological framework does not isolate it within a single

paradigm but reflects a pragmatic blending of influences that supports its goals. It utilises

a multiple case study approach as described by Merriam (1998) and Yin (2014), which

allows for examining the ‘how’ and ‘why’ behind apprentice behaviours in natural

settings, thereby aligning the philosophical underpinnings with the practical inquiry

methods. This alignment ensures that the research is methodologically sound and deeply

reflective of the interpretive paradigm’s focus on understanding human experiences

within their naturally occurring contexts.

4.4.1 Case study design and rationale

The qualitative case study methodology is highly suited to the SDT distributed pair

debugging research due to its ability to provide in-depth insights into complex processes

and interactions within specific real-life contexts (Creswell, 2014; Merriam, 2009; Yin,

2014). This approach is invaluable for comprehending the complexities of social

95 | P a g e

interactions, structures, and the debugging processes that SDT apprentices engage in,

enabling researchers to capture the intricate details of how and why certain behaviours

and practices occur (Baxter & Jack, 2008; Creswell, 2014).

A key strength of the qualitative case study lies in its contextual sensitivity, which allows

for a detailed examination of the environmental, temporal, and locational factors that

influence apprentices’ debugging practices. This sensitivity is essential for understanding

the complex dynamics between paired SDT programmers and how external variables,

such as technological agents, impact their debugging strategies (Gray, 2021; Geertz,

1973). Such a methodological approach is critical for generating deep insights into the

interactions and dependencies within the debugging environment (Ridder, 2017).

Furthermore, the holistic nature of qualitative case studies supports the integration of

multiple data sources, enhancing the robustness and comprehensiveness of the analysis.

This capability is indispensable for exploring various dimensions of the debugging

process, allowing researchers to draw meaningful correlations and interpretations vital

for theoretical and practical advancements (Gerring, 2017; Stake, 1995).

While qualitative case studies offer significant theoretical contributions and facilitate the

exploration and conceptualisation of new paradigms, their specificity and contextual

depth may limit the generalisability of findings. However, the richness of the collected

data compensates for these limitations, providing detailed, context-specific insights

crucial for understanding the unique phenomena of distributed pair debugging (Creswell,

2014; Merriam, 2009; Ridder, 2017).

96 | P a g e

In sum, despite potential challenges such as resource intensiveness and issues with

generalisability, the qualitative case study methodology aligns effectively with the SDT

distributed pair debugging research goals. It enables a dynamic and adaptable

exploration of processes, which is essential in settings characterised by rapid

technological and procedural changes (Flyvbjerg, 2006; Saunders et al., 2023). Also, the

depth and adaptability of this approach ensure that it supports the development of

practical solutions tailored to the specific needs and contexts of SDT apprentices.

4.4.2 Sampling

Qualitative research inherently focuses on depth rather than breadth, aiming for rich

insights over broad generalisations. Nevertheless, this focus does not negate the need for

carefully crafted sampling strategies. Indeed, rigorous sampling is pivotal to ensure data

validity and to address key research questions effectively, a process critical to deriving

meaningful interpretations (Flick, 2022; Patton, 2015; Saunders et al., 2019). Moreover,

developing a suitable sampling frame for case studies is complex, demanding a careful

balance between study objectives, seeking richness over range, and the careful

application of findings (Creswell, 2014).

Keeping this in perspective and in the context of a qualitative multiple case study focusing

on dyads of apprentices debugging Python code in distributed settings, the choice of

purposive sampling is a deliberate and strategic methodological decision. The

employment of purposive sampling in this study enables the deliberate selection of cases

that facilitate an investigation into the dynamics of collaboration and cognition among

97 | P a g e

apprentices in distributed settings. This methodological choice is instrumental in

capturing rich, multifaceted interactions and the evolving cognitive processes that

characterise the apprentices’ experiences as they engage in debugging Python code

together. As Flick (2022) suggests, qualitative research should not default to random

sampling as in quantitative studies, but instead should employ a thoughtful approach to

select participants, ensuring the data’s richness and relevance to the research questions.

In this specific study, purposive sampling was employed to select apprentice pairs who

could provide insights into the debugging process. This selection was driven by the intent

to understand the individual actions and the interpersonal dynamics and communication

patterns that might facilitate problem-solving in a distributed setting (Lincoln & Guba,

1985). The iterative nature of purposive sampling, inclusive of snowball, quota, and

convenience sampling methods, allowed for a layered and rich collection of data,

contributing to a desired well-rounded understanding of the case (Patton, 2015).

In sum, the purposive sampling method was integral to the research design, ensuring that

the cases chosen for this study were informative and closely related to the central

research questions. This methodological choice, underpinned by scholarly discourse,

provided a framework for examining the collaborative interactions of apprentices in

distributed settings, ultimately leading to findings that can be both insightful and

trustworthy.

98 | P a g e

4.4.3 Participants

This study categorises its participants into two main groups, in particular, SDT apprentices

and workplace mentors and trainers from the training organisation, each offering critical

insights into the research objectives. The central focus of this investigation is on the SDT

apprentices, the first participant category. Their engagement in debugging bugged

Python code is vital for understanding various aspects, such as their debugging strategies,

the role of technology in this process, how they manage cognitive load during

collaborative debugging, and the challenges they face in this context (Patton, 2015). This

aspect of the study is crucial in revealing both the individual and collaborative dimensions

of their software development skills.

Prior to initiating the recruitment of apprentices for this study, the necessary ethical

approval was acquired, reflecting stringent adherence to academic research protocols

(Creswell, 2014). This foundational step was followed by an extensive outreach effort,

wherein 110 emails were dispatched to a selection of organisations known for fostering

apprentices at the targeted standard. As detailed in Appendices A to D, these emails

introduced the study’s aims and enclosed essential documentation, including Participant

Information Sheets (PIS) and consent forms for employers and apprentices, ensuring

informed participation (Saunders et al., 2023). Key criteria outlined in the emails included

the specific age bracket, the necessity for apprentices to fall within the novice

programmer classification, and a commitment to contribute a maximum of four hours

throughout the study.

99 | P a g e

From the 135 emails disseminated using DocuSign, around 45 organisations expressed

their willingness to participate, encompassing a total of 89 SDT apprentices who were

available for the study duration, along with their workplace mentors. Of the 89 SDT

apprentices, 58 apprentices completed and returned the necessary consent and survey

forms.

Upon examination of these forms and cross-referencing the apprentices’ profiles in terms

of educational background and programming experience, a cohort of 46 apprentices was

ultimately selected. This selection process, unfortunately, led to the exclusion of 12

candidates who did not meet the set criteria, thereby reducing the number of

participating organisations to 36. The study targeted apprentices who had been part of

the training programme for over three months but less than nine, ensuring they

possessed basic programming knowledge per the SDT Standard.

Acknowledging that most of the apprentices were unfamiliar with each other and came

from varied organisational backgrounds, a 30-minute familiarisation debugging session

was organised. This session, not formally part of the study, was crucial for the apprentices

to practice the think-aloud protocol while engaging in collaborative debugging. It allowed

them to understand what participation entailed and assess their willingness to continue

in the study. Subsequently, 11 apprentices withdrew, reducing the number of participants

to 35, all volunteered for the study. Among these, 30 were actively paired for the study,

while 5 were placed on standby, ready to step in should any shortlisted apprentices

withdraw. It should be noted that the recruitment happened on two different occasions

due to a break in the study.

100 | P a g e

Thirty apprentices participated in the study, each randomly paired within their age group.

They were anonymised using shorthand notation (‘STD<number>‘) and briefed, spanning

ages 16 to 50 years (see Table 6 for the participants’ details for the debugging sessions

and the dyads’ interviews). Predominantly, these participants were young males,

primarily falling within the 16 to 21 year age bracket, highlighting the study’s focus on a

younger demographic.

The recruitment criteria for apprentices in this study emphasise a foundational

background in software development, with formal education being essential. Typically,

participants are expected to have completed secondary education and introductory

programming courses, ideally in Python, to equip them with the skills necessary for

debugging. This foundation helps ensure that participants are not overwhelmed by the

complexity of the debugging tasks (Robins et al., 2003). The study categorises apprentices

as novice programmers, grouped into three subgroups based on age. Participants aged

16 to 18 years must have no more than two years of programming exposure, just

transitioning from secondary education into software development and hold a General

Certificate of Secondary Education (GCSE) level qualification or equivalent Level 2

qualification on the national occupational framework. Those aged 18 to 25 years should

have less than one year of programming experience, ideally with Level 3 qualifications,

while those aged 25 to 50 years should have three to nine months of hands-on

experience. This structured approach ensures that participants have enough exposure to

contribute meaningfully to the debugging process while still encountering the challenges

typical of novices (Allwood, 1986).

101 | P a g e

In addition to educational qualifications, the study required apprentices to demonstrate

a commitment to the debugging sessions and interviews, dedicating up to five hours for

participation. Their readiness to collaborate was equally vital, as the study focused on

paired debugging and think-aloud protocols, exploring how apprentices communicated

and shared cognitive loads in real-time problem-solving situations. This collaborative

approach ensured that participants contributed effectively to the study’s objectives.

Although apprentices were expected to have basic Python knowledge, their experience

was still developing. As outlined in Table 9, the recruitment process aimed to select

individuals with the appropriate educational background, experience, and willingness to

engage in collaborative work, contributing to the study’s success.

Despite the variations in age and background, it is crucial to recognise that all apprentices

were uniformly classified as novice programmers. This classification reinforces the study’s

objective to evaluate individuals’ learning and developmental trajectories at the nascent

stages of their careers in software development, thereby contributing to the field of

programming education and research.

102 | P a g e

Table 9: Participant details for the debugging sessions and the dyad’s interview

Dyad ID Participant ID Age Bracket Gender Programming experience

Dyad1
SDT1 16 – 18 years Female Low < 2 years

SDT2 16 – 18 years Female Low < 2 years

Dyad2
SDT3 16 – 18 years Male Low < 2 years

SDT4 16 – 18 years Female Low < 2 years

Dyad3
SDT5 16 – 18 years Male Low < 2 years

SDT6 16 – 18 years Male Low < 2 years

Dyad4
SDT7 16 – 18 years Male Low < 2 years

SDT8 16 – 18 years Male Low < 2 years

Dyad5
SDT9 16 – 18 years Male Low < 2 years

SDT10 16 – 18 years Male Low < 2 years

Dyad6
SDT11 16 – 18 years Male Low < 2 years

SDT12 16 – 18 years Male Low < 2 years

Dyad7
SDT13 16 – 18 years Male Low < 2 years

SDT14 16 – 18 years Male Low < 2 years

Dyad8
SDT15 16 – 18 years Female Low < 2 years

SDT16 16 – 18 years Female Low < 2 years

Dyad9
SDT17 18 – 25 years Male Low < 1 year

SDT18 18 – 25 years Male Low < 1 year

Dyad10
SDT19 18 – 25 years Male Low < 1 year

SDT20 18 – 25 years Female Low < 1 year

Dyad11
SDT21 18 – 25 years Male Low < 1 year

SDT22 18 – 25 years Male Low < 1 year

Dyad12
SDT23 18 – 25 years Male Low < 1 year

SDT24 18 – 25 years Male Low < 1 year

Dyad13

SDT25 25 – 50 years Male Low >3 Months and <9
Months

SDT26 25 – 50 years Male Low >3 Months and <9
Months

Dyad14

SDT27 25 – 50 years Male Low >3 Months and <9
Months

SDT28 25 – 50 years Male Low >3 Months and <9
Months

Dyad15

SDT29 25 – 50 years Male Low >3 Months and <9
Months

SDT30 25 – 50 years Male Low >3 Months and <9
Months

This study also incorporated a second category of participants, comprising Workplace

Mentors and Trainers from the training organisations, whose contribution was crucial to

the research’s success. These professionals, with their extensive background in software

development, bring a wealth of expertise and knowledge, particularly in grasping the

intricacies of debugging strategies and how novice programmers, like the apprentices in

this study, approach code debugging (Glesne, 2016; Patton, 2015). Their deep insights

103 | P a g e

into the apprentices’ debugging processes and developmental stages are invaluable for

comprehensively analysing their debugging strategies.

To ensure the relevance and value of their contribution, strict qualifications were set for

the Workplace Mentors and Trainers. These experts are required to have a minimum of

ten years of programming experience, which underlines their deep understanding and

mastery of the field. Additionally, they should have worked with at least ten apprentices,

ensuring they possess technical expertise and practical experience mentoring novice

programmers. This prerequisite is essential as it guarantees that the mentors and trainers

can offer detailed insights into the apprentices’ debugging abilities, their software

development methodologies, and the application of technology in these processes. Such

depth of understanding is crucial for meeting the study’s aims and adds significant value

to the research objectives (Lincoln & Guba, 1985).

To summarise, the involvement of both SDT apprentices and seasoned Workplace

Mentors and Trainers creates a rich and diverse pool of participants (see their

demographic infographics showing their classification in Figure 5), thereby enhancing the

study’s depth and breadth. Through their combined perspectives and experiences, the

study aimed to make contributions to the understanding of debugging strategies

deployed by novice programmers and practices in software development. The insights

gained from these two groups are expected to be instrumental in advancing knowledge

in the domain, particularly regarding the apprentices’ debugging skillsets and the role

technology plays in the field.

104 | P a g e

Figure 5: Participant demographic infographics recruited for the study.

4.4.4 Data Analysis

Reliable qualitative research pivots on comprehensive data analysis (Maguire & Delahunt,

2017). Considering this context, this study adopts Merriam’s analytic inductive approach,

105 | P a g e

which encourages the simultaneity of data collection and analysis in such a way that the

data collection and analysis are to be approached in a concurrent and interactive process

(Merriam, 1998). By so doing, it is a recurring process involving consolidating, reducing

and interpreting the data and making sense of it.

For the analysis of verbalisation, thematic analysis based on Braun and Clarke (2006) was

employed. This process involved coding the data, organising it into categories and

themes, and systematically interpreting the findings in a sequential manner.

First, the verbalisation through the usual conversation and the thought process to be

exposed through the thick-aloud protocol were transcribed and annotated with the

actions visible in the video. Codes were developed and guided by the principles of

information foraging theory based on the steps taken to different bug location strategies,

and the cognitive burden sharing and the affordances of the technology were considered

simultaneously.

To strengthen the data validation to a great extent, each data source within each setting

was analysed, triangulated, and converged across settings to understand the similarities

and differences between the settings. In this respect, the overall understanding of the

cases was established, and the data validity was enhanced. Also, three types of textual

data were collected for the data sources. For example, interview transcripts, focus group

transcripts, and observational field notes were transcribed and imported into NVivo to

help with the organisation by coding to extract themes (Welsh, 2002).

106 | P a g e

Table 10 provides evidence triangulation, mapping the research questions to the data

source and the methods of evidence collection.

Table 10: Evidence triangulation.

This qualitative multiple case study examines dyadic SDT apprentices debugging Python

code through a think-aloud protocol, supplemented by in-depth interviews and focus

group discussions with mentors. Thematic analysis, as outlined by Braun and Clarke

(2006), is effectively adapted and particularly suitable in this context, with each stage

interlinked to build a comprehensive understanding of the data. Figure 6 visually

represents the data analysis stages, with the subsequent sections detailing the processes

undertaken.

107 | P a g e

Figure 6: The thematic analysis approach adapted from Braun and Clarke (2006).

Stage 1: Familiarisation

Familiarisation with the data is a fundamental stage in thematic analysis, particularly in

qualitative research involving think-aloud sessions, interviews, and focus groups. This

stage provides the foundation for subsequent analysis by ensuring that all insights remain

anchored in the authentic experiences of participants. The process began with

transcription, capturing spoken words, pauses, intonations, and non-verbal cues to

preserve the richness of the data, as underscored by Riessman (2008) and Braun and

Clarke (2006). The transcriptions were then imported into NVivo, which played a crucial

role in organising, managing, and systematically exploring the data, allowing for a

structured approach to the analytical process.

Following transcription, repeated reading of the transcripts facilitated immersion in the

data, moving beyond basic comprehension to uncover deeper context, nuances, and

meanings. This active engagement, marked by questioning, annotating, and noting initial

108 | P a g e

thoughts, revealed recurring themes, distinctive expressions, and key participant

reactions. These emerging patterns, which highlighted problem-solving strategies and

interactions with technology, informed the direction of coding and theme development,

as advocated by Braun and Clarke (2006) and Saldaña (2015). Furthermore, NVivo

enhanced the process by enabling precise tagging and refinement of patterns, ensuring a

critical and reflective approach. Together, these stages provided a robust and systematic

foundation for thematic analysis, ensuring a comprehensive and data-driven exploration

of the participants’ perspectives, as emphasised by Riessman (2008), Braun and Clarke

(2006), and Saldaña (2015).

Stage 2: Coding

Building on Step 1: Familiarisation with the Data, the second stage of thematic analysis,

as outlined by Braun and Clarke (2006), focused on generating initial codes. This process

systematically organised data from think-aloud protocols, interviews, and focus groups

into meaningful units. NVivo played a pivotal role in this stage, providing the tools to

systematically tag, group, and visualise data. The software’s query functions and

categorisation features streamlined the identification of key aspects of apprentices’

experiences and strategies, aligning with the insights of Gibbs (2007) and Miles,

Huberman, and Saldaña (2014).

The initial segmentation of datasets by source was critical in adhering to the multiple case

study framework discussed by Eisenhardt (1989). This segmentation facilitated a detailed

understanding of each dataset, enabling the identification of unique themes and

patterns. NVivo’s analytical tools enhanced this process by supporting annotations,

109 | P a g e

detailed queries, and data visualisations. These features helped uncover apprentices’

problem-solving strategies and interactions with technology, a process underscored by

Saldaña (2013) as essential for extracting meaningful insights.

Furthermore, NVivo supported comparative analysis by enabling the integration of

separately coded datasets. This functionality was vital for identifying commonalities and

differences in apprentices’ strategies and experiences, following the methodological

recommendations of Baxter and Jack (2008). By combining these insights, the process

established broader patterns while maintaining the depth and nuance of individual cases.

In summary, generating initial codes, facilitated by NVivo, was a pivotal step in thematic

analysis. The integration of NVivo’s structured tools ensured a robust, data-driven

approach to exploring apprentices’ experiences and strategies during debugging.

Step 3: Theme Generation

The third stage of thematic analysis, as outlined by Braun and Clarke (2006), involved

collating initial codes into meaningful themes, a vital step in organising and interpreting

qualitative data. This process required systematically sorting and grouping codes based

on their relationships and their relevance to the research questions, as supported by

Fereday and Muir-Cochrane (2006). By exploring these connections, broader patterns

and themes were identified, revealing both shared and unique aspects of apprentices’

experiences and strategies across the data sets. This process aligned with Stake’s (2006)

emphasis on capturing the depth and complexity of multiple case studies. NVivo played

a crucial role in this stage, with its thematic mapping capabilities providing a visual

framework for organising and refining themes.

110 | P a g e

As the analysis progressed, the iterative movement between coding and theme

generation ensured a deeper engagement with the data, creating opportunities to refine

emerging themes further. The critical examination of themes at this stage was essential,

ensuring they aligned with the research objectives and were grounded in both the data

and the study’s theoretical framework. The researcher’s interpretive role was pivotal,

requiring careful judgement to determine how themes integrated into the broader

narrative of the study. NVivo’s comparative tools further supported this process by

allowing the visualisation of relationships between themes and highlighting overlaps and

distinctions across cases. These capabilities enriched the analytical process by enabling a

more systematic exploration of patterns across the apprentices’ experiences.

By leveraging NVivo’s tools and maintaining a reflexive approach, this stage established a

robust analytical structure that contributed to identifying and understanding significant

patterns within the data. The generation of themes built on the insights from the coding

stage, creating a cohesive framework that provided the foundation for deeper

exploration in subsequent stages of analysis. This process addressed the study’s research

questions and offered a comprehensive perspective on the apprentices’ strategies and

experiences within the context of the multiple case study.

Step 4: Theme Review

The fourth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on

rigorously reviewing the identified themes to ensure they accurately represented the

data. This process involved refining, merging, or separating themes as needed, a critical

111 | P a g e

step emphasised by Braun and Clarke (2006) and Bazeley (2013) to guarantee that the

themes were truly reflective of the data. The review ensured that the themes were

coherent and meaningful across various cases and stages of data collection, supporting

the reliability and validity of the analysis, as highlighted by Yin (2018). NVivo was

instrumental in facilitating this process, with its visual tools allowing for systematic

comparisons and refinements of themes.

The iterative review process required a critical examination of how each theme related

to the research questions and objectives, contributing to the broader narrative of the

study. This involved identifying patterns common across multiple cases while also

recognising themes unique to particular cases, which is essential in a multiple case study

approach. NVivo’s capabilities for visualising relationships and overlaps between themes

were crucial. These tools enhanced the reflexive nature of the review, ensuring themes

were not only descriptive but also interpretative, aligning with the principles of

qualitative research. This stage was pivotal in capturing the complexities and nuances

across cases, providing a robust foundation for the final interpretation of findings and

ensuring the reliability and validity of the thematic analysis.

Step 5: Theme Definition

The fifth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on

defining and naming themes. This involved conducting a detailed analysis to refine the

specifics of each theme, interpreting its essence, and exploring its relationship to the

overall narrative of the data. The interpretive process, further elaborated by Clarke and

Braun (2017), was essential in distilling the core meaning of each theme and ensuring it

112 | P a g e

aligned with the research questions and objectives. This stage was particularly significant

in a multiple case study context, as it required articulating how each theme manifested

across different cases and data sources, as supported by Eisenhardt and Graebner (2007).

NVivo facilitated this process by providing tools for visualising and organising themes,

helping to ensure they reflected underlying patterns and insights accurately.

Critically examining and contextualising themes within the broader study scope was

integral to this phase. The themes needed to strike a balance between being descriptive

enough to represent the data and interpretative enough to offer deeper insights into the

research problem. This process ensured that the themes were both grounded in empirical

data and connected to the theoretical framework of the study. NVivo’s visualisation

capabilities further supported this balance by enabling comparisons and in-depth

exploration of thematic relationships. The researcher’s reflexive approach was pivotal in

shaping these final themes, ensuring they resonated with the study’s aims while providing

a meaningful and insightful representation of the data. This stage was instrumental in

preparing the groundwork for the final synthesis and interpretation of findings,

contributing to a comprehensive understanding of the research problem across multiple

cases.

Step 6: Reporting

The sixth stage of thematic analysis, as outlined by Braun and Clarke (2006), centred on

producing a coherent and compelling report of the study’s findings. This process involved

presenting the identified themes using vivid examples from the data, a strategy

emphasised by Braun and Clarke (2006) and Creswell (2013) to effectively illustrate the

113 | P a g e

insights derived from the analysis. The findings were carefully linked to the research

questions and the broader literature, ensuring the analysis was anchored in both

empirical data and the wider academic context. Synthesising findings from the study’s

multiple data sources was a complex but essential task, as highlighted by King (2004) and

Yin (2018). This required integrating insights from each data source to reflect the breadth

and depth of the data, particularly given the multiple case study design. The report

offered a holistic view of the research problem, comprehensively understanding

apprentices’ experiences and strategies.

Producing the report adhered to established principles of qualitative academic writing,

creating an integrated narrative that presented a clear and insightful understanding of

the research problem. Scholars such as Marshall and Rossman (2016) and Merriam and

Tisdell (2015) advocate for this narrative approach, which ensures an engaging and

coherent representation of qualitative findings. The report included a detailed account of

the themes, effectively conveying the complexity and depth of the data, as suggested by

Silverman (2016) and Ritchie et al. (2013). By integrating the findings with existing

literature, the study situated itself within the broader academic discourse. Furthermore,

a comparative approach, as recommended by Baxter and Jack (2008) and Eisenhardt

(1989), was employed to synthesise findings across multiple case studies. This approach

highlighted both unique and shared experiences, offering a reflective synthesis that

provided a comprehensive understanding of the research problem. As the culmination of

the thematic analysis, the report encapsulated the study’s insights and presented a

cohesive narrative of apprentices’ strategies and the role of technology in debugging.

114 | P a g e

4.5 Empirical Research Process

There have been decades of studies investigating how students learn to debug (Katz &

Anderson, 1987; Murphy et al., 2008; Perkins & Martin, 1986), including multiple think-

aloud studies examining student debugging (Fitzgerald et al., 2008; Liu et al., 2017;

Perkins & Martin, 1986; Yen et al., 2012). However, despite extensive work on

understanding student debugging, there are few detailed, qualitative studies of the

debugging practices of novice programmers (Whalley et al., 2023). In addition to the well-

acknowledged fact that novice programmers encounter substantial debugging

challenges, as Bottcher et al. (2016) noted, there is a notable gap in the current literature

concerning the debugging strategies employed by novice programmers in distributed

environments.

To address this gap, the study adopted a holistic approach to data collection, employing

a range of research instruments. These included non-participatory observations,

observation notes, think-aloud protocols, screen capturing, audio recording, code

analysis, in-depth interviews, and focus groups. This comprehensive approach was

designed to capture data from varied perspectives and settings, focusing on how paired

apprentices interacted, their use of technology, their verbalisation of thought processes

in line with Ericsson and Simon (1984) think-aloud protocol, in-depth interviews and a

focus group. The utilisation of these diverse data collection methods is a cornerstone of

this multiple case study research, enhancing the credibility of the data (Bogdan & Biklen,

2007; Patton, 1990).

115 | P a g e

 This study utilised a comprehensive, multi-step method to examine the debugging

process within an apprentice pairing context, as visually represented in Figure 7 and the

data collection timeline and analysis timeline in Figure 8. It began with directly observing

and recording debugging sessions, capturing key interactions and challenges. A detailed

analysis of these sessions followed this to identify patterns and difficulties in the process.

In-depth interviews with apprentice pairs, ‘dyads’, were then conducted for qualitative

insights, with subsequent analysis of these interviews to glean further details. The study’s

scope expanded to include focus groups with the workplace mentors and trainers,

allowing for diverse apprentice perspectives. The final stage involved synthesising all data

to fully understand the apprentices’ debugging experience, offering an in-depth

investigation of the complexities in apprentice learning environments.

116 | P a g e

Figure 7: Empirical research process.

117 | P a g e

Figure 8: Timeline of data collection and data analysis.

4.5.1 Step 1: Debugging sessions.

During this stage of the research, an exploration of debugging methods employed by

novice programmers was conducted. This involved leveraging various primary data

sources, including observation notes, code analysis, insights from think-aloud protocols,

and audio and video recordings. Central to this was the implementation of the think-

aloud protocol, which provided a window into the cognitive processes of paired

apprentices collaboratively debugging Python code. This technique proved critical in

illuminating aspects such as cognitive load sharing and the myriad challenges faced during

the debugging process, highlighting the pivotal role of technological tools within this

framework.

Adding further dimensionality to the data collection for this phase was the non-

participatory observational notes recorded as the apprentices navigated the debugging

tasks. The richness of these data was enhanced by audio and video recordings, offering a

robust mechanism for corroborating and reinforcing key aspects of the investigation (Yen

et al., 2012). This multimodal approach was integral to dissecting the primary issues at

the heart of the study. All this helped in addressing RQ1, RQ2, RQ3, RQ4 and RQ5. This

118 | P a g e

multi-faceted research approach and data sources are visually represented in Figure 8,

forming the bedrock of the study.

Figure 9: Debugging session research approach.

Furthermore, all 15 pairs (dyads) were given the same Python code, which contained 20

intentional bugs comprising of 11 syntax errors, 6 logical errors, and 3 runtime errors (for

the Python Code, refer to Figure 10; for additional details on the Python code, see Tables

11 and 12). This code was used to demonstrate a variety of errors, ranging from those

typically made by novices due to unfamiliarity with Python’s syntax to errors stemming

from a lack of logical understanding or inadequate planning before coding. While syntax

and runtime errors are often more readily identifiable through error messages, logical

errors can be particularly challenging for novice programmers to detect. Understanding

the nature of these varying levels of difficulty is essential for beginners in programming

and educators and mentors. This understanding aids in designing educational materials

and establishing realistic learning goals for apprentices.

119 | P a g e

Figure 10: Python code seeded with syntax, logical and runtime bugs

120 | P a g e

Table 11: List of bugs, bug type and difficulty level.

121 | P a g e

Table 12: Characteristics of the bugs’ difficulty levels.

4.5.2 Step 2: Analysis of recorded debugging session

In the research approach depicted in Figure 9, three distinct data analysis tasks transpired

following the observation of the debugging session. These included the analysis of

observation notes and the transcript of the audio and video recordings. For both these

research instruments, the data analysis adhered to the thematic analysis approach

adapted from Braun and Clarke (2006), as detailed in Section 4.4.4 of the thesis.

Additionally, another pivotal element of the data analysis was the examination of

artefacts from the final Python code. These artefacts, representing the various stages of

122 | P a g e

code modification undertaken by the apprentices during their debugging sessions, were

crucial in identifying the nature of errors. This included categorising the errors into those

that were rectified, those identified but left unresolved, and those that remained

unnoticed by the apprentices. The scrutiny of these code artefacts proved vital in

pinpointing specific challenges encountered by novice programmers.

Furthermore, insights gained from the analysis of code artefacts were then juxtaposed

with established literature on programming errors. This included studies by Ettles et al.

(2018), Grandell et al. (2005), Jeffries et al. (2022), Júnior et al. (2019), Kohn (2019), Kohn

and Manaris (2020), Pritchard (2015), Smith and Rixner (2019), and Veerasamy et al.

(2016). This comparative analysis played a crucial role in enabling a detailed

comprehension of well-known and emerging difficulties faced by novice programmers in

the field. Such an understanding was crucial in enabling the research to suggest the types

of bugs generated by the paired, geographically distributed SDT apprentices who

collaboratively worked on resolving bugs in Python code.

4.5.3 Step 3: Interview sessions

In this phase of the study, semi-structured interviews were conducted using a dyadic

interview approach, as outlined by Kendall et al. (2009). The significance of these

interviews lay in their ability to provide rich and detailed qualitative data, which was

essential for understanding participants’ experiences, their descriptions of these

experiences, and the meanings they derived from them, a concept suggested by Rubin

and Rubin (2011). The interview protocol (see Appendix H), inspired by the framework of

Castillo-Montoya (2016), underwent four distinct phases, including, alignment with

123 | P a g e

research questions, constructing inquiry-based conversations, receiving feedback on

protocols, and piloting the protocol. These phases were designed to develop a research

instrument that fit the study’s participants and aligned with its research goals, as Jones

et al. (2013) emphasised. The Interview Protocol Rigor (IPR) framework was employed to

provide a shared language for indicating the steps taken in developing interview protocols

and ensuring their congruency with the study (Jones et al., 2013).

The in-depth interviews aimed to understand the dyads' experiences, particularly their

strategies for debugging code errors and the role of technology in these activities. A

matrix, shown in Table 13, was used to ensure the alignment of interview questions with

research questions. This matrix was instrumental in identifying potential gaps and

ensuring a balanced focus on each research question.

The interviews focused on four main areas, including (1) investigating how paired

apprentices located bugs in the Python code and exploring cognitive load sharing during

debugging. This was guided by theories such as information foraging and distributed

cognition; (2) exploring apprentices’ levels of knowledge, misconceptions, and the impact

of technology, particularly IDEs, on the debugging process; (3) reaffirming the dyads’

understanding of error messages generated by the IDE and how this informed their bug

location strategies; and (4) clarifying issues from observation field notes, video

recordings, and think-aloud reports. The dyadic interview approach was chosen for its

ability to elicit diverse views (Martens, 2005) and clarify meanings (Britten, 1995).

Furthermore, the interview sought to elaborate on the dyads’ verbalisations and specific

events observed in their problem-solving process. Example questions included inquiries

124 | P a g e

about specific moments in the video recordings and how the dyads collaborated to find

potential solutions.

At the conclusion of the interviews, participants were offered the opportunity to review

the provisional findings. This step was taken to gain clarity, improve accuracy, and

strengthen the validity of the study, a practice recommended by Lincoln and Guba (1985).

The interview protocol can be found in Appendix H.

Table 13: Interview protocol matrix adapted from Castillo-Montoya (2016).

4.5.4 Step 4: Analysis of the dyadic interview session

The data analysis of the dyadic interview sessions in this study was structured to

scrutinise the transcripts of the interviews, with a specific focus on the concepts of

information foraging theory and distributed cognition. These theoretical frameworks

provided a comprehensive lens through which the interactions and cognitive processes

of the apprentice pairs could be understood and analysed. Information foraging theory,

as articulated by Pirolli and Card (1999), offered a valuable perspective on how individuals

125 | P a g e

seek and gather information, which, in this context, is related to the apprentices’

strategies in locating and addressing bugs in Python code.

Concurrently, the principle of distributed cognition, as explored by Hollan et al. (2000),

provided insight into how cognitive processes are shared and distributed across

individuals working collaboratively, particularly pertinent in examining the cognitive load

sharing between the apprentice pairs. This analytical approach was further underpinned

by the work of Hutchins (1995), whose work on distributed cognition in real-world

contexts enriched the analysis of the collaborative problem-solving observed in the

interviews.

In analysing the interview transcripts, the study followed the thematic analysis approach,

which was adapted from the framework proposed by Braun and Clarke (2006). This

methodology, described in Section 4.4.4, provided a structured and comprehensive

means of evaluating and interpreting the data gathered from the interviews.

4.5.5 Step 5: Focus group session

The focus group conducted in this study played a pivotal role in investigating the

perspectives of workplace mentors and trainers from the training organisation. The key

areas of inquiry included the types of errors made, the bug location strategies commonly

used by novice programmers, and the general challenges faced by apprentices or novice

programmers. Additionally, this focus group provided an essential platform for eliciting

their opinions on the findings gathered from apprentice observations, interviews, and

analysis of software artefacts, thereby aiming to gather and reaffirm their interpretations

126 | P a g e

and understanding of the phenomenon under study, in line with the approach

recommended by Khan and Manderson (1992).

To facilitate in-depth discussion and ensure clarity on the issues related to the

phenomenon, the focus group, as detailed in Section 4.4.3, comprised 12 participants.

However, this group was strategically divided into two cohorts, each consisting of six

members. This division was intended to enhance the depth and quality of the discussions,

as smaller groups are often more manageable and can provide more detailed feedback,

a methodological approach supported by Liamputtong (2011).

In selecting participants, significant emphasis was placed on recruiting workplace

mentors and trainers with relevant profiles, as described in Section 4.4.3. This selection

process ensured that each cohort comprised individuals with appropriate expertise and

experience. Furthermore, the decision to limit the size of each cohort to six participants

was informed by the guidelines suggested by Greenbaum (1998), who noted the

importance of group size in generating valuable and in-depth data in focus group

research. This approach was deemed essential to ensure that the data collected were

relevant and rich in insights pertinent to the research questions.

4.5.6 Step 6: Analysis of recorded focus group session

The focus group in this study was instrumental in validating the initial findings obtained

from the apprentices and enriching these findings with additional perspectives from

experts who work closely with the apprentices. To facilitate a thorough analysis, the

transcripts of the two focus group discussions were imported into NVivo, as outlined in

127 | P a g e

Section 4.4.4. This software provided an organised framework for managing and

analysing the data.

The primary analysis within NVivo focused on the content of the verbalisations during the

focus group sessions. This approach aligns with the methods advocated by Jordan and

Henderson (1995), who suggest the significance of focusing on the participants’ verbal

expressions in group discussions. Such an emphasis guarantees that the minor

distinctions and depth of the participants’ perspectives and experiences are captured and

analysed comprehensively.

By employing NVivo for this analysis, the study systematically categorised and explored

the rich qualitative data provided during the focus group sessions. This facilitated a

detailed examination of the themes and patterns within the verbalisations, thus enabling

a robust understanding of the experts’ perspectives on the apprentices’ experiences and

challenges.

4.5.7 Limitation of the Chosen Methodology

Whilst this study offers valuable insights into the debugging strategies of novice

apprentices, it is not without its limitations, which stem from both the research design

and the practical constraints of the methodology employed.

One significant limitation is that the dyads of apprentices did not know each other prior

to the debugging sessions, which likely impacted their collaborative dynamics. Without

sufficient time to establish rapport, the participants may have been less comfortable

128 | P a g e

sharing ideas freely, which could have influenced the fluidity of their interactions and the

effectiveness of their collaborative debugging strategies (Murphy et al., 2010).

Additionally, the study was conducted over a short time frame, meaning the apprentices

had limited time to become accustomed to each other’s working styles. This restricted

the ability to observe how their collaborative skills might evolve with extended practice

(Jayathirtha et al., 2020).

Another limitation is the focus on only novice apprentices, which means the findings may

not extend to more experienced programmers, whose strategies and collaboration in

debugging may differ significantly. Similarly, the reliance on self-reported data during

interviews presents a challenge, as participants may have unintentionally underreported

or misrepresented their experiences, introducing potential biases. This could reduce the

possibility of participant conformity, where interviewees might have aligned their

responses to perceived expectations (Finlay, 2002).

Finally, the exclusive focus on Python and Microsoft Visual Studio as the development

environment may limit the applicability of the findings to other programming languages

or IDEs. Each language and tool presents unique challenges in debugging, and as such,

the conclusions drawn from this research may not fully generalise to different technical

settings (Alqadi & Maletic, 2017).

4.6 Reliability and Validity

This research was guided by the array of strategies outlined by Maxwell (2012), which are

specifically designed to address and mitigate threats to validity within qualitative

129 | P a g e

research paradigms. Recognising that the enumeration of these strategies may differ

across various editions or interpretations of Maxwell’s work, this particular study

incorporated seven of the eight widely recognised techniques to fortify its validity. The

methodologies utilised were rich data (Becker, 1971), respondent validation or member

checks (Bryman, 2003; Hammersley & Atkinson, 1995; Lincoln & Guba, 1985),

intervention, searching for discrepant evidence and negative cases, triangulation,

numbers, and comparison (Miles & Huberman, 1994). The study utilised specific

strategies outlined by Maxwell (2012) that align with and enhance validity tests Yin (2009)

put forth, focusing mainly on construct and external validity areas. This helps tackle two

broad types of threats to validity often raised in qualitative studies, which are researcher

bias and reactivity.

Construct Validity

As Yin (2009) articulated, this validity facet scrutinises the accuracy of the research

measures in capturing the intended concepts. It necessitates that the operational

mechanisms in the research reliably reflect the constructs they are meant to measure. To

bolster construct validity, strategies such as employing data triangulation, maintaining a

chain of evidence, and engaging in member checking are pivotal (Yin, 2009). In alignment

with these techniques, the current study integrates Yin’s (2009) framework with

Maxwell’s (2009) methodological insights, implementing triangulation and

comprehensive data collection to substantiate construct validity within the context of

SDT apprentices’ debugging practices.

130 | P a g e

The apprentices’ cognitive processes are documented using the think-aloud protocol,

providing a dynamic and participatory view of problem-solving, as underpinned by the

work of Ericsson and Simon (1984). Observations of dyadic interactions within authentic

coding settings offer a narrative-rich perspective on collaborative problem-solving, an

approach augmented by reflective interviews that probe deeper into the apprentices’

decision-making processes (Kvale, 1996). These reflective interviews transform

apprentices into active narrators, thereby providing rich data by adding layers to the

observational data and painting a more intricate picture of their cognitive experiences

during debugging (Becker, 1971).

Additionally, engaging with mentors and trainers furnishes a deeper insight into the

apprentices’ problem-solving strategies, corroborating the study’s findings with the

apprentices’ real-world debugging activities, an approach supported by Merriam (2009).

These professionals in this situation confirm the findings and provide critical analysis of

observed behaviours and outcomes. This triangulated and detailed methodological

approach captures cognitive activities, debugging strategies, and team synergy, fortifying

the study’s construct validity (Maxwell, 2008; Yin, 2009). The research, therefore,

intertwines various data threads to construct an authentic narrative of the apprentices’

engagement with complex programming challenges, resonating with Stake’s (1995)

emphasis on creating rich, qualitative narratives.

External Validity

In the context of a qualitative study investigating the debugging practices of dyad

apprentices working with Python code across multiple sites, internal validity is critical to

131 | P a g e

the integrity of the research. Yin (2003) suggests the importance of replication logic in

multi-case studies to underpin external validity, drawing parallels to experimental

research. By documenting the recurring emergence of the same phenomenon across

various settings, this study substantiates the external validity of the findings, as supported

by Baxter and Jack (2008), who advocate for the replicability of qualitative studies as a

means to broader applicability. While the primary emphasis of such studies often lies in

the depth of understanding rather than generalisability, the consistent replication across

cases provides a compelling foundation for claims of wider relevance (Stake, 2006).

In sum, employing these two measures is vital to the assurance of rigour and reliability in

this study, which utilises case studies along with diverse qualitative research techniques.

However, Campbell (1988) emphasises the significance of employing strategies that focus

less on confirming findings and more on scrutinising the credibility of one’s conclusions

and identifying any possible risks to their validity. Similarly, Maxwell (2012) agrees with

this approach, advocating for the active search for information that might contest one’s

conclusions or relate to the likelihood of identified potential risks.

4.7 Ethical Issues and Concerns

The study included participants aged 16 and older who were engaged in the Software

Development Technician Apprenticeship standard within diverse workplaces. Ethical

considerations took precedence for the duration of the study (see Appendix E). Activities

such as pair programming and debugging were assessed as low-risk, typically offering

benefits to the participants without foreseeable adverse outcomes.

132 | P a g e

Before initiating the empirical research, it was essential to obtain formal ethical clearance

from the Ethics Committee at Lancaster University and secure consent from both the

apprentices’ training providers and their workplaces. This ethical approach was

reinforced through the documentation of consent, both in writing and verbally, with all

involved parties, ensuring strict adherence to ethical research standards. Additionally,

participants were fully informed about the study’s objectives and were clearly advised, as

stated in Appendices A to D, of their right to withdraw at any point during the study.

With the commencement of the data collection phase, maintaining ethical standards

became paramount. The process included acquiring informed consent from apprentices

and ensuring the confidentiality and privacy of the data collected. Transparency regarding

the study’s goals and methods was consistently upheld, alongside a dedicated effort to

protect participant autonomy and rights, thereby avoiding coercion and ensuring all

participants’ welfare. Data were handled with the utmost integrity, with secure storage

and ethical use in accordance with both the trust of the participants and the stipulations

of the Ethics Committee. All written and verbal communications incorporated core ethical

principles, including beneficence, non-maleficence, informed consent, confidentiality,

and anonymity, solidifying participants’ understanding of their autonomy within the

research.

When drafting the research report, particular attention was given to confidentiality

measures. To preserve the anonymity of the research findings, personal and corporate

identifiers were meticulously omitted. Recognising the unique challenges of a multiple-

case study, which inherently carries a higher risk of disclosing participant identities,

133 | P a g e

especially through detailed descriptions, the research implemented judicious

modifications to the contextual information presented, thus ensuring the protection of

participant identities.

Finally, the multifarious data collated during this study, spanning videos, codes, and

compiler reports, were stored electronically with the utmost security. Ensuring

compliance with the UK GDPR, all data were meticulously housed on a Microsoft

OneDrive account associated with the researcher’s Microsoft Office, positioning the

researcher as the chief custodian of this vital information.

4.8 Summary

This chapter describes the research methodology adopted for this study, providing an

overview of the approaches and procedures employed to address the research questions.

It commences by justifying the selection of a qualitative research design deemed most

suitable for an in-depth investigation of the phenomena of interest. The rationale behind

this choice was grounded in the exploratory nature of the study, which sought to gain

rich, contextualised understandings rather than broad generalisations.

Following this, the chapter outlined the specific methods of data collection utilised. A

multi-case study approach was employed to allow for a detailed examination of each

instance within its real-life context. The selection of cases was based on purposive

sampling, informed by the criteria of information richness and relevance to the research

aims, as suggested by Patton (2015). The detailed process of obtaining ethical clearance

134 | P a g e

from institutional review boards and informed consent from participants was then

described, pointing out to the ethical rigour underpinning all stages of the research.

The data collection methods were varied, including in-depth interviews, participant

observations, and document analysis. These methods provided a triangulated view that

enhanced the reliability and validity of the findings. The procedures for data analysis were

explained, noting the iterative process of coding and theme development in line with the

established qualitative analysis frameworks.

Subsequently, the chapter discussed the measures taken to ensure the study’s

trustworthiness and credibility. Strategies such as member checking, audit trails, and

reflexive journaling were employed to bolster the study’s integrity. Lastly, the

methodology’s limitations were acknowledged, with a candid discussion about the

potential implications for the study’s findings and their applicability.

In summary, this chapter has articulated the systematic approach taken to ensure that

the study’s results are as robust as possible, ethically sound, and contribute meaningfully

to the body of knowledge in the field.

135 | P a g e

Chapter 5: Findings

5.0 Introduction

This chapter presents the findings of a study involving paired apprentices situated in

different locations who collaborated to debug Python code. The study primarily evaluates

their strategies for resolving coding errors, how they have deployed technological tools,

their methods for sharing the cognitive load, and the challenges encountered while

solving problems as a team. To address specific research questions, the study gathered

data from various sources, including observational notes and videos from debugging

sessions, interviews with pairs of apprentices, and discussions with mentors and trainers

in work-based settings. The study’s findings reveal key aspects of debugging practices

among participants, identifying some themes, namely, the use of technology in

debugging, specific strategies and tactics employed, the variety of errors encountered,

how cognitive load is managed, and the challenges faced during the debugging process.

5.1 Dyads Debugging Session Findings

The study encompassed a total of 15 debugging sessions, which took place over seven

months and collectively lasted for 30 hours. These sessions occurred between April and

July 2022, October 2022, and March to April 2023. The research involved 30 apprentices

who were paired into 15 dyads. As discussed in Section 4.4.4, the data analysis of the

transcribed video recordings and the observation notes adhered to the thematic analysis

approach adapted from Braun and Clarke (2006). Utilising Braun and Clark’s thematic

analysis, the study identified themes illuminating different facets of the debugging

process, including technology utilisation, debugging strategies and tactics, error

136 | P a g e

spectrum, cognitive load management, and encountered challenges as seen in Table 14,

which summarises the main themes identified during the 15 dyads’ debugging sessions. .

These themes are critical to understanding how the participants tackled the debugging

process, the tools they employed, and the challenges they encountered.

Table 14: Overview of key themes in dyads debugging sessions

Theme Description

Theme 1: Technology Utilisation
The critical role of various technological tools in the debugging

process, especially Microsoft Teams and IDEs.

Theme 2: Debugging Strategies

and Tactics

Diverse strategies such as tinkering, trial and error, and print

statement debugging employed by the dyads.

Theme 3: Error Spectrum
Types of errors encountered by dyads: syntax, logical, and

runtime errors.

Theme 4: Cognitive Load

Management

How dyads shared the mental effort and utilised collaborative

strategies to manage the debugging process.

Theme 5: Challenges Faced
Key difficulties encountered, including technical challenges and

the complexities of collaborative debugging.

5.1.1 Theme 1: Technology Utilisation

In the debugging sessions, ‘Technology Utilisation’ emerged as one of the prominent

themes, reinforcing the critical role of various technological tools in the debugging

process, especially Microsoft Teams, as seen in Table 15.

Table 15: Technology Utilisation Subthemes in Dyadic Debugging Sessions

Subthemes Description

Collaborative Tools:

Microsoft Teams

Microsoft Teams enabled real-time communication and collaboration,

enhancing problem-solving, visual interaction, and task coordination

in remote debugging sessions.

Real-Time Collaboration

with Live Share

Live Share facilitated real-time code editing, error navigation, and role

transitions, boosting productivity and problem-solving in Visual Studio.

Integrated Development

Environments (IDEs)

IDEs like Visual Studio were crucial in debugging, with features like

syntax highlighting, error detection, breakpoints, and code comparison

aiding error identification, execution flow analysis, and code clarity.

Version Control and

Documentation

Participants used OneDrive and documentation to preserve scripts,

record processes, and maintain organised collaboration and problem-

solving.

137 | P a g e

As seen in Table 15, a significant subtheme is the role of Microsoft Teams in supporting

collaborative debugging. Microsoft Teams served as a vital communication hub, enabling

real-time interaction and idea sharing among participants. Its features, like chat, video

calls, and screen sharing, were instrumental in problem-solving. This is echoed in SDT27’s

statement, “I am glad we could all connect seamlessly on Microsoft Teams for this

session. Seeing each other’s reactions and screens while we discuss the errors has made

our debugging much more effective”. SDT29’s comment, “great progress today! I will

upload our revised script to the Teams channel now for us to review the changes

together. We can use the screen sharing feature to walk through the code”. These quotes

showcase how Microsoft Teams was crucial for messaging, file sharing, and enhancing

the debugging experience through visual interaction and effective communication.

Similarly, the debugging sessions heavily relied on Visual Studio and Live Share and

beginning typically in Visual Studio, as SDT1 exemplified, “Okay, SDT2, I have got the script

open here in Visual Studio. Let’s run it and see what initial errors we’re dealing with”. It

is obvious here that the role of Live Share was visible for collaborative efforts. STD22 also

emphasised, “just launched Live Share for our session. This tool is going to be crucial for

us to jointly edit the code, making our debugging way more efficient”. This also confirmed

the role played by technology, which allowed simultaneous code work, with SDT15

remarking, “while you navigate to the error section using Live Share, I will start tweaking

the function above”.

Furthermore, Live Share also, from the available data, smoothed role transitions, a point

highlighted by SDT10, “Okay, I’m handing over the reins to you now in Live Share. You will

138 | P a g e

see the changes I have made instantly on your screen”. These tools were instrumental in

the sessions, enhancing efficiency and fostering a collaborative debugging environment.

They suggest the importance of such technologies in modern coding practices,

particularly in team-based projects where real-time collaboration and quick role swaps

are essential.

Likewise, the application of IDEs was fundamental, as captured in the observation notes

and video transcripts. These IDEs, which were central to the debugging process, were

equipped with advanced features like syntax highlighting, error highlighting, auto-

indentation, and breakpoints. The participants harnessed these tools to quickly spot and

fix syntax errors, grasp the execution flow, and conduct detailed variable inspections,

highlighting the invaluable role of IDEs in streamlining code analysis and error resolution.

Furthermore, the use of syntax highlighting in accelerating error detection is marked by

SDT1’s comment, “right, making that change now. I’m also keeping an eye on the IDE’s

syntax highlighting feature. It’s really helping to spot these kinds of errors much quicker”.

In like manner, SDT2’s mention of utilising the IDE’s auto-indent feature, “while you’re

fixing that, I’ll take advantage of the IDE’s auto-indent feature”, illustrates how such

functionalities aid in maintaining code clarity and structure.

Additionally, the use of IDEs extended to deeper code analysis and debugging. For

instance, SDT18 mentioned, “let’s make use of the IDE’s features. Set a breakpoint and

step through the code to catch any subtle errors”, and SDT22 remarked, “I’ve taken the

helm now. Let’s harness the IDE debugger for a deeper analysis”. Similar points are

echoed by SDT25, SDT29, and SDT30, who stress the importance of IDEs’ advanced

139 | P a g e

debugging tools and user-friendly interfaces. SDT25 highlighted using the IDE’s code

comparison tool, “I’m using the IDE’s code comparison tool to spot differences”. SDT29

stressed the value of advanced debugging tools by suggesting, “I’m setting a breakpoint

here in Visual Studio to pinpoint where our code deviates. These advanced debugging

tools are a lifesaver for tracking down elusive errors during runtime”. Lastly, SDT30

appreciated the user-friendly interface, “I really appreciate how user-friendly Visual

Studio’s interface is. It makes navigating through our code and identifying these syntax

errors so much easier, especially for newcomers like us”. These features are crucial for

tracking elusive errors and assisting newcomers in navigating complex code. Collectively,

these participant statements reinforce how integrating IDE tools in the debugging process

significantly boosts productivity, accuracy, and learning, particularly in collaborative

settings.

To add to that, the role of version control and systematic documentation was profoundly

emphasised. Participants like SDT1 and SDT12 recognised the significance of saving work

on OneDrive and documenting the debugging process for future reference, as they

stated, “before we wrap up, let’s save our final version of the script to OneDrive” and

“that’s a great idea. Documenting our process will provide valuable insights for future

debugging sessions”. These practices aid in record-keeping and enhance the collaborative

experience, allowing for a structured approach to problem-solving. On the other hand,

SDT23’s approach to saving notes in the project file, as mentioned, “I’m saving these

notes in the project file”, demonstrates a methodical approach to debugging, ensuring a

thorough understanding for future review. SDT24 and SDT26 further reiterated this

sentiment by uploading their final scripts to OneDrive and documenting their process, as

140 | P a g e

they commented, “I’m uploading the final script to OneDrive now” and “we’ve

meticulously documented our endeavours and the remaining challenges”. These quotes

collectively illustrate the participants’ commitments to maintaining a detailed record of

their debugging sessions, highlighting the importance of version control and

documentation in the collaborative development process.

In summary, integrating technology, particularly in remote settings, is essential in

enhancing the debugging process and improving team coordination and task

management. The findings include excerpts highlighting various technological tools such

as IDEs, debuggers, Microsoft Teams, OneDrive, and version control systems. These tools

enhance the debugging process, making it more efficient and effective. Participants used

these technologies collaboratively to solve complex debugging challenges, demonstrating

these tools’ crucial role in modern software development.

5.1.2 Theme 2: Debugging Strategies and Tactics

This theme showcases diverse strategies and tactics to address various coding problems

during the debugging sessions, as seen in Table 16.

Table 16: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions

Subtheme Description

Tinkering Participants engaged in incremental modifications and re-execution to

gradually refine their understanding and improve the functionality of the code.

Trial & Error Debugging involved systematic experimentation with inputs, variable types, and

small code adjustments to identify and resolve errors through an iterative

process.

Print Statement This simple yet effective debugging technique was widely used to trace variable

values and program flow, offering real-time insights into execution logic.

141 | P a g e

Table 17: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions (Continuation)

Subtheme Description

IDE Debuggers Participants leveraged IDE features like syntax highlighting, breakpoints, and

step-through debugging to efficiently locate and resolve coding errors.

Slicing The method of isolating specific code blocks and testing them independently

helped pinpoint errors more efficiently, particularly in complex scripts.

Rubber Duck

Debugging

Articulating code logic aloud, whether to a partner or an imaginary listener,

helped participants identify overlooked errors and clarify their reasoning.

Code Review Reviewing code systematically allowed participants to identify syntax, logical,

and structural errors, ensuring clarity, maintainability, and functionality.

Pattern

Matching

Recognising recurring error patterns enabled participants to apply known

solutions quickly, improving efficiency in debugging and problem resolution.

Divide &

Conquer

Breaking down large problems into smaller, manageable segments allowed for

a more focused and effective debugging process.

Tracing Following error messages and execution paths back to their source helped

participants systematically track and resolve programming errors.

As a debugging strategy, tinkering gained prominence among five dyads during their

debugging session, involving the process of making incremental adjustments and testing

the script for changes. This approach, encapsulating both anticipation and progression, is

vividly illustrated by SDT6’s positive stance, “alright, let’s execute it again and keep an

eye out for what comes next. I have a feeling we are making good progress here”. Such a

dynamic method accentuates the essence of debugging as an adaptive process where

programmers persistently evaluate the effects of their modifications, thereby

incrementally enhancing their grasp of the code’s behaviour. In a similar vein, SDT5’s

modification of inputs, “I’ve made the necessary changes to the inputs. Let’s execute the

script again and see if that resolves where the input strings were not converted to

numbers”, along with SDT20’s adjustments, “I’ve made a few tweaks here and there. Let’s

run it once more to see where we stand”, further exemplify this disciplined yet

exploratory strategy. This narrative seamlessly integrates the essence of tinkering in

142 | P a g e

debugging, highlighting its role in fostering a thorough and evolving understanding of

code through careful experimentation and adjustment.

In addition, this iterative process of refinement, characterised by minor yet calculated

modifications, reflects a broader principle in software development of fined-tuning code

to achieve optimal performance. As stated by SDT19’s focused intervention, “String fixed.

Let’s check if that clears the error”, further highlights the importance of targeted

debugging efforts. By isolating and addressing specific issues before retesting,

programmers demonstrate a precise and effective method of troubleshooting that

emphasises the critical role of identifying and correcting individual elements for the

overall functionality of the code. Through a cycle of continuous tweaking, testing, and

reassessment, novices navigate the intricate coding challenges, showcasing a persistent

and adaptive mindset that is indispensable in software development.

The trial and error method emerges as a crucial debugging tactic, informed by

experimentation in the pursuit of solutions, vividly illustrated through novice

experiences. This strategy’s essence, characterised by resilience and adaptability, plays a

pivotal role in debugging as novice programmers navigate through challenges with

persistence and a willingness to experiment. For instance, SDT9’s endeavours, “I tried

several different inputs to see where the code breaks”, capture the exploratory nature of

this method, aiming to discern the code’s boundaries and behaviour under various

scenarios. Similarly, SDT11’s experience, “changing variable types was a bit of trial and

error, but it worked eventually”, sheds light on the iterative debugging journey,

emphasising the importance of trial and feedback in overcoming coding obstacles.

143 | P a g e

The iterative cycle of trial and error is further exemplified by SDT1’s approach, “I’ve made

the necessary changes to the inputs. Let’s execute the script again and see if that resolves

the TypeError”, highlighting the discipline of implementing, testing, and reassessing

modifications to refine the code. SDT7’s meticulous attention to detail is evident in “typo

fixed. I’m running the script to see if we’ve cleared the error”, emphasising the

significance of addressing even minor errors for code functionality.

Besides, SDT8’s contribution, “Sure, adding the colon now. Let’s see if that solves it”,

demonstrates the value of minor yet impactful code adjustments in debugging. This

highlights the iterative and insightful nature of trial and error, with each minor

adjustment or test serving as a step towards solving complex coding puzzles.

Similarly, print statement debugging is presented as a cornerstone of the diagnostic

process within the dyads, lauded for its simplicity and capability to deliver real-time

insights into program behaviour. This method is notably appreciated for its

straightforwardness, offering a direct window into the inner workings of a program, as

testified by several participants who highlighted its practicality across various coding

situations. SDT2 champions this approach for tackling complex logical segments, advising,

“I suggest we use print statements to trace variable values, especially in complex logical

segments. It’s always helpful to see exactly what’s happening in real-time”. This

sentiment suggests print statements’ value in unravelling code complexities by providing

immediate, tangible feedback. Additionally, SDT2 emphasises their importance in

validating data type conversions, stating, “right, I’m applying int() to the input

statements. To ensure we’ve got it right, I’m also adding some print statements to check

144 | P a g e

the type of inputs after conversion”, which illuminates the role of print statements in

averting and diagnosing potential type-related errors.

Likewise, the flexibility of print statement debugging is further illustrated through the

experiences of SDT15 and SDT14, who describe using print statements as a strategic tool

to dissect program flow and troubleshoot logical discrepancies. SDT15 advocates for their

use in clarifying program execution and addressing logical errors, saying, “we should

maybe use some print statements to understand the flow, especially for these logical

errors”. This recommendation highlights how print statements can shed light on the

execution path of a program, revealing where it deviates from expected logic. Similarly,

SDT14 emphasises the strategic placement of print statements for diagnostic purposes,

noting, “I’m going to insert some print statements at strategic points in our code. This will

help us track the values of our variables and understand where our logic is failing”. Such

tactics allow programmers to chart their program’s execution comprehensively,

enhancing the understanding of variable behaviour and pinpointing the root causes of

logical issues. These insights collectively affirm the indispensable role of print statement

debugging in enhancing code clarity and resolving complex programming challenges.

In the debugging sessions, IDEs were a key factor, as evidenced by the participants’

reliance on their advanced features for efficient problem-solving. The IDEs, with

functionalities like syntax highlighting, error highlighting, auto-indentation, and

breakpoints, played a central role in identifying and resolving syntax errors,

understanding execution flow, and performing in-depth variable analysis. SDT1’s

comment, “I’m also keeping an eye on the IDE’s syntax highlighting feature. It’s really

145 | P a g e

helping to spot these kinds of errors much quicker”, highlights the effectiveness of syntax

highlighting in speeding up error detection. SDT2 also appreciates the IDE’s auto-indent

feature, saying, “while you’re fixing that, I’ll take advantage of the IDE’s auto-indent

feature”, acknowledging its assistance in maintaining code structure. The use of IDEs also

extends to deeper code analysis, as indicated by SDT18, who says, “Set a breakpoint and

step through the code to catch any subtle errors”, and SDT22’s remark, “I’ve taken the

helm now. Let’s harness the IDE debugger for a deeper analysis”. This emphasis on

advanced debugging tools and user-friendly interfaces, as noted by SDT25, SDT29, and

SDT30, showcases their importance in tracking elusive errors and helping beginners

navigate complex code. SDT25 mentions using a code comparison tool, SDT29 talks about

setting breakpoints for pinpointing deviations, and SDT30 appreciates the user-friendly

interface of Visual Studio, all underlining the significant impact of IDEs in enhancing the

debugging process.

Furthermore, as demonstrated by SDT3 and SDT4, the slicing technique in debugging

effectively simplified and enhanced the efficiency of handling complex scripts. SDT3’s

strategy, “let’s isolate the block of code responsible for calculating gross pay. If we

comment out the rest and test this section alone, we might find the source of our logical

errors more efficiently”, exemplifies a targeted slicing method, isolating specific

functionalities like gross pay calculation for more streamlined error detection.

Meanwhile, SDT4 accentuate the foundational importance of input validation with “I

think the issue might be in how we’re handling the input validation. Let’s temporarily

remove other functionalities and just run the input section to see if it’s working as

expected”, emphasising the need to verify basic operations to prevent cascading errors.

146 | P a g e

Apart from that, SDT3’s approach to dissecting complex logic, “Let’s break down the tax

calculation logic and test each condition separately. This way, we can determine exactly

which part of the logic is causing the error”, highlights the effectiveness of a granular

analysis in debugging, especially for uncovering intricate logical errors by testing

individual conditions independently.

The Rubber Duck Debugging strategy, as demonstrated by SDT13, SDT8, and SDT7,

highlights the importance of verbalising and methodically reviewing code to uncover

overlooked errors. SDT13’s approach, “Okay, SDT14, let me talk you through the logic of

this tax calculation part as if I’m explaining it from scratch. Sometimes, saying it out loud

helps me catch something I might have missed”, exemplifies this technique by articulating

the logic behind the tax calculation as if to a novice or a rubber duck, facilitating the

discovery of minor aspects. Also, SDT8’s request, “While you go over the string

concatenation, I’ll act as if I’m hearing this for the first time. Explain it to me step by step;

it might help us spot where the syntax is off”, encourages a detailed breakdown of the

process, advancing a meticulous reconsideration, crucial for revealing hidden syntax

errors. SDT7 further reinforces this approach by deciding to narrate each step in fixing a

runtime error, believing that “Walking through it verbally often makes me see things in a

different light, like having a fresh pair of eyes on the problem”, thereby acknowledging

the effectiveness of Rubber Duck Debugging in gaining new perspectives and revealing

hidden flaws.

The significance of code review in ensuring code quality and functionality is highlighted

through the experiences and suggestions of several apprentices, including SDT6, SDT7,

147 | P a g e

SDT14, SDT13, SDT17, and SDT18. SDT6’s observation, “during our code review, we

noticed the function was not returning the correct value”, emphasises the role of code

review in identifying discrepancies in code functionality. This critical evaluation is

essential for ensuring that the code behaves as intended. SDT7’s proposal, “taking back

control now. I think we should review the entire script again to check for any errors we

might have missed”, demonstrates the thoroughness required in debugging, focusing on

the overall structure and coherence of the code.

Similarly, SDT14’s call for a “comprehensive review of the script’s logic to catch any

remaining errors we might have overlooked”, points to the importance of detailed

analysis, particularly for elusive logical errors. SDT13’s satisfaction, “I think we’ve done a

thorough job on the script. All functions appear to be working as intended, and the code

is much more readable now”, reflects the dual goal of code reviews, such as, enhancing

functionality and readability for future maintenance and development. SDT17’s

suggestion, “let’s take a moment for a quick code review. We should scan for any similar

syntax errors, ensuring our code is structurally sound”, and SDT18’s meticulous check,

“Scanning through the script... All other conditional statements seem fine. No more

missing colons in this section”, both highlight the need for ongoing vigilance and attention

to detail in coding, especially for syntax and structural integrity, to prevent minor errors

from escalating.

Moreover, the utility of pattern matching as a debugging strategy is exemplified in the

insights shared by SDT8, SDT10, SDT13, and SDT15. SDT8’s detection of a ‘TypeError’, as

noted in “that’s a TypeError. Seems like a variable is not of the expected type. Maybe

148 | P a g e

something to do with input conversion?” showcases the identification of a common

programming issue related to variable types and suggests a practical solution involving

data type conversion. This reflects an acute understanding of type-related errors crucial

for robust coding. SDT10, in “That’s a quick fix. Just add the parentheses around the print

statement”, demonstrates a rapid identification of a syntax error, common in Python 3,

highlighting the significance of language-specific knowledge for efficient debugging.

SDT13’s remark, “this error looks similar to one we encountered before. Let’s apply the

same fix”, underlines the role of experience and pattern recognition in coding, using past

issues to guide current problem-solving. Similarly, SDT15’s observation, “we’ve seen this

pattern of mistakes; let’s check if it’s the same issue here”, emphasises the importance

of recognising and learning from recurring issues, facilitating quicker diagnosis and

proactive error prevention. These insights illustrate how awareness of common errors

and patterns can enhance debugging efficiency and effectiveness.

In addressing programming challenges, SDT19 and SDT20 reveal the application of

variable tracing and code review in their debugging processes. SDT20’s intention to use

variable tracing for monitoring tax calculations, as stated in “I’m thinking of using variable

tracing to monitor the tax calculations closely”, illustrates a strategic approach to

understanding and rectifying complex computational tasks. Meanwhile, SDT19 identifies

an infinite loop error in “we have an infinite loop error. We need to check the loop

condition and make sure it’s set up correctly”, emphasising the need to scrutinise loop

conditions to resolve such issues. SDT20 further pinpoints the cause of this error in

“We’re hitting an infinite loop due to the missing colon in the ‘for’ loop”, showcasing the

significance of attention to syntactical details in programming. The collaborative dynamic

149 | P a g e

is highlighted in SDT19’s reminder about their pair programming schedule in “Let’s review

that section of the code. Also, remember, it’s almost time for us to switch roles as part of

our pair programming arrangement”, suggesting a structured and team-oriented

approach to problem-solving. Finally, SDT20’s method of tracing from the error message

back to the problematic function call, as mentioned in “I traced back from the error

message to the problematic function call”, demonstrates a systematic technique for

identifying and addressing the root causes of programming errors. These insights jointly

highlight the importance of thorough analysis, attention to detail, and collaboration in

effective debugging and code development.

Nonetheless, the debugging process in software development is characterised by the

innovative combination of multiple strategies, as illustrated by the experiences of several

participants. SDT18 and SDT20 demonstrate the synergy of print statement debugging

with IDE debuggers. SDT18 states, “I combined print statements with the debugger to

track variable changes”. This technique reinforces the value of blending traditional print

debugging with advanced IDE tools to achieve a more comprehensive grasp of variable

dynamics. Similarly, SDT20’s method, “using prints alongside the step-through debugger

helped isolate the issue”, showcases the effectiveness of this composite strategy in

isolating and resolving specific problems in the code.

Further blending of techniques is seen in the approaches of other participants. SDT23,

who combined rubber duck debugging with code review, remarks, “explaining each line

to you during review helped identify the misplaced loop”. This highlights how articulating

the code line-by-line can enhance clarity and lead to the discovery of errors. The fusion

150 | P a g e

of trial and error with pattern matching is exemplified by SDT22 and SDT24. SDT22’s

observation, “after several attempts, I recognised a pattern similar to an earlier bug”,

along with SDT24’s approach, “we used trial and error, then matched the pattern to a

previous solution”, demonstrates the effectiveness of iterative testing in recognising and

applying solutions to recurrent problems. Tinkering in conjunction with tracing is adopted

by SDT25 and SDT27. SDT25’s method, “I tinkered with the code while tracing the

execution path”, and SDT27’s technique, “modifying and tracing the function helped us

understand the underlying issue”, both highlight the value of hands-on manipulation and

careful tracking for a deeper understanding of coding issues. Lastly, SDT26 and SDT28

showcase the integration of slicing with print statement debugging. SDT26 explains, “I

sliced the function and added print statements in each section”, while SDT28 describes,

“breaking down the script and using prints in each block was enlightening”. These

methods illuminate how dissecting code combined with strategic print statements can

illuminate complex issues. These varied combinations of strategies reflect the wide-

ranging and adaptive nature of debugging in software development, emphasising the

need for flexibility and creativity in resolving coding challenges.

5.1.3 Theme 3: Error Spectrum

The ‘Error Spectrum’ was another prominent theme in the debugging transcripts, vividly

portrayed through the participants’ experiences. As seen in Table 18, three major error

types are prominent in the video analysis and the observation notes; these are diverse

error types, ranging from simple syntax slip-ups and syntax errors to complex logical

oversights, logical errors and execution hurdles associated with runtime errors,

emphasising the complex nature of debugging.

151 | P a g e

Table 18: Error Spectrum Subthemes in Dyadic Debugging Sessions

Subthemes Description

Syntax Errors Participants encountered various syntax errors, including missing

colons, indentation mistakes, and typographical errors, illustrating how

minor code slip-ups can disrupt execution.

Logical Errors Logical errors were prominent, such as incorrect tax calculations, flawed

loop logic, and floating-point precision issues, underscoring the need for

rigorous logic validation.

Runtime Errors Issues like unconverted string inputs, null pointer exceptions, and

function parameter mismatches demonstrated how improper data

handling can cause program crashes.

Ambiguous Errors Some errors, such as incorrect operators, string concatenation issues,

and data type mismatches, blurred the lines between syntax, logic, and

runtime errors, highlighting the complexity of debugging.

Participants identified a variety of syntax errors, reinforcing the critical nature of precise

coding. SDT1 observed, “looks like we’ve hit our first syntax error, it’s missing a colon at

the end of the function definition”, pinpointing a common yet crucial mistake. Echoing

this attention to detail, SDT4 found “an indentation error, missing colon, in our if-else

block”, bringing to the fore how such oversights can disrupt code logic. The simplicity of

syntax errors was further illustrated by SDT9, who stated, “this ‘def’ misspelled, a typo in

the function declaration, is causing trouble”, drawing attention to how minor

typographical errors can lead to significant problems. SDT11 added to this theme by

identifying “a missing parenthesis, missing colon, in our print statement”, a small error

with potentially large consequences. SDT17 addressed a less obvious syntax issue, noting

“there’s a syntax error, wrong comparison operator, in our if-else statement”, which

could lead to logical errors in the program. SDT18 addressed a compound issue by

suggesting, “we have encountered an undefined variable error, Infinite loop due to

missing colon in ‘for’ loop, in our script”, illustrating how syntax errors can cause major

152 | P a g e

runtime problems. Each instance suggests the importance of meticulous syntax in

programming, where even minor errors can have significant impacts.

Participants also encountered several logical errors that challenged the integrity of their

code. SDT3 identified an issue with the settings, stating, “we’re dealing with a logical

error. The tax rate is incorrectly set here”, pointing out a fundamental mistake in the

application’s logic. Similarly, SDT7 discovered a flaw in the main function, “we’ve got a

name comparison issue here, a logical error, it’s wrong tax calculation logic”, highlighting

a critical oversight in the program’s core functionality. SDT8 faced a more complex issue,

“our loop logic is flawed, resulting in an infinite loop error, attempt to use an undefined

variable”, illustrating the cascading effects of logical errors on program flow. SDT21 dealt

with a minor but consequential problem, “we’ve got a problem with scope here, a typical

logical error in variable handling”, demonstrating how mismanagement of variable scope

can disrupt a program’s operation. SDT26 dealt with a numerical precision challenge,

“we’ve got a floating-point precision error in our calculations”, shedding light on the

intricacies of handling numerical data. Each of these instances emphasises the necessity

for rigorous logical scrutiny in software development, where overlooked details can lead

to significant operational flaws.

Participants also encountered various runtime errors that hindered their progress. SDT5

identified a fundamental conversion issue, stating, “the script threw a runtime error; it’s

not converting string input to number before mathematical operations because of

unconverted string inputs”, pointing out a critical oversight in data handling. SDT14 faced

a null pointer exception, “this section’s throwing a null pointer exception, definitely a

153 | P a g e

runtime issue”, highlighting a common but serious error in accessing uninitialised

memory or objects. In a similar vein, SDT19 tackled a type conversion problem, “this

segment is throwing a type conversion error, needs fixing”, affirming the importance of

ensuring data types are correctly managed. SDT27 encountered a function call issue,

“there’s a mismatch in function arguments, causing a parameter error”, Illuminating the

complexities and possible drawbacks in function parameter management. Each incident

reflects the complexity of runtime errors in software development, where incorrect

handling of data types, memory, and function parameters can lead to significant issues in

program execution.

However, certain errors defy straightforward classification, as highlighted by participants

who encountered ambiguous issues. SDT2 pointed out a common error in operator

usage, stating, “Ah, Wrong operator for multiplication. We’ve used ‘x’ instead of ‘*,’ a

classic multiplication operator error”. This error’s nature could swing between a syntax

or logical error, depending on the context and language used. Similarly, SDT6 discovered

a less apparent issue in string operations, “just spotted mismatch in string concatenation,

a string concatenation mistake in our return statement”. This could either be a syntax

error affecting code structure or a logical error where the code’s syntax is correct but fails

to execute as intended. As a final point, SDT12 faced a data type mismatch, “we’ve got a

data type mismatch error, something’s not adding up right”, an issue that could manifest

as a logical or runtime error, depending on its effect on the program’s functionality. These

situations expose the fine-grained characteristics of coding errors, where the line

between different error types can be blurred, reflecting the complex and layered

challenges in software development.

154 | P a g e

5.1.4 Theme 4: Cognitive Load Management

Cognitive Load Management emerged as a pivotal theme, capturing the participants’

strategic efforts to distribute mental effort effectively. As seen in Table 19, this theme

encompasses various subthemes, including verbalising thought processes, role-switching,

and structured debugging approaches, all of which played a crucial role in mitigating

cognitive strain and enhancing collaboration during debugging sessions.

Table 19: Cognitive Load Management Subthemes in Dyadic Debugging Sessions

Subthemes Description

Task Segmentation and Role

Division

Participants organised debugging by listing errors, breaking

down problems, and alternating tasks, effectively balancing

workload to boost efficiency and reduce overwhelm.

Managing Distributed Cognitive

Load

The participants collaboratively managed cognitive load

through structured debugging, record-keeping, code reviews,

and alternating coding and reviewing for accuracy and

efficiency.

Collaboration and Team

Dynamics

Participants leveraged teamwork strategies like structured time

management, role flexibility, and reflective pauses to sustain

productivity and balance cognitive load during debugging.

Task Execution and Process

Improvement

Pre-emptive planning, role swapping, iterative improvement,

and prioritising critical errors helped optimise workflow

efficiency and cognitive resource distribution.

The dyads’ practices, such as task segmentation and role division, played a crucial role.

For example, in a focused approach to managing distributed cognitive load sharing,

participants from DYAD4 and DYAD5 shared strategies that emphasise systematic

processing and division of labour. SDT7 suggests a methodical first step by “listing out all

the errors first, then we’ll address them systematically”, setting the stage for an organised

problem-solving. Complementing this, SDT8 proposes a division of focus, where one

handles “runtime errors” and the other tackles “syntax errors”, demonstrating a tailored

approach to distribute cognitive demands according to individual strengths. From DYAD5,

SDT9 introduces a prioritisation strategy, focusing on “the errors that seem most critical”,

155 | P a g e

which ensures that efforts are concentrated where they are most needed. SDT10 further

refines this approach by “Breaking down complex problems into smaller tasks”, enabling

a more manageable and less overwhelming process of troubleshooting. These strategies

illustrate jointly an approach to workload distribution, ensuring that cognitive resources

are optimally allocated to enhance efficiency and accuracy in problem-solving.

In addressing the management of distributed cognitive load, with a focus on structured

debugging, SDT11 and SDT12 present a detailed strategy that affirms the importance of

a structured and systematic approach to debugging. SDT11’s suggestion to “tackle the

errors one at a time to avoid getting overwhelmed” introduces a methodical way of

breaking down the complexity, aiming to minimise cognitive overload by focusing on

individual issues sequentially. Complementing this, SDT12’s commitment to “note down

each error and our approach in resolving it” offers a record-keeping practice that ensures

transparency and aids in tracking progress. Further, SDT11 advocates for periodic code

reviews “to catch any missed errors”, highlighting the proactive measures taken to ensure

thoroughness and accuracy in their work. SDT12’s strategy to “alternate between coding

and reviewing” proposes a dynamic workflow that facilitates error detection and

maintains a balance between creation and analysis, leading to a more efficient debugging

process. These approaches, in a way, point to a collaborative effort towards distributed

cognitive load management, focusing on precision, accountability, and a strategic division

of tasks to enhance problem-solving effectiveness.

In the context of collaboration and team dynamics, the dyads portray a strategic

approach to managing distributed cognitive load through various techniques to enhance

teamwork efficiency during the debugging process. DYAD1’s SDT1 suggests taking a

156 | P a g e

moment to recap progress, addressing the risk of becoming overwhelmed, thereby

emphasising the importance of reflective pauses to maintain clarity and focus. DYAD7

introduces structured time management and role flexibility, with SDT14 advocating for

the use of timers during debugging phases for better time allocation, and SDT13 proposed

role switching to gain fresh perspectives, showcasing methods to keep the cognitive load

balanced and ensure sustained productivity. DYAD8, through SDT15 and SDT16,

highlighted the value of collaborative problem-solving and leveraging individual

strengths, suggesting working together on complex parts and combining syntax and

logical analysis skills to form a complementary team dynamic. These strategies, in a way,

illustrate a thoughtful approach to workload distribution, focusing on maintaining

momentum, leveraging diverse skills, and periodically reassessing team strategy to

optimise performance and mitigate cognitive overload.

In the realm of task execution and process improvement, participants from DYAD10,

DYAD13, and DYAD15 offered insightful strategies for managing distributed cognitive load

sharing effectively. Beginning with DYAD10, SDT19 advocated for a planned approach

before coding, paired with SDT20’s suggestion for role swapping to maintain fresh

perspectives, drawing attention to the value of pre-emptive planning and flexibility in role

allocation as methods to distribute cognitive load efficiently. SDT19 further emphasises

the need for wise management of cognitive resources, aligning with the overarching

theme of sustainable workload distribution. Moving to DYAD13, SDT26 and SDT25

discussed iterative improvement and continuous code refinement as mechanisms for

gradual learning and error reduction, highlighting an ongoing commitment to evolution

and quality enhancement. DYAD15’s contributions, with SDT29 and SDT30, stressed

157 | P a g e

prioritising critical errors, efficient resource use, focusing on impactful errors, strategic

task allocation, and periodic reassessment of priorities. These strategies also indicate a

sophisticated approach to workload management, where planning, adaptability, focused

efforts, and strategic reassessments converge to optimise distributed cognitive load

sharing, thus fostering a more effective and efficient debugging and development

process.

5.1.5 Theme 5: Challenges Faced

Challenges Faced by the dyad emerged as a significant theme highlighting the

multifaceted difficulties encountered. As seen in Table 20, this theme comprises various

subthemes, including technical proficiency and error resolution, cognitive and workflow

management, collaboration and communication dynamics, and tool and resource

utilisation, all of which influenced the dyads’ abilities to navigate debugging tasks

effectively.

Table 20: Challenges Faced Subthemes in Dyadic Debugging Sessions

Subthemes Description

Technical Proficiency

and Error Resolution

Participants faced difficulties with unfamiliar programming languages,

recurring errors, and logical complexities, highlighting the challenge of

mastering debugging techniques.

Cognitive and Workflow

Management

Frequent context switching, role transitions, and overwhelming

workloads contributed to cognitive strain, necessitating structured

strategies for maintaining focus and efficiency.

Collaboration and

Communication

Dynamics

Misalignment in problem-solving approaches, difficulties in articulating

thoughts, and ineffective communication hindered smooth

collaboration and debugging progress.

Tool and Resource

Utilisation

Struggles with non-intuitive debugging tools, unfamiliar development

environments, and poorly documented code exacerbated the

challenges of efficient error resolution.

For instance, while navigating through the collaborative debugging task, participants

encountered various technical challenges, vividly captured through their personal

158 | P a g e

reflections. The journey begins with SDT1’s confusion, “I’m lost with this syntax. It’s

nothing like what I’ve worked with before”, and SDT6’s acknowledgement of unfamiliar

territory, “I’m not very familiar with this programming language, which makes debugging

challenging”. These statements lay the groundwork for understanding the difficulties

faced due to unfamiliar coding environments and languages. The recurrence of errors, as

expressed by SDT5, “this error keeps recurring. It feels like we’re missing something

fundamental”, further illustrates the struggle to grasp core issues within the code.

The complexity of logical errors becomes apparent through SDT2’s observation, “these

logical errors are trickier than I thought. It’s hard to get the logic right”, while SDT16’s

frustration, “every fix seems to introduce a new problem. It’s frustrating”, encapsulates

the cyclical nature of debugging. SDT17’s remark, “the complexity of this code is beyond

what I’ve handled before”, and SDT9’s challenge in spotting “small syntax errors” denote

the daunting task of navigating complex code. Adding to the depth of challenges, SDT13

admits, “some of these errors are beyond my current knowledge base”, highlighting the

learning curve involved. Similarly, SDT26’s insight, “the logic behind these functions is not

what I expected. It’s confusing”, and SDT27’s self-doubt, “I keep second-guessing myself.

Am I fixing this the right way?” reflect the cognitive and emotional hurdles in debugging.

These experiences shared by each of the apprentices portray a varied landscape of the

debugging process, marked by technical, cognitive, and emotional challenges as

participants grapple with unfamiliar syntax, logical complexities, and the thorough insight

necessary for proficiently managing and fixing errors.

159 | P a g e

Also, navigating the labyrinth of collaborative debugging, participants revealed an array

of challenges around cognitive and workflow management, each illuminating different

aspects of the ordeal. Starting with SDT3’s revelation, “constantly switching between

different parts of the code is really disorienting”, the narrative unveils the cognitive

turmoil triggered by incessant shifts in attention. This sense of disorientation resonates

with SDT12’s admission, “the constant role-switching is making it hard to maintain a train

of thought”, underlining the struggle to stay focused amidst ongoing transitions. The

confession by SDT4, “I’m struggling to keep up with the pace. This is more complex than

I expected”, and SDT21’s assertion, “sometimes I feel overwhelmed by the sheer volume

of issues to address”, bring to light the overwhelming complexity and breadth of

debugging activities. This quest for clarity amid chaos is echoed in SDT7’s frustration, “the

more we fix, the more issues seem to arise. It’s like a never-ending cycle”, capturing the

cyclical nature of their task.

The discourse then expands to include efficiency and strategic planning, or rather the lack

thereof, with SDT8 and SDT22 voicing concerns over the monumental task of error

management and the challenge of prioritisation. SDT10 adds another layer to the

struggle, noting, “understanding this existing codebase is tough. It’s not well-

documented”, pinpointing the difficulties posed by insufficient documentation. The

dialogue shifts to strategy and methodology, with SDT18’s remark, “keeping track of all

the changes and errors is quite a task”, spotlighting the logistical challenges of monitoring

progress. Also, doubts about their chosen approach are succinctly expressed by SDT19,

“I’m not sure of the obstacles”, and the task’s emotional impact emerges, with SDT29

stating, “It’s challenging to remain focused with so many different types of errors”, and

160 | P a g e

SDT30 sharing, “I’m feeling the pressure with the amount of work we need to get

through”, reflecting the stress and pressure inherent in the debugging process. SDT25’s

introspection, “balancing between fixing errors and understanding the code is tough”,

indicates the delicate act of navigating between correction and comprehension.

These narratives weave together a story filled with cognitive, logistical, and emotional

complexities, offering an in-depth look at the collaborative debugging journey. From

SDT3’s insights on the disorientation caused by frequent context switches to SDT25’s

struggles with balancing error correction and code understanding, participants’ candid

quotes highlight the composite nature of debugging in a team setting. This

comprehensive depiction sheds light on the participants’ technical and emotional battles

and reiterates the need for systematic approaches and efficient strategies to navigate the

intricate process of debugging collaboratively.

In the intricate process of collaboratively debugging Python code, the dynamics of

collaboration and communication among participants illuminate the pluralistic challenges

encountered. Starting with SDT11’s candid admission, “I’m finding it hard to articulate my

thoughts clearly to my partner”, we look at the complexities involved in conveying

detailed technical concepts within a team. This difficulty in communication is not isolated,

as SDT14 reveals, “aligning my coding approach with my partner’s suggestions is proving

difficult”, reinforcing the hurdles in meshing diverse problem-solving strategies. The

sentiment of misalignment in collaboration is further echoed by SDT20, who states, “I feel

like we’re not communicating effectively. It’s impacting our progress”, highlighting the

direct impact of communication barriers on the efficiency of debugging efforts. These

161 | P a g e

admissions collectively paint a picture of a collaborative environment where the

challenges extend beyond the technical aspects of debugging to include the critical, yet

often overlooked, elements of clear communication and effective teamwork. Through

these reflections, the narrative shifts from individual coding struggles to a broader

examination of how collaborative dynamics influence the outcome of joint debugging

tasks.

To add to that, the context of collaboratively debugging Python code using tools and

resources emerges as a significant hurdle for participants, shedding light on various

aspects of the debugging process. Beginning with SDT15’s frustration, “I’m struggling with

the debugging tools. They’re not very intuitive”, we uncover the initial layer of complexity

that non-intuitive tools add to the debugging process. This struggle centres around the

tools and how their design can impede the progress of those unfamiliar with their

intricacies. Moving forward, SDT23’s experience, “I’m not used to this development

environment, so it’s slowing me down”, further complicates the situation. This statement

reveals the adjustment challenges faced when navigating unfamiliar development

environments, highlighting how such unfamiliarity can directly slow down the debugging

process. Transitioning to a new environment requires learning its functionalities and

adapting one’s debugging strategy to fit its constraints.

Furthermore, the issue of poorly documented code is brought to the fore by SDT24, who

points out, “the lack of comments in the code is making it hard to understand the intent”.

This highlights another dimension of the challenge, for example, the difficulty of

deciphering code without adequate documentation. Understanding the original

162 | P a g e

programmer’s intent becomes a task in itself, adding another layer of complexity to the

debugging effort. These insights stress the broader challenges of tool and resource

utilisation in collaborative debugging. They reflect on the technical difficulties posed by

unfamiliar or poorly designed tools and environments and the importance of clear

documentation in facilitating a smoother debugging process. Through these participant

experiences, we understand the additional obstacles that tools and resources can present

in the collaborative debugging of Python code.

In conclusion, Tables 21 and 22 summarise the observations from the debugging session

notes and video analysis. It encapsulates the situation during and at the conclusion of the

debugging sessions, with a focus on the five themes previously identified. It illustrates the

number of bugs each pair was unable to resolve, the debugging strategies and tactics

employed, the use of technology, how they manage the sharing of cognitive load, and the

challenges encountered while collaboratively debugging the Python code.

Table 21: Outline of the debugging sessions’ core findings

Pair /
Participant

Error
Spectrum

Debugging
Strategies & Tactics

Technology
Utilisation

Cognitive Load
Management

Challenges Faced

DYAD1
SDT1 & SDT2

5 Syntax Errors,
2 Logical Errors
and 1 Runtime
Errors

Print Statement
Debugging, IDE
Debuggers, Code
Review, Tinkering,
Tracing

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Collaboration
and Team
Dynamics

• Technical Proficiency
and Error Resolution

DYAD2
SDT3 & SDT4

0 Syntax Errors,
2 Logical Errors
and 3 Runtime
Errors

Print Statement
Debugging,
Tinkering, IDE
Debugger, Slicing,
Code Review

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Task Execution
and Process
Improvement

• Cognitive and
Workflow
Management

DYAD3
SDT5 & SDT6

6 Syntax Errors,
6 Logical Errors
and 2 Runtime
Errors

Tinkering, Trial &
Error, Print
Statement
Debugging, Divide &
Conquer

Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Task Execution
and Process
Improvement

• Technical Proficiency
and Error Resolution

DYAD4
SDT7 & SDT8

2 Syntax Errors,
2 Logical Errors
and 1 Runtime
Errors

Rubber Duck
Debugging,
Tinkering, Print
Statement
Debugging, Code
Review

Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Workflow
Management
and Strategy

• Cognitive and
Workflow
Management

163 | P a g e

Table 22: Outline of the debugging sessions’ core findings (Continuation)

Pair /
Participant

Error
Spectrum

Debugging
Strategies & Tactics

Technology
Utilisation

Cognitive Load
Management

Challenges Faced

DYAD5
SDT9 &
SDT10

2 Syntax Errors,
5 Logical Errors
and 2 Runtime
Errors

Trial & Error,
Tinkering, Tracing,
Print Statement
Debugging

Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Workflow
Management
and Strategy

• Technical Proficiency
and Error Resolution

• Cognitive and
Workflow
Management

DYAD6
SDT11 &

SDT12

7 Syntax Errors,
6 Logical Errors
and 2 Runtime
Errors

Trial & Error, Code
Review, Tinkering,
Print Statement
Debugging

Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Task
Segmentation
and
Collaboration

• Cognitive and
Workflow
Management

• Collaboration and
Communication
Dynamics

DYAD7
SDT13 &

SDT14

3 Syntax Errors,
2 Logical Errors
and 2 Runtime
Errors

Rubber Duck
Debugging,
Tinkering, IDE
Debuggers, Print
Statement
Debugging

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Collaboration
and Team
Dynamics

• Technical Proficiency
and Error Resolution

• Collaboration and
Communication
Dynamics

DYAD8
SDT15 &

SDT16

0 Syntax Errors,
4 Logical Errors
and 2 Runtime
Errors

Print Statement
Debugging,
Tinkering, Pattern
Matching, Code
Review

Visual Studio.
Microsoft Team,
Python, Live Share,
GitHub

Collaboration
and Team
Dynamics

• Technical Proficiency
and Error Resolution

• Tool and Resource
Utilisation.

DYAD9
SDT17 &

SDT18

1 Syntax Errors,
3 Logical Errors
and 2 Runtime
Errors

Code Review, IDE
Debuggers,
Tinkering, Rubber
Duck Debugging,
Pattern Matching

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Collaboration
and Team
Dynamics

• Technical Proficiency
and Error Resolution

• Cognitive and
Workflow
Management

DYAD10
SDT19 &

SDT20

2 Syntax Errors,
1 Logical Errors
and 1 Runtime
Errors

Tracing, Tinkering,
Print Statement
Debugging, Code
Review

Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Task Execution
and Process
Improvement

• Cognitive and
Workflow
Management

• Collaboration and
Communication
Dynamics

DYAD11
SDT21 &

SDT22

4 Syntax Errors,
3 Logical Errors
and 1 Runtime
Errors

Print Statement
Debugging,
Tinkering, IDE
Debuggers, Code
Review

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Collaboration
and Team
Dynamics

• Cognitive and
Workflow
Management

DYAD12
SDT23 &

SDT24

0 Syntax Errors,
2 Logical Errors
and 3 Runtime
Errors

Trial & Error, IDE
Debuggers,
Tinkering, Print
Statement
Debugging

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Collaboration
and Team
Dynamics

• Tool and Resource
Utilisation

DYAD13
SDT25 &

SDT26

2 Syntax Errors,
3 Logical Errors
and 1 Runtime
Errors

Code Review,
Tinkering, Trial &
Error, Pattern
Matching, Print
Statement
Debugging

Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Task Execution
and Process
Improvement

• Technical Proficiency
and Error Resolution

• Cognitive and
Workflow
Management

DYAD14
SDT27 &

SDT28

2 Syntax Errors,
5 Logical Errors
and 2 Runtime
Errors

Tinkering, Print
Statement
Debugging, Code
Review

Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Task Execution
and Process
Improvement

• Technical Proficiency
and Error Resolution

• Cognitive and
Workflow
Management

DYAD15
SDT29 &

SDT30

3 Syntax Errors,
2 Logical Errors
and 1 Runtime
Errors

Print Statement
Debugging,
Tinkering, IDE
Debuggers, Code
Review

IDE Debuggers,
Visual Studio.
Microsoft Team,
Python, Live Share,
Github

Task Execution
and Process
Improvement

• Cognitive and
Workflow
Management

164 | P a g e

5.2 Python Code Analysis Findings

The investigation into debugging behaviour examined the performance of fifteen dyads

working on Python code embedded with 20 bugs, consisting of 11 syntax, 6 logical, and 3

runtime errors, as detailed in Table 23. Although this table provided the counts, the

specific error codes are listed in Tables 24, 25, and 26, where the errors are segmented

into the dyads’ debugging outcomes, such as bugs found, unfound, fixed, and unfixed.

This segmentation reveals their proficiency across a spectrum from lower to higher. Their

success in identifying and resolving errors across the three bug categories determined

the classification into lower, moderate, and high proficiency levels.

Across the proficiency spectrum, DYAD6 and DYAD3 demonstrated foundational syntax

handling by addressing basic errors such as missing colons and print statement issues,

with DYAD6 resolving 4 out of 8 and DYAD3 half of 11 identified errors, yet both struggled

with more complex challenges like string closures and loop completions. Advancing to

moderate proficiency, DYAD1, DYAD11, and DYAD12 identified all errors but were

partially stymied by intricate issues like incorrect ‘if’ sequencing and loop errors, with

their resolution rates ranging from 6 to 7 out of 11. Higher up, DYAD7, DYAD9, and

DYAD15 showcased greater skill, fixing common errors efficiently but encountering

difficulties with specific problems like incorrect ‘if’ structures and loop errors, with their

success rates nearing 8 to 9 out of 11. The top performers, Dyads 10, 13, 14, 2, 4, 5, and

8, identified and adeptly resolved the most challenging errors, including complex string

and loop issues, with the latter group achieving a perfect resolution record. This

progression from basic to exceptional proficiency amplifies the varied learning curves and

165 | P a g e

the need for targeted learning strategies to foster comprehensive Python programming

skills.

Moreover, across DYADs 1 to 15, proficiency in addressing logical errors varied

significantly, showcasing diverse levels of understanding in programming logic. DYAD3

and DYAD6, at the lower end, both identified 6 logical errors but failed to resolve any,

indicating a fundamental need for improvement in understanding complex logic.

Similarly, DYAD14 and DYAD5 struggled, each identifying 6 errors but resolving only one,

highlighting difficulties with intricate issues like tax calculation logic and bonus logic.

Slightly above, DYAD8 managed to fix 2 out of 6 errors, showing a modest improvement

but still facing challenges with specific logical errors. DYAD9, DYAD11, and DYAD13

demonstrated moderate proficiency; DYAD9 resolved 2 out of 5 identified errors, DYAD11

fixed 3 out of 5, and DYAD13 corrected 3 out of 6, suggesting they have a foundational

grasp of programming logic with room for growth. DYAD12’s performance, resolving 4

out of 6 errors, aligns them with higher proficiency, akin to DYADs 1, 4, 7, and 15, each

also resolving 4 out of 6 errors. This group effectively navigated a range of logical

challenges, evidencing a robust understanding of programming logic, albeit with areas for

further development. DYAD10 excelled by rectifying 5 out of 6 logical errors,

demonstrating an advanced understanding of Python’s logical constructs and superior

problem-solving skills, and setting a benchmark for proficiency among their peers.

Furthermore, the investigation into runtime error resolution among fifteen dyads

revealed a spectrum of debugging proficiencies. DYAD3 and DYAD6, unable to resolve any

errors, demonstrated foundational proficiency, highlighting their nascent journey in

166 | P a g e

understanding Python’s runtime environment. The moderate proficiency group, including

DYAD1, DYAD2, DYAD7, DYAD8, DYAD11, DYAD12, and DYAD14, showed varying degrees

of success; notably, DYAD1 and DYAD7 each fixed two out of three errors, indicating a

developing but incomplete mastery over runtime challenges, while the others resolved

at least one, revealing gaps in their debugging capabilities. DYAD4, DYAD9, and DYAD13,

each resolving two out of three errors, were classified as proficient, showcasing a strong

grasp on runtime error management and systematic problem-solving skills. Standing out

for their high proficiency, DYAD5 and DYAD10 flawlessly fixed all three identified errors,

indicating an advanced level of debugging expertise and setting a benchmark for their

peers in navigating and rectifying runtime challenges efficiently. This stratification

reinforced the varied levels of understanding and skill across the dyads, from

foundational to high proficiency in dealing with runtime errors.

In conclusion, the analysis of syntax, logical, and runtime error handling among Dyads

stressed the need for educational strategies tailored to individual and group proficiency

levels in Python programming. It revealed that while some Dyads excelled in identifying

and resolving errors, others faced challenges, signalling a diverse range of skill sets and

problem-solving approaches. For example, DYADs 3 and 6, struggling with logical error

resolution, and DYAD6’s particular difficulty with runtime errors, illustrated the necessity

for foundational training in Python’s logic and runtime environments. Conversely,

DYAD14’s limited success in addressing complex logical errors and the moderate

proficiency displayed by groups like DYAD1, DYAD2, DYAD7, and DYAD8 in runtime error

resolution pointed towards the need for targeted learning focused on understanding

intricate logic patterns and debugging skills. The stark contrast in error resolution

167 | P a g e

capabilities, particularly the adeptness of DYAD5 and DYAD10 in navigating runtime

challenges, further highlighted the spectrum of competencies within the cohort. This calls

for a dedicated emphasis on developing specific skills, such as loop mechanics, variable

scope comprehension, and practical debugging techniques, to enhance overall coding

proficiency. By pinpointing the distinct challenges each dyad encounters, educators can

customise instruction to uplift every learner’s understanding and application of Python’s

syntactical and logical constructs, fostering a deeper and more comprehensive grasp of

programming fundamentals.

Table 23: Summary of bugs discovery, successful fixing and unsuccessful fixing

168 | P a g e

Table 24: Summary of specific syntax errors breakdown by discovery and resolution.

Table 25: Summary of specific logical errors breakdown by discovery and resolution.

Table 26: Summary of specific runtime errors breakdown by discovery and resolution

169 | P a g e

5.3 Interview Session Findings

The dyads’ interview transcripts unveil and clarify some of the thoughts behind some

actions taken during the debugging that were not entirely captured through the actions

seen and from the think-aloud verbal protocol. A holistic examination of the dyads’

interview sessions using Braun and Clark’s thematic analysis (see Section 4.4.4) reveals

three key themes, as outlined in Table 27. In particular, the spectrum of errors, the

combination of technical and cognitive skills, and challenges arising from collaboration.

Table 27: Overview of key themes in interview sessions

Themes Description

Theme 1: Error Spectrum The data highlights participants’ debugging progression, from syntax

errors as a foundation to logical and runtime errors, which require

deeper problem-solving and execution flow understanding.

Theme 2: Technical and

Cognitive Skills

The data highlights participants’ technical and cognitive skills,

focusing on IDE tool usage, structured debugging strategies, and

cognitive load management through collaboration and role

distribution.

Theme 3: Challenges The data highlights participants’ challenges in remote debugging,

including communication barriers, cognitive strain, and logistical

constraints, requiring coordination, adaptability, and strategic

problem-solving.

5.3.1 Theme 1: Error Spectrum

The exploration of the error spectrum in dyad interviews highlighted the range of

programming challenges encountered during debugging. This theme is central to

unravelling the complexities of debugging, offering insights into novice programmers’

varied skill levels, problem-solving techniques, and learning progression. Far from being

mere obstacles, these errors are valuable indicators for skill evaluation and development.

170 | P a g e

The analysis, as outlined in Table 28, categorises errors into syntax, logic, and runtime

errors, each reflecting a unique challenge and requiring specific skills for resolution.

Table 28: Error Spectrum Subthemes in Interview Sessions

Subthemes Description

Syntax Errors Participants identified syntax errors as the most common and easiest to fix,

often caused by typographical errors, missing elements, or structural

inconsistencies, making them a fundamental first step in debugging.

Logical Errors Debugging logical errors proved challenging as they required a deep

understanding of both programming logic and the underlying problem

domain, often leading to frustration and a steep learning curve.

Runtime Errors Participants found runtime errors particularly difficult due to their reliance

on understanding execution flow, with issues like infinite loops and data

type mismatches highlighting gaps in programming experience.

Starting with the syntax error, participants uniformly acknowledged the primacy of syntax

errors in their initial diagnostic efforts. SDT3’s observation that “syntax errors were

usually the first thing we looked for in debugging” signifies a common strategy among the

cohort, reflecting a foundational approach to troubleshooting code. This sentiment was

echoed by SDT19 and SDT17, who noted that these errors “were typically related to

incorrect code structure” and “were usually due to overlooking Python’s rules”,

respectively, highlighting common pitfalls in adhering to the language’s syntax

requirements. SDT8 and SDT11 further pointed out that such errors “were often about

small typos or forgotten elements” and their identification was “crucial in the initial phase

of debugging”, indicating that these mistakes, while minor, were significant barriers to

code execution. The ease of resolving these issues was a recurrent theme, with SDT12

and SDT15 describing syntax errors as “often the easiest to diagnose and fix” and “the

most common and the easiest to fix”, suggesting a contrast between their frequency and

the simplicity of their resolution. SDT7’s mention of “mismatch in string concatenation

was a typical syntax error that we frequently encountered” adds specificity to the types

171 | P a g e

of syntax issues commonly faced, presenting a tangible example of the errors that

participants navigated. Collectively, these reflections paint a picture of debugging as a

process where identifying and correcting syntax errors forms the bedrock of resolving

more complex issues, marked by a shared understanding of these errors’ nature and their

role in the debugging hierarchy.

Furthermore, as voiced by participants, the challenge of debugging logical errors in

Python highlights a complex journey through the intricate landscape of programming

logic and syntax, particularly for those with limited prior experience. Initially, SDT1’s

observation that “these errors required a deep understanding of Python’s logic and

syntax, which was challenging given our limited experience”, captures a common

sentiment that resonates across the group. Subsequently, this struggle is echoed by SDT4,

who conceded, “however, I struggled with some of the more complex logical errors”,

emphasising the steep learning curve encountered. Furthermore, SDT10’s recounting,

“for instance, fixing the tax calculation logic in the script was tough, and I struggled with

understanding the deeper logic required for tax deduction conditions”, alongside SDT7’s

admission of frustration, “there were moments of frustration, especially when dealing

with complex logical errors like bonus calculation that lacks context”; both underline the

arduous task of navigating through errors that necessitate a profound dive into the code

and its underlying business logic. Moreover, this perspective is solidified by SDT16, who

reflected, “for me, these logical errors are challenging because they require a deep

understanding the code and the underlying business logic”.

172 | P a g e

Additionally, the task of articulating complex debugging processes, especially within

collaborative or remote settings, was brought to light by SDT9 and SDT11. Particularly,

SDT9 highlighted, “it was difficult to convey my reasoning and thought process solely

through verbal explanations”, while SDT11 disclosed, “one significant obstacle we

encountered during our debugging session was the complexity of managing and

understanding the program’s logic from a remote location”. These revelations expose an

additional layer of complexity introduced by remote collaboration on intricate debugging

tasks. Moreover, SDT15’s assertion, “these types of errors require coding skills and a deep

understanding of the problem domain”, coupled with SDT21’s observation, “for instance,

when we encountered the logical error involving the misuse of the special variable

‘name’, it wasn’t just a matter of syntax but understanding the conceptual use of this

Python construct”, highlight the crucial intersection of coding proficiency and domain-

specific knowledge in surmounting logical errors.

Concluding the logical errors discourse, this collective reflection from participants sheds

light on the technical hurdles faced when debugging logical errors. It also accentuates the

significance of an all-encompassing understanding that extends beyond mere syntax to

encompass the broader context of the problem. The shared experiences suggest a

significant learning curve and illuminate the pivotal role of deep, conceptual

comprehension in facilitating effective problem-solving within software development.

Likewise, as shared by participants, the journey through Python’s syntax and runtime

errors also highlights a challenging yet enlightening path in programming. Initially, SDT2

opened the discussion with a reflection on their struggle, stating, “I did find myself

173 | P a g e

challenged by some of the syntax and more intricate runtime errors. For instance, the

runtime error involving string-to-number conversion was a bit tricky for me initially”. This

admission sets the stage for a broader conversation about the complexities involved in

understanding and resolving programming errors. Subsequently, SDT4 connected with

this sentiment, revealing, “we managed to fix some runtime errors; however, the infinite

loop issue highlighted a gap in my skills”. Similarly, SDT8 aligned with this perspective,

adding, “I also share SDT7’s sentiment about runtime errors; not catching the infinite loop

was a learning point for me”, further emphasising the common challenges faced by the

group.

Moreover, the conversation deepened as SDT21 shared their specific struggles, noting,

“for me, the runtime errors were the most challenging during our collaboration,

particularly Infinite loop due to missing colon in ‘for’ loop… runtime errors often require

an understanding of the code and how the Python interpreter executes it”. This insight

was supported by SDT10, who observed, “runtime errors needed us to think about the

logic and structure of the program, which can be quite daunting”. Similarly, SDT11

highlighted a particular type of error, mentioning, “I found runtime errors particularly

challenging, specifically the ‘not converting string input to number’ error. It was a bit

perplexing as it involved understanding the data types and how Python handles input

operations”.

The narrative further evolved with SDT4 and SDT5 discussing the need for a deeper

analysis and the realisation of their beginner status through these errors. SDT5 candidly

stated, “runtime errors such as the infinite loop. These areas, which I couldn’t fix, clearly

174 | P a g e

indicate my beginner status and lack of in-depth programming experience”. SDT16,

drawing from SDT15’s experiences, identified additional challenges, including runtime

errors such as the use of undefined variables and infinite loops caused by missing colons

in ‘for’ loops, highlighting the difficulties posed by their limited experience.

In all, this collection of insights illuminates the technical hurdles encountered when

addressing runtime errors and emphasises the valuable learning moments they provide.

Through these shared experiences, the narrative captures the participants’ journey of

discovery and adaptation in confronting programming challenges. It highlights the

essential role that a profound comprehension of Python’s logic, syntax, and execution

flow plays in overcoming these obstacles, marking a significant step in their

developmental journey as programmers.

5.3.2 Theme 2: Technical and Cognitive Skills

The theme ‘Technical and Cognitive Skills’ highlights a participant’s ability to employ

various debugging tools and their aptitude for logical reasoning and problem-solving. As

seen in Table 29, this theme is further divided into three key sub-themes: technology

utilisation; debugging strategies and tactics; and cognitive load sharing. Moreover, a

selection of extracts from the debugging sessions vividly exemplifies technology

utilisation, debugging strategies and tactics, and cognitive load sharing as three sub-

themes.

175 | P a g e

Table 29: Technical and Cognitive Subthemes in Interview Sessions

Subthemes Description

Technology Utilisation Participants leveraged IDE tools such as Visual Studio Live Share for

real-time collaboration, syntax highlighting, debugging consoles, and

version control, enhancing their abilities to debug remotely and

efficiently.

Debugging Strategies &

Tactics

A mix of structured methods like print statement debugging, IDE

debuggers, rubber duck debugging, and divide-and-conquer

approaches helped participants systematically identify and resolve

coding errors.

Cognitive Load Sharing Participants managed mental workload by adopting strategies such as

the Driver-Navigator model, verbalising thought processes, role-

switching, and leveraging individual strengths to maintain efficiency

and prevent cognitive fatigue.

Starting with the first sub-theme, technology utilisation, participants across all fifteen

dyads universally utilised IDE tools, notably Visual Studio and Microsoft Visual Studio Live

Share, to navigate the challenges of distributed pair debugging in Python code.

Commonalities across dyads included the use of real-time code collaboration features,

particularly effective for overcoming geographical barriers and addressing errors. Despite

employing similar strategies, each dyad exhibited slight divergencies in their use of

technology. For instance, the exploration of debugging in remote settings, as shared by

participants, reveals the invaluable role of Integrated Development Environment (IDE)

tools and collaborative platforms in overcoming the challenges posed by physical

distance. SDT17 observes that “despite the physical distance, the use of tools like

Microsoft Studio live share facilitated real-time collaboration, making the process

smoother than anticipated”. This suggests the effectiveness of live-sharing features in

bridging gaps between team members. Similarly, SDT18 highlighted, “the IDE’s

collaborative features, such as live code sharing and simultaneous editing, significantly

eased the challenges of remote pair debugging”, pointing to the synergy between

technology and teamwork.

176 | P a g e

SDT4’s remark, “another aspect of the IDE that greatly aided our debugging process was

the integrated version control system”, alongside SDT2’s detailed account - “In our

session, we used Microsoft Teams and Visual Studio Live Share, which allowed us to share

and edit code in real-time” illustrated the multifaceted benefits of these platforms in

enhancing collaborative debugging efforts. However, SDT8 noted a potential downside,

“another factor contributing to these challenges was our reliance on technology to bridge

our geographical gap”, suggesting that while technology is a facilitator, it also introduces

dependencies.

The conversation then shifts to specific IDE features that streamline the debugging

process. SDT6 and SDT10 mention a “feature of the IDE that significantly helped us was

the syntax highlighting and code suggestion features”, and “the IDE’s features like code

highlighting and error notifications were significant in streamlining our debugging

process”, respectively. These functionalities aid in error identification and enhance

learning. Building on this, SDT16 and SDT14 reflected on the broader utility of these tools,

“building on SDT15’s points about syntax highlighting and auto-indentation, I found the

IDE’s error notifications and debugging console extremely beneficial”, and “I found the

features like code completion and intelligent suggestions particularly beneficial”.

Further emphasising the role of IDEs in debugging, SDT1 and SDT8 discuss the use of

debuggers and integrated consoles by saying “another aspect was the use of IDE

debuggers. They allowed us to step through the code and inspect variables at each stage”,

and “moreover, the integrated console within the IDE was a boon for Print Statement

177 | P a g e

Debugging”, highlighting how these tools facilitate a deeper understanding of code

execution. Echoing this sentiment, SDT14 states, “we focused more on leveraging the IDE

Debugger and Print Statement Debugging... this hands-on, tool-centric approach,

complemented by our continuous dialogue, made our debugging more efficient and

educational”.

Concluding the insights, SDT12, SDT20, SDT30, and SDT24 collectively praised the IDE’s

broader capabilities, “another aspect (of IDE) that I found incredibly helpful was the

integrated console and output window”, “the IDE’s capabilities for instant feedback and

error highlighting significantly boosted our debugging efficiency”, “another aspect of IDE

tools that proved immensely helpful was the code analysis features”, and “the IDE’s

debugging features were pivotal in our session... IDE) tools were a game-changer”, they

articulated. These reflections vividly depict how IDE tools and collaborative technologies

are not just facilitators but essential elements in the modern debugging process,

transforming challenges into opportunities for enhanced learning and efficiency in

programming.

This subtheme, Debugging Strategies and Tactics, also featured prominently in the

interview session transcript. Participants from a collaborative coding session provided

insightful reflections on their varied strategies, each enriching the conversation with their

unique experiences. SDT6 initiated the dialogue with a nod to teamwork, stating, “we

collectively decided to use Print Review Debugging for complex issues, where both of us

would analyse the outputs and brainstorm potential solutions”. This collaborative spirit

was mirrored by SDT2, who applied, “employed strategies like Print Statement Debugging

178 | P a g e

and Slicing more methodically”, showcasing a disciplined approach to unravelling code

complexities.

Furthermore, the discussion took a turn towards the benefits of structured methods

through SDT21’s revelation, “collaborating with SDT22 introduced me to the systematic

use of Print Statement Debugging and IDE Debuggers... It helped me realise how

structured methods could offer clearer insights into the code’s behaviour”. This

structured approach was contrasted by SDT6 and SDT23’s initial reliance on a more

heuristic method, with SDT6 admitting, “I leaned more towards the Trial and Error

approach in our session. Additionally, I used Tinkering”, and SDT23 reflecting on their

journey from trial and error to integration of print statement debugging, “I heavily relied

on the Trial and Error method at first... that’s when we started integrating print statement

debugging”.

Moreover, SDT7’s commentary clarified a shift from intuition to a more systematic

analysis as exemplified by “we adopted a more structured approach, systematically going

through the code, which is a shift from my usual more intuitive method”. This evolution

towards structured analysis was further supported by SDT8 and SDT9, who each found a

balance between tried-and-true methods and exploratory techniques, with SDT8

expressing a preference for print statement debugging and seeing the value in code

review, “I tend to favour Print Statement Debugging as my go-to strategy... I also see the

merit in Code Review”, and SDT9 combining trial-and-error with print statement

debugging, “I primarily focused on the ‘Trial-and-Error’ strategy... sometimes, I used to

‘Print Statement Debug’”.

179 | P a g e

Additionally, the dialogue expanded with SDT13, SDT16, and SDT17 incorporating

additional strategies such as Rubber Duck Debugging and Pattern Matching. SDT13

mentioned, “I heavily relied on Print Statement Debugging... Additionally, Rubber Duck

Debugging”, while SDT16 found pattern matching and code review beneficial by stating

“I also found ‘Pattern Matching’ quite useful during our session... Additionally, ‘Code

Review’”. SDT17’s approach combined IDE Debuggers with the unique method of Rubber

Duck Debugging by indication “I was drawn towards using IDE Debuggers and Rubber

Duck Debugging”. Participants SDT19 and SDT27 highlighted the importance of tracing

and tinkering, with SDT27 specifically stating, “I primarily focused on print statement

debugging... Tinkering also played a significant role in my approach”, illustrating a hands-

on and exploratory approach to debugging.

A divide-and-conquer strategy was mentioned by SDT5, illustrating an efficient

distribution of effort, remarking “we adopted a divide-and-conquer strategy, where each

of us focused on different types of errors”. This strategy was part of a broader narrative

of collaboration and rhythm in debugging, as shared by SDT16 and further elaborated by

SDT26, who spoke to the benefits of discussing code changes comprehensively by

asserting “we started with a comprehensive code review... discussing each part of the

code before making changes allowed us to understand the underlying logic better”.

The collective reflections culminate in a narrative that highlights the diverse strategies

employed by participants and emphasises the evolution of debugging practices through

collaboration and shared learning. From the reliance on traditional print statement

180 | P a g e

debugging to the adoption of more complex approaches like pattern matching and IDE

debuggers, the participants’ experiences demonstrate the dynamic and extensive nature

of debugging within the coding process.

Also, during the interview sessions, participants from DYAD1 to DYAD15 shared varied

strategies for effectively managing cognitive workload and distributing responsibilities,

spotlighting the theme of “Cognitive Load Sharing”. Through their experiences, the

importance of clear communication, strategic use of tools, and the dynamic distribution

of roles emerged as crucial factors in navigating the complexities of debugging tasks.

SDT2 from DYAD1 articulated the value of articulating thoughts and utilising Integrated

Development Environment (IDE) features, stating, “Another method we used was

verbalising our thought process... we utilised the features of our IDEs, like breakpoints

and debuggers... This blend of clear communication, role swapping, and effective use of

tools ensured that we managed our cognitive workload well throughout our debugging

session”. This approach highlighted the blend of verbalisation and technological support

in mitigating cognitive strain. In DYAD2, SDT4 and SDT3 shared insights into their

collaborative dynamics and mental strategies. SDT4 described their adoption of a ‘Driver-

Navigator’ model by declaring, "We intuitively adopted a ‘Driver-Navigator’ model to

distribute responsibilities... This division of roles allowed us to manage the cognitive

workload effectively... It also meant that we could switch roles and keep the session

dynamic, preventing fatigue and tunnel vision”, showcasing the benefits of role flexibility

and division. Adding to this, SDT3 emphasised the role of communication and breaks,

declaring “Our use of the ‘Think Aloud’ protocol was crucial in managing our cognitive

181 | P a g e

workload... We also made sure to take short breaks to prevent cognitive overload,

especially after resolving a particularly challenging error”, underlining the necessity of

vocalising thoughts and pacing the session to maintain cognitive health.

Similarly, SDT5 from DYAD3 highlighted a strategy tailored to individual strengths by

saying that, “We intuitively adopted a strategy that distributed responsibilities based on

our individual strengths and comfort zones... We also set up a system where we would

alternate roles every 15 minutes... This method ensured that neither of us became too

mentally fatigued”, illustrating an approach focused on leveraging personal strengths and

maintaining mental stamina through role rotation. In DYAD10, SDT19 and SDT20

presented a systematic method for dividing debugging tasks. SDT19 spoke of a strategic

distribution of work by emphasising that, “We adopted a strategic approach to distribute

responsibilities... This allowed me to focus deeply on specific sections, reducing the

cognitive load”, indicating a depth-focused strategy. Complementing this, SDT20 outlined

their role in broader oversight by articulating that, “I focused more on ‘Print Statement

Debugging’ and overseeing the broader logic of the program... We also scheduled regular

intervals to swap roles and discuss our findings”, highlighting the balance between micro-

level debugging and macro-level program understanding.

These narratives collectively illuminate the significance of adaptability, clear

communication, and strategic planning in debugging. By incorporating verbal protocols,

technological tools, and structured role distribution, the participants demonstrate a

polymorphic approach to cognitive load management, reflecting the collaborative nature

of problem-solving in coding environments.

182 | P a g e

5.3.3 Theme 3: Challenges

The interview session also unveiled a variety of challenges that the participants had

during the debugging session, categorised into three distinct subthemes, namely,

Communication and Collaboration; Technical and Cognitive; and Environmental and

Logistics. As seen in Table 30, each of these sub-themes encapsulates specific aspects of

the difficulties faced, shedding light on the multifaceted nature of debugging.

Table 30: Challenges Subthemes in Interview Sessions

Subthemes Description

Communication and

Collaboration

Participants struggled with remote debugging due to challenges in

conveying thoughts clearly, synchronising edits, and overcoming the

absence of non-verbal cues, necessitating extra effort for clarity and

coordination.

Technical & Cognitive Debugging required managing complex errors, synchronising

understanding, and handling cognitive strain, all of which were further

complicated by technological limitations and geographical separation.

Environmental and

Logistics

Geographical dispersion, reliance on digital tools, and unpredictable

internet connectivity introduced additional challenges, making real-time

collaboration and seamless communication more difficult.

The subtheme of ‘Communication and Collaboration’ was significantly emphasised by

participants across various dyads as a notable challenge they encountered, particularly

when remotely debugging Python code. SDT1 from DYAD1 shared, “while tools like Visual

Studio Live Share helped bridge the physical distance, we had to work harder to ensure

clear and precise communication... explaining our thought processes or understanding

the other’s perspective took extra effort”. This sentiment spotlights the need for

enhanced clarity in remote interactions, where digital tools cannot fully compensate for

the absence of face-to-face communication.

Echoing this challenge, SDT26 from DYAD26 noted the complications arising from digital

collaboration, stating, “while tools like Live Share were invaluable, there were moments

183 | P a g e

when simultaneous editing led to confusion... additionally, the inability to physically

observe each other’s non-verbal cues was a minor hurdle”. The lack of non-verbal cues

and the confusion caused by simultaneous edits suggest the difficulties of remote

collaboration. Similarly, SDT6 from DYAD6 highlighted issues with concurrent code

modifications by articulating that “when we both tried to edit or highlight the same piece

of code... it occasionally led to confusion and required us to pause and clarify who was

taking the lead”. This points to the importance of clear role delineation in preventing

misunderstandings during collaborative tasks.

SDT4 from DYAD4 discussed the impact of technical delays on collaboration, revealing,

“there were moments when changes made by SDT3 took a few seconds to reflect on my

screen and vice versa... this lag, although minor, disrupted the flow of our debugging

process”. The slight delay in synchronising edits can disrupt the debugging flow,

emphasising the need for patience and understanding in remote setups. Geographical

challenges were addressed by SDT5 from DYAD5, who mentioned, “being geographically

dispersed meant we couldn’t simply look over each other’s shoulder to point out issues

or discuss solutions... We had to be extra clear and concise in our verbal explanations”.

The physical distance necessitates a higher level of verbal clarity, highlighting the

importance of effective communication in remote debugging.

Interpretative differences were a concern for SDT23 from DYAD23, who said, “there were

instances where we had different interpretations of the error messages, particularly the

logical errors like the tax calculation logic”. This indicates the potential for varied

understandings of problems and the need for a unified approach to debugging. SDT24

184 | P a g e

from DYAD24 discussed the discipline required for effective remote collaboration, stating,

“it required us to be more disciplined in our approach... additionally, the limited

experience we both had meant that more complex errors, such as those involving deeper

logical or structural issues in the code, took us longer to resolve”. The comment reflects

on the need for a structured approach and the challenges posed by inexperience.

Finally, SDT25 from DYAD25 lamented the limitations of digital communication, saying,

“another obstacle was the limited ability to physically point out specific code segments

or errors”. The inability to directly indicate issues highlights another layer of challenge in

remote debugging. These insights offer a comprehensive view of the intricacies of remote

collaborative debugging. Despite the benefits of digital collaboration tools, the absence

of physical presence and the intricate of effective communication and role clarification

become evident. The participants’ experiences stress the necessity for clear

communication, patience, and a disciplined approach to navigate the complexities of

debugging collaboratively across distances.

In addressing the Technical and Cognitive sub-theme, apprentices grappled with the dual

challenges of navigating complex programming errors and the cognitive demands these

errors imposed, particularly in a remote setting. The narrative begins with SDT30’s

reflection on the hurdles of technical glitches, such as "when we were tackling the ‘Infinite

loop due to missing colon’ issue... additionally, relying on technology meant we were at

the mercy of our internet connections, which occasionally disrupted our flow”. This

candid admission focuses on the reliance on stable internet connections in remote

debugging and how technical issues can hamper progress.

185 | P a g e

Echoing this sentiment, SDT6 delved into the complexities of managing a shared editing

environment, stating, “another significant obstacle was managing the shared editing

environment effectively... this aspect of remote collaboration demanded a high level of

coordination and patience”. The necessity for enhanced coordination and patience is

highlighted here, showcasing the intricate balance required in remote collaborative

settings. The theme of coordination is further explored by SDT12, who mentioned,

“another obstacle we faced was the limitation in real-time feedback and reaction... we

found that our responses to each other’s suggestions were sometimes delayed”, pointing

to the challenges of immediate communication in synchronising collaborative efforts.

The conversation shifts to the use of specific tools with SDT14’s expressing that, “Another

obstacle was efficiently utilising the IDE Debugger in a remote setting... This limitation

made it difficult to collaboratively explore different hypotheses about the bug”. This

insight brings to light the challenges of leveraging debugging tools remotely, complicating

the collaborative exploration of potential solutions.

SDT1 and SDT2 discussed the cognitive load involved in debugging, with SDT1 stating,

“One of the main obstacles we encountered during our debugging session was dealing

with complex logical errors… these errors required a deep understanding of Python’s logic

and syntax, which was challenging given our limited experience”. This is complemented

by SDT2’s observation, “another significant obstacle was maintaining a synchronised

understanding of the code... managing the cognitive load was also a challenge”,

186 | P a g e

highlighting the cognitive strain in maintaining mutual comprehension of the code amidst

these technical challenges.

The geographical divide adds another layer of complexity, with SDT23 and SDT27 noting

the difficulties it introduced. SDT23 mentioned, “the geographical separation added

another layer of complexity”, while SDT27 expanded on this, saying “one of the significant

obstacles we faced was the time lag and communication barriers due to our geographic

separation... The lack of immediate, direct interaction made it more challenging to

collaboratively and swiftly navigate through these complex issues”. These reflections

accent the compounded difficulties of geographic separation, including time lags and

communication barriers that hinder swift, collaborative navigation through technical

issues.

SDT28’s comment, “another obstacle was effectively managing and integrating our

different approaches to debugging... balancing these approaches remotely required

careful coordination and patience”, concludes the discussion, focusing on the challenge

of integrating diverse debugging approaches. This summary encapsulates the

apprentices’ experiences, highlighting the multifaceted nature of technical and cognitive

challenges in remote debugging, where technical difficulties, cognitive demands,

geographical separation, and the need for coordination converge, illustrating the

complexities of collaborative problem-solving in programming.

Similarly, in exploring the ‘Environmental and Logistics Challenges’ encountered during

collaborative Python debugging, participants vividly described the complexities

187 | P a g e

introduced by geographical dispersion and reliance on digital tools. SDT2 opens the

narrative, emphasising the isolation felt in remote settings by asserting that, “in a remote

setting, it’s easy to feel isolated with the problem at hand”. This sentiment sets the stage

for a series of reflections on the limitations of remote collaboration.

SDT3 and SDT6 discuss the physical limitations of digital communication, noting the

inability to use gestures or point at the screen, noting “being geographically dispersed,

we couldn’t simply point at the screen or use physical gestures to express our ideas”, and

the challenges even helpful tools like Visual Studio Live Share introduce, “while tools like

Visual Studio Live Share were immensely helpful, they also presented challenges”. These

insights highlight how digital tools, despite their benefits, fall short of replicating the

intricates of in-person interaction.

The narrative then shifts to the constraints of tool usage, with SDT14 and SDT24

expressing the limitations on control during debugging and the gap left by the absence of

physical presence by reitrating that, “only one of us could actively control and navigate

the debugger at any given time”, and “real-time collaboration tools are great, but they

can’t completely bridge the gap created by not being physically present in the same

room”. These comments identify the challenges in achieving seamless collaboration

remotely.

SDT19, along with other participants, touches on the time and effort required to

communicate and understand concepts across distances by mentioning that, “our

geographical separation... as it limited our ability to quickly bounce ideas off each other

188 | P a g e

and required more time to explain and understand concepts”. This observation was

echoed in remarks about the added complexity and the need for over-communication

and reiterating that, “the lack of physical presence meant we had to over-communicate

to compensate for the lack of in-person interaction, which sometimes slowed down our

debugging process” (SDT26), reflecting the intricate balance required to maintain

effective communication and collaboration remotely.

Concluding the discussion, SDT30 brings attention to the environmental challenges of

working in different settings and the unpredictability of internet connectivity, expressing

that, “our different locations also meant we were working in different environments,

which sometimes led to distractions or interruptions unique to our individual settings...

relying on technology meant we were at the mercy of our internet connections, which

occasionally disrupted our flow”. This summary encapsulates the multifaceted

Environmental and Logistics Challenges faced by apprentices in debugging Python code

collaboratively across distances, underscoring the critical role of effective

communication, the limitations of digital tools, and the personal adaptability required in

remote work environments.

5.4 Focus Group Discussion Findings

The focus group discussion was undertaken with work-based mentors and trainers on the

debugging practices of SDT apprentices. These mentors and trainers, who work closely

with the apprentices, provided crucial perspectives to bolster the data already collected

from the apprentices, thereby enriching the overall understanding of the study’s

objectives. The discussion was structured around seven key questions, each designed to

189 | P a g e

delve into different facets of the research areas, initially focusing on the mentors’

observations that apprentices often start with casual reasoning and frequently rely on

trial-and-error methods when tackling debugging tasks.

Notably, it is observed that as apprentices gain experience and confidence, they tend to

gradually move towards more structured methods, such as the top-down approach. The

mentors unanimously acknowledged the effectiveness of strategies such as pair

programming, pattern matching, and IDE debuggers, noting their complexity and their

long-term benefits. They emphasised the value of mentoring, particularly through code

reviews and collaborative problem-solving, in enhancing apprentices’ debugging skills.

Similarly, they opine that a shift towards proactive strategies, moving from basic

techniques like print statement debugging to more advanced methods such as static code

analysis and rubber duck debugging, were crucial for a deeper understanding of the code.

As the discussion progressed, the mentors explored factors influencing apprentices’

choice of debugging strategies, including educational background, project complexity,

tool familiarity, learning environment, and peer influence. The variability in strategy

effectiveness was noted, depending on the nature of bugs, apprentice skill level, and

project context, underscoring the mentor’s vital role in guiding apprentices towards

effective debugging techniques. This guidance is essential for equipping apprentices to

tackle a wide range of technical challenges, ensuring their growth and proficiency in

debugging practices.

As seen in Table 31, three principal themes were identified from the focus group

discussion transcript, including the nature and management of debugging errors, the

190 | P a g e

influence of technology on debugging processes, and the strategies and challenges

encountered in debugging. These themes provide insight into how apprentices approach

debugging, adapt to technological tools, and navigate common challenges, shaping their

overall learning experience.

Table 31: Overview of key themes in Focus Group Sessions

Themes Description

Theme 1: Nature and
Handling of Debugging
Errors

Participants view debugging as an evolving process, where

apprentices initially rely on casual reasoning and trial-and-error

methods, gradually shifting towards systematic approaches,

collaboration, and tool adoption, overcoming initial

apprehension to refine their debugging strategies.

Theme 2: Technology’s Role
in Debugging Processes.

Participants view technology as a crucial yet challenging aspect

of debugging, where initial struggles with advanced tools give

way to deeper understanding through mentorship, adaptive

learning, and balancing basic and advanced techniques,

ultimately enhancing debugging efficiency.

Theme 3: Strategies and
Challenges in Debugging

Participants recognise debugging as a progressive learning

process, where initial casual reasoning and trial-and-error

approaches evolve into structured problem-solving,

collaboration, and pattern recognition, though challenges such

as cognitive overload and code tracing difficulties persist.

5.4.1 Theme 1: Nature and Handling of Debugging Errors

The Nature and Handling of Debugging Errors theme encompasses the apprentices’

approaches and attitudes towards identifying and rectifying bugs in programming code.

Analysis of the WMT focus group discussions suggested that, initially, apprentices lean on

“casual reasoning”, as WMT7 insightfully notes, “one common observation is that

apprentices often rely on casual reasoning at the beginning”. This method, while a natural

starting point, as further described by WMT1 as “apprentices often use their basic

understanding of the code to guess where the bug might be”, marks the hit-or-miss

nature of early debugging attempts. The narrative evolves, with WMT7 adding, “they use

their initial understanding of the code to hypothesise about potential bugs”, illustrating

191 | P a g e

the apprentices’ reliance on their foundational knowledge yet pointing towards the need

for refinement.

Furthermore, the progression to more systematic approaches marks a pivotal

development in the apprentices’ debugging journey. WMT3 observed, “this trial-and-

error strategy, while common, can be inefficient”, heralding the shift towards the “top-

down approach” which, despite its promise, presents challenges highlighted by WMT4,

“But apprentices sometimes struggle to identify the right level to start breaking down the

problem”. The role of collaboration in skill enhancement was illuminated by WMT5, who

suggested, “pairing apprentices with more experienced colleagues for code reviews can

significantly enhance their ability to dissect problems more effectively”, a sentiment

echoed by WMT4 through advocating for problem isolation techniques.

Similarly, the narrative further explored the initial apprehension towards IDE debuggers,

with WMT1 revealing, “apprentices initially find IDE debuggers intimidating”, a sentiment

shared by many novices. Yet, as WMT10 points out, “many apprentices are hesitant to

use IDE debuggers initially”; the journey includes overcoming such fears to embrace

effective debugging tools. The importance of adaptability and a tailored approach to

debugging is emphasised by WMT9 and WMT10, illustrating that successful debugging

strategies are contingent upon the bug’s nature and the project’s context.

5.4.2 Theme 2: Technology’s Role in Debugging Processes

In exploring the Technology’s Role in Debugging Processes theme, the WMT findings

elucidate the journey of apprentices as they navigated through the complexities of

192 | P a g e

debugging tools and methodologies. WMT10 articulated the initial struggle many

apprentices face with advanced debugging techniques, particularly IDE debuggers,

noting, “many apprentices struggle with more advanced debugging techniques initially”.

This challenge, however, is part of a crucial learning curve that, once surmounted, offers

significant benefits, as highlighted by WMT11 who observed, “there’s a definite learning

curve with debugging tools. However, apprentices who embrace these tools, especially

pair programming, tend to develop a deeper understanding of the debugging process”.

WMT2 reinforces this sentiment, pointing out the eventual appreciation for the efficiency

of tools like IDE debuggers after overcoming the initial intimidation.

The conversation shifted towards the importance of balancing technology with basic

techniques, where WMT6 encouraged a progression from print statement debugging to

utilising IDE debuggers and breakpoints, suggesting a move towards more advanced, yet

effective, debugging practices. This balance is influenced by various factors, including the

specific programming language or technology stack and the type of feedback provided by

the development environment, as mentioned by WMT2 and WMT3, who specify how

certain environments can nudge apprentices towards particular strategies.

The discussions also explored how apprentices’ familiarities with tools shape their

debugging approach. WMT3 and WMT11 discussed the impact of comfort levels with IDEs

and other tools on strategy choice, emphasising the role of mentorship and peer

influence in this learning process. WMT12 and WMT11 further explored the challenges

apprentices face, such as the pressure to quickly fix bugs leading to rushed learning, and

193 | P a g e

the overlooked importance of replicating bugs before attempting to fix them, which is

crucial for a thorough debugging process.

Through these insights, the WMT findings paint a comprehensive picture of apprentices’

evolving relationship with debugging technologies. From initial hesitance to a more

confident and effective use of advanced tools, the journey is marked by learning curves,

mentor guidance, and the adaptive choice of strategies based on the bug’s nature and

project context. This account emphasises the difficulties apprentices encounter and

highlights the significant impact of technological proficiency and mentorship in advancing

debugging skills.

5.4.3 Theme 3: Strategies and Challenges in Debugging

The Strategies and Challenges in Debugging theme considered the various strategies

apprentices employed in debugging and the challenges they encountered. The narrative

begins with an observation by WMT1, who noted, “apprentices often start with casual

reasoning when debugging. They try to make sense of the code based on their

understanding”. This initial strategy, however, quickly transitions as described by WMT2

by stating that, “they tend to shift quickly to a trial-and-error approach when casual

reasoning doesn’t yield immediate results”. Despite this shift, a more analytical strategy

is recognised by WMT3, who mentioned, “a few apprentices use the top-down approach

effectively, breaking the problem into smaller, more manageable parts”.

The importance of mentorship and collaboration in fostering debugging skills was

pinpointed by WMT5, stating, “pairing them with more experienced colleagues for code

194 | P a g e

reviews can significantly enhance their ability to dissect problems more effectively”. This

collaborative approach was further elaborated by WMT2 through the observation that

“the familiarity of print statements makes them a go-to strategy”, indicating a preference

for simple, tried-and-tested methods. WMT5 added depth to this discussion by

highlighting a developmental milestone, explaining that, “Once apprentices are

comfortable with isolating problems, they begin to develop a knack for tracing and

gathering information”. The narrative then delves into the cognitive strategies involved

in debugging, with WMT3 observing, “when apprentices explain their thought process,

whether through rubber duck debugging or to a peer, it often leads them to a solution

more quickly”. This articulation, as suggested, aids in problem-solving. The sentiment is

echoed in the context of collaborative learning by WMT7, who noted, “apprentices who

participate in code reviews develop a better eye for spotting bugs”.

WMT4 brought attention to the pattern recognition strategy, asserting that “I’ve seen

apprentices use pattern matching, especially when they encounter similar bugs they’ve

dealt with before”, which is indicative of learning from past experiences. This approach is

strengthened by an additional observation from WMT5, who opined, “Once apprentices

grasp isolating and slicing techniques, they begin to develop better strategies for tracing

and gathering information”, suggesting a progression in skillset. The discussion

transitioned to the challenges faced by apprentices, with WMT12 mentioning,

“apprentices also face challenges with tracing the execution of code”, pointing out the

difficulties in understanding code flow. This is complemented by insights into the

inefficiencies of certain approaches and the benefits of structured problem-solving, as

WMT3 stated, “this trial-and-error strategy, while common, can be inefficient. I’ve seen

195 | P a g e

a few apprentices use the top-down approach effectively, breaking the problem into

smaller, more manageable parts”.

Furthermore, WMT4 highlighted a critical learning curve, noting that “the top-down

approach indeed helps in maintaining a structured way of debugging. But I must mention

that apprentices sometimes struggle to identify the right level to start breaking down the

problem, which can be due to a lack of experience”. This sentiment is reinforced by the

discussion on the evolution of debugging approaches through collaborative efforts, as

noted by WMT2 and the articulation of thought processes leading to quicker resolutions,

as stated by WMT3.

However, challenges such as cognitive overload, the need for a holistic understanding of

the application, and the importance of abstract thinking are also addressed. WMT8

shared, “additionally, I’ve seen apprentices struggle with isolating the problem. They

often fixate on a certain part of the code without considering the entire system, which

can lead to missed bugs”. This was further elaborated by WMT7, who discussed the

implications of fixing bugs without understanding their broader impact.

The insights culminated in the acknowledgment of the wide range of strategies employed

by apprentices, from simple print statements to sophisticated pattern matching and static

code analysis, as highlighted by various WMTs. This account, enriched with direct quotes

and participant details, encapsulates the essence of the “Strategies and Challenges in

Debugging” theme, offering an overview of the apprentices’ journey through debugging,

stressed by the invaluable role of WMTs in guiding and shaping their learning experience.

196 | P a g e

5.5 Summary

This study has explored the debugging practices among software development technician

apprentices, synthesising findings from practical debugging sessions, analysed Python

codes, dyad interviews, and insights from Workbased Mentors and Trainers (WMTs). It

provided a detailed understanding of the apprentices’ experiences in debugging,

highlighting their skill development and strategic progression. The study’s initial phase

revealed a spectrum of errors faced by apprentices, who demonstrated proficiency in

resolving straightforward issues such as syntax and runtime errors yet grappled with

more intricate logical errors. These challenges were highlighted in dyad interviews, which

confirmed the initial findings and provided a detailed perspective on the apprentices'

struggles and coping strategies.

Central to the investigation was the essential role of technology in facilitating debugging

practices. Apprentices predominantly utilised IDEs and debuggers, which were

instrumental in enhancing their debugging proficiency. Furthermore, collaborative

platforms like Microsoft Teams and Visual Studio Code’s Live Share enabled real-time

collaboration and code sharing. However, navigating these technologies presented

notable challenges, particularly with difficulties in balancing the mental demands of

complex debugging tasks and ensuring effective communication in remote environments.

Consequently, apprentices often engaged in pair programming and debugging, which

proved instrumental in sharing cognitive responsibilities and fostering a collaborative

approach to problem-solving.

197 | P a g e

The study observed a significant evolution in the debugging strategies employed by

apprentices. Initially, they relied on more straightforward methods such as print

statement debugging, tinkering, and trial-and-error. However, as they gained experience,

they transitioned to more sophisticated techniques, including systematic bug isolation

strategies like tracing, pattern matching, and methodical step-by-step execution within

IDEs. This progression from rudimentary to advanced methods reinforced their growing

proficiency and adaptability in debugging.

The research findings on challenges faced by apprentices predominantly stemmed from

the debugging sessions and dyad interviews, further corroborated by insights from

WMTs. Key challenges included navigating intricate codebases, deciphering misleading

error messages, and tackling the inherent difficulties of remote debugging, such as

latency issues and reliance on digital communication. These challenges were exacerbated

by the apprentices’ initial lack of experience, often leading to cognitive overload. The

WMTs echoed these sentiments, underscoring the necessity for ongoing mentorship and

a nurturing learning environment. Such support is crucial for addressing the technical

aspects of debugging and assisting apprentices in adapting to the multifaceted challenges

of software development. This approach ultimately aimed to enhance their problem-

solving skills and collaborative competencies, preparing them for the complexities of

professional software development.

In conclusion, the final table (Table 30) consolidates the overarching themes identified

throughout Chapter 5. It offers a comprehensive view of the study’s findings, tying

together the dyads’ practical debugging experiences, interview reflections, and focus

198 | P a g e

group discussions with mentors and trainers. Table 32 serves as a concluding reference,

to easily navigate and recall the key elements of the chapter.

Table 32: Overarching themes across the study

Data Collection Method Themes

5.1 Dyads Debugging Session

Findings

The debugging session findings are summarised,

highlighting the key emerging themes, such as technology's

pivotal role and the dyads' diverse strategies.

They are: 1) Technology Utilisation, 2) Debugging

Strategies, 3) Error Spectrum, 4) Cognitive Load

Management, and 5) Challenges Faced.

5.2 Python Code Analysis

Findings

Error Types, Proficiency Levels, Specific Challenges,

Technological Tools Used.

5.3 Interview Session Findings 1) Error Spectrum, 2) Technical and Cognitive Skills, and 3)

Challenges in Collaboration.

5.4 Focus Group Discussion

Findings

1) Nature and Handling of Debugging Errors, 2)

Technology’s Role in Debugging, 3) Strategies and

Challenges in Debugging.

199 | P a g e

Chapter 6: Conclusion

6.0 Introduction

This final chapter synthesises key findings to answer the initial research questions,

integrating these results into a cohesive narrative. This involves providing answers to the

central questions, linking empirical data to theoretical frameworks and assessing the

research’s trustworthiness based on credibility, transferability, dependability, and

confirmability. The chapter also discusses the study’s potential impact on software

development education, highlighting implications for educators and practitioners and

acknowledging its limitations. It proposes future research directions to address these

gaps and clarifies the study’s contributions to academia and professional practice.

6.1 Evaluation of Dyad’s Case Studies

The case studies of DYADs 1 to 15 offer an insightful examination into the world of novice

programmers aged 16 to 50, hailing from diverse organisational backgrounds and

engaging in the complex task of debugging Python scripts in a remote environment. This

study illuminates the varied strategic approaches adopted by each dyad and reveals

commonalities in their experiences and methodologies. As a whole, these observations

provide a diverse perspective on the challenges and triumphs encountered in software

development, particularly in the context of novice programmers.

Furthermore, the dyad case studies provide crucial insights into the debugging

approaches of novice programmers. These novices, despite being early in their coding

200 | P a g e

journey, demonstrated adaptability and a willingness to experiment with various

debugging techniques, such as print statement debugging, tinkering, trial and error, IDE

debuggers, rubber duck debugging, tracing, slicing, code reviews and pattern matching.

These diverse approaches align with the concepts of adaptive expertise (Bransford et al.,

2000; Clarke et al., 2023; Hatano & Inagaki, 1986), self-regulated learning (Kumar et al.,

2005; Ramírez Echeverry et al., 2018) and socially shared regulation of learning (Silva,

2020) in programming education. As outlined by Bransford and Schwartz (1999) and

Zimmerman (2002), the principles stress the importance of applying knowledge flexibly

and self-tailoring strategies for enhanced learning and problem-solving. Thus, this range

of strategies adopted by novice programmers indicates a growing understanding of the

complex nature of programming and debugging and an engagement with deeper learning

processes, which are key traits for successful programmers essential in the dynamic field

of software development.

Also, despite the hurdles of geographical separation, the dyads showcased effective

remote collaboration, leveraging tools like Microsoft Teams and Visual Studio Live Share.

This proficiency in collaboration, situated within the framework of distributed cognition,

affirms the importance of shared cognitive responsibilities and collective problem-

solving, echoing research on computer-supported collaborative learning by Salomon

(1997) and Stahl et al. (2006). Thus, the ability to collaborate effectively, irrespective of

physical distance, is particularly relevant in the current global landscape of software

development, where teams are often dispersed across various locations.

201 | P a g e

Moreover, a prevalent challenge identified across the dyads was their struggle with

complex logical and runtime errors despite their effectiveness in resolving syntax errors.

This difficulty highlights a common barrier among novice programmers in grasping the

more intricate aspects of programming logic and computational thinking, a concept

central to Papert (1980) and Wing (2006) research. In addition, troubleshooting these

advanced errors is critical in developing comprehensive programming expertise and is

often a distinguishing factor between novice and experts (Alqadi & Maletic, 2017; Rigby

et al., 2020; Yen et al., 2012).

Within the array of individual dyads, some pairs notably distinguished themselves

through their distinctive approaches to problem-solving. DYAD1 and DYAD11, for

example, displayed considerable skill in addressing syntax errors, but they also

encountered obstacles when dealing with logical and runtime errors. Their proficiency in

employing distributed cognition and collaborative tools showcased their teamwork

capabilities and aligned with the recognised values of teamwork in software

development, as emphasised in the works of Salomon (1997) and Johnson and Johnson

(1987). In contrast, DYAD3 and DYAD12 adopted an approach that was more exploratory

and hands-on, reflecting their developing problem-solving skills. This approach is aligned

with Kolb (1984) experiential learning theory, highlighting the importance of active

engagement in the learning process.

In addition, the strategies adopted by DYAD7 and DYAD13, which included rubber duck

debugging along with more traditional methods, illustrated their innovative approach to

problem-solving. This technique aids in externalising thought processes, a crucial

202 | P a g e

component of metacognition in learning, as Flavell (1979) discussed. Finally, the strategy

of DYAD15 stood out due to their effective utilisation of various debugging techniques

and a well-balanced distribution of cognitive load. This approach showcased the high

level of collaboration and communication skills indispensable for modern software

development teams, as Torgeir et al. (2012) highlighted.

In conclusion, the cases emphasised the importance of a multi-dimensional approach to

debugging in software development, highlighting the varied problem-solving strategies

employed by novice programmers. Their experiences illuminated the challenges inherent

in addressing complex logical and runtime errors, pointing to areas for further learning

and skill development. Despite the constraints of remote interaction, the effective

collaboration observed across these studies emphasised the pivotal role of

communication and teamwork in programming, resonating with contemporary

perspectives on collaborative software engineering (Torgeir et al., 2012). These insights

contribute to our understanding of novice programmers’ learning journeys and offer

lessons for software development educators and practitioners.

6.2 Research Questions

This research addresses the key question, “How do the paired Software Development

Apprentices in geographically distributed locations work collaboratively to fix Python

programming bugs using the technology-mediated medium?” In pursuit of answers, this

research has explored five distinct yet interrelated research questions.

203 | P a g e

RQ1: Types of Bugs

What bugs are generated by the paired geographically distributed SDT apprentices

working collaboratively to solve a given problem using Python?

In exploring the errors encountered by SDT apprentices while debugging Python code, a

detailed analysis reveals three distinct types of errors namely, syntax, logical, and

runtime, all of which are faced during collaborative problem-solving efforts. This outcome

reinforced previous studies indicating that these are typical bugs encountered by those

new to programming in Python, acknowledging that, as an interpreted language, Python

is prone to both compile-time and runtime errors (Becker et al., 2019; Cherenkova et al.,

2014; Helminen et al., 2013; Pritchard, 2015). This study, encompassing 20 pre-seeded

errors across these categories, provided insight into the varying proficiency levels among

30 apprentices grouped into fifteen dyad teams. Initiating the analysis with syntax errors,

it is widely acknowledged that these constitute the most basic and easily identifiable

errors in programming (Ahadi et al., 2018), a perspective robustly supported by insights

from SDT12 of DYAD6 and SDT15 of DYAD8. These participants notably emphasised that

syntax errors were prevalent and relatively straightforward to diagnose and correct. This

view aligns with Sebesta (2016) assertion that syntax errors, while elementary, are critical

in gauging a programmer’s understanding of a language’s framework.

Furthermore, the study’s scope revealed a diverse proficiency landscape among the

dyads in this domain. Particularly challenging were complex loop structures (Lowe, 2019),

including notably incomplete ‘for’ loops (Kohn, 2019; Luxton-Reilly & Petersen, 2017),

and issues in conditional statements, such as ‘else’ used without a preceding ‘if’ (Lutz,

204 | P a g e

2013). The prevalence of these errors in specific dyads, notably DYADs 6, 1, 11, 12, and

15, indicates a fundamental gap in understanding Python’s essential structure and flow

control (Lowe, 2019). This revelation is critical, highlighting a significant divergence in the

apprentices’ skill levels and conceptual grasp.

Conversely, many dyads demonstrated proficiency in basic syntax, adeptly addressing

errors like missing colons and incorrect operators. This disparity in skill levels is

particularly revealing, suggesting that while some apprentices comfortably navigate

Python’s basic syntax, others face considerable challenges with more complex constructs.

This could result from three types of breakdowns due to a programmer’s cognitive

limitations in conjunction with the programming system or external environment,

according to Ko and Myers (2005). Such a scenario calls attention to the imperative need

for a balanced and comprehensive approach to syntax education within programming

curricula. As Downey (2012) aptly notes that establishing a solid foundational knowledge

of programming languages is essential for developing proficiency. This approach ensures

that learners are equipped to handle basic syntax and are prepared to tackle more

advanced and intricate programming challenges.

Moreover, Gomes and Mendes (2007) reinforce the importance of addressing these

disparities in educational settings, advocating for tailored teaching strategies that cater

to diverse learning needs. By adopting such strategies, educators can ensure that all

apprentices, regardless of their initial proficiency levels, can comprehensively understand

programming syntax (Sun et al., 2024). Taking this into account, the study illustrates the

varying degrees of proficiency in syntax among apprentices, highlighting the need for

205 | P a g e

educational approaches that accommodate this diversity. Through a combination of

foundational teaching and tailored strategies, it is possible to bridge the gaps in

understanding and skill, ensuring a more uniform and thorough comprehension of

programming languages among learners.

Transitioning to logical errors presented a spectrum of challenges and competencies

among the dyads. DYADs 3 and 6, for instance, encountered substantial difficulties with

complex logical issues, exemplified by incorrect tax calculation logic. This struggle with

logical problem-solving extended beyond these groups, as evidenced by the challenges

faced by DYAD14. Such instances revealed that logical errors in programming were not

merely syntactical mishaps but often involved more profound conceptual

misunderstandings (Alqadi & Maletic, 2017; Rigby et al., 2020). In addition, SDT21’s

experiences with the special variable ‘name’ in Python further illustrated this complexity

in logical errors, as the error encountered was not just a syntactic oversight but a

misapprehension of the variable’s conceptual usage (Pea, 1986).

Similarly, SDT19’s reflections on the improper use of ‘name’ highlight the requirement for

a more comprehensive understanding of the interactions between various code

segments. These insights align with findings by Miller et al. (2019) regarding the

intricacies of variable usage in Python. Adding to the complexity, SDT7 speaks of

frustrations experienced while handling logical errors like bonus calculations, which

lacked contextual clarity, pointing to a need for more contextually rich problem-solving

scenarios in programming education. Contrasting these struggles, DYADs 1, 4, 7, and 15

displayed a firm grasp of programming logic, adeptly resolving most identified logical

206 | P a g e

errors. Notably, DYAD10’s exceptional proficiency in resolving complex logical challenges

aligned with the observations made by Ettles et al. (2018), reinforcing the notion that

such skills can be developed with appropriate training and practice. This variance in

proficiency amplifies the necessity for programming education to cater to diverse levels

of logical understanding. As Tan (2021) suggests, educational curricula should reinforce

fundamental concepts for novices and present complex problem-solving scenarios to

challenge more advanced learners.

Furthermore, the findings suggest that an emphasis on practical application, as advocated

by Hazzan et al. (2020), could enhance learners’ abilities to tackle logical problems

effectively. By integrating real-world scenarios, educators can provide learners with the

context necessary to understand and solve complex logical errors (Robins et al., 2003).

Additionally, the need for differentiated instruction, as highlighted by Tomlinson and

Imbeau (2023), becomes evident in addressing the varied proficiency levels observed.

On another note, examining runtime errors in Python programming, as experienced by

several dyads, reveals an intricate landscape of challenges marked by a common struggle

with infinite loops. Often attributed to syntax issues like missing colons in ‘for’ loops

(Kohn & Manaris, 2020; Simon et al., 2007), these errors underscore a broader difficulty

in comprehending loop mechanics, an essential aspect of programming (Sedgewick &

Wayne, 2016). This persistent challenge indicates a more profound issue than mere

syntactic oversight, suggesting a fundamental gap in understanding crucial programming

concepts. In stark contrast to the difficulties with loops, most dyads demonstrated

relative ease in handling basic data type operations, such as converting string inputs to

207 | P a g e

numbers. This disparity in handling different types of runtime errors illuminates a

variation in understanding complex programming structures compared to simpler

operations. This observation is aligned with the findings of Monat et al. (2020) and

Fromherz et al. (2018), who emphasise the importance of a strong foundation in

fundamental concepts like variable scope and declaration.

In conducting further investigations through interviews, it became apparent that

apprentices often faced substantial challenges in addressing runtime errors, especially in

remote collaboration. Participants, including SDT2 and SDT4, explored specific runtime

errors, highlighting the need for a deep understanding of Python’s logic and its intricate

aspects (Winslow, 1996). Furthermore, these observations resonate with the findings of

Soloway and Spohrer (1989), who pointed out the deficiencies in novices’ understanding

of various programming language constructs such as variables, loops, arrays, and

recursion. Likewise, SDT8 and SDT30 highlighted the complexities in resolving infinite

loop errors, emphasising the crucial necessity for precise detection and rectification.

These perspectives resonate with the cognitive and technical demands highlighted by

SDT10 and SDT11, who accentuated the significance of conducting a thorough analysis of

a program’s structure and logic, particularly for those less experienced. Such an approach

is supported by Wing (2006) argument on the importance of computational thinking in

programming. In these contexts, the value of debugging tools was also mentioned by

SDT16 and SDT29, who pinpointed the essential roles of debugging consoles and variable

state inspection in tackling complex issues. The necessity of these tools in debugging is

208 | P a g e

reinforced by the work of Murphy et al. (2008), who examined the role of debugging in

software development.

Furthermore, this narrative brings to the forefront the intricate nature of runtime errors

(Zhang et al., 2023) in Python programming. The insights offered by the participants

illuminate the vital roles of debugging tools and the cognitive and technical skills required

for effectively managing these errors. This observation is in line with Papert (1980) theory

of constructionism, which advocates for hands-on experience in learning complex

concepts. Thus, the identified challenges unveil gaps in skills and present considerable

opportunities for learning and development. Similarly, novices SDT5 and SDT19, in their

struggles with runtime errors, highlighted areas needing further development and

understanding, supporting Vygotsky and Cole (1978) theory of the Zone of Proximal

Development in learning. The array of issues encountered, exemplified by SDT2’s

difficulties with string-to-number conversion and SDT4’s acknowledgement of a skill gap

manifested by an infinite loop issue, reveals the breadth of challenges. Moreover, SDT8

and SDT30’s reflections on specific runtime errors, like the ‘Infinite loop due to missing

colon’, and the importance of understanding Python’s interpreter execution, further

mark the complexities involved (Guzdial & Ericson, 2013).

In addition, the role of debugging tools, as emphasised by SDT16 and SDT29, along with

the cognitive demands of grasping a program’s logic and structure, as noted by SDT10

and SDT11, are critical for effectively managing runtime errors. These insights are in

harmony with the findings of Pea (1986) on the cognitive technologies for learning

programming. SDT4’s and SDT12’s comments on the importance of critically evaluating

209 | P a g e

the code’s execution flow and variable scope further reinforce these points, aligning with

the assertions of Soloway and Ehrlich (1984) on the mental models in programming.

Similarly, the experiences of the apprentices dealing with runtime errors in Python

programming reveal a challenging landscape. These challenges, indicative of skill gaps,

offer substantial learning opportunities, emphasising the need for a comprehensive

approach to programming education. This approach should encompass both basic syntax

and the deeper intricacies of Python’s structure and logic, as advocated in the

pedagogical theory of Bruner (2009).

Summing up, analysing the dyads’ performances concerning syntax, logical, and runtime

errors, (Kohn, 2019) uncovers trends and educational implications that are significant in

programming education. The variance observed in skill levels highlights that while basic

syntax (So & Kim, 2018) is generally well-understood among apprentices, there remains

a pronounced need for more focused education on complex syntactical structures. This

need is further exemplified in handling logical errors, where a broader range of

competency is evident. Some dyads demonstrated a strong grasp of programming logic,

while others faced considerable challenges (Smith & Rixner, 2019). This variability

accentuates the importance of personalised learning paths, particularly in logical

problem-solving. Also, the apprentices faced a more consistent set of challenges

regarding runtime errors, particularly in areas such as loop control and variable scope.

This uniformity in struggling with specific runtime errors across different dyads suggests

fundamental gaps in programming education that need to be addressed (Smith & Rixner,

2019). However, it is noteworthy that areas involving basic operations, like data type

conversion, were generally handled with greater ease. This observation indicates a

210 | P a g e

relative comfort among apprentices with Python’s fundamental concepts, a foundational

aspect of programming literacy.

RQ2 – Debugging Strategies and Tactics

What bug locating strategies and tactics are deployed by the paired geographically

distributed SDT apprentices while attempting to fix defects in the given Python code?

How do they go about finding the bugs in the program code?

Upon scrutiny of the debugging sessions of the dyads, a richly varied mosaic of debugging

strategies and tactics was uncovered. This variety, captured through the lens of the

Distributed Pair Debugging Conceptual Framework (DisConFrame) - discussed in Chapter

3 - highlighted the complexities of the debugging process. Within this framework, the

think-aloud verbal protocol emerged as a crucial element, enhancing comprehension of

how individuals and pairs navigated through the complex realm of debugging. When

viewed through the lens of this framework, dyads’ approaches to debugging in

distributed environments became somewhat more explicit. Their journey through the

Python code, pursuing deliberately embedded bugs, resembled ‘a strategic foray into a

labyrinthine forest in search of elusive prey’. As detailed in Chapter 5, Table 5.1 illustrates

this diversity, showcasing nine distinct and multifaceted debugging strategies and tactics.

A close examination of dyads’ debugging strategies and tactics revealed that print

statement debugging was widely adopted, with 14 out of 15 dyads using it. This affirms

the ongoing significance of print statement debugging in their debugging processes

(Alqadi & Maletic, 2017; Liu & Paquette, 2023). As noted by DYAD1 and DYAD6, print

211 | P a g e

statements offer real-time insights into code behaviour, in line with research by

Fitzpatrick and Collins-Sussman (2015) and Spinellis (2016). Additionally, DYAD2

highlighted the benefits of print statement debugging for immediate feedback and error

recognition, supported by studies conducted by Layman et al. (2013) and Li et al. (2018).

However, the simplicity of print statement debugging can also be its limitation (Agrawal

et al., 1993; Fitzgerald et al., 2008; Poole, 2005; Zeller & Hildebrandt, 2002), as it may not

be effective for more complex debugging scenarios, where the intricacies of code

behaviour require deeper analysis (David, 2002; Matloff & Salzman, 2008).

Additionally, DYAD3, DYAD10, DYAD11, DYAD14, and DYAD15 demonstrated a significant

preference for tinkering, a hands-on, exploratory method that involves interactive

experimentation with code, facilitating learning and problem-solving through direct,

experiential engagement with programming (Murphy et al., 2008). This approach,

notable in the dyad case studies, allowed programmers to modify and examine their code

gradually, enhancing their comprehension of its effects (Beckwith et al., 2006; Vossoughi

& Bevan, 2014). However, contrasting viewpoints from Liu et al. (2017) and Murphy et al.

(2008) suggest that tinkering might restrict the development of a more profound

understanding of the program and is always ineffective (Park et al., 2015). It has also

proven effective in various dyads, notably correcting syntax errors.

SDT9 also found tinkering valuable for syntax errors, aligning with Vossoughi and Bevan

(2014) findings on its benefits for basic error correction. Similarly, SDT6 and SDT7

demonstrated their practicality in understanding and testing code, resonating with

Beckwith et al. (2006), who highlight the importance of direct code engagement.

212 | P a g e

Likewise, reflections from DYAD11, DYAD14, and DYAD15 members further affirmed the

significance of tinkering in the debugging process by incrementally modifying the code

and observing outcomes, enhancing their understanding of code functionality. However,

Murphy et al. (2008) caution that tinkering might not suffice for complex errors,

potentially limiting deeper skill development.

In the same vein, the ‘Trial and Error’ method, characterised by its experimental and

hands-on approach (Gugerty & Olson, 1986), was notably used by one in three dyads,

DYAD3, DYAD5, DYAD6, DYAD12, and DYAD13. However, the relevance of this method’s

prevalence was evident in direct quotes from debugging sessions and interviews,

reflecting a commitment to discovery and resilience. SDT6, SDT7, and SDT9 illustrated its

exploratory and hands-on nature. SDT6’s approach reflected Kolb’s Experiential Learning

Theory (1984), emphasising learning through experience. SDT7’s method aligned with

Piaget’s Constructivist Learning Theory (1954), underscoring learning through direct

interaction with the code. Similarly, SDT9’s focus on trial and error, providing immediate

feedback, resonated with Vygotsky’s Social Development Theory (1978), highlighting the

role of social interaction in cognitive development. Overall, trial and error, essential for

immediate problem-solving, is crucial for the cognitive development of novice

programmers, supported by various established learning theories, underscoring its value

in programming education.

Moreover, SDT30 found print statement debugging and tinkering effective, reflecting a

strategic debugging approach involving hypothesis testing and observation. This method

fosters deeper code engagement and intuitive understanding within the programming

213 | P a g e

environment. The integration of various debugging techniques, as seen in DYAD2, DYAD3,

DYAD14, and DYAD15, highlighted the importance of diverse strategies in addressing the

complex challenges of programming, combining immediate visual feedback with hands-

on experimentation and collaborative review for a deeper, more collaborative learning

experience (Winslow, 1996). Also, dyads engaged in iterative testing and code

modification, demonstrating their proactive approach to problem-solving. SDT6, for

instance, emphasised experimenting with various solutions, a sentiment echoed by SDT9

and extended by SDT12, who also valued ‘Code Review’. SDT23 also highlighted the

intuitive nature of this method.

On the other hand, using IDE debuggers represents a more sophisticated approach. IDE

debuggers allow for a more interactive and detailed examination of the program’s

execution, offering capabilities such as breakpoints and variable inspections (LaToza &

Myers, 2010). This method aligns with the evolving complexity of programming tasks and

the need for more advanced debugging tools. In addition to traditional methods,

Integrated Development Environment (IDE) features play a significant role in enhancing

debugging efficiency and productivity, as observed in the experiences of DYAD4 and

DYAD9 (Proksch et al., 2018). SDT2 acknowledged the holistic view provided by IDE

Debuggers, aligning with Afzal and Goues (2018) findings on the comprehensive

understanding facilitated by IDEs.

Similarly, SDT14 termed IDE Debuggers as a “game-changer” for controlled code

inspection, echoing Kohn and Manaris (2020) insights on the benefits of step-by-step

code examination and variable state inspection for novices. SDT22 highlighted IDE

214 | P a g e

Debuggers’ role in identifying complex errors and setting breakpoints, a strategy Beller et

al. (2018) supported for dissecting intricate code segments. SDT24 affirmed the

importance of pausing code execution for precise examination, resonating with Petrillo

et al. (2017) suggestion on interactive learning environments in programming. Finally,

SDT29 focused on using IDE Debuggers to observe program behaviour at various stages

(Beller et al., 2017), an approach in line with Papert (1980) constructionism theory, which

advocates learning through interactive and real-time feedback tools. These examples

collectively demonstrate the crucial role of IDE Debuggers in enhancing novice

programmers’ debugging strategy and overall programming understanding.

In contrast, techniques such as slicing and code review reflect a shift towards more

contemporary and investigative debugging practices. Slicing, for instance, involves

isolating specific portions of the code to understand their behaviour better and is

particularly useful in large and complex codebases (Weiser, 1984). In a similar vein, code

review, typically performed as a group effort, assists in detecting bugs and enhances code

quality while fostering a shared understanding among developers (Bacchelli & Bird,

2013). Also, the evolution from basic techniques like trial and error to more advanced

methods such as IDE Debuggers and code review in DYAD12 showed a developmental

trajectory in debugging skills. This progression is crucial in building confidence and

expertise, exemplified by DYAD13’s pattern matching and code review use. Combining

introspective methods like rubber duck debugging in DYAD7 with structured approaches

like IDE Debuggers demonstrated the necessity of diverse problem-solving perspectives

in addressing varied programming challenges.

215 | P a g e

Overall, the dyads’ approaches to debugging illustrated an interplay between individual

problem-solving techniques and collaborative efforts. The study revealed a mosaic of

debugging strategies and tactics, each tailored to the apprentices’ specific needs and

skills’ set. The combination of direct, immediate techniques and more exploratory,

collaborative methods accentuates the complexities of debugging in programming. This

blend of tactics facilitates effective problem-solving and contributes to a deeper

understanding and proficiency in programming, preparing the apprentices for a wide

range of programming challenges. Furthermore, it becomes apparent that collaboration

is a fundamental aspect of their approach. Across the various teams, there is a

pronounced reliance on cooperative techniques. This includes the collective use of

Integrated Development Environments (IDEs), engaging in discussions during code

reviews, and employing pair debugging methods such as rubber duck debugging, as

observed in DYAD4 and DYAD7. These methods identify the apprentices’ inclinations

towards utilising teamwork as an effective tool to tackle the intricacies involved in

debugging scenarios.

RQ3 – Cognitive Load Sharing

How do the paired geographically distributed SDT apprentices distribute cognitive load

when resolving bugged code?

The approach to cognitive load management by geographically distributed SDT

apprentices in resolving bugged code is multifaceted and well-aligned with key

educational theories. Commencing with the foundational aspect of collaboration and role

switching, the apprentices exhibited a dynamic interplay between the roles of ‘driver’ and

216 | P a g e

‘navigator’. This approach, as exemplified by SDT1 and SDT8, finds backing in Plonka et

al. (2011) and Williams and Kessler (2002). These research findings highlight the

importance of collaboration and role switching in uniformly distributing cognitive load,

thereby improving efficiency and focus, which are central to the approach of these dyads.

This dynamic approach allows them to alternate between the ‘driver’, actively coding,

and the ‘navigator’, providing guidance and oversight (Plonka et al., 2011).

Similarly, it can be argued that the ‘driver-navigator’ approach, practised by SDT1 and

SDT8, is vital in managing cognitive load in collaborative programming. One member

codes (‘drives’) while the other offers guidance (‘navigates’), ensuring fair distribution of

tasks as suggested by the dyads. Thus, regular role swaps, like every 15 minutes, keep

both members equally engaged. This technique aids cognitive load management, aligning

with Cognitive Load Theory, which posits limited information processing capacity and the

effectiveness of collaborative strategies in distributing cognitive load (Sweller, 1988),

though Tsai et al. (2015) suggest sharing workload does not significantly reduce germane

cognitive load.

In the same vein, in the driver-navigator model of programming, dividing tasks between

coding and reviewing can distribute cognitive demands, potentially lessening overload.

This model traditionally sees drivers focus on coding and navigators on reviewing, each

at different levels of abstraction, as noted by Beck (2000) and Williams et al. (2000).

Contrarily, Bryant et al. (2008), Chong and Hurlbutt (2007), and Freudenberg et al. (2007)

argue that both roles function at similar abstraction levels without distinct task division.

217 | P a g e

However, strict adherence to designated roles in this study suggests that traditional

distinctions between driver and navigator may still hold significance.

Also, the driver-navigator programming model adheres to Hutchins (1995) distributed

cognition concept, promoting shared cognitive processes among group members,

enhancing understanding and problem-solving. Regular role switching, advocated every

15 minutes, encourages active engagement, a key element in collaborative learning

(Johnson & Johnson, 1987). This approach ensures apprentices gain experience in coding

and strategic aspects like problem-solving and code review, broadening their skill set.

Additionally, it aligns with Vygotsky’s social development theory (1978), highlighting the

role of social interaction in cognitive development. Through this collaborative model,

participants collectively construct knowledge, optimising cognitive resources and

boosting learning outcomes via active engagement and social interaction.

Further, verbalising thought processes is critical in collaborative problem-solving within

software development, particularly in debugging tasks. This method is evident in the

interactions within the dyads, where articulate communication is a key factor in sharing

and managing cognitive load. This approach suggests, in some cases, clear

communication, which is pivotal in managing cognitive load among SDT apprentices. SDT2

exemplified this with the use of frequent, concise discussions for task division, aligning

with Sweller (1988) cognitive load theory that reiterates reducing extraneous cognitive

load enhances learning and problem-solving. Kirschner et al. (2006) further support this,

advocating that well-structured collaborative tasks optimise learning by efficiently

distributing cognitive load.

218 | P a g e

Additionally, DYAD2’s adoption of the ‘think aloud’ method, where thought processes are

openly discussed, resonates with Hmelo-Silver (2004) emphasis on articulating thoughts

in collaborative problem-solving. By vocalising their reasoning and assumptions, team

members can better track and understand each other’s perspectives, leading to more

cohesive and efficient problem-solving. This method ensures mutual understanding,

aligning with Johnson and Johnson (1999) research, which highlights the role of effective

communication in achieving shared goals within a team. Mayer and Moreno (2003) also

acknowledge that such interactive communication reduces cognitive load, enhancing

problem-solving efficiency (Paas et al., 2003). It can be argued that verbalising thought

processes, as demonstrated in the dyad debugging sessions, is essential for managing

cognitive load and fostering collaborative efficiency in software debugging. This approach

aids in task articulation, ensures effective cognitive load distribution, and is supported by

the principles of Vygotsky and Cole (1978) social development theory and Paas et al.

(2003) findings on collaborative cognitive load management.

Similarly, the use of various tools and strategies emerges as crucial in addressing the

distribution of cognitive load among paired geographically distributed SDT apprentices

during debugging tasks. Thus, the deployment of IDEs, debuggers, and collaborative code

editors plays a central role in this process. This approach resonates with Mayer and

Moreno (2003) Cognitive Theory of Multimedia Learning, which highlights the efficacy of

multimedia tools in reducing cognitive overload by facilitating more efficient information

processing. Additionally, Sweller (1988) Cognitive Load Theory suggests that such tools

219 | P a g e

are instrumental in alleviating individual cognitive burdens, particularly in complex tasks

like debugging, thus contributing to a more effective debugging process.

Furthermore, the division of specialisation within teams, as exemplified by apprentices in

DYAD9, is a significant method for managing cognitive load. This strategy, backed by Paas

et al. (2003), highlights the effectiveness of distributed cognitive load in collaborative

learning environments. By assigning tasks based on individual strengths and areas of

expertise, apprentices can optimise their cognitive resources. This concept is further

supported by Kirschner et al. (2006), who emphasise the role of well-structured

collaborative tasks in enhancing learning outcomes by efficiently distributing cognitive

load among team members.

In addition to these strategies, balancing workload and effective time management, as

highlighted by SDT21 and SDT29, is vital in averting cognitive overload. This approach is

in line with the findings of Dillenbourg et al. (2009) on collaborative learning,

underscoring the significance of workload distribution in collaborative settings. Such

strategies ensure that apprentices direct their cognitive efforts toward the most impactful

issues, optimising the overall debugging process and contributing to the team’s success.

In summary, the SDT apprentices’ strategies in managing cognitive load during debugging

sessions demonstrated an alignment with the cognitive theories and adaptive problem-

solving approaches in software development. These methods, comprising role-switching,

verbalising thought processes, tool utilisation, specialisation, and workload management,

220 | P a g e

reflected a managed approach to cognitive load management, enhancing both individual

and collective efficiency in software debugging tasks.

RQ4 - Leveraging IDE

RQ4: How does leveraging Integrated Development Environment (IDE) tools enhance the

capabilities of distributed pair debugging and mitigate the challenges encountered in

debugging programs?

The integration of IDE tools in distributed pair debugging of Python code is a complex

interplay of benefits and potential pitfalls. This analysis, enriched by the experiences of

apprentices across various dyads and supported by academic literature (Goldman et al.,

2011; Potluri et al., 2022; Satratzemi et al., 2023), offers an understanding of the role of

IDE tools. Also, through an examination of their experiences and the insights gleaned

from the debugging and the interview sessions, the impact of IDE tools on their

collaborative debugging process becomes apparent as it serves more than just facilitators

of code, but is crucial in addressing the challenges inherent in debugging. A crucial benefit

of IDE tools, particularly Visual Studio Live Share, as highlighted by SDT1 and SDT17, is

their facilitation of real-time collaboration. This aligns with Hutchins (1995) distributed

cognition theory, which posits that cognitive processes are spread across individuals and

their tools, enhancing problem-solving abilities. Johnson and Johnson (1987) and

Salomon (1997) recognition of the importance of collaborative tools in software

development further validates this point.

221 | P a g e

Similarly, this aspect of real-time collaboration is essential in overcoming physical

distance, a point reinforced by the experiences of SDT3, SDT5, and SDT26, commending

the efficacy of tools like Microsoft Teams and Visual Studio Live Share in fostering

effective collaboration in enabling seamless communication and coordination despite

geographical separation. However, the dependence on these specific tools invites critical

scrutiny. The apprentices’ reliance on these specific IDE tools raises concerns about the

potential stagnation of essential debugging skills, as reliance on technology can lead to a

lack of development in fundamental problem-solving abilities (Mayer, 2004). In the same

vein, in situations where these specific tools are unavailable, this dependency could

become a significant hurdle, potentially leading to a stagnation in the development of

essential debugging skills.

Also, in the discourse on the use of IDE tools within various dyads, significant attention

has been given to features like syntax highlighting, error notifications, and integrated

consoles. These functionalities have been praised by various dyads for their efficiency in

identifying and resolving syntax errors (Cheng et al., 2003; Goldman et al., 2011). This

finding is consistent with research by Fontana and Petrillo (2021) and Petrillo et al. (2019).

Participants, including SDT2 and SDT10, have particularly commended the capacity of

these tools to streamline the debugging process (Kurniawan et al., 2015). They noted the

utility of IDE features in simplifying code review and error detection. However, there is a

risk that over-reliance on automated features could impede deeper learning of code

principles, leading to a scenario where apprentices are proficient with IDEs but lack the

skills to debug without these aids, a concern highlighted in the context of technology-

assisted learning (Grover & Pea, 2013). This essentially implies that while these tools are

222 | P a g e

undoubtedly helpful for debugging, an over-reliance on them might impede a deeper

grasp of essential coding principles, potentially leading to a skill gap. Apprentices might

become proficient in using IDEs for debugging but could struggle without these aids,

hindering the development of more fundamental and adaptable coding skills.

Moreover, advanced features like static code analysis and code coverage assessment in

IDEs further enhance debugging efficiency as suggested by SDT19 and SDT22, add an

extra layer of effectiveness to the debugging process as they facilitate the management

of code changes and error correction and enable a deeper analysis of the code, allowing

apprentices to address more complex issues beyond basic syntax errors. These

techniques, aligning with Beller et al. (2018) research, enable participants to address

issues beyond basic syntax errors, highlighting the comprehensive nature of IDE tools in

the debugging process. These tools go beyond identifying syntactical errors and highlight

more fine-grained aspects of code quality and performance. They allow SDT apprentices

to adopt a proactive approach to debugging, anticipating potential issues before they

become problematic. This can also be linked to the role of IDEs in reducing cognitive load,

as per Sweller (1988) theory, which is significant in the debugging process. By automating

routine aspects of coding, IDEs allow apprentices to focus on complex tasks. While these

tools facilitate a proactive debugging strategy, helping apprentices to foresee and

prevent potential issues, they also pose the risk of creating a dependency that could limit

the development of essential programming skills and a deep understanding of code

principles (Miller & White, 2021). This echoes the broader concerns related to the

integration of educational technology and its impact on cognitive development in

223 | P a g e

programming education. Thus, this juxtaposition highlights the need for a balanced

approach to IDE tool usage in programming education.

In the same vein, the integration of version control systems within IDEs is another aspect

that aids in distributed debugging. The participants also recognised the importance of

version control systems and code completion features in IDEs. SDT4 and SDT29 pointed

out how these functionalities reduce cognitive burdens and improve debugging

efficiency. This aspect is crucial in the distributed pair debugging context, as it allows for

more efficient management of code changes and error correction. This suggests that

version control systems help manage changes and coordinate tasks among team

members and provide a safety net that encourages experimentation, a key component in

creative problem-solving in software development. These systems are indispensable in

efficiently managing code changes, particularly in a distributed setting. However, this

raises the critical question of whether apprentices fully grasp the underlying principles of

version control. While IDEs simplify this process, it is imperative for apprentices to

develop a comprehensive understanding of version control mechanisms, a necessity

opined by Loeliger and McCullough (2012). This knowledge is essential for managing code

changes effectively, even when IDEs are not in use or in different coding environments,

ensuring a well-rounded skill set in software development.

In summary, the analysis of participants’ experiences and quotations, supported by

relevant academic references, points out the integral role of IDE tools in enhancing the

effectiveness of distributed pair debugging of Python code. These tools facilitate real-

time collaboration and expedite error identification and resolution, reduce cognitive load,

224 | P a g e

and offer advanced functionalities for a more comprehensive debugging experience (Du

Preez Ockert, 2019; Kölling et al., 2019). Also, the participants’ affirmative feedback on

using IDE tools in overcoming challenges, particularly in remote settings, reaffirms the

pivotal role of technology in enabling seamless collaborative coding experiences.

RQ5 - Collaborative Debugging Challenges

What challenges are experienced by paired geographically distributed SDT apprentices

working collaboratively on debugging programming bugs, and why are they facing such

challenges?

Geographically distributed SDT apprentices engaged in pair debugging face numerous

hurdles, including the complexities of remote collaboration and programming intricacies.

Their challenges, compounded by the limitations of digital communication tools and

varying levels of coding knowledge, involve effectively conveying complex coding

concepts over distances and managing the cognitive load of resolving technical issues

remotely. These factors collectively impinge upon the efficiency of the debugging

process, leading to a range of issues that will now be explored in detail.

Technical and Cognitive Challenges in Remote Debugging:

A primary challenge faced by dyads in remote debugging sessions is encapsulated in the

realm of technical and cognitive difficulties. Various aspects contribute to these

challenges, notably the apprentices’ struggles with complex logical errors. For example,

apprentices in DYAD1 contended with intricate logical errors such as the misuse of the

special variable ‘name’ and bonus calculation lacking context (domain knowledge). These

225 | P a g e

instances serve to highlight the significant challenges within the remote debugging

landscape. Apprentices, grappling with the subtleties of Python’s logic and syntax,

frequently encountered obstacles, largely due to their limited experience. SDT1

articulated this challenge, stating, “One of the main obstacles... was dealing with complex

logical errors... which was challenging given our limited experience”. This experience

stands in stark contrast to that of DYAD8, where apprentices adeptly utilised IDE tools to

navigate similar challenges, thereby illustrating the uneven distribution of technical

proficiency and problem-solving approaches among the dyads. This discrepancy suggests

an underlying issue within remote programming education, indicating that while IDE tools

provide significant support, they cannot substitute for a fundamental understanding of

programming concepts, a gap particularly pronounced in remote settings where

immediate peer or mentor support is absent.

Another aspect under the technical and cognitive theme is the management of cognitive

load. The experiences of DYAD3, struggling with cognitive overload, illuminate the

complex nature of this challenge. SDT6 noted the difficulty in managing the shared editing

environment, a task that becomes increasingly challenging in a remote context where

isolation can exacerbate focus issues. Contrasting these experiences with those of

DYAD11, who struggled with poorly documented codebases, reveals the range of

technical challenges in remote debugging. Such experiences affirm the need for

comprehensive programming training that transcends mere technical skill development

to encompass strategies for effective cognitive load management and documentation

comprehension.

226 | P a g e

Additionally, the use of IDE tools presents its own set of challenges. Apprentices in DYAD5

and DYAD8 faced significant hurdles in mastering these crucial tools for remote

debugging. SDT14 highlighted the difficulties in efficiently utilising the IDE Debugger

remotely, stating, “another obstacle was efficiently utilising the IDE Debugger in a remote

setting... this limitation made it difficult to collaboratively explore different hypotheses

about the bug”. This learning curve contrasts with the experiences of DYAD8, where

apprentices demonstrated greater proficiency with these tools. Such differences in tool

mastery stress the importance of tailored training in remote debugging education,

focusing on the technical operation of these tools and their integration into the learning

and debugging processes.

Navigating poorly documented codebases, a challenge faced by apprentices in DYAD4 and

DYAD11, adds another layer of complexity to remote debugging. SDT21 highlighted the

struggle with logical errors, exacerbated by limited experience and unclear

documentation, “One significant obstacle we faced... was dealing with the logical errors,

especially considering our limited experience”. This struggle differs from the cognitive

challenges faced by DYAD4, emphasising the need for a focus on comprehensive

documentation skills within programming education.

Similarly, managing complex workloads and intricate code structures, as evidenced in the

experiences of DYAD13 and DYAD15, points to the multi-dimensional nature of remote

debugging. These apprentices needed to balance solving complex programming tasks

with effective time and mental resource management, a challenge distinct from the

technical issues faced by DYAD5. This necessitates an educational approach that includes

227 | P a g e

elements of project management and personal organisation to ensure that apprentices

are technically proficient and adept at handling the broader demands of software

development projects.

In conclusion, exploring these aspects in detail revealed the layered complexity of

technical and cognitive challenges in remote debugging sessions. The diverse struggles of

apprentices across different dyads marked the need for a comprehensive and varied

approach to programming education. This approach should address the technical aspects

of coding and the cognitive, collaborative, and organisational skills essential for effective

remote debugging. Balancing the development of technical competencies with the

cultivation of communication, problem-solving, and project management skills is crucial

for preparing apprentices for the diverse challenges of the contemporary software

development environment.

Communication and Collaboration Challenges:

The exploration of communication and collaboration challenges faced by apprentices in

various dyads during remote debugging sessions, even with the aid of visual tools like

Microsoft Teams, unveiled a complex landscape of interaction hurdles. Despite the visual

connectivity offered by such platforms, the geographical separation between apprentices

persisted as a significant barrier, demanding an enhanced focus on both verbal and non-

verbal communication skills. As SDT1 aptly put it, “While tools like Visual Studio Live Share

helped bridge the physical distance, we had to work harder to ensure clear and precise

communication”. This sentiment was echoed by SDT2, who noted the necessity of

228 | P a g e

constantly verbalising thoughts to maintain a shared understanding, highlighting the

ongoing struggle to overcome the absence of physical presence in digital interactions.

Moreover, this challenge was not isolated to DYAD1. For instance, SDT5 spoke of the

difficulties in not being able to physically point out issues or discuss solutions, a sentiment

that SDT6 also shared, particularly during simultaneous code editing, which often led to

confusion. These experiences backs up the limitations of visual connections in fully

compensating for the lack of direct, physical interaction, especially in understanding and

managing shared coding tasks. The visual component, while beneficial, could not

completely bridge the gap in immediate, intuitive understanding and response that

physical presence facilitates.

Additionally, the dyads confronted the challenge of aligning their coding strategies and

interpretations, a task made more difficult by geographical separation. SDT12’s

observation that face-to-face brainstorming could have expedited the process during

moments of confusion points to the complexities of remote collaboration. Visual contact,

albeit helpful, did not wholly mitigate the challenges posed by the need for immediate

and coherent strategy alignment. This issue was further compounded by differences in

individual coding experiences and styles, as highlighted by SDT11, who found it

challenging to align coding approaches with their partner, indicating a deeper need for

structured and systematic problem-solving approaches in remote settings.

Furthermore, the apprentices’ struggles extended to the realm of effective

communication, particularly in conveying complex programming concepts and thoughts.

229 | P a g e

SDT20’s reflection on the extra effort required to explain thought processes and

perspectives marks the inherent limitations of remote communication tools in replicating

the depth and distinctness of face-to-face interaction. Similarly, SDT19’s expression of

difficulty in articulating thoughts to their partner reflects a broader issue within remote

collaboration, where the complexity of conveying intricate ideas through digital means

can hamper progress and understanding.

In synthesising these accounts from different dyads, it becomes evident that despite the

advantages of visual communication tools, apprentices faced a wide array of challenges

in remote debugging. These challenges encompassed the need for effective verbal and

non-verbal communication and the intricacies of managing shared coding environments

and harmonising diverse coding strategies. The experiences highlight the critical need for

a comprehensive approach in remote programming education that goes beyond the mere

use of technological tools. Such an approach should focus on developing robust

communication and teamwork skills, addressing the complexities of remote

collaboration, and ensuring apprentices are well-prepared to navigate the multifaceted

challenges of modern software development. This comprehensive approach is essential

for fostering a collaborative, effective, and adaptable learning environment in the ever-

evolving field of software development.

Environmental and Logistical Challenges:

The exploration of environmental and logistical challenges faced by SDT apprentices in

remote debugging sessions, as reflected in their direct experiences, revealed intricate

complexities and multifaceted nature of these hurdles.

230 | P a g e

Furthermore, geographical separation profoundly impacted the dynamics of

communication and collaboration, as evidenced by the experiences of various dyads. This

finding aligns with the suggestion put forward by Satratzemi et al. (2018) that distributed

pair programming (DPP) is more demanding than traditional pair programming (PP). For

instance, SDT1 remarked, “Additionally, being geographically dispersed posed its own set

of challenges... we had to work harder to ensure clear and precise communication”. This

sentiment was echoed by SDT2, who highlighted the necessity of constant verbalisation

to maintain a synchronised understanding of the code. Similarly, SDT3 and SDT4

experienced delays in real-time collaboration due to remote setup, with SDT4 noting,

“Due to our remote setup, we faced delays in real-time collaboration, even with the aid

of live code-sharing tools”. These quotes underline the challenges posed by physical

distance, necessitating enhanced communication strategies to bridge the gap.

In addition to these communication challenges, the need for effective coordination within

shared digital spaces was another significant challenge. SDT5 expressed difficulties in not

being able to physically point out issues, stating, “Being geographically dispersed meant

we couldn’t simply look over each other’s shoulder to point out issues or discuss

solutions”. This issue of managing shared coding environments effectively was also

highlighted by SDT23, who mentioned, “The geographical separation added another layer

of complexity. We relied heavily on digital communication tools”. These reflections point

to the challenges in synchronising understanding and actions in a remote collaborative

setting.

231 | P a g e

Compounding these issues, technological limitations and connectivity issues added

another dimension to the challenges faced. SDT29 discussed the impact of internet

connectivity on their workflow, noting that “Our different locations also meant we were

working in different environments... relying on technology meant we were at the mercy

of our internet connections, which occasionally disrupted our flow”. This highlights the

need for reliable infrastructure and robust digital tools to facilitate seamless remote

collaboration.

Moreover, the varied experiences across dyads illustrated the diverse nature of

environmental and logistical challenges. While apprentices in DYAD8 and DYAD14 utilised

IDE tools effectively, they faced specific challenges unique to their situations. For

example, SDT15 noted, “Being geographically dispersed meant that we couldn’t quickly

huddle and draw out our thoughts on a whiteboard or paper”. In contrast, SDT27

mentioned, “The challenges we faced... were largely due to the nature of remote

communication... The lack of immediate, direct interaction made it more challenging to

collaboratively and swiftly navigate through these complex issues”.

Consequently, these insights from apprentices across various dyads paint a picture of the

environmental and logistical challenges encountered in remote debugging sessions. They

emphasise the need for strategies that effectively bridge the geographical gap and

address the unique demands of remote collaboration. This more comprehensive

approach should focus on developing technical skills and enhancing communication,

teamwork, and adaptability to diverse technological landscapes, preparing apprentices

for the evolving challenges of modern software development.

232 | P a g e

However, in addressing the central question, “How do the paired Software Development

Apprentices in geographically distributed locations work collaboratively to fix Python

programming bugs using the technology-mediated medium?”, this study examines the

five interrelated sub-questions that underpin the investigation. These sub-questions

explore the nature of errors encountered, the debugging strategies and tactics used, the

mechanisms for cognitive load distribution, the role of Integrated Development

Environments (IDEs), and the challenges apprentices face in collaborative debugging. The

findings reveal that apprentices adopt a highly structured yet adaptable approach to

debugging, integrating problem-solving techniques, cognitive flexibility, and technology-

supported collaboration. Despite the complexities and limitations associated with remote

debugging, apprentices demonstrate resilience, adaptability, and an evolving mastery of

debugging processes. Their ability to effectively communicate, structure their debugging

efforts, and synchronise their workflows plays a crucial role in ensuring efficiency in

distributed pair debugging.

Building on this, the study finds that apprentices encounter three primary categories of

errors: syntax errors, logical errors, and runtime errors. Syntax errors occur when

Python’s structural rules are violated, leading to issues such as missing colons, incorrect

indentation, or misused operators. Since these errors produce immediate feedback from

the interpreter, they are often straightforward to resolve. However, failing to address

them efficiently can hinder progress and obscure deeper logical flaws. To resolve syntax

errors, apprentices predominantly rely on print statement debugging, which allows them

to observe variable states and track execution flow. While this method is highly effective

233 | P a g e

for identifying and correcting syntax issues, it becomes less useful when dealing with

more complex errors that require deeper reasoning.

Extending beyond syntax issues, logical errors present a greater challenge as they do not

produce explicit error messages but instead result in incorrect program behaviour. These

errors frequently stem from misapplied conditional logic, flawed tax computations, or

improperly structured loops, leading to unintended outcomes. Unlike syntax errors,

which can often be corrected quickly, logical errors require a more systematic approach

to debugging. Step-through debugging, where apprentices execute the code line by line

while observing variable changes and function calls, proves particularly effective in

diagnosing these errors. Furthermore, backtracking, where apprentices systematically

review previous modifications to pinpoint when an error was introduced, plays a crucial

role in isolating logical faults. However, this process can be mentally taxing, particularly

in large programs with multiple interdependencies.

In addition to syntax and logical errors, runtime errors are the most unpredictable and

complex to debug, as they only emerge during program execution. Examples include

infinite loops, incorrect type conversions, and index errors, which can cause the program

to behave erratically or even crash. Unlike syntax errors, which apprentices can address

through static code analysis, runtime errors often require more extensive debugging

efforts. Resolving these issues demands a combination of approaches, including trial and

error, slicing, and code review. When runtime errors prove particularly elusive,

apprentices frequently resort to rubber duck debugging, which involves verbalising their

thought process to clarify their understanding. This technique often helps apprentices

234 | P a g e

identify overlooked logic flaws, reinforcing the importance of metacognition in

debugging.

To manage these different types of errors, apprentices strategically employ ten distinct

debugging methods, each offering unique advantages depending on the nature of the

bug. As previously noted, print statement debugging remains the most frequently used

approach due to its simplicity and immediate feedback, allowing apprentices to track

variable states and execution flow. However, while print statements provide insight into

syntax-related issues, they lack the precision needed to resolve deeper logical and

runtime errors. To address these limitations, apprentices frequently use step-through

debugging, facilitated by IDE debugging tools, to execute code incrementally, set

breakpoints, and monitor changes in variable states in real-time. This method proves

particularly useful in identifying subtle logical errors, yet its effectiveness is dependent

on the apprentice’s proficiency in using debugging tools.

Along with these structured methods, apprentices also engage in tinkering, where they

experiment with incremental modifications to the code to observe how different changes

impact execution. While this approach fosters exploratory learning and intuitive problem-

solving, it lacks structure and can lead to inefficiencies if used indiscriminately. Similarly,

trial and error, although valuable when the nature of the bug is unclear, can be time-

consuming and unreliable if apprentices fail to document and analyse their attempts

systematically. Therefore, while experimentation is an essential aspect of debugging, it

must be balanced with structured techniques to ensure efficiency.

235 | P a g e

Furthermore, more methodical debugging approaches, such as backtracking, allow

apprentices to trace errors back to their origin, making it easier to identify when and

where a mistake was introduced. GitHub’s version control system significantly enhances

this process, as it enables apprentices to compare different iterations of their code and

revert to previous versions when necessary. Additionally, code review plays a vital role in

debugging, as apprentices critically evaluate each other’s work, offering feedback,

suggestions, and alternative solutions. This method enhances collaboration and

debugging efficiency, as errors that might be overlooked by one apprentice can be

identified by their partner, reinforcing the value of shared problem-solving.

Expanding on these strategies, pattern matching further contributes to debugging

efficiency by enabling apprentices to identify recurring error types and apply solutions

based on past experiences. This approach demonstrates a transition from trial-and-error

methods to structured problem-solving, highlighting the apprentices’ growing debugging

expertise. Additionally, slicing, which involves isolating specific sections of the code for

in-depth examination, significantly reduces cognitive overload, allowing apprentices to

focus on smaller, more manageable code segments. When combined with other

strategies, slicing ensures a systematic approach to debugging, preventing unnecessary

effort spent on scanning the entire codebase.

Another effective technique is divide and conquer, which is especially useful for complex

debugging tasks. Here, apprentices split the program into smaller sections, debugging

individual parts independently before integrating their solutions. This approach improves

236 | P a g e

efficiency and minimises cognitive strain, ensuring that both apprentices remain engaged

and contribute actively to the debugging process.

Since debugging is not only a technical task but also a cognitively demanding process,

apprentices must employ effective cognitive load management strategies. The driver-

navigator model remains the primary approach, with one apprentice writing or modifying

code while the other provides real-time oversight and guidance. However, while this

approach fosters structured collaboration, its effectiveness depends on regular role-

switching, as prolonged navigation without hands-on coding can result in reduced

engagement and passive participation. Additionally, verbalisation strategies, such as

thinking aloud and articulating reasoning, play a crucial role in clarifying thought

processes and ensuring mutual understanding. These strategies prevent

misinterpretations and enhance collaborative problem-solving, particularly in remote

environments where non-verbal cues are absent.

Given the geographical separation of apprentices, technology plays a crucial role in

bridging the gap and enabling effective debugging. Visual Studio Live Share provides a

shared environment for real-time collaboration, allowing apprentices to simultaneously

edit, execute, and debug code, mimicking the experience of co-located pair

programming. Similarly, GitHub’s version control features support structured debugging

workflows, ensuring that apprentices can track modifications, revert changes, and

maintain a history of code updates. Microsoft Teams, Zoom, and Slack further facilitate

verbal discussions and screen sharing, enabling apprentices to communicate effectively

despite physical distance.

237 | P a g e

Despite these technological advantages, several challenges persist. Over-reliance on IDE

debugging features can lead to superficial problem-solving approaches, where

apprentices depend too much on automated tools instead of developing deeper

analytical skills. Moreover, communication barriers in remote debugging introduce delays

and inefficiencies, particularly when apprentices struggle to articulate complex

programming issues without face-to-face interaction. Additionally, cognitive overload

remains a significant challenge, as apprentices must juggle multiple cognitive demands

simultaneously.

Ultimately, the study highlights that distributed debugging is not merely a technical task

but a complex cognitive and collaborative process. Apprentices must balance structured

debugging methodologies with adaptive learning, integrate technology effectively

without over-reliance, and refine their independent problem-solving skills while engaging

in collaborative debugging. Despite the inherent challenges of remote debugging,

apprentices demonstrate progressive mastery of debugging techniques, showcasing the

potential for effective software development training in distributed settings. The

research underscores the importance of structured learning, technological facilitation,

and cognitive load management in fostering efficient and scalable remote debugging

practices.

238 | P a g e

6.3 Refined Conceptual Framework Linking Research Outcomes to Distributed

Debugging Processes

Understanding how research outcomes align with the conceptual framework is crucial to

comprehending the mechanisms underpinning distributed debugging processes. This

refined framework integrates Information Foraging Theory (IFT) (Pirolli & Card, 1999) and

Distributed Cognition (DC) (Hutchins, 1995) to provide a structured perspective on how

software development apprentices collaborate to debug Python programming errors in

technology-mediated environments. By examining how apprentices seek and process

information, distribute cognitive effort, and leverage debugging tools, this framework

offers a comprehensive lens through which debugging behaviours can be analysed and

optimised.

At the centre of this framework is Distributed Pair Debugging, which encapsulates the

interplay between cognitive, behavioural, and technological factors that shape debugging

in remote settings. Debugging is not a solitary task but a process that requires structured

information retrieval, strategic collaboration, and effective technological support. As

apprentices engage in distributed debugging, they must balance information foraging

with cognitive load distribution, ensuring that problem-solving remains efficient and

structured. The research findings confirm that the success of debugging depends on how

effectively apprentices integrate these elements, reinforcing the need for a systematic

approach to collaborative problem resolution.

A key component of this framework is Information Foraging Theory (IFT), which explains

how apprentices search for, evaluate, and apply debugging information. Debugging

239 | P a g e

requires programmers to navigate multiple information sources, including error

messages, documentation, online forums, and past code iterations. The ability to identify

useful information efficiently and distinguish between relevant and irrelevant data

directly affects the speed and accuracy of debugging. The research findings indicate that

apprentices who develop effective information-seeking behaviours are more successful

in applying structured debugging techniques, as they can quickly access and interpret the

necessary resources without unnecessary delays.

However, acquiring information is only one aspect of debugging. Distributed Cognition

(DC) complements IFT by explaining how cognitive processes are shared between

apprentices and the tools they use. Debugging in a distributed setting involves continuous

coordination, shared cognitive effort, and strategic tool utilisation. The research

highlights that cognition is not confined to individual minds but distributed across pairs

and the technological ecosystem they operate within. Apprentices must not only

externalise their thought processes through verbalisation and structured discussions but

also use debugging tools effectively to distribute cognitive workload. This shared

cognition ensures that problem-solving remains fluid and adaptive, preventing any single

apprentice from being overwhelmed by the complexity of the debugging task.

The research also reveals that Debugging Strategies act as a bridge between information

foraging and problem resolution. Apprentices employ a range of techniques, including

print statement debugging, step-through debugging, backtracking, pattern matching,

slicing, and trial-and-error approaches. While some strategies, such as print statement

debugging and trial-and-error, are exploratory, others, such as step-through debugging

240 | P a g e

and backtracking, require structured reasoning and systematic problem-solving. The

conceptual framework highlights that debugging strategies must align with the nature of

the error, ensuring that apprentices apply the most effective method for each debugging

scenario. Without a structured approach, debugging becomes inefficient, leading to

prolonged problem resolution times and increased cognitive strain.

Equally significant is Cognitive Load Management, which determines how effectively

apprentices sustain focus and manage the demands of debugging. Debugging can be

mentally taxing, particularly when apprentices must juggle multiple problem-solving

tasks while collaborating in real time. The research findings emphasise the importance of

role-switching strategies, such as the driver-navigator model, in ensuring equitable

participation and reduced cognitive fatigue. By alternating roles, apprentices maintain an

active engagement in debugging while balancing cognitive effort, preventing one

individual from bearing the entire cognitive burden. Furthermore, verbalisation

techniques, such as think-aloud protocols, help externalise reasoning and reinforce

shared understanding, ensuring that both apprentices remain aligned in their debugging

efforts.

The role of Technology-Mediated Tools is another fundamental aspect of this framework,

as tools serve as both cognitive extensions and collaboration enablers. The research

findings confirm that IDE debugging features, version control systems, and real-time

collaboration platforms enhance efficiency, structure debugging workflows, and improve

coordination between apprentices. Visual Studio Live Share facilitates synchronous

debugging, allowing apprentices to view and modify code simultaneously, which

241 | P a g e

replicates the experience of co-located debugging sessions. Likewise, GitHub’s version

control capabilities enable structured debugging by allowing apprentices to track

changes, document problem-solving processes, and revert to previous working versions

when necessary. These tools not only support problem-solving but also reduce cognitive

load by automating certain debugging tasks, enabling apprentices to focus on logical

problem-solving rather than manual syntax corrections.

Nevertheless, while technology is a powerful enabler, it must be used strategically rather

than as a substitute for fundamental debugging skills. The research highlights that over-

reliance on automated debugging features can lead to superficial problem-solving

approaches, where apprentices depend on error-highlighting tools rather than

developing a deep understanding of debugging principles. Therefore, the conceptual

framework reinforces that technology should facilitate, rather than replace, structured

debugging methodologies, ensuring that apprentices cultivate both technical proficiency

and problem-solving expertise.

A further critical insight from the research is the role of Collaboration and Shared

Understanding in debugging success. Since apprentices operate in geographically

distributed settings, effective debugging relies on clear communication, structured

discussions, and synchronised problem-solving efforts. The research highlights that

successful debugging pairs engage in continuous dialogue, share mental models of

debugging problems, and refine solutions through collaborative reasoning. However,

when collaboration is poorly structured or lacks clear communication protocols,

debugging efforts become fragmented and inefficient, leading to duplicated efforts,

242 | P a g e

misinterpretations, and unresolved issues. The conceptual framework underscores that

collaborative debugging is most effective when supported by structured coordination

strategies, active engagement, and clear documentation of debugging steps.

Figure 11: Refined Conceptual Framework Aligning Research Outcomes to Distributed Debugging Processes

Bringing these elements together, the refined conceptual framework (see Figure 11)

presents a structured representation of how research outcomes align with the debugging

process. It provides a multi-layered model that accounts for the interplay between

theoretical constructs, debugging methodologies, cognitive processes, and technological

interventions. Figure 11 visually encapsulates these relationships, illustrating how

Distributed Pair Debugging is shaped by the integration of Information Foraging,

Distributed Cognition, Debugging Strategies, Cognitive Load Management, and

Technology-Mediated Tools.

243 | P a g e

This framework not only enhances understanding of how apprentices engage in

distributed debugging but also provides valuable insights for software development

education, training, and the design of debugging tools. By offering a structured approach

to information navigation, collaborative cognition, and debugging strategy selection, the

research contributes to a better-informed methodology for teaching and improving

debugging practices in remote environments.

6.4 Novelty of this Work

The novelty of this study can be appreciated through three distinct focal points that

contribute to the existing body of knowledge in a number of research areas. Notably, at

the time of this research, there was a noticeable void in studies specifically targeting

work-based learning environments in this sector, a gap that has persisted since 1973. This

shortfall is particularly pronounced in investigations into the debugging practices of

novice programmers, such as apprentices. While numerous studies have explored

debugging strategies and tactics (Alaboudi & LaToza, 2023; Allwood & Bjorhag, 1990;

Alqadi & Maletic, 2017; Fitzgerald et al., 2008; Fitzgerald et al., 2010; Gould, 1975;

Gugerty & Olson, 1986; Jayathirtha et al., 2020; Katz & Anderson, 1987; Lee et al., 2014;

Murphy et al., 2010; Murphy et al., 2008; Romero et al., 2007; Weiser, 1982; Yen et al.,

2012), they predominantly focus on school and academic environments or on seasoned

developers in realistic settings (Alaboudi & LaToza, 2023). Therefore, this study addresses

a significant research gap by examining the debugging strategies and tactics of a

previously unexplored group, the novice programmer apprentices in work-based learning

environments.

244 | P a g e

Similarly, the distinctiveness of the study’s participants contributes to its originality.

Contrary to many research projects centred on specific demographics or professional

groups, this study’s participants represent a diverse array of learners employed across

various sectors. Their variety in employment histories, employers, and age ranges

enriches the research, offering a wider viewpoint on debugging practices due to the

participants’ extensive demographic range. This diversity in participant profiles suggests

potential wider generalisability of the findings, although not the primary aim of this study,

and reinforces the transferability of debugging skills across varied work-based settings.

Secondly, the study’s distinctiveness is further highlighted by the lack of any prior

empirical research on distributed pair debugging within the work-based learning sector.

Although there are a limited number of studies on pair debugging, they do not specifically

focus on debugging strategies (Jayathirtha et al., 2024; Murphy et al., 2010; Parkinson et

al., 2024). The concept of pair debugging in distributed settings, particularly within

educational contexts, had not been explored at the time of this study. While research on

distributed pair programming has been recognised for its role in enhancing collaboration

and problem-solving in software development (Baheti et al., 2002; Hafeez et al., 2023; Xu

& Correia, 2023), the specific aspect of debugging within distributed pairs has remained

largely unexamined. This study fills this void by delving into the unique challenges and

strategies of debugging in a distributed environment, thereby enriching the

understanding of collaborative debugging practices in software development.

245 | P a g e

Thirdly, a noteworthy contribution of this study is the creation of an innovative

conceptual framework for distributed debugging (see Figure 4 and Section 3.4), which

merges two theoretical frameworks, which are distributed cognition (Hutchins, 1995) and

information foraging theories (Pirolli & Card, 1999). This new framework acts as a

theoretical construct that structures the research findings and offers a resource for future

research and practical applications. The development of this framework marks an

advancement as it synthesises and systematises the knowledge gained from the study,

enhancing its applicability across various contexts and settings (Bryman, 2016).

In conclusion, the novelty of this study is multi-faceted, encompassing its focus on work-

based learning environments, the exploration of distributed pair debugging, the

development of a conceptual framework, and the diversity of its participant profiles.

These aspects collectively contribute to advancing knowledge in debugging practices and

offer insights for both academia and the learning and development sector.

6.5 Contributions

My thesis makes notable contributions to computing education and the practical

implementation of technology in education, potentially influencing the approaches of

educators and practitioners in these fields.

One of the key empirical insights of my thesis lies in its ability to shed light on the

debugging strategies and challenges within the work-based learning sector, leveraging a

detailed compilation of experiences from 30 apprentices, further enriched by the

perspectives of 12 mentors and trainers. This diverse cohort unveils an insight into

246 | P a g e

collaborative problem-solving in debugging within the distributed environment, setting a

solid foundation for broader applicational insights. Additionally, the methodological and

analytical depth employed in this study reinforces its potential wider generalisability,

suggesting that the varied backgrounds of apprentices in terms of their ages, educational

background, diverse employers and experiences of the participants may mirror the

sector’s complexity, thereby extending the relevance of these findings beyond the

immediate study context. The research benefits significantly from the dual perspectives

of apprentices and their mentors, offering a comprehensive view of the debugging

process that highlights the critical role of guidance and support. This approach reinforces

the study’s potential broader applicability and signals its potential to inform educational

practices and professional development across the sector. Similarly, including

participants from a broad spectrum of backgrounds further strengthens the study’s

position as a resource for educators and policymakers alike, emphasising its capacity to

address specific needs and challenges within work-based learning environments. Thus,

this thesis stands as a testament to the value that diverse, collaborative insights offer in

shaping educational strategies and policies.

Furthermore, my research extends its empirical contributions into the broader area of

technology in education. In today’s digital age, integrating technology into educational

settings is both pervasive and potentially transformative. My thesis acknowledges

students’ challenges and presents innovative ways to harness technology to support and

enhance an apprentice’s learning. This practical aspect of my work holds particular

relevance for educators, instructional designers and work-based mentors seeking

evidence-based insights on effectively leveraging technology to support their learners. By

247 | P a g e

offering practical recommendations grounded in empirical research, my thesis serves as

a guide for those navigating the ever-evolving landscape of the use of technology in

debugging.

The technical contributions of my thesis provide an insight into the key technical aspects

in computing education in the context of debugging strategies within distributed settings.

Prior research, such as that of Katz and Anderson (1987), has explored debugging in solo

and collocated environments, but there is a gap in understanding how novices integrate

these strategies in distributed contexts. My study addresses this by examining the unique

dynamics of distributed debugging, necessitating new analytical frameworks. It merges

distributed cognition and information foraging theory to explore collaborative

interactions and tool usage in error detection within code. This approach is significant as

it extends beyond the well-documented novice debugging strategies of the 1980s, which

were largely based on cognitive theories (McCauley et al., 2008). My research uncovers

the specific strategies and challenges of debugging in distributed settings, providing

insights for both novice and seasoned programmers. These findings add to the academic

discourse and have practical implications, potentially transforming how debugging might

be taught and practised, thereby potentially enhancing the proficiency and adaptability

of programmers.

In summary, this thesis provides educators and practitioners with empirical insights and

technical developments, aiding them in navigating the complexities of technology-

enhanced debugging, which refers to the process of identifying and fixing errors (bugs) in

software code using advanced technological tools and methods, and how best to support

248 | P a g e

the novice through the details provided. By delivering evidence-based recommendations

and insights, the research is designed to advance the use of technology within these

contexts. This, in turn, can enrich the learning experience for learners and support the

cultivation of proficient and resilient professionals in computing.

6.6 Significance of the Study

This evaluative case study on the program debugging behaviour of paired SDT apprentices

in a geographically distributed environment holds significant implications for both

educational and industry contexts. This study addresses a notable gap in the literature by

investigating debugging strategies in distributed, collaborative settings among novice

programmers. The significance of this research can be elucidated through the following

points.

Educational Enrichment and Curriculum Development: This study offers valuable insights

into how novice programmers (SDT apprentices) approach debugging in remote,

collaborative settings. By understanding their strategies, challenges, and successes,

educators can tailor their curricula to better prepare apprentices for real-world software

development challenges. Incorporating findings into apprenticeship programmes can

enhance learning outcomes and equip apprentices with skills more aligned with industry

demands. It allows educational institutions to bridge the gap between theoretical

learning and practical application.

Industry Relevance and Software Quality Enhancement: The software development

industry increasingly operates with geographically distributed teams (Herbsleb & Moitra,

249 | P a g e

2001), particularly in the wake of remote work trends accelerated by the COVID-19

pandemic. Understanding how debugging occurs in these settings can directly impact

software quality (Beasley & Johnson, 2022), as effective debugging is critical for delivering

robust and reliable software products. Insights from this study can guide software

development teams in refining their collaborative debugging practices, resulting in more

efficient and higher-quality code.

Remote Collaboration Strategies: Collaborative debugging among remote pairs

introduces unique challenges related to communication, coordination, and information

sharing. By investigating how dyad SDT apprentices tackle these challenges, the study

contributes to understanding effective remote collaboration strategies. Such insights can

inform the development of best practices for distributed software development teams,

ensuring smoother communication and improved teamwork. The study results may

provide insight into the type of error messages generated by SDT apprentices while

debugging codes, their debugging strategies and how pairing novice programmers in

different locations works. Also, it will help share good practices from other mentors about

how best to support apprentices with low debugging skills.

Pedagogical Innovations and Tool Development: The study’s findings encourage

pedagogical innovations around teaching debugging techniques. Educators can leverage

these insights to design more effective methods for teaching debugging skills to novice

programmers, focusing on particularly relevant strategies in remote and collaborative

settings. Additionally, the research can inform the development of tools and technologies

tailored to support debugging in geographically distributed environments. This could lead

250 | P a g e

to the creation of debugging tools that facilitate remote collaboration and enhance

efficiency.

Cognitive Processes and Distributed Cognition: Investigating how SDT apprentice dyads

share the cognitive load while debugging unveils the intricacies of distributed cognition

in collaborative software development (Hutchins, 1995). By understanding how

individuals distribute tasks, make decisions, and solve problems together, the study

contributes to the growing body of knowledge on cognitive processes in distributed

teams. This understanding can lead to better collaboration frameworks and enhanced

coordination mechanisms.

Enhancing Industry-Academia Collaboration: The findings of this study can foster stronger

collaboration between educational institutions and the software development industry.

The insights gained can be shared with industry partners to inform their practices and

expectations of novice programmers. This collaboration ensures that industry needs can

be met and educational programmes produce graduates who are well-equipped to

contribute effectively to real-world development scenarios.

In conclusion, this evaluative case study has significance, as it could potentially impact

both education and industry by offering insights into debugging practices and team

synergy among geographically distributed SDT apprentices.

251 | P a g e

6.7 Trustworthiness of the Study

The foundational work of Lincoln and Guba (1985) is pivotal in establishing a framework

for trustworthiness, comprising four essential criteria, including credibility,

transferability, dependability, and confirmability.

Credibility, as posited by Lincoln and Guba (1985), pertains to the believability and truth

value of the findings. In ensuring the credibility of the study involving apprentices and

WMTs, I engaged in sustained observation, documenting and analysing the multi-faceted

of practical debugging sessions and dyad interviews (see Appendix J: Sample transcript of

the debugging session and Appendix K: Sample transcript of dyad’s interview). This

approach, endorsed by Shenton (2004), facilitated an immersion into the apprentices’

experiences, offering a portrayal of their debugging skills that was as authentic as

possible. Similarly, the study also combined the think-aloud verbal protocol during the

debugging session (Ericsson, 2006) with retrospective post-debugging dyad interviews,

akin to Murphy et al. (2008). This approach let quieter apprentices during the debugging

session explain their actions and thoughts later, though it risked rationalised responses

(Ericsson & Simon, 1993). The benefit of this method was that it potentially provided

more in-depth insights into the dyads’ strategies and misconceptions (Whalley et al.,

2023). Furthermore, the integration of two debriefing sessions with WMTs further

enriched this narrative, providing a multifaceted perspective on the apprentices’

developmental trajectory. The study used methodological triangulation, as suggested by

Carter et al. (2014), coalesced diverse data sources such as practical debugging sessions,

Python code analysis, interviews with dyads, and WMTs’ insights. This approach

strengthened the study’s reliability by corroborating and validating its findings.

252 | P a g e

Transferability, as elucidated by Lincoln and Guba (1985), addresses the applicability of

findings in other contexts. To facilitate this, the study provided descriptions of the

apprentices’ environments, backgrounds, and experiences, as well as the diverse

professional contexts of the WMTs. This approach, resonates with Geertz (1973) concept

of thick description allowed for a good grasp of the apprentices’ settings. Such detailing

may equip other researchers with the necessary context to evaluate the potential

applicability of these findings in analogous settings.

Dependability focuses on the consistency and stability of the findings over time, a crucial

aspect affirmed by Lincoln and Guba (1985). The study embraced an iterative approach,

continually revisiting and refining the data in light of emerging insights, a strategy

supported by Morse (1994). As recommended by Rodgers and Cowles (1993), the

maintenance of an exhaustive audit trail provided a transparent and comprehensive

account of the research process, encompassing facets of data collection and analysis. This

documentation of the study’s methodology, encompassing both apprentices’ and WMTs’

contributions, underpins the dependability of the research, ensuring that the study’s

process is transparent, replicable, accountable, and consistent.

Confirmability, the fourth criterion in Lincoln and Guba’s framework, relates to the

degree to which the respondents shape the findings, not by researcher bias or

predispositions. To achieve this, the researcher maintained a reflexive journal, a practice

supported by Schwandt (2001), to record personal biases and reflections, thereby

enhancing the objectivity of the research. This reflexive practice was crucial during the

253 | P a g e

analysis of the apprentices’ debugging sessions, interviews, and the focus group

discussions with WMTs. In these analyses, special care was taken to root interpretations

in the data, utilising direct quotes and specific examples from the sessions. This practice

effectively anchored the study’s findings in the authentic experiences and perspectives of

the participants, thereby bolstering the confirmability of the research.

6.8 Limitations of the Study

Looking back on the research conducted for this thesis, it is evident that while it

constitutes an original contribution to the field, it also inevitably encompasses certain

limitations and weaknesses.

First, the phenomenon of retrospective rationalisation, where participants reinterpret

actions and thoughts after the fact, introduces potential discrepancies between actual

and reported behaviours, as participants might align their narratives with perceived

expectations or beliefs (Tufford & Newman, 2012).

In addition, the inherent complexity of qualitative data, sourced from diverse mediums

like video recordings and interviews, presents considerable challenges in achieving

thematic interpretation and analysis consistency (Saunders et al., 2023). Furthermore,

this complexity is exacerbated by the emotional and psychological impacts on

apprentices when observed, potentially influencing their responses and behaviours.

Despite these challenges, qualitative research provides profound insights often beyond

the reach of localised surveys, as suggested by Grant and Booth (2009).

254 | P a g e

Also, the study’s focus on Python programming and Microsoft Visual Studio as the

primary IDE presents a limitation in its scope, specifically in capturing the variety of

challenges and strategies in diverse programming languages and environments. This is

significant, as each programming language and IDE possesses unique intricacies that

influence the debugging process (Murphy et al., 2006; Robins et al., 2003). Therefore, the

study’s findings might neither fully encompass the breadth of challenges faced in

different software development contexts, nor account for the potential evolution of

apprentices’ debugging skills and strategies over a more extended period.

Furthermore, the rapid advancement of software development tools and practices

compounds this limitation. The field’s dynamic nature, with new languages, frameworks,

and methodologies continually emerging, may render the study’s findings, focused on

specific technologies, less relevant in the long term (Rajlich & Bennett, 2000). This

evolving landscape of software development suggests that the study’s insights, while

pertinent in the current context, might not maintain their applicability as new

technologies and practices develop. Such limitations corroborate the importance of

continuous research and adaptation in the field to stay abreast of these technological

shifts.

Additionally, the study’s reliance on digital communication platforms like Microsoft

Teams introduces unique challenges. While facilitating remote collaboration, these

platforms may lead to technical issues, reduced nuances in communication compared to

face-to-face interactions, and disparities in digital literacy among participants. Such

factors can significantly influence the dynamics of debugging sessions and interviews.

255 | P a g e

Consequently, the findings drawn from such digitally mediated interactions should be

interpreted with caution, particularly when considering their applicability to different

software development environments or settings where digital communication may not

be as prevalent.

Moreover, the study’s specific cultural and organisational focus raises questions about

the generalisability of its findings to diverse contexts. As qualitative research often

reflects the unique circumstances of its setting (Hsieh & Shannon, 2005), the experiences

of apprentices and mentors in this study, conducted within a particular organisational

culture, might not accurately represent those in different technological or organisational

environments. This limitation is essential to consider when applying the study’s insights

to varied contexts, as they may not translate seamlessly across different organisational

cultures or technological landscapes.

Additionally, the study’s reliance on digital communication platforms like Microsoft

Teams introduces unique challenges. While facilitating remote collaboration, these

platforms may lead to technical issues, minimised subtleties in communication compared

to face-to-face interactions, and disparities in digital literacy among participants. Such

factors can significantly influence the dynamics of debugging sessions and interviews.

Consequently, the findings drawn from such digitally mediated interactions should be

interpreted with caution, particularly when considering their applicability to different

software development environments or settings where digital communication may not

be as prevalent.

256 | P a g e

On top of this, the process of validating findings with apprentices and mentors, though

intended to enhance reliability, is not immune to confirmation bias. This bias occurs when

individuals, including researchers and study participants, are more likely to agree with

interpretations that align with their pre-existing beliefs or expectations (Nickerson, 1998).

In this context, apprentices and mentors might unconsciously affirm findings that

resonate with their experiences or perspectives, thereby reinforcing the researcher’s

initial interpretations. Although designed to strengthen the study’s credibility, this

feedback loop necessitates careful management to avoid reinforcing potentially skewed

perspectives. Hence, while seeking validation from participants adds robustness, careful

handling is required to mitigate the risks of confirmation bias, ensuring a more balanced

and objective analysis of the data.

Another notable limitation of this study pertains to the applicability of the debugging

tasks for younger apprentices, particularly in relation to the salary and tax issues

embedded within them. These topics, while relevant to software development in

business contexts, may not have been fully comprehensible or relevant to younger

participants who lacked prior experience or understanding of such real-world concepts.

Apprentices, especially those at the early stages of their careers, may not have had

sufficient exposure to financial concepts like salary calculations and tax systems, which

could have created a barrier to their engagement with the tasks. Studies indicate that for

learning to be effective, tasks must align with the learners’ cognitive developments and

prior knowledge (Alexander, 2003). When tasks are overly complex or disconnected from

participants’ experiences, they may struggle to engage meaningfully, leading to sub-

optimal learning outcomes (Kirschner et al., 2006).

257 | P a g e

This limitation highlights the importance of designing problem sets that are universally

relevant to all learners, regardless of their age or background knowledge. By ensuring

that the tasks used in future studies reflect scenarios that are relatable and within the

comprehension of all apprentices, the study could enhance both the engagement and

performance of participants. This approach is supported by educational theory, which

suggests that contextualising learning materials to the learners’ experience enhances

cognitive engagement and motivation. For example, incorporating tasks that simulate

everyday programming challenges rather than complex business scenarios could improve

the accessibility of the debugging tasks for younger apprentices.

In conclusion, despite its limitations, the current research sets the stage for future

exploration in broader contexts, over extended periods, and through varied

methodologies. However, acknowledging these limitations enriches the study,

positioning it as a contribution that offers foundational insights into apprentices’

debugging practices and lays down pathways for comprehensive future research, echoing

the call by Grant and Booth (2009) for robust and adaptive qualitative research

methodologies.

6.9 Further Research and Recommendations

In addressing the current study’s limitations, a critical analysis suggests that future

research should adopt a more encompassing approach, integrating a broader and more

diverse participant base across different industries and cultural backgrounds. This

expansion is crucial for enhancing the generalisability of the findings, providing a more

258 | P a g e

representative understanding of debugging practices in varied organisational and cultural

contexts. Incorporating a mixed-method approach could offer a crucial balance, allowing

researchers to delve deeper while simultaneously capturing a broader perspective

(Creswell & Clark, 2007; Tufford & Newman, 2012). Simultaneously, it is imperative to

uphold methodological rigour and actively mitigate biases, particularly in qualitative

research. This involves enhancing objectivity in thematic interpretation and being vigilant

of the researcher’s influence on the analysis. Such an approach would address potential

confirmation biases, ensuring that validation processes, while robust, do not

inadvertently reinforce skewed perspectives or pre-existing beliefs of participants (Hsieh

& Shannon, 2005; Nickerson, 1998).

Moreover, considering the rapid evolution of software development tools and practices,

future studies must adapt to include emerging technologies, languages, and frameworks.

This adaptation is essential to ensure that research findings remain relevant and

applicable within the fast-paced technological landscape of software development

(Rajlich & Bennett, 2000). In tandem with this technological adaptability, an exploration

into the impact of digital communication platforms like Microsoft Teams on research

processes is warranted. As these platforms increasingly become integral to remote

collaboration in research, understanding their effects on participant interaction, data

collection, and analysis could yield vital insights. This investigation could unveil the

dynamics of remote collaboration in research settings, highlighting how digital

communication affects the intricacies of data gathering and participant interactions.

259 | P a g e

Through such a comprehensive and adaptable approach, future research in software

development and apprenticeships can build on the foundational insights of the current

study. It can provide richer, more deeper insights into debugging practices and

apprenticeship learning, accounting for the evolving challenges and opportunities in the

dynamic domain of technology-driven environments. This approach highlights the

importance of continuous research adaptation and innovation in response to changing

technological and methodological landscapes.

6.10 Conclusion

This thesis marks an advancement in the field of computing education, bringing to light

the intricacies of work-based learning, specifically in the realm of software development

apprenticeship and their debugging practices. Central to the thesis is exploring how

apprentices navigate the intricate balance of cognitive, technical, and communicative

aspects within debugging tasks. The study delves into the strategies apprentices employ

to address complex syntax, logical and runtime errors and their use of IDEs like Microsoft

Visual Studio, offering vital insights into their problem-solving processes and technical

proficiency.

The research emphasises the critical role of communication and collaboration in

debugging, especially within remote learning environments. The challenges posed by

geographical dispersion highlight the need for innovative educational strategies and tools

that effectively bridge communication gaps in remote learning scenarios. The research

also calls attention to the necessity of keeping pace with the rapidly evolving field of

260 | P a g e

software development, urging continuous adaptation in teaching methodologies to align

with technological advancements.

The limitations identified in the study, such as generalisability concerns and potential

researcher bias, pave the way for future research opportunities. Exploring a broader

range of contexts and employing diverse methodologies can enhance the scope of

understanding in debugging practices within different environments. This approach

would build upon the findings of this thesis and contribute to the broader body of

knowledge in computing education.

In conclusion, this thesis stands as a critical contribution to computing education,

providing insights into apprentices’ debugging practices. It informs and has the potential

to transform educational practices and tool development, fostering the growth of skilled

professionals in the constantly evolving field of software development. The research

establishes a foundational understanding for further investigation, demonstrating

qualitative research’s dynamic and impactful nature in technology education.

261 | P a g e

References
Adeliyi, A., Wermelinger, M., Kear, K., & Rosewell, J. (2021). Investigating Remote Pair

Programming In Part-Time Distance Education 3rd Conference on United

Kingdom and Ireland Computing Education Research, UKICER 2021, Online.

https://oro.open.ac.uk/79055/

Adelson, B., & Soloway, E. (1985). The Role of Domain Expenence in Software Design.

IEEE Transactions on Software Engineering, SE-11(11), 1351-1360.

https://doi.org/10.1109/TSE.1985.231883

Afzal, A., & Goues, C. L. (2018). A study on the use of IDE features for debugging. MSR

'18: Proceedings of the 15th International Conference on Mining Software

Repositories, Gothenburg, Sweden.

Agerfalk, P. J., Fitzgerald, B., Holmstrom, H., Lings, B., Lundell, B., & Conchui, E. Ó.

(2005). A framework for considering opportunities and threats in distributed

software development. Proceedings of the International Workshop on Distributed

Software Development: DiSD 2005, Paris, France.

Agrawal, H., DeMillo, R. A., & Spafford, E. H. (1993). Debugging with dynamic slicing

and backtracking. Software: Practice and Experience, 23(6), 589-616.

Ahadi, A., Lister, R., Lal, S., & Hellas, A. (2018). Learning programming, syntax errors

and institution-specific factors ACE '18: Proceedings of the 20th Australasian

Computing Education Conference, Brisbane, Queensland, Australia.

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging

among novice computer science students. ACM SIGCSE Bulletin, 37(3), 84-88.

Ahn, J., Sung, W., & Black, J. B. (2022). Unplugged debugging activities for developing

young learners’ debugging skills. Journal of Research in Childhood Education,

36(3), 421-437.

Akinola, S. (2014). An Empirical Comparative Analysis of Programming Effort, Bugs

Incurrence and Code Quality between Solo & Pair Programmers. Middle-East

Journal of Scientific Research, 21(12), 2231-2237.

Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging? An exploratory study

of debugging episodes. Empirical Software Engineering, 28(5), 117.

https://doi.org/https://doi.org/10.48550/arXiv.2105.02162

Alexander, P. A. (2003). The development of expertise: The journey from acclimation to

proficiency. Educational researcher, 32(8), 10-14.

Allwood, C. M. (1986). Novices on the computer: a review of the literature. International

Journal of Man-Machine Studies, 25(6), 633-658.

Allwood, C. M., & Bjorhag, C.-G. (1990). Novices' debugging when programming in

Pascal. International Journal of Man-Machine Studies, 33(6), 707-724.

Alqadi, B. S., & Maletic, J. I. (2017). An Empirical Study of Debugging Patterns Among

Novices Programmers Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, Seattle, Washington, USA.

Anderson, J. R. (2015). Cognitive Psychology and Its Implications (8th ed.). Worth

Publishers.

Arksey, H., & O'Malley, L. (2005). Scoping studies: towards a methodological framework.

International Journal of Social Research Methodology, 8(1), 19-32.

Artman, H., & Wærn, Y. (1999). Distributed cognition in an emergency co-ordination

center. Cognition, Technology & Work, 1(4), 237-246.

Bacchelli, A., & Bird, C. (2013, 18-26 May 2013). Expectations, outcomes, and challenges

of modern code review 2013 35th International Conference on Software

Engineering (ICSE), San Francisco, CA, USA.

https://oro.open.ac.uk/79055/
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/https:/doi.org/10.48550/arXiv.2105.02162

262 | P a g e

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the Efficacy of Distributed Pair

Programming. In D. Wells & L. Williams, Extreme Programming and Agile

Methods — XP/Agile Universe 2002 Conference on Extreme Programming and

Agile Methods, Berlin, Heidelberg.

Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task behavior

in the cognitive tutor classroom: when students "game the system" Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, Vienna,

Austria. https://doi.org/10.1145/985692.985741

Barbosa Rocha, H. J., Tedesco, P. C. D. A. R., & Costa, E. D. B. (2022). On the use of

feedback in learning computer programming by novices: a systematic literature

mapping. Informatics in Education, 22(2), 209–232.

https://doi.org/10.15388/infedu.2023.09

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and

implementation for novice researchers. The Qualitative Report, 13(4), 544-559.

Beasley, Z. J., & Johnson, A. R. (2022). The Impact of Remote Pair Programming in an

Upper-Level CS Course. ITiCSE 2022: Proceedings of the 27th ACM Conference

on Innovation and Technology in Computer Science Education, Dublin, Ireland.

Beck, K. (2000). Extreme programming explained: embrace change. addison-wesley

professional.

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., Kamil,

A., Karkare, A., McDonald, C., & Osera, P.-M. (2019). Compiler error messages

considered unhelpful: The landscape of text-based programming error message

research. Proceedings of the working group reports on innovation and technology

in computer science education, 177-210.

Becker, H. S. (1971). Sociological Work: Method and substance, Allen Lane. In: The

Penguin Press.

Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A., &

Cook, C. (2006). Tinkering and gender in end-user programmers' debugging

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

Montréal, Québec, Canada. https://doi.org/10.1145/1124772.1124808

Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the dichotomy of debugging

behavior among programmers Proceedings of the 40th International Conference

on Software Engineering, Gothenburg, Sweden.

https://doi.org/10.1145/3180155.3180175

Beller, M., Spruit, N., & Zaidman, A. (2017). How developers debug. PeerJ Preprints, 5,

e2743v2741. https://doi.org/10.7287/peerj.preprints.2743v1

Bennedsen, J., & Caspersen, M. E. (2007). Assessing process and product: a practical lab

exam for an introductory programming course. Innovation in Teaching and

Learning in Information and Computer Sciences, 6(4), 183-202.

Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software

development teams–An empirical study of its benefits. Information and software

technology, 50(3), 231-240.

Blackwell, A., Robinson, P., Roast, C., & Green, T. (2002). Cognitive models of

programming-like activity CHI'02 Extended Abstracts on Human Factors in

Computing Systems, Minneapolis, Minnesota, USA.

Bogdan, R., & Biklen, S. (2007). Qualitative Research for Education: An Introduction to

Theory and Methods. (5 ed.). Allyn & Bacon, Boston.

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming

Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, Austin, Texas. https://doi.org/10.1145/567067.567069

https://doi.org/10.1145/985692.985741
https://doi.org/10.15388/infedu.2023.09
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.7287/peerj.preprints.2743v1
https://doi.org/10.1145/567067.567069

263 | P a g e

Brannen, J. (2005). Mixing methods: The entry of qualitative and quantitative approaches

into the research process. International Journal of Social Research Methodology,

8(3), 173-184.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind,

Experience, and School. National Academy Press.

Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3: Rethinking transfer: A simple

proposal with multiple implications. Review of research in education, 24(1), 61-

100.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

research in psychology, 3(2), 77-101.

Britten, N. (1995). Qualitative research: qualitative interviews in medical research. Bmj,

311(6999), 251-253.

Broome, M. E. (2000). Integrative literature reviews for the development of concepts.

Concept development in nursing: foundations, techniques and applications.

Philadelphia (USA): WB Saunders Company, 231-250.

Bruner, J. S. (2009). The Process of Education. Harvard University Press, Cambridge.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair programming and the mysterious role

of the navigator. International Journal of Human-Computer Studies, 66(7), 519-

529.

Bryman, A. (2003). Quantity and Quality in Social Research (Vol. 18). Routledge.

https://doi.org/https://doi.org/10.4324/9780203410028

Bryman, A. (2016). Social Research Methods (5th ed.). Oxford University Press.

Cameron, R. (2011). Mixed methods research: The five Ps framework. Electronic journal

of business research methods, 9(2), pp96‑108-pp196‑108.

Card, S. K., Moran, T. P., & Newell, A. (2018). The Psychology of Human-Computer

Interaction. CRC Press.

Carnwell, R., & Daly, W. (2001). Strategies for the construction of a critical review of the

literature. Nurse education in practice, 1(2), 57-63.

Carter, J. (2015). The Apprenticeship Agenda. Impact Magazine, 2-3.

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J., & Neville, A. J. (2014). The Use

of Triangulation in Qualitative Research. Oncology Nursing Forum, 41(5), 545-

547.

Castillo-Montoya, M. (2016). Preparing for Interview Research: The Interview Protocol

Refinement Framework. The Qualitative Report, 21(5), 811-831.

https://doi.org/10.46743/2160-3715/2016.2337

Chalmers, P. A. (2003). The role of cognitive theory in human–computer interface.

Computers in Human Behavior, 19(5), 593-607. https://doi.org/10.1016/S0747-

5632(02)00086-9

Chen, M.-W., Wu, C.-C., & Lin, Y.-T. (2013). Novices' debugging behaviors in VB

programming. Learning and Teaching in Computing and Engineering (LaTiCE),

2013,

Cheng, L.-T., de Souza, C. R., Hupfer, S., Patterson, J., & Ross, S. (2003). Building

Collaboration into IDEs: Edit> Compile> Run> Debug> Collaborate? Queue, 1(9),

40-50.

Cherenkova, Y., Zingaro, D., & Petersen, A. (2014). Identifying challenging CS1 concepts

in a large problem dataset. Proceedings of the 45th ACM technical symposium on

Computer science education,

Chi, E. H., Pirolli, P., Chen, K., & Pitkow, J. (2001). Using information scent to model

user information needs and actions and the Web. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems,

https://doi.org/https:/doi.org/10.4324/9780203410028
https://doi.org/10.46743/2160-3715/2016.2337
https://doi.org/10.1016/S0747-5632(02)00086-9
https://doi.org/10.1016/S0747-5632(02)00086-9

264 | P a g e

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V. (2006). Pair

Collaboration in End-User Debugging. Proceedings - IEEE Symposium on Visual

Languages and Human-Centric Computing, VL/HCC 2006, Brighton, UK.

Chong, J., & Hurlbutt, T. (2007). The Social Dynamics of Pair Programming. ICSE '07:

Proceedings of the 29th international conference on Software Engineering,

https://doi.org/10.1109/ICSE.2007.87

Chorfi, A., Hedjazi, D., Aouag, S., & Boubiche, D. (2020). Problem-based collaborative

learning groupware to improve computer programming skills. Behaviour &

information technology, 1-20.

Christensen, L. B., Johnson, B., & Turner, L. A. (2020). Research methods, design, and

analysis (Thirteenth Edition ed.). Pearson Education, Inc.

Clarke, S. O., Ilgen, J. S., & Regehr, G. (2023). Fostering Adaptive Expertise Through

Simulation. Academic Medicine, 98(9), 994-1001.

https://doi.org/10.1097/acm.0000000000005257

Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming. Extreme

programming examined, 8, 223-247.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. In:

London: Routledge.

Coker, Z., Widder, D. G., Le Goues, C., Bogart, C., & Sunshine, J. (2019). A qualitative

study on framework debugging. 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME),

https://doi.org/10.1109/ICSME.2019.00091.

Colquitt, J. A. (2013). Crafting References in AMJ Submissions. In (Vol. 56, pp. 1221-

1224): Academy of Management Journal.

Cooke, A., Smith, D., & Booth, A. (2012). Beyond PICO: the SPIDER tool for qualitative

evidence synthesis. Qualitative Health Research, 22(10), 1435-1443.

Creamer, E. G. (2017). An introduction to fully integrated mixed methods research. sage

publications.

Cresswell, J., & Plano Clark, V. L. (2011). Designing and conducting mixed method

research. Thousand Oaks, CA.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods

approaches (4th ed. ed.). SAGE Publications.

Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods

research.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing

among five approaches (Fourth ed.). Sage publications.

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the

research process. Sage.

da Silva Estacio, B. J., & Prikladnicki, R. (2015). Distributed pair programming: A

systematic literature review. Information and software technology, 63, 1-10.

David, J. A. (2002). Debugging: The 9 indispensable rules for finding even the most

elusive software and hardware problems. American Management Association

(AMACOM), 5.

de Raadt, M. (2007). A review of Australasian investigations into problem solving and the

novice programmer. Computer Science Education, 17(3), 201-213.

Denny, P., Becker, B. A., Bosch, N., Prather, J., Reeves, B., & Whalley, J. (2022). Novice

Reflections During the Transition to a New Programming Language.

Dewey, J. (1922). The middle works of John Dewey: Human nature and conduct (Vol. 14).

In: Carbondale: Southern Illinois University Press.

https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1097/acm.0000000000005257
https://doi.org/10.1109/ICSME.2019.00091

265 | P a g e

Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing,

5(1), 4-7.

DfE/BIS. (2013). The Future of Apprenticeship in England: Next Steps from the Richard

Review. Department for Education and Department for Business, Innovation and

Skills …

Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The Evolution of Research on Computer-

Supported Collaborative Learning. In N. Balacheff, S. Ludvigsen, T. de Jong, A.

Lazonder, & S. Barnes (Eds.), Technology-Enhanced Learning: Principles and

Products (pp. 3-19). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-

9827-7_1

Downey, A. B. (2012). Think Python: How to think like a compter scientist. Green Tea

Press.

Dreyfus, H., Dreyfus, S. E., & Athanasiou, T. (2000). MIND OVER MACHINE: The Power

of Human Intuition and Expertise in the Era of the Computer. Simon and Schuster.

Dreyfus, H. L., & Dreyfus, S. E. (2005). Peripheral vision: Expertise in real world contexts.

Organization studies, 26(5), 779-792.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57-73.

Du Preez Ockert, J. (2019). Visual studio 2019 in depth. BPb Publications.

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and software technology, 50(9-10), 833-859.

Eisenstadt, M. (1993). Tales of Debugging From the Front Lines. Empirical Studies of

Programmers: Fifth Workshop, Palo Alto, California.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.

Human factors, 37(1), 32-64.

Engeström, Y., Miettinen, R., Punamäki, R.-L., Minnis, M., & John-Steiner, V. P. (2001).

Perspectives on activity theory. Human development, 44(5), 296-310.

Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of

thinking during experts’ performance on representative tasks. The Cambridge

handbook of expertise and expert performance, 223-241.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. A

Bradford book. In: The MIT Press: Cambridge, Massachusetts, London, England.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis. MIT press Cambridge, MA.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Team knowledge

and coordination in geographically distributed software development. Journal of

management information systems, 24(1), 135-169.

Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors made by novice

programmers Proceedings of the 20th Australasian Computing Education

Conference, Brisbane, Queensland, Australia.

https://doi.org/10.1145/3160489.3160493

Faja, S. (2014). Evaluating effectiveness of pair programming as a teaching tool in

programming courses. Information Systems Education Journal, 12(6), 36.

Finlay, L. (2002). “Outing” the researcher: The provenance, process, and practice of

reflexivity. Qualitative Health Research, 12(4), 531-545.

Fitzgerald, B., & Howcroft, D. (1998). Competing dichotomies in IS research and possible

strategies for resolution. In Proceedings of the International Conference on

Information Systems (ICIS '98), 14, 155-164.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional

study of novice debuggers. Computer Science Education, 18(2), 93-116.

https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1145/3160489.3160493

266 | P a g e

Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., & Zander, C. (2010).

Debugging from the student perspective. IEEE Transactions on Education, 53(3),

390-396.

Fitzpatrick, B. W., & Collins-Sussman, B. (2015). Debugging Teams: Better Productivity

Through Collaboration. " O'Reilly Media, Inc.".

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American psychologist, 34(10), 906.

Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J., &

Kwan, I. (2013). An information foraging theory perspective on tools for

debugging, refactoring, and reuse tasks. ACM Transactions on Software

Engineering and Methodology (TOSEM), 22(2), 14.

Flick, U. (2022). An introduction to qualitative research. An introduction to qualitative

research, 1-100.

Flor, N. V., & Hutchins, E. L. (1991). Analysing Distributed Cognition in Software Teams:

A Case Study of Team Programming during Adaptive Software Maintenance

Empirical studies of programmers: Fourth workshop, New Brunswick, N.J.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative

inquiry, 12(2), 219-245.

Fontana, E. A., & Petrillo, F. (2021). Mapping breakpoint types: an exploratory study.

2021 IEEE 21st International Conference on Software Quality, Reliability and

Security (QRS), Hainan Island, China.

Freudenberg, S., Romero, P., & du Boulay, B. (2007). "Talking the talk": Is intermediate-

level conversation the key to the pair programming success story? Agile 2007

(AGILE 2007), Washington, DC, USA.

Fromherz, A., Ouadjaout, A., & Miné, A. (2018). Static value analysis of Python programs

by abstract interpretation NASA Formal Methods: 10th International Symposium,

NFM 2018,, Newport News, VA, US.

Fuller, A., & Unwin, L. (2010). Creating and Supporting Expansive Apprenticeships: a

guide for employers, training providers and colleges of further education. In:

London, LSIS [Online]. Available at http://webarchive. nationalarchives. gov ….

Fuller, A., & Unwin, L. (2013). Apprenticeship and the concept of occupation. The Gatsby

Charitable Foundation, London.

Geertz, C. (1973). The interpretation of cultures. NY: Basic Books.

Glesne, C. (2016). Becoming qualitative researchers: An introduction. ERIC.

Glezou, K., & Grigoriadou, M. (2010). Engaging students of senior high school in

simulation development. Informatics in Education, 9(1), 37-62.

Goldman, M., Little, G., & Miller, R. C. (2011). Real-time collaborative coding in a web

IDE UIST '11: Proceedings of the 24th annual ACM symposium on User interface

software and technology, Santa Barbara, California, USA.

https://doi.org/10.1145/2047196.2047215

Gomes, A., & Mendes, A. J. (2007). Learning to program-difficulties and solutions

International Conference on Engineering Education–ICEE, Coimbra, Portugal.

Gould, J. D. (1975). Some psychological evidence on how people debug computer

programs. International Journal of Man-Machine Studies, 7(2), 151-182.

Gould, J. D., & Drongowski, P. (1974). An exploratory study of computer program

debugging. Human Factors: The Journal of the Human Factors and Ergonomics

Society, 16(3), 258-277.

Grandell, L., Peltomäki, M., & Salakoski, T. (2005). High school programming—a

beyond-syntax analysis of novice programmers’ difficulties. Proceedings of the

Koli Calling 2005 Conference on Computer Science Education,

http://webarchive/
https://doi.org/10.1145/2047196.2047215

267 | P a g e

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types

and associated methodologies. Health information & libraries journal, 26(2), 91-

108.

Gray, D. E. (2021). Doing research in the real world (5th ed.). SAGE Publications Ltd.

Greenbaum, T. L. (1998). The handbook for focus group research. Sage.

Greenhalgh, T., & Peacock, R. (2005). Effectiveness and efficiency of search methods in

systematic reviews of complex evidence: audit of primary sources. Bmj, 331(7524),

1064-1065.

Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, I. (2012). End-

user debugging strategies: A sensemaking perspective. ACM Transactions on

Computer-Human Interaction (TOCHI), 19(1), 1-28.

Grix, J. (2004). The Foundation of Research, Great Britain. In: Plagave Macmillan Press.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the

field. Educational researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2014). Promoting active learning & leveraging

dashboards for curriculum assessment in an OpenEdX introductory CS course for

middle school. Proceedings of the first ACM conference on Learning@ scale

conference,

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research.

Handbook of qualitative research, 2(163-194), 105.

Gugerty, L., & Olson, G. (1986). Debugging by skilled and novice programmers. ACM

SIGCHI Bulletin, 17(4), 171-174.

Guile, D., & Young, M. (1998). Apprenticeship as a conceptual basis for a social theory

of learning. Journal of Vocational Education & Training, 50(2), 173-193.

Guzdial, M. (1994). Software‐Realized Scaffolding to Facilitate Programming for Science

Learning. Interactive Learning Environments, 4(1), 001--044.

https://doi.org/10.1080/1049482940040101

Guzdial, M. (2015). Learner-centered design of computing education: Research on

computing for everyone. Morgan & Claypool Publishers.

Guzdial, M. J., & Ericson, B. (2013). Introduction to Computing and Programming in

Python: International Edition. Pearson Higher Ed.

Hafeez, M., Karki, A., Radwan, Y., Saha, A., & Zavaleta Bernuy, A. (2023). Evaluating

the Efficacy and Impacts of Remote Pair Programming for Introductory Computer

Science Students Proceedings of the 25th Western Canadian Conference on

Computing Education, Vancouver, BC, Canada.

Hammersley, M., & Atkinson, P. (1995). Ethnography: Principles in practice (2nd ed.

ed.). Routledge.

Hanks, B. (2008). Empirical evaluation of distributed pair programming. International

Journal of Human-Computer Studies, 66(7), 530-544.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair

programming in education: a literature review. Computer Science Education,

21(2), 135-173.

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair

programming in CS1. Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science education,

Hannay, J. E., Dyba, T., Arisholm, E., & Sjoberg, D. I. (2009). The effectiveness of pair

programming: A meta-analysis. Information and software technology, 51(7), 1110-

1122.

Hart, C. (1998). Doing a literature review: Releasing the social science research

imagination (SAGE) Reviewing the literature for a research project can seem a

https://doi.org/10.1080/1049482940040101

268 | P a g e

daunting, even overwhelming task. New researchers, in particular, wonder: Where

do I start, 30.

Hart, C. (2018). Doing a literature review: Releasing the research imagination. SAGE Study

Skills Series, 352.

Hassan, M., & Zilles, C. (2022). On Students' Ability to Resolve their own Tracing Errors

through Code Execution. SIGCSE 2022: Proceedings of the 53rd ACM Technical

Symposium on Computer Science Education V. 1, March 3–5, 2022, Providence

RI USA.

Hatano, G., & Inagaki, K. (1986). Two courses of expertise. In Child development and

education in Japan. (pp. 262-272). W H Freeman/Times Books/ Henry Holt & Co.

Hazzan, O., Ragonis, N., Lapidot, T., Hazzan, O., Ragonis, N., & Lapidot, T. (2020).

Problem-solving strategies. Guide to Teaching Computer Science: An Activity-

Based Approach, 143-168.

Helminen, J., Ihantola, P., & Karavirta, V. (2013). Recording and analyzing in-browser

programming sessions. Proceedings of the 13th Koli Calling International

Conference on Computing Education Research,

Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE software, 18(2),

16-20.

Heyes, J. (2013). Vocational training, employability and the post-2008 jobs crisis:

Responses in the European Union. Economic and industrial democracy, 34(2),

291-311.

Hirsch, T., & Hofer, B. (2022). Using textual bug reports to predict the fault category of

software bugs. Array, 100189.

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?

Educational Psychology Review, 16, 235-266.

Hoeckel, K., & Schwartz, R. (2010). Learning for Jobs OECD Reviews of Vocational

Education and Training. Austria: Organisation for Economic Co-operation and

Development (OECD).

Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: toward a new

foundation for human-computer interaction research. ACM Transactions on

Computer-Human Interaction (TOCHI), 7(2), 174-196.

Hooper, E. J., & Thomas, R. A. (1990). Investigating the effects of a manipulative model

of computer memory operations on the learning of programming. Journal of

Research on Computing in Education, 22(4), 442-456.

Hopia, H., Latvala, E., & Liimatainen, L. (2016). Reviewing the methodology of an

integrative review. Scandinavian journal of caring sciences, 30(4), 662-669.

Horwitz, S., Liblit, B., & Polishchuk, M. (2009). Better debugging via output tracing and

callstack-sensitive slicing. IEEE Transactions on Software Engineering, 36(1), 7-

19.

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis.

Qualitative Health Research, 15(9), 1277-1288.

Hughes, J., Walshe, A., Law, B., & Murphy, B. (2020). Remote pair programming 12th

International Conference on Computer Supported Education - Volume 2: CSEDU,

https://doi.org/10.5220/0009582904760483

Hutchins, E. (1995). Cognition in the Wild. MIT press.

IfATE. (2022). Software development technician. Retrieved April 5 from

https://www.instituteforapprenticeships.org/apprenticeship-standards/software-

development-technician-v1-1

https://doi.org/10.5220/0009582904760483
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1

269 | P a g e

IfATE. (2023). Apprenticeship Standards. Institute for Apprenticeships and Technical

Education. https://www.instituteforapprenticeships.org/apprenticeship-

standards/?routes=digital&includeApprovedForDelivery=true

IfATE. (2024). Software development technician Apprentice Standard. Institute for

Apprenticeships and Technical Education. Retrieved 06/02/2024 from

https://www.instituteforapprenticeships.org/apprenticeship-standards/software-

development-technician-v1-1

Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of electronic textiles

projects: Analyzing think-aloud protocols for high school students’ strategies and

practices while problem solving The Interdisciplinarity of the Learning Sciences,

14th International Conference of the Learning Sciences (ICLS) 2020, Nashville,

USA.

Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging with electronic

textiles: understanding high school student pairs’ problem-solving strategies,

practices, and perspectives on repairing physical computing projects. Computer

Science Education, 1-35.

Jeffries, B., Lee, J. A., & Koprinska, I. (2022, July 8–13, 2022). 115 Ways Not to Say

Hello, World! Syntax Errors Observed in a Large-Scale Online CS0 Python

Course. Proceedings of the 27th ACM Conference on on Innovation and

Technology in Computer Science Education Vol. 1 (ITiCSE 2022), Dublin,

Ireland.

Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice

programmers Proceedings of AERA annual meeting, New York, NY, USA.

https://doi.org/10.3102/0013189X011008022

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd Annual

Conference of the LTSN Centre for Information and Computer Sciences,

Loughborough, UK.

Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing your literature review: Traditional

and systematic techniques. Doing Your Literature Review, 1-192.

Joanna Briggs Institute. (2017). Checklist for systematic reviews and research syntheses.

https://joannabriggs.org/ebp/critical_appraisal_tools

Johnson, D. W., & Johnson, R. T. (1987). Learning together and alone: Cooperative,

competitive, and individualistic learning. Prentice-Hall, Inc.

Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into

practice, 38(2), 67-73.

Johnson, E. A. J. (1937). Predecessors of Adam Smith: The Growth of British Economic

Thought. Journal of the Royal Statistical Society, 100(4), 678-680.

https://doi.org/10.2307/2980407

Jones, S. R., Torres, V., & Arminio, J. (2013). Negotiating the complexities of qualitative

research in higher education: Fundamental elements and issues. Routledge.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The

journal of the learning sciences, 4(1), 39-103.

Júnior, A. S., de Figueiredo, J. C. A., & Serey, D. (2019). Analysing the Impact of

Programming Mistakes on Students' Programming Abilities. Brazilian Symposium

on Computers in Education (Simpósio Brasileiro de Informática na Educação-

SBIE), Brazil.

Karvelas, I. (2019). Investigating Novice Programmers' Interaction with Programming

Environments Proceedings of the 2019 ACM Conference on Innovation and

Technology in Computer Science Education, Aberdeen, Scotland, Uk.

https://doi.org/10.1145/3304221.3325596

https://www.instituteforapprenticeships.org/apprenticeship-standards/?routes=digital&includeApprovedForDelivery=true
https://www.instituteforapprenticeships.org/apprenticeship-standards/?routes=digital&includeApprovedForDelivery=true
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://doi.org/10.3102/0013189X011008022
https://joannabriggs.org/ebp/critical_appraisal_tools
https://doi.org/10.2307/2980407
https://doi.org/10.1145/3304221.3325596

270 | P a g e

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies.

Human-Computer Interaction, 3(4), 351-399.

Kavitha, R., & Ahmed, M. I. (2015). Knowledge sharing through pair programming in

learning environments: An empirical study. Education and Information

Technologies, 20(2), 319-333.

Kendall, M., Murray, S. A., Carduff, E., Worth, A., Harris, F., Lloyd, A., Cavers, D., Grant,

L., Boyd, K., & Sheikh, A. (2009). Use of multiperspective qualitative interviews

to understand patients’ and carers’ beliefs, experiences, and needs. Bmj, 339,

b4122.

Khalid, M. A. B., Farooq, A., & Mahmood, W. (2021). Communication Challenges for

Distributed Teams. International Journal of Engineering and Manufacturing

(IJEM), 11(1), 19-28.

Khan, M., & Manderson, L. (1992). Focus groups in tropical diseases research. Health

policy and planning, 7(1), 56-66.

Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C. (2022). Debugging

behaviors of early childhood teacher candidates with or without scaffolding.

International Journal of Educational Technology in Higher Education, 19(1), 1-

26.

Kiron, D., Kane, G. C., Palmer, D., Phillips, A. N., & Buckley, N. (2016). Aligning the

organization for its digital future. MIT Sloan Management Review, 58(1).

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during

instruction does not work: An analysis of the failure of constructivist, discovery,

problem-based, experiential, and inquiry-based teaching. Educational

psychologist, 41(2), 75-86.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:

Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362-404.

Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the causes

of software errors in programming systems. Journal of Visual Languages &

Computing, 16(1), 41-84.

Kohn, T. (2019). The Error Behind The Message: Finding the Cause of Error Messages

in Python Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, Minneapolis, MN, USA.

https://doi.org/10.1145/3287324.3287381

Kohn, T., & Manaris, B. (2020). Tell Me What's Wrong: A Python IDE with Error

Messages. Proceedings of the 51st ACM Technical Symposium on Computer

Science Education,

Kolb, D. (1984). Experiential Learning: Experience As The Source of Learning and

Development. New Jersey: Prentice Hall, Inc, Engle wood Cliffs.

Kölling, M., Brown, N. C., Hamza, H., & McCall, D. (2019). Stride in BlueJ--computing

for all in an educational IDE. SIGCSE 2019 - Proceedings of the 50th ACM

Technical Symposium on Computer Science Education, Minneapolis, United

States.

Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D.,

Corvello, V., Piñeiro-Chousa, J., & Liguori, E. (2022). Literature reviews as

independent studies: guidelines for academic practice. Review of Managerial

Science, 16(8), 2577-2595.

Kuhn, T. (1970). The structure of scientific revolutions 2nd edition. The University of

Chicago press, Chicago.

Kumar, V., Winne, P., Hadwin, A., Nesbit, J., Jamieson-Noel, D., Calvert, T., & Samin,

B. (2005). Effects of self-regulated learning in programming Fifth IEEE

https://doi.org/10.1145/3287324.3287381

271 | P a g e

International Conference on Advanced Learning Technologies (ICALT'05),

Kaohsiung, Taiwan.

Kurniawan, A., Soesanto, C., & Wijaya, J. E. C. (2015). Coder: Real-time code editor

application for collaborative programming. Procedia Computer Science, 59, 510-

519.

Kurniawan, O., Lee, N. T. S., Sockalingam, N., & Pey, K. L. (2019). Game-Based versus

gamified learning platform in helping university students learn programming.

ASCILITE Publications, 159-168.

Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing. In.

Thousand Oaks: Ca: Sage.

Lacave, C., & Molina, A. I. (2021). The Impact of COVID-19 in Collaborative

Programming. Understanding the Needs of Undergraduate Computer Science

Students. Electronics, 10(14), 1728.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.

LaToza, T. D., Arab, M., Loksa, D., & Ko, A. J. (2020). Explicit programming strategies.

Empirical Software Engineering, 25, 2416-2449.

LaToza, T. D., & Myers, B. A. (2010). Developers ask reachability questions Proceedings

of the 32Nd ACM/IEEE International Conference on Software Engineering-

Volume 1, Cape Town, South Africa. https://doi.org/10.1145/1806799.1806829

Lau, W. W., & Yuen, A. H. (2009). Toward a framework of programming pedagogy. In

Encyclopedia of Information Science and Technology, Second Edition (pp. 3772-

3777). IGI Global.

Lave, J. (1995). Teaching as learning in practice, Sylvia Scribner Award Lecture, San

Francisco American Educational Research Association, Annual Meeting, San

Francisco, CA, USA.

Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture, and Activity, 3(3), 149-

164.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.

Cambridge university press.

Lawrance, J., Bellamy, R., Burnett, M., & Rector, K. (2008). Using information scent to

model the dynamic foraging behavior of programmers in maintenance tasks.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

Florence, Italy. https://doi.org/10.1145/1357054.1357261

Layman, L., Diep, M., Nagappan, M., Singer, J., Deline, R., & Venolia, G. (2013).

Debugging revisited: Toward understanding the debugging needs of contemporary

software developers. 2013 ACM/IEEE international symposium on empirical

software engineering and measurement, Baltimore, Maryland, USA.

Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based,

and community-based participatory research approaches. (First ed.). Guilford

Press. https://doi.org/10.1111/fcsr.12276

Lee, M. J., Bahmani, F., Kwan, I., LaFerte, J., Charters, P., Horvath, A., Luor, F., Cao, J.,

Law, C., & Beswetherick, M. (2014). Principles of a debugging-first puzzle game

for computing education 2014 IEEE symposium on visual languages and human-

centric computing (VL/HCC), Melbourne, VIC, Australia.

Leedy, P. D., & Ormrod, J. E. (2021). Practical research: Planning and design (12th

Edition ed.). Pearson Education.

Lewis, C. M., & Gregg, C. (2016). How Do You Teach Debugging? Resources and

Strategies for Better Student Debugging SIGCSE '16: The 47th ACM Technical

https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1145/1357054.1357261
https://doi.org/10.1111/fcsr.12276

272 | P a g e

Symposium on Computing Science Education, Memphis, Tennessee, USA.

https://doi.org/10.1145/2839509.2850473

Li, X., Zhu, S., d'Amorim, M., & Orso, A. (2018). Enlightened debugging. Proceedings of

the 40th IEEE and ACM SIGSOFT International Conference on Software

Engineering (ICSE 2018), Gothenburg, Sweden.

https://doi.org/10.1145/3180155.3180242

Liamputtong, P. (2011). Focus group methodology: Principle and practice. Sage

Publications.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry (Vol. 75). Sage.

Lincoln, Y. S., & Guba, E. G. (2000). The Only Generalization Is There Is No

Generalization. In: Gomm, R., Hammersley, M. and Foster, P., Eds., Case Study

Method, SAGE, London, 27-45.

Lincoln, Y. S., Lynham, S. A., & Guba, E. G. (2011). Paradigmatic controversies,

contradictions, and emerging confluences, revisited. In N. K. Denzin & Y. S.

Lincoln (Eds.), The SAGE handbook of qualitative research (4th ed., pp. 97–128).

The Sage handbook of qualitative research, 4(2), 97-128.

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction:

Instruction, access, and ability. Educational psychologist, 20(4), 191-206.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,

R., Moström, J. E., Sanders, K., & Seppälä, O. (2004). A multi-national study of

reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4),

119-150.

Liu, Q., & Paquette, L. (2023). Using submission log data to investigate novice

programmers’ employment of debugging strategies LAK23: 13th International

Learning Analytics and Knowledge Conference, Arlington, TX, USA.

https://doi.org/10.1145/3576050.3576094

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior

of 6–8 graders in a debugging game. Computer Science Education, 27(1), 1-29.

Loeliger, J., & McCullough, M. (2012). Version Control with Git: Powerful tools and

techniques for collaborative software development. " O'Reilly Media, Inc.".

Lowe, T. (2019). Debugging: The key to unlocking the mind of a novice programmer?

2019 IEEE Frontiers in Education Conference (FIE), Covington, KY, USA.

Lubbe, W., ten Ham-Baloyi, W., & Smit, K. (2020). The integrative literature review as a

research method: A demonstration review of research on neurodevelopmental

supportive care in preterm infants. Journal of Neonatal Nursing, 26(6), 308-315.

Lutz, M. (2013). Learning python: Powerful object-oriented programming. " O'Reilly

Media, Inc.".

Luxton-Reilly, A. (2016). Learning to program is easy. ITiCSE '16: Proceedings of the

2016 ACM Conference on Innovation and Technology in Computer Science

Education, Arequipa, Peru.

Luxton-Reilly, A., & Petersen, A. (2017). The Compound Nature of Novice Programming

Assessments Proceedings of the Nineteenth Australasian Computing Education

Conference, Geelong, VIC, Australia. https://doi.org/10.1145/3013499.3013500

Lynch, J. W., Agarwal, J., & Imbrie, P. (2023). Work in Progress: Engineering together -

Applying remote collaborative technology to an in-person undergraduate

engineering course 2023 ASEE Annual Conference & Exposition, Baltimore ,

Maryland. https://peer.asee.org/44240

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A practical, step-by-step

guide for learning and teaching scholars. All Ireland Journal of Higher Education,

9(3).

https://doi.org/10.1145/2839509.2850473
https://doi.org/10.1145/3180155.3180242
https://doi.org/10.1145/3576050.3576094
https://doi.org/10.1145/3013499.3013500
https://peer.asee.org/44240

273 | P a g e

Malik, S. I., Mathew, R., Al‐Sideiri, A., Jabbar, J., Al‐Nuaimi, R., & Tawafak, R. M.

(2022). Enhancing problem‐solving skills of novice programmers in an

introductory programming course. Computer Applications in Engineering

Education, 30(1), 174-194.

Marchionini, G. (1995). Information seeking in electronic environments. Cambridge

university press.

Martens, D. (2005). Research Methods in Education and Psychology: Integrating Diversity

with Quantitative Approaches. In: Thousand 0aks: Sage.

Matloff, N. S., & Salzman, P. J. (2008). The art of debugging with GDB, DDD, and

Eclipse. No Starch Press.

Maxwell, J. A. (2008). Designing a qualitative study. The SAGE handbook of applied

social research methods, 2, 214-253.

Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Sage

publications.

Mayer, R. E. (1981). The psychology of how novices learn computer programming. Acm

Computing Surveys (Csur), 13(1), 121-141.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning?

American psychologist, 59(1), 14.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia

learning. Educational psychologist, 38(1), 43-52.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: a review of the literature from an educational

perspective. Computer Science Education, 18(2), 67-92.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,

Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-

institutional study of assessment of programming skills of first-year CS students.

In Working group reports from ITiCSE on Innovation and technology in computer

science education (pp. 125-180).

McDiarmid, G. W., & Zhao , Y. (2023). Time to Rethink: Educating for a Technology-

Transformed World. ECNU Review of Education, 6(2), 189-214.

https://doi.org/10.1177/20965311221076493

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming

improves student retention, confidence, and program quality. Communications of

the ACM, 49(8), 90-95.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowledge

organization and skill differences in computer programmers. Cognitive

Psychology, 13(3), 307-325.

Mens, T., Cataldo, M., & Damian, D. (2019). The Social Developer: The Future of

Software Development [Guest Editors' Introduction]. IEEE software, 36(1), 11-14.

Merriam, S., B. (2009). Qualitative research and case study appliances in education. In:

San Francisco, CA: Jossey-Bass.

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education.

Revised and Expanded from" Case Study Research in Education.". ERIC.

Michaeli, T., & Romeike, R. (2019). Current status and perspectives of debugging in the

k12 classroom: A qualitative study 2019 ieee global engineering education

conference (educon),

Michaeli, T., & Romeike, R. (2020). Investigating Students’ Preexisting Debugging

Traits: A Real World Escape Room Study Proceedings of the 20th Koli Calling

International Conference on Computing Education Research, Koli, Finland.

https://doi.org/10.1177/20965311221076493

274 | P a g e

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: A sourcebook. Beverly

Hills: Sage Publications.

Miller, B. N., Ranum, D. L., & Anderson, J. (2019). Python programming in context. Jones

& Bartlett Learning.

Miller, C., Rodeghero, P., Storey, M.-A., Ford, D., & Zimmermann, T. (2021). “How Was

Your Weekend?” Software Development Teams Working From Home During

COVID-19 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), Madrid, Spain.

https://doi.org/10.1109/ICSE43902.2021.00064

Mirza-Davies, J. (2015). A short history of apprenticeships in England: From medieval

craft guilds to the twenty-first century. Retrieved, 3(15), 2021.

Mittwede, S. K. (2012). Research Paradigms and Their Use and Importance in Theological

Inquiry and Education. Journal of Education and Christian Belief, 16(1), 23-40.

https://doi.org/10.1177/205699711201600104

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting

items for systematic reviews and meta-analyses: the PRISMA statement. Annals of

internal medicine, 151(4), 264-269.

Monat, R., Ouadjaout, A., & Miné, A. (2020). Static type analysis by abstract

interpretation of Python programs 34th European Conference on Object-Oriented

Programming (ECOOP 2020), Berlin, Germany (Virtual Conference).

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.1

Morse, J. M. (Ed.). (1994). Designing funded qualitative research. Sage Publications Inc.

Müller, L., Silveira, M. S., & de Souza, C. S. (2019). Source code comprehension and

appropriation by novice programmers: understanding novice programmers’

perception about source code reuse. Journal on Interactive Systems, 10(2), 96-109.

Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software developers

using the Eclipse IDE? IEEE software, 23(4), 76-83.

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair debugging: a

transactive discourse analysis Proceedings of the Sixth international workshop on

Computing education research, Aarhus, Denmark.

https://doi.org/10.1145/1839594.1839604

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C.

(2008). Debugging: the good, the bad, and the quirky--a qualitative analysis of

novices' strategies. ACM SIGCSE Bulletin, 40(1), 163-167.

Nania, J., Bonella, H., Restuccia, D., & Taska, B. (2019). No longer optional: Employer

demand for digital skills. Burning Glass Technologies.

Nash, I., & Jones, S. (2013). Real Apprenticeships: Creating a Revolution in English Skills.

Research by The Boston Consulting Group for the Sutton Trust. Sutton Trust.

National Research Council. (2013). Education for life and work: Developing transferable

knowledge and skills in the 21st century. National Academies Press.

Neto, P. A. d. M. S., Mannan, U. A., de Almeida, E. S., Nagappan, N., Lo, D., Kochhar,

P. S., Gao, C., & Ahmed, I. (2020). A deep dive on the impact of covid-19 in

software development. arXiv preprint arXiv:2008.07048.

Neufeld, D. J., & Fang, Y. (2005). Individual, social and situational determinants of

telecommuter productivity. Information & management, 42(7), 1037-1049.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises.

Review of general psychology, 2(2), 175-220.

Nosek, J. T. (1998). The case for collaborative programming. Communications of the

ACM, 41(3), 105-108.

https://doi.org/10.1109/ICSE43902.2021.00064
https://doi.org/10.1177/205699711201600104
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.1145/1839594.1839604

275 | P a g e

Oh, K., Almarode, J. T., & Tai, R. H. (2013). An exploration of think-aloud protocols

linked with eye-gaze tracking: Are they talking about what they are looking at.

Procedia-social and behavioral sciences, 93, 184-189.

Olson, G. M., & Olson, J. S. (2000). Distance matters. Human–Computer Interaction,

15(2-3), 139-178.

Oman, P. W., Cook, R., & Nanja, M. (1989). Effects of programming experience in

debugging semantic errors. Journal of Systems and software, 9(3), 197-207.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design:

Recent developments. Educational psychologist, 38(1), 1-4.

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of

relevant issues. Review of Educational research, 60(1), 65-89.

Pane, J. F., & Myers, B. A. (1996). Usability issues in the design of novice programming

systems.

Papadakis, S., & Orfanakis, V. (2018). Comparing novice programing environments for

use in secondary education: App Inventor for Android vs. Alice. International

Journal of Technology Enhanced Learning, 10(1-2), 44-72.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas Basic Books. Inc.

New York, NY, 10, 1095592.

Park, T. H., Dorn, B., & Forte, A. (2015). An analysis of HTML and CSS syntax errors in

a web development course. ACM Transactions on Computing Education (TOCE),

15(1), 1-21.

Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024). Exploring

debugging processes and regulation strategies during collaborative coding tasks

among elementary and secondary students. Computer Science Education, 1-28.

https://doi.org/10.1080/08993408.2024.2305026

Patton, M. (2015). Qualitative research & evaluation methods: Integrating theory and

practice. Sage publications.

Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE Publications,

inc.

Pea, R. D. (1986). Cognitive technologies for mathematics education. Bank Street College

of Education, Center for Children and Technology.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19(3), 295-341.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice

programmers. Papers presented at the first workshop on empirical studies of

programmers,

Perscheid, M., Siegmund, B., Taeumel, M., & Hirschfeld, R. (2017). Studying the

advancement in debugging practice of professional software developers. Software

Quality Journal, 25(1), 83-110.

Petrillo, F., Guéhéneuc, Y.-G., Pimenta, M., Freitas, C. D. S., & Khomh, F. (2019). Swarm

debugging: The collective intelligence on interactive debugging. Journal of

Systems and software, 153, 152-174.

Petrillo, F., Mandian, H., Yamashita, A., Khomh, F., & Guéhéneuc, Y.-G. (2017). How do

developers toggle breakpoints? observational studies IEEE International

Conference on Software Quality, Reliability and Security (QRS 2017), Prague,

Czech Republic. https://doi.org/10.1109/qrs.2017.39

Phillips, H., Ivins, W., Prickett, T., Walters, J., & Strachan, R. (2021). Using contributing

student pedagogy to enhance support for teamworking in computer science

projects. In Computing Education Practice 2021 (pp. 29-32).

https://doi.org/10.1080/08993408.2024.2305026
https://doi.org/10.1109/qrs.2017.39

276 | P a g e

Piaget, J. (1954). The construction of reality in the child (Vol. xiii). New York: Basic

Books. https://doi. org/10, 1037, 11168-11000.

Pierre, C., & Jérémy, H. (2024). The effect of workplace vs school-based vocational

education on youth unemployment: Evidence from France. European Economic

Review, 162, 104637.

https://doi.org/https://doi.org/10.1016/j.euroecorev.2023.104637

Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C., Burnett, M., John, B., Bellamy, R.,

& Swart, C. (2012). Reactive information foraging: An empirical investigation of

theory-based recommender systems for programmers Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, Austin, Texas, USA.

https://doi.org/10.1145/2207676.2208608

Pirolli, P., & Card, S. (1999). Information foraging. Psychological review, 106(4), 643.

Pirolli, P., & Card, S. (2005). The sensemaking process and leverage points for analyst

technology as identified through cognitive task analysis. Proceedings of

international conference on intelligence analysis,

Plonka, L., Segal, J., Sharp, H., & Van Der Linden, J. (2011). Collaboration in pair

programming: driving and switching. In: XP 2011: 12th International Conference

on Agile Software Development, 10-13 May 2011, Madrid, Spain.

Poole, P. C. (2005). Debugging and testing. Software Engineering: An Advanced Course,

278-318.

Porritt, K., Gomersall, J., & Lockwood, C. (2014). Study selection and critical appraisal:

the steps following the literature search in a systematic review. Am J Nurs, 114(6),

47-52.

Potluri, V., Pandey, M., Begel, A., Barnett, M., & Reitherman, S. (2022). Codewalk:

Facilitating shared awareness in mixed-ability collaborative software development

ASSETS '22: Proceedings of the 24th International ACM SIGACCESS Conference

on Computers and Accessibility, Athens, Greece.

https://doi.org/10.1145/3517428.3544812

Pritchard, D. (2015). Frequency distribution of error messages. Proceedings of the 6th

Workshop on Evaluation and Usability of Programming Languages and Tools,

Pittsburgh, PA, USA. https://doi.org/10.1145/2846680.2846681

Proksch, S., Amann, S., & Nadi, S. (2018). Enriched event streams: a general dataset for

empirical studies on in-IDE activities of software developers Proceedings - 2018

ACM/IEEE 15th International Conference on Mining Software Repositories, MSR

2018, Gothenburg, Sweden. https://doi.org/10.1145/3196398.3196400

Rajlich, V. T., & Bennett, K. H. (2000). A staged model for the software life cycle.

Computer, 33(7), 66-71.

Ralph, P., Baltes, S., Adisaputri, G., Torkar, R., Kovalenko, V., Kalinowski, M., Novielli,

N., Yoo, S., Devroey, X., & Tan, X. (2020). Pandemic programming. Empirical

Software Engineering, 25(6), 4927-4961.

Ramírez Echeverry, J. J., Rosales-Castro, L. F., Restrepo-Calle, F., & González, F. A.

(2018). Self-Regulated Learning in a Computer Programming Course. IEEE

Revista Iberoamericana de Tecnologias del Aprendizaje, 13(2), 75-83.

https://doi.org/10.1109/RITA.2018.2831758

Randolph, J. (2019). A guide to writing the dissertation literature review. Practical

assessment, research, and evaluation, 14(1), 13.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., & Silverman, B. (2009). Scratch:

programming for all. Communications of the ACM, 52(11), 60-67.

https://doi/
https://doi.org/https:/doi.org/10.1016/j.euroecorev.2023.104637
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/2846680.2846681
https://doi.org/10.1145/3196398.3196400
https://doi.org/10.1109/RITA.2018.2831758

277 | P a g e

Richard, D. (2012). The Richard Review of Apprenticeships. London: Departement for

Business. Innovation and Skills.

Ridder, H.-G. (2017). The theory contribution of case study research designs. Business

research, 10, 281-305.

Rigby, L., Denny, P., & Luxton-Reilly, A. (2020). A Miss is as Good as a Mile: Off-By-

One Errors and Arrays in an Introductory Programming Course. Proceedings of the

Twenty-Second Australasian Computing Education Conference,

Robins, A., Haden, P., & Garner, S. (2006). Problem distributions in a CS1 course.

Proceedings of the 8th Australasian Conference on Computing Education-Volume

52,

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A

review and discussion. Computer Science Education, 13(2), 137-172.

Rodgers, B. L., & Cowles, K. V. (1993). The qualitative research audit trail: A complex

collection of documentation. Research in nursing & health, 16(3), 219-226.

Rogers, Y. (1997). A brief introduction to distributed cognition. Interact Lab, University

of Sussex.

Rogers, Y., & Ellis, J. (1994). Distributed cognition: an alternative framework for

analysing and explaining collaborative working. Journal of Information

Technology, 9(2), 119-128.

Rolfe, G. (2006). Validity, trustworthiness and rigour: quality and the idea of qualitative

research. Journal of advanced nursing, 53(3), 304-310.

Romero, P., Du Boulay, B., Cox, R., Lutz, R., & Bryant, S. (2007). Debugging strategies

and tactics in a multi-representation software environment. International Journal

of Human-Computer Studies, 65(12), 992-1009.

Rubin, H. J., & Rubin, I. S. (2011). Qualitative interviewing: The art of hearing data. sage.

Russell, C. L. (2005). An overview of the integrative research review. Progress in

transplantation, 15(1), 8-13.

Sajaniemi, J., & Kuittinen, M. (2008). From procedures to objects: A research agenda for

the psychology of object-oriented programming education. Human Technology: An

Interdisciplinary Journal on Humans in ICT Environments.

Salas, E., Cooke, N. J., & Rosen, M. A. (2008). On teams, teamwork, and team

performance: Discoveries and developments. Human factors, 50(3), 540-547.

Salas, E., Sims, D. E., & Burke, C. S. (2005). Is there a “big five” in teamwork? Small

group research, 36(5), 555-599.

Salomon, G. (1997). Distributed cognitions: Psychological and educational

considerations. Cambridge University Press.

Satratzemi, M., Stelios, X., & Tsompanoudi, D. (2023). Distributed pair programming in

higher education: A systematic literature review. Journal of Educational

Computing Research, 61(3), 546-577.

Satratzemi, M., Xinogalos, S., Tsompanoudi, D., & Karamitopoulos, L. (2018). Examining

student performance and attitudes on distributed pair programming. Scientific

Programming, 2018.

Saunders, M., Lewis, P., & Thornhill, A. (2019). Research methods for business students

(Eighth ed.). Pearson education.

Saunders, M., Lewis, P., & Thornhill, A. (2023). Research methods for business students

(9th ed.). Pearson.

Savage, S., & Piwek, P. (2019). Full report on challenges with learning to program and

problem solve: an analysis of first year undergraduate Open University distance

learning students' online discussions.

278 | P a g e

Sawyer, R. (2014). The Cambridge handbook of the learning sciences (Cambridge

Handbooks in Psychology). Cambridge: Cambridge University Press. doi, 10, 317-

330.

Schwandt, T. A. (2001). A postscript on thinking about dialogue. Evaluation, 7(2), 264-

276.

Sebesta, R. W. (2016). Concepts of Programming Languages, Global Edition. (12th ed.).

Pearson.

Sedgewick, R., & Wayne, K. (2016). Computer science: An interdisciplinary approach.

Addison-Wesley Professional.

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research

projects. Education for information, 22(2), 63-75.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International

Journal of Computer & Information Sciences, 5(2), 123-143.

Silva, L. S. (2020). Investigating the Socially Shared Regulation of Learning in the Context

of Programming Education Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer Science Education, Trondheim, Norway.

https://doi.org/10.1145/3341525.3394003

Simon, B., Fitzgerald, S., McCauley, R., Haller, S., Hamer, J., Hanks, B., Helmick, M. T.,

Moström, J. E., Sheard, J., & Thomas, L. (2007). Debugging assistance for novices:

a video repository. ACM SIGCSE Bulletin, 39(4), 137-151.

Sloane, K. D., & Linn, M. C. (1988). Instructional conditions in Pascal programming

classes. In Teaching and learning computer programming: Multiple research

perspectives. (pp. 207-235). Lawrence Erlbaum Associates, Inc.

Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021). From Collaboration

to Solitude and Back: Remote Pair Programming During COVID-19. In P.

Gregory, C. Lassenius, X. Wang, & P. Kruchten, Agile Processes in Software

Engineering and Extreme Programming International Conference on Agile

Software Development, Cham.

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the mistakes of novice

programmers. Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, Minneapolis, USA.

So, M. H., & Kim, J. (2018). An analysis of the difficulties of elementary school students

in python programming learning. International Journal on Advanced Science,

Engineering and Information Technology, 8(4-2), 1507.

Sobral, S. R. (2020). Is pair programing in Higher Education a good strategy? International

Journal of Information and Education Technology, 10(12).

Sokolic, D. (2022). Remote work and hybrid work organizations. Economic and social

development: Book of proceedings, 202-213.

Soloway, E., Bonar, J., Woolf, B., Barth, P., Rubin, E., & Ehrlich, K. (1981). Cognition

and programming: Why your students write those crazy programs. Proceedings of

the National Educational Computing Conference, Texas, USA.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering(5), 595-609.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the Novice Programmer. Lawrence

Erlbaum.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer. Psychology Press.

Spinellis, D. (2016). Effective Debugging: 66 Specific Ways to Debug Software and

Systems. Addison-Wesley Professional.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?

Communications of the ACM, 29(7), 624-632.

https://doi.org/10.1145/3341525.3394003

279 | P a g e

Stahl, G., Koschmann, T. D., & Suthers, D. D. (2006). Computer-Supported Collaborative

Learning: An Historical Perspective. Cambridge Handbook of the Learning

Sciences, 409-426.

Steedman, H. (2012). Overview of apprenticeship systems and issues. ILO contribution to

the G20 task force on employment, Geneva.

Sun, C., Yang, S., & Becker, B. (2024). Debugging in Computational Thinking: A Meta-

analysis on the Effects of Interventions on Debugging Skills. Journal of

Educational Computing Research, 07356331241227793.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

science, 12(2), 257-285.

Tan, O.-S. (2021). Problem-based learning innovation: Using problems to power learning

in the 21st century. Gale Cengage Learning.

Taylor-Smith, E., Smith, S., Fabian, K., Berg, T., Meharg, D., & Varey, A. (2019).

Bridging the Digital Skills Gap: Are computing degree apprenticeships the

answer? ITiCSE '19 Proceedings of the 2019 ACM Conference on Innovation and

Technology in Computer Science Education, Aberdeen, UK.

https://doi.org/10.1145/3304221.3319744

Teague, D., & Roe, P. (2007). Learning to program: Going pair-shaped. Innovation in

Teaching and Learning in Information and Computer Sciences, 6(4), 4-22.

Tomlinson, C. A., & Imbeau, M. B. (2023). Leading and managing a differentiated

classroom. ASCD.

Torgeir, D., Sridhar, N., VenuGopal, B., & Nils Brede, M. (2012). A decade of agile

methodologies: Towards explaining agile software development. Journal of

Systems and software, 85(6), 1213-1221.

https://doi.org/https://doi.org/10.1016/j.jss.2012.02.033

Torraco, R. J. (2005). Writing integrative literature reviews: Guidelines and examples.

Human resource development review, 4(3), 356-367.

Torraco, R. J. (2016). Writing integrative literature reviews: Using the past and present to

explore the future. Human resource development review, 15(4), 404-428.

Tsai, C.-Y., Yang, Y.-F., & Chang, C.-K. (2015). Cognitive Load Comparison of

Traditional and Distributed Pair Programming on Visual Programming Language

2015 International Conference of Educational Innovation through Technology

(EITT 2015), Wuhan, China.

Tsan, J., Vandenberg, J., Fu, X., Wilkinson, J., Boulden, D., Boyer, K. E., Lynch, C., &

Wiebe, E. (2019). An investigation of conflicts between upper-elementary pair

programmers SIGCSE '19: Proceedings of the 50th ACM Technical Symposium

on Computer Science Education, Minneapolis, MN, USA.

https://doi.org/10.1145/3287324.3293799

Tsan, J., Weintrop, D., & Franklin, D. (2022). An Analysis of Middle Grade Teachers'

Debugging Pedagogical Content Knowledge Proceedings of the 27th ACM

Conference on on Innovation and Technology in Computer Science Education Vol.

1, Dublin, Ireland.

Tufford, L., & Newman, P. (2012). Bracketing in qualitative research. Qualitative social

work, 11(1), 80-96.

Van Oers, B. (1998). From context to contextualizing. Learning and instruction, 8(6), 473-

488.

Van Someren, M. W. (1990). What's wrong? Understanding beginners' problems with

Prolog. Instructional science, 19, 257-282.

https://doi.org/10.1145/3304221.3319744
https://doi.org/https:/doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1145/3287324.3293799

280 | P a g e

Veerasamy, A. K., D'Souza, D., & Laakso, M.-J. (2016). Identifying novice student

programming misconceptions and errors from summative assessments. Journal of

Educational Technology Systems, 45(1), 50-73.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.

International Journal of Man-Machine Studies, 23(5), 459-494.

Vossoughi, S., & Bevan, B. (2014). Making and tinkering: A review of the literature.

National Research Council Committee on Out of School Time STEM, 67, 1-55.

Vourletsis, I., Politis, P., & Karasavvidis, I. (2021). The Effect of a Computational

Thinking Instructional Intervention on Students’ Debugging Proficiency Level and

Strategy Use. Research on E-Learning and ICT in Education: Technological,

Pedagogical and Instructional Perspectives, 15-34.

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological

processes. Harvard university press.

Weiser, M. (1982). Programmers use slices when debugging. Communications of the

ACM, 25(7), 446-452.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering(4), 352-

357.

Welsh, E. (2002). Dealing with data: Using NVivo in the qualitative data analysis process.

Forum Qualitative Sozialforschung Forum: Qualitative Social Research, 3(2).

https://doi.org/10.17169/fqs-3.2.865

Wetton, R. (2021). Managing Virtual Teams: Creating a Virtual Community. In

Intercultural Management in Practice. Emerald Publishing Limited.

Whalley, J., Settle, A., & Luxton-Reilly, A. (2021). Novice Reflections on Debugging

Proceedings of the 52nd ACM Technical Symposium on Computer Science

Education, Virtual Event, USA. https://doi.org/10.1145/3408877.3432374

Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-aloud Study of Novice

Debugging. ACM Trans. Comput. Educ., 23(2), 1. https://doi.org/10.1145/3589004

Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology.

Journal of advanced nursing, 52(5), 546-553.

Williams, L., & Kessler, R. (2002). Pair programming: Experience the difference Extreme

Programming and Agile Methods—XP/Agile Universe 2002: Second XP Universe

and First Agile Universe Conference Chicago, IL, USA, August 4–7, 2002

Proceedings 2, Chicago, IL, USA.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the

case for pair programming. IEEE software, 17(4), 19-25.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM

SIGCSE Bulletin, 28(3), 17-22.

Wolter, S. C., & Ryan, P. (2011). Apprenticeship. In Handbook of the Economics of

Education (Vol. 3, pp. 521-576). Elsevier.

Xu, F., & Correia, A.-P. (2023). Adopting distributed pair programming as an effective

team learning activity: a systematic review. Journal of Computing in Higher

Education, 1-30.

Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of experts’ and novices’ thinking

process in program debugging. Engaging Learners Through Emerging

Technologies. ICT 2012. Communications in Computer and Information Science,

vol 302, Hong Kong, China. https://doi.org/10.1007/978-3-642-31398-1_12

Yett, B., Hutchins, N., Snyder, C., Zhang, N., Mishra, S., & Biswas, G. (2020). Evaluating

student learning in a synchronous, collaborative programming environment

https://doi.org/10.17169/fqs-3.2.865
https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1145/3589004
https://doi.org/10.1007/978-3-642-31398-1_12

281 | P a g e

through log-based analysis of projects International Conference on Artificial

Intelligence in Education, Tianjin, China.

Yin, R. (2009). Case Study Research: Design and Methods, 4th edn Sage Publications.

Thousand Oaks.

Yin, R., K. (2014). Case Study Research: Design and Methods. In (5th edition ed.).

Thousand Oaks, CA: Sage publications.

Ying, K. M., Rodríguez, F. J., Dibble, A. L., & Boyer, K. E. (2021). Understanding

Women's Remote Collaborative Programming Experiences: The Relationship

between Dialogue Features and Reported Perceptions. Proceedings of the ACM on

Human-Computer Interaction, 4(CSCW3), 1-29.

Zeller, A., & Hildebrandt, R. (2002). Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering, 28(2), 183-200.

Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks.

Cognitive science, 18(1), 87-122.

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining latent profile

analysis and programming traces to understand novices’ differences in debugging.

Education and Information Technologies, 28(4), 4673-4701.

Zhao, Q., Rabbah, R., Amarasinghe, S., Rudolph, L., & Wong, W.-F. (2008). How to do a

million watchpoints: Efficient debugging using dynamic instrumentation. In L.

Hendren, Compiler Construction. CC 2008. Lecture Notes in Computer Science,

vol 4959. Springer, Berlin, Heidelberg.

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into

practice, 41(2), 64-70.

282 | P a g e

Appendix A: Participants Information Sheet - Apprentices

I am a PhD candidate at Lancaster University. I would like to invite you to participate in a research study

about the debugging behaviour of the paired Software Development Technician (SDT) Apprentice in a

geographically distributed environment.

Please take time to read the following information carefully before you decide whether or not you wish

to take part.

What is the study about?

This study aims to investigate debugging behaviours (and the influencing factors) of paired

geographically distributed SDT apprentices working collaboratively on fixing written codes using

technology-mediated agents. So, the compiler errors, the verbal and non-verbal interactions between

pairs, how you build knowledge of the program’s behaviour, technology agents’ roles, the pattern of

the debugging activities and eventually, resolution of issues (if applicable) will form the basis of this

research.

Why have I been invited?

I have approached you because I am interested in understanding how SDTs in disparate locations work

collaboratively on the same file, and at the same time go about locating and fixing bugs in a written

programming code. I would be very grateful if you would agree to take part in this study.

What will I be asked to do if I take part?

If you decided to take part, this would involve the following:

• The researcher will organise two debugging sessions and one interview session with your assigned

pair. It is reckoned that the two sessions of the debugging activities should not be longer than 2

hours altogether and the interview should not last more than 1 hour.

• You will be observed working with an assigned pair on remote debugging of a few Python

programming codes with varied difficulties.

• The proceeding of the debugging activities in terms of code fixing, the conversations between the

pair and video coverage of the entire proceedings will be made using the webcam of the laptop and

stored in a password-protected Microsoft OneDrive.

• You will be expected to provide access to the modified programmatic code and the debugging and

interview session recordings.

• The recordings will be reviewed by the researcher and to be used to determine the questions to

follow-up during the interview session with a few parts of the recordings to be watched with you

to further bolster the understanding of the phenomenon.

• Afterwards, you will be asked to participate in an interview session with your pair to answer

questions on the debugging behaviours exhibited during the debugging sessions.

What are the possible benefits from taking part?

283 | P a g e

The study results may provide insight on the type of error messages generated by you as novice

programmers while debugging codes, your debugging behaviour and how pairing of novice

programmers in different locations work.

Do I have to take part?

No. It’s completely up to you to decide whether or not you take part. Your participation is voluntary. If

you decide not to take part in this study, this will not affect your studies and the way you are assessed

on your course, or the relationship with the researcher or any staff within your area of employment.

What if I change my mind?

If you change your mind, you are free to withdraw at any time from your participation in this study. If

you want to withdraw, please let me know, and I will extract any ideas or information (=data) you

contributed to the study and destroy them. However, it is difficult and often impossible to take out data

from one specific participant when this has already been anonymised or pooled together with other

people’s data. Therefore, you can only withdraw up to 2 weeks after taking part in the study.

What are the possible disadvantages and risks of taking part?

It is unlikely that there will be any major disadvantages to taking part apart from losing the time taken

to participate in the debugging session and the interview session. In total, this is likely to take about

three hours.

Will my data be identifiable?

After the observation and the interview, only I, the researcher conducting this study will have access to

the ideas you share with me. I will keep all personal information about you (e.g. your name and other

information about you that can identify you) confidential, that is I will not share it with others. I will

remove any personal information from the written record of your contribution. All reasonable steps will

be taken to protect your anonymity in this project.

How will we use the information you have shared with us and what will happen to the results of the

research study?

I will use the information you have shared with me only in the following ways:

I will use it for research purposes only. This will include my PhD thesis and other publications, for

example journal articles. I may also present the results of my study at academic or practitioner

conferences. When writing up the findings from this study, I would like to reproduce some of the views

and ideas you shared with me, but I will only use anonymised quotes (e.g. from my interview with you),

so that although I will use your exact words, all reasonable steps will be taken to protect your anonymity

in publications.

How my data will be stored

Your data will be stored in encrypted files (that is no-one other than me, the researcher, will be able to access

them) and on password-protected computers. I will keep data that can identify you separately from non-personal

information. The data will be subsequently destroyed after the thesis is completed.

What if I have a question or concern?

If you have any queries or if you are unhappy with anything that happens concerning your participation

in the study, please contact myself on o.jolugbo@lancaster.ac.uk.

You can also contact my supervisor, Prof Don Passey on d.passey@lancaster.ac.uk, telephone number:

+44 (0) 1524 592314.

Director of Studies, Doctoral Programme in e-Research and Technology Enhanced Learning

Department of Educational Research

Lancaster University

LA1 4YD

If you have any concerns or complaints that you wish to discuss with a person who is not directly

involved in the research, you can also contact: Professor Paul Ashwin, Head of Department, Educational

mailto:o.jolugbo@lancaster.ac.uk
mailto:d.passey@lancaster.ac.uk

284 | P a g e

Research, County South, Lancaster University, Lancaster, United Kingdom, LA1 4YD. Telephone: +44 (0)

1524 593572

 This study has been reviewed and approved by the Faculty of Arts and Social Sciences and Lancaster

Management School’s Research Ethics Committee.

285 | P a g e

Appendix B: Participants Information Sheet - Work Based
Mentors & Trainers

286 | P a g e

287 | P a g e

Appendix C: Participant Consent Form – Apprentices

288 | P a g e

Appendix D: Participant Consent Form – Work-Based Mentors
& Trainers

289 | P a g e

290 | P a g e

Appendix E: Ethics Approval

291 | P a g e

Appendix F: The Bugged Python Code

def calculate_payroll(hours_worked, hourly_rate)

 # SYNTAX ERROR (SE01): Missing colon

 gross_pay = hours_worked x hourly_rate

 # SYNTAX ERROR (SE02): Used ‘x’ instead of ‘*’

 # LOGICAL ERROR (LE01): Incorrect tax value

 tax_rate = 15

 # SYNTAX ERROR (SE03): Missing colon after ‘if’

 if gross_pay > 6000

 tax = gross_pay * (tax_rate/100)

 else

 # LOGICAL ERROR (LE02): Wrong tax rate

 tax = gross_pay * 0.05

 net_pay = gross_pay - tax

 # LOGICAL ERROR (LE03): Shouldn’t subtract tax if gross_pay is below a certain

threshold

 return ‘Total Pay: ", str(gross_pay) + ", Net Salary: " + str(net_pay)

 # SYNTAX ERROR (SE04): Mismatched string concatenation

SYNTAX ERROR (SE05): ‘def’ typo

df main():

 hours = input("Input hours: ")

 rate = input("Input rate: $")

 # RUNTIME ERROR (RE01): Input is string and not converted to number

 payroll_info = calculate_payroll(hours, rate)

 # SYNTAX ERROR (SE06): print without parentheses

 print payroll_info

 # RUNTIME ERROR (RE02): Undefined variable ‘rates’

 print(rates[0])

LOGICAL ERROR (LE04): Improper use of ‘__name__’

if name = "__main__":

 # SYNTAX ERROR (SE07): Single ‘=‘ used instead of ‘==‘

 main()

 # SYNTAX ERROR (SE08): Incorrectly closed string

 role = input("Enter employee’s role:")

 # SYNTAX ERROR (SE09): Incorrect indentation

292 | P a g e

 if role == "Manager":

 # LOGICAL ERROR (LE05): Bonus amount doesn’t make sense without context

 bonus = 2000

 print("Bonus: ", bonus)

 # SYNTAX ERROR (SE10): Else without a prior if (due to the indentation error

above)

 else:

 print("No bonus")

LOGICAL ERROR (LE06): Redundant and incorrect code

bonus = 100

print("All employees get a bonus of: ", bonus)

SYNTAX ERROR (SE11): Incomplete ‘for’ loop

for i in range(5)

 print(i)

 # RUNTIME ERROR (RE03): Infinite loop due to missing colon and indentation

293 | P a g e

Appendix G: Sample DYADs End of Session Codes

The Code after the Debugging Session - SDT23 & SDT24

The session concluded with the code still containing unresolved errors. The final code,

with comments indicating both fixed and unfixed errors, demonstrated their efforts and

learning process.

def calculate_payroll(hours_worked, hourly_rate):
 # ERROR FIXED (SE01): Missing colon at the end of function definition
 # ERROR FIXED (SE02): Incorrect operator, used 'x' instead of '*'
 gross_pay = hours_worked * hourly_rate

 # ERROR FIXED (LE01): Incorrect tax value, adjusted to 10%
 tax_rate = 10

 # ERROR FIXED (SE03): Missing colon after 'if'
 if gross_pay > 6000:
 # ERROR NOT FIXED (LE02): Incorrect logic for tax calculation
 tax = gross_pay * (tax_rate / 100)
 else:
 # ERROR NOT FIXED (LE03): Incorrect tax rate for lower bracket
 tax = gross_pay * 0.05

 net_pay = gross_pay - tax
 # ERROR FIXED (SE04): Corrected string concatenation
 return 'Total Pay: ' + str(gross_pay) + ', Net Salary: ' + str(net_pay)

ERROR FIXED (SE05): 'def' typo
def main():
 hours = input("Input hours: ")
 rate = input("Input rate: $")

 # ERROR NOT FIXED (RE01): Input is string and not converted to number
 payroll_info = calculate_payroll(hours, rate)

 # ERROR FIXED (SE06): Added missing parentheses for print function
 print(payroll_info)

 # ERROR NOT FIXED (RE02): Undefined variable 'rates'
 print(rates[0])

ERROR FIXED (LE04): Corrected logic for '__name__' check
ERROR FIXED (SE07): Corrected comparison operator to '=='
if __name__ == "__main__":
 main()

294 | P a g e

ERROR NOT FIXED (SE08): Incorrectly closed string
role = input("Enter employee's role:")

ERROR NOT FIXED (SE09): Incorrect indentation
if role == "Manager":
 # ERROR NOT FIXED (LE05): Bonus calculation lacks context
 bonus = 2000
 print("Bonus: ", bonus)

ERROR NOT FIXED (SE10): Else without a prior if (due to the indentation error above)
else:
 print("No bonus")

ERROR NOT FIXED (LE06): Redundant and incorrect bonus logic
bonus = 100
print("All employees get a bonus of: ", bonus)

ERROR NOT FIXED (SE11): Incomplete 'for' loop
for i in range(5)
 # ERROR NOT FIXED (RE03): Infinite loop due to missing colon
 print(i)

295 | P a g e

Appendix H: DYAD Interview Protocols

1. How would you rate your programming skills and experience on a scale of 1 to 10, with

1 indicating a beginner level and 10 representing a highly skilled level?

2. What specific debugging strategies have you previously used in your programming

tasks, and what led you to choose these methods?

3. What types of error messages do you find challenging while collaborating to solve and

fix errors in the Python code?

4. What specific strategies do you employ in locating and rectifying bugs in the program,

and why have you chosen these methods?

5. From your experience in the observed session, how did working together impact your

approach to locating and fixing errors in the Python code, especially given your

geographical distribution?

5a Further to the answer provided to question 5, can you tell me in specific terms

how working together impacted the strategy used or the way you approached the

code debugging?

6. Can you describe the methods or strategies you used to distribute responsibilities and

manage cognitive workload during the debugging process in your remote pairing?

7. Reflecting on the recorded hypothetical debugging session, how did using Integrated

Development Environment (IDE) tools enhance your effectiveness and help mitigate

the challenges you faced while debugging programs together in distributed pair

debugging of Python code?

8. Using examples from the debugging session, what specific obstacles did you, as paired

and geographically dispersed SDT apprentices, encounter while collaborating to

resolve programming bugs?

9. Why do you think these particular challenges arose during your collaboration to fix

bugs in the Python code, especially given your geographical separation?

10. How was your experience with the debugging session alongside your partner?

296 | P a g e

Appendix I: Focus Group Protocols

Thank you for participating in this focus group session. This session aims to tap into

your wealth of experience in software development and working with the SDT

apprentice debugging programming.

Introduction

1. Could we begin this discussion by exploring your experiences and observations on

debugging programming codes while working with apprentices?

Discussion on the themes from the apprentice investigation and their personal

experiences

2. What types of debugging strategies have you observed your apprentices using to

identify and rectify bugs in programming code?

3. In your view, what are the likely contributing factors to apprentices adopting these

specific debugging strategies?

4. How do you rate the effectiveness of these strategies in assisting apprentices to fix

bugs efficiently, and what are the reasons for your assessment?

5. One recurring theme from the debugging sessions was the challenge surrounding

mental models. Could you elaborate on the factors contributing to incorrect mental

models among apprentices?

Conclusion

6. To conclude, could you share your insights on the known or perceived challenges that

apprentices commonly face while debugging programming codes?

7. How do you think they can better be supported in improving your debugging practice?

Thank you for taking time out of your busy schedule to participate in this study.

297 | P a g e

Appendix J: Sample Transcript of the Debugging Session

Transcript of Debugging Session between SDT15 and SDT16

Session Start: 09:00 AM

Initial Run of the Script

SDT16 (Navigator): “Before we start fixing, let’s run the script as is. We need to

identify all the errors it throws up.”

SDT15 (Driver): “Agreed. Executing the script now to catch the initial errors.”

Script Execution Result: Error - SyntaxError on line 1: invalid syntax.

First 15 Minutes: Identifying and Correcting Syntax Errors

SDT15: “Looks like the first snag is a syntax error at the very beginning. Ah, we

missed the colon after the function declaration. Such a small thing can cause a big

issue.”

SDT16: “Exactly, the colon is crucial in Python to indicate the start of the function

block. Please add it at the end of the function declaration line.”

SDT15 quickly adds the colon, fixing the syntax error *SE01.

SDT16: “Great, now let’s rerun the script to check for the next batch of errors.”

SDT15: “Hmm, now we have a TypeError. Oh, we used ‘x’ for multiplication on line

3. It should be an asterisk ‘*’.”

SDT16: “That’s a common mistake when switching from math notation to

programming. Replace ‘x’ with ‘*’.”

SDT15 promptly corrects the multiplication symbol *SE02 and re-runs the script.

SDT15: “Another syntax error, this time on the ‘if’ statement in line 7. We forgot the

colon again.”

SDT16: “The colon is crucial for if-else structures as well. Add it to signify the

beginning of the if block.”

SDT15 corrects the missing colon *SE03.

To trace the program’s logic flow, they insert print statements and uncover

inaccuracies in the tax calculation.

SDT15: “According to our task, the tax rate should vary between 10% and 25% based

on the gross pay. But here, we’ve incorrectly used 15% and 5%.”

SDT16: “We need to modify these values to align with the specified tax brackets. That

will fix the logical errors in tax calculation.”

SDT15 updates the tax rates, addressing *LE01 and *LE02.

30 Minutes: Switching Roles and Correcting Further Errors

As per their plan, *SDT16 takes over as the Driver, and *SDT15 becomes the

Navigator.

SDT16: “I’ll handle the string concatenation error in the return statement. We should

concatenate using ‘+’ instead of commas.”

SDT15: “That’s correct. Using plus signs will properly combine the strings and

variables.”

SDT16 rectifies the string concatenation issue *SE04.

298 | P a g e

SDT15: “The next issue is with the main function definition. It’s mistakenly written as

‘df’.”

SDT16: “Oh, that’s a typo. Changing ‘df’ to ‘def’ to correctly define the main

function.”

SDT16 fixes the function definition typo *SE05 and runs the script, leading to a

runtime error.

SDT15: “The runtime error suggests an issue with data types. We’re not converting

the input strings to numbers, which is essential for arithmetic operations.”

SDT16: “Right, I’ll convert the input strings to integers to resolve this.”

SDT16 amends the code to convert inputs to integers, addressing *RE01.

SDT15: “There’s also a line with an undefined variable ‘rates’. It seems out of place.”

299 | P a g e

Appendix K: Sample Transcript of Dyad’s Interview

4. What specific strategies do you employ in locating and rectifying bugs in the

program, and why have you chosen these methods?

SDT7: "In our recent debugging session, I leaned heavily on Trial-and-Error as my

primary strategy. It involves testing various solutions to see what works and what

doesn’t, which I find effective for immediate, hands-on learning. For example, when

we encountered SE02, the wrong operator for multiplication, I quickly experimented

with the correct operators to fix it. I prefer this approach because it gives me a direct

sense of interaction with the code. However, I realise it’s not always the most efficient,

especially for more complex errors like the logical ones we faced. That’s where I find

Code Review really valuable. Reviewing SDT8’s code alterations and discussing them

helped me understand different perspectives and solutions."

SDT8: "I tend to favour Print Statement Debugging as my go-to strategy. It allows me

to track how data changes throughout the program, which is crucial for understanding

how errors, particularly runtime ones, manifest. For instance, when tackling RE01, not

converting string input to number, using print statements helped us trace where the

type mismatch occurred. I find this method systematic and informative, especially

when dealing with intricate code. In addition to that, I also see the merit in Code

Review, as SDT7 mentioned. It’s a collaborative effort that offers insights that one

might miss when working alone. The trial-and-error approach used by SDT7 also

complemented our session, bringing a more dynamic and exploratory angle to our

debugging process."

Critical Analysis of Responses:

SDT7’s Analysis: SDT7’s preference for Trial-and-Error reflects a hands-on, experiential

learning style. This approach is effective for immediate problem-solving but may lack

efficiency with complex issues.

Their appreciation for Code Review indicates an understanding of the value of

collaborative learning and different perspectives in debugging.

300 | P a g e

SDT8’s Analysis: SDT8’s use of Print Statement Debugging demonstrates a systematic

and analytical approach, allowing for a clear understanding of program flow and data

states.

Their recognition of the benefits of Code Review highlights the importance of

collaboration in their debugging strategy, complementing their individual analytical

approach with collective insights.

Overall Assessment: Both SDT7 and SDT8 have employed strategies that suit their

individual learning styles while complementing each other’s approaches. SDT7’s

hands-on Trial-and-Error method provides immediate feedback and learning, while

SDT8’s systematic Print Statement Debugging offers detailed insights into the

program’s operation. The incorporation of Code Review by both participants enhances

their debugging process, allowing for collaborative problem-solving and learning from

each other’s perspectives. This combination of strategies suggests a well-rounded

approach to debugging, balancing individual exploration with collaborative analysis.

301 | P a g e

Appendix L: Sample of Included Studies for the Critical
Analysis

 Table 1: Sample of a summary document for the critical analysis (CA) of selected studies.

 Included studies CA tool
Quality
rating

Evidence
level

1
Gould, J. D., & Drongowski, P. (1974). An exploratory study of
computer program debugging. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 16(3), 258-277.

JBI Outstanding 95%

2
Vessey, I. (1985). Expertise in debugging computer programs: A
process analysis. International Journal of Man-Machine Studies,
23(5), 459-494

JBI Outstanding 95%

3
Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-
location strategies. Human-Computer Interaction, 3(4), 351-399.

JBI Good 85%

4
Allwood, C. M., & Bjorhag, C.-G. (1990). Novices' debugging when
programming in Pascal. International Journal of Man-Machine
Studies, 33(6), 707-724.

JBI Outstanding 90%

5
Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of
patterns of debugging among novice computer science students.
ACM SIGCSE Bulletin, 37(3), 84-88.

JBI Outstanding 90%

6

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V.
(2006). Pair Collaboration in End-User Debugging. Proceedings -
IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2006, Brighton, UK.

JBI Outstanding 95%

7

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B.,
Thomas, L., & Zander, C. (2008). Debugging: finding, fixing and
flailing, a multi-institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

JBI Outstanding 90%

8

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L.,
& Zander, C. (2008). Debugging: the good, the bad, and the quirky--
a qualitative analysis of novices' strategies. ACM SIGCSE Bulletin,
40(1), 163-167.

JBI Outstanding 90%

9
Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., &
Zander, C. (2010). Debugging from the student perspective. IEEE
Transactions on Education, 53(3), 390-396.

JBI Outstanding 95%

10

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair
debugging: a transactive discourse analysis Proceedings of the Sixth
international workshop on Computing education research, Aarhus,
Denmark.

JBI Outstanding 95%

11

Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of experts’ and
novices’ thinking process in program debugging. Engaging Learners
Through Emerging Technologies. ICT 2012. Communications in
Computer and Information Science, vol 302, Hong Kong, China.

JBI Outstanding 95%

12

Akinola, S. (2014). An Empirical Comparative Analysis of
Programming Effort, Bugs Incurrence and Code Quality between
Solo & Pair Programmers. Middle-East Journal of Scientific
Research, 21(12), 2231-2237.

JBI Outstanding 100%

13
McCall, D., & Kölling, M. (2014). Meaningful categorisation of novice
programmer errors. In 2014 IEEE Frontiers in Education Conference
(FIE) Proceedings (pp. 1-8). IEEE.

JBI Outstanding 94%

302 | P a g e

14
Pritchard, D. (2015). Frequency distribution of error messages.
Proceedings of the 6th Workshop on Evaluation and Usability of
Programming Languages and Tools, Pittsburgh, PA, USA.

JBI Outstanding 94%

15

Alqadi, B. S., & Maletic, J. I. (2017). An Empirical Study of Debugging
Patterns Among Novices Programmers Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education,
Seattle, Washington, USA.

JBI Outstanding 95%

16
Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors
made by novice programmers. Proceedings of the 20th Australasian
Computing Education Conference, Brisbane, Queensland, Australia.

JBI Good 80%

17
Júnior, A. S., de Figueiredo, J. C. A., & Serey, D. (2019). Analysing the
Impact of Programming Mistakes on Students' Programming
Abilities. Brazilian Symposium on Computers in Education, Brazil.

JBI Outstanding 90%

18
Kohn, T. (2019). The Error Behind The Message: Finding the Cause of
Error Messages in Python Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, Minneapolis, MN, USA.

JBI Outstanding 100%

19

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the
mistakes of novice programmers. Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Minneapolis,
USA.

JBI Outstanding 94%

20

Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of
electronic textiles projects: Analyzing think-aloud protocols for high
school students’ strategies and practices while problem solving The
Interdisciplinarity of the Learning Sciences, 14th International
Conference of the Learning Sciences (ICLS) 2020, Nashville, USA.

JBI Outstanding 95%

21

Michaeli, T., & Romeike, R. (2020). Investigating Students’
Preexisting Debugging Traits: A Real World Escape Room Study
Proceedings of the 20th Koli Calling International Conference on
Computing Education Research, Koli, Finland.

JBI Outstanding 95%

22

Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021).
From Collaboration to Solitude and Back: Remote Pair Programming
During COVID-19. In P. Gregory, C. Lassenius, X. Wang, & P.
Kruchten, Agile Processes in Software Engineering and Extreme
Programming International Conference on Agile Software
Development, Cham.

JBI Outstanding 95%

23
Whalley, J., Settle, A., & Luxton-Reilly, A. (2021a). Analysis of a
Process for Introductory Debugging Proceedings of the 23rd
Australasian Computing Education Conference, Australia.

JBI Outstanding 95%

24
Whalley, J., Settle, A., & Luxton-Reilly, A. (2021b). Novice
Reflections on Debugging Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, Virtual Event, USA.

JBI Outstanding 95%

25

Baabdullah, A., & Kim, C. (2022). Supporting Collaborative
Debugging Processes. Proceedings of the 15th International
Conference on Computer-Supported Collaborative Learning-CSCL
2022, pp. 557-558, Hiroshima, Japan.

JBI Outstanding 95%

26

Jeffries, B., Lee, J. A., & Koprinska, I. (2022). 115 Ways Not to Say
Hello, World! Syntax Errors Observed in a Large-Scale Online CS0
Python Course. Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education Vol. 1
(ITiCSE 2022), Dublin, Ireland.

JBI Outstanding 100%

27

Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C.
(2022). Debugging behaviours of early childhood teacher
candidates with or without scaffolding. International Journal of
Educational Technology in Higher Education, 19(1), 26.

JBI Outstanding 95%

303 | P a g e

28
Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging?
An exploratory study of debugging episodes. Empirical Software
Engineering, 28(5), 117.

JBI Outstanding 95%

29

Liu, Q., & Paquette, L. (2023). Using submission log data to
investigate novice programmers’ employment of debugging
strategies. LAK23: 13th International Learning Analytics and
Knowledge Conference, Arlington, TX, USA.

JBI Outstanding 95%

30
Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-aloud
Study of Novice Debugging. ACM Trans. Comput. Educ., 23(2), 1.

JBI Outstanding 95%

31

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023).
Combining latent profile analysis and programming traces to
understand novices’ differences in debugging. Education and
Information Technologies, 28(4), 4673-4701.

JBI Outstanding 95%

32

Brown, N. C., Mac, V., Weill-Tessier, P., & Kölling, M. (2024). Writing
Between the Lines: How Novices Construct Java Programs
Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), USA.

JBI Outstanding 90%

33

Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging
with electronic textiles: understanding high school student pairs’
problem-solving strategies, practices, and perspectives on repairing
physical computing projects. Computer Science Education, 1-35.

JBI Outstanding 100%

34

Morales-Navarro, L., Fields, D. A., & Kafai, Y. B. (2024).
Understanding growth mindset practices in an introductory physical
computing classroom: high school students’ engagement with
debugging by design activities. Computer Science Education, 1-31.

JBI Outstanding 90%

35

Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024).
Exploring debugging processes and regulation strategies during
collaborative coding tasks among elementary and secondary
students. Computer Science Education, 1-28.

JBI Good 75%

304 | P a g e

Appendix M: Debugging Session Codebook

305 | P a g e

Appendix N: DYAD Interview Codebook

DPP
Codes\\Interview\\Stage 1 & 2 - Familiarisation & Coding

Name Description Files References

Absence of Physical
Presence for Quick
Clarification

These represent struggles in not being able to
point or visually show parts of code

1 11

Acknowledged Limitations Learners showed self-awareness by noting their
own lack of proficiency or understanding. These
admissions underline honesty about gaps in
capability.

1 3

Agreement on Challenge Multiple participants expressed a shared view
that certain logical errors posed significant
difficulty. The consistency in their sentiments
adds weight to the issue's complexity.

1 5

Analytical approach Describes instances where a participant
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

1 1

Analytical Demand Reflects how some debugging tasks required
high-level reasoning and mental exertion.
Participants perceived the activity as cognitively
intensive.

1 1

Analytical Gaps Denotes errors that occurred due to missed
steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

1 2

Big picture review Participants referred to stepping back and
reassessing the entire codebase. This top-down
perspective helped in recontextualising the
issue.

1 1

Breakdown strategy Refers to the act of deconstructing a problem
into simpler parts to aid resolution. Learners
discussed breaking logic into manageable pieces.

1 1

Calculation Confusion Errors emerged from difficulties in creating or
tracing formula-based logic. Mathematical
thinking was the barrier.

1 1

Code Isolation Strategy Participants isolated specific blocks or lines of
code to test or observe behaviour. This strategy
helped to narrow the problem area.

1 2

Code Review Apprentices systematically examined and
critiqued each other's code to identify issues,

1 12

306 | P a g e

Name Description Files References

clarify logic, and enhance collaborative problem-
solving.

Code Structure For syntax issues relating to structural formatting
or layout.

1 4

Code Visibility Advantage Clarity in formatting, naming, or organisation
made it easier to follow the logic. Participants
attributed their success partly to how readable
the code was.

1 1

Collaborative clarity Understanding emerged more clearly through
discussions with peers. Explaining logic to others
often led to personal insight.

1 3

Collaborative Insight New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

1 4

Complex Logic Breakdown Learners attempted to untangle highly intricate
or nested conditions. The difficulty lay not in
syntax but in logical architecture.

1 4

Concept Misuse Participants misapplied key Python concepts,
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding
constructs.

1 2

Conditional
Misinterpretation

Learners misunderstood how conditionals
executed. This misreading caused flawed logic
paths.

1 1

Context understanding Problem-solving success relied on grasping the
wider function or scenario. The learner needed
to understand not just 'what' but 'why'.

1 3

Contextual Misuse A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

1 1

Data Flow Understanding Focused on tracking how information moved
through variables and functions. This tracking
helped diagnose where logic broke down.

1 1

Deep Dive Debugging Marked by a thorough and prolonged
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

1 1

Deep Logic This reflects the intellectual depth required to
trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was
insufficient.

1 2

Difficulty Conveying
Thought Process Remotely

These quotes are focused on how apprentices
struggled to explain, align, or communicate their
reasoning without face-to-face interaction

1 27

307 | P a g e

Name Description Files References

Distraction in Individual
Work Environments

These highlight challenges in focus due to
remote, uncontrolled environments.

1 6

Divide and conquer The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

2 3

Division of Tasks Based on
Strengths

Apprentices strategically assigned
responsibilities based on individual strengths or
comfort zones to manage complexity and
maintain focus.

1 22

Driver-Navigator Role
Sharing

Apprentices adopted a structured pairing model
where one coded while the other observed and
guided, helping distribute cognitive demands.

1 18

Error Complexity The nature of the logic error was itself intricate
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

1 10

Execution Flow For difficulty understanding the order of
execution in Python.

1 5

Experience Builds Mastery Learners acknowledged that repeated exposure
helped them improve. Experience was credited
as a major enabler of logical reasoning.

1 2

Explaining syntax fixes For verbal explanation, negotiation, or
clarification of syntax fixes during collaboration

1 15

Fixing Syntax Error For comments about actively identifying,
correcting, or guiding others through syntax
issues.

1 9

Flow Confusion The challenge stemmed from not understanding
how code progressed during execution. This lack
of clarity hampered logical deductions.

1 1

Found It Challenging A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

1 7

General Complexity Applied when logic problems were described as
difficult but without specific explanation. It
captures vague but valid struggle.

1 5

Growth Mindset Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports resilience.

1 1

Growth Through Challenge Struggle was reframed as an opportunity for
learning. Participants reflected positively on the
difficulty.

1 4

IDE Debugger Usage Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

1 35

Infinite Loop For errors involving loops that do not terminate. 1 17

308 | P a g e

Name Description Files References

Knowledge Gaps Errors resulted from lacking the foundational
knowledge needed to apply logic. This code
tracks missing prerequisites.

1 6

Lack of Non-Verbal
Feedback

These reflect how the absence of visual, gestural,
or facial cues hindered effective communication
and understanding during remote debugging

1 33

Limited Experience and Skill
Gaps

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational knowledge,
or still developing confidence in applying core
concepts.

1 15

Logic and Flow Challenges Combined challenges in understanding both the
logic and how it executed. These situations
involved overlapping difficulties.

1 6

Logic Struggle Captures moments of emotional or cognitive
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

1 4

Logical Errors Challenging Serves as a general label for statements
identifying logic bugs as hard. It doesn’t specify
which part was problematic.

1 5

Logical Reasoning Gaps Participants struggled with understanding or
applying correct logic within the code,
particularly when handling conditionals,
calculations, or the flow of decision-making.

1 61

Methodical Problem
Solving

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

1 1

Misalignment in
Understanding

These reflect how apprentices experienced
confusion or divergent interpretations of logic or
instructions during debugging sessions

1 33

Missing Colon For specific mention of missing colons in syntax. 1 1

Missing Syntax For syntax errors due to missing elements like
colons, brackets, or forgotten components.

1 39

Misunderstood Logic Flow Participants misunderstood how one part of the
code affected another. These errors revealed
disconnects in logic mapping.

1 1

Misuse of 'name' Highlights confusion around Python's special
'__name__' variable. This is a specific example of
concept misunderstanding.

1 1

Navigator insight In pair programming, the navigator offered a
useful perspective. The insight usually shifted
the course of debugging.

1 1

Needs More Practice Participant acknowledged needing repetition or
further exposure to improve. Practice was seen
as key to mastering logic.

1 1

309 | P a g e

Name Description Files References

Other IDE Features Apprentices benefited from additional IDE tools
like version control integration, intelligent
suggestions, and code completion to streamline
their workflow.

1 3

Pair support for syntax For collaborative efforts in addressing syntax
errors through shared roles or peer help.

1 13

Paired Strengths Learners described how teammates
complemented their skills. Their collective effort
covered individual weaknesses.

1 1

Pattern Matching Apprentices looked for recurring structures or
familiar error patterns to quickly locate and fix
bugs based on previous experience.

1 3

Pattern-based reasoning Participants applied familiar logic patterns to
solve new problems. This indicates transfer of
learning.

1 1

Pattern-based syntax
strategy

For use of recurring patterns, visual tracing, or
structured methods in spotting syntax issues.

1 6

Peer Review Strength Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Peer support Emotional or technical encouragement came
from fellow learners. It acted as a buffer during
challenging moments.

1 1

Print Statement Debugging Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during execution.

1 32

Progress Despite Errors Learners recognised forward movement even
when mistakes occurred. This shows
perseverance.

1 1

Real-Time Code Sharing and
Synchronisation

Tools enabling simultaneous editing and shared
visibility helped apprentices maintain alignment
and coordinate debugging in real-time.

1 2

Real-Time Tool Support for
Coordination

Collaborative tools like IDE features and remote
sharing platforms were used to support
synchronised thinking and reduce mental strain.

1 37

Remote Collaboration
Limits

The online or distant setup introduced
difficulties in understanding logic. Distance
added barriers to debugging.

1 8

Role swapping Team members changed roles mid-task to better
tackle logic issues. The switch brought fresh
perspective.

1 2

Rubber Duck Debugging Apprentices explained their code aloud—to a
partner or inanimate object—to clarify their
thinking and uncover logic errors.

1 7

Rubber ducking Participants verbalised logic step-by-step, often
to a peer or non-technical object. This
externalisation clarified their thinking.

1 2

310 | P a g e

Name Description Files References

Runtime Contrast Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

1 2

Runtime Error Complexity Several apprentices found runtime errors
difficult to resolve because they often appeared
after code execution and required understanding
how the program behaved dynamically.

1 46

Runtime Overwhelm When runtime feels particularly complex or
challenging.

1 13

Runtime Print Tracking For those using print statements to trace issues. 1 4

Runtime Strategy Lacking When trial-and-error or lack of method was
highlighted.

1 2

Runtime Type Confusion When the issue involves converting string to
number or similar.

1 6

Runtime Uncertainty For quotes where learners are confident with
syntax but unsure about runtime.

1 24

Slicing Slicing refers to the strategy of breaking down or
isolating specific segments of code, such as
functions, conditions, or loops, to analyse them
independently. This helps apprentices reduce
complexity by focusing only on the relevant part
of the code where the error is suspected, making
it easier to locate and fix bugs collaboratively.

1 3

Solution experimentation Debugging involved trying multiple possible
solutions to test logic. Learners described trial as
a deliberate tactic.

1 1

Strategy Limitations Existing methods or plans failed to resolve the
logic issue. Learners were forced to reconsider
their approach.

1 1

Syntax and Error
Highlighting Features

The IDE’s syntax highlighting, auto-indentation,
and inline error notifications supported
apprentices in quickly spotting and correcting
code mistakes.

1 3

Syntax as role strength For individuals who naturally took the lead on
syntax due to confidence or skill

1 15

Syntax Complexity Participants frequently encountered syntax
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

1 151

Syntax Feels Easy For those who found syntax errors more
straightforward or gained confidence resolving
them

1 25

Syntax First Where participants mention syntax errors as
their starting point in debugging.

1 3

Syntax for Beginners For beginner-level ease, familiarity, or exposure
to syntax debugging.

1 2

311 | P a g e

Name Description Files References

Syntax is Tricky For quotes that describe syntax errors as
deceptively hard or initially difficult to handle.

1 6

Syntax Typo For errors caused by typographical mistakes. 1 1

Technology-Related
Collaboration Issues

These quotes reflect how tool-based issues like
syncing, lag, edit conflicts, and IDE limitations
disrupted collaboration

1 41

Think-Aloud
Communication

Apprentices verbalised their reasoning and
thought processes to clarify understanding and
collaboratively work through errors.

1 21

Time Zone and Scheduling
Difficulties

Quotes here reflect challenges related to
coordinating across different locations or
schedules.

1 5

Tinkering Apprentices intuitively made small code changes
and tested their effects as a way to explore and
understand bugs.

1 3

Tool Access or Setup Issues These quotes relate to initial difficulties in using
or setting up collaboration tools.

1 26

Tool-assisted logic check Software tools like debuggers or linters were
used to identify logic faults. Participants credited
these for catching errors.

1 2

Tool-Assisted Syntax Fix For use of features like syntax highlighting, error
popups, or debuggers to spot/fix syntax.

1 15

Tracing Apprentices followed the program’s flow line by
line to understand how data moved and identify
where the logic broke down.

1 7

Trial and Error Apprentices experimented with different
solutions without a predefined plan to see what
resolved the issue through observation.

1 10

Trial and Error Limits Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

1 1

Turn-Taking and Role
Swapping

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.

1 7

Type Conversion For issues converting between data types (e.g.
string to number)

1 8

Undefined Variable For use of variables that were not defined before
use.

1 5

Understanding Logic Flow A clear picture of how logic moved through code
aided debugging. This awareness streamlined
troubleshooting.

1 5

Unresolved Logic Issues Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

1 2

312 | P a g e

Name Description Files References

Unstable or Inconsistent
Internet Connection

These quotes highlight issues caused by poor or
unstable internet, affecting real-time
collaboration or access to tools.

1 1

Use of Live Share for
Remote Collaboration

Apprentices leveraged Live Share to
collaboratively edit, navigate, and debug code
from separate locations in real time.

1 2

Variable misuse Mistakes occurred due to inappropriate variable
assignment or tracking. This led to faulty logic.

1 1

313 | P a g e

Codes\\Interview\\Stage 3 - Theme Generation

Name Description Files References

Cognitive Perception and
Difficulty

This category reflects how runtime issues were
perceived as overwhelming or uncertain,
especially when apprentices couldn’t predict
behaviour or lacked confidence during
execution.

1 43

Runtime Overwhelm When runtime feels particularly complex or
challenging.

1 13

Runtime Type
Confusion

When the issue involves converting string to
number or similar.

1 6

Runtime Uncertainty For quotes where learners are confident with
syntax but unsure about runtime.

1 24

Collaboration and
Communication Aids

This category reflects the value of teamwork in
resolving logical errors. It includes quotes where
learners gained clarity or found solutions by
explaining to peers, switching roles, or
combining their strengths.

1 13

Collaborative clarity Understanding emerged more clearly through
discussions with peers. Explaining logic to others
often led to personal insight.

1 3

Collaborative Insight New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

1 4

Navigator insight In pair programming, the navigator offered a
useful perspective. The insight usually shifted
the course of debugging.

1 1

Paired Strengths Learners described how teammates
complemented their skills. Their collective effort
covered individual weaknesses.

1 1

Peer Review Strength Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Peer support Emotional or technical encouragement came
from fellow learners. It acted as a buffer during
challenging moments.

1 1

Role swapping Team members changed roles mid-task to better
tackle logic issues. The switch brought fresh
perspective.

1 2

Collaborative and Reflective
Techniques

This category highlights methods where
apprentices explained or reviewed code with
others (or to themselves) to gain insight, clarify
thinking, and identify errors through reflection
or external feedback.

2 20

314 | P a g e

Name Description Files References

Code Review Apprentices systematically examined and
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative problem-
solving.

1 12

Peer Review Strength Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Rubber Duck
Debugging

Apprentices explained their code aloud, to a
partner or inanimate object, to clarify their
thinking and uncover logic errors.

1 7

Connectivity Constraints This category reflects how unstable internet
disrupted communication, tool access, and real-
time collaboration, especially in remote or
bandwidth-limited settings.

1 1

Unstable or
Inconsistent Internet
Connection

These quotes highlight issues caused by poor or
unstable internet, affecting real-time
collaboration or access to tools.

1 1

Debugging Approaches for
Runtime

This category captures how apprentices
attempted to resolve runtime errors, particularly
by using print statements or acknowledging a
lack of structured strategy.

1 6

Runtime Print
Tracking

For those using print statements to trace issues. 1 4

Runtime Strategy
Lacking

When trial-and-error or lack of method was
highlighted.

1 2

Debugging Tools and
Execution Support

This category captures how apprentices
leveraged key debugging tools, such as the IDE’s
step-through functionality and print statements,
to inspect program execution, monitor variable
states, and detect logical or runtime issues.

1 67

IDE Debugger Usage Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

1 35

Print Statement
Debugging

Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during execution.

1 32

Distractions and Focus
Challenges

Distractions and Focus Challenges This includes
issues with concentration due to noise,
interruptions, or other environmental factors
unique to working remotely from home or other
informal settings

1 6

Distraction in
Individual Work
Environments

These highlight challenges in focus due to
remote, uncontrolled environments.

1 6

Foundational Knowledge
Gaps

This category reflects difficulties stemming from
apprentices’ limited prior experience with
Python or programming generally, especially in

1 166

315 | P a g e

Name Description Files References

handling syntax-specific rules like indentation
and punctuation.

Limited Experience
and Skill Gaps

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational knowledge,
or still developing confidence in applying core
concepts.

1 15

Syntax Complexity Participants frequently encountered syntax
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

1 151

Interface Guidance and
Visual Feedback

This category represents the supportive role of
the IDE’s user interface elements, including
syntax highlighting, auto-suggestions, version
control, and intelligent prompts, which helped
learners identify errors and streamline their
workflow.

1 6

Other IDE Features Apprentices benefited from additional IDE tools
like version control integration, intelligent
suggestions, and code completion to streamline
their workflow.

1 3

Syntax and Error
Highlighting Features

The IDE’s syntax highlighting, auto-indentation,
and inline error notifications supported
apprentices in quickly spotting and correcting
code mistakes.

1 3

Interpretation and
Understanding Conflicts

This category includes moments where
apprentices interpreted instructions, logic, or
errors differently, resulting in delays or
confusion in collaborative debugging.

1 33

Misalignment in
Understanding

These reflect how apprentices experienced
confusion or divergent interpretations of logic or
instructions during debugging sessions

1 33

Nature and Source of
Syntax Errors

This category captures specific causes of syntax
errors such as missing colons, structural
mistakes, typographical errors, and overlooked
elements. It reflects how apprentices
encountered surface-level mistakes that
disrupted code execution.

1 45

Code Structure For syntax issues relating to structural formatting
or layout.

1 4

Missing Colon For specific mention of missing colons in syntax. 1 1

Missing Syntax For syntax errors due to missing elements like
colons, brackets, or forgotten components.

1 39

Syntax Typo For errors caused by typographical mistakes. 1 1

Perceived Complexity and
Emotional Response

This category captures how apprentices found
logical errors emotionally or cognitively taxing. It

1 41

316 | P a g e

Name Description Files References

includes expressions of frustration, struggle, or
general difficulty in making sense of complex
conditions or flows.

Agreement on
Challenge

Multiple participants expressed a shared view
that certain logical errors posed significant
difficulty. The consistency in their sentiments
adds weight to the issue's complexity.

1 5

Complex Logic
Breakdown

Learners attempted to untangle highly intricate
or nested conditions. The difficulty lay not in
syntax but in logical architecture.

1 4

Error Complexity The nature of the logic error was itself intricate
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

1 10

Flow Confusion The challenge stemmed from not understanding
how code progressed during execution. This lack
of clarity hampered logical deductions.

1 1

Found It Challenging A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

1 7

General Complexity Applied when logic problems were described as
difficult but without specific explanation. It
captures vague but valid struggle.

1 5

Logic Struggle Captures moments of emotional or cognitive
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

1 4

Logical Errors
Challenging

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t specify
which part was problematic.

1 5

Perceived Difficulty of
Syntax

This category includes apprentice's perceptions
of syntax errors as either easy or deceptively
tricky. Some found them manageable due to
clear error messages, while others initially
underestimated their complexity.

1 33

Syntax Feels Easy For those who found syntax errors more
straightforward or gained confidence resolving
them

1 25

Syntax for Beginners For beginner-level ease, familiarity, or exposure
to syntax debugging.

1 2

Syntax is Tricky For quotes that describe syntax errors as
deceptively hard or initially difficult to handle.

1 6

Physical Separation Barriers This category refers to the challenge of not being
able to visually point to code or easily clarify
issues due to being physically apart during
remote pair programming.

1 11

317 | P a g e

Name Description Files References

Absence of Physical
Presence for Quick
Clarification

These represent struggles in not being able to
point or visually show parts of code

1 11

Real-Time Collaborative
Platforms

This category includes tools that enabled
synchronous work across distances, allowing
apprentices to co-edit, share, and coordinate
their debugging efforts in real time using
platforms like Visual Studio Live Share.

1 4

Real-Time Code
Sharing and
Synchronisation

Tools enabling simultaneous editing and shared
visibility helped apprentices maintain alignment
and coordinate debugging in real-time.

1 2

Use of Live Share for
Remote Collaboration

Apprentices leveraged Live Share to
collaboratively edit, navigate, and debug code
from separate locations in real time.

1 2

Real-Time Communication
and Coordination Tools

This category reflects how verbalisation
strategies and collaborative digital tools were
used to coordinate thought processes, reduce
confusion, and manage the cognitive load during
remote or paired debugging.

1 58

Real-Time Tool
Support for
Coordination

Collaborative tools like IDE features and remote
sharing platforms were used to support
synchronised thinking and reduce mental strain.

1 37

Think-Aloud
Communication

Apprentices verbalised their reasoning and
thought processes to clarify understanding and
collaboratively work through errors.

1 21

Reasoning and Logic
Challenges

This category houses instances where
apprentices lacked the cognitive strategies to
understand and apply logic effectively, especially
when dealing with conditionals, calculations, or
the broader logic structure.

1 61

Logical Reasoning
Gaps

Participants struggled with understanding or
applying correct logic within the code,
particularly when handling conditionals,
calculations, or the flow of decision-making.

1 61

Reflection and Learning
Dispositions

This category captures reflective mindsets where
apprentices identified growth, perseverance, or
learning from mistakes. It also houses
observations about how experience, context,
and collaboration influenced their progress.

1 31

Context
understanding

Problem-solving success relied on grasping the
wider function or scenario. The learner needed
to understand not just 'what' but 'why'.

1 3

Experience Builds
Mastery

Learners acknowledged that repeated exposure
helped them improve. Experience was credited
as a major enabler of logical reasoning.

1 2

Growth Mindset Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports resilience.

1 1

318 | P a g e

Name Description Files References

Growth Through
Challenge

Struggle was reframed as an opportunity for
learning. Participants reflected positively on the
difficulty.

1 4

Logic and Flow
Challenges

Combined challenges in understanding both the
logic and how it executed. These situations
involved overlapping difficulties.

1 6

Misuse of 'name' Highlights confusion around Python's special
'__name__' variable. This is a specific example of
concept misunderstanding.

1 1

Progress Despite
Errors

Learners recognised forward movement even
when mistakes occurred. This shows
perseverance.

1 1

Remote Collaboration
Limits

The online or distant setup introduced
difficulties in understanding logic. Distance
added barriers to debugging.

1 8

Runtime Contrast Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

1 2

Unresolved Logic
Issues

Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

1 2

Variable misuse Mistakes occurred due to inappropriate variable
assignment or tracking. This led to faulty logic.

1 1

Remote Expression
Challenges

This category captures how apprentices
struggled to communicate ideas clearly without
the benefit of facial expressions, gestures, or in-
person context, leading to misunderstandings,
over-explaining, or extra effort in articulation.

1 60

Difficulty Conveying
Thought Process
Remotely

These quotes are focused on how apprentices
struggled to explain, align, or communicate their
reasoning without face-to-face interaction

1 27

Lack of Non-Verbal
Feedback

These reflect how the absence of visual, gestural,
or facial cues hindered effective communication
and understanding during remote debugging

1 33

Runtime Behaviour
Confusion

This category represents the difficulty of
identifying and resolving bugs that only emerged
during code execution—particularly where
program behaviour was unpredictable or
misunderstood.

1 46

Runtime Error
Complexity

Several apprentices found runtime errors
difficult to resolve because they often appeared
after code execution and required understanding
how the program behaved dynamically.

1 46

Scheduling and
Coordination Hurdles

This category captures difficulties in syncing
schedules across time zones or managing
different availability patterns, which limited
collaboration windows.

1 5

319 | P a g e

Name Description Files References

Time Zone and
Scheduling Difficulties

Quotes here reflect challenges related to
coordinating across different locations or
schedules.

1 5

Skill Gaps and Cognitive
Limitations

This category includes participants’ admissions
of limited knowledge, misunderstood logic, or
conceptual misapplications. It highlights areas
where deeper learning or practice was needed
to engage with logic-based bugs

1 18

Acknowledged
Limitations

Learners showed self-awareness by noting their
own lack of proficiency or understanding. These
admissions underline honesty about gaps in
capability.

1 3

Analytical Gaps Denotes errors that occurred due to missed
steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

1 2

Calculation Confusion Errors emerged from difficulties in creating or
tracing formula-based logic. Mathematical
thinking was the barrier.

1 1

Concept Misuse Participants misapplied key Python concepts,
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding
constructs.

1 2

Conditional
Misinterpretation

Learners misunderstood how conditionals
executed. This misreading caused flawed logic
paths.

1 1

Contextual Misuse A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

1 1

Knowledge Gaps Errors resulted from lacking the foundational
knowledge needed to apply logic. This code
tracks missing prerequisites.

1 6

Misunderstood Logic
Flow

Participants misunderstood how one part of the
code affected another. These errors revealed
disconnects in logic mapping.

1 1

Needs More Practice Participant acknowledged needing repetition or
further exposure to improve. Practice was seen
as key to mastering logic.

1 1

Social and Collaborative
Dimensions

This category highlights how syntax debugging
was supported by peer explanations, shared
roles, and individual strengths in collaborative
settings. It includes verbal clarification and role-
based task division around syntax.

1 43

Explaining syntax fixes For verbal explanation, negotiation, or
clarification of syntax fixes during collaboration

1 15

Pair support for
syntax

For collaborative efforts in addressing syntax
errors through shared roles or peer help.

1 13

320 | P a g e

Name Description Files References

Syntax as role
strength

For individuals who naturally took the lead on
syntax due to confidence or skill

1 15

Strategic Role Allocation
and Rotation

This category captures how apprentices
strategically assigned roles and alternated them
to balance mental effort, maintain engagement,
and leverage individual strengths during
debugging sessions.

1 47

Division of Tasks
Based on Strengths

Apprentices strategically assigned
responsibilities based on individual strengths or
comfort zones to manage complexity and
maintain focus.

1 22

Driver-Navigator Role
Sharing

Apprentices adopted a structured pairing model
where one coded while the other observed and
guided, helping distribute cognitive demands.

1 18

Turn-Taking and Role
Swapping

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.

1 7

Strategies and Reasoning
Approaches

This category includes structured problem-
solving strategies like breaking problems down,
isolating faulty logic, following data flow, using
tool support, and experimenting methodically
with solutions.

2 28

Analytical approach Describes instances where a participant
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

1 1

Analytical Demand Reflects how some debugging tasks required
high-level reasoning and mental exertion.
Participants perceived the activity as cognitively
intensive.

1 1

Big picture review Participants referred to stepping back and
reassessing the entire codebase. This top-down
perspective helped in recontextualising the
issue.

1 1

Breakdown strategy Refers to the act of deconstructing a problem
into simpler parts to aid resolution. Learners
discussed breaking logic into manageable pieces.

1 1

Code Isolation
Strategy

Participants isolated specific blocks or lines of
code to test or observe behaviour. This strategy
helped to narrow the problem area.

1 2

Code Visibility
Advantage

Clarity in formatting, naming, or organisation
made it easier to follow the logic. Participants
attributed their success partly to how readable
the code was.

1 1

Data Flow
Understanding

Focused on tracking how information moved
through variables and functions. This tracking
helped diagnose where logic broke down.

1 1

321 | P a g e

Name Description Files References

Deep Dive Debugging Marked by a thorough and prolonged
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

1 1

Deep Logic This reflects the intellectual depth required to
trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was
insufficient.

1 2

Divide and conquer The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

2 3

Methodical Problem
Solving

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

1 1

Pattern-based
reasoning

Participants applied familiar logic patterns to
solve new problems. This indicates transfer of
learning.

1 1

Rubber ducking Participants verbalised logic step-by-step, often
to a peer or non-technical object. This
externalisation clarified their thinking.

1 2

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described trial as
a deliberate tactic.

1 1

Strategy Limitations Existing methods or plans failed to resolve the
logic issue. Learners were forced to reconsider
their approach.

1 1

Tool-assisted logic
check

Software tools like debuggers or linters were
used to identify logic faults. Participants credited
these for catching errors.

1 2

Trial and Error Limits Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

1 1

Understanding Logic
Flow

A clear picture of how logic moved through code
aided debugging. This awareness streamlined
troubleshooting.

1 5

Strategies for Syntax
Debugging

This category reflects tactical responses to
syntax errors, such as starting with syntax
checks, using tools like error highlighting, and
applying pattern-recognition techniques to spot
errors.

1 33

Fixing Syntax Errors For comments about actively identifying,
correcting, or guiding others through syntax
issues.

1 9

Pattern-based syntax
strategy

For use of recurring patterns, visual tracing, or
structured methods in spotting syntax issues.

1 6

322 | P a g e

Name Description Files References

Syntax First Where participants mention syntax errors as
their starting point in debugging.

1 3

Tool-Assisted Syntax
Fix

For use of features like syntax highlighting, error
popups, or debuggers to spot/fix syntax.

1 15

Systematic Reasoning
Strategies

This category includes logical and structured
approaches where learners followed data flow,
stepped through execution, or broke problems
into smaller parts to locate and address issues in
a focused, disciplined manner.

2 46

Divide and conquer The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

2 3

IDE Debugger Usage Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

1 35

Methodical Problem
Solving

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

1 1

Tracing Apprentices followed the program’s flow line by
line to understand how data moved and identify
where the logic broke down.

1 7

Tactical Exploration of
Faults

This category covers exploratory tactics where
apprentices relied on recognition of error
patterns, code segmentation, and hypothesis-
testing to find and resolve bugs.

2 20

Pattern Matching Apprentices looked for recurring structures or
familiar error patterns to quickly locate and fix
bugs based on previous experience.

1 3

Slicing Slicing refers to the strategy of breaking down or
isolating specific segments of code—such as
functions, conditions, or loops—to analyse them
independently. This helps apprentices reduce
complexity by focusing only on the relevant part
of the code where the error is suspected, making
it easier to locate and fix bugs collaboratively.

1 3

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described trial as
a deliberate tactic.

1 1

Tinkering Apprentices intuitively made small code changes
and tested their effects as a way to explore and
understand bugs.

1 3

Trial and Error Apprentices experimented with different
solutions without a predefined plan to see what
resolved the issue through observation.

1 10

Tool Limitations in Remote
Setup

This category captures tool-based challenges
such as lag, syncing issues, limited shared
control, or edit conflicts—each of which

1 41

323 | P a g e

Name Description Files References

disrupted the flow of joint work and required
additional coordination.

Technology-Related
Collaboration Issues

These quotes reflect how tool-based issues like
syncing, lag, edit conflicts, and IDE limitations
disrupted collaboration

1 41

Tool Setup and Accessibility
Barriers

These are initial or recurring issues in
configuring, accessing, or understanding how to
use necessary tools like IDEs, version control, or
communication platforms.

1 26

Tool Access or Setup
Issues

These quotes relate to initial difficulties in using
or setting up collaboration tools.

1 26

Types and Causes of
Runtime Errors

This category identifies the nature of runtime
errors apprentices faced, such as infinite loops,
undefined variables, and type conversion issues,
all of which occurred during execution.

1 35

Execution Flow For difficulty understanding the order of
execution in Python.

1 5

Infinite Loop For errors involving loops that do not terminate. 1 17

Type Conversion For issues converting between data types (e.g.
string to number)

1 8

Undefined Variable For use of variables that were not defined before
use.

1 5

324 | P a g e

Codes\\Interview\\Stage 4 - Theme Review

Name Description Files References

Subtheme 1 -
Communication and
Collaboration

The three categories here cover verbal/gestural
limitations, cognitive misalignment, and tool-
based disruptions, all central to remote pair
debugging challenges.

1 134

Interpretation and
Understanding
Conflicts

This category includes moments where
apprentices interpreted instructions, logic, or
errors differently, resulting in delays or
confusion in collaborative debugging.

1 33

Misalignment in
Understanding

These reflect how apprentices experienced
confusion or divergent interpretations of logic
or instructions during debugging sessions

1 33

Remote Expression
Challenges

This category captures how apprentices
struggled to communicate ideas clearly without
the benefit of facial expressions, gestures, or in-
person context—leading to misunderstandings,
over-explaining, or extra effort in articulation.

1 60

Difficulty
Conveying
Thought Process
Remotely

These quotes are focused on how apprentices
struggled to explain, align, or communicate
their reasoning without face-to-face interaction

1 27

Lack of Non-
Verbal Feedback

These reflect how the absence of visual,
gestural, or facial cues hindered effective
communication and understanding during
remote debugging

1 33

Tool Limitations in
Remote Setup

This category captures tool-based challenges
such as lag, syncing issues, limited shared
control, or edit conflicts, each of which
disrupted the flow of joint work and required
additional coordination.

1 41

Technology-
Related
Collaboration
Issues

These quotes reflect how tool-based issues like
syncing, lag, edit conflicts, and IDE limitations
disrupted collaboration

1 41

Subtheme 1 - Syntax Error All four categories focus on different angles of
syntax-related issues: where they come from,
how hard they feel, how they are tackled, and
how collaboration supports resolution. Clear
boundaries and internal coherence are
maintained.

1 154

Nature and Source of
Syntax Errors

This category captures specific causes of syntax
errors such as missing colons, structural
mistakes, typographical errors, and overlooked
elements. It reflects how apprentices
encountered surface-level mistakes that
disrupted code execution.

1 45

325 | P a g e

Name Description Files References

Code Structure For syntax issues relating to structural
formatting or layout.

1 4

Missing Colon For specific mention of missing colons in syntax. 1 1

Missing Syntax For syntax errors due to missing elements like
colons, brackets, or forgotten components.

1 39

Syntax Typo For errors caused by typographical mistakes. 1 1

Perceived Difficulty of
Syntax

This category includes apprentice's perceptions
of syntax errors as either easy or deceptively
tricky. Some found them manageable due to
clear error messages, while others initially
underestimated their complexity.

1 33

Syntax Feels Easy For those who found syntax errors more
straightforward or gained confidence resolving
them

1 25

Syntax for
Beginners

For beginner-level ease, familiarity, or exposure
to syntax debugging.

1 2

Syntax is Tricky For quotes that describe syntax errors as
deceptively hard or initially difficult to handle.

1 6

Social and
Collaborative
Dimensions

This category highlights how syntax debugging
was supported by peer explanations, shared
roles, and individual strengths in collaborative
settings. It includes verbal clarification and role-
based task division around syntax.

1 43

Explaining syntax
fixes

For verbal explanation, negotiation, or
clarification of syntax fixes during collaboration

1 15

Pair support for
syntax

For collaborative efforts in addressing syntax
errors through shared roles or peer help.

1 13

Syntax as role
strength

For individuals who naturally took the lead on
syntax due to confidence or skill

1 15

Strategies for Syntax
Debugging

This category reflects tactical responses to
syntax errors, such as starting with syntax
checks, using tools like error highlighting, and
applying pattern-recognition techniques to spot
errors.

1 33

Fixing Syntax
Errors

For comments about actively identifying,
correcting, or guiding others through syntax
issues.

1 9

Pattern-based
syntax strategy

For use of recurring patterns, visual tracing, or
structured methods in spotting syntax issues.

1 6

Syntax First Where participants mention syntax errors as
their starting point in debugging.

1 3

Tool-Assisted
Syntax Fix

For use of features like syntax highlighting, error
popups, or debuggers to spot/fix syntax.

1 15

326 | P a g e

Name Description Files References

Subtheme 1 - Technology
Utilisation

This subtheme effectively distinguishes
between execution tools, interface features,
and collaborative platforms, which are all vital
to apprentice debugging.

1 77

Debugging Tools and
Execution Support

This category captures how apprentices
leveraged key debugging tools—such as the
IDE’s step-through functionality and print
statements—to inspect program execution,
monitor variable states, and detect logical or
runtime issues.

1 67

IDE Debugger
Usage

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

1 35

Print Statement
Debugging

Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during execution.

1 32

Interface Guidance
and Visual Feedback

This category represents the supportive role of
the IDE’s user interface elements, including
syntax highlighting, auto-suggestions, version
control, and intelligent prompts, which helped
learners identify errors and streamline their
workflow.

1 6

Other IDE
Features

Apprentices benefited from additional IDE tools
like version control integration, intelligent
suggestions, and code completion to streamline
their workflow.

1 3

Syntax and Error
Highlighting
Features

The IDE’s syntax highlighting, auto-indentation,
and inline error notifications supported
apprentices in quickly spotting and correcting
code mistakes.

1 3

Real-Time
Collaborative
Platforms

This category includes tools that enabled
synchronous work across distances, allowing
apprentices to co-edit, share, and coordinate
their debugging efforts in real time using
platforms like Visual Studio Live Share.

1 4

Real-Time Code
Sharing and
Synchronisation

Tools enabling simultaneous editing and shared
visibility helped apprentices maintain alignment
and coordinate debugging in real-time.

1 2

Use of Live Share
for Remote
Collaboration

Apprentices leveraged Live Share to
collaboratively edit, navigate, and debug code
from separate locations in real time.

1 2

Subtheme 2 - Debugging
Strategies & Tactics

These categories cover a wide tactical spectrum,
from exploratory to highly methodical,
providing a balanced insight into apprentice
strategies.

2 86

Collaborative and
Reflective Techniques

This category highlights methods where
apprentices explained or reviewed code with
others (or to themselves) to gain insight, clarify

2 20

327 | P a g e

Name Description Files References

thinking, and identify errors through reflection
or external feedback.

Code Review Apprentices systematically examined and
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative
problem-solving.

1 12

Peer Review
Strength

Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Rubber Duck
Debugging

Apprentices explained their code aloud, to a
partner or inanimate object, to clarify their
thinking and uncover logic errors.

1 7

Systematic Reasoning
Strategies

This category includes logical and structured
approaches where learners followed data flow,
stepped through execution, or broke problems
into smaller parts to locate and address issues in
a focused, disciplined manner.

2 46

Divide and
conquer

The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

2 3

IDE Debugger
Usage

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

1 35

Methodical
Problem Solving

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

1 1

Tracing Apprentices followed the program’s flow line by
line to understand how data moved and identify
where the logic broke down.

1 7

Tactical Exploration of
Faults

This category covers exploratory tactics where
apprentices relied on recognition of error
patterns, code segmentation, and hypothesis-
testing to find and resolve bugs.

2 20

Pattern Matching Apprentices looked for recurring structures or
familiar error patterns to quickly locate and fix
bugs based on previous experience.

1 3

Slicing Slicing refers to the strategy of breaking down
or isolating specific segments of code—such as
functions, conditions, or loops—to analyse
them independently. This helps apprentices
reduce complexity by focusing only on the
relevant part of the code where the error is
suspected, making it easier to locate and fix
bugs collaboratively.

1 3

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described trial
as a deliberate tactic.

1 1

328 | P a g e

Name Description Files References

Tinkering Apprentices intuitively made small code
changes and tested their effects as a way to
explore and understand bugs.

1 3

Trial and Error Apprentices experimented with different
solutions without a predefined plan to see what
resolved the issue through observation.

1 10

Subtheme 2 - Logical Error Logical error subthemes contain a rich set of
categories. These reflect the complexity of the
issues and the ways learners engaged
intellectually, emotionally, and socially. Internal
logic and external differentiation are intact.

2 131

Collaboration and
Communication Aids

This category reflects the value of teamwork in
resolving logical errors. It includes quotes where
learners gained clarity or found solutions by
explaining to peers, switching roles, or
combining their strengths.

1 13

Collaborative
clarity

Understanding emerged more clearly through
discussions with peers. Explaining logic to
others often led to personal insight.

1 3

Collaborative
Insight

New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

1 4

Navigator insight In pair programming, the navigator offered a
useful perspective. The insight usually shifted
the course of debugging.

1 1

Paired Strengths Learners described how teammates
complemented their skills. Their collective effort
covered individual weaknesses.

1 1

Peer Review
Strength

Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Peer support Emotional or technical encouragement came
from fellow learners. It acted as a buffer during
challenging moments.

1 1

Role swapping Team members changed roles mid-task to
better tackle logic issues. The switch brought
fresh perspective.

1 2

Perceived Complexity
and Emotional
Response

This category captures how apprentices found
logical errors emotionally or cognitively taxing.
It includes expressions of frustration, struggle,
or general difficulty in making sense of complex
conditions or flows.

1 41

Agreement on
Challenge

Multiple participants expressed a shared view
that certain logical errors posed significant
difficulty. The consistency in their sentiments
adds weight to the issue's complexity.

1 5

329 | P a g e

Name Description Files References

Complex Logic
Breakdown

Learners attempted to untangle highly intricate
or nested conditions. The difficulty lay not in
syntax but in logical architecture.

1 4

Error Complexity The nature of the logic error was itself intricate
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

1 10

Flow Confusion The challenge stemmed from not understanding
how code progressed during execution. This
lack of clarity hampered logical deductions.

1 1

Found It
Challenging

A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

1 7

General
Complexity

Applied when logic problems were described as
difficult but without specific explanation. It
captures vague but valid struggle.

1 5

Logic Struggle Captures moments of emotional or cognitive
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

1 4

Logical Errors
Challenging

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t specify
which part was problematic.

1 5

Reflection and
Learning Dispositions

This category captures reflective mindsets
where apprentices identified growth,
perseverance, or learning from mistakes. It also
houses observations about how experience,
context, and collaboration influenced their
progress.

1 31

Context
understanding

Problem-solving success relied on grasping the
wider function or scenario. The learner needed
to understand not just 'what' but 'why'.

1 3

Experience Builds
Mastery

Learners acknowledged that repeated exposure
helped them improve. Experience was credited
as a major enabler of logical reasoning.

1 2

Growth Mindset Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports resilience.

1 1

Growth Through
Challenge

Struggle was reframed as an opportunity for
learning. Participants reflected positively on the
difficulty.

1 4

Logic and Flow
Challenges

Combined challenges in understanding both the
logic and how it executed. These situations
involved overlapping difficulties.

1 6

Misuse of 'name' Highlights confusion around Python's special
'__name__' variable. This is a specific example
of concept misunderstanding.

1 1

330 | P a g e

Name Description Files References

Progress Despite
Errors

Learners recognised forward movement even
when mistakes occurred. This shows
perseverance.

1 1

Remote
Collaboration
Limits

The online or distant setup introduced
difficulties in understanding logic. Distance
added barriers to debugging.

1 8

Runtime Contrast Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

1 2

Unresolved Logic
Issues

Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

1 2

Variable misuse Mistakes occurred due to inappropriate variable
assignment or tracking. This led to faulty logic.

1 1

Skill Gaps and
Cognitive Limitations

This category includes participants’ admissions
of limited knowledge, misunderstood logic, or
conceptual misapplications. It highlights areas
where deeper learning or practice was needed
to engage with logic-based bugs

1 18

Acknowledged
Limitations

Learners showed self-awareness by noting their
own lack of proficiency or understanding. These
admissions underline honesty about gaps in
capability.

1 3

Analytical Gaps Denotes errors that occurred due to missed
steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

1 2

Calculation
Confusion

Errors emerged from difficulties in creating or
tracing formula-based logic. Mathematical
thinking was the barrier.

1 1

Concept Misuse Participants misapplied key Python concepts,
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding
constructs.

1 2

Conditional
Misinterpretation

Learners misunderstood how conditionals
executed. This misreading caused flawed logic
paths.

1 1

Contextual
Misuse

A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

1 1

Knowledge Gaps Errors resulted from lacking the foundational
knowledge needed to apply logic. This code
tracks missing prerequisites.

1 6

Misunderstood
Logic Flow

Participants misunderstood how one part of the
code affected another. These errors revealed
disconnects in logic mapping.

1 1

331 | P a g e

Name Description Files References

Needs More
Practice

Participant acknowledged needing repetition or
further exposure to improve. Practice was seen
as key to mastering logic.

1 1

Strategies and
Reasoning Approaches

This category includes structured problem-
solving strategies like breaking problems down,
isolating faulty logic, following data flow, using
tool support, and experimenting methodically
with solutions.

2 28

Analytical
approach

Describes instances where a participant
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

1 1

Analytical
Demand

Reflects how some debugging tasks required
high-level reasoning and mental exertion.
Participants perceived the activity as cognitively
intensive.

1 1

Big picture
review

Participants referred to stepping back and
reassessing the entire codebase. This top-down
perspective helped in recontextualising the
issue.

1 1

Breakdown
strategy

Refers to the act of deconstructing a problem
into simpler parts to aid resolution. Learners
discussed breaking logic into manageable
pieces.

1 1

Code Isolation
Strategy

Participants isolated specific blocks or lines of
code to test or observe behaviour. This strategy
helped to narrow the problem area.

1 2

Code Visibility
Advantage

Clarity in formatting, naming, or organisation
made it easier to follow the logic. Participants
attributed their success partly to how readable
the code was.

1 1

Data Flow
Understanding

Focused on tracking how information moved
through variables and functions. This tracking
helped diagnose where logic broke down.

1 1

Deep Dive
Debugging

Marked by a thorough and prolonged
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

1 1

Deep Logic This reflects the intellectual depth required to
trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was
insufficient.

1 2

Divide and
conquer

The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

2 3

332 | P a g e

Name Description Files References

Methodical
Problem Solving

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

1 1

Pattern-based
reasoning

Participants applied familiar logic patterns to
solve new problems. This indicates transfer of
learning.

1 1

Rubber ducking Participants verbalised logic step-by-step, often
to a peer or non-technical object. This
externalisation clarified their thinking.

1 2

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described trial
as a deliberate tactic.

1 1

Strategy
Limitations

Existing methods or plans failed to resolve the
logic issue. Learners were forced to reconsider
their approach.

1 1

Tool-assisted
logic check

Software tools like debuggers or linters were
used to identify logic faults. Participants
credited these for catching errors.

1 2

Trial and Error
Limits

Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

1 1

Understanding
Logic Flow

A clear picture of how logic moved through
code aided debugging. This awareness
streamlined troubleshooting.

1 5

Subtheme 2 - Technical &
Cognitive

The categories under this subtheme clearly
reflect technical gaps, cognitive hurdles, and
runtime-specific complications.

1 273

Foundational
Knowledge Gaps

This category reflects difficulties stemming from
apprentices’ limited prior experience with
Python or programming generally, especially in
handling syntax-specific rules like indentation
and punctuation.

1 166

Limited
Experience and
Skill Gaps

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational knowledge,
or still developing confidence in applying core
concepts.

1 15

Syntax
Complexity

Participants frequently encountered syntax
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

1 151

Reasoning and Logic
Challenges

This category houses instances where
apprentices lacked the cognitive strategies to
understand and apply logic effectively,
especially when dealing with conditionals,
calculations, or the broader logic structure.

1 61

Logical Reasoning
Gaps

Participants struggled with understanding or
applying correct logic within the code,

1 61

333 | P a g e

Name Description Files References

particularly when handling conditionals,
calculations, or the flow of decision-making.

Runtime Behaviour
Confusion

This category represents the difficulty of
identifying and resolving bugs that only
emerged during code execution, particularly
where program behaviour was unpredictable or
misunderstood.

1 46

Runtime Error
Complexity

Several apprentices found runtime errors
difficult to resolve because they often appeared
after code execution and required
understanding how the program behaved
dynamically.

1 46

Subtheme 3 - Cognitive Load
Sharing

This subtheme is compact but insightful. It
cleanly separates structural role-based tactics
from communication-based cognitive
coordination.

1 105

Real-Time
Communication and
Coordination Tools

This category reflects how verbalisation
strategies and collaborative digital tools were
used to coordinate thought processes, reduce
confusion, and manage the cognitive load
during remote or paired debugging.

1 58

Real-Time Tool
Support for
Coordination

Collaborative tools like IDE features and remote
sharing platforms were used to support
synchronised thinking and reduce mental strain.

1 37

Think-Aloud
Communication

Apprentices verbalised their reasoning and
thought processes to clarify understanding and
collaboratively work through errors.

1 21

Strategic Role
Allocation and
Rotation

This category captures how apprentices
strategically assigned roles and alternated them
to balance mental effort, maintain engagement,
and leverage individual strengths during
debugging sessions.

1 47

Division of Tasks
Based on
Strengths

Apprentices strategically assigned
responsibilities based on individual strengths or
comfort zones to manage complexity and
maintain focus.

1 22

Driver-Navigator
Role Sharing

Apprentices adopted a structured pairing model
where one coded while the other observed and
guided, helping distribute cognitive demands.

1 18

Turn-Taking and
Role Swapping

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.

1 7

Subtheme 3 - Environmental
and Logistics

These categories are well-bounded, non-
overlapping, and together provide a complete
view of non-technical barriers affecting
collaboration and productivity.

1 49

334 | P a g e

Name Description Files References

Connectivity
Constraints

This category reflects how unstable internet
disrupted communication, tool access, and real-
time collaboration—especially in remote or
bandwidth-limited settings.

1 1

Unstable or
Inconsistent
Internet
Connection

These quotes highlight issues caused by poor or
unstable internet, affecting real-time
collaboration or access to tools.

1 1

Distractions and Focus
Challenges

Distractions and Focus Challenges - This
includes issues with concentration due to noise,
interruptions, or other environmental factors
unique to working remotely from home or other
informal settings

1 6

Distraction in
Individual Work
Environments

These highlight challenges in focus due to
remote, uncontrolled environments.

1 6

Physical Separation
Barriers

This category refers to the challenge of not
being able to visually point to code or easily
clarify issues due to being physically apart
during remote pair programming.

1 11

Absence of
Physical Presence
for Quick
Clarification

These represent struggles in not being able to
point or visually show parts of code

1 11

Scheduling and
Coordination Hurdles

This category captures difficulties in syncing
schedules across time zones or managing
different availability patterns, which limited
collaboration windows.

1 5

Time Zone and
Scheduling
Difficulties

Quotes here reflect challenges related to
coordinating across different locations or
schedules.

1 5

Tool Setup and
Accessibility Barriers

These are initial or recurring issues in
configuring, accessing, or understanding how to
use necessary tools like IDEs, version control, or
communication platforms.

1 26

Tool Access or
Setup Issues

These quotes relate to initial difficulties in using
or setting up collaboration tools.

1 26

Subtheme 3 - Runtime Error The runtime error subtheme offers a clear focus
on both the symptoms and difficulty level of
errors, and learners’ strategies (or lack thereof)
to resolve them.

1 84

Cognitive Perception
and Difficulty

This category reflects how runtime issues were
perceived as overwhelming or uncertain,
especially when apprentices couldn’t predict
behaviour or lacked confidence during
execution.

1 43

Runtime
Overwhelm

When runtime feels particularly complex or
challenging.

1 13

335 | P a g e

Name Description Files References

Runtime Type
Confusion

When the issue involves converting string to
number or similar.

1 6

Runtime
Uncertainty

For quotes where learners are confident with
syntax but unsure about runtime.

1 24

Debugging Approaches
for Runtime

This category captures how apprentices
attempted to resolve runtime errors,
particularly by using print statements or
acknowledging a lack of structured strategy.

1 6

Runtime Print
Tracking

For those using print statements to trace issues. 1 4

Runtime Strategy
Lacking

When trial-and-error or lack of method was
highlighted.

1 2

Types and Causes of
Runtime Errors

This category identifies the nature of runtime
errors apprentices faced, such as infinite loops,
undefined variables, and type conversion issues,
all of which occurred during execution.

1 35

Execution Flow For difficulty understanding the order of
execution in Python.

1 5

Infinite Loop For errors involving loops that do not terminate. 1 17

Type Conversion For issues converting between data types (e.g.
string to number)

1 8

Undefined
Variable

For use of variables that were not defined
before use.

1 5

336 | P a g e

Codes\\Interview\\Stage 5 - Theme Definition

Name Description Files References

Theme 1 - Error Spectrum This theme captures the range and types of
programming errors (Syntax, Logical, and
Runtime) that apprentices encountered
during collaborative debugging. It highlights
how these errors differ in nature, difficulty,
and required problem-solving strategies.

2 369

Subtheme 1 - Syntax Error All four categories focus on different angles
of syntax-related issues: where they come
from, how hard they feel, how they are
tackled, and how collaboration supports
resolution. Clear boundaries and internal
coherence are maintained.

1 154

Nature and Source of
Syntax Errors

This category captures specific causes of
syntax errors such as missing colons,
structural mistakes, typographical errors,
and overlooked elements. It reflects how
apprentices encountered surface-level
mistakes that disrupted code execution.

1 45

Code Structure For syntax issues relating to structural
formatting or layout.

1 4

Missing Colon For specific mention of missing colons in
syntax.

1 1

Missing Syntax For syntax errors due to missing elements
like colons, brackets, or forgotten
components.

1 39

Syntax Typo For errors caused by typographical mistakes. 1 1

Perceived Difficulty of
Syntax

This category includes apprentice's
perceptions of syntax errors as either easy or
deceptively tricky. Some found them
manageable due to clear error messages,
while others initially underestimated their
complexity.

1 33

Syntax Feels Easy For those who found syntax errors more
straightforward or gained confidence
resolving them

1 25

Syntax for
Beginners

For beginner-level ease, familiarity, or
exposure to syntax debugging.

1 2

Syntax is Tricky For quotes that describe syntax errors as
deceptively hard or initially difficult to
handle.

1 6

Social and
Collaborative
Dimensions

This category highlights how syntax
debugging was supported by peer
explanations, shared roles, and individual
strengths in collaborative settings. It includes

1 43

337 | P a g e

Name Description Files References

verbal clarification and role-based task
division around syntax.

Explaining syntax
fixes

For verbal explanation, negotiation, or
clarification of syntax fixes during
collaboration

1 15

Pair support for
syntax

For collaborative efforts in addressing syntax
errors through shared roles or peer help.

1 13

Syntax as role
strength

For individuals who naturally took the lead
on syntax due to confidence or skill

1 15

Strategies for Syntax
Debugging

This category reflects tactical responses to
syntax errors, such as starting with syntax
checks, using tools like error highlighting,
and applying pattern-recognition techniques
to spot errors.

1 33

Fixing Syntax
Errors

For comments about actively identifying,
correcting, or guiding others through syntax
issues.

1 9

Pattern-based
syntax strategy

For use of recurring patterns, visual tracing,
or structured methods in spotting syntax
issues.

1 6

Syntax First Where participants mention syntax errors as
their starting point in debugging.

1 3

Tool-Assisted
Syntax Fix

For use of features like syntax highlighting,
error popups, or debuggers to spot/fix
syntax.

1 15

Subtheme 2 - Logical Error Logical error subthemes contain a rich set of
categories. These reflect the complexity of
the issues and the ways learners engaged
intellectually, emotionally, and socially.
Internal logic and external differentiation are
intact.

2 131

Collaboration and
Communication Aids

This category reflects the value of teamwork
in resolving logical errors. It includes quotes
where learners gained clarity or found
solutions by explaining to peers, switching
roles, or combining their strengths.

1 13

Collaborative
clarity

Understanding emerged more clearly
through discussions with peers. Explaining
logic to others often led to personal insight.

1 3

Collaborative
Insight

New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

1 4

Navigator insight In pair programming, the navigator offered a
useful perspective. The insight usually
shifted the course of debugging.

1 1

338 | P a g e

Name Description Files References

Paired Strengths Learners described how teammates
complemented their skills. Their collective
effort covered individual weaknesses.

1 1

Peer Review
Strength

Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Peer support Emotional or technical encouragement came
from fellow learners. It acted as a buffer
during challenging moments.

1 1

Role swapping Team members changed roles mid-task to
better tackle logic issues. The switch brought
fresh perspective.

1 2

Perceived Complexity
and Emotional
Response

This category captures how apprentices
found logical errors emotionally or
cognitively taxing. It includes expressions of
frustration, struggle, or general difficulty in
making sense of complex conditions or flows.

1 41

Agreement on
Challenge

Multiple participants expressed a shared
view that certain logical errors posed
significant difficulty. The consistency in their
sentiments adds weight to the issue's
complexity.

1 5

Complex Logic
Breakdown

Learners attempted to untangle highly
intricate or nested conditions. The difficulty
lay not in syntax but in logical architecture.

1 4

Error Complexity The nature of the logic error was itself
intricate and multi-layered. These were not
beginner mistakes but advanced logic
misfires.

1 10

Flow Confusion The challenge stemmed from not
understanding how code progressed during
execution. This lack of clarity hampered
logical deductions.

1 1

Found It
Challenging

A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

1 7

General
Complexity

Applied when logic problems were described
as difficult but without specific explanation.
It captures vague but valid struggle.

1 5

Logic Struggle Captures moments of emotional or cognitive
difficulty expressed by learners tackling
logical bugs. Participants voiced frustration
and mental fatigue in trying to make sense of
such errors.

1 4

Logical Errors
Challenging

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t
specify which part was problematic.

1 5

339 | P a g e

Name Description Files References

Reflection and
Learning Dispositions

This category captures reflective mindsets
where apprentices identified growth,
perseverance, or learning from mistakes. It
also houses observations about how
experience, context, and collaboration
influenced their progress.

1 31

Context
understanding

Problem-solving success relied on grasping
the wider function or scenario. The learner
needed to understand not just 'what' but
'why'.

1 3

Experience Builds
Mastery

Learners acknowledged that repeated
exposure helped them improve. Experience
was credited as a major enabler of logical
reasoning.

1 2

Growth Mindset Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports
resilience.

1 1

Growth Through
Challenge

Struggle was reframed as an opportunity for
learning. Participants reflected positively on
the difficulty.

1 4

Logic and Flow
Challenges

Combined challenges in understanding both
the logic and how it executed. These
situations involved overlapping difficulties.

1 6

Misuse of 'name' Highlights confusion around Python's special
'__name__' variable. This is a specific
example of concept misunderstanding.

1 1

Progress Despite
Errors

Learners recognised forward movement
even when mistakes occurred. This shows
perseverance.

1 1

Remote
Collaboration
Limits

The online or distant setup introduced
difficulties in understanding logic. Distance
added barriers to debugging.

1 8

Runtime Contrast Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

1 2

Unresolved Logic
Issues

Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

1 2

Variable misuse Mistakes occurred due to inappropriate
variable assignment or tracking. This led to
faulty logic.

1 1

Skill Gaps and
Cognitive Limitations

This category includes participants’
admissions of limited knowledge,
misunderstood logic, or conceptual
misapplications. It highlights areas where
deeper learning or practice was needed to
engage with logic-based bugs

1 18

340 | P a g e

Name Description Files References

Acknowledged
Limitations

Learners showed self-awareness by noting
their own lack of proficiency or
understanding. These admissions underline
honesty about gaps in capability.

1 3

Analytical Gaps Denotes errors that occurred due to missed
steps or incomplete reasoning processes.
This suggests an underdeveloped analytical
sequence.

1 2

Calculation
Confusion

Errors emerged from difficulties in creating
or tracing formula-based logic. Mathematical
thinking was the barrier.

1 1

Concept Misuse Participants misapplied key Python concepts,
leading to logic flaws. These
misunderstandings pointed to a superficial
grasp of coding constructs.

1 2

Conditional
Misinterpretation

Learners misunderstood how conditionals
executed. This misreading caused flawed
logic paths.

1 1

Contextual
Misuse

A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

1 1

Knowledge Gaps Errors resulted from lacking the foundational
knowledge needed to apply logic. This code
tracks missing prerequisites.

1 6

Misunderstood
Logic Flow

Participants misunderstood how one part of
the code affected another. These errors
revealed disconnects in logic mapping.

1 1

Needs More
Practice

Participant acknowledged needing repetition
or further exposure to improve. Practice was
seen as key to mastering logic.

1 1

Strategies and
Reasoning Approaches

This category includes structured problem-
solving strategies like breaking problems
down, isolating faulty logic, following data
flow, using tool support, and experimenting
methodically with solutions.

2 28

Analytical
approach

Describes instances where a participant
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

1 1

Analytical
Demand

Reflects how some debugging tasks required
high-level reasoning and mental exertion.
Participants perceived the activity as
cognitively intensive.

1 1

Big picture
review

Participants referred to stepping back and
reassessing the entire codebase. This top-
down perspective helped in
recontextualising the issue.

1 1

341 | P a g e

Name Description Files References

Breakdown
strategy

Refers to the act of deconstructing a
problem into simpler parts to aid resolution.
Learners discussed breaking logic into
manageable pieces.

1 1

Code Isolation
Strategy

Participants isolated specific blocks or lines
of code to test or observe behaviour. This
strategy helped to narrow the problem area.

1 2

Code Visibility
Advantage

Clarity in formatting, naming, or organisation
made it easier to follow the logic.
Participants attributed their success partly to
how readable the code was.

1 1

Data Flow
Understanding

Focused on tracking how information moved
through variables and functions. This
tracking helped diagnose where logic broke
down.

1 1

Deep Dive
Debugging

Marked by a thorough and prolonged
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

1 1

Deep Logic This reflects the intellectual depth required
to trace and correct logic faults rooted in
Python intricacies or conceptual frameworks.
It signifies scenarios where surface-level
knowledge was insufficient.

1 2

Divide and
conquer

The issue was resolved by segmenting it into
independent subproblems. Learners
described resolving each part methodically.

2 3

Methodical
Problem Solving

The participant used a structured, procedural
approach to identify the issue. This code
praises disciplined debugging.

1 1

Pattern-based
reasoning

Participants applied familiar logic patterns to
solve new problems. This indicates transfer
of learning.

1 1

Rubber ducking Participants verbalised logic step-by-step,
often to a peer or non-technical object. This
externalisation clarified their thinking.

1 2

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described
trial as a deliberate tactic.

1 1

Strategy
Limitations

Existing methods or plans failed to resolve
the logic issue. Learners were forced to
reconsider their approach.

1 1

Tool-assisted
logic check

Software tools like debuggers or linters were
used to identify logic faults. Participants
credited these for catching errors.

1 2

Trial and Error
Limits

Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

1 1

342 | P a g e

Name Description Files References

Understanding
Logic Flow

A clear picture of how logic moved through
code aided debugging. This awareness
streamlined troubleshooting.

1 5

Subtheme 3 - Runtime Error The runtime error subtheme offers a clear
focus on both the symptoms and difficulty
level of errors, and learners’ strategies (or
lack thereof) to resolve them.

1 84

Cognitive Perception
and Difficulty

This category reflects how runtime issues
were perceived as overwhelming or
uncertain, especially when apprentices
couldn’t predict behaviour or lacked
confidence during execution.

1 43

Runtime
Overwhelm

When runtime feels particularly complex or
challenging.

1 13

Runtime Type
Confusion

When the issue involves converting string to
number or similar.

1 6

Runtime
Uncertainty

For quotes where learners are confident with
syntax but unsure about runtime.

1 24

Debugging Approaches
for Runtime

This category captures how apprentices
attempted to resolve runtime errors,
particularly by using print statements or
acknowledging a lack of structured strategy.

1 6

Runtime Print
Tracking

For those using print statements to trace
issues.

1 4

Runtime Strategy
Lacking

When trial-and-error or lack of method was
highlighted.

1 2

Types and Causes of
Runtime Errors

This category identifies the nature of
runtime errors apprentices faced, such as
infinite loops, undefined variables, and type
conversion issues, all of which occurred
during execution.

1 35

Execution Flow For difficulty understanding the order of
execution in Python.

1 5

Infinite Loop For errors involving loops that do not
terminate.

1 17

Type Conversion For issues converting between data types
(e.g. string to number)

1 8

Undefined
Variable

For use of variables that were not defined
before use.

1 5

Theme 2 - Technical and Cognitive
Skills

This theme reflects the skills, tools, and
cognitive strategies that apprentices
deployed to debug effectively. It includes the
use of IDE features, reasoning techniques,
and collaborative planning to manage
complexity and solve problems.

2 268

Subtheme 1 - Technology
Utilisation

This subtheme effectively distinguishes
between execution tools, interface features,

1 77

343 | P a g e

Name Description Files References

and collaborative platforms, which are all
vital to apprentice debugging.

Debugging Tools and
Execution Support

This category captures how apprentices
leveraged key debugging tools—such as the
IDE’s step-through functionality and print
statements—to inspect program execution,
monitor variable states, and detect logical or
runtime issues.

1 67

IDE Debugger
Usage

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction
of logic errors.

1 35

Print Statement
Debugging

Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during
execution.

1 32

Interface Guidance
and Visual Feedback

This category represents the supportive role
of the IDE’s user interface elements,
including syntax highlighting, auto-
suggestions, version control, and intelligent
prompts, which helped learners identify
errors and streamline their workflow.

1 6

Other IDE
Features

Apprentices benefited from additional IDE
tools like version control integration,
intelligent suggestions, and code completion
to streamline their workflow.

1 3

Syntax and Error
Highlighting
Features

The IDE’s syntax highlighting, auto-
indentation, and inline error notifications
supported apprentices in quickly spotting
and correcting code mistakes.

1 3

Real-Time
Collaborative
Platforms

This category includes tools that enabled
synchronous work across distances, allowing
apprentices to co-edit, share, and coordinate
their debugging efforts in real time using
platforms like Visual Studio Live Share.

1 4

Real-Time Code
Sharing and
Synchronisation

Tools enabling simultaneous editing and
shared visibility helped apprentices maintain
alignment and coordinate debugging in real-
time.

1 2

Use of Live Share
for Remote
Collaboration

Apprentices leveraged Live Share to
collaboratively edit, navigate, and debug
code from separate locations in real time.

1 2

Subtheme 2 - Debugging
Strategies & Tactics

These categories cover a wide tactical
spectrum, from exploratory to highly
methodical, providing a balanced insight into
apprentice strategies.

2 86

Collaborative and
Reflective Techniques

This category highlights methods where
apprentices explained or reviewed code with
others (or to themselves) to gain insight,

2 20

344 | P a g e

Name Description Files References

clarify thinking, and identify errors through
reflection or external feedback.

Code Review Apprentices systematically examined and
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative
problem-solving.

1 12

Peer Review
Strength

Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

1 1

Rubber Duck
Debugging

Apprentices explained their code aloud—to a
partner or inanimate object, to clarify their
thinking and uncover logic errors.

1 7

Systematic Reasoning
Strategies

This category includes logical and structured
approaches where learners followed data
flow, stepped through execution, or broke
problems into smaller parts to locate and
address issues in a focused, disciplined
manner.

2 46

Divide and
conquer

The issue was resolved by segmenting it into
independent subproblems. Learners
described resolving each part methodically.

2 3

IDE Debugger
Usage

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction
of logic errors.

1 35

Methodical
Problem Solving

The participant used a structured, procedural
approach to identify the issue. This code
praises disciplined debugging.

1 1

Tracing Apprentices followed the program’s flow line
by line to understand how data moved and
identify where the logic broke down.

1 7

Tactical Exploration of
Faults

This category covers exploratory tactics
where apprentices relied on recognition of
error patterns, code segmentation, and
hypothesis-testing to find and resolve bugs.

2 20

Pattern Matching Apprentices looked for recurring structures
or familiar error patterns to quickly locate
and fix bugs based on previous experience.

1 3

Slicing Slicing refers to the strategy of breaking
down or isolating specific segments of
code—such as functions, conditions, or
loops—to analyse them independently. This
helps apprentices reduce complexity by
focusing only on the relevant part of the
code where the error is suspected, making it
easier to locate and fix bugs collaboratively.

1 3

345 | P a g e

Name Description Files References

Solution
experimentation

Debugging involved trying multiple possible
solutions to test logic. Learners described
trial as a deliberate tactic.

1 1

Tinkering Apprentices intuitively made small code
changes and tested their effects as a way to
explore and understand bugs.

1 3

Trial and Error Apprentices experimented with different
solutions without a predefined plan to see
what resolved the issue through observation.

1 10

Subtheme 3 - Cognitive Load
Sharing

This subtheme is compact but insightful. It
cleanly separates structural role-based
tactics from communication-based cognitive
coordination.

1 105

Real-Time
Communication and
Coordination Tools

This category reflects how verbalisation
strategies and collaborative digital tools
were used to coordinate thought processes,
reduce confusion, and manage the cognitive
load during remote or paired debugging.

1 58

Real-Time Tool
Support for
Coordination

Collaborative tools like IDE features and
remote sharing platforms were used to
support synchronised thinking and reduce
mental strain.

1 37

Think-Aloud
Communication

Apprentices verbalised their reasoning and
thought processes to clarify understanding
and collaboratively work through errors.

1 21

Strategic Role
Allocation and
Rotation

This category captures how apprentices
strategically assigned roles and alternated
them to balance mental effort, maintain
engagement, and leverage individual
strengths during debugging sessions.

1 47

Division of Tasks
Based on
Strengths

Apprentices strategically assigned
responsibilities based on individual strengths
or comfort zones to manage complexity and
maintain focus.

1 22

Driver-Navigator
Role Sharing

Apprentices adopted a structured pairing
model where one coded while the other
observed and guided, helping distribute
cognitive demands.

1 18

Turn-Taking and
Role Swapping

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept
both apprentices engaged throughout the
debugging session.

1 7

Theme 3 - Challenges This theme represents the barriers,
limitations, and points of difficulty
apprentices experienced during remote pair
debugging. It includes communication
constraints, technical skill gaps, and
environmental disruptions affecting their
workflow.

1 456

346 | P a g e

Name Description Files References

Subtheme 1 -
Communication and
Collaboration

The three categories here cover
verbal/gestural limitations, cognitive
misalignment, and tool-based disruptions, all
central to remote pair debugging challenges.

1 134

Interpretation and
Understanding
Conflicts

This category includes moments where
apprentices interpreted instructions, logic, or
errors differently, resulting in delays or
confusion in collaborative debugging.

1 33

Misalignment in
Understanding

These reflect how apprentices experienced
confusion or divergent interpretations of
logic or instructions during debugging
sessions

1 33

Remote Expression
Challenges

This category captures how apprentices
struggled to communicate ideas clearly
without the benefit of facial expressions,
gestures, or in-person context—leading to
misunderstandings, over-explaining, or extra
effort in articulation.

1 60

Difficulty
Conveying
Thought Process
Remotely

These quotes are focused on how
apprentices struggled to explain, align, or
communicate their reasoning without face-
to-face interaction

1 27

Lack of Non-
Verbal Feedback

These reflect how the absence of visual,
gestural, or facial cues hindered effective
communication and understanding during
remote debugging

1 33

Tool Limitations in
Remote Setup

This category captures tool-based challenges
such as lag, syncing issues, limited shared
control, or edit conflicts, each of which
disrupted the flow of joint work and required
additional coordination.

1 41

Technology-
Related
Collaboration
Issues

These quotes reflect how tool-based issues
like syncing, lag, edit conflicts, and IDE
limitations disrupted collaboration

1 41

Subtheme 2 - Technical &
Cognitive

The categories under this subtheme clearly
reflect technical gaps, cognitive hurdles, and
runtime-specific complications.

1 273

Foundational
Knowledge Gaps

This category reflects difficulties stemming
from apprentices’ limited prior experience
with Python or programming generally,
especially in handling syntax-specific rules
like indentation and punctuation.

1 166

Limited
Experience and
Skill Gaps

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational
knowledge, or still developing confidence in
applying core concepts.

1 15

347 | P a g e

Name Description Files References

Syntax
Complexity

Participants frequently encountered syntax
errors that disrupted code execution,
especially those involving Python-specific
rules like indentation, string formatting, or
punctuation.

1 151

Reasoning and Logic
Challenges

This category houses instances where
apprentices lacked the cognitive strategies to
understand and apply logic effectively,
especially when dealing with conditionals,
calculations, or the broader logic structure.

1 61

Logical Reasoning
Gaps

Participants struggled with understanding or
applying correct logic within the code,
particularly when handling conditionals,
calculations, or the flow of decision-making.

1 61

Runtime Behaviour
Confusion

This category represents the difficulty of
identifying and resolving bugs that only
emerged during code execution, particularly
where program behaviour was unpredictable
or misunderstood.

1 46

Runtime Error
Complexity

Several apprentices found runtime errors
difficult to resolve because they often
appeared after code execution and required
understanding how the program behaved
dynamically.

1 46

Subtheme 3 - Environmental
and Logistics

These categories are well-bounded, non-
overlapping, and together provide a
complete view of non-technical barriers
affecting collaboration and productivity.

1 49

Connectivity
Constraints

This category reflects how unstable internet
disrupted communication, tool access, and
real-time collaboration, especially in remote
or bandwidth-limited settings.

1 1

Unstable or
Inconsistent
Internet
Connection

These quotes highlight issues caused by poor
or unstable internet, affecting real-time
collaboration or access to tools.

1 1

Distractions and Focus
Challenges

Distractions and Focus Challenges This
includes issues with concentration due to
noise, interruptions, or other environmental
factors unique to working remotely from
home or other informal settings

1 6

Distraction in
Individual Work
Environments

These highlight challenges in focus due to
remote, uncontrolled environments.

1 6

Physical Separation
Barriers

This category refers to the challenge of not
being able to visually point to code or easily
clarify issues due to being physically apart
during remote pair programming.

1 11

348 | P a g e

Name Description Files References

Absence of
Physical Presence
for Quick
Clarification

These represent struggles in not being able
to point or visually show parts of code

1 11

Scheduling and
Coordination Hurdles

This category captures difficulties in syncing
schedules across time zones or managing
different availability patterns, which limited
collaboration windows.

1 5

Time Zone and
Scheduling
Difficulties

Quotes here reflect challenges related to
coordinating across different locations or
schedules.

1 5

Tool Setup and
Accessibility Barriers

These are initial or recurring issues in
configuring, accessing, or understanding how
to use necessary tools like IDEs, version
control, or communication platforms.

1 26

Tool Access or
Setup Issues

These quotes relate to initial difficulties in
using or setting up collaboration tools.

1 26

349 | P a g e

Appendix O: Focus Group Codebook

DPP
Codes\\Focus Group\\Stage 1 & 2 - Familiarisation & Coding

Name Description Files References

Building mental
models through
documentation

Writing comments and diagrams helps apprentices
internalise code structure.

1 1

Casual reasoning as
entry point

Debugging often starts with general intuition rather
than a structured plan.

1 1

Casual reasoning
misses logical errors

Relying solely on intuition often overlooks deeper
logical issues.

1 1

Casual reasoning
reliance

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

1 1

Challenges in tracing
code

Apprentices often find it difficult to follow code
execution paths.

1 1

Code complexity is
overwhelming

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

1 1

Confirmation bias
skews debugging

Preconceived assumptions can prevent apprentices
from seeing simple bugs.

1 1

Copying solutions
without
understanding

Replicating peer solutions without comprehension
weakens problem-solving development.

1 1

Debugging depends
on bug type

Strategy effectiveness depends on the complexity and
category of the bug.

1 1

Debugging is
influenced by learning
style

Effective debugging strategies vary based on an
apprentice’s preferred learning style.

1 1

Debugging is shaped
by collaboration
quality

Team synergy significantly influences the effectiveness
of joint debugging.

1 1

Debugging strategy
depends on context

Approaches to debugging vary depending on the
project and type of bug.

1 1

Debugging tasks build
confidence
incrementally

Solving increasingly complex bugs builds apprentice
confidence step by step.

1 1

Difficulty segmenting
code

Apprentices struggle to break complex problems into
manageable parts.

1 1

Documenting aids
learning

Keeping records of debugging efforts enhances long-
term problem-solving skills.

1 1

350 | P a g e

Name Description Files References

Effective use of top-
down

A structured top-down strategy improves debugging
outcomes.

1 1

Error messages
mislead

Misreading error outputs can lead apprentices down
unproductive paths.

1 1

Explaining debugging
process

Verbalising thought processes helps apprentices arrive
at solutions.

1 1

Exploring before
understanding

Jumping into debugging without a plan often wastes
effort.

1 1

External time
pressure disrupts
debugging

High-pressure scenarios often lead apprentices to
abandon systematic debugging.

1 1

Feedback from code
review reshapes
mindset

Constructive feedback during reviews influences
debugging confidence and approach.

1 1

Fixation on wrong
sections

Focusing narrowly on specific code sections leads to
oversight of wider issues.

1 1

Go-to use of print
statements

Print statements are a preferred initial debugging
method due to familiarity.

1 1

Growth in tool
appreciation

Apprentices learn to value tool efficiency once they
overcome initial hesitation.

1 1

Guessing based on
code understanding

Apprentices rely on surface-level comprehension of
code to make educated guesses about bug locations.

1 1

Hesitation to adopt
tools

New users often delay embracing powerful debugging
tools due to fear or lack of confidence.

1 1

Hypothesising from
current code state

Apprentices form assumptions based on initial code
inspection.

1 1

IDE debugger solves
python bug

Learning debugger tools enabled successful resolution
of Python bugs.

1 1

IDE familiarity
improves speed

Familiarity with debugging environments leads to
faster problem resolution.

1 1

IDE intimidation
delays adoption

Fear of using debugger features prolongs reliance on
basic methods.

1 1

Incomplete mental
model causes
missteps

Gaps in understanding program flow often lead to
flawed assumptions.

1 1

Initial intimidation
with IDEs

Beginners often find IDE tools overwhelming, delaying
their usage.

1 1

Initial struggle with
advanced tools

Advanced debugging tools pose challenges for
novices.

1 1

Jumping to
conclusions without
testing

Making changes without verification disrupts
debugging accuracy.

1 1

Lack of consistency in
strategy

Frequent switching between debugging approaches
without persistence hinders learning.

1 1

351 | P a g e

Name Description Files References

Lack of planning leads
to repeated mistakes

Without structured reflection, apprentices often
repeat ineffective actions.

1 1

Learning through pair
programming

Collaborative programming accelerates understanding
of debugging processes.

1 1

Mastering slicing Learning to slice code effectively improves tracing and
debugging accuracy.

1 1

Mentorship via code
reviews

Experienced developers guiding apprentices
significantly improves their debugging effectiveness.

1 1

Not understanding
broader impact

Neglecting the system-wide effects of a bug fix can
cause further errors.

1 1

Overconfidence hides
errors

Confidence without verification can blind apprentices
to simple coding mistakes.

1 1

Pair programming
exposes memory leak

Collaborative debugging quickly uncovered a memory
leak issue.

1 1

Pattern matching
experience

Recognising recurring error patterns assists in efficient
problem solving.

1 1

Pattern matching in
Python debugging

Python debugging becomes easier when apprentices
identify recurring structural patterns.

1 1

Peer-led
walkthroughs
encourage reflection

Explaining code to peers prompts apprentices to think
more critically about their logic.

1 1

Progress from prints
to breakpoints

Debugging maturity shows in transitioning from print
statements to advanced IDE features.

1 1

Quiet debugging
helps focus

A calm, low-distraction environment enhances
debugging concentration.

1 1

Regular debugging
journals enhance
strategy retention

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

1 1

Replication supports
root cause analysis

Reproducing bugs consistently helps clarify underlying
causes.

1 1

Rubber duck
debugging helps
recursion

Explaining recursive problems aloud clarified their
solution.

1 1

Rushed learning
under pressure

Time constraints force apprentices to prioritise quick
fixes over deeper understanding.

1 1

Sharpness through
code review

Participating in code reviews sharpens bug detection
skills.

1 1

Simulation of bugs
helps strategy
selection

Creating and solving artificial bugs allows apprentices
to test and compare strategies.

1 1

Skipping small tests
leads to big issues

Neglecting to test small units can result in wasted
debugging time

1 1

Slicing improves
isolation

Slicing enables more precise identification of fault
origins in code.

1 1

352 | P a g e

Name Description Files References

Step-by-step
execution preferred

Structured, sequential debugging aids apprentices in
isolating and resolving issues.

1 1

Structured top-down
debugging

A systematic top-down method simplifies complex
debugging tasks.

1 1

Structured training
improves strategy use

Formal instruction in debugging techniques
accelerates apprentice development.

1 1

Struggling to interpret
error logs

Complex logs and stack traces are difficult for new
apprentices to decode.

1 1

Success boosted by
guided debugging

Step-by-step guidance in early debugging exercises
improves long-term independence.

1 1

Switch to trial-and-
error

When intuition fails, apprentices default to
experimenting with fixes.

1 1

Testing leads to early
bug discovery

Writing tests regularly helps apprentices catch bugs
early.

1 1

Tool choice
influenced by
language

Programming language and tech stack shape the
debugging approach.

1 1

Tool comfort impacts
strategy

Confidence in using IDEs influences which debugging
methods are applied.

1 1

Trial-and-error fits
web debugging

Unstructured trial-and-error can work well in simpler
web-based contexts.

1 1

Trial-and-error
method

Debugging often begins with non-systematic
experimentation that can be inefficient.

1 1

Understanding bug
impact

Comprehending how a fix affects the whole system is
crucial to effective debugging.

1 1

Unit testing enhances
robustness

Implementing unit tests boosts confidence in code
stability.

1 1

Use of isolation
techniques

Employing isolation helps apprentices identify and
address specific errors.

1 1

Visual cues in IDEs
improve flow tracing

Graphical IDE features help clarify complex function
flows for visual learners.

1 1

Visual debugging
supports
understanding

Graphical representations aid in tracing program flow
and state changes.

1 1

Visual strategies for
visual learners

Visual tools like debuggers support those with visual
learning preferences.

1 1

353 | P a g e

Codes\\Focus Group\\Stage 3 - Theme Generation

Name Description Files References

Bug Replication Focuses on the importance of recreating bugs as
a strategic practice to understand error
behaviour and trace root causes effectively.

1 2

Replication supports
root cause analysis

Reproducing bugs consistently helps clarify
underlying causes.

1 1

Rushed learning
under pressure

Time constraints force apprentices to prioritise
quick fixes over deeper understanding.

1 1

Cognitive Load Describes the mental burden apprentices
experience when managing multiple elements of
code logic, often leading to overwhelm or errors
in reasoning.

2 8

Challenges in tracing
code

Apprentices often find it difficult to follow code
execution paths.

1 1

Code complexity is
overwhelming

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

1 1

Difficulty segmenting
code

Apprentices struggle to break complex problems
into manageable parts.

1 1

Fixation on wrong
sections

Focusing narrowly on specific code sections
leads to oversight of wider issues.

1 1

Incomplete mental
model causes
missteps

Gaps in understanding program flow often lead
to flawed assumptions.

1 1

Not understanding
broader impact

Neglecting the system-wide effects of a bug fix
can cause further errors.

1 1

Overconfidence hides
errors

Confidence without verification can blind
apprentices to simple coding mistakes.

1 1

Understanding bug
impact

Comprehending how a fix affects the whole
system is crucial to effective debugging.

1 1

Collaborative Learning Captures how shared thinking, verbalisation, and
peer interaction during debugging foster deeper
understanding and strategic refinement.

2 4

Explaining debugging
process

Verbalising thought processes helps apprentices
arrive at solutions.

1 1

Feedback from code
review reshapes
mindset

Constructive feedback during reviews influences
debugging confidence and approach.

1 1

Mentorship via code
reviews

Experienced developers guiding apprentices
significantly improves their debugging
effectiveness.

1 1

Sharpness through
code review

Participating in code reviews sharpens bug
detection skills.

1 1

354 | P a g e

Name Description Files References

Debugging Strategy
Selection

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 4

Debugging depends
on bug type

Strategy effectiveness depends on the
complexity and category of the bug.

1 1

Debugging strategy
depends on context

Approaches to debugging vary depending on the
project and type of bug.

1 1

Simulation of bugs
helps strategy
selection

Creating and solving artificial bugs allows
apprentices to test and compare strategies.

1 1

Tool choice influenced
by language

Programming language and tech stack shape the
debugging approach.

1 1

Environment Factors Considers how quiet spaces, distractions, or time
pressures in the learning or work setting either
support or hinder focused debugging.

1 2

External time
pressure disrupts
debugging

High-pressure scenarios often lead apprentices
to abandon systematic debugging.

1 1

Quiet debugging helps
focus

A calm, low-distraction environment enhances
debugging concentration.

1 1

Error Interpretation Highlights how apprentices read, misread, or
apply meaning to error messages and logs, which
directly affects bug diagnosis and resolution
pathways.

2 2

Error messages
mislead

Misreading error outputs can lead apprentices
down unproductive paths.

1 1

Struggling to interpret
error logs

Complex logs and stack traces are difficult for
new apprentices to decode.

1 1

General Reasoning Pattern Describes the common tendency of apprentices
to begin debugging using informal, intuitive, or
surface-level logic rather than structured
analytical methods.

1 1

Exploring before
understanding

Jumping into debugging without a plan often
wastes effort.

1 1

Knowledge Development Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 3

Building mental
models through
documentation

Writing comments and diagrams helps
apprentices internalise code structure.

1 1

Documenting aids
learning

Keeping records of debugging efforts enhances
long-term problem-solving skills.

1 1

355 | P a g e

Name Description Files References

Regular debugging
journals enhance
strategy retention

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

1 1

Learning Style Influence Recognises that visual, verbal, and hands-on
learners respond differently to debugging
strategies, influencing their performance and
tool preferences.

1 2

Debugging is
influenced by learning
style

Effective debugging strategies vary based on an
apprentice’s preferred learning style.

1 1

Visual strategies for
visual learners

Visual tools like debuggers support those with
visual learning preferences.

1 1

Misguided Assumptions Refers to errors in debugging that stem from
overconfidence, confirmation bias, or reliance on
incorrect prior beliefs about how the code
should behave.

1 6

Confirmation bias
skews debugging

Preconceived assumptions can prevent
apprentices from seeing simple bugs.

1 1

Copying solutions
without
understanding

Replicating peer solutions without
comprehension weakens problem-solving
development.

1 1

Jumping to
conclusions without
testing

Making changes without verification disrupts
debugging accuracy.

1 1

Lack of consistency in
strategy

Frequent switching between debugging
approaches without persistence hinders
learning.

1 1

Lack of planning leads
to repeated mistakes

Without structured reflection, apprentices often
repeat ineffective actions.

1 1

Skipping small tests
leads to big issues

Neglecting to test small units can result in
wasted debugging time

1 1

Peer Collaboration Encompasses the positive effects of paired
debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

1 4

Learning through pair
programming

Collaborative programming accelerates
understanding of debugging processes.

1 1

Pair programming
exposes memory leak

Collaborative debugging quickly uncovered a
memory leak issue.

1 1

Peer-led
walkthroughs
encourage reflection

Explaining code to peers prompts apprentices to
think more critically about their logic.

1 1

Rubber duck
debugging helps
recursion

Explaining recursive problems aloud clarified
their solution.

1 1

356 | P a g e

Name Description Files References

Strategy Consolidation Reflects the apprentices’ ability to retain, refine,
and reflect on effective debugging techniques
through habits like journaling and
documentation.

2 3

Debugging tasks build
confidence
incrementally

Solving increasingly complex bugs builds
apprentice confidence step by step.

1 1

Structured training
improves strategy use

Formal instruction in debugging techniques
accelerates apprentice development.

1 1

Success boosted by
guided debugging

Step-by-step guidance in early debugging
exercises improves long-term independence.

1 1

Structured Strategy Involves the deliberate use of planned debugging
approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

2 10

Effective use of top-
down

A structured top-down strategy improves
debugging outcomes.

1 1

Mastering slicing Learning to slice code effectively improves
tracing and debugging accuracy.

1 1

Pattern matching
experience

Recognising recurring error patterns assists in
efficient problem solving.

1 1

Pattern matching in
Python debugging

Python debugging becomes easier when
apprentices identify recurring structural
patterns.

1 1

Slicing improves
isolation

Slicing enables more precise identification of
fault origins in code.

1 1

Step-by-step
execution preferred

Structured, sequential debugging aids
apprentices in isolating and resolving issues.

1 1

Structured top-down
debugging

A systematic top-down method simplifies
complex debugging tasks.

1 1

Testing leads to early
bug discovery

Writing tests regularly helps apprentices catch
bugs early.

1 1

Unit testing enhances
robustness

Implementing unit tests boosts confidence in
code stability.

1 1

Use of isolation
techniques

Employing isolation helps apprentices identify
and address specific errors.

1 1

Tool Familiarity Refers to how apprentices' comfort, exposure,
and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

2 12

Go-to use of print
statements

Print statements are a preferred initial
debugging method due to familiarity.

1 1

Growth in tool
appreciation

Apprentices learn to value tool efficiency once
they overcome initial hesitation.

1 1

357 | P a g e

Name Description Files References

Hesitation to adopt
tools

New users often delay embracing powerful
debugging tools due to fear or lack of
confidence.

1 1

IDE debugger solves
python bug

Learning debugger tools enabled successful
resolution of Python bugs.

1 1

IDE familiarity
improves speed

Familiarity with debugging environments leads
to faster problem resolution.

1 1

IDE intimidation
delays adoption

Fear of using debugger features prolongs
reliance on basic methods.

1 1

Initial intimidation
with IDEs

Beginners often find IDE tools overwhelming,
delaying their usage.

1 1

Initial struggle with
advanced tools

Advanced debugging tools pose challenges for
novices.

1 1

Progress from prints
to breakpoints

Debugging maturity shows in transitioning from
print statements to advanced IDE features.

1 1

Tool comfort impacts
strategy

Confidence in using IDEs influences which
debugging methods are applied.

1 1

Visual cues in IDEs
improve flow tracing

Graphical IDE features help clarify complex
function flows for visual learners.

1 1

Visual debugging
supports
understanding

Graphical representations aid in tracing program
flow and state changes.

1 1

Unstructured Debugging Captures instances where apprentices use
inconsistent, reactive, or haphazard debugging
tactics without a coherent plan, often resulting
in inefficiency.

2 8

Casual reasoning as
entry point

Debugging often starts with general intuition
rather than a structured plan.

1 1

Casual reasoning
misses logical errors

Relying solely on intuition often overlooks
deeper logical issues.

1 1

Casual reasoning
reliance

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

1 1

Guessing based on
code understanding

Apprentices rely on surface-level comprehension
of code to make educated guesses about bug
locations.

1 1

Hypothesising from
current code state

Apprentices form assumptions based on initial
code inspection.

1 1

Switch to trial-and-
error

When intuition fails, apprentices default to
experimenting with fixes.

1 1

Trial-and-error fits
web debugging

Unstructured trial-and-error can work well in
simpler web-based contexts.

1 1

Trial-and-error
method

Debugging often begins with non-systematic
experimentation that can be inefficient.

1 1

358 | P a g e

Codes\\Focus Group\\Stage 4 - Theme Review

Name Description Files References

Subtheme 1.1 – Debugging
Mindsets and Reasoning
Patterns

These reflect the intuitive, non-systematic
approaches apprentices use, and common
mistakes made due to overconfidence,
assumption, or incomplete understanding.

2 15

General Reasoning
Pattern

Describes the common tendency of apprentices
to begin debugging using informal, intuitive, or
surface-level logic rather than structured
analytical methods.

1 1

Exploring before
understanding

Jumping into debugging without a plan often
wastes effort.

1 1

Misguided
Assumptions

Refers to errors in debugging that stem from
overconfidence, confirmation bias, or reliance on
incorrect prior beliefs about how the code
should behave.

1 6

Confirmation
bias skews
debugging

Preconceived assumptions can prevent
apprentices from seeing simple bugs.

1 1

Copying
solutions
without
understanding

Replicating peer solutions without
comprehension weakens problem-solving
development.

1 1

Jumping to
conclusions
without testing

Making changes without verification disrupts
debugging accuracy.

1 1

Lack of
consistency in
strategy

Frequent switching between debugging
approaches without persistence hinders
learning.

1 1

Lack of planning
leads to
repeated
mistakes

Without structured reflection, apprentices often
repeat ineffective actions.

1 1

Skipping small
tests leads to big
issues

Neglecting to test small units can result in
wasted debugging time

1 1

Unstructured
Debugging

Captures instances where apprentices use
inconsistent, reactive, or haphazard debugging
tactics without a coherent plan, often resulting
in inefficiency.

2 8

Casual reasoning
as entry point

Debugging often starts with general intuition
rather than a structured plan.

1 1

Casual reasoning
misses logical
errors

Relying solely on intuition often overlooks
deeper logical issues.

1 1

359 | P a g e

Name Description Files References

Casual reasoning
reliance

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

1 1

Guessing based
on code
understanding

Apprentices rely on surface-level comprehension
of code to make educated guesses about bug
locations.

1 1

Hypothesising
from current
code state

Apprentices form assumptions based on initial
code inspection.

1 1

Switch to trial-
and-error

When intuition fails, apprentices default to
experimenting with fixes.

1 1

Trial-and-error
fits web
debugging

Unstructured trial-and-error can work well in
simpler web-based contexts.

1 1

Trial-and-error
method

Debugging often begins with non-systematic
experimentation that can be inefficient.

1 1

Subtheme 1.2 – Managing
Debugging Complexity

Focuses on the cognitive strain during debugging
tasks and misinterpretations (e.g., error logs or
unfamiliar codebases).

2 10

Cognitive Load Describes the mental burden apprentices
experience when managing multiple elements of
code logic, often leading to overwhelm or errors
in reasoning.

2 8

Challenges in
tracing code

Apprentices often find it difficult to follow code
execution paths.

1 1

Code complexity
is overwhelming

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

1 1

Difficulty
segmenting
code

Apprentices struggle to break complex problems
into manageable parts.

1 1

Fixation on
wrong sections

Focusing narrowly on specific code sections
leads to oversight of wider issues.

1 1

Incomplete
mental model
causes missteps

Gaps in understanding program flow often lead
to flawed assumptions.

1 1

Not
understanding
broader impact

Neglecting the system-wide effects of a bug fix
can cause further errors.

1 1

Overconfidence
hides errors

Confidence without verification can blind
apprentices to simple coding mistakes.

1 1

Understanding
bug impact

Comprehending how a fix affects the whole
system is crucial to effective debugging.

1 1

Error Interpretation Highlights how apprentices read, misread, or
apply meaning to error messages and logs, which
directly affects bug diagnosis and resolution
pathways.

2 2

360 | P a g e

Name Description Files References

Error messages
mislead

Misreading error outputs can lead apprentices
down unproductive paths.

1 1

Struggling to
interpret error
logs

Complex logs and stack traces are difficult for
new apprentices to decode.

1 1

Subtheme 2.1 – Tool
Adoption and Preferences

Shows the evolution from print statements to
IDE debuggers and the way different learning
styles impact tool preference.

2 14

Learning Style
Influence

Recognises that visual, verbal, and hands-on
learners respond differently to debugging
strategies, influencing their performance and
tool preferences.

1 2

Debugging is
influenced by
learning style

Effective debugging strategies vary based on an
apprentice’s preferred learning style.

1 1

Visual strategies
for visual
learners

Visual tools like debuggers support those with
visual learning preferences.

1 1

Tool Familiarity Refers to how apprentices' comfort, exposure,
and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

2 12

Go-to use of
print statements

Print statements are a preferred initial
debugging method due to familiarity.

1 1

Growth in tool
appreciation

Apprentices learn to value tool efficiency once
they overcome initial hesitation.

1 1

Hesitation to
adopt tools

New users often delay embracing powerful
debugging tools due to fear or lack of
confidence.

1 1

IDE debugger
solves python
bug

Learning debugger tools enabled successful
resolution of Python bugs.

1 1

IDE familiarity
improves speed

Familiarity with debugging environments leads
to faster problem resolution.

1 1

IDE intimidation
delays adoption

Fear of using debugger features prolongs
reliance on basic methods.

1 1

Initial
intimidation
with IDEs

Beginners often find IDE tools overwhelming,
delaying their usage.

1 1

Initial struggle
with advanced
tools

Advanced debugging tools pose challenges for
novices.

1 1

Progress from
prints to
breakpoints

Debugging maturity shows in transitioning from
print statements to advanced IDE features.

1 1

361 | P a g e

Name Description Files References

Tool comfort
impacts strategy

Confidence in using IDEs influences which
debugging methods are applied.

1 1

Visual cues in
IDEs improve
flow tracing

Graphical IDE features help clarify complex
function flows for visual learners.

1 1

Visual debugging
supports
understanding

Graphical representations aid in tracing program
flow and state changes.

1 1

Subtheme 2.2 –
Environment and Interface
Support

Covers external conditions (e.g., pressure, IDE
visuals) and how they influence strategic choices
in debugging.

2 6

Debugging Strategy
Selection

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 4

Debugging
depends on bug
type

Strategy effectiveness depends on the
complexity and category of the bug.

1 1

Debugging
strategy
depends on
context

Approaches to debugging vary depending on the
project and type of bug.

1 1

Simulation of
bugs helps
strategy
selection

Creating and solving artificial bugs allows
apprentices to test and compare strategies.

1 1

Tool choice
influenced by
language

Programming language and tech stack shape the
debugging approach.

1 1

Environment Factors Considers how quiet spaces, distractions, or time
pressures in the learning or work setting either
support or hinder focused debugging.

1 2

External time
pressure
disrupts
debugging

High-pressure scenarios often lead apprentices
to abandon systematic debugging.

1 1

Quiet debugging
helps focus

A calm, low-distraction environment enhances
debugging concentration.

1 1

Subtheme 3.1 – Structured
Debugging Approaches

Encapsulates systematic methods like top-down
debugging, use of slicing, simulation, journaling,
and repeating bugs for deeper insight.

2 15

Bug Replication Focuses on the importance of recreating bugs as
a strategic practice to understand error
behaviour and trace root causes effectively.

1 2

Replication
supports root
cause analysis

Reproducing bugs consistently helps clarify
underlying causes.

1 1

362 | P a g e

Name Description Files References

Rushed learning
under pressure

Time constraints force apprentices to prioritise
quick fixes over deeper understanding.

1 1

Strategy
Consolidation

Reflects the apprentices’ ability to retain, refine,
and reflect on effective debugging techniques
through habits like journaling and
documentation.

2 3

Debugging tasks
build confidence
incrementally

Solving increasingly complex bugs builds
apprentice confidence step by step.

1 1

Structured
training
improves
strategy use

Formal instruction in debugging techniques
accelerates apprentice development.

1 1

Success boosted
by guided
debugging

Step-by-step guidance in early debugging
exercises improves long-term independence.

1 1

Structured Strategy Involves the deliberate use of planned debugging
approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

2 10

Effective use of
top-down

A structured top-down strategy improves
debugging outcomes.

1 1

Mastering slicing Learning to slice code effectively improves
tracing and debugging accuracy.

1 1

Pattern
matching
experience

Recognising recurring error patterns assists in
efficient problem solving.

1 1

Pattern
matching in
Python
debugging

Python debugging becomes easier when
apprentices identify recurring structural
patterns.

1 1

Slicing improves
isolation

Slicing enables more precise identification of
fault origins in code.

1 1

Step-by-step
execution
preferred

Structured, sequential debugging aids
apprentices in isolating and resolving issues.

1 1

Structured top-
down debugging

A systematic top-down method simplifies
complex debugging tasks.

1 1

Testing leads to
early bug
discovery

Writing tests regularly helps apprentices catch
bugs early.

1 1

Unit testing
enhances
robustness

Implementing unit tests boosts confidence in
code stability.

1 1

Use of isolation
techniques

Employing isolation helps apprentices identify
and address specific errors.

1 1

363 | P a g e

Name Description Files References

Subtheme 3.2 –
Collaborative Debugging

Trainers and mentors described how pair
programming, peer walk-throughs, and code
reviews helped apprentices verbalise their
thoughts, spot errors faster, and build
confidence. These collaborative practices were
seen as instrumental in building debugging
acumen.

2 8

Collaborative Learning Captures how shared thinking, verbalisation, and
peer interaction during debugging foster deeper
understanding and strategic refinement.

2 4

Explaining
debugging
process

Verbalising thought processes helps apprentices
arrive at solutions.

1 1

Feedback from
code review
reshapes
mindset

Constructive feedback during reviews influences
debugging confidence and approach.

1 1

Mentorship via
code reviews

Experienced developers guiding apprentices
significantly improves their debugging
effectiveness.

1 1

Sharpness
through code
review

Participating in code reviews sharpens bug
detection skills.

1 1

Peer Collaboration Encompasses the positive effects of paired
debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

1 4

Learning
through pair
programming

Collaborative programming accelerates
understanding of debugging processes.

1 1

Pair
programming
exposes
memory leak

Collaborative debugging quickly uncovered a
memory leak issue.

1 1

Peer-led
walkthroughs
encourage
reflection

Explaining code to peers prompts apprentices to
think more critically about their logic.

1 1

Rubber duck
debugging helps
recursion

Explaining recursive problems aloud clarified
their solution.

1 1

Subtheme 3.3 – Reflection
and Growth

Focuses on how documentation, journals, and
guided walkthroughs promote debugging
maturity and long-term learning.

2 3

Knowledge
Development

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 3

364 | P a g e

Name Description Files References

Building mental
models through
documentation

Writing comments and diagrams helps
apprentices internalise code structure.

1 1

Documenting
aids learning

Keeping records of debugging efforts enhances
long-term problem-solving skills.

1 1

Regular
debugging
journals
enhance
strategy
retention

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

1 1

Codes\\Focus Group\\Stage 5 - Theme Definition

Name Description Files References

Theme 1 - Nature and Handling
of Debugging Errors

This theme reflects mentors’ and trainers’
observations of how apprentices approach and
react to debugging errors, based on their
reasoning, initial assumptions, and ability to
manage problem complexity. It also includes
the researcher's account of apprentice
reactions during live debugging and
interviews.

2 25

Subtheme 1.1 – Debugging
Mindsets and Reasoning
Patterns

These reflect the intuitive, non-systematic
approaches apprentices use, and common
mistakes made due to overconfidence,
assumption, or incomplete understanding.

2 15

General Reasoning
Pattern

Describes the common tendency of
apprentices to begin debugging using informal,
intuitive, or surface-level logic rather than
structured analytical methods.

1 1

Exploring
before
understanding

Jumping into debugging without a plan often
wastes effort.

1 1

Misguided
Assumptions

Refers to errors in debugging that stem from
overconfidence, confirmation bias, or reliance
on incorrect prior beliefs about how the code
should behave.

1 6

Confirmation
bias skews
debugging

Preconceived assumptions can prevent
apprentices from seeing simple bugs.

1 1

Copying
solutions

Replicating peer solutions without
comprehension weakens problem-solving
development.

1 1

365 | P a g e

Name Description Files References

without
understanding

Jumping to
conclusions
without testing

Making changes without verification disrupts
debugging accuracy.

1 1

Lack of
consistency in
strategy

Frequent switching between debugging
approaches without persistence hinders
learning.

1 1

Lack of
planning leads
to repeated
mistakes

Without structured reflection, apprentices
often repeat ineffective actions.

1 1

Skipping small
tests leads to
big issues

Neglecting to test small units can result in
wasted debugging time

1 1

Unstructured
Debugging

Captures instances where apprentices use
inconsistent, reactive, or haphazard debugging
tactics without a coherent plan, often resulting
in inefficiency.

2 8

Casual
reasoning as
entry point

Debugging often starts with general intuition
rather than a structured plan.

1 1

Casual
reasoning
misses logical
errors

Relying solely on intuition often overlooks
deeper logical issues.

1 1

Casual
reasoning
reliance

Initial debugging efforts are frequently guided
by intuitive rather than logical reasoning.

1 1

Guessing based
on code
understanding

Apprentices rely on surface-level
comprehension of code to make educated
guesses about bug locations.

1 1

Hypothesising
from current
code state

Apprentices form assumptions based on initial
code inspection.

1 1

Switch to trial-
and-error

When intuition fails, apprentices default to
experimenting with fixes.

1 1

Trial-and-error
fits web
debugging

Unstructured trial-and-error can work well in
simpler web-based contexts.

1 1

Trial-and-error
method

Debugging often begins with non-systematic
experimentation that can be inefficient.

1 1

Subtheme 1.2 – Managing
Debugging Complexity

Focuses on the cognitive strain during
debugging tasks and misinterpretations (e.g.,
error logs or unfamiliar codebases).

2 10

Cognitive Load Describes the mental burden apprentices
experience when managing multiple elements

2 8

366 | P a g e

Name Description Files References

of code logic, often leading to overwhelm or
errors in reasoning.

Challenges in
tracing code

Apprentices often find it difficult to follow
code execution paths.

1 1

Code
complexity is
overwhelming

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

1 1

Difficulty
segmenting
code

Apprentices struggle to break complex
problems into manageable parts.

1 1

Fixation on
wrong sections

Focusing narrowly on specific code sections
leads to oversight of wider issues.

1 1

Incomplete
mental model
causes
missteps

Gaps in understanding program flow often
lead to flawed assumptions.

1 1

Not
understanding
broader impact

Neglecting the system-wide effects of a bug fix
can cause further errors.

1 1

Overconfidence
hides errors

Confidence without verification can blind
apprentices to simple coding mistakes.

1 1

Understanding
bug impact

Comprehending how a fix affects the whole
system is crucial to effective debugging.

1 1

Error Interpretation Highlights how apprentices read, misread, or
apply meaning to error messages and logs,
which directly affects bug diagnosis and
resolution pathways.

2 2

Error messages
mislead

Misreading error outputs can lead apprentices
down unproductive paths.

1 1

Struggling to
interpret error
logs

Complex logs and stack traces are difficult for
new apprentices to decode.

1 1

Theme 2 - Technology’s Role in
Debugging Processes

This theme highlights mentor perspectives on
how apprentices engage with debugging tools,
from print statements to IDEs, and how their
learning styles, comfort levels, and
environmental context affect the effectiveness
of those tools.

2 20

Subtheme 2.1 – Tool
Adoption and Preferences

Shows the evolution from print statements to
IDE debuggers and the way different learning
styles impact tool preference.

2 14

Learning Style
Influence

Recognises that visual, verbal, and hands-on
learners respond differently to debugging
strategies, influencing their performance and
tool preferences.

1 2

367 | P a g e

Name Description Files References

Debugging is
influenced by
learning style

Effective debugging strategies vary based on
an apprentice’s preferred learning style.

1 1

Visual
strategies for
visual learners

Visual tools like debuggers support those with
visual learning preferences.

1 1

Tool Familiarity Refers to how apprentices' comfort, exposure,
and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

2 12

Go-to use of
print
statements

Print statements are a preferred initial
debugging method due to familiarity.

1 1

Growth in tool
appreciation

Apprentices learn to value tool efficiency once
they overcome initial hesitation.

1 1

Hesitation to
adopt tools

New users often delay embracing powerful
debugging tools due to fear or lack of
confidence.

1 1

IDE debugger
solves python
bug

Learning debugger tools enabled successful
resolution of Python bugs.

1 1

IDE familiarity
improves speed

Familiarity with debugging environments leads
to faster problem resolution.

1 1

IDE
intimidation
delays
adoption

Fear of using debugger features prolongs
reliance on basic methods.

1 1

Initial
intimidation
with IDEs

Beginners often find IDE tools overwhelming,
delaying their usage.

1 1

Initial struggle
with advanced
tools

Advanced debugging tools pose challenges for
novices.

1 1

Progress from
prints to
breakpoints

Debugging maturity shows in transitioning
from print statements to advanced IDE
features.

1 1

Tool comfort
impacts
strategy

Confidence in using IDEs influences which
debugging methods are applied.

1 1

Visual cues in
IDEs improve
flow tracing

Graphical IDE features help clarify complex
function flows for visual learners.

1 1

Visual
debugging
supports
understanding

Graphical representations aid in tracing
program flow and state changes.

1 1

368 | P a g e

Name Description Files References

Subtheme 2.2 –
Environment and Interface
Support

Covers external conditions (e.g., pressure, IDE
visuals) and how they influence strategic
choices in debugging.

2 6

Debugging Strategy
Selection

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 4

Debugging
depends on
bug type

Strategy effectiveness depends on the
complexity and category of the bug.

1 1

Debugging
strategy
depends on
context

Approaches to debugging vary depending on
the project and type of bug.

1 1

Simulation of
bugs helps
strategy
selection

Creating and solving artificial bugs allows
apprentices to test and compare strategies.

1 1

Tool choice
influenced by
language

Programming language and tech stack shape
the debugging approach.

1 1

Environment Factors Considers how quiet spaces, distractions, or
time pressures in the learning or work setting
either support or hinder focused debugging.

1 2

External time
pressure
disrupts
debugging

High-pressure scenarios often lead apprentices
to abandon systematic debugging.

1 1

Quiet
debugging
helps focus

A calm, low-distraction environment enhances
debugging concentration.

1 1

Theme 3 - Strategies and
Challenges in Debugging

This theme captures how trainers and mentors
observed apprentices developing, adapting, or
struggling with debugging strategies, and how
peer collaboration, repetition, and training
interventions shaped their effectiveness.

2 26

Subtheme 3.1 – Structured
Debugging Approaches

Encapsulates systematic methods like top-
down debugging, use of slicing, simulation,
journaling, and repeating bugs for deeper
insight.

2 15

Bug Replication Focuses on the importance of recreating bugs
as a strategic practice to understand error
behaviour and trace root causes effectively.

1 2

Replication
supports root
cause analysis

Reproducing bugs consistently helps clarify
underlying causes.

1 1

369 | P a g e

Name Description Files References

Rushed
learning under
pressure

Time constraints force apprentices to prioritise
quick fixes over deeper understanding.

1 1

Strategy
Consolidation

Reflects the apprentices’ ability to retain,
refine, and reflect on effective debugging
techniques through habits like journaling and
documentation.

2 3

Debugging
tasks build
confidence
incrementally

Solving increasingly complex bugs builds
apprentice confidence step by step.

1 1

Structured
training
improves
strategy use

Formal instruction in debugging techniques
accelerates apprentice development.

1 1

Success
boosted by
guided
debugging

Step-by-step guidance in early debugging
exercises improves long-term independence.

1 1

Structured Strategy Involves the deliberate use of planned
debugging approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

2 10

Effective use of
top-down

A structured top-down strategy improves
debugging outcomes.

1 1

Mastering
slicing

Learning to slice code effectively improves
tracing and debugging accuracy.

1 1

Pattern
matching
experience

Recognising recurring error patterns assists in
efficient problem solving.

1 1

Pattern
matching in
Python
debugging

Python debugging becomes easier when
apprentices identify recurring structural
patterns.

1 1

Slicing
improves
isolation

Slicing enables more precise identification of
fault origins in code.

1 1

Step-by-step
execution
preferred

Structured, sequential debugging aids
apprentices in isolating and resolving issues.

1 1

Structured top-
down
debugging

A systematic top-down method simplifies
complex debugging tasks.

1 1

Testing leads to
early bug
discovery

Writing tests regularly helps apprentices catch
bugs early.

1 1

370 | P a g e

Name Description Files References

Unit testing
enhances
robustness

Implementing unit tests boosts confidence in
code stability.

1 1

Use of isolation
techniques

Employing isolation helps apprentices identify
and address specific errors.

1 1

Subtheme 3.2 –
Collaborative Debugging

Trainers and mentors described how pair
programming, peer walk-throughs, and code
reviews helped apprentices verbalise their
thoughts, spot errors faster, and build
confidence. These collaborative practices were
seen as instrumental in building debugging
acumen.

2 8

Collaborative
Learning

Captures how shared thinking, verbalisation,
and peer interaction during debugging foster
deeper understanding and strategic
refinement.

2 4

Explaining
debugging
process

Verbalising thought processes helps
apprentices arrive at solutions.

1 1

Feedback from
code review
reshapes
mindset

Constructive feedback during reviews
influences debugging confidence and
approach.

1 1

Mentorship via
code reviews

Experienced developers guiding apprentices
significantly improves their debugging
effectiveness.

1 1

Sharpness
through code
review

Participating in code reviews sharpens bug
detection skills.

1 1

Peer Collaboration Encompasses the positive effects of paired
debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

1 4

Learning
through pair
programming

Collaborative programming accelerates
understanding of debugging processes.

1 1

Pair
programming
exposes
memory leak

Collaborative debugging quickly uncovered a
memory leak issue.

1 1

Peer-led
walkthroughs
encourage
reflection

Explaining code to peers prompts apprentices
to think more critically about their logic.

1 1

Rubber duck
debugging
helps recursion

Explaining recursive problems aloud clarified
their solution.

1 1

371 | P a g e

Name Description Files References

Subtheme 3.3 – Reflection
and Growth

Focuses on how documentation, journals, and
guided walkthroughs promote debugging
maturity and long-term learning.

2 3

Knowledge
Development

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

2 3

Building mental
models
through
documentation

Writing comments and diagrams helps
apprentices internalise code structure.

1 1

Documenting
aids learning

Keeping records of debugging efforts enhances
long-term problem-solving skills.

1 1

Regular
debugging
journals
enhance
strategy
retention

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

1 1

