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Development Technician Apprentice in a geographically distributed environment. 
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Abstract 
 

This empirical study investigates the collective efforts of paired novice programmers working 

on rectifying Python code using technology-mediated tools. It aims to uncover: 1) the types of 

errors they encountered; 2) the debugging strategies and tactics employed by these apprentice 

pairs to locate and fix bugs within the Python code; 3) insights into how the pairs share the 

cognitive load; 4) the influence and efficacy of technological tools in the debugging process; and 

5) the challenges faced by the pairs while working remotely to identify and resolve bugs, along 

with the underlying reasons for these challenges. It is methodically qualitative in nature and 

adopts a multi-case approach to closely examine each instance in its real-life context, utilising 

various data collection methods such as in-depth interviews, participant observations, code 

analysis, and focus groups.  

 

Furthermore, this study examines 15 dyads as they work collaboratively to debug Python code, 

showing the challenges they confront as well as their diverse debugging strategies and tactics. 

It also demonstrates the importance of integrating debugging tools, as well as how dyads 

strategically distribute cognitive tasks. By focusing on the relatively unexplored area of 

distributed pair debugging, this study offers a fresh perspective on collaborative problem-

solving among novice programmers working in remote settings. It notably presents a 

conceptual framework for understanding dyad’s debugging in disparate settings, contributing 

significantly to computing education and integrating technology into educational practices.  
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However, despite its contributions, the study acknowledges its limitations and suggests 

directions for further research to enhance the generalisability and applicability of its 

conclusions. Ultimately, this thesis advances our understanding of the debugging processes of 

paired novice programmers in remote settings, offering empirical insights and technical 

recommendations to improve computing education and practice. 

 

 

Keywords: Distributed Pair Debugging, Debugging Strategies, Remote Collaboration, Cognitive 

Load Management, Computer Science Education Education. 
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Chapter 1: Introduction 
 

 

1.0 Introduction 

Dating back to the era of Adam Smith, economists have recognised the substantial impact 

of a skilled workforce on an economy’s productivity (Johnson, 1937). Such understanding 

brings to the fore the renewed focus on apprenticeships as a mechanism to bolster the 

upcoming workforce’s skills (Guile & Young, 1998; Nash & Jones, 2013) , although a study 

suggests that the primary positive impact on employment is achieved by retaining 

apprentices within the company where they received their training (Pierre & Jérémy, 

2024).  

 

Furthermore, as organisations strive to align their people, processes, and culture for long-

term digital success (Kiron et al., 2016), digital transformation initiatives continue to drive 

up demand for talented software and technology workers. Against this backdrop, 

apprenticeships serve as a viable pathway for individuals to enter the labour market and 

contribute to the growing technology industry (Heyes, 2013; Hoeckel & Schwartz, 2010), 

and are proposed to be a promising answer to soaring youth unemployment (Steedman, 

2012). In addition, England has been experiencing a digital skills crisis, with increasing 

demand from employers for skilled professionals to keep up with the ever-evolving 

technological landscape roles (Nania et al., 2019; Taylor-Smith et al., 2019). However, to 

effectively address unemployment and skill shortages in the software development 

sector, apprentices must acquire debugging abilities, which are an essential component 

of software development. 
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Moreover, the SDT apprenticeship standard (IfATE, 2024) is designed to offer specifics 

about what the apprentice will be doing and the abilities expected of them, allowing them 

to integrate into modern software development teams. These entry-level apprentices are 

also entrusted with developing a range of computer software and work in a variety of 

businesses, from huge enterprises to government organisations, and regularly contribute 

to multibillion-pound software solutions (Carter, 2015). 

 

Therefore, the core of this role focuses on interpreting requirements, creating designs, 

and building and testing software solutions for bugs based on system specifications to 

achieve optimal results (IfATE, 2022). It is, however, crucial to highlight that software 

varies in size, complexity, and quality standards; even small applications are susceptible 

to defects. Therefore, regardless of the language used, bugs are an inevitable part of 

programming (Tsan et al., 2022). According to Lee et al. (2014), debugging is a significant, 

cognitively demanding process that is essential to the practice of programming rather 

than merely a supplementary activity.  

 

Besides, Rich et al. (2019) contend that debugging is a distinct skill set that may be 

acquired outside of specific programming environments. Additionally, studies show that 

inexperienced programmers, such as those in the SDT apprentice category, frequently 

have trouble identifying bugs. According to Decasse and Emde (1988), this challenge 

stems from a lack of critical abilities required for bug isolation, understanding 

programming constructs, comprehending programme execution, and implementing 

efficient debugging procedures. 
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In the same vein, a plethora of studies have examined different aspects of debugging, 

including its challenges (Coker et al., 2019; Eisenstadt, 1993; Jeffries, 1982; Vessey, 1985), 

strategies (Katz & Anderson, 1987), and tools (Petrillo et al., 2019). Additionally, some 

research indicates that the most challenging part of debugging is identifying the bugs 

(Fitzgerald et al., 2008; Katz & Anderson, 1987). Successful completion of this stage 

typically results in the bugs being removed (Fitzgerald et al., 2010). However, more recent 

studies, such as those by Tsan et al. (2022), are increasingly focusing on how novice 

programmers approach debugging, which aligns with the focus of this investigation. 

 

Nonetheless, some research suggests that collaborative interactions, such as pair 

debugging, can help mitigate the challenges associated with debugging (Jayathirtha et al., 

2020; Murphy et al., 2010). In keeping up with this, modern software development 

practices often employ pair programming, in which two developers collaborate on a 

single code. This strategy minimises the cognitive load of an individual programmer 

(Kavitha & Ahmed, 2015) and reduces the potential for programming errors (Hannay et 

al., 2009).  

 

Given the context of this study, pair debugging can be viewed as a subset of pair 

programming. Murphy et al. (2010) characterise it as “an important facet of pair 

programming” (p. 51), in which two developers collaborate to identify and rectify code 

issues while using a single computer. This implies that pair debugging involves the 

collaborative effort of two individuals, known as a dyad, often linked with the shared goal 

of debugging the code, with each providing their knowledge of the task. While this often 
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occurs with the dyad physically present in the same location, the concept also applies to 

distributed teams collaborating on the same programming code from separate locations. 

 

With this in mind, the purpose of this study is to broaden the scope of pair debugging by 

examining its applicability in a distributed pair setting. It aims to investigate the transition 

of bug fixing from the traditional co-location setting to a distributed one, where 

debugging is heavily influenced by technology. Technology assumes a crucial role as a 

mediator in bug fixing, aiding in facilitating pair discourse and adopting debugging 

strategies. Simultaneously, the study intends to contribute to a better understanding of 

novice programmer debugging behaviours, particularly those of SDT apprentices, in 

distributed locations during collaborative pair debugging activities in the software 

development context. 

 

The study specifically looks into the debugging strategies and tactics employed by 

geographically dispersed SDT trainees who collaborate to fix Python code issues utilising 

technology-mediated agents. The research does this by concentrating on a number of 

different areas, including compiler errors, verbal and non-verbal interactions between 

pairs, the roles of technology agents, the patterns of debugging activities, and how they 

resolve issues when they arise. Notably, while debugging research has been extensive, 

this study addresses a gap by specifically investigating distributed pair debugging in an 

educational context. While some research has centred on distributed pair programming, 

distributed pair debugging remains relatively unexplored, especially concerning 

debugging strategies within the educational context. This study aims to fill this gap and 
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contribute to understanding distributed pair debugging practices within educational 

settings. 

 

1.1 Motivation for the Study 

The motivation for this research stems from over 15 years of my professional experience 

within the apprenticeship system, particularly in digital education. In my roles as a 

director of training & assessment, curriculum manager, curriculum specialist, trainer, 

assessor, job coach, internal quality assurer, and end-point assessor, I have come to 

understand the paramount importance of practical, hands-on learning and skill 

development in apprenticeships. My involvement in educating apprentices on the 

standards for data technicians, data analysts, software development technicians, 

development and operations (DevOps) engineers, and network engineers at Levels 3 and 

4 (Levels 3 and 4 are UK qualifications, with Level 3 akin to high school diplomas and Level 

4 to first-year university studies) has exposed me to their challenges, especially in 

debugging, problem-solving, and collaborative programming. Over the years, I have 

worked closely with both apprentices and employers to ensure the effective delivery of 

digital learning programmes that align with the evolving needs of the industry (Fuller & 

Unwin, 2013; Lave & Wenger, 1991). 

 

A major challenge I have observed is the difficulty apprentices experience with debugging, 

which is a critical aspect of software development. Debugging is an essential yet 

cognitively demanding process that often frustrates novice programmers. Research has 

shown that debugging requires a distinct set of skills, including isolating and identifying 

faults in code, an area where many apprentices struggle (Fitzgerald et al., 2008; Katz & 
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Anderson, 1987). In my professional experience, apprentices often struggle to 

understand programming constructs and apply debugging strategies effectively. These 

challenges are heightened in remote working environments, where limited access to peer 

support or mentorship exacerbates the difficulty. Hence, the motivation to explore 

distributed pair debugging arises from the need to address these challenges and improve 

apprentices’ capacity to work collaboratively, even in geographically dispersed settings 

(Murphy et al., 2010). 

 

This motivation is further informed by my role as an internal quality assurer and assessor, 

which has provided a unique perspective on the development of apprentices throughout 

their learning journeys. My experience highlights the importance of fostering practical 

problem-solving skills, especially in the context of distributed work environments. The 

shift towards remote work, accelerated by the COVID-19 pandemic, has underscored the 

need for new strategies for collaboration and skill development, particularly in the digital 

sector (Agerfalk et al., 2005; Espinosa et al., 2007). To adapt to these changes, 

apprenticeship programmes must integrate collaborative practices such as pair 

programming and debugging into their curricula, enabling apprentices to thrive in a world 

where remote work is becoming the norm  (Cockburn & Williams, 2000). 

 

Building on these insights, my professional background within the apprenticeship 

framework has significantly influenced my approach to this research. Through my active 

involvement in shaping, delivering, and assessing apprenticeship standards across various 

digital sectors, I have seen how apprenticeships are pivotal in equipping young 

professionals with essential workforce skills. However, I have also identified gaps in how 
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current frameworks prepare apprentices for the complexities of debugging in real-world 

scenarios, particularly in distributed environments. The apprenticeship model, 

traditionally rooted in hands-on learning, now faces the challenge of equipping 

apprentices to collaborate effectively across remote settings (Guile & Young, 1998). My 

insider knowledge of curriculum development has enabled me to critically assess how 

distributed pair debugging can bridge the gap between theory and practical application. 

 

This study aligns with broader research, which suggests that debugging is often treated 

as a supplementary skill rather than a core component of the curriculum, leaving many 

apprentices underprepared for industry demands (Eisenstadt, 1993; Jeffries, 1982). From 

my perspective as a curriculum specialist, I have observed how this oversight limits the 

apprenticeship experience, preventing learners from acquiring the structured problem-

solving skills necessary for industry success. By embedding systematic debugging 

strategies into the curriculum, apprentices could not only develop a more methodical 

approach to identifying and resolving software bugs but also enhance their technical 

competence, confidence, and workplace readiness. This integration would represent a 

critical step in modernising apprenticeship programmes to meet the demands of a rapidly 

evolving digital workforce. 

 

The relevance of these changes is further underscored by the growing importance of 

remote work in software development. Studies have demonstrated that collaborative 

debugging practices, such as pair programming, lead to higher quality code, improved 

communication, and greater knowledge transfer (Hannay et al., 2009). However, the 

challenges of working in distributed teams, particularly for apprentices, remain 
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underexplored (Smite et al., 2021). This study seeks to address this gap by investigating 

how apprentices manage the cognitive load of debugging in distributed pair settings and 

how technology, such as integrated development environments, can facilitate this 

process (Beasley & Johnson, 2022). By doing so, it aims to provide actionable insights for 

designing apprenticeship programmes that equip learners with the skills and resilience 

needed for a remote-first workplace. 

 

Building on these findings, my familiarity with apprenticeship standards, such as those 

established by the Institute for Apprenticeships and Technical Education, underscores the 

pressing need for these programmes to evolve in line with the demands of the digital 

workforce. While current standards emphasise knowledge, skills, and behaviours, the 

integration of collaborative problem-solving techniques, such as distributed pair 

debugging, remains underdeveloped. Through this research, I aim to bridge this gap by 

contributing insights that can inform the enhancement of apprenticeship standards, 

particularly in the digital sector, where collaboration and debugging are essential 

competencies (IfATE, 2022). 

 

In conclusion, this research is deeply informed by my professional experience as a 

curriculum specialist and quality assurer and my understanding of the challenges 

apprentices face in developing collaborative debugging skills. As the demands of remote 

work reshape the modern workforce, it is critical that apprenticeship programmes adapt 

to equip learners with the skills needed to thrive in distributed environments. By 

investigating the debugging behaviours of SDT Apprentices in collaborative, remote 

settings using technology-mediated tools, this study will address a significant gap in the 
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literature. The findings aim to contribute to the advancement of apprenticeship 

programmes, ensuring they align more closely with the realities of the digital workforce 

and prepare apprentices for sustained success in their careers. 

 

1.2 Research Background 

Apprenticeship within the framework of collaborative learning represents a unique and 

effective approach to holistic skill development. In contrast to traditional classroom 

instruction, apprenticeships prioritise practical experience, allowing novices to acquire 

skills through direct observation and collaboration with experts who play an important 

role in imparting knowledge, skills, and guidance (Lave, 1995; Lave & Wenger, 1991), 

effectively embodying the “learning by doing” approach. This technique has received 

recognition for its effectiveness in traditional learning environments, notably in 

developing strategic and metacognitive skills (Sawyer, 2014) which are required for 

career success and modern workforce demands. 

 

To add to that, apprenticeships in the modern period are great platforms for combining 

theory and practice (Mirza-Davies, 2015), allowing participants to use their newly gained 

skills in real-world scenarios (Wolter & Ryan, 2011). This suggestion is consistent with the 

arguments stated by Engeström et al. (2001), which emphasises the necessity of a 

balanced mix of theoretical learning and practical application. Similarly, apprenticeships, 

according to Lave and Wenger (1991), are intensive experiences that shape an individual's 

identity within a community of practice while also encouraging active learning and 

engagement with seasoned professionals. Thus, apprentices learn through active 

participation, progressing from peripheral to key members of their work communities 
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(Lave, 1996). In essence, this holistic approach teaches specific skills and prepares 

apprentices for meaningful workplace participation. 

 

In relation to this research, the new apprenticeship standards replace the previous, more 

generalised framework-based apprenticeships and come with distinct 

characteristics such as Employer-Led Standards, Endpoint Assessment, and Funding 

Reforms (DfE/BIS, 2013). These new criteria were developed by groups of employers 

known as "trailblazers" and are intended to closely correlate with the specific skills, 

knowledge, and competencies required for each occupation (Fuller & Unwin, 2010, 

2013). The associated Skills, Knowledge, and Behaviours (KSBs) were intended to make 

apprenticeships more relevant and challenging. 

 

Not only that, the shift to employer-led standards serves a dual purpose: it fulfils both 

the skill demands of England's diverse sectors and the requirements of those seeking 

career advancement or a fresh start. As of August 2023, the standards have been 

customised to fifteen diverse industries, including agriculture, digital, and legal. This 

range ensures that a broad spectrum of skills and vocations is covered, reflecting the 

diverse demands of the national economy. Importantly, these apprenticeship standards 

are not static; they are constantly revised to reflect the ever-changing demands of the 

workforce and the economy. 

 

1.2.1 SDT Apprenticeship 

As of August 2023, the SDT Apprenticeship Standard in England, the standard that the 

SDT apprentices are learning, is one of 29 digital apprenticeship standards (IfATE, 2023) 
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developed and approved as a result of the Richard Review and following Trailblazer 

project. Following the Richard Review in 2012, the government introduced the Trailblazer 

programme, which enables employer-led groups to create new apprenticeship standards. 

The SDT Apprenticeship was one of the new standards (DfE/BIS, 2013; Richard, 2012), 

and it was intended to be more employer-led and occupation-focused.  

 

The SDT Apprenticeship is a Level 3 qualification that normally lasts from 15 to 24 months. 

It addresses the fundamental skills, knowledge, and attitudes required to function as a 

software developer. Similarly, the SDT Apprenticeship standard is a customised 

occupational standard that specifies the fundamental 'knowledge, skills, and behaviours' 

(KSBs) required for proficiency in the job role. According to the Institute for 

Apprenticeships and Technical Education (IfATE), this standard has 62 KSBs divided into 

25 knowledge, 32 skills, and 5 behavioural criteria (IfATE, 2024). These KSBs are further 

aligned with the 15 occupational duties that an apprentice is expected to perform. The 

standard also defines any qualifications required to complete the apprenticeship and 

how they connect with professional recognition, if applicable.  

 

Also, apprentices are classified as novices (see Section 1.1.2) who have been trained to 

create, test, and maintain code, interpret design requirements, and communicate within 

a development team. They are generally responsible for assisting with software 

development throughout the whole software development life cycle. Given this, SDTs are 

entry-level team members who work in a variety of industries, ranging from financial 

services to public sector organisations. In addition, they are required to use basic 

debugging techniques as part of their occupational duties. Techniques include but are not 
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limited to interactive debugging, print debugging, and remote debugging. On top of that, 

the standard highlights the use of structured problem-solving methodologies, such as 

basic code debugging, in identifying and resolving issues  (IfATE, 2024). 

 

1.2.2 Novice Programmers 

The gradual development of an individual's talents is described by the five-stage 

phenomenological model of skill acquisition proposed by Dreyfus and Dreyfus (2005). 

Although Dreyfus et al. (2000) classified these levels as novice, advanced beginning, 

competent, proficient, and expert. At the novice level, people use rules and drills to 

complete tasks without the benefit of real-world experience, frequently failing to grasp 

the context. The journey through these phases is a change from inexperience to mastery, 

where the novice is at the starting point and lacks perception and situational awareness. 

In variance to Dreyfus and Dreyfus’s suggestion, Shneiderman (1976) identified four 

levels of programming experience, namely naive, novice, intermediate, and advanced. 

Naive individuals are entirely new to programming; novices have completed an 

introductory course. Intermediates have finished two or three courses, while advanced 

programmers include graduate students, faculty, or professionals in the field. Based on 

Shneiderman’s framework, the terms ‘novice’ and ‘beginner’ can be used 

interchangeably, and there is a suggestion that the first three categories might be too 

finely distinguished. 

 

However, looking at the literature suggests a varied description of what constitutes a 

"novice". Allwood (1986) defines novice as either someone with minimal experience or 

someone completely new to programming, regardless of their actual knowledge. In 
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contrast, experts, on the other hand, effortlessly master tasks and respond intuitively to 

challenges (Dewey, 1922). Nonetheless, this thesis aligns with Dreyfus and Dreyfus (2005) 

in suggesting that novices rely on deliberative reasoning due to their limited contextual 

understanding, a limited repertoire of situational discrimination, and a detached 

comprehension of the phenomenon. This research reveals that while novices may have 

tacit knowledge that aids them in executing tasks, their reliance on stringent rules is 

evident, limiting their overall effectiveness. 

 

In a related vein, Luxton-Reilly (2016) and Savage and Piwek (2019) argue that 

novice programmers lacking a solid understanding of core programming constructs like 

variables, arrays, recursion, and loops face challenges in crafting efficient functions and 

procedures. Similarly, Barbosa Rocha et al. (2022) emphasised novices' difficulty in 

properly integrating and implementing programming principles, which affected their 

abilities to develop and test code. Likewise, Klahr and Carver (1988) and Liu et al. (2017) 

argue that newbie programmers struggle because they lack particular domain knowledge 

and problem-solving skills.  

 

Building on this, scholars such as Ahn et al. (2022), Denny et al. (2022), and Hassan and 

Zilles (2022) appear to agree that novice programmers frequently struggle with 

programming, albeit with differing perspectives on the root causes and potential 

solutions (Karvelas, 2019; Malik et al., 2022; Smith & Rixner, 2019; Tsan et al., 2019; 

Whalley et al., 2021).  
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Furthermore, other studies contend that novices, unlike experts, have fragmented 

knowledge structures, resulting in a shallow grasp of tasks and more frequent errors 

(Allwood, 1986). This is consistent with Jenkins (2002), who indicates that novices 

frequently underestimate the complexities of programming structures. Bonar and 

Soloway (1983) investigated whether rookie issues resulted from the nature of 

programming and the tools utilised. After closely observing and interviewing a subset of 

novice Pascal programmers, they inferred that using natural language influenced their 

early programming efforts. The incorrect utilisation of natural language strategies in 

programming seemed to be the root cause of their challenges. This conclusion echoes 

Soloway et al. (1981), who argued that traditional programming languages do not align 

well with the intuitive cognitive strategies used by novices familiar with natural language, 

causing discrepancies and misunderstandings. 

 

Elaborating on this, a collection of research papers edited by Soloway and Spohrer on 

novice programmers reveals that their understanding often transcends mere rule 

memorisation but remains at a superficial level, focusing on line-by-line coding rather 

than grasping meaningful program structures (Soloway & Spohrer, 2013). Winslow (1996) 

deepens the understanding of this phenomenon by further noting that while novices 

might understand individual syntax and semantics, they struggle to combine them into 

coherent programs. This is echoed by Blackwell et al. (2002) and Lahtinen et al. (2005), 

highlighting novices’ difficulties with programming constructs like loops, conditional 

statements, pointers, and recursion (Pane & Myers, 1996; Soloway & Spohrer, 1989). Du 

Boulay (1986) contends that insufficient domain comprehension and syntactic and 

semantic limitations are the primary causes of beginners' compounded problems. This is 
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supported by Pennington (1987), who adds that a shaky grasp of programming structures 

exacerbates their challenges. 

 

Continuing from this, many studies pinpoint learners’ attributes as the root cause of the 

challenges novices face (Guzdial, 1994; Lahtinen et al., 2005; McCracken et al., 2001; 

Robins et al., 2003; Soloway & Spohrer, 1989; Winslow, 1996). Buttressing this point, 

McCracken et al. (2001) address the challenges novice programmers face and emphasise 

common struggles such as understanding fundamental concepts and applying problem-

solving techniques; this is further exacerbated by their shaky grasp of core programming 

concepts and inconsistent methodologies. Guzdial (1994), in his study, asserts the 

difficulty in grasping abstract notions and bridging the gap between theory and practice. 

Following that, Robins et al. (2003) draw attention to the challenge as the cognitive strain 

associated with problem-solving and comprehending programming principles. In their 

study, Soloway and Spohrer (1989) discuss frequent misunderstandings and mistakes, 

such as misinterpreting loops and conditionals. According to Lahtinen et al. (2005), other 

problems include a lack of past knowledge and overwhelming programming 

environments. Winslow (1996) in his study reiterates the huge difference between 

novices and experts, notably in algorithmic thinking and task management complexity. 

Adelson and Soloway (1985) and Mayer (1981) both affirm the critical role of a well-

formed mental model in programming. The latter also points out issues like problem 

decomposition and syntax arising from immature mental models. Overall, these 

investigations demonstrate the layered and interconnected obstacles that novice 

programmers confront. However, reflecting on my personal experiences with teaching 

novices, these observations resonate.  
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Moreover, many novices perceive programming as daunting (Hanks et al., 2004; Jenkins, 

2002; Robins et al., 2003). Jenkins (2002) attributes this to the extensive skill set needed 

while Sloane and Linn (1988) describe it as a layered skill acquisition, from basics to 

complexity. Jenkins (2002) and McKeithen et al. (1981) both present programming as a 

phased approach, transitioning from specifications to algorithms and, ultimately, to code. 

Other studies on novice programming have found that they struggle with fundamental 

concepts such as variables, control structures, and problem-solving strategies (de Raadt, 

2007; Glezou & Grigoriadou, 2010; Hooper & Thomas, 1990; Lister et al., 2004; Papadakis 

& Orfanakis, 2018; Sajaniemi & Kuittinen, 2008; Van Someren, 1990). Novices often 

struggle with the complexities of language syntax and semantics (Robins et al., 2003), 

demonstrate alternative concept comprehension, and face difficulties in planning, 

writing, and debugging programs (Lister et al., 2004), owing to their limited 

understanding of programming (Kurniawan et al., 2019; Müller et al., 2019; Teague & 

Roe, 2007). While these struggles are well-documented, there is a noticeable gap in 

exploring the unique challenges faced by paired novice programmers debugging in a 

distributed environment (Kurniawan et al., 2019), suggesting a need for deeper 

investigation in this niche area. 

 

1.3 The Rationale for this Study 

The increasing prevalence of remote work has highlighted the need for insights into 

collaborative activities such as paired debugging, particularly in geographically dispersed 

contexts. While existing research has highlighted the benefits of paired programming in 

terms of code quality, improves team communication, fosters knowledge transfer, self-
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efficacy, expertise sharing, and team collaboration (Bipp et al., 2008; Cockburn & 

Williams, 2000; Hughes et al., 2020), the specific challenges of working in geographically 

dispersed teams have been underemphasised (Jayathirtha et al., 2020; Murphy et al., 

2010). 

 

Moreover, while some research on distributed software development predates COVID-

19, the practice has gained momentum since the early 2000s, with the COVID-19 

pandemic further accelerating the shift to remote work (Agerfalk et al., 2005; Espinosa et 

al., 2007; Lacave & Molina, 2021; Miller et al., 2021; Neto et al., 2020; Sokolic, 2022). 

Thus, understanding how apprentices’ debugging behaviours adapt in remote settings 

offers insights into apprentices’ strategies and collaboration techniques during debugging 

(Adeliyi et al., 2021; Ying et al., 2021). Similarly, as remote work becomes more prevalent, 

it is crucial to understand the debugging strategies and technological usage of 

geographically distributed apprentices (Beasley & Johnson, 2022; Lynch et al., 2023; 

Smite et al., 2021). This research is both timely and crucial for sustaining software quality 

and efficiency. 

Furthermore, the function of digital tools such as Integrated Development Environments 

(IDEs) in supporting the debugging practices of apprentices in remote paired 

programming scenarios (Hassan & Zilles, 2022) remains insufficiently examined. 

Considering the growing dependence on these tools in distributed settings, exploring 

their effectiveness and potential obstacles is important, thereby addressing a notable 

void in current studies. 
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1.4 Aims and Objectives 

This empirical study examines the debugging strategies utilised by geographically 

dispersed Software Development Technician (SDT) apprentices debugging Python codes. 

The study zeroes in on their collective endeavours to rectify Python code using 

technology-mediated instruments. Additionally, it aims to uncover the factors influencing 

their debugging methods and identify their challenges. 

 

To fulfil the aim of this investigation, the study will pursue the following objectives: 

▪ Examine the types of errors made by geographically dispersed dyad apprentices when 

collaboratively identifying and correcting bugs in the provided Python code and errors 

they might miss or fail to rectify. 

▪ To investigate the debugging strategies and tactics employed by these apprentice 

pairs in locating and fixing bugs in Python code and attempt to understand their 

problem-solving approaches. 

▪ Gain insights into how geographically dispersed dyad apprentices share cognitive load 

during their bug detection and correction processes. 

▪ Investigate the influence and efficacy of IDE tools and other technology-mediated aids 

in assisting or impeding the debugging tasks the geographically separated dyad 

apprentices tackled. 

▪ Lastly, explore the challenges confronted by paired SDT apprentices working from 

different locations as they collaborate on bug identification and resolution and 

identify the underlying causes of these challenges. 
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By addressing these objectives, the study intends to provide an in-depth understanding 

of the synergies involved in remote, collaborative debugging among apprentice 

programmers. 

 

1.5 Research Questions 

Debugging is a costly and time-intensive task where programmers utilise a variety of tools 

and approaches for bug identification and resolution (Hirsch & Hofer, 2022). Although 

debugging is traditionally a solitary activity, paired debugging turns it into a collaborative 

effort that promotes engagement and accountability between pairs (Baker et al., 2004). 

This process necessitates a deep understanding of how they collaboratively reason 

through and resolve errors by investigating their mental models (Oman et al., 1989) and 

the ability to link observed behaviours to potential defects (Perscheid et al., 2017).  

Current literature shows a paucity of research on paired debugging among novice 

programmers, especially in distributed settings using technology as a mediator. Thus, 

adapting industry practices for educational contexts is logical but needs exploration, 

particularly when pairing remote novice programmers. Therefore, this study aims to 

understand the debugging behaviours of SDT Apprentices in collaborative, remote 

settings. 

 

To this end, this central question steers this study: 

“How do the paired SDT in geographically distributed locations 

work collaboratively to fix Python programming bugs using the 

technology-mediated medium?” 
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Leedy and Ormrod (2021, p. 26) suggest that from a research design standpoint, the 

central research question can be broken down into several smaller, focused questions. 

By answering these sub-questions, researchers are better positioned to address the 

central question comprehensively. This approach allows for a more granular investigation 

of the subject matter and can lead to a fuller understanding of the studied issue. So, given 

this and in investigating this central question, this study proffers answers to the following 

five specific research questions: 

▪ RQ1: What bugs are generated by the paired geographically distributed SDT 

apprentices working collaboratively to solve a given problem using Python?  

▪ RQ2: What bug locating strategies and tactics are deployed by the paired 

geographically distributed SDT apprentices while attempting to fix defects in the given 

Python code? How do they go about finding the bugs in the program code?  

▪ RQ3: How do the paired geographically distributed SDT apprentices distribute 

cognitive load when resolving bugged code? 

▪ RQ4: How does leveraging IDE tools enhance the capabilities of distributed pair 

debugging and mitigate the challenges encountered in debugging programs? 

▪ RQ5: What challenges are experienced by paired geographically distributed SDT 

apprentices working collaboratively on debugging programming bugs, and why are 

they facing such challenges? 

 

Based on Maxwell (2012), the study employs multiple research questions to provide a 

focused framework for investigating the debugging behaviour of remote, dyad SDT 

apprentices. The first question aims to identify the types of bugs these apprentices 

generate while working on Python code. These data are then compared with bugs 
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generated by solo and co-located novice programmers in previous studies (Miller et al., 

2021; Neufeld & Fang, 2005; Ralph et al., 2020). This comparison helps us understand if 

remote settings influence bug generation. 

 

The second question focuses on the debugging behaviour of these apprentices, aiming to 

inform workplace mentors and training providers on how best to support them. The third 

research question uses the vocalised thoughts of apprentices to understand how they 

distribute the cognitive load during debugging, leveraging the theories of distributed 

cognition (Hutchins, 1995) and information foraging (Pirolli & Card, 1999). These theories 

provide a framework for data collection and analysis, offering insights into thought 

processes and debugging techniques. The fourth question explores the role of 

technology, including integrated development environments and collaboration tools, in 

the debugging process. The question asks whether technology enhances or complicates 

remote debugging, contrasting with its role in co-located settings. Lastly, the fifth 

research question investigates the challenges remote dyad apprentices face in debugging 

Python code and seeks to identify the root causes of these challenges. 

 

However, it is essential to note that the value of this research is premised on 

understanding how dyad SDT apprentices approach debugging.  

 

1.6 Structure of the Thesis 

The structure of this thesis facilitates the exploration of the debugging strategies of 

novice programmers, with a specific focus on distributed pair debugging, the role of 



22 | P a g e  

 

technology, and the conceptual framework guiding the study. Each chapter serves a 

distinct purpose and contributes to the overall research endeavour. 

 

Chapter 1 - Introduction: This chapter introduces the research topic, explaining the 

rationale behind the study and its primary research question. It also offers background 

information on the apprenticeship system in England and describes the characteristics of 

novice programmers. The study's goals and objectives are presented, and the chapter 

concludes with an overview of the thesis format. 

Chapter 2—Literature Review: This chapter critically reviews research on novice 

programmers’ debugging strategies and errors. It defines key debugging concepts, 

analyses current knowledge, and identifies common debugging strategies and challenges. 

It then inquires about distributed pair debugging, explores the role of technology, and 

reviews relevant research. The chapter establishes a theoretical basis for the study by 

addressing gaps in existing literature that the thesis aims to fill. 

 

Chapter 3 - Conceptual Framework: This chapter presents the conceptual framework that 

serves as the foundation for the study, detailing essential ideas and relationships that 

drive data collection and interpretation. 

 

Chapter 4 - Research Methodology: This chapter provides an in-depth discussion of the 

research design, methods, and tools used in the study. It describes the approach to data 

collection, participant selection, and data analysis, detailing the steps taken to ensure the 

validity and reliability of results. The chapter also discusses ethical considerations 
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associated with the research, highlighting measures to protect participants’ rights and 

ensure research integrity. 

 

Chapter 5 - Data Analysis and Findings: This chapter presents and analyses the data 

collected during the research within the conceptual framework and literature review 

context. It identifies patterns, trends, and insights emerging from the data, addressing 

the research question. The chapter provides a detailed interpretation of the results, 

discussing the implications of the findings for novice programmers’ debugging strategies, 

especially within the apprenticeship model of learning. 

 

Chapter 6 - Conclusion and Future Research: This chapter summarises the main findings 

and discusses their implications for novice programmers, educators, and software 

development teams. It outlines the study’s contributions to the existing knowledge on 

debugging strategies among novices within distributed settings and apprenticeship 

learning, highlighting potential areas for future research. The chapter concludes by 

acknowledging research limitations and providing recommendations for practitioners 

and researchers in computer science education. 
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Chapter 2: Literature Review 
 

 
2.0 Introduction 

A plethora of studies, like those by Dyba and Dingsoyr (2008), Mens et al. (2019) and 

Nosek (1998), highlights substantial advancements in embracing collaborative practices 

in the realm of software development. These advancements have accelerated the 

adoption of pair programming as a pivotal educational strategy (Hanks et al., 2011; 

Sobral, 2020), gaining traction across diverse learning environments due to its inherent 

benefits (Baheti et al., 2002; Chorfi et al., 2020; da Silva Estacio & Prikladnicki, 2015; Dyba 

& Dingsoyr, 2008; Faja, 2014). Notably, such practices enhance the learning experience 

and aptly support learners in future workforce demands (National Research Council, 

2013; Yett et al., 2020). 

 

Building on this foundation, the traditional Implementation of pair programming or, in its 

extended form, pair debugging, has typically been a co-located activity centred around 

continuous communication and collaboration (Smite et al., 2021). However, the COVID-

19 pandemic has significantly heightened the use of digital technologies in coding 

education (Chorfi et al., 2020; Lacave & Molina, 2021), leading to the mainstreaming of 

virtual collaborative programming. In a way, this transition bolstered interest in its 

pedagogical advantages. As a result, educational institutions and training providers began 

adapting to industry-aligned collaborative models, integrating collaborative 

programming to provide learners with industry-relevant experiences, skills, and 

environments (Phillips et al., 2021; Smite et al., 2021). This practice reaffirms the 
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necessity and value of remote pair programming and debugging in contemporary 

education. 

 

Given this growing emphasis on remote collaboration, this literature review examines the 

current state of research on distributed pair debugging, which remains a relatively under-

explored area despite its increasing relevance in modern software development and 

education. Distributed pair debugging, also referred to in the literature as “virtual pair 

debugging” or “remote collaborative debugging” (Baheti et al., 2002; Hanks, 2008; Smite 

et al., 2021), involves two individuals collaborating remotely to identify and resolve 

programming errors. As distributed software development expands, understanding how 

debugging is conducted in these environments is critical. This review aims to identify 

current knowledge, gaps, and the specific strategies, tools, and challenges related to 

distributed pair debugging. 

 

Building on this focus, previous studies have extensively explored pair programming, a 

practice where two programmers work together at one workstation, sharing the roles of 

driver and observer (Williams et al., 2000). Traditionally, pair programming has been a 

co-located activity, allowing for direct interaction and immediate feedback (Hanks et al., 

2011; Nosek, 1998). However, with the rise of distributed software teams, particularly 

driven by the global shift towards remote work, there is increasing interest in how this 

co-located collaborative approach translates to remote settings, often termed 

“distributed pair programming” or “virtual pair programming” (Baheti et al., 2002; da 

Silva Estacio & Prikladnicki, 2015). Despite this interest, there is limited understanding of 
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how the practice adapts to the debugging phase, a process that demands effective 

collaboration and communication. 

 

This gap becomes even more pronounced in distributed pair programming, which 

introduces unique challenges in remote settings. These include a heavy reliance on digital 

tools and the absence of face-to-face communication, both of which are critical to the 

debugging process (Olson & Olson, 2000; Smite et al., 2021). This literature review 

examines how such challenges influence debugging performance, particularly for novice 

programmers, who often find debugging difficult even in co-located environments. 

Additionally, the review evaluates whether existing tools for remote pair programming, 

such as shared integrated development environments (IDEs) and screen-sharing 

applications, provide adequate support for debugging in distributed contexts (Phillips et 

al., 2021; Tsai et al., 2015). 

 

At its core, debugging is a cognitively demanding task that requires identifying, isolating, 

and correcting errors in code. For novice programmers, this process is further 

complicated by their limited experience and the high cognitive load it entails (Fitzgerald 

et al., 2008; Katz & Anderson, 1987). When conducted in a distributed setting, debugging 

becomes even more complex due to the separation between collaborators, which can 

cause delays in communication and misunderstandings about code functionality (Wetton, 

2021). This review explores how these additional factors affect the debugging process 

and examines the strategies novice programmers employ to overcome them. By 

understanding these dynamics, the review aims to provide valuable insights into 

improving distributed pair debugging practices. 
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Effective collaboration in distributed pair debugging also depends on the availability and 

functionality of tools designed for real-time interaction. Integrated Development 

Environments (IDEs) with built-in debugging tools, screen-sharing applications, and real-

time code editors have become central to distributed pair programming (Lacave & 

Molina, 2021; Smite et al., 2021). However, research suggests that these tools are often 

not fully optimised to meet the iterative demands of debugging, such as testing and error 

correction (Hanks, 2008; Tsai et al., 2015). This review evaluates the performance of these 

tools in distributed contexts, where delays in the feedback loop between driver and 

observer can hinder the debugging process. By assessing these tools’ strengths and 

limitations, the review seeks to identify practical improvements that can enhance their 

effectiveness for distributed pair debugging. 

 

Beyond the tools themselves, effective distributed pair debugging also relies on cognitive 

strategies employed by programmers. Research on pair debugging in co-located settings 

has shown that novices often depend on trial-and-error methods, which are inefficient 

and time-consuming (Khalid et al., 2021; Murphy et al., 2010). In distributed 

environments, where non-verbal feedback is limited and coordination occurs via digital 

platforms, these challenges can become even more pronounced (Khalid et al., 2021). This 

review examines the literature on cognitive load management in distributed pair 

debugging, focusing on how programmers allocate tasks, share information, and maintain 

effective collaboration despite physical separation. By understanding these strategies, 

the review aims to provide insights into improving both the technical and cognitive 

aspects of distributed pair debugging. 
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In addressing these complexities, this literature review synthesises findings from various 

studies to clarify the current state of research on distributed pair debugging. It maps the 

existing research landscape, identifies gaps, and proposes future directions for studying 

the strategies and tools that can enhance debugging performance in distributed settings. 

By doing so, this review contributes to developing best practices for novice programmers 

working in distributed environments, ensuring that they are equipped with the necessary 

skills and tools to debug effectively. 

 

To conclude, it is essential to establish a methodological foundation to ensure the 

review’s findings are grounded in rigorous academic practice. The following sections 

outline the approaches taken in conducting this literature review, beginning with the 

choice of review type in Section 2.1, which explains the rationale for selecting an 

integrative literature review. This method synthesises diverse streams of research, 

offering comprehensive insights into the field. Section 2.2 provides a detailed account of 

the methods used to gather and analyse relevant studies, drawing on established 

systematic review practices (Arksey & O'Malley, 2005; Randolph, 2019). In Sections 2.3 

and 2.4, the focus shifts to the critical appraisal and synthesis of the literature, where key 

themes are identified using best practices in thematic analysis (Braun & Clarke, 2006) and 

integrative reviews to address complex and interdisciplinary research questions (Hopia et 

al., 2016). Together, these sections lay the groundwork for systematically reviewing the 

current state of knowledge in this under-explored field of distributed pair debugging, 

ensuring a robust and comprehensive analysis (Greenhalgh & Peacock, 2005; Hart, 1998). 
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2.1 Choice of a Review Type 

Literature review methodologies vary widely in focus and application. Hart (1998) 

describes narrative reviews as broad overviews suitable for initial explorations but lacking 

detailed critique. Arksey and O'Malley (2005) focus on scoping reviews which map 

research landscapes broadly without the constraints of systematic reviews. Jesson et al. 

(2011) discuss critical reviews that analyse methodologies profoundly but are limited in 

scope, while Randolph (2019) describes state-of-the-art reviews that highlight recent 

innovations but may not cover the broader field. Integrative Literature Reviews (ILRs), 

detailed by Whittemore and Knafl (2005) and Torraco (2005), blend various research 

types, enhancing theory building and filling gaps, especially in emerging fields where 

conventional reviews are inadequate, as noted by (Greenhalgh & Peacock, 2005).  

 

In comparison to the other forms of literature reviews discussed above, the ILR technique 

stands out for its methodological flexibility and interdisciplinary scope, which allow it to 

handle complicated research questions. It integrates diverse sources across research 

methods, including published articles, grey literature, with both qualitative and 

quantitative studies, as noted by Broome (2000), Hopia et al. (2016), and Whittemore and 

Knafl (2005). This makes it a particularly effective approach for scholarly investigations 

requiring a detailed and all-encompassing examination, as required in this study. 

 

2.2 Methods 

To map existing knowledge and identify gaps in research on novice paired programmers’ 

debugging in distributed environments, this study used an Integrative Literature Review 

(ILR) as a primary lens to synthesise various streams of literature, following the 
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framework proposed by Lubbe et al. (2020). In determining the most appropriate ILR 

methodology, this research scrutinised and contrasted various approaches 

recommended by leading academics. Notably, Whittemore and Knafl (2005), Torraco 

(2005) and Russell (2005) advocate for a five-phase model, albeit with slight differences 

in the objectives of particular phases, whereas Souza et al. (2010) suggest a six-phase 

technique. After evaluating the outlined ILR methods, the study embraced the concise 

five-step strategy that Lubbe et al. (2020) put forward, as depicted in Figure 1. This 

decision was influenced by its clarity and structured approach, which provides a 

straightforward path through the complex process of conducting an ILR. This clarity helps 

in systematically addressing the research objectives and ensuring that each step of the 

review is purposeful and contributes to the overarching goals of the study. 

 
Figure 1: Integrative literature review (adapted from Lubbe et al., 2020) 

 

2.2.1 Review question 

The first step involves clearly defining the research question or problem that the review 

aims to address (Lubbe et al., 2020). This is crucial as it guides the search for relevant 

literature and the subsequent analysis. Through this exploration, the literature review 

establishes a solid foundation upon which  the research questions can be thoroughly 
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examined and answered, enhancing the scholarly discourse surrounding the topic 

(Torraco, 2016).   

 

The central question that steers this study centres on:  

“How do the paired Software Development Apprentices in 

geographically distributed locations work collaboratively to fix Python 

programming bugs using the technology-mediated medium?” 

 

 

As seen in the research question, this study explicitly explores the debugging strategies 

deployed, the tools employed and their effectiveness in addressing geographical 

separation. It also examines the types of programming bugs encountered and how paired 

novice programmers manage cognitive load. Ultimately, the study seeks to understand 

the interaction between technology, collaboration methods, task distribution, and the 

unique challenges of remote debugging. 

 

2.2.2 Sampling 

The literature sampling process consisted of two main steps, namely searching and 

screening. Relevant material was located during the searching phase by scanning 

academic databases, search engines, and other sources using precise keywords, Boolean 

operators, and search filters. Subsequently, titles and abstracts were screened for 

relevance using predetermined criteria such as subject relevancy, research type, and 

publication date. To complete the selection for data synthesis, the full texts of possibly 

relevant publications were compared to the inclusion criteria (Lubbe et al., 2020). This 
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methodical strategy ensured comprehensive coverage while excluding irrelevant or low-

quality sources. 

 

Searching 

To answer the research question more fully, it becomes imperative to identify and collect 

relevant literature, a crucial step that typically involves database searches, manual 

journal reviews, and citation checks. Whittemore and Knafl (2005) emphasise a 

methodical and transparent approach and Carnwell and Daly (2001) stress the 

importance of a well-defined search strategy. In line with these recommendations, 

researchers, as highlighted by Kraus et al. (2022), frequently utilise multifaceted search 

techniques, including keyword searches, Boolean operators, and time-framed queries, to 

enhance their research effectiveness. Please refer to the visually illustrated processes 

presented in Figure 2. 

 

In conducting the literature search for this study, a wide range of databases were 

utilised to ensure comprehensive coverage. These included Scopus, ProQuest, JSTOR, 

ERIC, IEEE Xplore Digital Library, ACM Digital Library, ScienceDirect, EBSCO, SAGE 

Journals, Web of Science, Education Full Text, PsycINFO, Academic Search Ultimate, and 

Google Scholar. The search was conducted between May 2021 and April 2024, using a 

structured query designed to enhance the relevance of the outcomes. The query 

employed specific terms and combinations: (“Distributed Pair Debugging” OR “Remote 

Pair Debugging” OR “Remote Collaborative Debugging” OR “Virtual Pair Debugging” OR 

“Distributed Pair Programming” OR “Virtual Pair Programming” OR “Distributed 
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Cognition” OR “Bug Location” OR Dyad*) AND (Error OR Bug OR “Bug Type*” OR “Error 

Type*”) AND (Debug* OR “Pair Debug*”). 

 

This carefully constructed query represents a systematic approach to identifying relevant 

academic literature on distributed pair debugging. By using Boolean operators (“AND”, 

“OR”) and wildcards, it balances breadth and focus to capture studies spanning diverse 

contexts and terminologies. Terms like “Distributed Pair Debugging,=”, “Remote Pair 

Debugging 

” and “Virtual Pair Debugging” target collaborative debugging practices in distributed 

settings, while broader concepts such as “Distributed Cognition” and “Bug Location” 

ensure that related theoretical and practical dimensions are also covered. Wildcards (e.g., 

“Debug*” and “Dyad*”) allow for variations in terminology, ensuring no relevant results 

are overlooked, and quotation marks around exact phrases maintain precision by 

avoiding irrelevant results. However, the complexity of the query may lead to an 

overwhelming number of results in less sophisticated databases, and terms like 

“Distributed Cognition” may retrieve studies beyond the primary focus on debugging. 

Additionally, the absence of exclusion criteria, such as the “NOT” operator to filter 

unrelated topics, could affect precision. Despite these limitations, the query is robustly 

designed to map the current state of research and identify gaps in distributed pair 

debugging, aligning closely with the study’s objectives. 

 

However, given the qualitative focus of this study on behaviour and experiences rather 

than quantifiable scientific data, the SPIDER tool (Cooke et al., 2012) was utilised to 

identify crucial aspects of the research question. This approach aimed to guide and unify 
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the search strategy, aligning it with the SPIDER tool’s framework. Additionally, search 

terms were truncated as needed in both searches to ensure all pertinent articles were 

captured. Thus, entering this query into research databases facilitated a thorough and 

precise search. The terms were specifically selected to generate focused results, 

encapsulating the main areas of interest within the study. 
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Figure 2: Flow diagram for ILR (adapted from PRISMA – Preferred Reporting Items for Systematic Reviews 

& Meta-Analysis (Moher et al. (2009) cited in (Lubbe et al., 2020)). 
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Furthermore, the AI tool Connected Papers was employed to represent cited works 

visually, providing an extensive overview of the research landscape pertinent to the topic 

(see Figure 3). Connected Papers facilitates an innovative approach to academic research 

by visualising interconnections between papers, thus streamlining literature reviews, 

discovering trends, and identifying collaboration opportunities. 

 
Figure 3: AI tool connected papers 

 

Screening 

In the preliminary literature review phase, as visualised in Figure 2, the titles and abstracts 

of papers identified through the initial search were examined. This process adhered to 

predefined inclusion and exclusion criteria to ensure the relevance and specificity of the 

study’s objectives. Any duplicate papers identified during this review process were 

promptly eliminated to maintain the integrity and originality of the research material. 

Following this screening, full-text versions of the selected articles were procured for a 

more detailed evaluation, where they were once again scrutinised against the established 

inclusion and exclusion criteria. This approach ensured that only the most pertinent and 

informative papers were included in the study, thereby bolstering the research’s 

foundational literature base. 
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2.2.3 Critical appraisal (CA) of sample (data collection) 

Following Whittemore and Knafl's methodology (2005), the data were evaluated based 

on three essential criteria, specifically, methodological rigour, analytic precision, and 

conceptual relevance to the study aims. In adherence to this, this study adopted the 

Joanna Briggs Institute (JBI) checklists (Joanna Briggs Institute, 2017) to assess the 

methodological quality of various research types, including randomised controlled trials, 

cohort studies, case-control studies, cross-sectional studies, and systematic reviews. 

These checklists, tailored to each study type, feature specific criteria for assessing 

relevant methodological aspects, ensuring thorough evaluation of research designs.  

 

The JBI checklist does not use a numerical scoring system. However, this study adapts it 

to a 0 to 1 scale for clear, quantifiable evaluation - 0 for “No”, 0.5 for “Partially”, and 1 for 

“Yes”. Since JBI does not set a specific quality cut-off, score interpretation varies by 

context. Thus, specific guidelines are applied for this study: 

▪ Outstanding (90-100%): Papers in this range meet most or all criteria, indicating well-

executed research with thorough methodology and ethical considerations. 

▪ Good (75-89%): Papers in this range are good to very good, meeting most criteria with 

minor areas for improvement. 

▪ Fair (60-74%): Papers in this range are deemed adequate, but several areas need 

improvement. 

▪ Poor (<60%): Scores below 60% indicate significant methodological weaknesses and 

such papers might require considerable revision to be of high quality. 
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Table 1 (refer to Appendix L for a full list) displays a sample summary document of studies 

appraised using the JBI checklist at the full-text screening stage. Critical appraisal from 

this study’s perspective is a detailed, systematic review that assesses studies’ 

methodological quality, validity, reliability, and relevance in a specific context (Porritt et 

al., 2014). 

Table 1: Sample of a summary document for the critical analysis (CA) of selected studies 

 
 
 
2.2.4 Data analysis (Data extraction and synthesis, and thematic analysis) 

Data extraction 

Data extraction involves systematically gathering relevant details from selected studies 

to fulfil the research objectives (Lubbe et al., 2020). This includes identifying study 



39 | P a g e  

 

characteristics (e.g., author, publication year), aims/purpose, research design, 

population, and main findings. The aim is to compile comprehensive information from 

each study for comparison, synthesis, and interpretation, organised in a structured 

format such as a table, as seen in Tables 2 and 3. 

 

Table 2: Sample data extraction 
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Table 3: Sample data extraction (Continuation) 
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Data synthesis and analysis 

After completing the critical analysis of the included studies outlined in the previous 

section, the synthesis phase began, focusing on identifying themes, relationships, 

patterns, and gaps. Hart (2018) describes data synthesis as connecting components 

identified during analysis initiated as soon as the literature is compiled. Adhering to Braun 

and Clarke’s (2006) guidelines, this stage involved compiling various studies already 

critically analysed to uncover new insights. Specifically, a thematic synthesis was carried 

out, as detailed by Braun and Clarke (2006), aiming to distil the evidence into coherent 

themes that respond directly to the research question. Please refer to Table 4 for a 

detailed understanding of the themes that emerged from this synthesis and to see how 

these themes are connected to the studies that informed them. 

Table 4: Themes identified from data synthesis. 
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 2.2.5 Presentation 

After analysis, the findings are presented in a structured format, including a narrative 

summary, making it easy to understand the main findings. An initial search across chosen 

databases produced 924 papers. After reviewing titles and abstracts, applying exclusion 

criteria, and eliminating duplicates, 53 articles were shortlisted for closer examination. 

Following an in-depth full-text review, 14 articles were excluded for not directly 

addressing the review topic, and an additional 4 papers were excluded due to poor 

methodological quality, leaving 35 papers deemed suitable for inclusion in this review 

(see Figure 2). 

 

Based on the review of the literature and alignment with the guidelines provided by 

Braun and Clarke (2006), the key themes that emerged, influencing the debugging 

behaviours of novice programmers across various settings were Complexity and Diversity 

of Errors, Tapestry of Debugging Strategies, Team Cognitive Management, IDE Debugging 

Efficiency, and Navigating Debugging Complexities. These themes collectively cover the 

factors influencing debugging behaviours, providing a comprehensive framework for 

understanding and enhancing the debugging skills of novice programmers in various 

settings. 

 

Theme 1 - Complexity and Diversity of Errors 

The studies reviewed, which span several decades, provide insights into the diverse types 

of errors encountered by novice programmers in various programming languages and 

environments.  
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This theme presents an overview of the findings regarding the different types of errors or 

bugs encountered by novice programmers, detailing commonalities and insights across 

various studies.  

 

The study conducted by Gould and Drongowski categorised the debugging challenges 

faced by beginners in Java programming into syntax, logic, and runtime errors, providing 

early insights into the distinct categories of errors encountered by novice programmers 

(1974). Leveraging these insights, Katz and Anderson (1987) further emphasised the 

importance of understanding these categories to improve debugging efficiency, 

highlighting how different types of errors necessitate different approaches (Michaeli & 

Romeike, 2019). Offering a comparative angle, Vessey (1985) documented higher error 

rates among novices compared to experts in COBOL programming, illuminating the steep 

learning curve novices encounter and the more efficient debugging strategies experts 

use. Similarly, Yen et al. (2012) explored differences in debugging strategies between 

novice and expert programmers in C, revealing that novices struggle significantly with 

semantic and logic errors due to less effective use of compiler feedback. 

 

Within specific software development environments, Ahmadzadeh et al. (2005) and 

Kölling et al. (2019) focused on how novices handle compiler errors and logical mistakes 

within environments like the BlueJ IDE, noting frequent logical missteps by novices. 

Fitzgerald et al. (2008), Murphy et al. (2008) and Murphy et al. (2010) elaborated on the 

particular types of Java errors, such as arithmetic bugs, malformed statement bugs, and 

incorrect logical expressions, pointing out the particular difficulties novices face in Java 
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environments. These studies collectively highlight the challenges and learning obstacles 

presented by Java programming. 

 

Further investigations into novice errors in different programming languages were 

conducted by Alqadi and Maletic (2017), who explored how novices misapply logical 

operators and control structures in Java, emphasising the need for a deep understanding 

of logic to navigate debugging. Smith and Rixner (2019) focused on Python-specific errors, 

identifying frequent runtime errors such as TypeErrors and IndexErrors that persist 

among novices, highlighting the persistent challenges in modern programming 

languages. 

 

Focusing on young learners and specific error types, Júnior et al. (2019) and Kohn (2019) 

documented Python coding mistakes among high school students, such as unclosed 

scanners and incorrect indentation, emphasising the need for clear compiler error 

messages and effective pedagogical methods to aid students in overcoming these 

foundational hurdles. 

 

Moreover, in studies exploring physical computing and hardware-related errors, 

Jayathirtha et al. (2020) conducted a study that revealed programming errors such as 

missing initialisation, incorrect logical expressions, and mismatched variables, alongside 

circuitry issues like loose connections and reverse polarity problems, which were included 

intentionally to mimic real-world scenarios. Similarly, the study by Jayathirtha et al. 

(2024) further probed into pre-designed bugs affecting both hardware and software, 
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identifying errors like faulty conditional logic, wiring issues, sensor inaccuracies, and LED 

malfunctions. 

 

Other miscellaneous studies provide broader insights into the challenges faced across 

various environments. The study conducted by Allwood and Bjorhag (1990) looked into 

Berkeley-Pascal programming errors on UNIX, categorising errors into syntax, semantic, 

and logic errors and underlining the distinct challenges in this environment. Ettles et al. 

(2018) analysed prevalent logic errors in C programming among first-year students, 

providing insights into common misconceptions and algorithmic mistakes. Jeffries et al. 

(2022) and Zhang et al. (2023)  provided insights into syntax and runtime errors in Python 

and Java, respectively. Jeffries et al. (2022) focused on Python, identifying frequent 

mistakes such as indentation errors, incorrect use of variables, and misunderstanding of 

functions. Zhang et al. (2023), on the other hand, examined Java and pointed out typical 

errors like class and object mismanagement, improper exception handling, and issues 

with data types. 

 

Lastly, Akinola (2014) compared debugging effectiveness between solo and pair 

programmers in Java, noting that collaborative approaches might mitigate some common 

errors, suggesting that pair programming could be a beneficial strategy in educational 

settings where teamwork and collaboration are emphasised. This study, among others, 

reinforces the varying dynamics of learning and debugging within programming 

education and points towards potential strategies for enhancing novice programmers’ 

skills. 
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Together, these studies demonstrate the variety of programming errors and the critical 

need for all-encompassing instructional approaches that equip novice programmers with 

robust debugging skills. This foundational knowledge is pivotal for programming 

education as it aims to enhance learning outcomes by providing novices with the tools 

and methodologies to tackle the broad spectrum of debugging challenges they 

encounter. 

 

Theme 2 - Tapestry of Debugging Strategies 

This theme highlights debugging strategies across various studies, offering a deep insight 

into the complex techniques that novices use to tackle the task of debugging. This 

overview showcases the diversity of debugging strategies and tactics employed and 

reflects the evolution of debugging as a pivotal skill in software development. 

 

Beginning with Gould and Drongowski (1974), the study laid the groundwork for 

understanding debugging strategies such as print debugging, code inspection, trial and 

error, collaboration, and utilising IDEs. These strategies highlight fundamental 

interactions between programmers and code, emphasising a dynamic approach to 

identifying and resolving errors. Following this, Vessey (1985) introduces a cognitive 

dimension by contrasting experts’ holistic, systematic strategies with the more linear, 

focused approaches of novices, underlining the impact of cognitive processes on 

debugging effectiveness. 

 

Adding further depth, Allwood and Bjorhag (1990) describe the debugging processes of 

novices using Pascal, incorporating error hypotheses, systematic problem-solving, and 
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iterative debugging phases. They emphasise understanding code logic and scrutinising 

error messages, which are crucial for a structured debugging approach. Katz and 

Anderson (1987) complement this by exploring debugging in LISP programming, 

identifying strategies like simple mapping, test-case execution, and causal reasoning. 

They note the use of both backward and forward reasoning, varying by whether novices 

debug their code or that of others, which introduces strategic flexibility in debugging. This 

observation is echoed by findings from Fitzgerald et al. (2008), Horwitz et al. (2009), 

LaToza et al. (2020), and Vourletsis et al. (2021). However, a deviation was reported by 

Yen et al. (2012), who found that students, while debugging C language programs crafted 

by others, also favoured the backward reasoning approach. Notably, Katz and Anderson 

observed a heightened use of causal reasoning, contrasting Jeffries (1982) earlier 

observation of its limited application. However, a deviation was reported by Yen et al. 

(2012), who found that students, while debugging C language programs crafted by others, 

also favoured the backward reasoning approach. Notably, Katz and Anderson observed a 

heightened use of causal reasoning, contrasting Jeffries (1982) earlier observation of its 

limited application. 

 

The discussion of tactical debugging continues with Ahmadzadeh et al. (2005), who 

observe novice computer science students employing print statements, code 

commenting, and active code running to isolate bugs. This hands-on approach reflects an 

interactive engagement with the code, where manipulation and direct observation are 

crucial to understanding and fixing errors. Similarly, Chintakovid et al. (2006) extend 

debugging to spreadsheet environments, focusing on iterative debugging, testing values, 

and using visual cues to enhance error detection in formula-based contexts. Further 
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contributions from Fitzgerald et al. (2008) introduce pattern matching and different 

reasoning strategies, adding a layer of structured creativity to debugging. This is echoed 

by Murphy et al. (2008), who emphasise tracing, selective commenting of code sections, 

and systematic testing. Fitzgerald et al. (2010) then expand the range of strategies to 

include understanding code, gaining domain knowledge, and utilising resources, which 

deepen the cognitive and resource-based aspects of debugging. 

 

Alqadi and Maletic (2017) emphasise logical errors, advocating strategies such as error 

hypothesis formation, systematic testing, code tracing, incremental and iterative testing, 

backtracking, and peer review. These methods emphasise the importance of a 

collaborative, iterative approach to uncovering syntactically correct but logically flawed 

errors. Jayathirtha et al. (2020) and their subsequent study in 2024 investigate debugging 

in electronic textiles and Arduino projects (Jayathirtha et al., 2024), highlighting the 

multidimensional challenges of integrating code with physical components through 

strategies like hypothesis generation, solution testing, and iterative problem-solving. 

 

Lastly, Liu and Paquette (2023) incorporate modern data analytics to explore debugging 

through submission logs, revealing strategies such as minor code edits that contrast 

traditional debugging perceptions. Whalley et al. (2023) focus on effective strategies 

among novice Python programmers, emphasising the importance of understanding code, 

hypothesising and using deliberate actions to locate bugs. 

 

Overall, these studies illustrate a complex tapestry of debugging strategies, highlighting a 

domain where technical, analytical, collaborative, and cognitive skills converge to address 
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one of the most challenging aspects of programming. Each study contributes unique 

insights, enriching our understanding of how diverse debugging strategies are applied 

across different contexts, languages, and platforms, underscoring the need for adaptive, 

context-sensitive, and collaborative approaches in both education and professional 

practice. 

 

Theme 3 – Team Cognitive Management 

Team Cognitive Management aptly encapsulates the cognitive strategies presented in the 

studies by Chintakovid et al. (2006), Jayathirtha et al. (2020), and Jayathirtha et al. (2024). 

This theme emphasises the efficacy of paired or group collaboration in managing 

cognitive load within programming and debugging contexts. The studies investigate the 

collaborative mechanisms participants use to distribute and share cognitive 

responsibilities, thereby enhancing the overall problem-solving process. Each study 

distinctly contributes to understanding how these synergies facilitate effective cognitive 

load management, demonstrating a range of strategies from role division and task 

coordination to adaptive problem-solving and joint attention. 

 

In the study conducted by Chintakovid et al. (2006), the participants, all university 

students with limited programming experience, utilised several collaborative strategies 

to distribute cognitive load while engaging in programming tasks. They adopted Driver-

Observer roles, allowing one person to handle direct manipulation of the code (the driver) 

while the other provided strategic oversight (the observer). This role division facilitated a 

balanced approach to task management and enhanced mutual support and effective 

communication. Participants also actively engaged in collaborative decision-making, 
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discussing potential solutions and strategies, which helped distribute cognitive 

responsibilities evenly across the pair. Moreover, task coordination was emphasised, with 

both members staying actively involved throughout the debugging process, ensuring that 

cognitive load was shared and not concentrated on a single individual. 

 

Transitioning to the study by Jayathirtha et al. (2020), similar collaborative dynamics were 

observed among participants working on electronic textiles projects. Here, the divide-

and-conquer strategy was notably effective, with tasks split between circuitry and coding 

based on individual expertise and task complexity. Such division allowed each participant 

to focus intensively on a specific project segment, reducing individual cognitive load. 

Collaborative task allocation was another significant strategy, where tasks were assigned 

based on each participant’s skills, facilitating parallel progress and shared responsibility. 

The concept of joint attention to problem spaces was critical in this context; by co-

investigating issues and verifying connections, participants could leverage their combined 

expertise to tackle complex problems effectively. Similarly, adaptive collaboration was 

highlighted as participants shifted strategies based on task demands, showing flexibility 

in managing cognitive load dynamically. 

 

Finally, in a recent study by Jayathirtha et al. (2024), the focus shifted slightly towards 

more integrated collaborative strategies in debugging e-textile projects. Establishing joint 

attention was crucial, as students aligned their focus on various project elements, 

enhancing coordination and collective problem-solving. Sharing cognitive load was 

achieved through dynamic task division and continuous dialogue about strategies and 

solutions, enabling efficient use of collective cognitive resources. Collaborative problem-
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solving was evident as students discussed, tested, and refined their approaches together. 

Fluid task division allowed for flexible role adjustments based on the immediate needs of 

the debugging process, further supporting effective cognitive load management. 

Coordinated strategies across different modalities ensured that all aspects of the projects 

were addressed comprehensively, facilitating a thorough approach to problem-solving. 

 

These studies show that effective collaborative cognitive load management in 

programming and debugging involves a mixture of strategic role division, adaptive task 

allocation, and sustained mutual support. Each study highlights the benefit of 

collaborative approaches in distributing cognitive load and enhancing overall problem-

solving efficiency and project success. 

 

Theme 4 – IDE Debugging Efficiency 

IDE Debugging Efficiency highlights how using IDE tools and related technologies 

significantly aids programmers in debugging tasks, enhancing efficiency and reducing 

cognitive load through various technological interventions. 

 

In the work of Smite et al. (2021), technological tools were leveraged to facilitate remote 

pair programming sessions. Tools such as Tuple and various IDE extensions enabled 

screen sharing, control of each other’s computers, and simultaneous programming. 

These tools significantly enhanced the collaborative experience and enabled real-time 

collaboration and code editing, thus boosting the debugging process’s effectiveness and 

efficiency. 
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Fitzgerald et al. (2008) focused on the role of debuggers within IDEs like Eclipse, which 

automatically detect and highlight semantic errors such as missing brackets. This 

capability speeds up the identification and correction of errors and reduces the 

programmers’ cognitive load. Additionally, the study emphasised the importance of 

online resources and programmers’ familiarity with the IDE, noting that these factors 

significantly contribute to successful debugging efforts. 

 

Moreover, Whalley et al. (2023) observed how novice programmers utilised IDE tools to 

manage their workspaces efficiently and execute code changes effectively. The 

participant’s ability to organise their workspaces and engage in modify-and-test cycles 

showcased how IDE tools could simplify and streamline the debugging process. However, 

the study also noted challenges related to the participants’ familiarity with IDE 

functionalities, emphasising the need for full training to leverage these technologies. 

 

Lastly, Jayathirtha et al. (2024) examined using the Arduino IDE in debugging electronic 

textiles projects. This study highlighted the IDE’s features, such as syntax highlighting, 

error detection, interactive debugging, and integrated tools and libraries. These 

functionalities facilitated the programming process and supported students in managing, 

navigating, and debugging their code more effectively. 

 

Overall, each study contributes to the overarching theme by demonstrating how IDE tools 

and technologies are integral to enhancing debugging efficiency, which is the focus of this 

study. These studies jointly reinforce the transformative impact of these technologies in 
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programming education and practice, providing essential insights into their benefits and 

the necessity of familiarity with these tools for effective debugging. 

 

Theme 5 – Navigating Debugging Complexities 

The literature reviewed explores the diverse challenges novices encounter during 

programming debugging tasks. This theme captures novices’ experiences across various 

educational backgrounds as they navigate the complexities of identifying and resolving 

errors within code. The subsequent findings detail the specific challenges and underlying 

reasons identified in each study, shedding light on the common obstacles faced during 

the debugging process. 

 

Michaeli and Romeike (2020) introduce a complex educational scenario where 

participants face seven distinct challenges while debugging, namely, generating 

hypotheses, undoing changes, systematic testing, cognitive load, use of external 

representations, collaboration and communication, and application of domain 

knowledge and heuristics. Thus, the inability to generate effective hypotheses and the 

reluctance to undo changes post-failure indicate a lack of prior debugging experience, 

which hampers effective problem-solving strategies. Systematic testing is compromised 

by a shallow understanding of isolating and verifying system components, exacerbated 

by the high cognitive demands of managing multiple variables simultaneously. 

Ineffectiveness in using external representations and challenges in collaboration and 

communication are linked to insufficient collaborative skills and the inappropriate 

application of heuristics, compounded by the unique pressures of an escape room setting 

that distracts from focused debugging efforts. These challenges are intertwined with 
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reasons such as environmental novelty, educational gaps, and a lack of practical 

debugging exercises, which highlight the necessity for educational reforms to better 

prepare students for real-world debugging tasks. 

 

Alqadi and Maletic (2017) detail the struggles of novice programmers with five primary 

challenges, such as difficulty with logical errors, lack of experience, understanding error 

messages, cognitive load, and time management. Logical errors, particularly challenging 

due to their requirement for a deeper understanding of the program’s intent, highlight 

the novices’ inadequate exposure to complex debugging and systematic strategies. 

Misinterpretation of error messages and an overwhelmed cognitive capacity due to the 

simultaneous management of multiple debugging elements like program flow and 

variable states further complicate the debugging process. These issues are often 

deepened by educational shortcomings that fail to equip students with necessary 

debugging skills and are exacerbated by psychological factors such as anxiety and 

frustration, which negatively impact problem-solving capabilities. 

 

In Fitzgerald et al.’s (2008) research, seven challenges surface, encompassing 

understanding the system, testing the system, locating and repairing errors, using 

debugging tools, cognitive load, and fragile knowledge. Each challenge is rooted in a 

combination of lack of experience and insufficient foundational knowledge, which 

hinders effective engagement with debugging tools and systematic problem-solving. 

Cognitive overload and fragile knowledge, where concepts are not fully grasped, stress 

educational gaps that fail to prepare students for debugging’s unpredictable nature. This 
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calls for an educational approach emphasising practical experience and systematic 

problem-solving skills in programming curricula. 

 

Fitzgerald et al. (2010) explore the debugging experiences of novice programmers, 

identifying five main challenges, for example, fragile knowledge, troubleshooting, causal 

reasoning, understanding debugging tools, and reading complex code. The reasons for 

these challenges are intricately linked to the novices’ superficial understanding of 

programming and debugging, compounded by high cognitive loads and ineffective use of 

debugging tools. The study suggests that enhancing educational practices to include more 

focused debugging exercises could alleviate these challenges. 

 

Murphy et al. (2010) focus on the collaborative mechanics of debugging in pairs, noting 

five challenges related to transactive communication, cognitive load, collaborative 

dynamics, level of discussion, and strategic application of debugging methods. The 

additional cognitive burden and the need for effective transactive communication 

highlight the complexity of collaborative debugging, which is often not adequately 

supported by educational frameworks that fail to emphasise collaborative skills and 

systematic debugging strategies. 

 

Smite et al. (2021) document the adaptation to remote pair programming, identifying 

challenges such as disruptions in communication and collaboration, adaptation to remote 

tools, loss of informal communication, psychological impacts, and adjustments to new 

work rhythms. These challenges stem from technological and organisational shifts 
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necessary for remote work, highlighting the need for better support systems and training 

to facilitate effective remote collaboration and debugging. 

 

Another relevant study by Kim et al. (2022) on block-based programming involving early 

childhood teacher candidates identifies six challenges influenced by the presence of 

scaffolding. These include complex problem-solving, persistence, collaborative dynamics, 

cognitive load, technical understanding, and trial-and-error approaches. Prominent 

issues such as lack of experience and cognitive overload suggest that structured 

scaffolding could significantly aid in managing these challenges. 

 

Whalley et al. (2023) investigate the debugging practices of novice programmers, 

identifying six key challenges, including difficulties with debugging tools, code navigation, 

strategy application, cognitive load, problem-solving constraints, and interpreting 

feedback. These challenges are predominantly due to limited experience with debugging 

tools and an inadequate understanding of code structure and flow, which could be 

mitigated by more comprehensive programming education emphasising practical 

debugging skills and tool usage. 

 

Moreover, Jayathirtha et al. (2024) study the debugging of electronic textiles by high 

school students, identifying five challenges, including, complex multimodal debugging, 

distributed tasks, collaborative coordination, limited engagement, and system 

integration difficulties. The all-encompassing nature of these projects introduces unique 

challenges that require both collaborative efforts and an integrated understanding of 
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diverse systems, pointing to the need for educational tools and resources that support 

such complex, interdisciplinary learning environments. 

 

Overall, these studies highlight novice programmers’ broad challenges, particularly in 

collaborative and distributed settings. The findings suggest that debugging effectiveness 

heavily depends on managing cognitive load, proficiently utilising debugging tools, and 

maintaining effective communication and collaboration. For paired novices in distributed 

environments, these challenges are magnified by the additional barriers of remote 

collaboration.  

 

2.3 Discussion 

This section attempts to critically analyse and synthesise the findings from multiple 

studies relating to the five themes already identified in the previous section. It aims to 

integrate these diverse insights, providing an understanding of the study patterns and 

divergences. By examining these themes, which are the Complexity and Diversity of 

Errors, the Tapestry of Debugging Strategies, Team Cognitive Management, IDE 

Debugging Efficiency, and Navigating Debugging Complexities, the discussion will give a 

comprehensive analysis of the data. In this vein, this examination seeks to contextualise 

these findings within novice programming behaviour and highlights the broader 

implications for programming education. It also suggests potential strategies for 

improving novice programmers’ learning experiences and outcomes. 

 

Although the examined studies span several decades, they reveal profound educational 

insights, particularly highlighting the diverse types of errors encountered by novice 
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programmers across different languages and environments. In their foundational study 

on Java programming, Gould and Drongowski (1974) categorised debugging challenges 

into syntax, logic, and runtime errors, setting a precedent for recognising the diversed 

nature of programming errors. This fundamental categorisation reinforced the necessity 

for distinct pedagogical approaches tailored to different error types, a notion further 

bolstered by Katz and Anderson (1987). They stressed that understanding these 

categories is crucial for enhancing debugging efficiency (Robins et al., 2006), indicating 

that a one-size-fits-all approach to teaching debugging is insufficient. It thereby 

emphasises the need for a differentiated approach to teaching debugging tailored to the 

specific types of errors novices face (Lewis & Gregg, 2016). For example, novices tend to 

adopt a trial-and-error approach for syntax errors, while logic errors often require more 

structured problem-solving techniques (Ettles et al., 2018). Runtime errors frequently 

necessitate understanding dynamic program behaviour and error handling (Alqadi & 

Maletic, 2017). This detailed insight is essential for creating effective educational 

strategies that address novice programmers’ specific needs to become more proficient 

and efficient in debugging their code. 

 

Also, the steep learning curve faced by novices, as documented by Vessey (1985), and the 

differential debugging strategies employed by experts versus novices, as explored by Yen 

et al. (2012), highlight the critical need for specialised instructional methods. Vessey’s 

work illustrates that novices are slower and less effective in debugging, which explains 

why Youngs (1974) observes that novices often spot fewer bugs and take longer to fix 

than experts. This suggests that educational interventions should focus on bridging this 

gap by imparting expert strategies to beginners. Yen and colleagues (2012) further 
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expand on this by showing how novices struggle with semantic and logic errors, primarily 

due to ineffective use of compiler feedback. This research aligns with Chen et al. (2013), 

whose findings suggest that, without proper guidance and extensive practice, beginners 

often misinterpret error messages and inefficiently use debugging aids. This supports Yen 

et al. (2012), who emphasised the need for curriculum designs incorporating real-world 

tools and environments to improve novices' debugging skills. However, though valuable, 

Yen et al.'s recommendation may be impractical for institutions with limited resources, 

indicating a need for adaptable, resource-sensitive strategies. 

 

Likewise, research by Ahmadzadeh et al. (2005) and Kölling et al. (2019) reveals that 

novices often struggle with compiler errors and logical mistakes, particularly in 

environments like the BlueJ IDE. This finding implies that hands-on learning experiences, 

which allow novices to engage with code directly, are vital. Fitzgerald et al. (2008), 

Murphy et al. (2008), and Murphy et al. (2010) suggest that such an approach enhances 

technical proficiency and builds confidence in handling real-world programming 

challenges. By practising in realistic settings, novices can develop a deeper understanding 

of the complexities involved in debugging, making them better equipped to handle similar 

issues in professional scenarios (Robins et al., 2003; Soloway & Spohrer, 2013). 

 

In addition, the consistent finding across studies that novices frequently misapply logical 

operators and control structures (Alqadi & Maletic, 2017; Smith & Rixner, 2019) indicates 

a persistent gap in understanding fundamental programming concepts. This calls for 

deeper instruction in programming logic, highlighting that a robust grasp of these basics 

is essential for effective debugging. Júnior et al. (2019) and Kohn (2019) also noted 
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common Python coding mistakes among high school novices, further supporting the need 

for early programming education to include clear compiler error messages and effective 

pedagogical methods. Addressing these issues early can prevent the accumulation of bad 

coding habits and foster a more intuitive grasp of programming principles, which is crucial 

for developing proficient programmers (Grover & Pea, 2013; Guzdial, 2015). 

 

Besides, the role of collaborative learning environments in mitigating common errors and 

enhancing learning outcomes is another critical insight from these studies. A study 

conducted by Akinola (2014) comparing solo and pair programmers suggests that 

collaborative approaches, such as pair programming, can significantly benefit educational 

settings. This is echoed in studies by Chintakovid et al. (2006), Jayathirtha et al. (2020) 

and Jayathirtha et al. (2024), which highlights the importance of strategic role division, 

task coordination and adaptive problem-solving in managing cognitive load and 

improving problem-solving efficiency. Educators can foster peer learning and mutual 

support by incorporating collaborative projects into programming curricula, creating a 

dynamic and interactive learning environment that mirrors real-world software 

development practices. This approach can help distribute the cognitive load as well as 

encourage the development of critical teamwork skills essential in the professional realm 

(Bennedsen & Caspersen, 2007; McDowell et al., 2006). 

 

On top of that, it is important to note that exploring diverse debugging strategies across 

various studies has implications for programming education. The research emphasises 

the complexity and evolution of effective debugging practices from techniques like print 

debugging and code inspection (Gould & Drongowski, 1974) to more advanced methods 
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involving systematic problem-solving and error hypothesis formation (Alqadi & Maletic, 

2017). This suggests that programming education should focus on technical skills and 

teach cognitive and strategic approaches to problem-solving, helping novices develop a 

more holistic understanding of debugging. By integrating these strategies into the 

curriculum, educators can better prepare novices for the multifaceted nature of 

debugging in professional settings. Such an approach ensures that novices are technically 

proficient and capable of thinking critically and strategically about problem-solving (Linn 

& Dalbey, 1985). 

 

Furthermore, integrating modern tools and technologies in debugging, as demonstrated 

by Smite et al. (2021) and Jayathirtha et al. (2024), highlights the transformative impact 

of these technologies in programming education. Using IDE tools (Fitzgerald et al., 2010), 

remote collaboration technologies, and data analytics to enhance debugging efficiency 

and reduce cognitive load suggest that educational programs should keep pace with 

technological advancements. Familiarity with these tools can streamline the debugging 

process and improve overall productivity, highlighting the necessity for novices to be 

proficient in using the latest programming tools and platforms (Fitzgerald et al., 2008; 

Whalley et al., 2023). Consequently, integrating these technologies into educational 

settings can provide novices with practical experience and prepare them for the 

technological demands of the modern workplace (Grover et al., 2014; Resnick et al., 

2009). 

 

Moreover, the literature also points to the critical need for structured support systems 

and scaffolding to aid novice programmers. Studies involving young learners and early 
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childhood teacher candidates (Júnior et al., 2019; Kim et al., 2022; Kohn, 2019) suggest 

that clear error messages and structured guidance are essential for managing cognitive 

load and enhancing learning outcomes. This implies that educational institutions should 

provide scaffolding that gradually increases task complexity, ensuring novices are not 

overwhelmed by the cognitive demands of debugging. Such an approach can help 

maintain novice engagement and foster a progressive learning curve, making learning 

more manageable and effective for all levels (Wing, 2006). 

 

Additionally, the research by Allwood and Bjorhag (1990) and Ettles et al. (2018) provide 

broader insights into the challenges faced in different environments, such as UNIX and C 

programming. Their findings suggest that novices struggle with syntax and logical errors 

and face significant challenges in understanding the operating environment. This 

highlights the importance of contextual learning, where novices are taught programming 

languages and the environments in which these languages operate. By fostering an 

understanding of the broader technical ecosystem, educators can better prepare novices 

for the diverse contexts they will encounter in their professional careers (Spohrer & 

Soloway, 1986). 

 

To add to that, the role of cognitive and collaborative strategies in debugging, as explored 

by Chintakovid et al. (2006), Jayathirtha et al. (2020) and Jayathirtha et al. (2024), 

reinforces the importance of cognitive load management and strategic collaboration in 

effective problem-solving. Their studies suggest that educational programs should focus 

on individual problem-solving skills (Wing, 2006) and collaborative skills that can enhance 

cognitive efficiency (Chintakovid et al., 2006; Murphy et al., 2010). For instance, the use 
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of strategic role division and adaptive problem-solving in team settings can help distribute 

cognitive load and improve overall problem-solving efficiency. This approach mirrors real-

world software development practices, where collaboration and teamwork are essential 

(Palumbo, 1990). 

 

Despite this, research on integrating modern data analytics and remote collaboration 

tools (Liu & Paquette, 2023; Smite et al., 2021) indicates that the future of programming 

education lies in the effective use of technology. By incorporating these tools into the 

curriculum, educators can provide novices with the skills to navigate the software 

industry’s increasingly digital and collaborative nature. This prepares learners for current 

industry practices and ensures they are adaptable to future technological advancements 

(McDiarmid & Zhao 2023).  

 

By and large, these insights collectively highlight the urgent need for comprehensive 

educational strategies that equip novice programmers with robust debugging skills. 

Addressing the diverse challenges identified in the research, including technical, 

cognitive, and collaborative difficulties, requires a holistic approach. This approach should 

integrate targeted instructional methods, practical hands-on experiences, collaborative 

learning environments, and modern technological tools. By doing so, programming 

education can better prepare learners to tackle the broad spectrum of debugging 

challenges they encounter, ultimately improving debugging proficiency and contributing 

to software development practices’ overall quality and efficacy. 
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2.4 Summary 

As novice programmers commence their developmental journey, they demonstrate 

various debugging strategies, varying significantly in effectiveness. This literature review 

critically evaluates existing research, highlighting emergent patterns and pinpointing 

deficiencies. As Colquitt (2013) advocates, it is vital to juxtapose new research against 

established work, thus paying an ‘intellectual debt’ and ensuring a comprehensive grasp 

of the relevant scholarly landscape. In this vein, this chapter examines the characteristics 

and common bugs of novice programmers, the impact of IDE tools, and the variety of 

debugging strategies used by novices, particularly those working solo, co-located, and in 

distributed settings. This analysis is crucial as it prepares the ground for a detailed 

synthesis of research on paired debugging by novices in both co-located and distributed 

environments. Despite the growing literature on pair programming and debugging, a 

significant research gap exists in distributed pair debugging among novices, with no 

studies specifically focusing on the debugging strategies of paired novices in distributed 

settings. 

 

Taking this into account, while the lack of targeted research is a limitation, the broader 

literature does provide some basis for understanding how factors such as 

communication, expertise distribution, and task complexity could potentially impact the 

success of pair debugging in distributed settings. Thus, the existing research serves as a 

starting point, highlighting the need for more focused studies to comprehensively 

understand the unique challenges and the debugging strategies that novice deployed 

distributed pair debugging among novice programmers. 
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Considering the current research, while the lack of specific studies is a limitation, the 

existing literature offers insights into how communication, expertise distribution, and 

task complexity might affect pair debugging in distributed settings. This establishes a 

foundation, pointing to the need for targeted research to fully understand the challenges 

and strategies of novice programmers in distributed pair debugging. Given this backdrop, 

this review identifies a clear gap in the literature and emphasises the need for dedicated 

studies in this less-explored area. Future research should focus on debugging techniques 

suitable for novices in diverse educational settings and ages, particularly in distributed 

environments. Such endeavours could unveil more detailed insights, facilitating the 

creation of bespoke strategies and tools to enhance the debugging process for novice 

pairs operating in remote environments. 
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Chapter 3: Conceptual Framework 
 

3.0 Introduction 

This chapter presents the conceptual framework that provides a structure for examining 

both individual and collaborative aspects of debugging within disparate settings, guiding 

the data collection and analysis. It approaches this by contextualising the study and 

linking it to underlying theories that provide a solid foundation for investigating and 

interpreting findings. For the purpose of this study, which examines the debugging 

process among novice programmers, the conceptual framework draws on two 

complementary theories, as exemplified by Information Foraging Theory (IFT) (Pirolli & 

Card, 1999) and Distributed Cognition (Hutchins, 1995). These complementary theories 

will now be reviewed, followed subsequently by the presentation of the Critical Analysis 

of the Distributed Pair Debugging Conceptual Framework. 

 

3.1 Information Foraging Theory (IFT) 

IFT provides insightful perspectives on information navigation and extraction within 

digital environments, focusing on debugging strategies by novices. Previous research 

validated this approach (Fleming et al., 2013; Lawrance et al., 2008; Piorkowski et al., 

2012) and emphasised its effectiveness in software maintenance. Drawing from biological 

foraging analogies, IFT takes the information seeker as a ‘predator’ in pursuit of ‘prey’, 

valuable information within a network of interconnected information patches. This model 

introduces ‘information scent’, perceived from environmental cues, as a fundamental 

component in information-seeking tasks (Chi et al., 2001). However, applying IFT’s 

constructs, this study explores novice programmer pairs’ decision-making and 
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navigational challenges in distributed debugging settings, aiming to enrich our 

understanding of debugging practices within the contemporary networked programming 

landscape. 

 

Furthermore, the intersection of information foraging and sensemaking processes 

highlights a dual-phase learning loop of information gathering and interpretation within 

software development, particularly in debugging, as Pirolli and Card (2005) discussed. 

This theoretical approach is pivotal in understanding programmers’ foraging behaviours, 

with studies like Grigoreanu et al. (2012) emphasising the foraging loop’s dominance in 

sensemaking activities. Thus, IFT offers a comprehensive framework for analysing 

programmers’ information-seeking behaviours, providing a more integrated view of the 

processes involved compared to theoretical efforts and ultimately enriching the discourse 

on programming practices in the networked era. 

 

3.2 Distributed Cognition 

As Hollan et al. (2000) and Hutchins (1995) expound, distributed cognition offers a 

comprehensive framework that transcends the traditional, individual-focused cognitive 

science by considering cognitive processes as inherently shared among people, tools, and 

various representations. This approach, which Hutchins describes as encompassing 

cognitive activities across individuals, artefacts, and environmental factors, has seen 

application in a variety of domains ranging from ship navigation and emergency medical 

dispatch to aviation and call centres, thereby demonstrating its versatility in analysing 

teamwork and the integration of technology within human activities. Furthermore, 

Rogers (1997) highlights that distributed cognition enriches our understanding of 
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cognition by weaving together cognitive science, anthropology, and social sciences, 

thereby exploring the complex interdependencies inherent in collaborative efforts and 

how both social and organisational contexts shape them. 

 

Furthermore, this paradigm shift provides a detailed insight into human-computer 

interaction, as suggested by Hollan and colleagues, by extending the analysis of cognitive 

processes to encompass broader systems beyond the confines of individual minds. It 

asserts that cognition is a collective phenomenon distributed across social groups, 

internal and external structures, and temporal dimensions, thereby providing a robust 

toolkit for examining the dynamic interplay between humans and technology. This shift 

is crucial for understanding the collaborative nature of cognitive tasks, including software 

development and debugging, where distributed cognition has only begun to make its 

mark, notably through the work of Flor and Hutchins (1991) in software maintenance. 

 

Building on this foundation, Tsai et al. (2015) observe that pair programming, and by 

extension, pair debugging, significantly alleviates cognitive load, particularly in the 

context of distributed settings where the challenge of debugging error-prone code is 

compounded by the interplay of various factors including individual cognitive abilities, 

technological tools, and the social dynamics of using debugging tools effectively. 

However, while distributed cognition provides a deep analysis of socially distributed 

cognitive activities, Artman and Wærn (1999) critique it for potentially neglecting the 

non-cognitive artefacts within complex systems. To address this, IFT is introduced as a 

complement, aiming to shed light on the behavioural patterns of pairs as they navigate 

through code in search of errors. 
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Ultimately, this study seeks to bridge the gap in the application of distributed cognition 

within software development research, particularly in understanding the debugging 

strategies employed by novice programmers working collaboratively in distributed 

environments. Through a conceptual framework grounded in distributed cognition and 

complemented by IFT, this research aims to provide a richer, more cohesive 

understanding of pair debugging behaviours, thereby contributing to both theoretical 

knowledge and practical applications in software development. 

 

3.3 Integration of IFT and Distributed Cognition 

The combination of Information Foraging Theory (IFT) and Distributed Cognition in this 

research provides a nuanced exploration of how apprentices interact with their peers and 

tools in debugging code. Specifically, the study opines that apprentices use information 

foraging strategies to efficiently locate resources and scents that may assist in solving 

bugs. Subsequently, once these resources and scents are identified, apprentices engage 

in distributed cognitive activities to collaboratively implement the solutions. For instance, 

while one apprentice might search for external resources and suggest potential solutions 

(information foraging), the other apprentice simultaneously works to implement and test 

these solutions within the debugging environment. Thus, this dynamic illustrates how 

cognition and problem-solving are effectively shared and distributed across the pair (see 

Section 5.1.4). 

 

Building on this foundation, integrating these theoretical frameworks seeks to explore 

how apprentices manage the challenges of remote collaboration, especially in debugging 
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code within distributed settings. Moreover, technological tools, such as shared IDEs and 

debugging interfaces, serve as communication channels that extend and support the 

cognitive processes involved. As a result, by distributing cognitive load between 

individuals and tools, these technologies either facilitate or, in some cases, hinder the 

debugging process. Therefore, this distribution of cognitive effort is key in determining 

how effectively apprentices can collaborate to resolve complex issues. 

 

In conclusion, this approach illuminates the interplay between information foraging, 

distributed cognition, and the use of technology in enabling or constraining apprentices’ 

problem-solving capabilities. 

 

3.4. Critical Analysis of Distributed Pair Debugging Conceptual Framework 

This conceptual framework melds Information Foraging Theory and Distributed Cognition 

to address the multi-dimensional aspects of debugging, with the Bug being central. 

Designed to encapsulate debugging’s complexity in paired and distributed environments, 

it portrays each layer as distinct, contributing insights into the debugging process. 

 

The framework provides a detailed examination of debugging in distributed 

environments, merging individual cognition, collaborative interaction, and environmental 

factors. As seen in Figure 4, arrows as visual metaphors demonstrate the impact of both 

individual and collective cognition on tool selection, aligning with the findings of Chalmers 

(2003) and Endsley’s (1995) perspectives on the relationship between cognition, 

situational awareness, and tool usage.  
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Furthermore, it demonstrates the external debugging environment’s role in shaping 

cognitive processes, resonating with Hutchins’ (1995) insights on socio-technical systems 

cognition. The inclusion of bidirectional arrows between debuggers emphasises shared 

cognitive space, reinforcing the emphasis on shared cognition in solving complex 

problems by Salas et al. (2005) and Salas et al. (2008). Highlighting its dynamic nature, 

the framework presents a comprehensive approach to improving the understanding of 

debugging across research, education, and practical applications. 

 

Accompanying this, Figure 4 presents a visual representation of each layer, delineating 

their inherent characteristics, data points, information flow dynamics, as well as their 

respective strengths and weaknesses. This framework thus stands as a tool for dissecting 

the intricacies of debugging within distributed settings, underpinned by seminal 

references in the field.  

 

 
Figure 4: Distributed pair debugging conceptual framework 
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As a pioneering approach to understanding the intricacies of collaborative debugging in 

distributed settings, the conceptual framework offers valuable insights into the cognitive 

and collaborative processes involved. Although this framework has its limitations, it 

provides a thorough perspective on the complex nature of debugging tasks. It integrates 

theories of Distributed Cognition and Information Foraging to examine how pairs 

navigate and solve problems in a distributed debugging environment. 

 

Furthermore, for a concise summary highlighting the strengths and weaknesses of the 

Distributed Pair Debugging Conceptual Framework, refer to Table 5. This table delineates 

the framework’s key advantages and potential limitations, offering a visual 

representation to aid in understanding its comprehensive impact on debugging practices 

within distributed settings.  

 

The following provides a thorough analysis of each layer and also evaluates its benefits 

and drawbacks, clarifying the different facets of each layer.  As a result, this framework 

emerges as a tool for investigating the complexity of debugging in distributed contexts, 

backed up by fundamental references in the field. 
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Table 5: Strengths and weaknesses of the distributed pair debugging conceptual framework 

 

 

3.4.1 Layer 1: Debugging Environment Layer 

This layer delves into the debugging ecosystem within a remote setting. It brings to the 

fore the complexities due to geographical distances among novice programmers, 
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impacting collaboration, information sharing, and task allocation. This layer contains a 

broad spectrum of resources accessible to debuggers, including IDEs like PyCharm and 

VSCode, debugging tools, code repositories such as GitHub, and online forums or 

documentation, supplemented by communication platforms like Slack for enhanced 

collaboration in distributed debugging. The environment’s data points are diverse, 

tracking debugger interactions with resources, tool usage, access frequency and 

duration, and forum contributions, demonstrating a reciprocal relationship between the 

environment and debuggers’ information foraging tendencies. The environment has 

obstacles in spite of its abundance of resources, which provide a variety of ways for 

problem-solving and dynamic engagement through information exchange. The obstacles 

include potential cognitive overload from the environment’s complexity, uneven 

resource utility, and shortcomings in current techniques for capturing refined human-

environment interaction. This scrutiny reveals how novice debuggers within distributed 

contexts navigate and collaborate, marking the facilitators and barriers encountered. 

 

3.4.2 Layer 2: Information Foraging Layer  

This layer emphasises debuggers’ search for information, grounded in Pirolli and Card 

(1999) Information Foraging Theory. This exploration highlights how debuggers traverse 

the debugging environment, seeking information akin to animals foraging. It focuses on 

the dynamic interaction between the debugging environment and foraging behaviours, a 

relationship depicted through bidirectional arrows linking this layer with both the 

Debugging Environment and Distributed Cognition layers, as detailed by Hollan et al. 

(2000). The layer captures a variety of data points, including the types and numbers of 

information sources accessed, engagement durations, and perceived relevance, blending 



75 | P a g e  

 

quantitative and qualitative assessments to evaluate information-seeking effectiveness, 

following Marchionini (1995). Its strengths encompass a thorough data collection 

approach and flexible exchange of information, mirroring the adaptability of debuggers’ 

information-seeking within their operational context. Nonetheless, it acknowledges 

obstacles like the complexity of real-time data analysis and the subjective nature of 

determining information relevance. 

 

Ultimately, Information Foraging is a crucial aspect of the framework, merging the 

theoretical perspectives of Pirolli and Card (1999) with Hollan et al. (2000) observations 

on distributed cognition. This layer sheds light on debuggers’ methods and challenges in 

sourcing and applying information and elucidates the interplay between individual and 

shared cognitive processes, thereby enriching discussions on debugging methodologies 

in distributed computing settings. 

 

3.4.3 Layer 3: Distributed Cognition 

This layer highlights the synergy of collective intelligence in debugging, rooted in the 

foundational works of Hutchins (1995) situated within the "Information Foraging" 

framework. It examines how cognitive tasks are dispersed and managed among debugger 

pairs, informed by Hollan et al. (2000), illustrating that cognition is a shared function 

extending beyond individuals to encompass a network of collaborators and tools. Metrics 

such as communication patterns, task distribution, and decision-making processes, as 

detailed by Rogers and Ellis (1994), provide an analysis of how cognitive labour is 

dynamically shared and executed. Also, the integration with adjacent layers depicts a 

seamless flow of information and cognitive activities, promoting a comprehensive view 
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of the debugging strategy. Moreover, its strengths lie in its facilitation of collaboration 

and presenting a detailed view of the interaction. At the same time, challenges include 

the complexity of data interpretation and the potential variability in the effectiveness of 

distributed cognition. This layer, therefore, serves as a critical component of the 

conceptual framework, synthesising insights from Hollan et al. (2000) and Rogers and Ellis 

(1994) to deepen understanding of collaborative debugging within distributed settings, 

thereby paving the way for future inquiries into the complex interplay of cognitive 

processes and socio-technical dynamics. 

 

3.4.4 Layer 4: Innermost Circle: Cognitive Processes 

This layer encapsulates debugger-specific mental activities, from problem 

comprehension to hypothesis testing and learning, grounded in cognitive theories 

(Anderson, 2015). It utilises methods like think-aloud protocols and, possibly, eye-

tracking to explore debuggers’ mental models and decision-making processes (Oh et al., 

2013), demonstrating the complexity of individual cognitive efforts. Interlinking with the 

“Distributed Cognition” layer shows the symbiosis between individual and collective 

cognition in debugging (Hutchins, 1995), emphasising the significance of understanding 

personal cognitive tasks alongside shared efforts. Despite its comprehensive approach to 

cognitive analysis, the layer faces challenges like potential data collection intrusiveness 

and high demands on resources, suggesting a need for further methodological 

development. Overall, the layer significantly contributes to the framework by elucidating 

the individual cognitive basis of debugging within a collective context, emphasising the 

need for dynamic and diverse methodological approaches to fully grasp cognitive 

dynamics in debugging in distributed settings. 
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3.4.5 Centre: The Debuggers 

The Distributed Pair Debugging Conceptual Framework's "Debuggers" layer is symbolised 

by two avatars representing the debugging participants. This layer is pivotal, emphasising 

human-centred design and marking where conceptual layers merge with human action, 

as discussed by Rogers and Ellis (1994). It facilitates an exploration of the debuggers’ 

roles, responsibilities, and skills, highlighting the essential human element in debugging. 

Through this layer, a rich array of data is collected, ranging from quantitative metrics like 

success rates to qualitative insights on joint efforts, illustrating the symbiotic cognitive 

relationship between debuggers (Hollan et al., 2000). 

 

This methodology’s strengths include its ability to analyse how debuggers’ traits influence 

debugging, acknowledging the bug’s dynamic evolution and the complexity of debugging 

scenarios more comprehensively. This approach would better align the framework with 

the debugging process’s realities, leveraging insights from Hutchins (1995), Endsley 

(1995) and Zhang and Norman (1994). 

 

The conceptual framework integrates Information Foraging Theory (Pirolli & Card, 1999) 

and Distributed Cognition (Hutchins, 1995) to offer a comprehensive model for examining 

paired novice debuggers in distributed environments. Moving beyond the notion of 

debugging as merely an individual cognitive activity, it embraces the complexity of 

effective information foraging and the distribution of cognitive tasks among team 

members. This approach highlights the importance of both individual and collective 

cognitive efforts and their interactions within the debugging context. As such, the 



78 | P a g e  

 

framework presents a mechanism for advancing research in collaborative software 

development and human-computer interaction. 

 

Employing a qualitative methodology, the framework incorporates methods, such as 

interviews and observations for in-depth exploration of debuggers’ experiences, drawing 

on Creswell’s (2014) emphasis on contextual richness, adhering to the empirical 

standards of human-computer interaction research (Card et al., 2018). This approach 

enables a thorough investigation of the pluralistic debugging process, particularly suited 

to the complexities of distributed settings. While the research predominantly employs a 

qualitative approach, the framework’s design is inherently flexible, allowing for rigorous 

empirical studies. 

3.5 Deployment for data collection and data analysis 

To demonstrate how the conceptual framework is applied, Tables 6-8 show the 

connections between each layer of the framework and the specific methods utilised for 

data collection and analysis. Emphasis is placed on showing how each layer has directly 

shaped the selection of data collection methods and how these, in turn, have contributed 

to the insights generated during the analysis process. This detailed mapping helps to 

clarify the relationship between the theoretical foundation and the practical research 

methods employed. 
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Table 6: Relationship between the theoretical framework and the research methods (Layers 1 & 2) 

Layer Description Data Collection 
Methods 

Data Analysis 
Approach 

Layer 1: Debugging 

Environment 

Focuses on tools, 

technologies, and 

the remote setting 

in which debugging 

occurs. 

Screen and voice 

recordings capture 

how participants 

interact with the 

tools (e.g., IDEs, 

version control). 

Logs from tools and 

documentation 

websites track 

which resources are 

accessed during 

debugging. 

The collected data 

are analysed to 

understand the 

frequency and 

types of tool usage. 

Patterns such as 

tool-switching, 

reliance on 

documentation, or 

using IDE features 

(e.g., debuggers, 

version control) are 

tracked. These 

insights help assess 

how well the 

environment 

supports or hinders 

debugging efforts. 

Layer 2: 

Information 

Foraging Layer 

Based on 

Information 

Foraging Theory 

(IFT), examines 

how participants 

search for and 

gather information. 

Screen recordings 

and think-aloud 

protocols capture 

the information 

search processes, 

revealing how 

participants look for 

information (e.g., 

documentation, 

StackOverflow, 

forums, code 

navigation, etc.). 

This layer 

investigates the 

cognitive strategy 

of  

“information 

foraging”. 

The collected data 

are coded to 

categorise search 

strategies, such as 

direct queries or 

exploratory 

navigation. 

Successful foraging 

is identified when 

information 

retrieved directly 

contributes to bug 

resolution, while 

unsuccessful 

attempts highlight 

areas where further 

learning is required. 
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Table 7: Relationship between the theoretical framework and the research methods (Layers 3 & 4) 

Layer Description Data Collection 
Methods 

Data Analysis 
Approach 

Layer 3: 

Distributed 

Cognition 

Examines how 

cognitive tasks are 

shared between the 

pair and 

technology. 

 

This layer captures 

how cognitive tasks 

are distributed 

across team 

members and tools, 

focusing on 

collaboration and 

shared 

understanding. 

Transcripts from 

debugging sessions 

and interview, focus 

group discussions 

explore how 

cognitive tasks (e.g., 

task switching, 

communication) are 

distributed 

between 

participants and 

across tools. 

A content analysis 

approach maps 

how the pair shares 

cognitive 

responsibilities. The 

focus is on how 

tasks are allocated 

and communicated 

during debugging. 

Key insights 

regarding 

collaboration 

efficiency are 

drawn, such as 

which partner 

assumes leadership 

in specific 

debugging 

activities. 

Layer 4: Cognitive 

Processes 

The innermost layer 

deals with each 

debugger’s mental 

activities (e.g., 

problem 

comprehension and 

hypothesis testing). 

 

 

Focuses on 

individual mental 

activities such as 

problem 

comprehension and 

hypothesis 

formation. 

The think-aloud 

protocols and post-

session interviews 

focus on individual 

cognitive processes 

during debugging 

(e.g., hypothesising 

bug causes and 

formulating 

solutions). 

Cognitive processes 

are thematically 

coded into 

categories such as 

problem-solving 

tactics (e.g., trial-

and-error, 

hypothesis testing). 

The analysis also 

tracks shifts in 

cognitive load and 

mental strategies as 

the debugging 

session progresses. 
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Table 8: Relationship between the theoretical framework and the research methods (Centre Layer) 

Layer Description Data Collection 
Methods 

Data Analysis 
Approach 

The Debuggers 

(Centre Layer) 

The roles and 

interactions of the 

two participants 

focus on their 

collaboration and 

individual 

contributions. 

 

This is the core of 

the framework, 

symbolising their 

human-centred 

activity. 

 

 

Demographic 

surveys and 

performance logs 

collect metrics on 

individual 

debuggers, such as 

experience, 

expertise, and bug 

resolution 

performance. 

 

Demographics of 

participants (skills, 

experience). 

- Dyadic 

performance 

metrics. 

Combining 

performance 

metrics and 

qualitative insights 

(from interviews 

and focus groups) 

helps explore 

individual 

contributions and 

teamwork 

dynamics. 

Statistical analysis 

can also be applied 

to debugging 

success rates. 

 

Data Collection: Tables 6-8 illustrate how different aspects of the conceptual framework 

are tied to specific data collection methods. Screen recordings and think-aloud protocols 

provide insight into the debugging environment and cognitive processes layers. 

Interviews and focus groups also gather data on distributed cognition and individual 

contributions. 

 

Data Analysis: Each layer of the conceptual framework informs distinct parts of the data 

analysis process. For example, the Information Foraging Layer drives thematic analysis of 

search patterns, while Distributed Cognition focuses on the content analysis of 

communication and task allocation. The Debuggers (Centre) layer integrates both 

quantitative (performance metrics) and qualitative (collaboration dynamics) insights. 
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Within this context, the study adopts a rigorous approach by systematically linking each 

phase of the conceptual framework to the corresponding data collection and analysis 

methods. This alignment ensures a focused exploration of how novice programmers 

operate within a distributed debugging environment. Central to this process are the 

tables provided (Tables 6-8), which serve as crucial tools for establishing explicit 

connections between the theoretical constructs underpinning the framework, such as 

Information Foraging Theory and Distributed Cognition, and their practical application 

during the data collection and analysis stages. 

 

Furthermore, this structured mapping ensures that the conceptual elements transcend 

theoretical abstractions, being operationalised in a way that directly guides the research 

process. By deconstructing the debugging process into its fundamental components, the 

framework enables a systematic and thorough analysis of novice programmers’ 

behaviours and cognitive strategies in distributed settings. 

 

In addition, this approach illuminates the interactions between individuals and their tools 

and provides critical insights into how these factors influence collaboration, problem-

solving, and the overall efficiency of the debugging process. Ultimately, deploying this 

conceptual framework enhances the clarity, depth, and relevance of the study’s findings 

in understanding the complexities of distributed debugging for novice programmers. 
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3.6 Summary 

This study employs Information Foraging Theory and Distributed Cognition to analyse the 

debugging process, particularly focusing on novice programmers in networked 

environments. Information Foraging Theory (Pirolli & Card, 1999) assesses how novices 

navigate and extract valuable information, with previous studies validating its application 

in understanding software maintenance challenges (Fleming et al., 2013; Lawrance et al., 

2008; Piorkowski et al., 2012). Distributed Cognition extends the analysis beyond 

individual cognition to include social and technological interactions, impacting fields from 

aviation to software development (Hollan et al., 2000; Hutchins, 1995). This chapter 

explores explicitly how these frameworks apply to novice programmers working in pairs 

in distributed settings, aiming to illuminate the collaborative aspects of debugging and 

the role of tools in this context.  
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Chapter 4: Methodology 
 

 

4.0 Introduction 

This chapter describes the research’s methodological structure, including key principles 

and strategic direction. It begins by presenting the chosen research paradigm, tailored to 

unravel the complexities of the subject, thereby identifying the need for a solid 

foundation for inquiry. Following this, the chapter explores the specific methods and 

research designs employed, leading to detailed scrutiny of the theoretical foundations 

and highlighting methodological integrity’s paramount importance. By evaluating these 

methodological aspects, the chapter strives to carve out a definitive path for the research 

endeavour, aiming to augment the scholarly landscape significantly. 

 

4.1 Research Question 

Drawing on existing studies, debugging is acknowledged as an integral, yet time-intensive 

component of software development projects (Beller et al., 2018; Zhao et al., 2008), 

necessitating programmers to identify and rectify software glitches and look deeply into 

the intricate architecture of the software (Oman et al., 1989; Perscheid et al., 2017). 

Unfortunately, there is a noticeable lack of studies on how novice programmers debug 

code while working together, whether in the same location or across diverse geographies. 

 

Additionally, there is a reasonable tendency to tailor existing industry methods to fit 

educational environments. Nevertheless, the changes in circumstances, particularly with 

novice programmers working together from distant locations, require careful analysis.  

To this end, this central question steers this study: 
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“How do the paired Software Development Apprentices in 

geographically distributed locations work collaboratively to fix 

Python programming bugs using the technology-mediated medium?” 

 

However, according to Leedy and Ormrod (2021), a researcher from a design standpoint 

splits the central question into several smaller questions where the outcome of each 

smaller question can possibly answer the central question. So, given this and in 

investigating this central question, this study proffers answers to the following five 

specific research questions: 

▪ RQ1: What bugs are generated by the paired geographically distributed SDT 

apprentices working collaboratively to solve a given problem using Python?  

▪ RQ2: What bug locating strategies and tactics are deployed by the paired 

geographically distributed SDT apprentices while attempting to fix defects in the given 

Python code? How do they go about finding the bugs in the program code?  

▪ RQ3: How do the paired geographically distributed SDT apprentices distribute 

cognitive load when resolving bugged code? 

▪ RQ4: How does leveraging Integrated Development Environment (IDE) tools enhance 

the capabilities of distributed pair debugging and mitigate the challenges 

encountered in debugging programs? 

▪ RQ5: What challenges are experienced by paired geographically distributed SDT 

apprentices working collaboratively on debugging programming bugs, and why are 

they facing such challenges? 
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Building upon the premise established by Maxwell (2012) that research questions hone 

the focus of a study; this research primarily seeks to identify the bugs produced by dyad 

SDT apprentices working remotely on Python tasks. Given their novice status, the study 

aims to discern patterns or similarities in the bugs they produce, especially compared to 

collocated novices. The goal is also to ascertain if being in remote dyads influences the 

type of bugs, especially given the documented challenges faced by remote teams, such 

as collaboration, productivity, and communication issues (Miller et al., 2021; Neufeld & 

Fang, 2005; Ralph et al., 2020). By addressing this question, the study endeavours to draw 

parallels in the bugs from each dyad and cross-reference them with existing literature on 

bugs from solo and collocated novice programmers, shedding light on potential bug 

causatives in remote novice settings. 

 

Following the elucidation of the types of bugs encountered, understanding how dyad SDT 

apprentices, situated remotely, identify and rectify these programming inconsistencies 

becomes paramount for this study. Consequently, the inquiry encapsulated in the second 

research question is instrumental in unravelling the debugging behaviours. Building upon 

any insights garnered about debugging behaviours; the third research question aims to 

understand how dyad SDT apprentices distribute cognitive load during their bug-

searching and fixing endeavours. This question employs a verbal protocol to vocalise 

thoughts, thereby shedding light on the manifestation of distributed cognition within the 

dyad (Hutchins, 1995). In parallel, this exploration delves into how thought processes 

inform specific actions undertaken while pursuing bugs in the programming code, aligning 

with the premises of information foraging theory (Pirolli & Card, 1999). The combination 

of distributed cognition and information foraging theory forms a key framework, which 
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seeks to capture the complex cognitive processes and detailed debugging methods, thus 

shaping the direction of data gathering and analysis. 

 

Expanding upon previous research, the fourth research question delves into the intricate 

relationship between technology and debugging. Specifically, it investigates the roles of 

integrated development environments, compilers, and synchronous collaboration tools 

in potentially streamlining the bug foraging and rectification processes. The inquiry is 

centred on how SDT pairs utilise these technologically-mediated tools to potentially 

enhance distributed pair debugging capabilities, thereby mitigating challenges 

encountered during debugging. While evidence suggests that technological tools have 

been instrumental in collocated dyad debugging scenarios, this research seeks to 

investigate if their impact remains consistent or introduces new facets to the remote 

debugging process. 

 

Building on the exploration of technology’s role, the fifth research question focuses on 

the challenges remote dyad apprentices encounter during their synchronised and 

collaborative efforts to debug Python codes. This inquiry extends beyond merely 

identifying the challenges, aiming also to uncover the underlying causes behind such 

difficulties in collaborative debugging scenarios. 

 

4.2 Context and Study Site 

Drawing from the insights of Dey (2001), which emphasises the vital role of context in 

shaping an entity’s implicit situational information, whether that pertains to an individual, 

location, or object, it becomes clear that empirical studies are intricately bound to the 
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inherent nature of human behaviour. As Van Oers (1998) articulated, this context-driven 

behaviour aids in refining specific meanings, ensuring they are holistically intertwined 

within a broader spectrum rather than isolated instances. 

 

Expanding upon this, the current study zeroes in on distinct contexts involving 30 SDT 

apprentices dispersed across twelve diverse organisations. The primary focus revolves 

around the debugging strategies of 15 dyad apprentices, who, as novice programmers, 

operate under the guidance of workplace mentors. As characterised by Bonar and 

Soloway (1983) and reaffirmed by Lau and Yuen (2009) and Jenkins (2002), these novices 

stand at the initial stages of programming, often lacking expertise in crucial areas such as 

problem-solving, abstraction, and, notably, debugging. Also, despite a plethora of reasons 

pinpointed for the debugging struggles of novice programmers (de Raadt, 2007; Denny 

et al., 2022; Lahtinen et al., 2005; McCauley et al., 2008; Vourletsis et al., 2021; Whalley 

et al., 2021), mapping out these patterns could further help understand their challenges. 

 

It is imperative to highlight that the study’s milieu was predominantly digital, leveraging 

technology-driven platforms like Microsoft Teams and specialised debugging software. In 

this regard, Visual Studio Live Share, commonly referred to as “Live Share”, serves as the 

specialised debugging software and is a collaborative development tool introduced by 

Microsoft for Visual Studio and Visual Studio Code. This extension empowers apprentices 

to share synchronously and co-edit code with peers, fostering joint coding, debugging, 

and issue resolution. This eliminates the necessity for participants to share a local 

network or identical development configurations. As a result, Live Share offers a fluid co-
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coding platform, proving indispensable for apprentices collaborating from distant or 

varied locations.  

  

Also, this multi-layered study spans a wide range of elements, from individual cognitive 

aspects and technological infrastructures to the intertwined socio-technical dynamics 

related to optimal debugging tool usage. Similarly, the research also inquires into the 

interaction between external (software tools and share code) and internal 

representational (mental models, problem-solving strategies, knowledge base) 

frameworks. In essence, this aspect of the research attempts to bridge the gap between 

the tangible tools and methods used in debugging and the intangible cognitive processes 

programmers employ, especially in the context of collaborative, distributed 

environments. This complex interplay includes discussions in pairs using the think-aloud 

protocol, the debugging patterns of the SDT, joint efforts in addressing software bugs, 

how the use of a particular debugging platform shapes or guides an apprentice’s internal 

thought process or problem-solving strategy, and the specific code being examined. 

 

4.3 Philosophical Perspectives of this Study 

Beginning with the foundational principles posited by Lincoln et al. (2011) and Cresswell 

and Plano Clark (2011), it is evident that a researcher’s philosophical leanings and 

worldviews deeply inform every facet of the research process, especially concerning the 

origins and nature of knowledge. These predispositions hold tangible ramifications. Thus, 

a lucid understanding of one’s philosophical principles becomes indispensable, offering a 

robust foundation to delve into the study’s paradigm, ontology, epistemology, and 

methodology, as elucidated by Fitzgerald and Howcroft (1998). 
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Building on this idea, this study’s approach is deeply influenced by embedded 

philosophical perspectives, as highlighted by Creswell and Poth (2018) and Crotty (1998). 

These perspectives inform the research questions and data collection methods while 

supporting the study's paradigm, ontology, epistemology, and methodology. According 

to Saunders et al. (2019), research philosophy acts as a belief system that critically 

informs the methodology, strategy, and analysis of data, reflecting the interplay between 

a researcher’s philosophical stance and their investigative approach. The study navigates 

the objectivism-subjectivism continuum, recognising the dichotomy between viewing 

reality as an external, observable entity and understanding it as a socially constructed 

mosaic. This philosophical grounding provides a robust foundation for exploring the 

specific research strategies and analytical frameworks employed in this study. The 

position of this research, in relation to these philosophical underpinnings, is further 

elaborated in subsequent sections. 

 

4.3.1 Paradigm 

This study adopts an interpretive paradigm, conceptualising it as a set of philosophical 

assumptions about the nature of reality and methods to understand it, as suggested by 

Mittwede (2012) and elaborated by Christensen et al. (2020) and Creamer (2017). This 

paradigm serves as a lens through which the research on SDT apprentices’ debugging 

strategies is viewed, aligning with Kuhn (1970) interpretation of paradigms as collective 

exemplars that influence evidence collection. Within this framework, the study embraces 

the comprehensive paradigm dimensions, ontology, epistemology, methodology, and 
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axiology, as described by Guba and Lincoln (1994), which dictate diverse perspectives on 

knowledge and its formation. 

 

Concluding, this interpretive approach enables a deep exploration of the human aspects 

of software debugging, focusing on apprentices’ experiences, behaviours, and 

perceptions. By understanding these elements, the research provides qualitative insights 

into the apprentices’ interactions and learning processes in debugging within a 

collaborative environment. This aligns with Cohen et al. (2007), who advocate for the 

interpretive paradigm’s utility in examining complex human behaviours and social 

interactions, thus offering a detailed perspective of educational and professional 

practices in technological settings. Further details on the study’s paradigm position are 

explored in subsequent sections. 

 

4.3.2 Ontology 

Ontology stands out as a crucial dimension, encapsulating philosophical assumptions 

pertinent to the nature of truth and reality. Connecting these ontological perspectives to 

the current study, the interpretive paradigm is utilised, encapsulating the belief in “reality 

as socially and discursively constructed by human actors” (Grix, 2004, p. 61). From an 

ontological standpoint, the study asserts the pluralistic nature of reality, suggesting 

diverse experiences and approaches among SDT apprentices in program debugging. 

Consequently, acknowledging diverse experiential worldviews, the study is geared 

towards exploring multiple realities (Lincoln & Guba, 2000), wherein each apprentice 

constructs meaning through interactions and engagements (Bryman, 2016). This 

approach is proposed by Guba and Lincoln (1994), who propose that relativism serves as 
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the ontology for interpretivism, advocating the subjective and individualistic perception 

of reality. 

 

Given these considerations, this study adheres to a pluralist view of reality, ensuring a 

harmonious alignment of the adopted ontology with the epistemological perspective 

and, consequently, influencing the research design. 

 

4.3.3 Epistemology 

This research aligns with the perspective that epistemology is intertwined with 

assumptions analysing the relationship and dependencies between the researcher and 

the research focus, affecting the objectivity and detachment inherent in research 

processes (Creswell & Poth, 2018; Leavy, 2017). 

 

In the context of this study, the epistemological perspective of qualitative research 

implies a substantial investment of time in engaging with participants to gain insights 

through detailed descriptions of their lived experiences and viewpoints. It emphasises the 

co-creation of knowledge and subjective reality, considering the influence of social 

interactions and the researcher's interpretations of contextual actions. In this light, a 

deeper understanding of knowledge and meaningful reality will be attained regarding the 

approaches of paired SDT apprentices in debugging Python’s bugged code within specific 

social settings facilitated by interaction with technology agents (Guba & Lincoln, 1994). 

However, the richness of the interpretive paradigm’s descriptions is juxtaposed with 

challenges in validity and trustworthiness, stemming from the subjective nature of the 

data and varying participant interpretations (Rolfe, 2006). In order to tackle these 
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potential vulnerabilities, this research incorporates Maxwell’s strategies for addressing 

validity concerns (Maxwell, 2008), laying a robust foundation for the research effort (see 

Section 4.7). 

 

4.4 Methodological Framework 

This study aligns with a qualitative research methodology, drawing from the interpretive 

paradigm to explore the debugging behaviours of SDT apprentices in distributed settings. 

This choice is underpinned by the study’s ontological belief in the subjective construction 

of reality and its epistemological stance that knowledge is best understood through 

interpreting these subjective experiences. 

 

Leedy and Ormrod (2021) emphasise research as a process that goes beyond mere data 

collection to include deep analysis and interpretation to enrich understanding of a 

specific phenomenon. This perspective shapes the research methodology, which, as 

Cameron (2011) and Brannen (2005) articulate, is inherently linked to the researcher’s 

ontological and epistemological assumptions. These assumptions inform the choice of 

qualitative research for this study, which seeks to capture apprentices’ complex, intricate 

interactions with their work environments. 

 

According to Leavy (2017), research methodology involves harmonising methods and 

theoretical frameworks guided by underlying philosophical convictions. This approach is 

vital for understanding apprentices' subjective and constructed realities as they navigate 

debugging tasks, making qualitative methods particularly suitable. Gray (2021) and 

Saunders et al. (2019) further argue that the choice of methodology influences the 
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research design, which in this case focuses on multiple case studies to provide in-depth 

insights into each apprentice’s experiences and interactions within natural settings. 

 

While quantitative research offers a systematic exploration of variables and mixed 

methods provide a comprehensive blend of quantitative and qualitative data, the 

qualitative approach was chosen for its strengths in generating rich, contextual, and 

detailed narratives (Christensen et al., 2020; Gray, 2021). Such depth is necessary to grasp 

the full scope of apprentices’ debugging experiences and the dynamic, often tacit aspects 

of their skill development in real-world contexts. 

 

Therefore, this study’s methodological framework does not isolate it within a single 

paradigm but reflects a pragmatic blending of influences that supports its goals. It utilises 

a multiple case study approach as described by Merriam (1998) and Yin (2014), which 

allows for examining the ‘how’ and ‘why’ behind apprentice behaviours in natural 

settings, thereby aligning the philosophical underpinnings with the practical inquiry 

methods. This alignment ensures that the research is methodologically sound and deeply 

reflective of the interpretive paradigm’s focus on understanding human experiences 

within their naturally occurring contexts. 

  

4.4.1 Case study design and rationale 

The qualitative case study methodology is highly suited to the SDT distributed pair 

debugging research due to its ability to provide in-depth insights into complex processes 

and interactions within specific real-life contexts (Creswell, 2014; Merriam, 2009; Yin, 

2014). This approach is invaluable for comprehending the complexities of social 
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interactions, structures, and the debugging processes that SDT apprentices engage in, 

enabling researchers to capture the intricate details of how and why certain behaviours 

and practices occur (Baxter & Jack, 2008; Creswell, 2014). 

 

A key strength of the qualitative case study lies in its contextual sensitivity, which allows 

for a detailed examination of the environmental, temporal, and locational factors that 

influence apprentices’ debugging practices. This sensitivity is essential for understanding 

the complex dynamics between paired SDT programmers and how external variables, 

such as technological agents, impact their debugging strategies (Gray, 2021; Geertz, 

1973). Such a methodological approach is critical for generating deep insights into the 

interactions and dependencies within the debugging environment  (Ridder, 2017). 

 

Furthermore, the holistic nature of qualitative case studies supports the integration of 

multiple data sources, enhancing the robustness and comprehensiveness of the analysis. 

This capability is indispensable for exploring various dimensions of the debugging 

process, allowing researchers to draw meaningful correlations and interpretations vital 

for theoretical and practical advancements (Gerring, 2017; Stake, 1995). 

 

While qualitative case studies offer significant theoretical contributions and facilitate the 

exploration and conceptualisation of new paradigms, their specificity and contextual 

depth may limit the generalisability of findings. However, the richness of the collected 

data compensates for these limitations, providing detailed, context-specific insights 

crucial for understanding the unique phenomena of distributed pair debugging (Creswell, 

2014; Merriam, 2009; Ridder, 2017). 
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In sum, despite potential challenges such as resource intensiveness and issues with 

generalisability, the qualitative case study methodology aligns effectively with the SDT 

distributed pair debugging research goals. It enables a dynamic and adaptable 

exploration of processes, which is essential in settings characterised by rapid 

technological and procedural changes (Flyvbjerg, 2006; Saunders et al., 2023). Also, the 

depth and adaptability of this approach ensure that it supports the development of 

practical solutions tailored to the specific needs and contexts of SDT apprentices. 

 

4.4.2 Sampling   

Qualitative research inherently focuses on depth rather than breadth, aiming for rich 

insights over broad generalisations. Nevertheless, this focus does not negate the need for 

carefully crafted sampling strategies. Indeed, rigorous sampling is pivotal to ensure data 

validity and to address key research questions effectively, a process critical to deriving 

meaningful interpretations (Flick, 2022; Patton, 2015; Saunders et al., 2019). Moreover, 

developing a suitable sampling frame for case studies is complex, demanding a careful 

balance between study objectives, seeking richness over range, and the careful 

application of findings (Creswell, 2014). 

 

Keeping this in perspective and in the context of a qualitative multiple case study focusing 

on dyads of apprentices debugging Python code in distributed settings, the choice of 

purposive sampling is a deliberate and strategic methodological decision. The 

employment of purposive sampling in this study enables the deliberate selection of cases 

that facilitate an investigation into the dynamics of collaboration and cognition among 
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apprentices in distributed settings. This methodological choice is instrumental in 

capturing rich, multifaceted interactions and the evolving cognitive processes that 

characterise the apprentices’ experiences as they engage in debugging Python code 

together. As Flick (2022) suggests, qualitative research should not default to random 

sampling as in quantitative studies, but instead should employ a thoughtful approach to 

select participants, ensuring the data’s richness and relevance to the research questions. 

 

In this specific study, purposive sampling was employed to select apprentice pairs who 

could provide insights into the debugging process. This selection was driven by the intent 

to understand the individual actions and the interpersonal dynamics and communication 

patterns that might facilitate problem-solving in a distributed setting (Lincoln & Guba, 

1985). The iterative nature of purposive sampling, inclusive of snowball, quota, and 

convenience sampling methods, allowed for a layered and rich collection of data, 

contributing to a desired well-rounded understanding of the case (Patton, 2015). 

 

In sum, the purposive sampling method was integral to the research design, ensuring that 

the cases chosen for this study were informative and closely related to the central 

research questions. This methodological choice, underpinned by scholarly discourse, 

provided a framework for examining the collaborative interactions of apprentices in 

distributed settings, ultimately leading to findings that can be both insightful and 

trustworthy. 
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4.4.3 Participants 

This study categorises its participants into two main groups, in particular, SDT apprentices 

and workplace mentors and trainers from the training organisation, each offering critical 

insights into the research objectives. The central focus of this investigation is on the SDT 

apprentices, the first participant category. Their engagement in debugging bugged 

Python code is vital for understanding various aspects, such as their debugging strategies, 

the role of technology in this process, how they manage cognitive load during 

collaborative debugging, and the challenges they face in this context (Patton, 2015). This 

aspect of the study is crucial in revealing both the individual and collaborative dimensions 

of their software development skills. 

 

Prior to initiating the recruitment of apprentices for this study, the necessary ethical 

approval was acquired, reflecting stringent adherence to academic research protocols 

(Creswell, 2014). This foundational step was followed by an extensive outreach effort, 

wherein 110 emails were dispatched to a selection of organisations known for fostering 

apprentices at the targeted standard. As detailed in Appendices A to D, these emails 

introduced the study’s aims and enclosed essential documentation, including Participant 

Information Sheets (PIS) and consent forms for employers and apprentices, ensuring 

informed participation (Saunders et al., 2023). Key criteria outlined in the emails included 

the specific age bracket, the necessity for apprentices to fall within the novice 

programmer classification, and a commitment to contribute a maximum of four hours 

throughout the study. 
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From the 135 emails disseminated using DocuSign, around 45 organisations expressed 

their willingness to participate, encompassing a total of 89 SDT apprentices who were 

available for the study duration, along with their workplace mentors. Of the 89 SDT 

apprentices, 58 apprentices completed and returned the necessary consent and survey 

forms. 

 

Upon examination of these forms and cross-referencing the apprentices’ profiles in terms 

of educational background and programming experience, a cohort of 46 apprentices was 

ultimately selected. This selection process, unfortunately, led to the exclusion of 12 

candidates who did not meet the set criteria, thereby reducing the number of 

participating organisations to 36. The study targeted apprentices who had been part of 

the training programme for over three months but less than nine, ensuring they 

possessed basic programming knowledge per the SDT Standard. 

 

Acknowledging that most of the apprentices were unfamiliar with each other and came 

from varied organisational backgrounds, a 30-minute familiarisation debugging session 

was organised. This session, not formally part of the study, was crucial for the apprentices 

to practice the think-aloud protocol while engaging in collaborative debugging. It allowed 

them to understand what participation entailed and assess their willingness to continue 

in the study. Subsequently, 11 apprentices withdrew, reducing the number of participants 

to 35, all volunteered for the study. Among these, 30 were actively paired for the study, 

while 5 were placed on standby, ready to step in should any shortlisted apprentices 

withdraw. It should be noted that the recruitment happened on two different occasions 

due to a break in the study. 
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Thirty apprentices participated in the study, each randomly paired within their age group. 

They were anonymised using shorthand notation (‘STD<number>‘) and briefed, spanning 

ages 16 to 50 years (see Table 6 for the participants’ details for the debugging sessions 

and the dyads’ interviews). Predominantly, these participants were young males, 

primarily falling within the 16 to 21 year age bracket, highlighting the study’s focus on a 

younger demographic.  

 

The recruitment criteria for apprentices in this study emphasise a foundational 

background in software development, with formal education being essential. Typically, 

participants are expected to have completed secondary education and introductory 

programming courses, ideally in Python, to equip them with the skills necessary for 

debugging. This foundation helps ensure that participants are not overwhelmed by the 

complexity of the debugging tasks (Robins et al., 2003). The study categorises apprentices 

as novice programmers, grouped into three subgroups based on age. Participants aged 

16 to 18 years must have no more than two years of programming exposure, just 

transitioning from secondary education into software development and hold a General 

Certificate of Secondary Education (GCSE) level qualification or equivalent Level 2 

qualification on the national occupational framework. Those aged 18 to 25 years should 

have less than one year of programming experience, ideally with Level 3 qualifications, 

while those aged 25 to 50 years should have three to nine months of hands-on 

experience. This structured approach ensures that participants have enough exposure to 

contribute meaningfully to the debugging process while still encountering the challenges 

typical of novices (Allwood, 1986). 
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In addition to educational qualifications, the study required apprentices to demonstrate 

a commitment to the debugging sessions and interviews, dedicating up to five hours for 

participation. Their readiness to collaborate was equally vital, as the study focused on 

paired debugging and think-aloud protocols, exploring how apprentices communicated 

and shared cognitive loads in real-time problem-solving situations. This collaborative 

approach ensured that participants contributed effectively to the study’s objectives. 

Although apprentices were expected to have basic Python knowledge, their experience 

was still developing. As outlined in Table 9, the recruitment process aimed to select 

individuals with the appropriate educational background, experience, and willingness to 

engage in collaborative work, contributing to the study’s success. 

 

Despite the variations in age and background, it is crucial to recognise that all apprentices 

were uniformly classified as novice programmers. This classification reinforces the study’s 

objective to evaluate individuals’ learning and developmental trajectories at the nascent 

stages of their careers in software development, thereby contributing to the field of 

programming education and research. 
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Table 9: Participant details for the debugging sessions and the dyad’s interview 

Dyad ID Participant ID Age Bracket Gender Programming experience 

Dyad1 
SDT1 16 – 18 years Female Low < 2 years 

SDT2 16 – 18 years Female Low < 2 years 

Dyad2 
SDT3 16 – 18 years Male Low < 2 years 

SDT4 16 – 18 years Female Low < 2 years 

Dyad3  
SDT5 16 – 18 years Male Low < 2 years 

SDT6 16 – 18 years Male Low < 2 years 

Dyad4 
SDT7 16 – 18 years Male Low < 2 years 

SDT8 16 – 18 years Male Low < 2 years 

Dyad5 
SDT9 16 – 18 years Male Low < 2 years 

SDT10 16 – 18 years Male Low < 2 years 

Dyad6 
SDT11 16 – 18 years Male Low < 2 years 

SDT12 16 – 18 years Male Low < 2 years 

Dyad7 
SDT13 16 – 18 years Male Low < 2 years 

SDT14 16 – 18 years Male Low < 2 years 

Dyad8 
SDT15 16 – 18 years Female Low < 2 years 

SDT16 16 – 18 years Female Low < 2 years 

Dyad9 
SDT17 18 – 25 years Male Low < 1 year 

SDT18 18 – 25 years Male Low < 1 year 

Dyad10 
SDT19 18 – 25 years Male Low < 1 year 

SDT20 18 – 25 years Female Low < 1 year 

Dyad11 
SDT21 18 – 25 years Male Low < 1 year 

SDT22 18 – 25 years Male Low < 1 year 

Dyad12 
SDT23 18 – 25 years Male Low < 1 year 

SDT24 18 – 25 years Male Low < 1 year 

Dyad13 

SDT25 25 – 50 years Male Low >3 Months and <9 
Months  

SDT26 25 – 50 years Male Low >3 Months and <9 
Months 

Dyad14 

SDT27 25 – 50 years Male Low >3 Months and <9 
Months 

SDT28 25 – 50 years Male Low >3 Months and <9 
Months 

Dyad15 

SDT29 25 – 50 years Male Low >3 Months and <9 
Months 

SDT30 25 – 50 years Male Low >3 Months and <9 
Months 

 

This study also incorporated a second category of participants, comprising Workplace 

Mentors and Trainers from the training organisations, whose contribution was crucial to 

the research’s success. These professionals, with their extensive background in software 

development, bring a wealth of expertise and knowledge, particularly in grasping the 

intricacies of debugging strategies and how novice programmers, like the apprentices in 

this study, approach code debugging (Glesne, 2016; Patton, 2015). Their deep insights 
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into the apprentices’ debugging processes and developmental stages are invaluable for 

comprehensively analysing their debugging strategies. 

 

To ensure the relevance and value of their contribution, strict qualifications were set for 

the Workplace Mentors and Trainers. These experts are required to have a minimum of 

ten years of programming experience, which underlines their deep understanding and 

mastery of the field. Additionally, they should have worked with at least ten apprentices, 

ensuring they possess technical expertise and practical experience mentoring novice 

programmers. This prerequisite is essential as it guarantees that the mentors and trainers 

can offer detailed insights into the apprentices’ debugging abilities, their software 

development methodologies, and the application of technology in these processes. Such 

depth of understanding is crucial for meeting the study’s aims and adds significant value 

to the research objectives (Lincoln & Guba, 1985). 

 

To summarise, the involvement of both SDT apprentices and seasoned Workplace 

Mentors and Trainers creates a rich and diverse pool of participants (see their 

demographic infographics showing their classification in Figure 5), thereby enhancing the 

study’s depth and breadth. Through their combined perspectives and experiences, the 

study aimed to make contributions to the understanding of debugging strategies 

deployed by novice programmers and practices in software development. The insights 

gained from these two groups are expected to be instrumental in advancing knowledge 

in the domain, particularly regarding the apprentices’ debugging skillsets and the role 

technology plays in the field. 
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Figure 5: Participant demographic infographics recruited for the study. 

 

4.4.4 Data Analysis 

Reliable qualitative research pivots on comprehensive data analysis (Maguire & Delahunt, 

2017). Considering this context, this study adopts Merriam’s analytic inductive approach, 
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which encourages the simultaneity of data collection and analysis in such a way that the 

data collection and analysis are to be approached in a concurrent and interactive process 

(Merriam, 1998). By so doing, it is a recurring process involving consolidating, reducing 

and interpreting the data and making sense of it.  

 

For the analysis of verbalisation, thematic analysis based on Braun and Clarke (2006) was 

employed. This process involved coding the data, organising it into categories and 

themes, and systematically interpreting the findings in a sequential manner. 

 

First, the verbalisation through the usual conversation and the thought process to be 

exposed through the thick-aloud protocol were transcribed and annotated with the 

actions visible in the video. Codes were developed and guided by the principles of 

information foraging theory based on the steps taken to different bug location strategies, 

and the cognitive burden sharing and the affordances of the technology were considered 

simultaneously. 

  

To strengthen the data validation to a great extent, each data source within each setting 

was analysed, triangulated, and converged across settings to understand the similarities 

and differences between the settings. In this respect, the overall understanding of the 

cases was established, and the data validity was enhanced. Also, three types of textual 

data were collected for the data sources. For example, interview transcripts, focus group 

transcripts, and observational field notes were transcribed and imported into NVivo to 

help with the organisation by coding to extract themes (Welsh, 2002).  
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Table 10 provides evidence triangulation, mapping the research questions to the data 

source and the methods of evidence collection. 

Table 10: Evidence triangulation. 

 

 

This qualitative multiple case study examines dyadic SDT apprentices debugging Python 

code through a think-aloud protocol, supplemented by in-depth interviews and focus 

group discussions with mentors. Thematic analysis, as outlined by Braun and Clarke 

(2006), is effectively adapted and particularly suitable in this context, with each stage 

interlinked to build a comprehensive understanding of the data. Figure 6 visually 

represents the data analysis stages, with the subsequent sections detailing the processes 

undertaken. 
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Figure 6: The thematic analysis approach adapted from Braun and Clarke (2006). 

 

Stage 1: Familiarisation  

Familiarisation with the data is a fundamental stage in thematic analysis, particularly in 

qualitative research involving think-aloud sessions, interviews, and focus groups. This 

stage provides the foundation for subsequent analysis by ensuring that all insights remain 

anchored in the authentic experiences of participants. The process began with 

transcription, capturing spoken words, pauses, intonations, and non-verbal cues to 

preserve the richness of the data, as underscored by Riessman (2008) and Braun and 

Clarke (2006). The transcriptions were then imported into NVivo, which played a crucial 

role in organising, managing, and systematically exploring the data, allowing for a 

structured approach to the analytical process. 

 

Following transcription, repeated reading of the transcripts facilitated immersion in the 

data, moving beyond basic comprehension to uncover deeper context, nuances, and 

meanings. This active engagement, marked by questioning, annotating, and noting initial 
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thoughts, revealed recurring themes, distinctive expressions, and key participant 

reactions. These emerging patterns, which highlighted problem-solving strategies and 

interactions with technology, informed the direction of coding and theme development, 

as advocated by Braun and Clarke (2006) and Saldaña (2015). Furthermore, NVivo 

enhanced the process by enabling precise tagging and refinement of patterns, ensuring a 

critical and reflective approach. Together, these stages provided a robust and systematic 

foundation for thematic analysis, ensuring a comprehensive and data-driven exploration 

of the participants’ perspectives, as emphasised by Riessman (2008), Braun and Clarke 

(2006), and Saldaña (2015). 

 

Stage 2: Coding 

Building on Step 1: Familiarisation with the Data, the second stage of thematic analysis, 

as outlined by Braun and Clarke (2006), focused on generating initial codes. This process 

systematically organised data from think-aloud protocols, interviews, and focus groups 

into meaningful units. NVivo played a pivotal role in this stage, providing the tools to 

systematically tag, group, and visualise data. The software’s query functions and 

categorisation features streamlined the identification of key aspects of apprentices’ 

experiences and strategies, aligning with the insights of Gibbs (2007) and Miles, 

Huberman, and Saldaña (2014). 

 

The initial segmentation of datasets by source was critical in adhering to the multiple case 

study framework discussed by Eisenhardt (1989). This segmentation facilitated a detailed 

understanding of each dataset, enabling the identification of unique themes and 

patterns. NVivo’s analytical tools enhanced this process by supporting annotations, 
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detailed queries, and data visualisations. These features helped uncover apprentices’ 

problem-solving strategies and interactions with technology, a process underscored by 

Saldaña (2013) as essential for extracting meaningful insights. 

 

Furthermore, NVivo supported comparative analysis by enabling the integration of 

separately coded datasets. This functionality was vital for identifying commonalities and 

differences in apprentices’ strategies and experiences, following the methodological 

recommendations of Baxter and Jack (2008). By combining these insights, the process 

established broader patterns while maintaining the depth and nuance of individual cases. 

In summary, generating initial codes, facilitated by NVivo, was a pivotal step in thematic 

analysis. The integration of NVivo’s structured tools ensured a robust, data-driven 

approach to exploring apprentices’ experiences and strategies during debugging. 

 

Step 3: Theme Generation 

The third stage of thematic analysis, as outlined by Braun and Clarke (2006), involved 

collating initial codes into meaningful themes, a vital step in organising and interpreting 

qualitative data. This process required systematically sorting and grouping codes based 

on their relationships and their relevance to the research questions, as supported by 

Fereday and Muir-Cochrane (2006). By exploring these connections, broader patterns 

and themes were identified, revealing both shared and unique aspects of apprentices’ 

experiences and strategies across the data sets. This process aligned with Stake’s (2006) 

emphasis on capturing the depth and complexity of multiple case studies. NVivo played 

a crucial role in this stage, with its thematic mapping capabilities providing a visual 

framework for organising and refining themes.  
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As the analysis progressed, the iterative movement between coding and theme 

generation ensured a deeper engagement with the data, creating opportunities to refine 

emerging themes further. The critical examination of themes at this stage was essential, 

ensuring they aligned with the research objectives and were grounded in both the data 

and the study’s theoretical framework. The researcher’s interpretive role was pivotal, 

requiring careful judgement to determine how themes integrated into the broader 

narrative of the study. NVivo’s comparative tools further supported this process by 

allowing the visualisation of relationships between themes and highlighting overlaps and 

distinctions across cases. These capabilities enriched the analytical process by enabling a 

more systematic exploration of patterns across the apprentices’ experiences. 

 

By leveraging NVivo’s tools and maintaining a reflexive approach, this stage established a 

robust analytical structure that contributed to identifying and understanding significant 

patterns within the data. The generation of themes built on the insights from the coding 

stage, creating a cohesive framework that provided the foundation for deeper 

exploration in subsequent stages of analysis. This process addressed the study’s research 

questions and offered a comprehensive perspective on the apprentices’ strategies and 

experiences within the context of the multiple case study. 

 

Step 4: Theme Review 

The fourth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on 

rigorously reviewing the identified themes to ensure they accurately represented the 

data. This process involved refining, merging, or separating themes as needed, a critical 
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step emphasised by Braun and Clarke (2006) and Bazeley (2013) to guarantee that the 

themes were truly reflective of the data. The review ensured that the themes were 

coherent and meaningful across various cases and stages of data collection, supporting 

the reliability and validity of the analysis, as highlighted by Yin (2018). NVivo was 

instrumental in facilitating this process, with its visual tools allowing for systematic 

comparisons and refinements of themes.  

 

The iterative review process required a critical examination of how each theme related 

to the research questions and objectives, contributing to the broader narrative of the 

study. This involved identifying patterns common across multiple cases while also 

recognising themes unique to particular cases, which is essential in a multiple case study 

approach. NVivo’s capabilities for visualising relationships and overlaps between themes 

were crucial. These tools enhanced the reflexive nature of the review, ensuring themes 

were not only descriptive but also interpretative, aligning with the principles of 

qualitative research. This stage was pivotal in capturing the complexities and nuances 

across cases, providing a robust foundation for the final interpretation of findings and 

ensuring the reliability and validity of the thematic analysis. 

 

Step 5: Theme Definition 

The fifth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on 

defining and naming themes. This involved conducting a detailed analysis to refine the 

specifics of each theme, interpreting its essence, and exploring its relationship to the 

overall narrative of the data. The interpretive process, further elaborated by Clarke and 

Braun (2017), was essential in distilling the core meaning of each theme and ensuring it 
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aligned with the research questions and objectives. This stage was particularly significant 

in a multiple case study context, as it required articulating how each theme manifested 

across different cases and data sources, as supported by Eisenhardt and Graebner (2007). 

NVivo facilitated this process by providing tools for visualising and organising themes, 

helping to ensure they reflected underlying patterns and insights accurately. 

 

Critically examining and contextualising themes within the broader study scope was 

integral to this phase. The themes needed to strike a balance between being descriptive 

enough to represent the data and interpretative enough to offer deeper insights into the 

research problem. This process ensured that the themes were both grounded in empirical 

data and connected to the theoretical framework of the study. NVivo’s visualisation 

capabilities further supported this balance by enabling comparisons and in-depth 

exploration of thematic relationships. The researcher’s reflexive approach was pivotal in 

shaping these final themes, ensuring they resonated with the study’s aims while providing 

a meaningful and insightful representation of the data. This stage was instrumental in 

preparing the groundwork for the final synthesis and interpretation of findings, 

contributing to a comprehensive understanding of the research problem across multiple 

cases. 

 

Step 6: Reporting 

The sixth stage of thematic analysis, as outlined by Braun and Clarke (2006), centred on 

producing a coherent and compelling report of the study’s findings. This process involved 

presenting the identified themes using vivid examples from the data, a strategy 

emphasised by Braun and Clarke (2006) and Creswell (2013) to effectively illustrate the 
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insights derived from the analysis. The findings were carefully linked to the research 

questions and the broader literature, ensuring the analysis was anchored in both 

empirical data and the wider academic context. Synthesising findings from the study’s 

multiple data sources was a complex but essential task, as highlighted by King (2004) and 

Yin (2018). This required integrating insights from each data source to reflect the breadth 

and depth of the data, particularly given the multiple case study design. The report 

offered a holistic view of the research problem, comprehensively understanding 

apprentices’ experiences and strategies. 

 

Producing the report adhered to established principles of qualitative academic writing, 

creating an integrated narrative that presented a clear and insightful understanding of 

the research problem. Scholars such as Marshall and Rossman (2016) and Merriam and 

Tisdell (2015) advocate for this narrative approach, which ensures an engaging and 

coherent representation of qualitative findings. The report included a detailed account of 

the themes, effectively conveying the complexity and depth of the data, as suggested by 

Silverman (2016) and Ritchie et al. (2013). By integrating the findings with existing 

literature, the study situated itself within the broader academic discourse. Furthermore, 

a comparative approach, as recommended by Baxter and Jack (2008) and Eisenhardt 

(1989), was employed to synthesise findings across multiple case studies. This approach 

highlighted both unique and shared experiences, offering a reflective synthesis that 

provided a comprehensive understanding of the research problem. As the culmination of 

the thematic analysis, the report encapsulated the study’s insights and presented a 

cohesive narrative of apprentices’ strategies and the role of technology in debugging. 
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4.5 Empirical Research Process 

There have been decades of studies investigating how students learn to debug (Katz & 

Anderson, 1987; Murphy et al., 2008; Perkins & Martin, 1986), including multiple think-

aloud studies examining student debugging (Fitzgerald et al., 2008; Liu et al., 2017; 

Perkins & Martin, 1986; Yen et al., 2012). However, despite extensive work on 

understanding student debugging, there are few detailed, qualitative studies of the 

debugging practices of novice programmers (Whalley et al., 2023). In addition to the well-

acknowledged fact that novice programmers encounter substantial debugging 

challenges, as Bottcher et al. (2016) noted, there is a notable gap in the current literature 

concerning the debugging strategies employed by novice programmers in distributed 

environments. 

 

To address this gap, the study adopted a holistic approach to data collection, employing 

a range of research instruments. These included non-participatory observations, 

observation notes, think-aloud protocols, screen capturing, audio recording, code 

analysis, in-depth interviews, and focus groups. This comprehensive approach was 

designed to capture data from varied perspectives and settings, focusing on how paired 

apprentices interacted, their use of technology, their verbalisation of thought processes 

in line with Ericsson and Simon (1984) think-aloud protocol, in-depth interviews and a 

focus group. The utilisation of these diverse data collection methods is a cornerstone of 

this multiple case study research, enhancing the credibility of the data (Bogdan & Biklen, 

2007; Patton, 1990). 
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 This study utilised a comprehensive, multi-step method to examine the debugging 

process within an apprentice pairing context, as visually represented in Figure 7 and the 

data collection timeline and analysis timeline in Figure 8. It began with directly observing 

and recording debugging sessions, capturing key interactions and challenges. A detailed 

analysis of these sessions followed this to identify patterns and difficulties in the process. 

In-depth interviews with apprentice pairs, ‘dyads’, were then conducted for qualitative 

insights, with subsequent analysis of these interviews to glean further details. The study’s 

scope expanded to include focus groups with the workplace mentors and trainers, 

allowing for diverse apprentice perspectives. The final stage involved synthesising all data 

to fully understand the apprentices’ debugging experience, offering an in-depth 

investigation of the complexities in apprentice learning environments. 
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Figure 7: Empirical research process. 
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Figure 8: Timeline of data collection and data analysis. 

 

4.5.1 Step 1: Debugging sessions. 

During this stage of the research, an exploration of debugging methods employed by 

novice programmers was conducted. This involved leveraging various primary data 

sources, including observation notes, code analysis, insights from think-aloud protocols, 

and audio and video recordings. Central to this was the implementation of the think-

aloud protocol, which provided a window into the cognitive processes of paired 

apprentices collaboratively debugging Python code. This technique proved critical in 

illuminating aspects such as cognitive load sharing and the myriad challenges faced during 

the debugging process, highlighting the pivotal role of technological tools within this 

framework. 

 

Adding further dimensionality to the data collection for this phase was the non-

participatory observational notes recorded as the apprentices navigated the debugging 

tasks. The richness of these data was enhanced by audio and video recordings, offering a 

robust mechanism for corroborating and reinforcing key aspects of the investigation (Yen 

et al., 2012). This multimodal approach was integral to dissecting the primary issues at 

the heart of the study. All this helped in addressing RQ1, RQ2, RQ3, RQ4 and RQ5. This 
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multi-faceted research approach and data sources are visually represented in Figure 8, 

forming the bedrock of the study.  

 

 
Figure 9: Debugging session research approach. 

 

Furthermore, all 15 pairs (dyads) were given the same Python code, which contained 20 

intentional bugs comprising of 11 syntax errors, 6 logical errors, and 3 runtime errors (for 

the Python Code, refer to Figure 10; for additional details on the Python code, see Tables 

11 and 12). This code was used to demonstrate a variety of errors, ranging from those 

typically made by novices due to unfamiliarity with Python’s syntax to errors stemming 

from a lack of logical understanding or inadequate planning before coding. While syntax 

and runtime errors are often more readily identifiable through error messages, logical 

errors can be particularly challenging for novice programmers to detect. Understanding 

the nature of these varying levels of difficulty is essential for beginners in programming 

and educators and mentors. This understanding aids in designing educational materials 

and establishing realistic learning goals for apprentices. 
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Figure 10: Python code seeded with syntax, logical and runtime bugs 
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Table 11: List of bugs, bug type and difficulty level. 
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Table 12: Characteristics of the bugs’ difficulty levels. 

 

 

4.5.2 Step 2: Analysis of recorded debugging session 

In the research approach depicted in Figure 9, three distinct data analysis tasks transpired 

following the observation of the debugging session. These included the analysis of 

observation notes and the transcript of the audio and video recordings. For both these 

research instruments, the data analysis adhered to the thematic analysis approach 

adapted from Braun and Clarke (2006), as detailed in Section 4.4.4 of the thesis. 

 

Additionally, another pivotal element of the data analysis was the examination of 

artefacts from the final Python code. These artefacts, representing the various stages of 
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code modification undertaken by the apprentices during their debugging sessions, were 

crucial in identifying the nature of errors. This included categorising the errors into those 

that were rectified, those identified but left unresolved, and those that remained 

unnoticed by the apprentices. The scrutiny of these code artefacts proved vital in 

pinpointing specific challenges encountered by novice programmers. 

 

Furthermore, insights gained from the analysis of code artefacts were then juxtaposed 

with established literature on programming errors. This included studies by Ettles et al. 

(2018), Grandell et al. (2005), Jeffries et al. (2022), Júnior et al. (2019), Kohn (2019), Kohn 

and Manaris (2020), Pritchard (2015), Smith and Rixner (2019), and Veerasamy et al. 

(2016). This comparative analysis played a crucial role in enabling a detailed 

comprehension of well-known and emerging difficulties faced by novice programmers in 

the field. Such an understanding was crucial in enabling the research to suggest the types 

of bugs generated by the paired, geographically distributed SDT apprentices who 

collaboratively worked on resolving bugs in Python code. 

 

4.5.3 Step 3: Interview sessions 

In this phase of the study, semi-structured interviews were conducted using a dyadic 

interview approach, as outlined by Kendall et al. (2009). The significance of these 

interviews lay in their ability to provide rich and detailed qualitative data, which was 

essential for understanding participants’ experiences, their descriptions of these 

experiences, and the meanings they derived from them, a concept suggested by Rubin 

and Rubin (2011). The interview protocol (see Appendix H), inspired by the framework of 

Castillo-Montoya (2016), underwent four distinct phases, including, alignment with 
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research questions, constructing inquiry-based conversations, receiving feedback on 

protocols, and piloting the protocol. These phases were designed to develop a research 

instrument that fit the study’s participants and aligned with its research goals, as Jones 

et al. (2013) emphasised. The Interview Protocol Rigor (IPR) framework was employed to 

provide a shared language for indicating the steps taken in developing interview protocols 

and ensuring their congruency with the study (Jones et al., 2013). 

 

The in-depth interviews aimed to understand the dyads' experiences, particularly their 

strategies for debugging code errors and the role of technology in these activities. A 

matrix, shown in Table 13, was used to ensure the alignment of interview questions with 

research questions. This matrix was instrumental in identifying potential gaps and 

ensuring a balanced focus on each research question. 

 

The interviews focused on four main areas, including (1) investigating how paired 

apprentices located bugs in the Python code and exploring cognitive load sharing during 

debugging. This was guided by theories such as information foraging and distributed 

cognition; (2) exploring apprentices’ levels of knowledge, misconceptions, and the impact 

of technology, particularly IDEs, on the debugging process; (3) reaffirming the dyads’ 

understanding of error messages generated by the IDE and how this informed their bug 

location strategies; and (4) clarifying issues from observation field notes, video 

recordings, and think-aloud reports. The dyadic interview approach was chosen for its 

ability to elicit diverse views (Martens, 2005) and clarify meanings (Britten, 1995). 

Furthermore, the interview sought to elaborate on the dyads’ verbalisations and specific 

events observed in their problem-solving process. Example questions included inquiries 
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about specific moments in the video recordings and how the dyads collaborated to find 

potential solutions. 

 

At the conclusion of the interviews, participants were offered the opportunity to review 

the provisional findings. This step was taken to gain clarity, improve accuracy, and 

strengthen the validity of the study, a practice recommended by Lincoln and Guba (1985). 

The interview protocol can be found in Appendix H. 

Table 13: Interview protocol matrix adapted from Castillo-Montoya (2016). 

 

 

4.5.4 Step 4: Analysis of the dyadic interview session 

The data analysis of the dyadic interview sessions in this study was structured to 

scrutinise the transcripts of the interviews, with a specific focus on the concepts of 

information foraging theory and distributed cognition. These theoretical frameworks 

provided a comprehensive lens through which the interactions and cognitive processes 

of the apprentice pairs could be understood and analysed. Information foraging theory, 

as articulated by Pirolli and Card (1999), offered a valuable perspective on how individuals 
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seek and gather information, which, in this context, is related to the apprentices’ 

strategies in locating and addressing bugs in Python code.  

 

Concurrently, the principle of distributed cognition, as explored by Hollan et al. (2000), 

provided insight into how cognitive processes are shared and distributed across 

individuals working collaboratively, particularly pertinent in examining the cognitive load 

sharing between the apprentice pairs. This analytical approach was further underpinned 

by the work of Hutchins (1995), whose work on distributed cognition in real-world 

contexts enriched the analysis of the collaborative problem-solving observed in the 

interviews. 

 

In analysing the interview transcripts, the study followed the thematic analysis approach, 

which was adapted from the framework proposed by Braun and Clarke (2006). This 

methodology, described in Section 4.4.4, provided a structured and comprehensive 

means of evaluating and interpreting the data gathered from the interviews. 

 

4.5.5 Step 5: Focus group session 

The focus group conducted in this study played a pivotal role in investigating the 

perspectives of workplace mentors and trainers from the training organisation. The key 

areas of inquiry included the types of errors made, the bug location strategies commonly 

used by novice programmers, and the general challenges faced by apprentices or novice 

programmers. Additionally, this focus group provided an essential platform for eliciting 

their opinions on the findings gathered from apprentice observations, interviews, and 

analysis of software artefacts, thereby aiming to gather and reaffirm their interpretations 
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and understanding of the phenomenon under study, in line with the approach 

recommended by Khan and Manderson (1992). 

 

To facilitate in-depth discussion and ensure clarity on the issues related to the 

phenomenon, the focus group, as detailed in Section 4.4.3, comprised 12 participants. 

However, this group was strategically divided into two cohorts, each consisting of six 

members. This division was intended  to enhance the depth and quality of the discussions, 

as smaller groups are often more manageable and can provide more detailed feedback, 

a methodological approach supported by Liamputtong (2011). 

 

In selecting participants, significant emphasis was placed on recruiting workplace 

mentors and trainers with relevant profiles, as described in Section 4.4.3. This selection 

process ensured that each cohort comprised individuals with appropriate expertise and 

experience. Furthermore, the decision to limit the size of each cohort to six participants 

was informed by the guidelines suggested by Greenbaum (1998), who noted the 

importance of group size in generating valuable and in-depth data in focus group 

research. This approach was deemed essential to ensure that the data collected were 

relevant and rich in insights pertinent to the research questions. 

 

4.5.6 Step 6: Analysis of recorded focus group session 

The focus group in this study was instrumental in validating the initial findings obtained 

from the apprentices and enriching these findings with additional perspectives from 

experts who work closely with the apprentices. To facilitate a thorough analysis, the 

transcripts of the two focus group discussions were imported into NVivo, as outlined in 
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Section 4.4.4. This software provided an organised framework for managing and 

analysing the data. 

 

The primary analysis within NVivo focused on the content of the verbalisations during the 

focus group sessions. This approach aligns with the methods advocated by Jordan and 

Henderson (1995), who suggest the significance of focusing on the participants’ verbal 

expressions in group discussions. Such an emphasis guarantees that the minor 

distinctions and depth of the participants’ perspectives and experiences are captured and 

analysed comprehensively. 

 

By employing NVivo for this analysis, the study systematically categorised and explored 

the rich qualitative data provided during the focus group sessions. This facilitated a 

detailed examination of the themes and patterns within the verbalisations, thus enabling 

a robust understanding of the experts’ perspectives on the apprentices’ experiences and 

challenges. 

 

4.5.7 Limitation of the Chosen Methodology 

Whilst this study offers valuable insights into the debugging strategies of novice 

apprentices, it is not without its limitations, which stem from both the research design 

and the practical constraints of the methodology employed.  

 

One significant limitation is that the dyads of apprentices did not know each other prior 

to the debugging sessions, which likely impacted their collaborative dynamics. Without 

sufficient time to establish rapport, the participants may have been less comfortable 
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sharing ideas freely, which could have influenced the fluidity of their interactions and the 

effectiveness of their collaborative debugging strategies (Murphy et al., 2010). 

Additionally, the study was conducted over a short time frame, meaning the apprentices 

had limited time to become accustomed to each other’s working styles. This restricted 

the ability to observe how their collaborative skills might evolve with extended practice 

(Jayathirtha et al., 2020).  

 

Another limitation is the focus on only novice apprentices, which means the findings may 

not extend to more experienced programmers, whose strategies and collaboration in 

debugging may differ significantly. Similarly, the reliance on self-reported data during 

interviews presents a challenge, as participants may have unintentionally underreported 

or misrepresented their experiences, introducing potential biases. This could reduce the 

possibility of participant conformity, where interviewees might have aligned their 

responses to perceived expectations (Finlay, 2002).  

 

Finally, the exclusive focus on Python and Microsoft Visual Studio as the development 

environment may limit the applicability of the findings to other programming languages 

or IDEs. Each language and tool presents unique challenges in debugging, and as such, 

the conclusions drawn from this research may not fully generalise to different technical 

settings (Alqadi & Maletic, 2017). 

 

4.6 Reliability and Validity 

This research was guided by the array of strategies outlined by Maxwell (2012), which are 

specifically designed to address and mitigate threats to validity within qualitative 
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research paradigms. Recognising that the enumeration of these strategies may differ 

across various editions or interpretations of Maxwell’s work, this particular study 

incorporated seven of the eight widely recognised techniques to fortify its validity. The 

methodologies utilised were rich data (Becker, 1971), respondent validation or member 

checks (Bryman, 2003; Hammersley & Atkinson, 1995; Lincoln & Guba, 1985), 

intervention, searching for discrepant evidence and negative cases, triangulation, 

numbers, and comparison (Miles & Huberman, 1994). The study utilised specific 

strategies outlined by Maxwell (2012) that align with and enhance validity tests Yin (2009) 

put forth, focusing mainly on construct and external validity areas. This helps tackle two 

broad types of threats to validity often raised in qualitative studies, which are researcher 

bias and reactivity.  

 

 

Construct Validity 

As Yin (2009) articulated, this validity facet scrutinises the accuracy of the research 

measures in capturing the intended concepts. It necessitates that the operational 

mechanisms in the research reliably reflect the constructs they are meant to measure. To 

bolster construct validity, strategies such as employing data triangulation, maintaining a 

chain of evidence, and engaging in member checking are pivotal (Yin, 2009). In alignment 

with these techniques, the current study integrates Yin’s (2009) framework with 

Maxwell’s (2009) methodological insights, implementing triangulation and 

comprehensive data collection to substantiate construct validity within the context of 

SDT apprentices’ debugging practices. 
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The apprentices’ cognitive processes are documented using the think-aloud protocol, 

providing a dynamic and participatory view of problem-solving, as underpinned by the 

work of Ericsson and Simon (1984). Observations of dyadic interactions within authentic 

coding settings offer a narrative-rich perspective on collaborative problem-solving, an 

approach augmented by reflective interviews that probe deeper into the apprentices’ 

decision-making processes (Kvale, 1996). These reflective interviews transform 

apprentices into active narrators, thereby providing rich data by adding layers to the 

observational data and painting a more intricate picture of their cognitive experiences 

during debugging (Becker, 1971). 

 

Additionally, engaging with mentors and trainers furnishes a deeper insight into the 

apprentices’ problem-solving strategies, corroborating the study’s findings with the 

apprentices’ real-world debugging activities, an approach supported by Merriam (2009). 

These professionals in this situation confirm the findings and provide critical analysis of 

observed behaviours and outcomes. This triangulated and detailed methodological 

approach captures cognitive activities, debugging strategies, and team synergy, fortifying 

the study’s construct validity (Maxwell, 2008; Yin, 2009). The research, therefore, 

intertwines various data threads to construct an authentic narrative of the apprentices’ 

engagement with complex programming challenges, resonating with Stake’s (1995) 

emphasis on creating rich, qualitative narratives. 

 

External Validity 

In the context of a qualitative study investigating the debugging practices of dyad 

apprentices working with Python code across multiple sites, internal validity is critical to 
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the integrity of the research. Yin (2003) suggests the importance of replication logic in 

multi-case studies to underpin external validity, drawing parallels to experimental 

research. By documenting the recurring emergence of the same phenomenon across 

various settings, this study substantiates the external validity of the findings, as supported 

by Baxter and Jack (2008), who advocate for the replicability of qualitative studies as a 

means to broader applicability. While the primary emphasis of such studies often lies in 

the depth of understanding rather than generalisability, the consistent replication across 

cases provides a compelling foundation for claims of wider relevance (Stake, 2006). 

 

In sum, employing these two measures is vital to the assurance of rigour and reliability in 

this study, which utilises case studies along with diverse qualitative research techniques. 

However, Campbell (1988) emphasises the significance of employing strategies that focus 

less on confirming findings and more on scrutinising the credibility of one’s conclusions 

and identifying any possible risks to their validity. Similarly, Maxwell (2012) agrees with 

this approach, advocating for the active search for information that might contest one’s 

conclusions or relate to the likelihood of identified potential risks. 

 

4.7 Ethical Issues and Concerns 

The study included participants aged 16 and older who were engaged in the Software 

Development Technician Apprenticeship standard within diverse workplaces. Ethical 

considerations took precedence for the duration of the study (see Appendix E). Activities 

such as pair programming and debugging were assessed as low-risk, typically offering 

benefits to the participants without foreseeable adverse outcomes. 
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Before initiating the empirical research, it was essential to obtain formal ethical clearance 

from the Ethics Committee at Lancaster University and secure consent from both the 

apprentices’ training providers and their workplaces. This ethical approach was 

reinforced through the documentation of consent, both in writing and verbally, with all 

involved parties, ensuring strict adherence to ethical research standards. Additionally, 

participants were fully informed about the study’s objectives and were clearly advised, as 

stated in Appendices A to D, of their right to withdraw at any point during the study. 

 

With the commencement of the data collection phase, maintaining ethical standards 

became paramount. The process included acquiring informed consent from apprentices 

and ensuring the confidentiality and privacy of the data collected. Transparency regarding 

the study’s goals and methods was consistently upheld, alongside a dedicated effort to 

protect participant autonomy and rights, thereby avoiding coercion and ensuring all 

participants’ welfare. Data were handled with the utmost integrity, with secure storage 

and ethical use in accordance with both the trust of the participants and the stipulations 

of the Ethics Committee. All written and verbal communications incorporated core ethical 

principles, including beneficence, non-maleficence, informed consent, confidentiality, 

and anonymity, solidifying participants’ understanding of their autonomy within the 

research. 

 

When drafting the research report, particular attention was given to confidentiality 

measures. To preserve the anonymity of the research findings, personal and corporate 

identifiers were meticulously omitted. Recognising the unique challenges of a multiple-

case study, which inherently carries a higher risk of disclosing participant identities, 
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especially through detailed descriptions, the research implemented judicious 

modifications to the contextual information presented, thus ensuring the protection of 

participant identities. 

 

Finally, the multifarious data collated during this study, spanning videos, codes, and 

compiler reports, were stored electronically with the utmost security. Ensuring 

compliance with the UK GDPR, all data were meticulously housed on a Microsoft 

OneDrive account associated with the researcher’s Microsoft Office, positioning the 

researcher as the chief custodian of this vital information. 

 

4.8 Summary 

This chapter describes the research methodology adopted for this study, providing an 

overview of the approaches and procedures employed to address the research questions. 

It commences by justifying the selection of a qualitative research design deemed most 

suitable for an in-depth investigation of the phenomena of interest. The rationale behind 

this choice was grounded in the exploratory nature of the study, which sought to gain 

rich, contextualised understandings rather than broad generalisations. 

 

Following this, the chapter outlined the specific methods of data collection utilised. A 

multi-case study approach was employed to allow for a detailed examination of each 

instance within its real-life context. The selection of cases was based on purposive 

sampling, informed by the criteria of information richness and relevance to the research 

aims, as suggested by Patton (2015). The detailed process of obtaining ethical clearance 
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from institutional review boards and informed consent from participants was then 

described, pointing out to the ethical rigour underpinning all stages of the research. 

 

The data collection methods were varied, including in-depth interviews, participant 

observations, and document analysis. These methods provided a triangulated view that 

enhanced the reliability and validity of the findings. The procedures for data analysis were 

explained, noting the iterative process of coding and theme development in line with the 

established qualitative analysis frameworks. 

 

Subsequently, the chapter discussed the measures taken to ensure the study’s 

trustworthiness and credibility. Strategies such as member checking, audit trails, and 

reflexive journaling were employed to bolster the study’s integrity. Lastly, the 

methodology’s limitations were acknowledged, with a candid discussion about the 

potential implications for the study’s findings and their applicability. 

 

In summary, this chapter has articulated the systematic approach taken to ensure that 

the study’s results are as robust as possible, ethically sound, and contribute meaningfully 

to the body of knowledge in the field. 
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Chapter 5: Findings 
 

 

5.0 Introduction 

This chapter presents the findings of a study involving paired apprentices situated in 

different locations who collaborated to debug Python code. The study primarily evaluates 

their strategies for resolving coding errors, how they have deployed technological tools, 

their methods for sharing the cognitive load, and the challenges encountered while 

solving problems as a team. To address specific research questions, the study gathered 

data from various sources, including observational notes and videos from debugging 

sessions, interviews with pairs of apprentices, and discussions with mentors and trainers 

in work-based settings. The study’s findings reveal key aspects of debugging practices 

among participants, identifying some themes, namely, the use of technology in 

debugging, specific strategies and tactics employed, the variety of errors encountered, 

how cognitive load is managed, and the challenges faced during the debugging process. 

 

5.1 Dyads Debugging Session Findings 

The study encompassed a total of 15 debugging sessions, which took place over seven 

months and collectively lasted for 30 hours. These sessions occurred between April and 

July 2022, October 2022, and March to April 2023. The research involved 30 apprentices 

who were paired into 15 dyads. As discussed in Section 4.4.4, the data analysis of the 

transcribed video recordings and the observation notes adhered to the thematic analysis 

approach adapted from Braun and Clarke (2006). Utilising Braun and Clark’s thematic 

analysis, the study identified themes illuminating different facets of the debugging 

process, including technology utilisation, debugging strategies and tactics, error 
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spectrum, cognitive load management, and encountered challenges as seen in Table 14, 

which summarises the main themes identified during the 15 dyads’ debugging sessions. . 

These themes are critical to understanding how the participants tackled the debugging 

process, the tools they employed, and the challenges they encountered. 

Table 14: Overview of key themes in dyads debugging sessions 

Theme Description 

Theme 1: Technology Utilisation 
The critical role of various technological tools in the debugging 

process, especially Microsoft Teams and IDEs. 

Theme 2: Debugging Strategies 

and Tactics 

Diverse strategies such as tinkering, trial and error, and print 

statement debugging employed by the dyads. 

Theme 3: Error Spectrum 
Types of errors encountered by dyads: syntax, logical, and 

runtime errors. 

Theme 4: Cognitive Load 

Management 

How dyads shared the mental effort and utilised collaborative 

strategies to manage the debugging process. 

Theme 5: Challenges Faced 
Key difficulties encountered, including technical challenges and 

the complexities of collaborative debugging. 

 

5.1.1 Theme 1: Technology Utilisation 

In the debugging sessions, ‘Technology Utilisation’ emerged as one of the prominent 

themes, reinforcing the critical role of various technological tools in the debugging 

process, especially Microsoft Teams, as seen in Table 15.  

Table 15: Technology Utilisation Subthemes in Dyadic Debugging Sessions 

Subthemes Description 

Collaborative Tools: 

Microsoft Teams 

Microsoft Teams enabled real-time communication and collaboration, 

enhancing problem-solving, visual interaction, and task coordination 

in remote debugging sessions. 

Real-Time Collaboration 

with Live Share 

Live Share facilitated real-time code editing, error navigation, and role 

transitions, boosting productivity and problem-solving in Visual Studio. 

Integrated Development 

Environments (IDEs) 

IDEs like Visual Studio were crucial in debugging, with features like 

syntax highlighting, error detection, breakpoints, and code comparison 

aiding error identification, execution flow analysis, and code clarity. 

Version Control and 

Documentation 

Participants used OneDrive and documentation to preserve scripts, 

record processes, and maintain organised collaboration and problem-

solving. 
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As seen in Table 15, a significant subtheme is the role of Microsoft Teams in supporting 

collaborative debugging. Microsoft Teams served as a vital communication hub, enabling 

real-time interaction and idea sharing among participants. Its features, like chat, video 

calls, and screen sharing, were instrumental in problem-solving. This is echoed in SDT27’s 

statement, “I am glad we could all connect seamlessly on Microsoft Teams for this 

session. Seeing each other’s reactions and screens while we discuss the errors has made 

our debugging much more effective”. SDT29’s comment, “great progress today! I will 

upload our revised script to the Teams channel now for us to review the changes 

together. We can use the screen sharing feature to walk through the code”. These quotes 

showcase how Microsoft Teams was crucial for messaging, file sharing, and enhancing 

the debugging experience through visual interaction and effective communication. 

 

Similarly, the debugging sessions heavily relied on Visual Studio and Live Share and 

beginning typically in Visual Studio, as SDT1 exemplified, “Okay, SDT2, I have got the script 

open here in Visual Studio. Let’s run it and see what initial errors we’re dealing with”. It 

is obvious here that the role of Live Share was visible for collaborative efforts. STD22 also 

emphasised, “just launched Live Share for our session. This tool is going to be crucial for 

us to jointly edit the code, making our debugging way more efficient”. This also confirmed 

the role played by technology, which allowed simultaneous code work, with SDT15 

remarking, “while you navigate to the error section using Live Share, I will start tweaking 

the function above”. 

 

Furthermore, Live Share also, from the available data, smoothed role transitions, a point 

highlighted by SDT10, “Okay, I’m handing over the reins to you now in Live Share. You will 
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see the changes I have made instantly on your screen”. These tools were instrumental in 

the sessions, enhancing efficiency and fostering a collaborative debugging environment. 

They suggest the importance of such technologies in modern coding practices, 

particularly in team-based projects where real-time collaboration and quick role swaps 

are essential. 

 

Likewise, the application of IDEs was fundamental, as captured in the observation notes 

and video transcripts. These IDEs, which were central to the debugging process, were 

equipped with advanced features like syntax highlighting, error highlighting, auto-

indentation, and breakpoints. The participants harnessed these tools to quickly spot and 

fix syntax errors, grasp the execution flow, and conduct detailed variable inspections, 

highlighting the invaluable role of IDEs in streamlining code analysis and error resolution. 

Furthermore, the use of syntax highlighting in accelerating error detection is marked by 

SDT1’s comment, “right, making that change now. I’m also keeping an eye on the IDE’s 

syntax highlighting feature. It’s really helping to spot these kinds of errors much quicker”. 

In like manner, SDT2’s mention of utilising the IDE’s auto-indent feature, “while you’re 

fixing that, I’ll take advantage of the IDE’s auto-indent feature”, illustrates how such 

functionalities aid in maintaining code clarity and structure. 

 

Additionally, the use of IDEs extended to deeper code analysis and debugging. For 

instance, SDT18 mentioned, “let’s make use of the IDE’s features. Set a breakpoint and 

step through the code to catch any subtle errors”, and SDT22 remarked, “I’ve taken the 

helm now. Let’s harness the IDE debugger for a deeper analysis”. Similar points are 

echoed by SDT25, SDT29, and SDT30, who stress the importance of IDEs’ advanced 
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debugging tools and user-friendly interfaces. SDT25 highlighted using the IDE’s code 

comparison tool, “I’m using the IDE’s code comparison tool to spot differences”. SDT29 

stressed the value of advanced debugging tools by suggesting, “I’m setting a breakpoint 

here in Visual Studio to pinpoint where our code deviates. These advanced debugging 

tools are a lifesaver for tracking down elusive errors during runtime”. Lastly, SDT30 

appreciated the user-friendly interface, “I really appreciate how user-friendly Visual 

Studio’s interface is. It makes navigating through our code and identifying these syntax 

errors so much easier, especially for newcomers like us”. These features are crucial for 

tracking elusive errors and assisting newcomers in navigating complex code. Collectively, 

these participant statements reinforce how integrating IDE tools in the debugging process 

significantly boosts productivity, accuracy, and learning, particularly in collaborative 

settings.  

 

To add to that, the role of version control and systematic documentation was profoundly 

emphasised. Participants like SDT1 and SDT12 recognised the significance of saving work 

on OneDrive and documenting the debugging process for future reference, as they 

stated, “before we wrap up, let’s save our final version of the script to OneDrive” and 

“that’s a great idea. Documenting our process will provide valuable insights for future 

debugging sessions”. These practices aid in record-keeping and enhance the collaborative 

experience, allowing for a structured approach to problem-solving. On the other hand, 

SDT23’s approach to saving notes in the project file, as mentioned, “I’m saving these 

notes in the project file”, demonstrates a methodical approach to debugging, ensuring a 

thorough understanding for future review. SDT24 and SDT26 further reiterated this 

sentiment by uploading their final scripts to OneDrive and documenting their process, as 
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they commented, “I’m uploading the final script to OneDrive now” and “we’ve 

meticulously documented our endeavours and the remaining challenges”. These quotes 

collectively illustrate the participants’ commitments to maintaining a detailed record of 

their debugging sessions, highlighting the importance of version control and 

documentation in the collaborative development process. 

 

In summary, integrating technology, particularly in remote settings, is essential in 

enhancing the debugging process and improving team coordination and task 

management. The findings include excerpts highlighting various technological tools such 

as IDEs, debuggers, Microsoft Teams, OneDrive, and version control systems. These tools 

enhance the debugging process, making it more efficient and effective. Participants used 

these technologies collaboratively to solve complex debugging challenges, demonstrating 

these tools’ crucial role in modern software development. 

 

5.1.2 Theme 2: Debugging Strategies and Tactics 

This theme showcases diverse strategies and tactics to address various coding problems 

during the debugging sessions, as seen in Table 16. 

Table 16: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions 

Subtheme Description 

Tinkering Participants engaged in incremental modifications and re-execution to 

gradually refine their understanding and improve the functionality of the code. 

Trial & Error Debugging involved systematic experimentation with inputs, variable types, and 

small code adjustments to identify and resolve errors through an iterative 

process. 

Print Statement This simple yet effective debugging technique was widely used to trace variable 

values and program flow, offering real-time insights into execution logic. 
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Table 17: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions (Continuation)  

Subtheme Description 

IDE Debuggers Participants leveraged IDE features like syntax highlighting, breakpoints, and 

step-through debugging to efficiently locate and resolve coding errors. 

Slicing The method of isolating specific code blocks and testing them independently 

helped pinpoint errors more efficiently, particularly in complex scripts. 

Rubber Duck 

Debugging 

Articulating code logic aloud, whether to a partner or an imaginary listener, 

helped participants identify overlooked errors and clarify their reasoning. 

Code Review Reviewing code systematically allowed participants to identify syntax, logical, 

and structural errors, ensuring clarity, maintainability, and functionality. 

Pattern 

Matching 

Recognising recurring error patterns enabled participants to apply known 

solutions quickly, improving efficiency in debugging and problem resolution. 

Divide & 

Conquer 

Breaking down large problems into smaller, manageable segments allowed for 

a more focused and effective debugging process. 

Tracing Following error messages and execution paths back to their source helped 

participants systematically track and resolve programming errors. 

 

As a debugging strategy, tinkering gained prominence among five dyads during their 

debugging session, involving the process of making incremental adjustments and testing 

the script for changes. This approach, encapsulating both anticipation and progression, is 

vividly illustrated by SDT6’s positive stance, “alright, let’s execute it again and keep an 

eye out for what comes next. I have a feeling we are making good progress here”. Such a 

dynamic method accentuates the essence of debugging as an adaptive process where 

programmers persistently evaluate the effects of their modifications, thereby 

incrementally enhancing their grasp of the code’s behaviour. In a similar vein, SDT5’s 

modification of inputs, “I’ve made the necessary changes to the inputs. Let’s execute the 

script again and see if that resolves where the input strings were not converted to 

numbers”, along with SDT20’s adjustments, “I’ve made a few tweaks here and there. Let’s 

run it once more to see where we stand”, further exemplify this disciplined yet 

exploratory strategy. This narrative seamlessly integrates the essence of tinkering in 
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debugging, highlighting its role in fostering a thorough and evolving understanding of 

code through careful experimentation and adjustment. 

 

In addition, this iterative process of refinement, characterised by minor yet calculated 

modifications, reflects a broader principle in software development of fined-tuning code 

to achieve optimal performance. As stated by SDT19’s focused intervention, “String fixed. 

Let’s check if that clears the error”, further highlights the importance of targeted 

debugging efforts. By isolating and addressing specific issues before retesting, 

programmers demonstrate a precise and effective method of troubleshooting that 

emphasises the critical role of identifying and correcting individual elements for the 

overall functionality of the code. Through a cycle of continuous tweaking, testing, and 

reassessment, novices navigate the intricate coding challenges, showcasing a persistent 

and adaptive mindset that is indispensable in software development. 

 

The trial and error method emerges as a crucial debugging tactic, informed by 

experimentation in the pursuit of solutions, vividly illustrated through novice 

experiences. This strategy’s essence, characterised by resilience and adaptability, plays a 

pivotal role in debugging as novice programmers navigate through challenges with 

persistence and a willingness to experiment. For instance, SDT9’s endeavours, “I tried 

several different inputs to see where the code breaks”, capture the exploratory nature of 

this method, aiming to discern the code’s boundaries and behaviour under various 

scenarios. Similarly, SDT11’s experience, “changing variable types was a bit of trial and 

error, but it worked eventually”, sheds light on the iterative debugging journey, 

emphasising the importance of trial and feedback in overcoming coding obstacles. 
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The iterative cycle of trial and error is further exemplified by SDT1’s approach, “I’ve made 

the necessary changes to the inputs. Let’s execute the script again and see if that resolves 

the TypeError”, highlighting the discipline of implementing, testing, and reassessing 

modifications to refine the code. SDT7’s meticulous attention to detail is evident in “typo 

fixed. I’m running the script to see if we’ve cleared the error”, emphasising the 

significance of addressing even minor errors for code functionality.  

Besides, SDT8’s contribution, “Sure, adding the colon now. Let’s see if that solves it”, 

demonstrates the value of minor yet impactful code adjustments in debugging. This 

highlights the iterative and insightful nature of trial and error, with each minor 

adjustment or test serving as a step towards solving complex coding puzzles. 

 

Similarly, print statement debugging is presented as a cornerstone of the diagnostic 

process within the dyads, lauded for its simplicity and capability to deliver real-time 

insights into program behaviour. This method is notably appreciated for its 

straightforwardness, offering a direct window into the inner workings of a program, as 

testified by several participants who highlighted its practicality across various coding 

situations. SDT2 champions this approach for tackling complex logical segments, advising, 

“I suggest we use print statements to trace variable values, especially in complex logical 

segments. It’s always helpful to see exactly what’s happening in real-time”. This 

sentiment suggests print statements’ value in unravelling code complexities by providing 

immediate, tangible feedback. Additionally, SDT2 emphasises their importance in 

validating data type conversions, stating, “right, I’m applying int() to the input 

statements. To ensure we’ve got it right, I’m also adding some print statements to check 
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the type of inputs after conversion”, which illuminates the role of print statements in 

averting and diagnosing potential type-related errors. 

 

Likewise, the flexibility of print statement debugging is further illustrated through the 

experiences of SDT15 and SDT14, who describe using print statements as a strategic tool 

to dissect program flow and troubleshoot logical discrepancies. SDT15 advocates for their 

use in clarifying program execution and addressing logical errors, saying, “we should 

maybe use some print statements to understand the flow, especially for these logical 

errors”. This recommendation highlights how print statements can shed light on the 

execution path of a program, revealing where it deviates from expected logic. Similarly, 

SDT14 emphasises the strategic placement of print statements for diagnostic purposes, 

noting, “I’m going to insert some print statements at strategic points in our code. This will 

help us track the values of our variables and understand where our logic is failing”. Such 

tactics allow programmers to chart their program’s execution comprehensively, 

enhancing the understanding of variable behaviour and pinpointing the root causes of 

logical issues. These insights collectively affirm the indispensable role of print statement 

debugging in enhancing code clarity and resolving complex programming challenges. 

 

In the debugging sessions, IDEs were a key factor, as evidenced by the participants’ 

reliance on their advanced features for efficient problem-solving. The IDEs, with 

functionalities like syntax highlighting, error highlighting, auto-indentation, and 

breakpoints, played a central role in identifying and resolving syntax errors, 

understanding execution flow, and performing in-depth variable analysis. SDT1’s 

comment, “I’m also keeping an eye on the IDE’s syntax highlighting feature. It’s really 
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helping to spot these kinds of errors much quicker”, highlights the effectiveness of syntax 

highlighting in speeding up error detection. SDT2 also appreciates the IDE’s auto-indent 

feature, saying, “while you’re fixing that, I’ll take advantage of the IDE’s auto-indent 

feature”, acknowledging its assistance in maintaining code structure. The use of IDEs also 

extends to deeper code analysis, as indicated by SDT18, who says, “Set a breakpoint and 

step through the code to catch any subtle errors”, and SDT22’s remark, “I’ve taken the 

helm now. Let’s harness the IDE debugger for a deeper analysis”. This emphasis on 

advanced debugging tools and user-friendly interfaces, as noted by SDT25, SDT29, and 

SDT30, showcases their importance in tracking elusive errors and helping beginners 

navigate complex code. SDT25 mentions using a code comparison tool, SDT29 talks about 

setting breakpoints for pinpointing deviations, and SDT30 appreciates the user-friendly 

interface of Visual Studio, all underlining the significant impact of IDEs in enhancing the 

debugging process. 

 

Furthermore, as demonstrated by SDT3 and SDT4, the slicing technique in debugging 

effectively simplified and enhanced the efficiency of handling complex scripts. SDT3’s 

strategy, “let’s isolate the block of code responsible for calculating gross pay. If we 

comment out the rest and test this section alone, we might find the source of our logical 

errors more efficiently”, exemplifies a targeted slicing method, isolating specific 

functionalities like gross pay calculation for more streamlined error detection. 

Meanwhile, SDT4 accentuate the foundational importance of input validation with “I 

think the issue might be in how we’re handling the input validation. Let’s temporarily 

remove other functionalities and just run the input section to see if it’s working as 

expected”, emphasising the need to verify basic operations to prevent cascading errors. 
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Apart from that, SDT3’s approach to dissecting complex logic, “Let’s break down the tax 

calculation logic and test each condition separately. This way, we can determine exactly 

which part of the logic is causing the error”, highlights the effectiveness of a granular 

analysis in debugging, especially for uncovering intricate logical errors by testing 

individual conditions independently. 

 

The Rubber Duck Debugging strategy, as demonstrated by SDT13, SDT8, and SDT7, 

highlights the importance of verbalising and methodically reviewing code to uncover 

overlooked errors. SDT13’s approach, “Okay, SDT14, let me talk you through the logic of 

this tax calculation part as if I’m explaining it from scratch. Sometimes, saying it out loud 

helps me catch something I might have missed”, exemplifies this technique by articulating 

the logic behind the tax calculation as if to a novice or a rubber duck, facilitating the 

discovery of minor aspects. Also, SDT8’s request, “While you go over the string 

concatenation, I’ll act as if I’m hearing this for the first time. Explain it to me step by step; 

it might help us spot where the syntax is off”, encourages a detailed breakdown of the 

process, advancing a meticulous reconsideration, crucial for revealing hidden syntax 

errors. SDT7 further reinforces this approach by deciding to narrate each step in fixing a 

runtime error, believing that “Walking through it verbally often makes me see things in a 

different light, like having a fresh pair of eyes on the problem”, thereby acknowledging 

the effectiveness of Rubber Duck Debugging in gaining new perspectives and revealing 

hidden flaws. 

 

The significance of code review in ensuring code quality and functionality is highlighted 

through the experiences and suggestions of several apprentices, including SDT6, SDT7, 
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SDT14, SDT13, SDT17, and SDT18. SDT6’s observation, “during our code review, we 

noticed the function was not returning the correct value”, emphasises the role of code 

review in identifying discrepancies in code functionality. This critical evaluation is 

essential for ensuring that the code behaves as intended. SDT7’s proposal, “taking back 

control now. I think we should review the entire script again to check for any errors we 

might have missed”, demonstrates the thoroughness required in debugging, focusing on 

the overall structure and coherence of the code.  

 

Similarly, SDT14’s call for a “comprehensive review of the script’s logic to catch any 

remaining errors we might have overlooked”, points to the importance of detailed 

analysis, particularly for elusive logical errors. SDT13’s satisfaction, “I think we’ve done a 

thorough job on the script. All functions appear to be working as intended, and the code 

is much more readable now”, reflects the dual goal of code reviews, such as, enhancing 

functionality and readability for future maintenance and development. SDT17’s 

suggestion, “let’s take a moment for a quick code review. We should scan for any similar 

syntax errors, ensuring our code is structurally sound”, and SDT18’s meticulous check, 

“Scanning through the script... All other conditional statements seem fine. No more 

missing colons in this section”, both highlight the need for ongoing vigilance and attention 

to detail in coding, especially for syntax and structural integrity, to prevent minor errors 

from escalating. 

 

Moreover, the utility of pattern matching as a debugging strategy is exemplified in the 

insights shared by SDT8, SDT10, SDT13, and SDT15. SDT8’s detection of a ‘TypeError’, as 

noted in “that’s a TypeError. Seems like a variable is not of the expected type. Maybe 
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something to do with input conversion?” showcases the identification of a common 

programming issue related to variable types and suggests a practical solution involving 

data type conversion. This reflects an acute understanding of type-related errors crucial 

for robust coding. SDT10, in “That’s a quick fix. Just add the parentheses around the print 

statement”, demonstrates a rapid identification of a syntax error, common in Python 3, 

highlighting the significance of language-specific knowledge for efficient debugging. 

SDT13’s remark, “this error looks similar to one we encountered before. Let’s apply the 

same fix”, underlines the role of experience and pattern recognition in coding, using past 

issues to guide current problem-solving. Similarly, SDT15’s observation, “we’ve seen this 

pattern of mistakes; let’s check if it’s the same issue here”, emphasises the importance 

of recognising and learning from recurring issues, facilitating quicker diagnosis and 

proactive error prevention. These insights illustrate how awareness of common errors 

and patterns can enhance debugging efficiency and effectiveness. 

 

In addressing programming challenges, SDT19 and SDT20 reveal the application of 

variable tracing and code review in their debugging processes. SDT20’s intention to use 

variable tracing for monitoring tax calculations, as stated in “I’m thinking of using variable 

tracing to monitor the tax calculations closely”, illustrates a strategic approach to 

understanding and rectifying complex computational tasks. Meanwhile, SDT19 identifies 

an infinite loop error in “we have an infinite loop error. We need to check the loop 

condition and make sure it’s set up correctly”, emphasising the need to scrutinise loop 

conditions to resolve such issues. SDT20 further pinpoints the cause of this error in 

“We’re hitting an infinite loop due to the missing colon in the ‘for’ loop”, showcasing the 

significance of attention to syntactical details in programming. The collaborative dynamic 



149 | P a g e  

 

is highlighted in SDT19’s reminder about their pair programming schedule in “Let’s review 

that section of the code. Also, remember, it’s almost time for us to switch roles as part of 

our pair programming arrangement”, suggesting a structured and team-oriented 

approach to problem-solving. Finally, SDT20’s method of tracing from the error message 

back to the problematic function call, as mentioned in “I traced back from the error 

message to the problematic function call”, demonstrates a systematic technique for 

identifying and addressing the root causes of programming errors. These insights jointly 

highlight the importance of thorough analysis, attention to detail, and collaboration in 

effective debugging and code development. 

 

Nonetheless, the debugging process in software development is characterised by the 

innovative combination of multiple strategies, as illustrated by the experiences of several 

participants. SDT18 and SDT20 demonstrate the synergy of print statement debugging 

with IDE debuggers. SDT18 states, “I combined print statements with the debugger to 

track variable changes”. This technique reinforces the value of blending traditional print 

debugging with advanced IDE tools to achieve a more comprehensive grasp of variable 

dynamics. Similarly, SDT20’s method, “using prints alongside the step-through debugger 

helped isolate the issue”, showcases the effectiveness of this composite strategy in 

isolating and resolving specific problems in the code. 

 

Further blending of techniques is seen in the approaches of other participants. SDT23, 

who combined rubber duck debugging with code review, remarks, “explaining each line 

to you during review helped identify the misplaced loop”. This highlights how articulating 

the code line-by-line can enhance clarity and lead to the discovery of errors. The fusion 
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of trial and error with pattern matching is exemplified by SDT22 and SDT24. SDT22’s 

observation, “after several attempts, I recognised a pattern similar to an earlier bug”, 

along with SDT24’s approach, “we used trial and error, then matched the pattern to a 

previous solution”, demonstrates the effectiveness of iterative testing in recognising and 

applying solutions to recurrent problems. Tinkering in conjunction with tracing is adopted 

by SDT25 and SDT27. SDT25’s method, “I tinkered with the code while tracing the 

execution path”, and SDT27’s technique, “modifying and tracing the function helped us 

understand the underlying issue”, both highlight the value of hands-on manipulation and 

careful tracking for a deeper understanding of coding issues. Lastly, SDT26 and SDT28 

showcase the integration of slicing with print statement debugging. SDT26 explains, “I 

sliced the function and added print statements in each section”, while SDT28 describes, 

“breaking down the script and using prints in each block was enlightening”. These 

methods illuminate how dissecting code combined with strategic print statements can 

illuminate complex issues. These varied combinations of strategies reflect the wide-

ranging and adaptive nature of debugging in software development, emphasising the 

need for flexibility and creativity in resolving coding challenges. 

 

5.1.3 Theme 3: Error Spectrum 

The ‘Error Spectrum’ was another prominent theme in the debugging transcripts, vividly 

portrayed through the participants’ experiences. As seen in Table 18, three major error 

types are prominent in the video analysis and the observation notes; these are diverse 

error types, ranging from simple syntax slip-ups and syntax errors to complex logical 

oversights, logical errors and execution hurdles associated with runtime errors, 

emphasising the complex nature of debugging.  
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Table 18: Error Spectrum Subthemes in Dyadic Debugging Sessions 

Subthemes Description 

Syntax Errors Participants encountered various syntax errors, including missing 

colons, indentation mistakes, and typographical errors, illustrating how 

minor code slip-ups can disrupt execution. 

Logical Errors Logical errors were prominent, such as incorrect tax calculations, flawed 

loop logic, and floating-point precision issues, underscoring the need for 

rigorous logic validation. 

Runtime Errors Issues like unconverted string inputs, null pointer exceptions, and 

function parameter mismatches demonstrated how improper data 

handling can cause program crashes. 

Ambiguous Errors Some errors, such as incorrect operators, string concatenation issues, 

and data type mismatches, blurred the lines between syntax, logic, and 

runtime errors, highlighting the complexity of debugging. 

 

Participants identified a variety of syntax errors, reinforcing the critical nature of precise 

coding. SDT1 observed, “looks like we’ve hit our first syntax error, it’s missing a colon at 

the end of the function definition”, pinpointing a common yet crucial mistake. Echoing 

this attention to detail, SDT4 found “an indentation error, missing colon, in our if-else 

block”, bringing to the fore how such oversights can disrupt code logic. The simplicity of 

syntax errors was further illustrated by SDT9, who stated, “this ‘def’ misspelled, a typo in 

the function declaration, is causing trouble”, drawing attention to how minor 

typographical errors can lead to significant problems. SDT11 added to this theme by 

identifying “a missing parenthesis, missing colon, in our print statement”, a small error 

with potentially large consequences. SDT17 addressed a less obvious syntax issue, noting 

“there’s a syntax error, wrong comparison operator, in our if-else statement”, which 

could lead to logical errors in the program. SDT18 addressed a compound issue by 

suggesting, “we have encountered an undefined variable error, Infinite loop due to 

missing colon in ‘for’ loop, in our script”, illustrating how syntax errors can cause major 
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runtime problems. Each instance suggests the importance of meticulous syntax in 

programming, where even minor errors can have significant impacts. 

 

Participants also encountered several logical errors that challenged the integrity of their 

code. SDT3 identified an issue with the settings, stating, “we’re dealing with a logical 

error. The tax rate is incorrectly set here”, pointing out a fundamental mistake in the 

application’s logic. Similarly, SDT7 discovered a flaw in the main function, “we’ve got a 

name comparison issue here, a logical error, it’s wrong tax calculation logic”, highlighting 

a critical oversight in the program’s core functionality. SDT8 faced a more complex issue, 

“our loop logic is flawed, resulting in an infinite loop error, attempt to use an undefined 

variable”, illustrating the cascading effects of logical errors on program flow. SDT21 dealt 

with a minor but consequential problem, “we’ve got a problem with scope here, a typical 

logical error in variable handling”, demonstrating how mismanagement of variable scope 

can disrupt a program’s operation. SDT26 dealt with a numerical precision challenge, 

“we’ve got a floating-point precision error in our calculations”, shedding light on the 

intricacies of handling numerical data. Each of these instances emphasises the necessity 

for rigorous logical scrutiny in software development, where overlooked details can lead 

to significant operational flaws. 

 

Participants also encountered various runtime errors that hindered their progress. SDT5 

identified a fundamental conversion issue, stating, “the script threw a runtime error; it’s 

not converting string input to number before mathematical operations because of 

unconverted string inputs”, pointing out a critical oversight in data handling. SDT14 faced 

a null pointer exception, “this section’s throwing a null pointer exception, definitely a 
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runtime issue”, highlighting a common but serious error in accessing uninitialised 

memory or objects. In a similar vein, SDT19 tackled a type conversion problem, “this 

segment is throwing a type conversion error, needs fixing”, affirming the importance of 

ensuring data types are correctly managed. SDT27 encountered a function call issue, 

“there’s a mismatch in function arguments, causing a parameter error”, Illuminating the 

complexities and possible drawbacks in function parameter management. Each incident 

reflects the complexity of runtime errors in software development, where incorrect 

handling of data types, memory, and function parameters can lead to significant issues in 

program execution. 

 

However, certain errors defy straightforward classification, as highlighted by participants 

who encountered ambiguous issues. SDT2 pointed out a common error in operator 

usage, stating, “Ah, Wrong operator for multiplication. We’ve used ‘x’ instead of ‘*,’ a 

classic multiplication operator error”. This error’s nature could swing between a syntax 

or logical error, depending on the context and language used. Similarly, SDT6 discovered 

a less apparent issue in string operations, “just spotted mismatch in string concatenation, 

a string concatenation mistake in our return statement”. This could either be a syntax 

error affecting code structure or a logical error where the code’s syntax is correct but fails 

to execute as intended. As a final point, SDT12 faced a data type mismatch, “we’ve got a 

data type mismatch error, something’s not adding up right”, an issue that could manifest 

as a logical or runtime error, depending on its effect on the program’s functionality. These 

situations expose the fine-grained characteristics of coding errors, where the line 

between different error types can be blurred, reflecting the complex and layered 

challenges in software development. 
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5.1.4 Theme 4: Cognitive Load Management 

Cognitive Load Management emerged as a pivotal theme, capturing the participants’ 

strategic efforts to distribute mental effort effectively. As seen in Table 19, this theme 

encompasses various subthemes, including verbalising thought processes, role-switching, 

and structured debugging approaches, all of which played a crucial role in mitigating 

cognitive strain and enhancing collaboration during debugging sessions.  

Table 19: Cognitive Load Management Subthemes in Dyadic Debugging Sessions 

Subthemes Description 

Task Segmentation and Role 

Division 

Participants organised debugging by listing errors, breaking 

down problems, and alternating tasks, effectively balancing 

workload to boost efficiency and reduce overwhelm. 

Managing Distributed Cognitive 

Load 

The participants collaboratively managed cognitive load 

through structured debugging, record-keeping, code reviews, 

and alternating coding and reviewing for accuracy and 

efficiency. 

Collaboration and Team 

Dynamics 

Participants leveraged teamwork strategies like structured time 

management, role flexibility, and reflective pauses to sustain 

productivity and balance cognitive load during debugging. 

Task Execution and Process 

Improvement 

Pre-emptive planning, role swapping, iterative improvement, 

and prioritising critical errors helped optimise workflow 

efficiency and cognitive resource distribution. 

 

The dyads’ practices, such as task segmentation and role division, played a crucial role. 

For example, in a focused approach to managing distributed cognitive load sharing, 

participants from DYAD4 and DYAD5 shared strategies that emphasise systematic 

processing and division of labour. SDT7 suggests a methodical first step by “listing out all 

the errors first, then we’ll address them systematically”, setting the stage for an organised 

problem-solving. Complementing this, SDT8 proposes a division of focus, where one 

handles “runtime errors” and the other tackles “syntax errors”, demonstrating a tailored 

approach to distribute cognitive demands according to individual strengths. From DYAD5, 

SDT9 introduces a prioritisation strategy, focusing on “the errors that seem most critical”, 
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which ensures that efforts are concentrated where they are most needed. SDT10 further 

refines this approach by “Breaking down complex problems into smaller tasks”, enabling 

a more manageable and less overwhelming process of troubleshooting. These strategies 

illustrate jointly an approach to workload distribution, ensuring that cognitive resources 

are optimally allocated to enhance efficiency and accuracy in problem-solving. 

 

In addressing the management of distributed cognitive load, with a focus on structured 

debugging, SDT11 and SDT12 present a detailed strategy that affirms the importance of 

a structured and systematic approach to debugging. SDT11’s suggestion to “tackle the 

errors one at a time to avoid getting overwhelmed” introduces a methodical way of 

breaking down the complexity, aiming to minimise cognitive overload by focusing on 

individual issues sequentially. Complementing this, SDT12’s commitment to “note down 

each error and our approach in resolving it” offers a record-keeping practice that ensures 

transparency and aids in tracking progress. Further, SDT11 advocates for periodic code 

reviews “to catch any missed errors”, highlighting the proactive measures taken to ensure 

thoroughness and accuracy in their work. SDT12’s strategy to “alternate between coding 

and reviewing” proposes a dynamic workflow that facilitates error detection and 

maintains a balance between creation and analysis, leading to a more efficient debugging 

process. These approaches, in a way, point to a collaborative effort towards distributed 

cognitive load management, focusing on precision, accountability, and a strategic division 

of tasks to enhance problem-solving effectiveness. 

In the context of collaboration and team dynamics, the dyads portray a strategic 

approach to managing distributed cognitive load through various techniques to enhance 

teamwork efficiency during the debugging process. DYAD1’s SDT1 suggests taking a 
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moment to recap progress, addressing the risk of becoming overwhelmed, thereby 

emphasising the importance of reflective pauses to maintain clarity and focus. DYAD7 

introduces structured time management and role flexibility, with SDT14 advocating for 

the use of timers during debugging phases for better time allocation, and SDT13 proposed 

role switching to gain fresh perspectives, showcasing methods to keep the cognitive load 

balanced and ensure sustained productivity. DYAD8, through SDT15 and SDT16, 

highlighted the value of collaborative problem-solving and leveraging individual 

strengths, suggesting working together on complex parts and combining syntax and 

logical analysis skills to form a complementary team dynamic. These strategies, in a way, 

illustrate a thoughtful approach to workload distribution, focusing on maintaining 

momentum, leveraging diverse skills, and periodically reassessing team strategy to 

optimise performance and mitigate cognitive overload. 

 

In the realm of task execution and process improvement, participants from DYAD10, 

DYAD13, and DYAD15 offered insightful strategies for managing distributed cognitive load 

sharing effectively. Beginning with DYAD10, SDT19 advocated for a planned approach 

before coding, paired with SDT20’s suggestion for role swapping to maintain fresh 

perspectives, drawing attention to the value of pre-emptive planning and flexibility in role 

allocation as methods to distribute cognitive load efficiently. SDT19 further emphasises 

the need for wise management of cognitive resources, aligning with the overarching 

theme of sustainable workload distribution. Moving to DYAD13, SDT26 and SDT25 

discussed iterative improvement and continuous code refinement as mechanisms for 

gradual learning and error reduction, highlighting an ongoing commitment to evolution 

and quality enhancement. DYAD15’s contributions, with SDT29 and SDT30, stressed 
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prioritising critical errors, efficient resource use, focusing on impactful errors, strategic 

task allocation, and periodic reassessment of priorities. These strategies also indicate a 

sophisticated approach to workload management, where planning, adaptability, focused 

efforts, and strategic reassessments converge to optimise distributed cognitive load 

sharing, thus fostering a more effective and efficient debugging and development 

process. 

 

5.1.5 Theme 5:  Challenges Faced 

Challenges Faced by the dyad emerged as a significant theme highlighting the 

multifaceted difficulties encountered. As seen in Table 20, this theme comprises various 

subthemes, including technical proficiency and error resolution, cognitive and workflow 

management, collaboration and communication dynamics, and tool and resource 

utilisation, all of which influenced the dyads’ abilities to navigate debugging tasks 

effectively.  

Table 20: Challenges Faced Subthemes in Dyadic Debugging Sessions 

Subthemes Description 

Technical Proficiency 

and Error Resolution 

Participants faced difficulties with unfamiliar programming languages, 

recurring errors, and logical complexities, highlighting the challenge of 

mastering debugging techniques. 

Cognitive and Workflow 

Management 

Frequent context switching, role transitions, and overwhelming 

workloads contributed to cognitive strain, necessitating structured 

strategies for maintaining focus and efficiency. 

Collaboration and 

Communication 

Dynamics 

Misalignment in problem-solving approaches, difficulties in articulating 

thoughts, and ineffective communication hindered smooth 

collaboration and debugging progress. 

Tool and Resource 

Utilisation 

Struggles with non-intuitive debugging tools, unfamiliar development 

environments, and poorly documented code exacerbated the 

challenges of efficient error resolution. 

 

For instance, while navigating through the collaborative debugging task, participants 

encountered various technical challenges, vividly captured through their personal 
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reflections. The journey begins with SDT1’s confusion, “I’m lost with this syntax. It’s 

nothing like what I’ve worked with before”, and SDT6’s acknowledgement of unfamiliar 

territory, “I’m not very familiar with this programming language, which makes debugging 

challenging”. These statements lay the groundwork for understanding the difficulties 

faced due to unfamiliar coding environments and languages. The recurrence of errors, as 

expressed by SDT5, “this error keeps recurring. It feels like we’re missing something 

fundamental”, further illustrates the struggle to grasp core issues within the code. 

 

The complexity of logical errors becomes apparent through SDT2’s observation, “these 

logical errors are trickier than I thought. It’s hard to get the logic right”, while SDT16’s 

frustration, “every fix seems to introduce a new problem. It’s frustrating”, encapsulates 

the cyclical nature of debugging. SDT17’s remark, “the complexity of this code is beyond 

what I’ve handled before”, and SDT9’s challenge in spotting “small syntax errors” denote 

the daunting task of navigating complex code. Adding to the depth of challenges, SDT13 

admits, “some of these errors are beyond my current knowledge base”, highlighting the 

learning curve involved. Similarly, SDT26’s insight, “the logic behind these functions is not 

what I expected. It’s confusing”, and SDT27’s self-doubt, “I keep second-guessing myself. 

Am I fixing this the right way?” reflect the cognitive and emotional hurdles in debugging. 

These experiences shared by each of the apprentices portray a varied landscape of the 

debugging process, marked by technical, cognitive, and emotional challenges as 

participants grapple with unfamiliar syntax, logical complexities, and the thorough insight 

necessary for proficiently managing and fixing errors. 
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Also, navigating the labyrinth of collaborative debugging, participants revealed an array 

of challenges around cognitive and workflow management, each illuminating different 

aspects of the ordeal. Starting with SDT3’s revelation, “constantly switching between 

different parts of the code is really disorienting”, the narrative unveils the cognitive 

turmoil triggered by incessant shifts in attention. This sense of disorientation resonates 

with SDT12’s admission, “the constant role-switching is making it hard to maintain a train 

of thought”, underlining the struggle to stay focused amidst ongoing transitions. The 

confession by SDT4, “I’m struggling to keep up with the pace. This is more complex than 

I expected”, and SDT21’s assertion, “sometimes I feel overwhelmed by the sheer volume 

of issues to address”, bring to light the overwhelming complexity and breadth of 

debugging activities. This quest for clarity amid chaos is echoed in SDT7’s frustration, “the 

more we fix, the more issues seem to arise. It’s like a never-ending cycle”, capturing the 

cyclical nature of their task. 

 

The discourse then expands to include efficiency and strategic planning, or rather the lack 

thereof, with SDT8 and SDT22 voicing concerns over the monumental task of error 

management and the challenge of prioritisation. SDT10 adds another layer to the 

struggle, noting, “understanding this existing codebase is tough. It’s not well-

documented”, pinpointing the difficulties posed by insufficient documentation. The 

dialogue shifts to strategy and methodology, with SDT18’s remark, “keeping track of all 

the changes and errors is quite a task”, spotlighting the logistical challenges of monitoring 

progress. Also, doubts about their chosen approach are succinctly expressed by SDT19, 

“I’m not sure of the obstacles”, and the task’s emotional impact emerges, with SDT29 

stating, “It’s challenging to remain focused with so many different types of errors”, and 
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SDT30 sharing, “I’m feeling the pressure with the amount of work we need to get 

through”, reflecting the stress and pressure inherent in the debugging process. SDT25’s 

introspection, “balancing between fixing errors and understanding the code is tough”, 

indicates the delicate act of navigating between correction and comprehension. 

 

These narratives weave together a story filled with cognitive, logistical, and emotional 

complexities, offering an in-depth look at the collaborative debugging journey. From 

SDT3’s insights on the disorientation caused by frequent context switches to SDT25’s 

struggles with balancing error correction and code understanding, participants’ candid 

quotes highlight the composite nature of debugging in a team setting. This 

comprehensive depiction sheds light on the participants’ technical and emotional battles 

and reiterates the need for systematic approaches and efficient strategies to navigate the 

intricate process of debugging collaboratively. 

 

In the intricate process of collaboratively debugging Python code, the dynamics of 

collaboration and communication among participants illuminate the pluralistic challenges 

encountered. Starting with SDT11’s candid admission, “I’m finding it hard to articulate my 

thoughts clearly to my partner”, we look at the complexities involved in conveying 

detailed technical concepts within a team. This difficulty in communication is not isolated, 

as SDT14 reveals, “aligning my coding approach with my partner’s suggestions is proving 

difficult”, reinforcing the hurdles in meshing diverse problem-solving strategies. The 

sentiment of misalignment in collaboration is further echoed by SDT20, who states, “I feel 

like we’re not communicating effectively. It’s impacting our progress”, highlighting the 

direct impact of communication barriers on the efficiency of debugging efforts. These 
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admissions collectively paint a picture of a collaborative environment where the 

challenges extend beyond the technical aspects of debugging to include the critical, yet 

often overlooked, elements of clear communication and effective teamwork. Through 

these reflections, the narrative shifts from individual coding struggles to a broader 

examination of how collaborative dynamics influence the outcome of joint debugging 

tasks. 

 

To add to that, the context of collaboratively debugging Python code using tools and 

resources emerges as a significant hurdle for participants, shedding light on various 

aspects of the debugging process. Beginning with SDT15’s frustration, “I’m struggling with 

the debugging tools. They’re not very intuitive”, we uncover the initial layer of complexity 

that non-intuitive tools add to the debugging process. This struggle centres around the 

tools and how their design can impede the progress of those unfamiliar with their 

intricacies. Moving forward, SDT23’s experience, “I’m not used to this development 

environment, so it’s slowing me down”, further complicates the situation. This statement 

reveals the adjustment challenges faced when navigating unfamiliar development 

environments, highlighting how such unfamiliarity can directly slow down the debugging 

process. Transitioning to a new environment requires learning its functionalities and 

adapting one’s debugging strategy to fit its constraints. 

 

Furthermore, the issue of poorly documented code is brought to the fore by SDT24, who 

points out, “the lack of comments in the code is making it hard to understand the intent”. 

This highlights another dimension of the challenge, for example, the difficulty of 

deciphering code without adequate documentation. Understanding the original 
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programmer’s intent becomes a task in itself, adding another layer of complexity to the 

debugging effort. These insights stress the broader challenges of tool and resource 

utilisation in collaborative debugging. They reflect on the technical difficulties posed by 

unfamiliar or poorly designed tools and environments and the importance of clear 

documentation in facilitating a smoother debugging process. Through these participant 

experiences, we understand the additional obstacles that tools and resources can present 

in the collaborative debugging of Python code. 

 

In conclusion, Tables 21 and 22 summarise the observations from the debugging session 

notes and video analysis. It encapsulates the situation during and at the conclusion of the 

debugging sessions, with a focus on the five themes previously identified. It illustrates the 

number of bugs each pair was unable to resolve, the debugging strategies and tactics 

employed, the use of technology, how they manage the sharing of cognitive load, and the 

challenges encountered while collaboratively debugging the Python code. 

Table 21: Outline of the debugging sessions’ core findings 

Pair / 
Participant 

Error 
Spectrum 

Debugging 
Strategies & Tactics 

Technology 
Utilisation 

Cognitive Load 
Management 

Challenges Faced 

DYAD1 
SDT1 & SDT2 

5 Syntax Errors, 
2 Logical Errors 
and 1 Runtime 
Errors 

Print Statement 
Debugging, IDE 
Debuggers, Code 
Review, Tinkering, 
Tracing 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Collaboration 
and Team 
Dynamics 

• Technical Proficiency 
and Error Resolution 

DYAD2 
SDT3 & SDT4 

0 Syntax Errors, 
2 Logical Errors 
and 3 Runtime 
Errors 

Print Statement 
Debugging, 
Tinkering, IDE 
Debugger, Slicing, 
Code Review 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Task Execution 
and Process 
Improvement 

• Cognitive and 
Workflow 
Management 

DYAD3 
SDT5 & SDT6 

6 Syntax Errors, 
6 Logical Errors 
and 2 Runtime 
Errors 

Tinkering, Trial & 
Error, Print 
Statement 
Debugging, Divide & 
Conquer 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Task Execution 
and Process 
Improvement 

• Technical Proficiency 
and Error Resolution 

DYAD4 
SDT7 & SDT8 

2 Syntax Errors, 
2 Logical Errors 
and 1 Runtime 
Errors 

Rubber Duck 
Debugging, 
Tinkering, Print 
Statement 
Debugging, Code 
Review 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Workflow 
Management 
and Strategy 

• Cognitive and 
Workflow 
Management 
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Table 22: Outline of the debugging sessions’ core findings (Continuation) 

Pair / 
Participant 

Error 
Spectrum 

Debugging 
Strategies & Tactics 

Technology 
Utilisation 

Cognitive Load 
Management 

Challenges Faced 

DYAD5 
SDT9 & 
SDT10 

2 Syntax Errors, 
5 Logical Errors 
and 2 Runtime 
Errors 

Trial & Error, 
Tinkering, Tracing, 
Print Statement 
Debugging 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Workflow 
Management 
and Strategy 

• Technical Proficiency 
and Error Resolution 

• Cognitive and 
Workflow 
Management 

DYAD6 
SDT11 & 

SDT12 

7 Syntax Errors, 
6 Logical Errors 
and 2 Runtime 
Errors 

Trial & Error, Code 
Review, Tinkering, 
Print Statement 
Debugging 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Task 
Segmentation 
and 
Collaboration 

• Cognitive and 
Workflow 
Management 

• Collaboration and 
Communication 
Dynamics 

DYAD7 
SDT13 & 

SDT14 

3 Syntax Errors, 
2 Logical Errors 
and 2 Runtime 
Errors 

Rubber Duck 
Debugging, 
Tinkering, IDE 
Debuggers, Print 
Statement 
Debugging 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Collaboration 
and Team 
Dynamics 

• Technical Proficiency 
and Error Resolution 

• Collaboration and 
Communication 
Dynamics 

DYAD8 
SDT15 & 

SDT16 

0 Syntax Errors, 
4 Logical Errors 
and 2 Runtime 
Errors 

Print Statement 
Debugging, 
Tinkering, Pattern 
Matching, Code 
Review 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
GitHub 

Collaboration 
and Team 
Dynamics 

• Technical Proficiency 
and Error Resolution 

• Tool and Resource 
Utilisation. 

DYAD9 
SDT17 & 

SDT18 

1 Syntax Errors, 
3 Logical Errors 
and 2 Runtime 
Errors 

Code Review, IDE 
Debuggers, 
Tinkering, Rubber 
Duck Debugging, 
Pattern Matching 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Collaboration 
and Team 
Dynamics 

• Technical Proficiency 
and Error Resolution 

• Cognitive and 
Workflow 
Management 

DYAD10 
SDT19 & 

SDT20 

2 Syntax Errors, 
1 Logical Errors 
and 1 Runtime 
Errors 

Tracing, Tinkering, 
Print Statement 
Debugging, Code 
Review 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Task Execution 
and Process 
Improvement 

• Cognitive and 
Workflow 
Management 

• Collaboration and 
Communication 
Dynamics 

DYAD11 
SDT21 & 

SDT22 

4 Syntax Errors, 
3 Logical Errors 
and 1 Runtime 
Errors 

Print Statement 
Debugging, 
Tinkering, IDE 
Debuggers, Code 
Review 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Collaboration 
and Team 
Dynamics 

• Cognitive and 
Workflow 
Management 

DYAD12 
SDT23 & 

SDT24 

0 Syntax Errors, 
2 Logical Errors 
and 3 Runtime 
Errors 

Trial & Error, IDE 
Debuggers, 
Tinkering, Print 
Statement 
Debugging 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Collaboration 
and Team 
Dynamics 

• Tool and Resource 
Utilisation 

DYAD13 
SDT25 & 

SDT26 

2 Syntax Errors, 
3 Logical Errors 
and 1 Runtime 
Errors 

Code Review, 
Tinkering, Trial & 
Error, Pattern 
Matching, Print 
Statement 
Debugging 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Task Execution 
and Process 
Improvement 

• Technical Proficiency 
and Error Resolution 

• Cognitive and 
Workflow 
Management 

DYAD14 
SDT27 & 

SDT28 

2 Syntax Errors, 
5 Logical Errors 
and 2 Runtime 
Errors 

Tinkering, Print 
Statement 
Debugging, Code 
Review 

Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Task Execution 
and Process 
Improvement 

• Technical Proficiency 
and Error Resolution 

• Cognitive and 
Workflow 
Management 

DYAD15 
SDT29 & 

SDT30 

3 Syntax Errors, 
2 Logical Errors 
and 1 Runtime 
Errors 

Print Statement 
Debugging, 
Tinkering, IDE 
Debuggers, Code 
Review 

IDE Debuggers, 
Visual Studio. 
Microsoft Team, 
Python, Live Share, 
Github 

Task Execution 
and Process 
Improvement 

• Cognitive and 
Workflow 
Management 
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5.2 Python Code Analysis Findings 

The investigation into debugging behaviour examined the performance of fifteen dyads 

working on Python code embedded with 20 bugs, consisting of 11 syntax, 6 logical, and 3 

runtime errors, as detailed in Table 23. Although this table provided the counts, the 

specific error codes are listed in Tables 24, 25, and 26, where the errors are segmented 

into the dyads’ debugging outcomes, such as bugs found, unfound, fixed, and unfixed. 

This segmentation reveals their proficiency across a spectrum from lower to higher. Their 

success in identifying and resolving errors across the three bug categories determined 

the classification into lower, moderate, and high proficiency levels. 

 

Across the proficiency spectrum, DYAD6 and DYAD3 demonstrated foundational syntax 

handling by addressing basic errors such as missing colons and print statement issues, 

with DYAD6 resolving 4 out of 8 and DYAD3 half of 11 identified errors, yet both struggled 

with more complex challenges like string closures and loop completions. Advancing to 

moderate proficiency, DYAD1, DYAD11, and DYAD12 identified all errors but were 

partially stymied by intricate issues like incorrect ‘if’ sequencing and loop errors, with 

their resolution rates ranging from 6 to 7 out of 11. Higher up, DYAD7, DYAD9, and 

DYAD15 showcased greater skill, fixing common errors efficiently but encountering 

difficulties with specific problems like incorrect ‘if’ structures and loop errors, with their 

success rates nearing 8 to 9 out of 11. The top performers, Dyads 10, 13, 14, 2, 4, 5, and 

8, identified and adeptly resolved the most challenging errors, including complex string 

and loop issues, with the latter group achieving a perfect resolution record. This 

progression from basic to exceptional proficiency amplifies the varied learning curves and 
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the need for targeted learning strategies to foster comprehensive Python programming 

skills. 

 

Moreover, across DYADs 1 to 15, proficiency in addressing logical errors varied 

significantly, showcasing diverse levels of understanding in programming logic. DYAD3 

and DYAD6, at the lower end, both identified 6 logical errors but failed to resolve any, 

indicating a fundamental need for improvement in understanding complex logic. 

Similarly, DYAD14 and DYAD5 struggled, each identifying 6 errors but resolving only one, 

highlighting difficulties with intricate issues like tax calculation logic and bonus logic. 

Slightly above, DYAD8  managed to fix 2 out of 6 errors, showing a modest improvement 

but still facing challenges with specific logical errors. DYAD9, DYAD11, and DYAD13 

demonstrated moderate proficiency; DYAD9 resolved 2 out of 5 identified errors, DYAD11 

fixed 3 out of 5, and DYAD13 corrected 3 out of 6, suggesting they have a foundational 

grasp of programming logic with room for growth. DYAD12’s performance, resolving 4 

out of 6 errors, aligns them with higher proficiency, akin to DYADs 1, 4, 7, and 15, each 

also resolving 4 out of 6 errors. This group effectively navigated a range of logical 

challenges, evidencing a robust understanding of programming logic, albeit with areas for 

further development. DYAD10 excelled by rectifying 5 out of 6 logical errors, 

demonstrating an advanced understanding of Python’s logical constructs and superior 

problem-solving skills, and setting a benchmark for proficiency among their peers. 

 

Furthermore, the investigation into runtime error resolution among fifteen dyads 

revealed a spectrum of debugging proficiencies. DYAD3 and DYAD6, unable to resolve any 

errors, demonstrated foundational proficiency, highlighting their nascent journey in 
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understanding Python’s runtime environment. The moderate proficiency group, including 

DYAD1, DYAD2, DYAD7, DYAD8, DYAD11, DYAD12, and DYAD14, showed varying degrees 

of success; notably, DYAD1 and DYAD7 each fixed two out of three errors, indicating a 

developing but incomplete mastery over runtime challenges, while the others resolved 

at least one, revealing gaps in their debugging capabilities. DYAD4, DYAD9, and DYAD13, 

each resolving two out of three errors, were classified as proficient, showcasing a strong 

grasp on runtime error management and systematic problem-solving skills. Standing out 

for their high proficiency, DYAD5 and DYAD10 flawlessly fixed all three identified errors, 

indicating an advanced level of debugging expertise and setting a benchmark for their 

peers in navigating and rectifying runtime challenges efficiently. This stratification 

reinforced the varied levels of understanding and skill across the dyads, from 

foundational to high proficiency in dealing with runtime errors. 

 

In conclusion, the analysis of syntax, logical, and runtime error handling among Dyads 

stressed the need for educational strategies tailored to individual and group proficiency 

levels in Python programming. It revealed that while some Dyads excelled in identifying 

and resolving errors, others faced challenges, signalling a diverse range of skill sets and 

problem-solving approaches. For example, DYADs 3 and 6, struggling with logical error 

resolution, and DYAD6’s particular difficulty with runtime errors, illustrated the necessity 

for foundational training in Python’s logic and runtime environments. Conversely, 

DYAD14’s limited success in addressing complex logical errors and the moderate 

proficiency displayed by groups like DYAD1, DYAD2, DYAD7, and DYAD8 in runtime error 

resolution pointed towards the need for targeted learning focused on understanding 

intricate logic patterns and debugging skills. The stark contrast in error resolution 
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capabilities, particularly the adeptness of DYAD5 and DYAD10 in navigating runtime 

challenges, further highlighted the spectrum of competencies within the cohort. This calls 

for a dedicated emphasis on developing specific skills, such as loop mechanics, variable 

scope comprehension, and practical debugging techniques, to enhance overall coding 

proficiency. By pinpointing the distinct challenges each dyad encounters, educators can 

customise instruction to uplift every learner’s understanding and application of Python’s 

syntactical and logical constructs, fostering a deeper and more comprehensive grasp of 

programming fundamentals. 

Table 23: Summary of bugs discovery, successful fixing and unsuccessful fixing 
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Table 24: Summary of specific syntax errors breakdown by discovery and resolution. 

 
 

Table 25: Summary of specific logical errors breakdown by discovery and resolution. 

 

Table 26: Summary of specific runtime errors breakdown by discovery and resolution 
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5.3 Interview Session Findings  

The dyads’ interview transcripts unveil and clarify some of the thoughts behind some 

actions taken during the debugging that were not entirely captured through the actions 

seen and from the think-aloud verbal protocol. A holistic examination of the dyads’ 

interview sessions using Braun and Clark’s thematic analysis (see Section 4.4.4) reveals 

three key themes, as outlined in Table 27. In particular, the spectrum of errors, the 

combination of technical and cognitive skills, and challenges arising from collaboration.  

 

Table 27: Overview of key themes in interview sessions 

Themes Description 

Theme 1: Error Spectrum The data highlights participants’ debugging progression, from syntax 

errors as a foundation to logical and runtime errors, which require 

deeper problem-solving and execution flow understanding. 

Theme 2: Technical and 

Cognitive Skills 

The data highlights participants’ technical and cognitive skills, 

focusing on IDE tool usage, structured debugging strategies, and 

cognitive load management through collaboration and role 

distribution. 

Theme 3: Challenges The data highlights participants’ challenges in remote debugging, 

including communication barriers, cognitive strain, and logistical 

constraints, requiring coordination, adaptability, and strategic 

problem-solving. 

 

5.3.1 Theme 1: Error Spectrum 

The exploration of the error spectrum in dyad interviews highlighted the range of 

programming challenges encountered during debugging. This theme is central to 

unravelling the complexities of debugging, offering insights into novice programmers’ 

varied skill levels, problem-solving techniques, and learning progression. Far from being 

mere obstacles, these errors are valuable indicators for skill evaluation and development. 
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The analysis, as outlined in Table 28, categorises errors into syntax, logic, and runtime 

errors, each reflecting a unique challenge and requiring specific skills for resolution. 

Table 28: Error Spectrum Subthemes in Interview Sessions 

Subthemes Description 

Syntax Errors Participants identified syntax errors as the most common and easiest to fix, 

often caused by typographical errors, missing elements, or structural 

inconsistencies, making them a fundamental first step in debugging. 

Logical Errors Debugging logical errors proved challenging as they required a deep 

understanding of both programming logic and the underlying problem 

domain, often leading to frustration and a steep learning curve. 

Runtime Errors Participants found runtime errors particularly difficult due to their reliance 

on understanding execution flow, with issues like infinite loops and data 

type mismatches highlighting gaps in programming experience. 

 

Starting with the syntax error, participants uniformly acknowledged the primacy of syntax 

errors in their initial diagnostic efforts. SDT3’s observation that “syntax errors were 

usually the first thing we looked for in debugging” signifies a common strategy among the 

cohort, reflecting a foundational approach to troubleshooting code. This sentiment was 

echoed by SDT19 and SDT17, who noted that these errors “were typically related to 

incorrect code structure” and “were usually due to overlooking Python’s rules”, 

respectively, highlighting common pitfalls in adhering to the language’s syntax 

requirements. SDT8 and SDT11 further pointed out that such errors “were often about 

small typos or forgotten elements” and their identification was “crucial in the initial phase 

of debugging”, indicating that these mistakes, while minor, were significant barriers to 

code execution. The ease of resolving these issues was a recurrent theme, with SDT12 

and SDT15 describing syntax errors as “often the easiest to diagnose and fix” and “the 

most common and the easiest to fix”, suggesting a contrast between their frequency and 

the simplicity of their resolution. SDT7’s mention of “mismatch in string concatenation 

was a typical syntax error that we frequently encountered” adds specificity to the types 
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of syntax issues commonly faced, presenting a tangible example of the errors that 

participants navigated. Collectively, these reflections paint a picture of debugging as a 

process where identifying and correcting syntax errors forms the bedrock of resolving 

more complex issues, marked by a shared understanding of these errors’ nature and their 

role in the debugging hierarchy. 

 

Furthermore, as voiced by participants, the challenge of debugging logical errors in 

Python highlights a complex journey through the intricate landscape of programming 

logic and syntax, particularly for those with limited prior experience. Initially, SDT1’s 

observation that “these errors required a deep understanding of Python’s logic and 

syntax, which was challenging given our limited experience”, captures a common 

sentiment that resonates across the group. Subsequently, this struggle is echoed by SDT4, 

who conceded, “however, I struggled with some of the more complex logical errors”, 

emphasising the steep learning curve encountered. Furthermore, SDT10’s recounting, 

“for instance, fixing the tax calculation logic in the script was tough, and I struggled with 

understanding the deeper logic required for tax deduction conditions”, alongside SDT7’s 

admission of frustration, “there were moments of frustration, especially when dealing 

with complex logical errors like bonus calculation that lacks context”; both underline the 

arduous task of navigating through errors that necessitate a profound dive into the code 

and its underlying business logic. Moreover, this perspective is solidified by SDT16, who 

reflected, “for me, these logical errors are challenging because they require a deep 

understanding the code and the underlying business logic”. 
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Additionally, the task of articulating complex debugging processes, especially within 

collaborative or remote settings, was brought to light by SDT9 and SDT11. Particularly, 

SDT9 highlighted, “it was difficult to convey my reasoning and thought process solely 

through verbal explanations”, while SDT11 disclosed, “one significant obstacle we 

encountered during our debugging session was the complexity of managing and 

understanding the program’s logic from a remote location”. These revelations expose an 

additional layer of complexity introduced by remote collaboration on intricate debugging 

tasks. Moreover, SDT15’s assertion, “these types of errors require coding skills and a deep 

understanding of the problem domain”, coupled with SDT21’s observation, “for instance, 

when we encountered the logical error involving the misuse of the special variable 

‘name’, it wasn’t just a matter of syntax but understanding the conceptual use of this 

Python construct”, highlight the crucial intersection of coding proficiency and domain-

specific knowledge in surmounting logical errors. 

 

Concluding the logical errors discourse, this collective reflection from participants sheds 

light on the technical hurdles faced when debugging logical errors. It also accentuates the 

significance of an all-encompassing understanding that extends beyond mere syntax to 

encompass the broader context of the problem. The shared experiences suggest a 

significant learning curve and illuminate the pivotal role of deep, conceptual 

comprehension in facilitating effective problem-solving within software development. 

 

Likewise, as shared by participants, the journey through Python’s syntax and runtime 

errors also highlights a challenging yet enlightening path in programming. Initially, SDT2 

opened the discussion with a reflection on their struggle, stating, “I did find myself 
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challenged by some of the syntax and more intricate runtime errors. For instance, the 

runtime error involving string-to-number conversion was a bit tricky for me initially”. This 

admission sets the stage for a broader conversation about the complexities involved in 

understanding and resolving programming errors. Subsequently, SDT4 connected with 

this sentiment, revealing, “we managed to fix some runtime errors; however, the infinite 

loop issue highlighted a gap in my skills”. Similarly, SDT8 aligned with this perspective, 

adding, “I also share SDT7’s sentiment about runtime errors; not catching the infinite loop 

was a learning point for me”, further emphasising the common challenges faced by the 

group. 

 

Moreover, the conversation deepened as SDT21 shared their specific struggles, noting, 

“for me, the runtime errors were the most challenging during our collaboration, 

particularly Infinite loop due to missing colon in ‘for’ loop… runtime errors often require 

an understanding of the code and how the Python interpreter executes it”. This insight 

was supported by SDT10, who observed, “runtime errors needed us to think about the 

logic and structure of the program, which can be quite daunting”. Similarly, SDT11 

highlighted a particular type of error, mentioning, “I found runtime errors particularly 

challenging, specifically the ‘not converting string input to number’ error. It was a bit 

perplexing as it involved understanding the data types and how Python handles input 

operations”. 

 

The narrative further evolved with SDT4 and SDT5 discussing the need for a deeper 

analysis and the realisation of their beginner status through these errors. SDT5 candidly 

stated, “runtime errors such as the infinite loop. These areas, which I couldn’t fix, clearly 
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indicate my beginner status and lack of in-depth programming experience”. SDT16, 

drawing from SDT15’s experiences, identified additional challenges, including runtime 

errors such as the use of undefined variables and infinite loops caused by missing colons 

in ‘for’ loops, highlighting the difficulties posed by their limited experience. 

 

In all, this collection of insights illuminates the technical hurdles encountered when 

addressing runtime errors and emphasises the valuable learning moments they provide. 

Through these shared experiences, the narrative captures the participants’ journey of 

discovery and adaptation in confronting programming challenges. It highlights the 

essential role that a profound comprehension of Python’s logic, syntax, and execution 

flow plays in overcoming these obstacles, marking a significant step in their 

developmental journey as programmers. 

 

5.3.2 Theme 2: Technical and Cognitive Skills 

The theme ‘Technical and Cognitive Skills’ highlights a participant’s ability to employ 

various debugging tools and their aptitude for logical reasoning and problem-solving. As 

seen in Table 29, this theme is further divided into three key sub-themes: technology 

utilisation; debugging strategies and tactics; and cognitive load sharing. Moreover, a 

selection of extracts from the debugging sessions vividly exemplifies technology 

utilisation, debugging strategies and tactics, and cognitive load sharing as three sub-

themes.  
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Table 29: Technical and Cognitive Subthemes in Interview Sessions 

Subthemes Description 

Technology Utilisation Participants leveraged IDE tools such as Visual Studio Live Share for 

real-time collaboration, syntax highlighting, debugging consoles, and 

version control, enhancing their abilities to debug remotely and 

efficiently. 

Debugging Strategies & 

Tactics 

A mix of structured methods like print statement debugging, IDE 

debuggers, rubber duck debugging, and divide-and-conquer 

approaches helped participants systematically identify and resolve 

coding errors. 

Cognitive Load Sharing Participants managed mental workload by adopting strategies such as 

the Driver-Navigator model, verbalising thought processes, role-

switching, and leveraging individual strengths to maintain efficiency 

and prevent cognitive fatigue. 

 

Starting with the first sub-theme, technology utilisation, participants across all fifteen 

dyads universally utilised IDE tools, notably Visual Studio and Microsoft Visual Studio Live 

Share, to navigate the challenges of distributed pair debugging in Python code. 

Commonalities across dyads included the use of real-time code collaboration features, 

particularly effective for overcoming geographical barriers and addressing errors. Despite 

employing similar strategies, each dyad exhibited slight divergencies in their use of 

technology. For instance, the exploration of debugging in remote settings, as shared by 

participants, reveals the invaluable role of Integrated Development Environment (IDE) 

tools and collaborative platforms in overcoming the challenges posed by physical 

distance. SDT17 observes that “despite the physical distance, the use of tools like 

Microsoft Studio live share facilitated real-time collaboration, making the process 

smoother than anticipated”. This suggests the effectiveness of live-sharing features in 

bridging gaps between team members. Similarly, SDT18 highlighted, “the IDE’s 

collaborative features, such as live code sharing and simultaneous editing, significantly 

eased the challenges of remote pair debugging”, pointing to the synergy between 

technology and teamwork. 
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SDT4’s remark, “another aspect of the IDE that greatly aided our debugging process was 

the integrated version control system”, alongside SDT2’s detailed account - “In our 

session, we used Microsoft Teams and Visual Studio Live Share, which allowed us to share 

and edit code in real-time” illustrated the multifaceted benefits of these platforms in 

enhancing collaborative debugging efforts. However, SDT8 noted a potential downside, 

“another factor contributing to these challenges was our reliance on technology to bridge 

our geographical gap”, suggesting that while technology is a facilitator, it also introduces 

dependencies. 

 

The conversation then shifts to specific IDE features that streamline the debugging 

process. SDT6 and SDT10 mention a “feature of the IDE that significantly helped us was 

the syntax highlighting and code suggestion features”, and “the IDE’s features like code 

highlighting and error notifications were significant in streamlining our debugging 

process”, respectively. These functionalities aid in error identification and enhance 

learning. Building on this, SDT16 and SDT14 reflected on the broader utility of these tools, 

“building on SDT15’s points about syntax highlighting and auto-indentation, I found the 

IDE’s error notifications and debugging console extremely beneficial”, and “I found the 

features like code completion and intelligent suggestions particularly beneficial”. 

 

Further emphasising the role of IDEs in debugging, SDT1 and SDT8 discuss the use of 

debuggers and integrated consoles by saying “another aspect was the use of IDE 

debuggers. They allowed us to step through the code and inspect variables at each stage”, 

and “moreover, the integrated console within the IDE was a boon for Print Statement 
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Debugging”, highlighting how these tools facilitate a deeper understanding of code 

execution. Echoing this sentiment, SDT14 states, “we focused more on leveraging the IDE 

Debugger and Print Statement Debugging... this hands-on, tool-centric approach, 

complemented by our continuous dialogue, made our debugging more efficient and 

educational”. 

 

Concluding the insights, SDT12, SDT20, SDT30, and SDT24 collectively praised the IDE’s 

broader capabilities, “another aspect (of IDE) that I found incredibly helpful was the 

integrated console and output window”, “the IDE’s capabilities for instant feedback and 

error highlighting significantly boosted our debugging efficiency”, “another aspect of IDE 

tools that proved immensely helpful was the code analysis features”, and “the IDE’s 

debugging features were pivotal in our session... IDE) tools were a game-changer”, they 

articulated. These reflections vividly depict how IDE tools and collaborative technologies 

are not just facilitators but essential elements in the modern debugging process, 

transforming challenges into opportunities for enhanced learning and efficiency in 

programming. 

 

This subtheme, Debugging Strategies and Tactics, also featured prominently in the 

interview session transcript. Participants from a collaborative coding session provided 

insightful reflections on their varied strategies, each enriching the conversation with their 

unique experiences. SDT6 initiated the dialogue with a nod to teamwork, stating, “we 

collectively decided to use Print Review Debugging for complex issues, where both of us 

would analyse the outputs and brainstorm potential solutions”. This collaborative spirit 

was mirrored by SDT2, who applied, “employed strategies like Print Statement Debugging 
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and Slicing more methodically”, showcasing a disciplined approach to unravelling code 

complexities. 

 

Furthermore, the discussion took a turn towards the benefits of structured methods 

through SDT21’s revelation, “collaborating with SDT22 introduced me to the systematic 

use of Print Statement Debugging and IDE Debuggers... It helped me realise how 

structured methods could offer clearer insights into the code’s behaviour”. This 

structured approach was contrasted by SDT6 and SDT23’s initial reliance on a more 

heuristic method, with SDT6 admitting, “I leaned more towards the Trial and Error 

approach in our session. Additionally, I used Tinkering”, and SDT23 reflecting on their 

journey from trial and error to integration of print statement debugging, “I heavily relied 

on the Trial and Error method at first... that’s when we started integrating print statement 

debugging”. 

 

Moreover, SDT7’s commentary clarified a shift from intuition to a more systematic 

analysis as exemplified by “we adopted a more structured approach, systematically going 

through the code, which is a shift from my usual more intuitive method”. This evolution 

towards structured analysis was further supported by SDT8 and SDT9, who each found a 

balance between tried-and-true methods and exploratory techniques, with SDT8 

expressing a preference for print statement debugging and seeing the value in code 

review, “I tend to favour Print Statement Debugging as my go-to strategy... I also see the 

merit in Code Review”, and SDT9 combining trial-and-error with print statement 

debugging, “I primarily focused on the ‘Trial-and-Error’ strategy... sometimes, I used to 

‘Print Statement Debug’”. 
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Additionally, the dialogue expanded with SDT13, SDT16, and SDT17 incorporating 

additional strategies such as Rubber Duck Debugging and Pattern Matching. SDT13 

mentioned, “I heavily relied on Print Statement Debugging... Additionally, Rubber Duck 

Debugging”, while SDT16 found pattern matching and code review beneficial by stating 

“I also found ‘Pattern Matching’ quite useful during our session... Additionally, ‘Code 

Review’”. SDT17’s approach combined IDE Debuggers with the unique method of Rubber 

Duck Debugging by indication “I was drawn towards using IDE Debuggers and Rubber 

Duck Debugging”. Participants SDT19 and SDT27 highlighted the importance of tracing 

and tinkering, with SDT27 specifically stating, “I primarily focused on print statement 

debugging... Tinkering also played a significant role in my approach”, illustrating a hands-

on and exploratory approach to debugging. 

 

A divide-and-conquer strategy was mentioned by SDT5, illustrating an efficient 

distribution of effort, remarking “we adopted a divide-and-conquer strategy, where each 

of us focused on different types of errors”. This strategy was part of a broader narrative 

of collaboration and rhythm in debugging, as shared by SDT16 and further elaborated by 

SDT26, who spoke to the benefits of discussing code changes comprehensively by 

asserting “we started with a comprehensive code review... discussing each part of the 

code before making changes allowed us to understand the underlying logic better”. 

 

The collective reflections culminate in a narrative that highlights the diverse strategies 

employed by participants and emphasises the evolution of debugging practices through 

collaboration and shared learning. From the reliance on traditional print statement 
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debugging to the adoption of more complex approaches like pattern matching and IDE 

debuggers, the participants’ experiences demonstrate the dynamic and extensive nature 

of debugging within the coding process. 

 

Also, during the interview sessions, participants from DYAD1 to DYAD15 shared varied 

strategies for effectively managing cognitive workload and distributing responsibilities, 

spotlighting the theme of “Cognitive Load Sharing”. Through their experiences, the 

importance of clear communication, strategic use of tools, and the dynamic distribution 

of roles emerged as crucial factors in navigating the complexities of debugging tasks. 

 

SDT2 from DYAD1 articulated the value of articulating thoughts and utilising Integrated 

Development Environment (IDE) features, stating, “Another method we used was 

verbalising our thought process... we utilised the features of our IDEs, like breakpoints 

and debuggers... This blend of clear communication, role swapping, and effective use of 

tools ensured that we managed our cognitive workload well throughout our debugging 

session”. This approach highlighted the blend of verbalisation and technological support 

in mitigating cognitive strain. In DYAD2, SDT4 and SDT3 shared insights into their 

collaborative dynamics and mental strategies. SDT4 described their adoption of a ‘Driver-

Navigator’ model by declaring, "We intuitively adopted a ‘Driver-Navigator’ model to 

distribute responsibilities... This division of roles allowed us to manage the cognitive 

workload effectively... It also meant that we could switch roles and keep the session 

dynamic, preventing fatigue and tunnel vision”, showcasing the benefits of role flexibility 

and division. Adding to this, SDT3 emphasised the role of communication and breaks, 

declaring “Our use of the ‘Think Aloud’ protocol was crucial in managing our cognitive 
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workload... We also made sure to take short breaks to prevent cognitive overload, 

especially after resolving a particularly challenging error”, underlining the necessity of 

vocalising thoughts and pacing the session to maintain cognitive health. 

 

Similarly, SDT5 from DYAD3 highlighted a strategy tailored to individual strengths by 

saying that, “We intuitively adopted a strategy that distributed responsibilities based on 

our individual strengths and comfort zones... We also set up a system where we would 

alternate roles every 15 minutes... This method ensured that neither of us became too 

mentally fatigued”, illustrating an approach focused on leveraging personal strengths and 

maintaining mental stamina through role rotation. In DYAD10, SDT19 and SDT20 

presented a systematic method for dividing debugging tasks. SDT19 spoke of a strategic 

distribution of work by emphasising that, “We adopted a strategic approach to distribute 

responsibilities... This allowed me to focus deeply on specific sections, reducing the 

cognitive load”, indicating a depth-focused strategy. Complementing this, SDT20 outlined 

their role in broader oversight by articulating that, “I focused more on ‘Print Statement 

Debugging’ and overseeing the broader logic of the program... We also scheduled regular 

intervals to swap roles and discuss our findings”, highlighting the balance between micro-

level debugging and macro-level program understanding. 

These narratives collectively illuminate the significance of adaptability, clear 

communication, and strategic planning in debugging. By incorporating verbal protocols, 

technological tools, and structured role distribution, the participants demonstrate a 

polymorphic approach to cognitive load management, reflecting the collaborative nature 

of problem-solving in coding environments. 
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5.3.3 Theme 3: Challenges 

The interview session also unveiled a variety of challenges that the participants had 

during the debugging session, categorised into three distinct subthemes, namely, 

Communication and Collaboration; Technical and Cognitive; and Environmental and 

Logistics. As seen in Table 30, each of these sub-themes encapsulates specific aspects of 

the difficulties faced, shedding light on the multifaceted nature of debugging. 

Table 30: Challenges Subthemes in Interview Sessions 

Subthemes Description 

Communication and 

Collaboration 

Participants struggled with remote debugging due to challenges in 

conveying thoughts clearly, synchronising edits, and overcoming the 

absence of non-verbal cues, necessitating extra effort for clarity and 

coordination. 

Technical & Cognitive Debugging required managing complex errors, synchronising 

understanding, and handling cognitive strain, all of which were further 

complicated by technological limitations and geographical separation. 

Environmental and 

Logistics 

Geographical dispersion, reliance on digital tools, and unpredictable 

internet connectivity introduced additional challenges, making real-time 

collaboration and seamless communication more difficult. 

 

The subtheme of ‘Communication and Collaboration’ was significantly emphasised by 

participants across various dyads as a notable challenge they encountered, particularly 

when remotely debugging Python code. SDT1 from DYAD1 shared, “while tools like Visual 

Studio Live Share helped bridge the physical distance, we had to work harder to ensure 

clear and precise communication... explaining our thought processes or understanding 

the other’s perspective took extra effort”. This sentiment spotlights the need for 

enhanced clarity in remote interactions, where digital tools cannot fully compensate for 

the absence of face-to-face communication. 

 

Echoing this challenge, SDT26 from DYAD26 noted the complications arising from digital 

collaboration, stating, “while tools like Live Share were invaluable, there were moments 
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when simultaneous editing led to confusion... additionally, the inability to physically 

observe each other’s non-verbal cues was a minor hurdle”. The lack of non-verbal cues 

and the confusion caused by simultaneous edits suggest the difficulties of remote 

collaboration. Similarly, SDT6 from DYAD6 highlighted issues with concurrent code 

modifications by articulating that “when we both tried to edit or highlight the same piece 

of code... it occasionally led to confusion and required us to pause and clarify who was 

taking the lead”. This points to the importance of clear role delineation in preventing 

misunderstandings during collaborative tasks. 

 

SDT4 from DYAD4 discussed the impact of technical delays on collaboration, revealing, 

“there were moments when changes made by SDT3 took a few seconds to reflect on my 

screen and vice versa... this lag, although minor, disrupted the flow of our debugging 

process”. The slight delay in synchronising edits can disrupt the debugging flow, 

emphasising the need for patience and understanding in remote setups. Geographical 

challenges were addressed by SDT5 from DYAD5, who mentioned, “being geographically 

dispersed meant we couldn’t simply look over each other’s shoulder to point out issues 

or discuss solutions... We had to be extra clear and concise in our verbal explanations”. 

The physical distance necessitates a higher level of verbal clarity, highlighting the 

importance of effective communication in remote debugging. 

 

Interpretative differences were a concern for SDT23 from DYAD23, who said, “there were 

instances where we had different interpretations of the error messages, particularly the 

logical errors like the tax calculation logic”. This indicates the potential for varied 

understandings of problems and the need for a unified approach to debugging. SDT24 
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from DYAD24 discussed the discipline required for effective remote collaboration, stating, 

“it required us to be more disciplined in our approach... additionally, the limited 

experience we both had meant that more complex errors, such as those involving deeper 

logical or structural issues in the code, took us longer to resolve”. The comment reflects 

on the need for a structured approach and the challenges posed by inexperience. 

 

Finally, SDT25 from DYAD25 lamented the limitations of digital communication, saying, 

“another obstacle was the limited ability to physically point out specific code segments 

or errors”. The inability to directly indicate issues highlights another layer of challenge in 

remote debugging. These insights offer a comprehensive view of the intricacies of remote 

collaborative debugging. Despite the benefits of digital collaboration tools, the absence 

of physical presence and the intricate of effective communication and role clarification 

become evident. The participants’ experiences stress the necessity for clear 

communication, patience, and a disciplined approach to navigate the complexities of 

debugging collaboratively across distances. 

 

In addressing the Technical and Cognitive sub-theme, apprentices grappled with the dual 

challenges of navigating complex programming errors and the cognitive demands these 

errors imposed, particularly in a remote setting. The narrative begins with SDT30’s 

reflection on the hurdles of technical glitches, such as "when we were tackling the ‘Infinite 

loop due to missing colon’ issue... additionally, relying on technology meant we were at 

the mercy of our internet connections, which occasionally disrupted our flow”. This 

candid admission focuses on the reliance on stable internet connections in remote 

debugging and how technical issues can hamper progress. 
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Echoing this sentiment, SDT6 delved into the complexities of managing a shared editing 

environment, stating, “another significant obstacle was managing the shared editing 

environment effectively... this aspect of remote collaboration demanded a high level of 

coordination and patience”. The necessity for enhanced coordination and patience is 

highlighted here, showcasing the intricate balance required in remote collaborative 

settings. The theme of coordination is further explored by SDT12, who mentioned, 

“another obstacle we faced was the limitation in real-time feedback and reaction... we 

found that our responses to each other’s suggestions were sometimes delayed”, pointing 

to the challenges of immediate communication in synchronising collaborative efforts. 

 

The conversation shifts to the use of specific tools with SDT14’s expressing that, “Another 

obstacle was efficiently utilising the IDE Debugger in a remote setting... This limitation 

made it difficult to collaboratively explore different hypotheses about the bug”. This 

insight brings to light the challenges of leveraging debugging tools remotely, complicating 

the collaborative exploration of potential solutions. 

 

SDT1 and SDT2 discussed the cognitive load involved in debugging, with SDT1 stating, 

“One of the main obstacles we encountered during our debugging session was dealing 

with complex logical errors… these errors required a deep understanding of Python’s logic 

and syntax, which was challenging given our limited experience”. This is complemented 

by SDT2’s observation, “another significant obstacle was maintaining a synchronised 

understanding of the code... managing the cognitive load was also a challenge”, 
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highlighting the cognitive strain in maintaining mutual comprehension of the code amidst 

these technical challenges. 

 

The geographical divide adds another layer of complexity, with SDT23 and SDT27 noting 

the difficulties it introduced. SDT23 mentioned, “the geographical separation added 

another layer of complexity”, while SDT27 expanded on this, saying “one of the significant 

obstacles we faced was the time lag and communication barriers due to our geographic 

separation... The lack of immediate, direct interaction made it more challenging to 

collaboratively and swiftly navigate through these complex issues”. These reflections 

accent the compounded difficulties of geographic separation, including time lags and 

communication barriers that hinder swift, collaborative navigation through technical 

issues. 

 

SDT28’s comment, “another obstacle was effectively managing and integrating our 

different approaches to debugging... balancing these approaches remotely required 

careful coordination and patience”, concludes the discussion, focusing on the challenge 

of integrating diverse debugging approaches. This summary encapsulates the 

apprentices’ experiences, highlighting the multifaceted nature of technical and cognitive 

challenges in remote debugging, where technical difficulties, cognitive demands, 

geographical separation, and the need for coordination converge, illustrating the 

complexities of collaborative problem-solving in programming. 

 

Similarly, in exploring the ‘Environmental and Logistics Challenges’ encountered during 

collaborative Python debugging, participants vividly described the complexities 
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introduced by geographical dispersion and reliance on digital tools. SDT2 opens the 

narrative, emphasising the isolation felt in remote settings by asserting that, “in a remote 

setting, it’s easy to feel isolated with the problem at hand”. This sentiment sets the stage 

for a series of reflections on the limitations of remote collaboration. 

 

SDT3 and SDT6 discuss the physical limitations of digital communication, noting the 

inability to use gestures or point at the screen, noting “being geographically dispersed, 

we couldn’t simply point at the screen or use physical gestures to express our ideas”, and 

the challenges even helpful tools like Visual Studio Live Share introduce, “while tools like 

Visual Studio Live Share were immensely helpful, they also presented challenges”. These 

insights highlight how digital tools, despite their benefits, fall short of replicating the 

intricates of in-person interaction. 

 

The narrative then shifts to the constraints of tool usage, with SDT14 and SDT24 

expressing the limitations on control during debugging and the gap left by the absence of 

physical presence by reitrating that, “only one of us could actively control and navigate 

the debugger at any given time”, and “real-time collaboration tools are great, but they 

can’t completely bridge the gap created by not being physically present in the same 

room”. These comments identify the challenges in achieving seamless collaboration 

remotely. 

 

SDT19, along with other participants, touches on the time and effort required to 

communicate and understand concepts across distances by mentioning that, “our 

geographical separation... as it limited our ability to quickly bounce ideas off each other 
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and required more time to explain and understand concepts”. This observation was 

echoed in remarks about the added complexity and the need for over-communication 

and reiterating that, “the lack of physical presence meant we had to over-communicate 

to compensate for the lack of in-person interaction, which sometimes slowed down our 

debugging process” (SDT26), reflecting the intricate balance required to maintain 

effective communication and collaboration remotely. 

 

Concluding the discussion, SDT30 brings attention to the environmental challenges of 

working in different settings and the unpredictability of internet connectivity, expressing 

that, “our different locations also meant we were working in different environments, 

which sometimes led to distractions or interruptions unique to our individual settings... 

relying on technology meant we were at the mercy of our internet connections, which 

occasionally disrupted our flow”. This summary encapsulates the multifaceted 

Environmental and Logistics Challenges faced by apprentices in debugging Python code 

collaboratively across distances, underscoring the critical role of effective 

communication, the limitations of digital tools, and the personal adaptability required in 

remote work environments. 

 

5.4 Focus Group Discussion Findings 

The focus group discussion was undertaken with work-based mentors and trainers on the 

debugging practices of SDT apprentices. These mentors and trainers, who work closely 

with the apprentices, provided crucial perspectives to bolster the data already collected 

from the apprentices, thereby enriching the overall understanding of the study’s 

objectives. The discussion was structured around seven key questions, each designed to 
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delve into different facets of the research areas, initially focusing on the mentors’ 

observations that apprentices often start with casual reasoning and frequently rely on 

trial-and-error methods when tackling debugging tasks.  

 

Notably, it is observed that as apprentices gain experience and confidence, they tend to 

gradually move towards more structured methods, such as the top-down approach. The 

mentors unanimously acknowledged the effectiveness of strategies such as pair 

programming, pattern matching, and IDE debuggers, noting their complexity and their 

long-term benefits. They emphasised the value of mentoring, particularly through code 

reviews and collaborative problem-solving, in enhancing apprentices’ debugging skills. 

Similarly, they opine that a shift towards proactive strategies, moving from basic 

techniques like print statement debugging to more advanced methods such as static code 

analysis and rubber duck debugging, were crucial for a deeper understanding of the code. 

As the discussion progressed, the mentors explored factors influencing apprentices’ 

choice of debugging strategies, including educational background, project complexity, 

tool familiarity, learning environment, and peer influence. The variability in strategy 

effectiveness was noted, depending on the nature of bugs, apprentice skill level, and 

project context, underscoring the mentor’s vital role in guiding apprentices towards 

effective debugging techniques. This guidance is essential for equipping apprentices to 

tackle a wide range of technical challenges, ensuring their growth and proficiency in 

debugging practices. 

 

As seen in Table 31, three principal themes were identified from the focus group 

discussion transcript, including the nature and management of debugging errors, the 
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influence of technology on debugging processes, and the strategies and challenges 

encountered in debugging. These themes provide insight into how apprentices approach 

debugging, adapt to technological tools, and navigate common challenges, shaping their 

overall learning experience. 

Table 31: Overview of key themes in Focus Group Sessions 

Themes Description 

Theme 1: Nature and 
Handling of Debugging 
Errors 

Participants view debugging as an evolving process, where 

apprentices initially rely on casual reasoning and trial-and-error 

methods, gradually shifting towards systematic approaches, 

collaboration, and tool adoption, overcoming initial 

apprehension to refine their debugging strategies. 

Theme 2: Technology’s Role 
in Debugging Processes. 

Participants view technology as a crucial yet challenging aspect 

of debugging, where initial struggles with advanced tools give 

way to deeper understanding through mentorship, adaptive 

learning, and balancing basic and advanced techniques, 

ultimately enhancing debugging efficiency. 

Theme 3: Strategies and 
Challenges in Debugging 

Participants recognise debugging as a progressive learning 

process, where initial casual reasoning and trial-and-error 

approaches evolve into structured problem-solving, 

collaboration, and pattern recognition, though challenges such 

as cognitive overload and code tracing difficulties persist. 

 

 

5.4.1 Theme 1: Nature and Handling of Debugging Errors 

The Nature and Handling of Debugging Errors theme encompasses the apprentices’ 

approaches and attitudes towards identifying and rectifying bugs in programming code. 

Analysis of the WMT focus group discussions suggested that, initially, apprentices lean on 

“casual reasoning”, as WMT7 insightfully notes, “one common observation is that 

apprentices often rely on casual reasoning at the beginning”. This method, while a natural 

starting point, as further described by WMT1 as “apprentices often use their basic 

understanding of the code to guess where the bug might be”, marks the hit-or-miss 

nature of early debugging attempts. The narrative evolves, with WMT7 adding, “they use 

their initial understanding of the code to hypothesise about potential bugs”, illustrating 
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the apprentices’ reliance on their foundational knowledge yet pointing towards the need 

for refinement. 

 

Furthermore, the progression to more systematic approaches marks a pivotal 

development in the apprentices’ debugging journey. WMT3 observed, “this trial-and-

error strategy, while common, can be inefficient”, heralding the shift towards the “top-

down approach” which, despite its promise, presents challenges highlighted by WMT4, 

“But apprentices sometimes struggle to identify the right level to start breaking down the 

problem”. The role of collaboration in skill enhancement was illuminated by WMT5, who 

suggested, “pairing apprentices with more experienced colleagues for code reviews can 

significantly enhance their ability to dissect problems more effectively”, a sentiment 

echoed by WMT4 through advocating for problem isolation techniques. 

 

Similarly, the narrative further explored the initial apprehension towards IDE debuggers, 

with WMT1 revealing, “apprentices initially find IDE debuggers intimidating”, a sentiment 

shared by many novices. Yet, as WMT10 points out, “many apprentices are hesitant to 

use IDE debuggers initially”; the journey includes overcoming such fears to embrace 

effective debugging tools. The importance of adaptability and a tailored approach to 

debugging is emphasised by WMT9 and WMT10, illustrating that successful debugging 

strategies are contingent upon the bug’s nature and the project’s context. 

 

5.4.2 Theme 2: Technology’s Role in Debugging Processes 

In exploring the Technology’s Role in Debugging Processes theme, the WMT findings 

elucidate the journey of apprentices as they navigated through the complexities of 
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debugging tools and methodologies. WMT10 articulated the initial struggle many 

apprentices face with advanced debugging techniques, particularly IDE debuggers, 

noting, “many apprentices struggle with more advanced debugging techniques initially”. 

This challenge, however, is part of a crucial learning curve that, once surmounted, offers 

significant benefits, as highlighted by WMT11 who observed, “there’s a definite learning 

curve with debugging tools. However, apprentices who embrace these tools, especially 

pair programming, tend to develop a deeper understanding of the debugging process”. 

WMT2 reinforces this sentiment, pointing out the eventual appreciation for the efficiency 

of tools like IDE debuggers after overcoming the initial intimidation. 

 

The conversation shifted towards the importance of balancing technology with basic 

techniques, where WMT6 encouraged a progression from print statement debugging to 

utilising IDE debuggers and breakpoints, suggesting a move towards more advanced, yet 

effective, debugging practices. This balance is influenced by various factors, including the 

specific programming language or technology stack and the type of feedback provided by 

the development environment, as mentioned by WMT2 and WMT3, who specify how 

certain environments can nudge apprentices towards particular strategies. 

 

The discussions also explored how apprentices’ familiarities with tools shape their 

debugging approach. WMT3 and WMT11 discussed the impact of comfort levels with IDEs 

and other tools on strategy choice, emphasising the role of mentorship and peer 

influence in this learning process. WMT12 and WMT11 further explored the challenges 

apprentices face, such as the pressure to quickly fix bugs leading to rushed learning, and 
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the overlooked importance of replicating bugs before attempting to fix them, which is 

crucial for a thorough debugging process. 

 

Through these insights, the WMT findings paint a comprehensive picture of apprentices’ 

evolving relationship with debugging technologies. From initial hesitance to a more 

confident and effective use of advanced tools, the journey is marked by learning curves, 

mentor guidance, and the adaptive choice of strategies based on the bug’s nature and 

project context. This account emphasises the difficulties apprentices encounter and 

highlights the significant impact of technological proficiency and mentorship in advancing 

debugging skills. 

 

5.4.3 Theme 3: Strategies and Challenges in Debugging 

The Strategies and Challenges in Debugging theme considered the various strategies 

apprentices employed in debugging and the challenges they encountered. The narrative 

begins with an observation by WMT1, who noted, “apprentices often start with casual 

reasoning when debugging. They try to make sense of the code based on their 

understanding”. This initial strategy, however, quickly transitions as described by WMT2 

by stating that, “they tend to shift quickly to a trial-and-error approach when casual 

reasoning doesn’t yield immediate results”. Despite this shift, a more analytical strategy 

is recognised by WMT3, who mentioned, “a few apprentices use the top-down approach 

effectively, breaking the problem into smaller, more manageable parts”. 

 

The importance of mentorship and collaboration in fostering debugging skills was 

pinpointed by WMT5, stating, “pairing them with more experienced colleagues for code 
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reviews can significantly enhance their ability to dissect problems more effectively”. This 

collaborative approach was further elaborated by WMT2 through the observation that 

“the familiarity of print statements makes them a go-to strategy”, indicating a preference 

for simple, tried-and-tested methods. WMT5 added depth to this discussion by 

highlighting a developmental milestone, explaining that, “Once apprentices are 

comfortable with isolating problems, they begin to develop a knack for tracing and 

gathering information”. The narrative then delves into the cognitive strategies involved 

in debugging, with WMT3 observing, “when apprentices explain their thought process, 

whether through rubber duck debugging or to a peer, it often leads them to a solution 

more quickly”. This articulation, as suggested, aids in problem-solving. The sentiment is 

echoed in the context of collaborative learning by WMT7, who noted, “apprentices who 

participate in code reviews develop a better eye for spotting bugs”. 

 

WMT4 brought attention to the pattern recognition strategy, asserting that “I’ve seen 

apprentices use pattern matching, especially when they encounter similar bugs they’ve 

dealt with before”, which is indicative of learning from past experiences. This approach is 

strengthened by an additional observation from WMT5, who opined, “Once apprentices 

grasp isolating and slicing techniques, they begin to develop better strategies for tracing 

and gathering information”, suggesting a progression in skillset. The discussion 

transitioned to the challenges faced by apprentices, with WMT12 mentioning, 

“apprentices also face challenges with tracing the execution of code”, pointing out the 

difficulties in understanding code flow. This is complemented by insights into the 

inefficiencies of certain approaches and the benefits of structured problem-solving, as 

WMT3 stated, “this trial-and-error strategy, while common, can be inefficient. I’ve seen 
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a few apprentices use the top-down approach effectively, breaking the problem into 

smaller, more manageable parts”. 

 

Furthermore, WMT4 highlighted a critical learning curve, noting that “the top-down 

approach indeed helps in maintaining a structured way of debugging. But I must mention 

that apprentices sometimes struggle to identify the right level to start breaking down the 

problem, which can be due to a lack of experience”. This sentiment is reinforced by the 

discussion on the evolution of debugging approaches through collaborative efforts, as 

noted by WMT2 and the articulation of thought processes leading to quicker resolutions, 

as stated by WMT3. 

 

However, challenges such as cognitive overload, the need for a holistic understanding of 

the application, and the importance of abstract thinking are also addressed. WMT8 

shared, “additionally, I’ve seen apprentices struggle with isolating the problem. They 

often fixate on a certain part of the code without considering the entire system, which 

can lead to missed bugs”. This was further elaborated by WMT7, who discussed the 

implications of fixing bugs without understanding their broader impact. 

 

The insights culminated in the acknowledgment of the wide range of strategies employed 

by apprentices, from simple print statements to sophisticated pattern matching and static 

code analysis, as highlighted by various WMTs. This account, enriched with direct quotes 

and participant details, encapsulates the essence of the “Strategies and Challenges in 

Debugging” theme, offering an overview of the apprentices’ journey through debugging, 

stressed by the invaluable role of WMTs in guiding and shaping their learning experience. 
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5.5 Summary 

This study has explored the debugging practices among software development technician 

apprentices, synthesising findings from practical debugging sessions, analysed Python 

codes, dyad interviews, and insights from Workbased Mentors and Trainers (WMTs). It 

provided a detailed understanding of the apprentices’ experiences in debugging, 

highlighting their skill development and strategic progression. The study’s initial phase 

revealed a spectrum of errors faced by apprentices, who demonstrated proficiency in 

resolving straightforward issues such as syntax and runtime errors yet grappled with 

more intricate logical errors. These challenges were highlighted in dyad interviews, which 

confirmed the initial findings and provided a detailed perspective on the apprentices' 

struggles and coping strategies. 

 

Central to the investigation was the essential role of technology in facilitating debugging 

practices. Apprentices predominantly utilised IDEs and debuggers, which were 

instrumental in enhancing their debugging proficiency. Furthermore, collaborative 

platforms like Microsoft Teams and Visual Studio Code’s Live Share enabled real-time 

collaboration and code sharing. However, navigating these technologies presented 

notable challenges, particularly with difficulties in balancing the mental demands of 

complex debugging tasks and ensuring effective communication in remote environments. 

Consequently, apprentices often engaged in pair programming and debugging, which 

proved instrumental in sharing cognitive responsibilities and fostering a collaborative 

approach to problem-solving. 
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The study observed a significant evolution in the debugging strategies employed by 

apprentices. Initially, they relied on more straightforward methods such as print 

statement debugging, tinkering, and trial-and-error. However, as they gained experience, 

they transitioned to more sophisticated techniques, including systematic bug isolation 

strategies like tracing, pattern matching, and methodical step-by-step execution within 

IDEs. This progression from rudimentary to advanced methods reinforced their growing 

proficiency and adaptability in debugging. 

 

The research findings on challenges faced by apprentices predominantly stemmed from 

the debugging sessions and dyad interviews, further corroborated by insights from 

WMTs. Key challenges included navigating intricate codebases, deciphering misleading 

error messages, and tackling the inherent difficulties of remote debugging, such as 

latency issues and reliance on digital communication. These challenges were exacerbated 

by the apprentices’ initial lack of experience, often leading to cognitive overload. The 

WMTs echoed these sentiments, underscoring the necessity for ongoing mentorship and 

a nurturing learning environment. Such support is crucial for addressing the technical 

aspects of debugging and assisting apprentices in adapting to the multifaceted challenges 

of software development. This approach ultimately aimed to enhance their problem-

solving skills and collaborative competencies, preparing them for the complexities of 

professional software development. 

 

In conclusion, the final table (Table 30) consolidates the overarching themes identified 

throughout Chapter 5. It offers a comprehensive view of the study’s findings, tying 

together the dyads’ practical debugging experiences, interview reflections, and focus 



198 | P a g e  

 

group discussions with mentors and trainers. Table 32 serves as a concluding reference, 

to easily navigate and recall the key elements of the chapter. 

 

Table 32: Overarching themes across the study 

Data Collection Method Themes 

5.1 Dyads Debugging Session 

Findings 

The debugging session findings are summarised, 

highlighting the key emerging themes, such as technology's 

pivotal role and the dyads' diverse strategies. 

They are: 1) Technology Utilisation, 2) Debugging 

Strategies, 3) Error Spectrum, 4) Cognitive Load 

Management, and 5) Challenges Faced. 

5.2 Python Code Analysis 

Findings 

Error Types, Proficiency Levels, Specific Challenges, 

Technological Tools Used. 

5.3 Interview Session Findings 1) Error Spectrum, 2) Technical and Cognitive Skills, and 3) 

Challenges in Collaboration. 

5.4 Focus Group Discussion 

Findings 

1) Nature and Handling of Debugging Errors, 2) 

Technology’s Role in Debugging, 3) Strategies and 

Challenges in Debugging. 
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Chapter 6: Conclusion  
 

 

6.0 Introduction 

This final chapter synthesises key findings to answer the initial research questions, 

integrating these results into a cohesive narrative. This involves providing answers to the 

central questions, linking empirical data to theoretical frameworks and assessing the 

research’s trustworthiness based on credibility, transferability, dependability, and 

confirmability. The chapter also discusses the study’s potential impact on software 

development education, highlighting implications for educators and practitioners and 

acknowledging its limitations. It proposes future research directions to address these 

gaps and clarifies the study’s contributions to academia and professional practice. 

 

6.1 Evaluation of Dyad’s Case Studies 

The case studies of DYADs 1 to 15 offer an insightful examination into the world of novice 

programmers aged 16 to 50, hailing from diverse organisational backgrounds and 

engaging in the complex task of debugging Python scripts in a remote environment. This 

study illuminates the varied strategic approaches adopted by each dyad and reveals 

commonalities in their experiences and methodologies. As a whole, these observations 

provide a diverse perspective on the challenges and triumphs encountered in software 

development, particularly in the context of novice programmers. 

 

Furthermore, the dyad case studies provide crucial insights into the debugging 

approaches of novice programmers. These novices, despite being early in their coding 
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journey, demonstrated adaptability and a willingness to experiment with various 

debugging techniques, such as print statement debugging, tinkering, trial and error, IDE 

debuggers, rubber duck debugging, tracing, slicing, code reviews and pattern matching. 

These diverse approaches align with the concepts of adaptive expertise (Bransford et al., 

2000; Clarke et al., 2023; Hatano & Inagaki, 1986), self-regulated learning (Kumar et al., 

2005; Ramírez Echeverry et al., 2018) and socially shared regulation of learning (Silva, 

2020) in programming education. As outlined by Bransford and Schwartz (1999) and 

Zimmerman (2002), the principles stress the importance of applying knowledge flexibly 

and self-tailoring strategies for enhanced learning and problem-solving. Thus, this range 

of strategies adopted by novice programmers indicates a growing understanding of the 

complex nature of programming and debugging and an engagement with deeper learning 

processes, which are key traits for successful programmers essential in the dynamic field 

of software development.  

 

Also, despite the hurdles of geographical separation, the dyads showcased effective 

remote collaboration, leveraging tools like Microsoft Teams and Visual Studio Live Share. 

This proficiency in collaboration, situated within the framework of distributed cognition, 

affirms the importance of shared cognitive responsibilities and collective problem-

solving, echoing research on computer-supported collaborative learning by Salomon 

(1997) and Stahl et al. (2006). Thus, the ability to collaborate effectively, irrespective of 

physical distance, is particularly relevant in the current global landscape of software 

development, where teams are often dispersed across various locations. 
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Moreover, a prevalent challenge identified across the dyads was their struggle with 

complex logical and runtime errors despite their effectiveness in resolving syntax errors. 

This difficulty highlights a common barrier among novice programmers in grasping the 

more intricate aspects of programming logic and computational thinking, a concept 

central to Papert (1980) and Wing (2006) research. In addition, troubleshooting these 

advanced errors is critical in developing comprehensive programming expertise and is 

often a distinguishing factor between novice and experts (Alqadi & Maletic, 2017; Rigby 

et al., 2020; Yen et al., 2012). 

 

Within the array of individual dyads, some pairs notably distinguished themselves 

through their distinctive approaches to problem-solving. DYAD1 and DYAD11, for 

example, displayed considerable skill in addressing syntax errors, but they also 

encountered obstacles when dealing with logical and runtime errors. Their proficiency in 

employing distributed cognition and collaborative tools showcased their teamwork 

capabilities and aligned with the recognised values of teamwork in software 

development, as emphasised in the works of Salomon (1997) and Johnson and Johnson 

(1987). In contrast, DYAD3 and DYAD12 adopted an approach that was more exploratory 

and hands-on, reflecting their developing problem-solving skills. This approach is aligned 

with Kolb (1984) experiential learning theory, highlighting the importance of active 

engagement in the learning process.  

 

In addition, the strategies adopted by DYAD7 and DYAD13, which included rubber duck 

debugging along with more traditional methods, illustrated their innovative approach to 

problem-solving. This technique aids in externalising thought processes, a crucial 
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component of metacognition in learning, as Flavell (1979) discussed. Finally, the strategy 

of DYAD15 stood out due to their effective utilisation of various debugging techniques 

and a well-balanced distribution of cognitive load. This approach showcased the high 

level of collaboration and communication skills indispensable for modern software 

development teams, as Torgeir et al. (2012) highlighted. 

 

In conclusion, the cases emphasised the importance of a multi-dimensional approach to 

debugging in software development, highlighting the varied problem-solving strategies 

employed by novice programmers. Their experiences illuminated the challenges inherent 

in addressing complex logical and runtime errors, pointing to areas for further learning 

and skill development. Despite the constraints of remote interaction, the effective 

collaboration observed across these studies emphasised the pivotal role of 

communication and teamwork in programming, resonating with contemporary 

perspectives on collaborative software engineering (Torgeir et al., 2012). These insights 

contribute to our understanding of novice programmers’ learning journeys and offer 

lessons for software development educators and practitioners. 

 

6.2 Research Questions 

This research addresses the key question, “How do the paired Software Development 

Apprentices in geographically distributed locations work collaboratively to fix Python 

programming bugs using the technology-mediated medium?” In pursuit of answers, this 

research has explored five distinct yet interrelated research questions. 
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RQ1: Types of Bugs 

What bugs are generated by the paired geographically distributed SDT apprentices 

working collaboratively to solve a given problem using Python?  

 

In exploring the errors encountered by SDT apprentices while debugging Python code, a 

detailed analysis reveals three distinct types of errors namely, syntax, logical, and 

runtime, all of which are faced during collaborative problem-solving efforts. This outcome 

reinforced previous studies indicating that these are typical bugs encountered by those 

new to programming in Python, acknowledging that, as an interpreted language, Python 

is prone to both compile-time and runtime errors (Becker et al., 2019; Cherenkova et al., 

2014; Helminen et al., 2013; Pritchard, 2015). This study, encompassing 20 pre-seeded 

errors across these categories, provided insight into the varying proficiency levels among 

30 apprentices grouped into fifteen dyad teams. Initiating the analysis with syntax errors, 

it is widely acknowledged that these constitute the most basic and easily identifiable 

errors in programming (Ahadi et al., 2018), a perspective robustly supported by insights 

from SDT12 of DYAD6 and SDT15 of DYAD8. These participants notably emphasised that 

syntax errors were prevalent and relatively straightforward to diagnose and correct. This 

view aligns with Sebesta (2016) assertion that syntax errors, while elementary, are critical 

in gauging a programmer’s understanding of a language’s framework. 

 

Furthermore, the study’s scope revealed a diverse proficiency landscape among the 

dyads in this domain. Particularly challenging were complex loop structures (Lowe, 2019), 

including notably incomplete ‘for’ loops (Kohn, 2019; Luxton-Reilly & Petersen, 2017), 

and issues in conditional statements, such as ‘else’ used without a preceding ‘if’ (Lutz, 
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2013). The prevalence of these errors in specific dyads, notably DYADs 6, 1, 11, 12, and 

15, indicates a fundamental gap in understanding Python’s essential structure and flow 

control (Lowe, 2019). This revelation is critical, highlighting a significant divergence in the 

apprentices’ skill levels and conceptual grasp.  

 

Conversely, many dyads demonstrated proficiency in basic syntax, adeptly addressing 

errors like missing colons and incorrect operators. This disparity in skill levels is 

particularly revealing, suggesting that while some apprentices comfortably navigate 

Python’s basic syntax, others face considerable challenges with more complex constructs. 

This could result from three types of breakdowns due to a programmer’s cognitive 

limitations in conjunction with the programming system or external environment, 

according to Ko and Myers (2005).  Such a scenario calls attention to the imperative need 

for a balanced and comprehensive approach to syntax education within programming 

curricula. As Downey (2012) aptly notes that establishing a solid foundational knowledge 

of programming languages is essential for developing proficiency. This approach ensures 

that learners are equipped to handle basic syntax and are prepared to tackle more 

advanced and intricate programming challenges. 

 

Moreover, Gomes and Mendes (2007) reinforce the importance of addressing these 

disparities in educational settings, advocating for tailored teaching strategies that cater 

to diverse learning needs. By adopting such strategies, educators can ensure that all 

apprentices, regardless of their initial proficiency levels, can comprehensively understand 

programming syntax (Sun et al., 2024).  Taking this into account, the study illustrates the 

varying degrees of proficiency in syntax among apprentices, highlighting the need for 
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educational approaches that accommodate this diversity. Through a combination of 

foundational teaching and tailored strategies, it is possible to bridge the gaps in 

understanding and skill, ensuring a more uniform and thorough comprehension of 

programming languages among learners. 

 

Transitioning to logical errors presented a spectrum of challenges and competencies 

among the dyads. DYADs 3 and 6, for instance, encountered substantial difficulties with 

complex logical issues, exemplified by incorrect tax calculation logic. This struggle with 

logical problem-solving extended beyond these groups, as evidenced by the challenges 

faced by DYAD14. Such instances revealed that logical errors in programming were not 

merely syntactical mishaps but often involved more profound conceptual 

misunderstandings (Alqadi & Maletic, 2017; Rigby et al., 2020). In addition, SDT21’s 

experiences with the special variable ‘name’ in Python further illustrated this complexity 

in logical errors, as the error encountered was not just a syntactic oversight but a 

misapprehension of the variable’s conceptual usage (Pea, 1986).  

 

Similarly, SDT19’s reflections on the improper use of ‘name’ highlight the requirement for 

a more comprehensive understanding of the interactions between various code 

segments. These insights align with findings by Miller et al. (2019) regarding the 

intricacies of variable usage in Python. Adding to the complexity, SDT7 speaks of 

frustrations experienced while handling logical errors like bonus calculations, which 

lacked contextual clarity, pointing to a need for more contextually rich problem-solving 

scenarios in programming education. Contrasting these struggles, DYADs 1, 4, 7, and 15 

displayed a firm grasp of programming logic, adeptly resolving most identified logical 
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errors. Notably, DYAD10’s exceptional proficiency in resolving complex logical challenges 

aligned with the observations made by Ettles et al. (2018), reinforcing the notion that 

such skills can be developed with appropriate training and practice. This variance in 

proficiency amplifies the necessity for programming education to cater to diverse levels 

of logical understanding. As Tan (2021) suggests, educational curricula should reinforce 

fundamental concepts for novices and present complex problem-solving scenarios to 

challenge more advanced learners. 

 

Furthermore, the findings suggest that an emphasis on practical application, as advocated 

by Hazzan et al. (2020), could enhance learners’ abilities to tackle logical problems 

effectively. By integrating real-world scenarios, educators can provide learners with the 

context necessary to understand and solve complex logical errors (Robins et al., 2003). 

Additionally, the need for differentiated instruction, as highlighted by Tomlinson and 

Imbeau (2023), becomes evident in addressing the varied proficiency levels observed. 

 

On another note, examining runtime errors in Python programming, as experienced by 

several dyads, reveals an intricate landscape of challenges marked by a common struggle 

with infinite loops. Often attributed to syntax issues like missing colons in ‘for’ loops 

(Kohn & Manaris, 2020; Simon et al., 2007), these errors underscore a broader difficulty 

in comprehending loop mechanics, an essential aspect of programming (Sedgewick & 

Wayne, 2016). This persistent challenge indicates a more profound issue than mere 

syntactic oversight, suggesting a fundamental gap in understanding crucial programming 

concepts. In stark contrast to the difficulties with loops, most dyads demonstrated 

relative ease in handling basic data type operations, such as converting string inputs to 
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numbers. This disparity in handling different types of runtime errors illuminates a 

variation in understanding complex programming structures compared to simpler 

operations. This observation is aligned with the findings of Monat et al. (2020) and 

Fromherz et al. (2018), who emphasise the importance of a strong foundation in 

fundamental concepts like variable scope and declaration. 

 

In conducting further investigations through interviews, it became apparent that 

apprentices often faced substantial challenges in addressing runtime errors, especially in 

remote collaboration. Participants, including SDT2 and SDT4, explored specific runtime 

errors, highlighting the need for a deep understanding of Python’s logic and its intricate 

aspects (Winslow, 1996). Furthermore, these observations resonate with the findings of 

Soloway and Spohrer (1989), who pointed out the deficiencies in novices’ understanding 

of various programming language constructs such as variables, loops, arrays, and 

recursion. Likewise, SDT8 and SDT30 highlighted the complexities in resolving infinite 

loop errors, emphasising the crucial necessity for precise detection and rectification. 

 

These perspectives resonate with the cognitive and technical demands highlighted by 

SDT10 and SDT11, who accentuated the significance of conducting a thorough analysis of 

a program’s structure and logic, particularly for those less experienced. Such an approach 

is supported by Wing (2006) argument on the importance of computational thinking in 

programming. In these contexts, the value of debugging tools was also mentioned by 

SDT16 and SDT29, who pinpointed the essential roles of debugging consoles and variable 

state inspection in tackling complex issues. The necessity of these tools in debugging is 
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reinforced by the work of Murphy et al. (2008), who examined the role of debugging in 

software development. 

 

Furthermore, this narrative brings to the forefront the intricate nature of runtime errors 

(Zhang et al., 2023) in Python programming. The insights offered by the participants 

illuminate the vital roles of debugging tools and the cognitive and technical skills required 

for effectively managing these errors. This observation is in line with Papert (1980) theory 

of constructionism, which advocates for hands-on experience in learning complex 

concepts. Thus, the identified challenges unveil gaps in skills and present considerable 

opportunities for learning and development. Similarly, novices SDT5 and SDT19, in their 

struggles with runtime errors, highlighted areas needing further development and 

understanding, supporting Vygotsky and Cole (1978) theory of the Zone of Proximal 

Development in learning. The array of issues encountered, exemplified by SDT2’s 

difficulties with string-to-number conversion and SDT4’s acknowledgement of a skill gap 

manifested by an infinite loop issue, reveals the breadth of challenges. Moreover, SDT8 

and SDT30’s reflections on specific runtime errors, like the ‘Infinite loop due to missing 

colon’, and the importance of understanding Python’s interpreter execution, further 

mark the complexities involved (Guzdial & Ericson, 2013). 

 

In addition, the role of debugging tools, as emphasised by SDT16 and SDT29, along with 

the cognitive demands of grasping a program’s logic and structure, as noted by SDT10 

and SDT11, are critical for effectively managing runtime errors. These insights are in 

harmony with the findings of Pea (1986) on the cognitive technologies for learning 

programming. SDT4’s and SDT12’s comments on the importance of critically evaluating 
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the code’s execution flow and variable scope further reinforce these points, aligning with 

the assertions of Soloway and Ehrlich (1984) on the mental models in programming. 

Similarly, the experiences of the apprentices dealing with runtime errors in Python 

programming reveal a challenging landscape. These challenges, indicative of skill gaps, 

offer substantial learning opportunities, emphasising the need for a comprehensive 

approach to programming education. This approach should encompass both basic syntax 

and the deeper intricacies of Python’s structure and logic, as advocated in the 

pedagogical theory of Bruner (2009). 

 

Summing up, analysing the dyads’ performances concerning syntax, logical, and runtime 

errors, (Kohn, 2019) uncovers trends and educational implications that are significant in 

programming education. The variance observed in skill levels highlights that while basic 

syntax (So & Kim, 2018) is generally well-understood among apprentices, there remains 

a pronounced need for more focused education on complex syntactical structures. This 

need is further exemplified in handling logical errors, where a broader range of 

competency is evident. Some dyads demonstrated a strong grasp of programming logic, 

while others faced considerable challenges (Smith & Rixner, 2019). This variability 

accentuates the importance of personalised learning paths, particularly in logical 

problem-solving. Also, the apprentices faced a more consistent set of challenges 

regarding runtime errors, particularly in areas such as loop control and variable scope. 

This uniformity in struggling with specific runtime errors across different dyads suggests 

fundamental gaps in programming education that need to be addressed (Smith & Rixner, 

2019). However, it is noteworthy that areas involving basic operations, like data type 

conversion, were generally handled with greater ease. This observation indicates a 



210 | P a g e  

 

relative comfort among apprentices with Python’s fundamental concepts, a foundational 

aspect of programming literacy. 

 

RQ2 – Debugging Strategies and Tactics 

What bug locating strategies and tactics are deployed by the paired geographically 

distributed SDT apprentices while attempting to fix defects in the given Python code? 

How do they go about finding the bugs in the program code?  

 

Upon scrutiny of the debugging sessions of the dyads, a richly varied mosaic of debugging 

strategies and tactics was uncovered. This variety, captured through the lens of the 

Distributed Pair Debugging Conceptual Framework (DisConFrame) - discussed in Chapter 

3 - highlighted the complexities of the debugging process. Within this framework, the 

think-aloud verbal protocol emerged as a crucial element, enhancing comprehension of 

how individuals and pairs navigated through the complex realm of debugging. When 

viewed through the lens of this framework, dyads’ approaches to debugging in 

distributed environments became somewhat more explicit. Their journey through the 

Python code, pursuing deliberately embedded bugs, resembled ‘a strategic foray into a 

labyrinthine forest in search of elusive prey’. As detailed in Chapter 5, Table 5.1 illustrates 

this diversity, showcasing nine distinct and multifaceted debugging strategies and tactics.  

 

A close examination of dyads’ debugging strategies and tactics revealed that print 

statement debugging was widely adopted, with 14 out of 15 dyads using it. This affirms 

the ongoing significance of print statement debugging in their debugging processes 

(Alqadi & Maletic, 2017; Liu & Paquette, 2023). As noted by DYAD1 and DYAD6, print 
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statements offer real-time insights into code behaviour, in line with research by 

Fitzpatrick and Collins-Sussman (2015) and Spinellis (2016). Additionally, DYAD2 

highlighted the benefits of print statement debugging for immediate feedback and error 

recognition, supported by studies conducted by Layman et al. (2013) and Li et al. (2018). 

However, the simplicity of print statement debugging can also be its limitation (Agrawal 

et al., 1993; Fitzgerald et al., 2008; Poole, 2005; Zeller & Hildebrandt, 2002), as it may not 

be effective for more complex debugging scenarios, where the intricacies of code 

behaviour require deeper analysis (David, 2002; Matloff & Salzman, 2008).  

 

Additionally, DYAD3, DYAD10, DYAD11, DYAD14, and DYAD15 demonstrated a significant 

preference for tinkering, a hands-on, exploratory method that involves interactive 

experimentation with code, facilitating learning and problem-solving through direct, 

experiential engagement with programming (Murphy et al., 2008). This approach, 

notable in the dyad case studies, allowed programmers to modify and examine their code 

gradually, enhancing their comprehension of its effects (Beckwith et al., 2006; Vossoughi 

& Bevan, 2014). However, contrasting viewpoints from Liu et al. (2017) and Murphy et al. 

(2008) suggest that tinkering might restrict the development of a more profound 

understanding of the program and is always ineffective (Park et al., 2015). It has also 

proven effective in various dyads, notably correcting syntax errors.  

 

SDT9 also found tinkering valuable for syntax errors, aligning with Vossoughi and Bevan 

(2014) findings on its benefits for basic error correction. Similarly, SDT6 and SDT7 

demonstrated their practicality in understanding and testing code, resonating with 

Beckwith et al. (2006), who highlight the importance of direct code engagement. 
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Likewise, reflections from DYAD11, DYAD14, and DYAD15 members further affirmed the 

significance of tinkering in the debugging process by incrementally modifying the code 

and observing outcomes, enhancing their understanding of code functionality. However, 

Murphy et al. (2008) caution that tinkering might not suffice for complex errors, 

potentially limiting deeper skill development. 

 

In the same vein, the ‘Trial and Error’ method, characterised by its experimental and 

hands-on approach (Gugerty & Olson, 1986), was notably used by one in three dyads, 

DYAD3, DYAD5, DYAD6, DYAD12, and DYAD13. However, the relevance of this method’s 

prevalence was evident in direct quotes from debugging sessions and interviews, 

reflecting a commitment to discovery and resilience. SDT6, SDT7, and SDT9 illustrated its 

exploratory and hands-on nature. SDT6’s approach reflected Kolb’s Experiential Learning 

Theory (1984), emphasising learning through experience. SDT7’s method aligned with 

Piaget’s Constructivist Learning Theory (1954), underscoring learning through direct 

interaction with the code. Similarly, SDT9’s focus on trial and error, providing immediate 

feedback, resonated with Vygotsky’s Social Development Theory (1978), highlighting the 

role of social interaction in cognitive development. Overall, trial and error, essential for 

immediate problem-solving, is crucial for the cognitive development of novice 

programmers, supported by various established learning theories, underscoring its value 

in programming education. 

 

Moreover, SDT30 found print statement debugging and tinkering effective, reflecting a 

strategic debugging approach involving hypothesis testing and observation. This method 

fosters deeper code engagement and intuitive understanding within the programming 
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environment. The integration of various debugging techniques, as seen in DYAD2, DYAD3, 

DYAD14, and DYAD15, highlighted the importance of diverse strategies in addressing the 

complex challenges of programming, combining immediate visual feedback with hands-

on experimentation and collaborative review for a deeper, more collaborative learning 

experience (Winslow, 1996). Also, dyads engaged in iterative testing and code 

modification, demonstrating their proactive approach to problem-solving. SDT6, for 

instance, emphasised experimenting with various solutions, a sentiment echoed by SDT9 

and extended by SDT12, who also valued ‘Code Review’. SDT23 also highlighted the 

intuitive nature of this method.  

 

On the other hand, using IDE debuggers represents a more sophisticated approach. IDE 

debuggers allow for a more interactive and detailed examination of the program’s 

execution, offering capabilities such as breakpoints and variable inspections (LaToza & 

Myers, 2010). This method aligns with the evolving complexity of programming tasks and 

the need for more advanced debugging tools. In addition to traditional methods, 

Integrated Development Environment (IDE) features play a significant role in enhancing 

debugging efficiency and productivity, as observed in the experiences of DYAD4 and 

DYAD9 (Proksch et al., 2018). SDT2 acknowledged the holistic view provided by IDE 

Debuggers, aligning with Afzal and Goues (2018) findings on the comprehensive 

understanding facilitated by IDEs.  

 

Similarly, SDT14 termed IDE Debuggers as a “game-changer” for controlled code 

inspection, echoing Kohn and Manaris (2020) insights on the benefits of step-by-step 

code examination and variable state inspection for novices. SDT22 highlighted IDE 
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Debuggers’ role in identifying complex errors and setting breakpoints, a strategy Beller et 

al. (2018) supported for dissecting intricate code segments. SDT24 affirmed the 

importance of pausing code execution for precise examination, resonating with Petrillo 

et al. (2017) suggestion on interactive learning environments in programming. Finally, 

SDT29 focused on using IDE Debuggers to observe program behaviour at various stages 

(Beller et al., 2017), an approach in line with Papert (1980) constructionism theory, which 

advocates learning through interactive and real-time feedback tools. These examples 

collectively demonstrate the crucial role of IDE Debuggers in enhancing novice 

programmers’ debugging strategy and overall programming understanding. 

 

In contrast, techniques such as slicing and code review reflect a shift towards more 

contemporary and investigative debugging practices. Slicing, for instance, involves 

isolating specific portions of the code to understand their behaviour better and is 

particularly useful in large and complex codebases (Weiser, 1984). In a similar vein, code 

review, typically performed as a group effort, assists in detecting bugs and enhances code 

quality while fostering a shared understanding among developers (Bacchelli & Bird, 

2013). Also, the evolution from basic techniques like trial and error to more advanced 

methods such as IDE Debuggers and code review in DYAD12 showed a developmental 

trajectory in debugging skills. This progression is crucial in building confidence and 

expertise, exemplified by DYAD13’s pattern matching and code review use. Combining 

introspective methods like rubber duck debugging in DYAD7 with structured approaches 

like IDE Debuggers demonstrated the necessity of diverse problem-solving perspectives 

in addressing varied programming challenges. 
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Overall, the dyads’ approaches to debugging illustrated an interplay between individual 

problem-solving techniques and collaborative efforts. The study revealed a mosaic of 

debugging strategies and tactics, each tailored to the apprentices’ specific needs and 

skills’ set. The combination of direct, immediate techniques and more exploratory, 

collaborative methods accentuates the complexities of debugging in programming. This 

blend of tactics facilitates effective problem-solving and contributes to a deeper 

understanding and proficiency in programming, preparing the apprentices for a wide 

range of programming challenges. Furthermore, it becomes apparent that collaboration 

is a fundamental aspect of their approach. Across the various teams, there is a 

pronounced reliance on cooperative techniques. This includes the collective use of 

Integrated Development Environments (IDEs), engaging in discussions during code 

reviews, and employing pair debugging methods such as rubber duck debugging, as 

observed in DYAD4 and DYAD7. These methods identify the apprentices’ inclinations 

towards utilising teamwork as an effective tool to tackle the intricacies involved in 

debugging scenarios. 

 

RQ3 – Cognitive Load Sharing 

How do the paired geographically distributed SDT apprentices distribute cognitive load 

when resolving bugged code? 

 

The approach to cognitive load management by geographically distributed SDT 

apprentices in resolving bugged code is multifaceted and well-aligned with key 

educational theories. Commencing with the foundational aspect of collaboration and role 

switching, the apprentices exhibited a dynamic interplay between the roles of ‘driver’ and 
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‘navigator’. This approach, as exemplified by SDT1 and SDT8, finds backing in Plonka et 

al. (2011) and Williams and Kessler (2002). These research findings highlight the 

importance of collaboration and role switching in uniformly distributing cognitive load, 

thereby improving efficiency and focus, which are central to the approach of these dyads.  

This dynamic approach allows them to alternate between the ‘driver’, actively coding, 

and the ‘navigator’, providing guidance and oversight (Plonka et al., 2011). 

 

Similarly, it can be argued that the ‘driver-navigator’ approach, practised by SDT1 and 

SDT8, is vital in managing cognitive load in collaborative programming. One member 

codes (‘drives’) while the other offers guidance (‘navigates’), ensuring fair distribution of 

tasks as suggested by the dyads. Thus, regular role swaps, like every 15 minutes, keep 

both members equally engaged. This technique aids cognitive load management, aligning 

with Cognitive Load Theory, which posits limited information processing capacity and the 

effectiveness of collaborative strategies in distributing cognitive load (Sweller, 1988), 

though Tsai et al. (2015) suggest sharing workload does not significantly reduce germane 

cognitive load. 

 

In the same vein, in the driver-navigator model of programming, dividing tasks between 

coding and reviewing can distribute cognitive demands, potentially lessening overload. 

This model traditionally sees drivers focus on coding and navigators on reviewing, each 

at different levels of abstraction, as noted by Beck (2000) and Williams et al. (2000). 

Contrarily, Bryant et al. (2008), Chong and Hurlbutt (2007), and Freudenberg et al. (2007) 

argue that both roles function at similar abstraction levels without distinct task division. 
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However, strict adherence to designated roles in this study suggests that traditional 

distinctions between driver and navigator may still hold significance. 

 

Also, the driver-navigator programming model adheres to Hutchins (1995) distributed 

cognition concept, promoting shared cognitive processes among group members, 

enhancing understanding and problem-solving. Regular role switching, advocated every 

15 minutes, encourages active engagement, a key element in collaborative learning 

(Johnson & Johnson, 1987). This approach ensures apprentices gain experience in coding 

and strategic aspects like problem-solving and code review, broadening their skill set. 

Additionally, it aligns with Vygotsky’s social development theory (1978), highlighting the 

role of social interaction in cognitive development. Through this collaborative model, 

participants collectively construct knowledge, optimising cognitive resources and 

boosting learning outcomes via active engagement and social interaction. 

 

Further, verbalising thought processes is critical in collaborative problem-solving within 

software development, particularly in debugging tasks. This method is evident in the 

interactions within the dyads, where articulate communication is a key factor in sharing 

and managing cognitive load. This approach suggests, in some cases, clear 

communication, which is pivotal in managing cognitive load among SDT apprentices. SDT2 

exemplified this with the use of frequent, concise discussions for task division, aligning 

with Sweller (1988) cognitive load theory that reiterates reducing extraneous cognitive 

load enhances learning and problem-solving. Kirschner et al. (2006) further support this, 

advocating that well-structured collaborative tasks optimise learning by efficiently 

distributing cognitive load. 
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Additionally, DYAD2’s adoption of the ‘think aloud’ method, where thought processes are 

openly discussed, resonates with Hmelo-Silver (2004) emphasis on articulating thoughts 

in collaborative problem-solving. By vocalising their reasoning and assumptions, team 

members can better track and understand each other’s perspectives, leading to more 

cohesive and efficient problem-solving. This method ensures mutual understanding, 

aligning with Johnson and Johnson (1999) research, which highlights the role of effective 

communication in achieving shared goals within a team. Mayer and Moreno (2003) also 

acknowledge that such interactive communication reduces cognitive load, enhancing 

problem-solving efficiency (Paas et al., 2003). It can be argued that verbalising thought 

processes, as demonstrated in the dyad debugging sessions, is essential for managing 

cognitive load and fostering collaborative efficiency in software debugging. This approach 

aids in task articulation, ensures effective cognitive load distribution, and is supported by 

the principles of Vygotsky and Cole (1978) social development theory and Paas et al. 

(2003) findings on collaborative cognitive load management. 

 

Similarly, the use of various tools and strategies emerges as crucial in addressing the 

distribution of cognitive load among paired geographically distributed SDT apprentices 

during debugging tasks. Thus, the deployment of IDEs, debuggers, and collaborative code 

editors plays a central role in this process. This approach resonates with Mayer and 

Moreno (2003) Cognitive Theory of Multimedia Learning, which highlights the efficacy of 

multimedia tools in reducing cognitive overload by facilitating more efficient information 

processing. Additionally, Sweller (1988) Cognitive Load Theory suggests that such tools 
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are instrumental in alleviating individual cognitive burdens, particularly in complex tasks 

like debugging, thus contributing to a more effective debugging process. 

 

Furthermore, the division of specialisation within teams, as exemplified by apprentices in 

DYAD9, is a significant method for managing cognitive load. This strategy, backed by Paas 

et al. (2003), highlights the effectiveness of distributed cognitive load in collaborative 

learning environments. By assigning tasks based on individual strengths and areas of 

expertise, apprentices can optimise their cognitive resources. This concept is further 

supported by Kirschner et al. (2006), who emphasise the role of well-structured 

collaborative tasks in enhancing learning outcomes by efficiently distributing cognitive 

load among team members. 

 

In addition to these strategies, balancing workload and effective time management, as 

highlighted by SDT21 and SDT29, is vital in averting cognitive overload. This approach is 

in line with the findings of Dillenbourg et al. (2009) on collaborative learning, 

underscoring the significance of workload distribution in collaborative settings. Such 

strategies ensure that apprentices direct their cognitive efforts toward the most impactful 

issues, optimising the overall debugging process and contributing to the team’s success. 

 

In summary, the SDT apprentices’ strategies in managing cognitive load during debugging 

sessions demonstrated an alignment with the cognitive theories and adaptive problem-

solving approaches in software development. These methods, comprising role-switching, 

verbalising thought processes, tool utilisation, specialisation, and workload management, 
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reflected a managed approach to cognitive load management, enhancing both individual 

and collective efficiency in software debugging tasks. 

 

RQ4 - Leveraging IDE 

RQ4: How does leveraging Integrated Development Environment (IDE) tools enhance the 

capabilities of distributed pair debugging and mitigate the challenges encountered in 

debugging programs? 

 

The integration of IDE tools in distributed pair debugging of Python code is a complex 

interplay of benefits and potential pitfalls. This analysis, enriched by the experiences of 

apprentices across various dyads and supported by academic literature (Goldman et al., 

2011; Potluri et al., 2022; Satratzemi et al., 2023), offers an understanding of the role of 

IDE tools. Also, through an examination of their experiences and the insights gleaned 

from the debugging and the interview sessions, the impact of IDE tools on their 

collaborative debugging process becomes apparent as it serves more than just facilitators 

of code, but is crucial in addressing the challenges inherent in debugging. A crucial benefit 

of IDE tools, particularly Visual Studio Live Share, as highlighted by SDT1 and SDT17, is 

their facilitation of real-time collaboration. This aligns with Hutchins (1995) distributed 

cognition theory, which posits that cognitive processes are spread across individuals and 

their tools, enhancing problem-solving abilities. Johnson and Johnson (1987) and 

Salomon (1997)  recognition of the importance of collaborative tools in software 

development further validates this point.  
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Similarly, this aspect of real-time collaboration is essential in overcoming physical 

distance, a point reinforced by the experiences of SDT3, SDT5, and SDT26, commending 

the efficacy of tools like Microsoft Teams and Visual Studio Live Share in fostering 

effective collaboration in enabling seamless communication and coordination despite 

geographical separation. However, the dependence on these specific tools invites critical 

scrutiny. The apprentices’ reliance on these specific IDE tools raises concerns about the 

potential stagnation of essential debugging skills, as reliance on technology can lead to a 

lack of development in fundamental problem-solving abilities (Mayer, 2004). In the same 

vein, in situations where these specific tools are unavailable, this dependency could 

become a significant hurdle, potentially leading to a stagnation in the development of 

essential debugging skills. 

 

Also, in the discourse on the use of IDE tools within various dyads, significant attention 

has been given to features like syntax highlighting, error notifications, and integrated 

consoles. These functionalities have been praised by various dyads for their efficiency in 

identifying and resolving syntax errors (Cheng et al., 2003; Goldman et al., 2011). This 

finding is consistent with research by Fontana and Petrillo (2021) and Petrillo et al. (2019). 

Participants, including SDT2 and SDT10, have particularly commended the capacity of 

these tools to streamline the debugging process (Kurniawan et al., 2015). They noted the 

utility of IDE features in simplifying code review and error detection. However, there is a 

risk that over-reliance on automated features could impede deeper learning of code 

principles, leading to a scenario where apprentices are proficient with IDEs but lack the 

skills to debug without these aids, a concern highlighted in the context of technology-

assisted learning (Grover & Pea, 2013). This essentially implies that while these tools are 
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undoubtedly helpful for debugging, an over-reliance on them might impede a deeper 

grasp of essential coding principles, potentially leading to a skill gap. Apprentices might 

become proficient in using IDEs for debugging but could struggle without these aids, 

hindering the development of more fundamental and adaptable coding skills. 

 

Moreover, advanced features like static code analysis and code coverage assessment in 

IDEs further enhance debugging efficiency as suggested by SDT19 and SDT22, add an 

extra layer of effectiveness to the debugging process as they facilitate the management 

of code changes and error correction and enable a deeper analysis of the code, allowing 

apprentices to address more complex issues beyond basic syntax errors. These 

techniques, aligning with Beller et al. (2018) research, enable participants to address 

issues beyond basic syntax errors, highlighting the comprehensive nature of IDE tools in 

the debugging process. These tools go beyond identifying syntactical errors and highlight 

more fine-grained aspects of code quality and performance. They allow SDT apprentices 

to adopt a proactive approach to debugging, anticipating potential issues before they 

become problematic. This can also be linked to the role of IDEs in reducing cognitive load, 

as per Sweller (1988) theory, which is significant in the debugging process. By automating 

routine aspects of coding, IDEs allow apprentices to focus on complex tasks. While these 

tools facilitate a proactive debugging strategy, helping apprentices to foresee and 

prevent potential issues, they also pose the risk of creating a dependency that could limit 

the development of essential programming skills and a deep understanding of code 

principles (Miller & White, 2021). This echoes the broader concerns related to the 

integration of educational technology and its impact on cognitive development in 
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programming education. Thus, this juxtaposition highlights the need for a balanced 

approach to IDE tool usage in programming education. 

 

In the same vein, the integration of version control systems within IDEs is another aspect 

that aids in distributed debugging. The participants also recognised the importance of 

version control systems and code completion features in IDEs. SDT4 and SDT29 pointed 

out how these functionalities reduce cognitive burdens and improve debugging 

efficiency. This aspect is crucial in the distributed pair debugging context, as it allows for 

more efficient management of code changes and error correction. This suggests that 

version control systems help manage changes and coordinate tasks among team 

members and provide a safety net that encourages experimentation, a key component in 

creative problem-solving in software development. These systems are indispensable in 

efficiently managing code changes, particularly in a distributed setting. However, this 

raises the critical question of whether apprentices fully grasp the underlying principles of 

version control. While IDEs simplify this process, it is imperative for apprentices to 

develop a comprehensive understanding of version control mechanisms, a necessity 

opined by Loeliger and McCullough (2012). This knowledge is essential for managing code 

changes effectively, even when IDEs are not in use or in different coding environments, 

ensuring a well-rounded skill set in software development. 

 

In summary, the analysis of participants’ experiences and quotations, supported by 

relevant academic references, points out the integral role of IDE tools in enhancing the 

effectiveness of distributed pair debugging of Python code. These tools facilitate real-

time collaboration and expedite error identification and resolution, reduce cognitive load, 
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and offer advanced functionalities for a more comprehensive debugging experience (Du 

Preez Ockert, 2019; Kölling et al., 2019). Also, the participants’ affirmative feedback on 

using IDE tools in overcoming challenges, particularly in remote settings, reaffirms the 

pivotal role of technology in enabling seamless collaborative coding experiences. 

 

RQ5 - Collaborative Debugging Challenges 

What challenges are experienced by paired geographically distributed SDT apprentices 

working collaboratively on debugging programming bugs, and why are they facing such 

challenges?   

 

Geographically distributed SDT apprentices engaged in pair debugging face numerous 

hurdles, including the complexities of remote collaboration and programming intricacies. 

Their challenges, compounded by the limitations of digital communication tools and 

varying levels of coding knowledge, involve effectively conveying complex coding 

concepts over distances and managing the cognitive load of resolving technical issues 

remotely. These factors collectively impinge upon the efficiency of the debugging 

process, leading to a range of issues that will now be explored in detail. 

 

Technical and Cognitive Challenges in Remote Debugging: 

A primary challenge faced by dyads in remote debugging sessions is encapsulated in the 

realm of technical and cognitive difficulties. Various aspects contribute to these 

challenges, notably the apprentices’ struggles with complex logical errors. For example, 

apprentices in DYAD1 contended with intricate logical errors such as the misuse of the 

special variable ‘name’ and bonus calculation lacking context (domain knowledge). These 
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instances serve to highlight the significant challenges within the remote debugging 

landscape. Apprentices, grappling with the subtleties of Python’s logic and syntax, 

frequently encountered obstacles, largely due to their limited experience. SDT1 

articulated this challenge, stating, “One of the main obstacles... was dealing with complex 

logical errors... which was challenging given our limited experience”. This experience 

stands in stark contrast to that of DYAD8, where apprentices adeptly utilised IDE tools to 

navigate similar challenges, thereby illustrating the uneven distribution of technical 

proficiency and problem-solving approaches among the dyads. This discrepancy suggests 

an underlying issue within remote programming education, indicating that while IDE tools 

provide significant support, they cannot substitute for a fundamental understanding of 

programming concepts, a gap particularly pronounced in remote settings where 

immediate peer or mentor support is absent. 

 

Another aspect under the technical and cognitive theme is the management of cognitive 

load. The experiences of DYAD3, struggling with cognitive overload, illuminate the 

complex nature of this challenge. SDT6 noted the difficulty in managing the shared editing 

environment, a task that becomes increasingly challenging in a remote context where 

isolation can exacerbate focus issues. Contrasting these experiences with those of 

DYAD11, who struggled with poorly documented codebases, reveals the range of 

technical challenges in remote debugging. Such experiences affirm the need for 

comprehensive programming training that transcends mere technical skill development 

to encompass strategies for effective cognitive load management and documentation 

comprehension. 
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Additionally, the use of IDE tools presents its own set of challenges. Apprentices in DYAD5 

and DYAD8 faced significant hurdles in mastering these crucial tools for remote 

debugging. SDT14 highlighted the difficulties in efficiently utilising the IDE Debugger 

remotely, stating, “another obstacle was efficiently utilising the IDE Debugger in a remote 

setting... this limitation made it difficult to collaboratively explore different hypotheses 

about the bug”. This learning curve contrasts with the experiences of DYAD8, where 

apprentices demonstrated greater proficiency with these tools. Such differences in tool 

mastery stress the importance of tailored training in remote debugging education, 

focusing on the technical operation of these tools and their integration into the learning 

and debugging processes. 

 

Navigating poorly documented codebases, a challenge faced by apprentices in DYAD4 and 

DYAD11, adds another layer of complexity to remote debugging. SDT21 highlighted the 

struggle with logical errors, exacerbated by limited experience and unclear 

documentation, “One significant obstacle we faced... was dealing with the logical errors, 

especially considering our limited experience”. This struggle differs from the cognitive 

challenges faced by DYAD4, emphasising the need for a focus on comprehensive 

documentation skills within programming education. 

 

Similarly, managing complex workloads and intricate code structures, as evidenced in the 

experiences of DYAD13 and DYAD15, points to the multi-dimensional nature of remote 

debugging. These apprentices needed to balance solving complex programming tasks 

with effective time and mental resource management, a challenge distinct from the 

technical issues faced by DYAD5. This necessitates an educational approach that includes 
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elements of project management and personal organisation to ensure that apprentices 

are technically proficient and adept at handling the broader demands of software 

development projects. 

 

In conclusion, exploring these aspects in detail revealed the layered complexity of 

technical and cognitive challenges in remote debugging sessions. The diverse struggles of 

apprentices across different dyads marked the need for a comprehensive and varied 

approach to programming education. This approach should address the technical aspects 

of coding and the cognitive, collaborative, and organisational skills essential for effective 

remote debugging. Balancing the development of technical competencies with the 

cultivation of communication, problem-solving, and project management skills is crucial 

for preparing apprentices for the diverse challenges of the contemporary software 

development environment. 

 

Communication and Collaboration Challenges: 

The exploration of communication and collaboration challenges faced by apprentices in 

various dyads during remote debugging sessions, even with the aid of visual tools like 

Microsoft Teams, unveiled a complex landscape of interaction hurdles. Despite the visual 

connectivity offered by such platforms, the geographical separation between apprentices 

persisted as a significant barrier, demanding an enhanced focus on both verbal and non-

verbal communication skills. As SDT1 aptly put it, “While tools like Visual Studio Live Share 

helped bridge the physical distance, we had to work harder to ensure clear and precise 

communication”. This sentiment was echoed by SDT2, who noted the necessity of 
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constantly verbalising thoughts to maintain a shared understanding, highlighting the 

ongoing struggle to overcome the absence of physical presence in digital interactions. 

 

Moreover, this challenge was not isolated to DYAD1. For instance, SDT5 spoke of the 

difficulties in not being able to physically point out issues or discuss solutions, a sentiment 

that SDT6 also shared, particularly during simultaneous code editing, which often led to 

confusion. These experiences backs up the limitations of visual connections in fully 

compensating for the lack of direct, physical interaction, especially in understanding and 

managing shared coding tasks. The visual component, while beneficial, could not 

completely bridge the gap in immediate, intuitive understanding and response that 

physical presence facilitates. 

 

Additionally, the dyads confronted the challenge of aligning their coding strategies and 

interpretations, a task made more difficult by geographical separation. SDT12’s 

observation that face-to-face brainstorming could have expedited the process during 

moments of confusion points to the complexities of remote collaboration. Visual contact, 

albeit helpful, did not wholly mitigate the challenges posed by the need for immediate 

and coherent strategy alignment. This issue was further compounded by differences in 

individual coding experiences and styles, as highlighted by SDT11, who found it 

challenging to align coding approaches with their partner, indicating a deeper need for 

structured and systematic problem-solving approaches in remote settings. 

 

Furthermore, the apprentices’ struggles extended to the realm of effective 

communication, particularly in conveying complex programming concepts and thoughts. 
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SDT20’s reflection on the extra effort required to explain thought processes and 

perspectives marks the inherent limitations of remote communication tools in replicating 

the depth and distinctness of face-to-face interaction. Similarly, SDT19’s expression of 

difficulty in articulating thoughts to their partner reflects a broader issue within remote 

collaboration, where the complexity of conveying intricate ideas through digital means 

can hamper progress and understanding. 

 

In synthesising these accounts from different dyads, it becomes evident that despite the 

advantages of visual communication tools, apprentices faced a wide array of challenges 

in remote debugging. These challenges encompassed the need for effective verbal and 

non-verbal communication and the intricacies of managing shared coding environments 

and harmonising diverse coding strategies. The experiences highlight the critical need for 

a comprehensive approach in remote programming education that goes beyond the mere 

use of technological tools. Such an approach should focus on developing robust 

communication and teamwork skills, addressing the complexities of remote 

collaboration, and ensuring apprentices are well-prepared to navigate the multifaceted 

challenges of modern software development. This comprehensive approach is essential 

for fostering a collaborative, effective, and adaptable learning environment in the ever-

evolving field of software development. 

 

Environmental and Logistical Challenges: 

The exploration of environmental and logistical challenges faced by SDT apprentices in 

remote debugging sessions, as reflected in their direct experiences, revealed intricate 

complexities and multifaceted nature of these hurdles. 
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Furthermore, geographical separation profoundly impacted the dynamics of 

communication and collaboration, as evidenced by the experiences of various dyads. This 

finding aligns with the suggestion put forward by Satratzemi et al. (2018) that distributed 

pair programming (DPP) is more demanding than traditional pair programming (PP). For 

instance, SDT1 remarked, “Additionally, being geographically dispersed posed its own set 

of challenges... we had to work harder to ensure clear and precise communication”. This 

sentiment was echoed by SDT2, who highlighted the necessity of constant verbalisation 

to maintain a synchronised understanding of the code. Similarly, SDT3 and SDT4 

experienced delays in real-time collaboration due to remote setup, with SDT4 noting, 

“Due to our remote setup, we faced delays in real-time collaboration, even with the aid 

of live code-sharing tools”. These quotes underline the challenges posed by physical 

distance, necessitating enhanced communication strategies to bridge the gap. 

 

In addition to these communication challenges, the need for effective coordination within 

shared digital spaces was another significant challenge. SDT5 expressed difficulties in not 

being able to physically point out issues, stating, “Being geographically dispersed meant 

we couldn’t simply look over each other’s shoulder to point out issues or discuss 

solutions”. This issue of managing shared coding environments effectively was also 

highlighted by SDT23, who mentioned, “The geographical separation added another layer 

of complexity. We relied heavily on digital communication tools”. These reflections point 

to the challenges in synchronising understanding and actions in a remote collaborative 

setting. 
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Compounding these issues, technological limitations and connectivity issues added 

another dimension to the challenges faced. SDT29 discussed the impact of internet 

connectivity on their workflow, noting that “Our different locations also meant we were 

working in different environments... relying on technology meant we were at the mercy 

of our internet connections, which occasionally disrupted our flow”. This highlights the 

need for reliable infrastructure and robust digital tools to facilitate seamless remote 

collaboration. 

 

Moreover, the varied experiences across dyads illustrated the diverse nature of 

environmental and logistical challenges. While apprentices in DYAD8 and DYAD14 utilised 

IDE tools effectively, they faced specific challenges unique to their situations. For 

example, SDT15 noted, “Being geographically dispersed meant that we couldn’t quickly 

huddle and draw out our thoughts on a whiteboard or paper”. In contrast, SDT27 

mentioned, “The challenges we faced... were largely due to the nature of remote 

communication... The lack of immediate, direct interaction made it more challenging to 

collaboratively and swiftly navigate through these complex issues”. 

 

Consequently, these insights from apprentices across various dyads paint a picture of the 

environmental and logistical challenges encountered in remote debugging sessions. They 

emphasise the need for strategies that effectively bridge the geographical gap and 

address the unique demands of remote collaboration. This more comprehensive 

approach should focus on developing technical skills and enhancing communication, 

teamwork, and adaptability to diverse technological landscapes, preparing apprentices 

for the evolving challenges of modern software development. 
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However, in addressing the central question, “How do the paired Software Development 

Apprentices in geographically distributed locations work collaboratively to fix Python 

programming bugs using the technology-mediated medium?”, this study examines the 

five interrelated sub-questions that underpin the investigation. These sub-questions 

explore the nature of errors encountered, the debugging strategies and tactics used, the 

mechanisms for cognitive load distribution, the role of Integrated Development 

Environments (IDEs), and the challenges apprentices face in collaborative debugging. The 

findings reveal that apprentices adopt a highly structured yet adaptable approach to 

debugging, integrating problem-solving techniques, cognitive flexibility, and technology-

supported collaboration. Despite the complexities and limitations associated with remote 

debugging, apprentices demonstrate resilience, adaptability, and an evolving mastery of 

debugging processes. Their ability to effectively communicate, structure their debugging 

efforts, and synchronise their workflows plays a crucial role in ensuring efficiency in 

distributed pair debugging. 

 

Building on this, the study finds that apprentices encounter three primary categories of 

errors: syntax errors, logical errors, and runtime errors. Syntax errors occur when 

Python’s structural rules are violated, leading to issues such as missing colons, incorrect 

indentation, or misused operators. Since these errors produce immediate feedback from 

the interpreter, they are often straightforward to resolve. However, failing to address 

them efficiently can hinder progress and obscure deeper logical flaws. To resolve syntax 

errors, apprentices predominantly rely on print statement debugging, which allows them 

to observe variable states and track execution flow. While this method is highly effective 
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for identifying and correcting syntax issues, it becomes less useful when dealing with 

more complex errors that require deeper reasoning. 

 

Extending beyond syntax issues, logical errors present a greater challenge as they do not 

produce explicit error messages but instead result in incorrect program behaviour. These 

errors frequently stem from misapplied conditional logic, flawed tax computations, or 

improperly structured loops, leading to unintended outcomes. Unlike syntax errors, 

which can often be corrected quickly, logical errors require a more systematic approach 

to debugging. Step-through debugging, where apprentices execute the code line by line 

while observing variable changes and function calls, proves particularly effective in 

diagnosing these errors. Furthermore, backtracking, where apprentices systematically 

review previous modifications to pinpoint when an error was introduced, plays a crucial 

role in isolating logical faults. However, this process can be mentally taxing, particularly 

in large programs with multiple interdependencies. 

 

In addition to syntax and logical errors, runtime errors are the most unpredictable and 

complex to debug, as they only emerge during program execution. Examples include 

infinite loops, incorrect type conversions, and index errors, which can cause the program 

to behave erratically or even crash. Unlike syntax errors, which apprentices can address 

through static code analysis, runtime errors often require more extensive debugging 

efforts. Resolving these issues demands a combination of approaches, including trial and 

error, slicing, and code review. When runtime errors prove particularly elusive, 

apprentices frequently resort to rubber duck debugging, which involves verbalising their 

thought process to clarify their understanding. This technique often helps apprentices 
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identify overlooked logic flaws, reinforcing the importance of metacognition in 

debugging. 

 

To manage these different types of errors, apprentices strategically employ ten distinct 

debugging methods, each offering unique advantages depending on the nature of the 

bug. As previously noted, print statement debugging remains the most frequently used 

approach due to its simplicity and immediate feedback, allowing apprentices to track 

variable states and execution flow. However, while print statements provide insight into 

syntax-related issues, they lack the precision needed to resolve deeper logical and 

runtime errors. To address these limitations, apprentices frequently use step-through 

debugging, facilitated by IDE debugging tools, to execute code incrementally, set 

breakpoints, and monitor changes in variable states in real-time. This method proves 

particularly useful in identifying subtle logical errors, yet its effectiveness is dependent 

on the apprentice’s proficiency in using debugging tools. 

 

Along with these structured methods, apprentices also engage in tinkering, where they 

experiment with incremental modifications to the code to observe how different changes 

impact execution. While this approach fosters exploratory learning and intuitive problem-

solving, it lacks structure and can lead to inefficiencies if used indiscriminately. Similarly, 

trial and error, although valuable when the nature of the bug is unclear, can be time-

consuming and unreliable if apprentices fail to document and analyse their attempts 

systematically. Therefore, while experimentation is an essential aspect of debugging, it 

must be balanced with structured techniques to ensure efficiency. 
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Furthermore, more methodical debugging approaches, such as backtracking, allow 

apprentices to trace errors back to their origin, making it easier to identify when and 

where a mistake was introduced. GitHub’s version control system significantly enhances 

this process, as it enables apprentices to compare different iterations of their code and 

revert to previous versions when necessary. Additionally, code review plays a vital role in 

debugging, as apprentices critically evaluate each other’s work, offering feedback, 

suggestions, and alternative solutions. This method enhances collaboration and 

debugging efficiency, as errors that might be overlooked by one apprentice can be 

identified by their partner, reinforcing the value of shared problem-solving. 

 

Expanding on these strategies, pattern matching further contributes to debugging 

efficiency by enabling apprentices to identify recurring error types and apply solutions 

based on past experiences. This approach demonstrates a transition from trial-and-error 

methods to structured problem-solving, highlighting the apprentices’ growing debugging 

expertise. Additionally, slicing, which involves isolating specific sections of the code for 

in-depth examination, significantly reduces cognitive overload, allowing apprentices to 

focus on smaller, more manageable code segments. When combined with other 

strategies, slicing ensures a systematic approach to debugging, preventing unnecessary 

effort spent on scanning the entire codebase. 

 

Another effective technique is divide and conquer, which is especially useful for complex 

debugging tasks. Here, apprentices split the program into smaller sections, debugging 

individual parts independently before integrating their solutions. This approach improves 
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efficiency and minimises cognitive strain, ensuring that both apprentices remain engaged 

and contribute actively to the debugging process. 

 

Since debugging is not only a technical task but also a cognitively demanding process, 

apprentices must employ effective cognitive load management strategies. The driver-

navigator model remains the primary approach, with one apprentice writing or modifying 

code while the other provides real-time oversight and guidance. However, while this 

approach fosters structured collaboration, its effectiveness depends on regular role-

switching, as prolonged navigation without hands-on coding can result in reduced 

engagement and passive participation. Additionally, verbalisation strategies, such as 

thinking aloud and articulating reasoning, play a crucial role in clarifying thought 

processes and ensuring mutual understanding. These strategies prevent 

misinterpretations and enhance collaborative problem-solving, particularly in remote 

environments where non-verbal cues are absent. 

 

Given the geographical separation of apprentices, technology plays a crucial role in 

bridging the gap and enabling effective debugging. Visual Studio Live Share provides a 

shared environment for real-time collaboration, allowing apprentices to simultaneously 

edit, execute, and debug code, mimicking the experience of co-located pair 

programming. Similarly, GitHub’s version control features support structured debugging 

workflows, ensuring that apprentices can track modifications, revert changes, and 

maintain a history of code updates. Microsoft Teams, Zoom, and Slack further facilitate 

verbal discussions and screen sharing, enabling apprentices to communicate effectively 

despite physical distance. 
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Despite these technological advantages, several challenges persist. Over-reliance on IDE 

debugging features can lead to superficial problem-solving approaches, where 

apprentices depend too much on automated tools instead of developing deeper 

analytical skills. Moreover, communication barriers in remote debugging introduce delays 

and inefficiencies, particularly when apprentices struggle to articulate complex 

programming issues without face-to-face interaction. Additionally, cognitive overload 

remains a significant challenge, as apprentices must juggle multiple cognitive demands 

simultaneously. 

 

Ultimately, the study highlights that distributed debugging is not merely a technical task 

but a complex cognitive and collaborative process. Apprentices must balance structured 

debugging methodologies with adaptive learning, integrate technology effectively 

without over-reliance, and refine their independent problem-solving skills while engaging 

in collaborative debugging. Despite the inherent challenges of remote debugging, 

apprentices demonstrate progressive mastery of debugging techniques, showcasing the 

potential for effective software development training in distributed settings. The 

research underscores the importance of structured learning, technological facilitation, 

and cognitive load management in fostering efficient and scalable remote debugging 

practices. 
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6.3 Refined Conceptual Framework Linking Research Outcomes to Distributed 

Debugging Processes 

Understanding how research outcomes align with the conceptual framework is crucial to 

comprehending the mechanisms underpinning distributed debugging processes. This 

refined framework integrates Information Foraging Theory (IFT) (Pirolli & Card, 1999) and 

Distributed Cognition (DC) (Hutchins, 1995) to provide a structured perspective on how 

software development apprentices collaborate to debug Python programming errors in 

technology-mediated environments. By examining how apprentices seek and process 

information, distribute cognitive effort, and leverage debugging tools, this framework 

offers a comprehensive lens through which debugging behaviours can be analysed and 

optimised. 

 

At the centre of this framework is Distributed Pair Debugging, which encapsulates the 

interplay between cognitive, behavioural, and technological factors that shape debugging 

in remote settings. Debugging is not a solitary task but a process that requires structured 

information retrieval, strategic collaboration, and effective technological support. As 

apprentices engage in distributed debugging, they must balance information foraging 

with cognitive load distribution, ensuring that problem-solving remains efficient and 

structured. The research findings confirm that the success of debugging depends on how 

effectively apprentices integrate these elements, reinforcing the need for a systematic 

approach to collaborative problem resolution. 

 

A key component of this framework is Information Foraging Theory (IFT), which explains 

how apprentices search for, evaluate, and apply debugging information. Debugging 



239 | P a g e  

 

requires programmers to navigate multiple information sources, including error 

messages, documentation, online forums, and past code iterations. The ability to identify 

useful information efficiently and distinguish between relevant and irrelevant data 

directly affects the speed and accuracy of debugging. The research findings indicate that 

apprentices who develop effective information-seeking behaviours are more successful 

in applying structured debugging techniques, as they can quickly access and interpret the 

necessary resources without unnecessary delays. 

 

However, acquiring information is only one aspect of debugging. Distributed Cognition 

(DC) complements IFT by explaining how cognitive processes are shared between 

apprentices and the tools they use. Debugging in a distributed setting involves continuous 

coordination, shared cognitive effort, and strategic tool utilisation. The research 

highlights that cognition is not confined to individual minds but distributed across pairs 

and the technological ecosystem they operate within. Apprentices must not only 

externalise their thought processes through verbalisation and structured discussions but 

also use debugging tools effectively to distribute cognitive workload. This shared 

cognition ensures that problem-solving remains fluid and adaptive, preventing any single 

apprentice from being overwhelmed by the complexity of the debugging task. 

 

The research also reveals that Debugging Strategies act as a bridge between information 

foraging and problem resolution. Apprentices employ a range of techniques, including 

print statement debugging, step-through debugging, backtracking, pattern matching, 

slicing, and trial-and-error approaches. While some strategies, such as print statement 

debugging and trial-and-error, are exploratory, others, such as step-through debugging 
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and backtracking, require structured reasoning and systematic problem-solving. The 

conceptual framework highlights that debugging strategies must align with the nature of 

the error, ensuring that apprentices apply the most effective method for each debugging 

scenario. Without a structured approach, debugging becomes inefficient, leading to 

prolonged problem resolution times and increased cognitive strain. 

 

Equally significant is Cognitive Load Management, which determines how effectively 

apprentices sustain focus and manage the demands of debugging. Debugging can be 

mentally taxing, particularly when apprentices must juggle multiple problem-solving 

tasks while collaborating in real time. The research findings emphasise the importance of 

role-switching strategies, such as the driver-navigator model, in ensuring equitable 

participation and reduced cognitive fatigue. By alternating roles, apprentices maintain an 

active engagement in debugging while balancing cognitive effort, preventing one 

individual from bearing the entire cognitive burden. Furthermore, verbalisation 

techniques, such as think-aloud protocols, help externalise reasoning and reinforce 

shared understanding, ensuring that both apprentices remain aligned in their debugging 

efforts. 

 

The role of Technology-Mediated Tools is another fundamental aspect of this framework, 

as tools serve as both cognitive extensions and collaboration enablers. The research 

findings confirm that IDE debugging features, version control systems, and real-time 

collaboration platforms enhance efficiency, structure debugging workflows, and improve 

coordination between apprentices. Visual Studio Live Share facilitates synchronous 

debugging, allowing apprentices to view and modify code simultaneously, which 
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replicates the experience of co-located debugging sessions. Likewise, GitHub’s version 

control capabilities enable structured debugging by allowing apprentices to track 

changes, document problem-solving processes, and revert to previous working versions 

when necessary. These tools not only support problem-solving but also reduce cognitive 

load by automating certain debugging tasks, enabling apprentices to focus on logical 

problem-solving rather than manual syntax corrections. 

 

Nevertheless, while technology is a powerful enabler, it must be used strategically rather 

than as a substitute for fundamental debugging skills. The research highlights that over-

reliance on automated debugging features can lead to superficial problem-solving 

approaches, where apprentices depend on error-highlighting tools rather than 

developing a deep understanding of debugging principles. Therefore, the conceptual 

framework reinforces that technology should facilitate, rather than replace, structured 

debugging methodologies, ensuring that apprentices cultivate both technical proficiency 

and problem-solving expertise. 

 

A further critical insight from the research is the role of Collaboration and Shared 

Understanding in debugging success. Since apprentices operate in geographically 

distributed settings, effective debugging relies on clear communication, structured 

discussions, and synchronised problem-solving efforts. The research highlights that 

successful debugging pairs engage in continuous dialogue, share mental models of 

debugging problems, and refine solutions through collaborative reasoning. However, 

when collaboration is poorly structured or lacks clear communication protocols, 

debugging efforts become fragmented and inefficient, leading to duplicated efforts, 



242 | P a g e  

 

misinterpretations, and unresolved issues. The conceptual framework underscores that 

collaborative debugging is most effective when supported by structured coordination 

strategies, active engagement, and clear documentation of debugging steps. 

 

 

Figure 11: Refined Conceptual Framework Aligning Research Outcomes to Distributed Debugging Processes 

 

Bringing these elements together, the refined conceptual framework (see Figure 11) 

presents a structured representation of how research outcomes align with the debugging 

process. It provides a multi-layered model that accounts for the interplay between 

theoretical constructs, debugging methodologies, cognitive processes, and technological 

interventions. Figure 11 visually encapsulates these relationships, illustrating how 

Distributed Pair Debugging is shaped by the integration of Information Foraging, 

Distributed Cognition, Debugging Strategies, Cognitive Load Management, and 

Technology-Mediated Tools. 
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This framework not only enhances understanding of how apprentices engage in 

distributed debugging but also provides valuable insights for software development 

education, training, and the design of debugging tools. By offering a structured approach 

to information navigation, collaborative cognition, and debugging strategy selection, the 

research contributes to a better-informed methodology for teaching and improving 

debugging practices in remote environments. 

 

6.4 Novelty of this Work 

The novelty of this study can be appreciated through three distinct focal points that 

contribute to the existing body of knowledge in a number of research areas. Notably, at 

the time of this research, there was a noticeable void in studies specifically targeting 

work-based learning environments in this sector, a gap that has persisted since 1973. This 

shortfall is particularly pronounced in investigations into the debugging practices of 

novice programmers, such as apprentices. While numerous studies have explored 

debugging strategies and tactics (Alaboudi & LaToza, 2023; Allwood & Bjorhag, 1990; 

Alqadi & Maletic, 2017; Fitzgerald et al., 2008; Fitzgerald et al., 2010; Gould, 1975; 

Gugerty & Olson, 1986; Jayathirtha et al., 2020; Katz & Anderson, 1987; Lee et al., 2014; 

Murphy et al., 2010; Murphy et al., 2008; Romero et al., 2007; Weiser, 1982; Yen et al., 

2012), they predominantly focus on school and academic environments or on seasoned 

developers in realistic settings (Alaboudi & LaToza, 2023). Therefore, this study addresses 

a significant research gap by examining the debugging strategies and tactics of a 

previously unexplored group, the novice programmer apprentices in work-based learning 

environments.  
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Similarly, the distinctiveness of the study’s participants contributes to its originality. 

Contrary to many research projects centred on specific demographics or professional 

groups, this study’s participants represent a diverse array of learners employed across 

various sectors. Their variety in employment histories, employers, and age ranges 

enriches the research, offering a wider viewpoint on debugging practices due to the 

participants’ extensive demographic range. This diversity in participant profiles suggests 

potential wider generalisability of the findings, although not the primary aim of this study, 

and reinforces the transferability of debugging skills across varied work-based settings. 

 

Secondly, the study’s distinctiveness is further highlighted by the lack of any prior 

empirical research on distributed pair debugging within the work-based learning sector. 

Although there are a limited number of studies on pair debugging, they do not specifically 

focus on debugging strategies (Jayathirtha et al., 2024; Murphy et al., 2010; Parkinson et 

al., 2024). The concept of pair debugging in distributed settings, particularly within 

educational contexts, had not been explored at the time of this study. While research on 

distributed pair programming has been recognised for its role in enhancing collaboration 

and problem-solving in software development (Baheti et al., 2002; Hafeez et al., 2023; Xu 

& Correia, 2023), the specific aspect of debugging within distributed pairs has remained 

largely unexamined. This study fills this void by delving into the unique challenges and 

strategies of debugging in a distributed environment, thereby enriching the 

understanding of collaborative debugging practices in software development. 
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Thirdly, a noteworthy contribution of this study is the creation of an innovative 

conceptual framework for distributed debugging (see Figure 4 and Section 3.4), which 

merges two theoretical frameworks, which are distributed cognition (Hutchins, 1995) and 

information foraging theories (Pirolli & Card, 1999). This new framework acts as a 

theoretical construct that structures the research findings and offers a resource for future 

research and practical applications. The development of this framework marks an 

advancement as it synthesises and systematises the knowledge gained from the study, 

enhancing its applicability across various contexts and settings (Bryman, 2016). 

 

In conclusion, the novelty of this study is multi-faceted, encompassing its focus on work-

based learning environments, the exploration of distributed pair debugging, the 

development of a conceptual framework, and the diversity of its participant profiles. 

These aspects collectively contribute to advancing knowledge in debugging practices and 

offer insights for both academia and the learning and development sector. 

 

6.5 Contributions 

My thesis makes notable contributions to computing education and the practical 

implementation of technology in education, potentially influencing the approaches of 

educators and practitioners in these fields. 

 

One of the key empirical insights of my thesis lies in its ability to shed light on the 

debugging strategies and challenges within the work-based learning sector, leveraging a 

detailed compilation of experiences from 30 apprentices, further enriched by the 

perspectives of 12 mentors and trainers. This diverse cohort unveils an insight into 
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collaborative problem-solving in debugging within the distributed environment, setting a 

solid foundation for broader applicational insights. Additionally, the methodological and 

analytical depth employed in this study reinforces its potential wider generalisability, 

suggesting that the varied backgrounds of apprentices in terms of their ages, educational 

background, diverse employers and experiences of the participants may mirror the 

sector’s complexity, thereby extending the relevance of these findings beyond the 

immediate study context. The research benefits significantly from the dual perspectives 

of apprentices and their mentors, offering a comprehensive view of the debugging 

process that highlights the critical role of guidance and support. This approach reinforces 

the study’s potential broader applicability and signals its potential to inform educational 

practices and professional development across the sector. Similarly, including 

participants from a broad spectrum of backgrounds further strengthens the study’s 

position as a resource for educators and policymakers alike, emphasising its capacity to 

address specific needs and challenges within work-based learning environments. Thus, 

this thesis stands as a testament to the value that diverse, collaborative insights offer in 

shaping educational strategies and policies. 

 

Furthermore, my research extends its empirical contributions into the broader area of 

technology in education. In today’s digital age, integrating technology into educational 

settings is both pervasive and potentially transformative. My thesis acknowledges 

students’ challenges and presents innovative ways to harness technology to support and 

enhance an apprentice’s learning. This practical aspect of my work holds particular 

relevance for educators, instructional designers and work-based mentors seeking 

evidence-based insights on effectively leveraging technology to support their learners. By 
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offering practical recommendations grounded in empirical research, my thesis serves as 

a guide for those navigating the ever-evolving landscape of the use of technology in 

debugging. 

 

The technical contributions of my thesis provide an insight into the key technical aspects 

in computing education in the context of debugging strategies within distributed settings. 

Prior research, such as that of Katz and Anderson (1987), has explored debugging in solo 

and collocated environments, but there is a gap in understanding how novices integrate 

these strategies in distributed contexts. My study addresses this by examining the unique 

dynamics of distributed debugging, necessitating new analytical frameworks. It merges 

distributed cognition and information foraging theory to explore collaborative 

interactions and tool usage in error detection within code. This approach is significant as 

it extends beyond the well-documented novice debugging strategies of the 1980s, which 

were largely based on cognitive theories (McCauley et al., 2008). My research uncovers 

the specific strategies and challenges of debugging in distributed settings, providing 

insights for both novice and seasoned programmers. These findings add to the academic 

discourse and have practical implications, potentially transforming how debugging might 

be taught and practised, thereby potentially enhancing the proficiency and adaptability 

of programmers. 

 

In summary, this thesis provides educators and practitioners with empirical insights and 

technical developments, aiding them in navigating the complexities of technology-

enhanced debugging, which refers to the process of identifying and fixing errors (bugs) in 

software code using advanced technological tools and methods, and how best to support 
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the novice through the details provided. By delivering evidence-based recommendations 

and insights, the research is designed to advance the use of technology within these 

contexts. This, in turn, can enrich the learning experience for learners and support the 

cultivation of proficient and resilient professionals in computing. 

 

6.6 Significance of the Study 

This evaluative case study on the program debugging behaviour of paired SDT apprentices 

in a geographically distributed environment holds significant implications for both 

educational and industry contexts. This study addresses a notable gap in the literature by 

investigating debugging strategies in distributed, collaborative settings among novice 

programmers. The significance of this research can be elucidated through the following 

points. 

 

Educational Enrichment and Curriculum Development: This study offers valuable insights 

into how novice programmers (SDT apprentices) approach debugging in remote, 

collaborative settings. By understanding their strategies, challenges, and successes, 

educators can tailor their curricula to better prepare apprentices for real-world software 

development challenges. Incorporating findings into apprenticeship programmes can 

enhance learning outcomes and equip apprentices with skills more aligned with industry 

demands. It allows educational institutions to bridge the gap between theoretical 

learning and practical application. 

 

Industry Relevance and Software Quality Enhancement: The software development 

industry increasingly operates with geographically distributed teams (Herbsleb & Moitra, 
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2001), particularly in the wake of remote work trends accelerated by the COVID-19 

pandemic. Understanding how debugging occurs in these settings can directly impact 

software quality (Beasley & Johnson, 2022), as effective debugging is critical for delivering 

robust and reliable software products. Insights from this study can guide software 

development teams in refining their collaborative debugging practices, resulting in more 

efficient and higher-quality code. 

 

Remote Collaboration Strategies: Collaborative debugging among remote pairs 

introduces unique challenges related to communication, coordination, and information 

sharing. By investigating how dyad SDT apprentices tackle these challenges, the study 

contributes to understanding effective remote collaboration strategies. Such insights can 

inform the development of best practices for distributed software development teams, 

ensuring smoother communication and improved teamwork. The study results may 

provide insight into the type of error messages generated by SDT apprentices while 

debugging codes, their debugging strategies and how pairing novice programmers in 

different locations works. Also, it will help share good practices from other mentors about 

how best to support apprentices with low debugging skills. 

 

Pedagogical Innovations and Tool Development: The study’s findings encourage 

pedagogical innovations around teaching debugging techniques. Educators can leverage 

these insights to design more effective methods for teaching debugging skills to novice 

programmers, focusing on particularly relevant strategies in remote and collaborative 

settings. Additionally, the research can inform the development of tools and technologies 

tailored to support debugging in geographically distributed environments. This could lead 
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to the creation of debugging tools that facilitate remote collaboration and enhance 

efficiency. 

 

Cognitive Processes and Distributed Cognition: Investigating how SDT apprentice dyads 

share the cognitive load while debugging unveils the intricacies of distributed cognition 

in collaborative software development (Hutchins, 1995). By understanding how 

individuals distribute tasks, make decisions, and solve problems together, the study 

contributes to the growing body of knowledge on cognitive processes in distributed 

teams. This understanding can lead to better collaboration frameworks and enhanced 

coordination mechanisms. 

 

Enhancing Industry-Academia Collaboration: The findings of this study can foster stronger 

collaboration between educational institutions and the software development industry. 

The insights gained can be shared with industry partners to inform their practices and 

expectations of novice programmers. This collaboration ensures that industry needs can 

be met and educational programmes produce graduates who are well-equipped to 

contribute effectively to real-world development scenarios. 

 

In conclusion, this evaluative case study has significance, as it could potentially impact 

both education and industry by offering insights into debugging practices and team 

synergy among geographically distributed SDT apprentices. 
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6.7 Trustworthiness of the Study 

The foundational work of Lincoln and Guba (1985) is pivotal in establishing a framework 

for trustworthiness, comprising four essential criteria, including credibility, 

transferability, dependability, and confirmability.  

 

Credibility, as posited by Lincoln and Guba (1985), pertains to the believability and truth 

value of the findings. In ensuring the credibility of the study involving apprentices and 

WMTs, I engaged in sustained observation, documenting and analysing the multi-faceted 

of practical debugging sessions and dyad interviews (see Appendix J: Sample transcript of 

the debugging session and Appendix K: Sample transcript of dyad’s interview). This 

approach, endorsed by Shenton (2004), facilitated an immersion into the apprentices’ 

experiences, offering a portrayal of their debugging skills that was as authentic as 

possible. Similarly, the study also combined the think-aloud verbal protocol during the 

debugging session (Ericsson, 2006) with retrospective post-debugging dyad interviews, 

akin to Murphy et al. (2008). This approach let quieter apprentices during the debugging 

session explain their actions and thoughts later, though it risked rationalised responses 

(Ericsson & Simon, 1993). The benefit of this method was that it potentially provided 

more in-depth insights into the dyads’ strategies and misconceptions (Whalley et al., 

2023). Furthermore, the integration of two debriefing sessions with WMTs further 

enriched this narrative, providing a multifaceted perspective on the apprentices’ 

developmental trajectory. The study used methodological triangulation, as suggested by 

Carter et al. (2014), coalesced diverse data sources such as practical debugging sessions, 

Python code analysis, interviews with dyads, and WMTs’ insights. This approach 

strengthened the study’s reliability by corroborating and validating its findings. 
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Transferability, as elucidated by Lincoln and Guba (1985), addresses the applicability of 

findings in other contexts. To facilitate this, the study provided descriptions of the 

apprentices’ environments, backgrounds, and experiences, as well as the diverse 

professional contexts of the WMTs. This approach, resonates with Geertz (1973) concept 

of thick description allowed for a good grasp of the apprentices’ settings. Such detailing 

may equip other researchers with the necessary context to evaluate the potential 

applicability of these findings in analogous settings. 

 

Dependability focuses on the consistency and stability of the findings over time, a crucial 

aspect affirmed by Lincoln and Guba (1985). The study embraced an iterative approach, 

continually revisiting and refining the data in light of emerging insights, a strategy 

supported by Morse (1994). As recommended by Rodgers and Cowles (1993), the 

maintenance of an exhaustive audit trail provided a transparent and comprehensive 

account of the research process, encompassing facets of data collection and analysis. This 

documentation of the study’s methodology, encompassing both apprentices’ and WMTs’ 

contributions, underpins the dependability of the research, ensuring that the study’s 

process is transparent, replicable, accountable, and consistent. 

 

Confirmability, the fourth criterion in Lincoln and Guba’s framework, relates to the 

degree to which the respondents shape the findings, not by researcher bias or 

predispositions. To achieve this, the researcher maintained a reflexive journal, a practice 

supported by Schwandt (2001), to record personal biases and reflections, thereby 

enhancing the objectivity of the research. This reflexive practice was crucial during the 
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analysis of the apprentices’ debugging sessions, interviews, and the focus group 

discussions with WMTs. In these analyses, special care was taken to root interpretations 

in the data, utilising direct quotes and specific examples from the sessions. This practice 

effectively anchored the study’s findings in the authentic experiences and perspectives of 

the participants, thereby bolstering the confirmability of the research. 

 

6.8 Limitations of the Study 

Looking back on the research conducted for this thesis, it is evident that while it 

constitutes an original contribution to the field, it also inevitably encompasses certain 

limitations and weaknesses. 

 

First, the phenomenon of retrospective rationalisation, where participants reinterpret 

actions and thoughts after the fact, introduces potential discrepancies between actual 

and reported behaviours, as participants might align their narratives with perceived 

expectations or beliefs (Tufford & Newman, 2012). 

 

In addition, the inherent complexity of qualitative data, sourced from diverse mediums 

like video recordings and interviews, presents considerable challenges in achieving 

thematic interpretation and analysis consistency (Saunders et al., 2023). Furthermore, 

this complexity is exacerbated by the emotional and psychological impacts on 

apprentices when observed, potentially influencing their responses and behaviours. 

Despite these challenges, qualitative research provides profound insights often beyond 

the reach of localised surveys, as suggested by Grant and Booth (2009). 
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Also, the study’s focus on Python programming and Microsoft Visual Studio as the 

primary IDE presents a limitation in its scope, specifically in capturing the variety of 

challenges and strategies in diverse programming languages and environments. This is 

significant, as each programming language and IDE possesses unique intricacies that 

influence the debugging process (Murphy et al., 2006; Robins et al., 2003). Therefore, the 

study’s findings might neither fully encompass the breadth of challenges faced in 

different software development contexts, nor account for the potential evolution of 

apprentices’ debugging skills and strategies over a more extended period. 

 

Furthermore, the rapid advancement of software development tools and practices 

compounds this limitation. The field’s dynamic nature, with new languages, frameworks, 

and methodologies continually emerging, may render the study’s findings, focused on 

specific technologies, less relevant in the long term (Rajlich & Bennett, 2000). This 

evolving landscape of software development suggests that the study’s insights, while 

pertinent in the current context, might not maintain their applicability as new 

technologies and practices develop. Such limitations corroborate the importance of 

continuous research and adaptation in the field to stay abreast of these technological 

shifts. 

 

Additionally, the study’s reliance on digital communication platforms like Microsoft 

Teams introduces unique challenges. While facilitating remote collaboration, these 

platforms may lead to technical issues, reduced nuances in communication compared to 

face-to-face interactions, and disparities in digital literacy among participants. Such 

factors can significantly influence the dynamics of debugging sessions and interviews. 
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Consequently, the findings drawn from such digitally mediated interactions should be 

interpreted with caution, particularly when considering their applicability to different 

software development environments or settings where digital communication may not 

be as prevalent. 

 

Moreover, the study’s specific cultural and organisational focus raises questions about 

the generalisability of its findings to diverse contexts. As qualitative research often 

reflects the unique circumstances of its setting (Hsieh & Shannon, 2005), the experiences 

of apprentices and mentors in this study, conducted within a particular organisational 

culture, might not accurately represent those in different technological or organisational 

environments. This limitation is essential to consider when applying the study’s insights 

to varied contexts, as they may not translate seamlessly across different organisational 

cultures or technological landscapes. 

 

Additionally, the study’s reliance on digital communication platforms like Microsoft 

Teams introduces unique challenges. While facilitating remote collaboration, these 

platforms may lead to technical issues, minimised subtleties in communication compared 

to face-to-face interactions, and disparities in digital literacy among participants. Such 

factors can significantly influence the dynamics of debugging sessions and interviews. 

Consequently, the findings drawn from such digitally mediated interactions should be 

interpreted with caution, particularly when considering their applicability to different 

software development environments or settings where digital communication may not 

be as prevalent. 
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On top of this, the process of validating findings with apprentices and mentors, though 

intended to enhance reliability, is not immune to confirmation bias. This bias occurs when 

individuals, including researchers and study participants, are more likely to agree with 

interpretations that align with their pre-existing beliefs or expectations (Nickerson, 1998). 

In this context, apprentices and mentors might unconsciously affirm findings that 

resonate with their experiences or perspectives, thereby reinforcing the researcher’s 

initial interpretations. Although designed to strengthen the study’s credibility, this 

feedback loop necessitates careful management to avoid reinforcing potentially skewed 

perspectives. Hence, while seeking validation from participants adds robustness, careful 

handling is required to mitigate the risks of confirmation bias, ensuring a more balanced 

and objective analysis of the data. 

 

Another notable limitation of this study pertains to the applicability of the debugging 

tasks for younger apprentices, particularly in relation to the salary and tax issues 

embedded within them. These topics, while relevant to software development in 

business contexts, may not have been fully comprehensible or relevant to younger 

participants who lacked prior experience or understanding of such real-world concepts. 

Apprentices, especially those at the early stages of their careers, may not have had 

sufficient exposure to financial concepts like salary calculations and tax systems, which 

could have created a barrier to their engagement with the tasks. Studies indicate that for 

learning to be effective, tasks must align with the learners’ cognitive developments and 

prior knowledge (Alexander, 2003). When tasks are overly complex or disconnected from 

participants’ experiences, they may struggle to engage meaningfully, leading to sub-

optimal learning outcomes (Kirschner et al., 2006).  
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This limitation highlights the importance of designing problem sets that are universally 

relevant to all learners, regardless of their age or background knowledge. By ensuring 

that the tasks used in future studies reflect scenarios that are relatable and within the 

comprehension of all apprentices, the study could enhance both the engagement and 

performance of participants. This approach is supported by educational theory, which 

suggests that contextualising learning materials to the learners’ experience enhances 

cognitive engagement and motivation. For example, incorporating tasks that simulate 

everyday programming challenges rather than complex business scenarios could improve 

the accessibility of the debugging tasks for younger apprentices. 

 

In conclusion, despite its limitations, the current research sets the stage for future 

exploration in broader contexts, over extended periods, and through varied 

methodologies. However, acknowledging these limitations enriches the study, 

positioning it as a contribution that offers foundational insights into apprentices’ 

debugging practices and lays down pathways for comprehensive future research, echoing 

the call by Grant and Booth (2009) for robust and adaptive qualitative research 

methodologies. 

 

6.9 Further Research and Recommendations 

In addressing the current study’s limitations, a critical analysis suggests that future 

research should adopt a more encompassing approach, integrating a broader and more 

diverse participant base across different industries and cultural backgrounds. This 

expansion is crucial for enhancing the generalisability of the findings, providing a more 
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representative understanding of debugging practices in varied organisational and cultural 

contexts. Incorporating a mixed-method approach could offer a crucial balance, allowing 

researchers to delve deeper while simultaneously capturing a broader perspective 

(Creswell & Clark, 2007; Tufford & Newman, 2012). Simultaneously, it is imperative to 

uphold methodological rigour and actively mitigate biases, particularly in qualitative 

research. This involves enhancing objectivity in thematic interpretation and being vigilant 

of the researcher’s influence on the analysis. Such an approach would address potential 

confirmation biases, ensuring that validation processes, while robust, do not 

inadvertently reinforce skewed perspectives or pre-existing beliefs of participants (Hsieh 

& Shannon, 2005; Nickerson, 1998). 

 

Moreover, considering the rapid evolution of software development tools and practices, 

future studies must adapt to include emerging technologies, languages, and frameworks. 

This adaptation is essential to ensure that research findings remain relevant and 

applicable within the fast-paced technological landscape of software development 

(Rajlich & Bennett, 2000). In tandem with this technological adaptability, an exploration 

into the impact of digital communication platforms like Microsoft Teams on research 

processes is warranted. As these platforms increasingly become integral to remote 

collaboration in research, understanding their effects on participant interaction, data 

collection, and analysis could yield vital insights. This investigation could unveil the 

dynamics of remote collaboration in research settings, highlighting how digital 

communication affects the intricacies of data gathering and participant interactions. 
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Through such a comprehensive and adaptable approach, future research in software 

development and apprenticeships can build on the foundational insights of the current 

study. It can provide richer, more deeper insights into debugging practices and 

apprenticeship learning, accounting for the evolving challenges and opportunities in the 

dynamic domain of technology-driven environments. This approach highlights the 

importance of continuous research adaptation and innovation in response to changing 

technological and methodological landscapes. 

 

6.10 Conclusion 

This thesis marks an advancement in the field of computing education, bringing to light 

the intricacies of work-based learning, specifically in the realm of software development 

apprenticeship and their debugging practices. Central to the thesis is exploring how 

apprentices navigate the intricate balance of cognitive, technical, and communicative 

aspects within debugging tasks. The study delves into the strategies apprentices employ 

to address complex syntax, logical and runtime errors and their use of IDEs like Microsoft 

Visual Studio, offering vital insights into their problem-solving processes and technical 

proficiency. 

 

The research emphasises the critical role of communication and collaboration in 

debugging, especially within remote learning environments. The challenges posed by 

geographical dispersion highlight the need for innovative educational strategies and tools 

that effectively bridge communication gaps in remote learning scenarios. The research 

also calls attention to the necessity of keeping pace with the rapidly evolving field of 
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software development, urging continuous adaptation in teaching methodologies to align 

with technological advancements. 

 

The limitations identified in the study, such as generalisability concerns and potential 

researcher bias, pave the way for future research opportunities. Exploring a broader 

range of contexts and employing diverse methodologies can enhance the scope of 

understanding in debugging practices within different environments. This approach 

would build upon the findings of this thesis and contribute to the broader body of 

knowledge in computing education. 

 

In conclusion, this thesis stands as a critical contribution to computing education, 

providing insights into apprentices’ debugging practices. It informs and has the potential 

to transform educational practices and tool development, fostering the growth of skilled 

professionals in the constantly evolving field of software development. The research 

establishes a foundational understanding for further investigation, demonstrating 

qualitative research’s dynamic and impactful nature in technology education. 
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Appendix A: Participants Information Sheet - Apprentices 

 
I am a PhD candidate at Lancaster University. I would like to invite you to participate in a research study 

about the debugging behaviour of the paired Software Development Technician (SDT) Apprentice in a 

geographically distributed environment.  

Please take time to read the following information carefully before you decide whether or not you wish 

to take part. 

What is the study about? 

This study aims to investigate debugging behaviours (and the influencing factors) of paired 

geographically distributed SDT apprentices working collaboratively on fixing written codes using 

technology-mediated agents. So, the compiler errors, the verbal and non-verbal interactions between 

pairs, how you build knowledge of the program’s behaviour, technology agents’ roles, the pattern of 

the debugging activities and eventually, resolution of issues (if applicable) will form the basis of this 

research. 

Why have I been invited? 

I have approached you because I am interested in understanding how SDTs in disparate locations work 

collaboratively on the same file, and at the same time go about locating and fixing bugs in a written 

programming code. I would be very grateful if you would agree to take part in this study. 

What will I be asked to do if I take part? 

If you decided to take part, this would involve the following:  

• The researcher will organise two debugging sessions and one interview session with your assigned 

pair. It is reckoned that the two sessions of the debugging activities should not be longer than 2 

hours altogether and the interview should not last more than 1 hour. 

• You will be observed working with an assigned pair on remote debugging of a few Python 

programming codes with varied difficulties. 

• The proceeding of the debugging activities in terms of code fixing, the conversations between the 

pair and video coverage of the entire proceedings will be made using the webcam of the laptop and 

stored in a password-protected Microsoft OneDrive. 

• You will be expected to provide access to the modified programmatic code and the debugging and 

interview session recordings. 

• The recordings will be reviewed by the researcher and to be used to determine the questions to 

follow-up during the interview session with a few parts of the recordings to be watched with you 

to further bolster the understanding of the phenomenon. 

• Afterwards, you will be asked to participate in an interview session with your pair to answer 

questions on the debugging behaviours exhibited during the debugging sessions. 

 

What are the possible benefits from taking part? 



283 | P a g e  

 

The study results may provide insight on the type of error messages generated by you as novice 

programmers while debugging codes, your debugging behaviour and how pairing of novice 

programmers in different locations work. 

Do I have to take part?  

No. It’s completely up to you to decide whether or not you take part. Your participation is voluntary. If 

you decide not to take part in this study, this will not affect your studies and the way you are assessed 

on your course, or the relationship with the researcher or any staff within your area of employment.  

What if I change my mind? 

If you change your mind, you are free to withdraw at any time from your participation in this study. If 

you want to withdraw, please let me know, and I will extract any ideas or information (=data) you 

contributed to the study and destroy them. However, it is difficult and often impossible to take out data 

from one specific participant when this has already been anonymised or pooled together with other 

people’s data. Therefore, you can only withdraw up to 2 weeks after taking part in the study. 

What are the possible disadvantages and risks of taking part? 

It is unlikely that there will be any major disadvantages to taking part apart from losing the time taken 

to participate in the debugging session and the interview session. In total, this is likely to take about 

three hours. 

Will my data be identifiable? 

After the observation and the interview, only I, the researcher conducting this study will have access to 

the ideas you share with me. I will keep all personal information about you (e.g. your name and other 

information about you that can identify you) confidential, that is I will not share it with others. I will 

remove any personal information from the written record of your contribution. All reasonable steps will 

be taken to protect your anonymity in this project. 

How will we use the information you have shared with us and what will happen to the results of the 

research study? 

I will use the information you have shared with me only in the following ways: 

I will use it for research purposes only. This will include my PhD thesis and other publications, for 

example journal articles. I may also present the results of my study at academic or practitioner 

conferences. When writing up the findings from this study, I would like to reproduce some of the views 

and ideas you shared with me, but I will only use anonymised quotes (e.g. from my interview with you), 

so that although I will use your exact words, all reasonable steps will be taken to protect your anonymity 

in publications.  

How my data will be stored 

Your data will be stored in encrypted files (that is no-one other than me, the researcher, will be able to access 

them) and on password-protected computers. I will keep data that can identify you separately from non-personal 

information. The data will be subsequently destroyed after the thesis is completed. 
 

What if I have a question or concern? 

If you have any queries or if you are unhappy with anything that happens concerning your participation 

in the study, please contact myself on o.jolugbo@lancaster.ac.uk.  

You can also contact my supervisor, Prof Don Passey on d.passey@lancaster.ac.uk, telephone number: 

+44 (0) 1524 592314. 

Director of Studies, Doctoral Programme in e-Research and Technology Enhanced Learning 

Department of Educational Research 

Lancaster University 

LA1 4YD 

If you have any concerns or complaints that you wish to discuss with a person who is not directly 

involved in the research, you can also contact: Professor Paul Ashwin, Head of Department, Educational 

mailto:o.jolugbo@lancaster.ac.uk
mailto:d.passey@lancaster.ac.uk
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Research, County South, Lancaster University, Lancaster, United Kingdom, LA1 4YD.  Telephone: +44 (0) 

1524 593572 

 This study has been reviewed and approved by the Faculty of Arts and Social Sciences and Lancaster 

Management School’s Research Ethics Committee.  
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Appendix B: Participants Information Sheet - Work Based 
Mentors & Trainers 
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Appendix C: Participant Consent Form – Apprentices 
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Appendix D: Participant Consent Form – Work-Based Mentors 
& Trainers 
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Appendix E: Ethics Approval 
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Appendix F: The Bugged Python Code 
 
 
def calculate_payroll(hours_worked, hourly_rate) 

    # SYNTAX ERROR (SE01): Missing colon 

 

    gross_pay = hours_worked x hourly_rate 

    # SYNTAX ERROR (SE02): Used ‘x’ instead of ‘*’ 

 

    # LOGICAL ERROR (LE01): Incorrect tax value 

    tax_rate = 15 

 

    # SYNTAX ERROR (SE03): Missing colon after ‘if’ 

    if gross_pay > 6000 

        tax = gross_pay * (tax_rate/100) 

    else 

        # LOGICAL ERROR (LE02): Wrong tax rate 

        tax = gross_pay * 0.05 

 

    net_pay = gross_pay - tax 

    # LOGICAL ERROR (LE03): Shouldn’t subtract tax if gross_pay is below a certain 

threshold 

 

    return ‘Total Pay: ", str(gross_pay) + ", Net Salary: " + str(net_pay) 

    # SYNTAX ERROR (SE04): Mismatched string concatenation 

 

# SYNTAX ERROR (SE05): ‘def’ typo 

df main(): 

    hours = input("Input hours: ") 

    rate = input("Input rate: $") 

     

    # RUNTIME ERROR (RE01): Input is string and not converted to number 

    payroll_info = calculate_payroll(hours, rate) 

 

    # SYNTAX ERROR (SE06): print without parentheses 

    print payroll_info 

 

    # RUNTIME ERROR (RE02): Undefined variable ‘rates’ 

    print(rates[0]) 

 

# LOGICAL ERROR (LE04): Improper use of ‘__name__’ 

if name = "__main__": 

    # SYNTAX ERROR (SE07): Single ‘=‘ used instead of ‘==‘ 

    main() 

 

    # SYNTAX ERROR (SE08): Incorrectly closed string 

    role = input("Enter employee’s role:") 

 

    # SYNTAX ERROR (SE09): Incorrect indentation 
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     if role == "Manager": 

        # LOGICAL ERROR (LE05): Bonus amount doesn’t make sense without context 

        bonus = 2000 

        print("Bonus: ", bonus) 

 

    # SYNTAX ERROR (SE10): Else without a prior if (due to the indentation error 

above) 

    else: 

        print("No bonus") 

 

# LOGICAL ERROR (LE06): Redundant and incorrect code 

bonus = 100 

print("All employees get a bonus of: ", bonus) 

 

# SYNTAX ERROR (SE11): Incomplete ‘for’ loop 

for i in range(5) 

    print(i) 

    # RUNTIME ERROR (RE03): Infinite loop due to missing colon and indentation 
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Appendix G: Sample DYADs End of Session Codes 
 

 
The Code after the Debugging Session - SDT23 & SDT24 

The session concluded with the code still containing unresolved errors. The final code, 

with comments indicating both fixed and unfixed errors, demonstrated their efforts and 

learning process. 

def calculate_payroll(hours_worked, hourly_rate): 
    # ERROR FIXED (SE01): Missing colon at the end of function definition 
    # ERROR FIXED (SE02): Incorrect operator, used 'x' instead of '*' 
    gross_pay = hours_worked * hourly_rate   
 
    # ERROR FIXED (LE01): Incorrect tax value, adjusted to 10% 
    tax_rate = 10   
 
    # ERROR FIXED (SE03): Missing colon after 'if' 
    if gross_pay > 6000: 
        # ERROR NOT FIXED (LE02): Incorrect logic for tax calculation 
        tax = gross_pay * (tax_rate / 100) 
    else: 
        # ERROR NOT FIXED (LE03): Incorrect tax rate for lower bracket 
        tax = gross_pay * 0.05 
 
    net_pay = gross_pay - tax 
    # ERROR FIXED (SE04): Corrected string concatenation 
    return 'Total Pay: ' + str(gross_pay) + ', Net Salary: ' + str(net_pay) 
 
# ERROR FIXED (SE05): 'def' typo 
def main(): 
    hours = input("Input hours: ") 
    rate = input("Input rate: $") 
 
    # ERROR NOT FIXED (RE01): Input is string and not converted to number 
    payroll_info = calculate_payroll(hours, rate) 
 
    # ERROR FIXED (SE06): Added missing parentheses for print function 
    print(payroll_info) 
 
    # ERROR NOT FIXED (RE02): Undefined variable 'rates' 
    print(rates[0]) 
 
# ERROR FIXED (LE04): Corrected logic for '__name__' check 
# ERROR FIXED (SE07): Corrected comparison operator to '==' 
if __name__ == "__main__": 
    main() 
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# ERROR NOT FIXED (SE08): Incorrectly closed string 
role = input("Enter employee's role:") 
 
# ERROR NOT FIXED (SE09): Incorrect indentation 
if role == "Manager": 
    # ERROR NOT FIXED (LE05): Bonus calculation lacks context 
    bonus = 2000 
    print("Bonus: ", bonus) 
 
# ERROR NOT FIXED (SE10): Else without a prior if (due to the indentation error above) 
else: 
    print("No bonus") 
 
# ERROR NOT FIXED (LE06): Redundant and incorrect bonus logic 
bonus = 100 
print("All employees get a bonus of: ", bonus) 
 
# ERROR NOT FIXED (SE11): Incomplete 'for' loop 
for i in range(5) 
    # ERROR NOT FIXED (RE03): Infinite loop due to missing colon 
    print(i) 
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Appendix H: DYAD Interview Protocols 
 

 

1. How would you rate your programming skills and experience on a scale of 1 to 10, with 

1 indicating a beginner level and 10 representing a highly skilled level? 

2. What specific debugging strategies have you previously used in your programming 

tasks, and what led you to choose these methods? 

3. What types of error messages do you find challenging while collaborating to solve and 

fix errors in the Python code? 

4. What specific strategies do you employ in locating and rectifying bugs in the program, 

and why have you chosen these methods? 

5. From your experience in the observed session, how did working together impact your 

approach to locating and fixing errors in the Python code, especially given your 

geographical distribution? 

5a Further to the answer provided to question 5, can you tell me in specific terms 

how working together impacted the strategy used or the way you approached the 

code debugging? 

6. Can you describe the methods or strategies you used to distribute responsibilities and 

manage cognitive workload during the debugging process in your remote pairing? 

7. Reflecting on the recorded hypothetical debugging session, how did using Integrated 

Development Environment (IDE) tools enhance your effectiveness and help mitigate 

the challenges you faced while debugging programs together in distributed pair 

debugging of Python code? 

8. Using examples from the debugging session, what specific obstacles did you, as paired 

and geographically dispersed SDT apprentices, encounter while collaborating to 

resolve programming bugs? 

9. Why do you think these particular challenges arose during your collaboration to fix 

bugs in the Python code, especially given your geographical separation? 

10. How was your experience with the debugging session alongside your partner? 
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Appendix I: Focus Group Protocols 
 

 

Thank you for participating in this focus group session. This session aims to tap into 

your wealth of experience in software development and working with the SDT 

apprentice debugging programming. 

 

Introduction 

1. Could we begin this discussion by exploring your experiences and observations on 

debugging programming codes while working with apprentices? 

 

Discussion on the themes from the apprentice investigation and their personal 

experiences 

2. What types of debugging strategies have you observed your apprentices using to 

identify and rectify bugs in programming code? 

3. In your view, what are the likely contributing factors to apprentices adopting these 

specific debugging strategies? 

4. How do you rate the effectiveness of these strategies in assisting apprentices to fix 

bugs efficiently, and what are the reasons for your assessment? 

5. One recurring theme from the debugging sessions was the challenge surrounding 

mental models. Could you elaborate on the factors contributing to incorrect mental 

models among apprentices? 

 

Conclusion 

6. To conclude, could you share your insights on the known or perceived challenges that 

apprentices commonly face while debugging programming codes? 

7. How do you think they can better be supported in improving your debugging practice? 

 

Thank you for taking time out of your busy schedule to participate in this study. 
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Appendix J: Sample Transcript of the Debugging Session 

 

Transcript of Debugging Session between SDT15 and SDT16 

 

Session Start: 09:00 AM 

Initial Run of the Script 

SDT16 (Navigator): “Before we start fixing, let’s run the script as is. We need to 

identify all the errors it throws up.” 

SDT15 (Driver): “Agreed. Executing the script now to catch the initial errors.” 

Script Execution Result: Error - SyntaxError on line 1: invalid syntax. 

 

First 15 Minutes: Identifying and Correcting Syntax Errors 

SDT15: “Looks like the first snag is a syntax error at the very beginning. Ah, we 

missed the colon after the function declaration. Such a small thing can cause a big 

issue.” 

SDT16: “Exactly, the colon is crucial in Python to indicate the start of the function 

block. Please add it at the end of the function declaration line.” 

SDT15 quickly adds the colon, fixing the syntax error *SE01. 

SDT16: “Great, now let’s rerun the script to check for the next batch of errors.” 

SDT15: “Hmm, now we have a TypeError. Oh, we used ‘x’ for multiplication on line 

3. It should be an asterisk ‘*’.” 

SDT16: “That’s a common mistake when switching from math notation to 

programming. Replace ‘x’ with ‘*’.” 

SDT15 promptly corrects the multiplication symbol *SE02 and re-runs the script. 

SDT15: “Another syntax error, this time on the ‘if’ statement in line 7. We forgot the 

colon again.” 

SDT16: “The colon is crucial for if-else structures as well. Add it to signify the 

beginning of the if block.” 

SDT15 corrects the missing colon *SE03. 

To trace the program’s logic flow, they insert print statements and uncover 

inaccuracies in the tax calculation. 

SDT15: “According to our task, the tax rate should vary between 10% and 25% based 

on the gross pay. But here, we’ve incorrectly used 15% and 5%.” 

SDT16: “We need to modify these values to align with the specified tax brackets. That 

will fix the logical errors in tax calculation.” 

SDT15 updates the tax rates, addressing *LE01 and *LE02. 

 

30 Minutes: Switching Roles and Correcting Further Errors 

As per their plan, *SDT16 takes over as the Driver, and *SDT15 becomes the 

Navigator. 

SDT16: “I’ll handle the string concatenation error in the return statement. We should 

concatenate using ‘+’ instead of commas.” 

SDT15: “That’s correct. Using plus signs will properly combine the strings and 

variables.” 

SDT16 rectifies the string concatenation issue *SE04. 
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SDT15: “The next issue is with the main function definition. It’s mistakenly written as 

‘df’.” 

SDT16: “Oh, that’s a typo. Changing ‘df’ to ‘def’ to correctly define the main 

function.” 

SDT16 fixes the function definition typo *SE05 and runs the script, leading to a 

runtime error. 

SDT15: “The runtime error suggests an issue with data types. We’re not converting 

the input strings to numbers, which is essential for arithmetic operations.” 

SDT16: “Right, I’ll convert the input strings to integers to resolve this.” 

SDT16 amends the code to convert inputs to integers, addressing *RE01. 

SDT15: “There’s also a line with an undefined variable ‘rates’. It seems out of place.” 
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Appendix K: Sample Transcript of Dyad’s Interview 
 

 

4. What specific strategies do you employ in locating and rectifying bugs in the 

program, and why have you chosen these methods? 

SDT7: "In our recent debugging session, I leaned heavily on Trial-and-Error as my 

primary strategy. It involves testing various solutions to see what works and what 

doesn’t, which I find effective for immediate, hands-on learning. For example, when 

we encountered SE02, the wrong operator for multiplication, I quickly experimented 

with the correct operators to fix it. I prefer this approach because it gives me a direct 

sense of interaction with the code. However, I realise it’s not always the most efficient, 

especially for more complex errors like the logical ones we faced. That’s where I find 

Code Review really valuable. Reviewing SDT8’s code alterations and discussing them 

helped me understand different perspectives and solutions." 

 

SDT8: "I tend to favour Print Statement Debugging as my go-to strategy. It allows me 

to track how data changes throughout the program, which is crucial for understanding 

how errors, particularly runtime ones, manifest. For instance, when tackling RE01, not 

converting string input to number, using print statements helped us trace where the 

type mismatch occurred. I find this method systematic and informative, especially 

when dealing with intricate code. In addition to that, I also see the merit in Code 

Review, as SDT7 mentioned. It’s a collaborative effort that offers insights that one 

might miss when working alone. The trial-and-error approach used by SDT7 also 

complemented our session, bringing a more dynamic and exploratory angle to our 

debugging process." 

 

Critical Analysis of Responses: 

SDT7’s Analysis: SDT7’s preference for Trial-and-Error reflects a hands-on, experiential 

learning style. This approach is effective for immediate problem-solving but may lack 

efficiency with complex issues. 

Their appreciation for Code Review indicates an understanding of the value of 

collaborative learning and different perspectives in debugging. 
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SDT8’s Analysis: SDT8’s use of Print Statement Debugging demonstrates a systematic 

and analytical approach, allowing for a clear understanding of program flow and data 

states. 

Their recognition of the benefits of Code Review highlights the importance of 

collaboration in their debugging strategy, complementing their individual analytical 

approach with collective insights. 

 

Overall Assessment: Both SDT7 and SDT8 have employed strategies that suit their 

individual learning styles while complementing each other’s approaches. SDT7’s 

hands-on Trial-and-Error method provides immediate feedback and learning, while 

SDT8’s systematic Print Statement Debugging offers detailed insights into the 

program’s operation. The incorporation of Code Review by both participants enhances 

their debugging process, allowing for collaborative problem-solving and learning from 

each other’s perspectives. This combination of strategies suggests a well-rounded 

approach to debugging, balancing individual exploration with collaborative analysis. 
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Appendix L: Sample of Included Studies for the Critical 
Analysis 

 

 

 Table 1: Sample of a summary document for the critical analysis (CA) of selected studies. 

 Included studies CA tool 
Quality 
rating 

Evidence 
level 

1 
Gould, J. D., & Drongowski, P. (1974). An exploratory study of 
computer program debugging. Human Factors: The Journal of the 
Human Factors and Ergonomics Society, 16(3), 258-277. 

JBI Outstanding  95% 

2 
Vessey, I. (1985). Expertise in debugging computer programs: A 
process analysis. International Journal of Man-Machine Studies, 
23(5), 459-494 

JBI Outstanding 95% 

3 
Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-
location strategies. Human-Computer Interaction, 3(4), 351-399. 

JBI Good 85% 

4 
Allwood, C. M., & Bjorhag, C.-G. (1990). Novices' debugging when 
programming in Pascal. International Journal of Man-Machine 
Studies, 33(6), 707-724. 

JBI Outstanding 90% 

5 
Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of 
patterns of debugging among novice computer science students. 
ACM SIGCSE Bulletin, 37(3), 84-88. 

JBI Outstanding 90% 

6 

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V. 
(2006). Pair Collaboration in End-User Debugging. Proceedings - 
IEEE Symposium on Visual Languages and Human-Centric 
Computing, VL/HCC 2006, Brighton, UK. 

JBI Outstanding 95% 

7 

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., 
Thomas, L., & Zander, C. (2008). Debugging: finding, fixing and 
flailing, a multi-institutional study of novice debuggers. Computer 
Science Education, 18(2), 93-116. 

JBI Outstanding 90% 

8 

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., 
& Zander, C. (2008). Debugging: the good, the bad, and the quirky--
a qualitative analysis of novices' strategies. ACM SIGCSE Bulletin, 
40(1), 163-167. 

JBI Outstanding 90% 

9 
Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., & 
Zander, C. (2010). Debugging from the student perspective. IEEE 
Transactions on Education, 53(3), 390-396. 

JBI Outstanding 95% 

10 

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair 
debugging: a transactive discourse analysis Proceedings of the Sixth 
international workshop on Computing education research, Aarhus, 
Denmark. 

JBI Outstanding 95% 

11 

Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of experts’ and 
novices’ thinking process in program debugging. Engaging Learners 
Through Emerging Technologies. ICT 2012. Communications in 
Computer and Information Science, vol 302, Hong Kong, China. 

JBI Outstanding 95% 

12 

Akinola, S. (2014). An Empirical Comparative Analysis of 
Programming Effort, Bugs Incurrence and Code Quality between 
Solo & Pair Programmers. Middle-East Journal of Scientific 
Research, 21(12), 2231-2237. 

JBI Outstanding 100% 

13 
McCall, D., & Kölling, M. (2014). Meaningful categorisation of novice 
programmer errors. In 2014 IEEE Frontiers in Education Conference 
(FIE) Proceedings (pp. 1-8). IEEE. 

JBI Outstanding 94% 



302 | P a g e  

 

14 
Pritchard, D. (2015). Frequency distribution of error messages. 
Proceedings of the 6th Workshop on Evaluation and Usability of 
Programming Languages and Tools, Pittsburgh, PA, USA. 

JBI Outstanding 94% 

15 

Alqadi, B. S., & Maletic, J. I. (2017). An Empirical Study of Debugging 
Patterns Among Novices Programmers Proceedings of the 2017 
ACM SIGCSE Technical Symposium on Computer Science Education, 
Seattle, Washington, USA.  

JBI Outstanding 95% 

16 
Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors 
made by novice programmers. Proceedings of the 20th Australasian 
Computing Education Conference, Brisbane, Queensland, Australia. 

JBI Good 80% 

17 
Júnior, A. S., de Figueiredo, J. C. A., & Serey, D. (2019). Analysing the 
Impact of Programming Mistakes on Students' Programming 
Abilities. Brazilian Symposium on Computers in Education, Brazil. 

JBI Outstanding 90% 

18 
Kohn, T. (2019). The Error Behind The Message: Finding the Cause of 
Error Messages in Python Proceedings of the 50th ACM Technical 
Symposium on Computer Science Education, Minneapolis, MN, USA. 

JBI Outstanding 100% 

19 

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the 
mistakes of novice programmers. Proceedings of the 50th ACM 
Technical Symposium on Computer Science Education, Minneapolis, 
USA. 

JBI Outstanding 94% 

20 

Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of 
electronic textiles projects: Analyzing think-aloud protocols for high 
school students’ strategies and practices while problem solving The 
Interdisciplinarity of the Learning Sciences, 14th International 
Conference of the Learning Sciences (ICLS) 2020, Nashville, USA. 

JBI Outstanding 95% 

21 

Michaeli, T., & Romeike, R. (2020). Investigating Students’ 
Preexisting Debugging Traits: A Real World Escape Room Study 
Proceedings of the 20th Koli Calling International Conference on 
Computing Education Research, Koli, Finland. 

JBI Outstanding  95% 

22 

Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021). 
From Collaboration to Solitude and Back: Remote Pair Programming 
During COVID-19. In P. Gregory, C. Lassenius, X. Wang, & P. 
Kruchten, Agile Processes in Software Engineering and Extreme 
Programming International Conference on Agile Software 
Development, Cham. 

JBI Outstanding 95% 

23 
Whalley, J., Settle, A., & Luxton-Reilly, A. (2021a). Analysis of a 
Process for Introductory Debugging Proceedings of the 23rd 
Australasian Computing Education Conference, Australia. 

JBI Outstanding 95% 

24 
Whalley, J., Settle, A., & Luxton-Reilly, A. (2021b). Novice 
Reflections on Debugging Proceedings of the 52nd ACM Technical 
Symposium on Computer Science Education, Virtual Event, USA. 

JBI Outstanding 95% 

25 

Baabdullah, A., & Kim, C. (2022). Supporting Collaborative 
Debugging Processes. Proceedings of the 15th International 
Conference on Computer-Supported Collaborative Learning-CSCL 
2022, pp. 557-558, Hiroshima, Japan. 

JBI Outstanding 95% 

26 

Jeffries, B., Lee, J. A., & Koprinska, I. (2022). 115 Ways Not to Say 
Hello, World! Syntax Errors Observed in a Large-Scale Online CS0 
Python Course. Proceedings of the 27th ACM Conference on 
Innovation and Technology in Computer Science Education Vol. 1 
(ITiCSE 2022), Dublin, Ireland. 

JBI Outstanding 100% 

27 

Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C. 
(2022). Debugging behaviours of early childhood teacher 
candidates with or without scaffolding. International Journal of 
Educational Technology in Higher Education, 19(1), 26. 

JBI Outstanding 95% 



303 | P a g e  

 

28 
Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging? 
An exploratory study of debugging episodes. Empirical Software 
Engineering, 28(5), 117. 

JBI Outstanding 95% 

29 

Liu, Q., & Paquette, L. (2023). Using submission log data to 
investigate novice programmers’ employment of debugging 
strategies. LAK23: 13th International Learning Analytics and 
Knowledge Conference, Arlington, TX, USA. 

JBI Outstanding 95% 

30 
Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-aloud 
Study of Novice Debugging. ACM Trans. Comput. Educ., 23(2), 1. 

JBI Outstanding 95% 

31 

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). 
Combining latent profile analysis and programming traces to 
understand novices’ differences in debugging. Education and 
Information Technologies, 28(4), 4673-4701. 

JBI Outstanding 95% 

32 

Brown, N. C., Mac, V., Weill-Tessier, P., & Kölling, M. (2024). Writing 
Between the Lines: How Novices Construct Java Programs 
Proceedings of the 55th ACM Technical Symposium on Computer 
Science Education V. 1 (SIGCSE 2024), USA. 

JBI Outstanding 90% 

33 

Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging 
with electronic textiles: understanding high school student pairs’ 
problem-solving strategies, practices, and perspectives on repairing 
physical computing projects. Computer Science Education, 1-35. 

JBI Outstanding 100% 

34 

Morales-Navarro, L., Fields, D. A., & Kafai, Y. B. (2024). 
Understanding growth mindset practices in an introductory physical 
computing classroom: high school students’ engagement with 
debugging by design activities. Computer Science Education, 1-31. 

JBI Outstanding 90% 

35 

Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024). 
Exploring debugging processes and regulation strategies during 
collaborative coding tasks among elementary and secondary 
students. Computer Science Education, 1-28. 

JBI Good 75% 
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Appendix M: Debugging Session Codebook 

 

 

 

 

 

 

  



305 | P a g e  

 

Appendix N: DYAD Interview Codebook 
 

 

DPP 
Codes\\Interview\\Stage 1 & 2 - Familiarisation & Coding 
 

Name Description Files References 

Absence of Physical 
Presence for Quick 
Clarification 

These represent struggles in not being able to 
point or visually show parts of code 

1 11 

Acknowledged Limitations Learners showed self-awareness by noting their 
own lack of proficiency or understanding. These 
admissions underline honesty about gaps in 
capability. 

1 3 

Agreement on Challenge Multiple participants expressed a shared view 
that certain logical errors posed significant 
difficulty. The consistency in their sentiments 
adds weight to the issue's complexity. 

1 5 

Analytical approach Describes instances where a participant 
employed step-by-step reasoning or formal 
techniques. It highlights a structured way of 
unravelling complex logic. 

1 1 

Analytical Demand Reflects how some debugging tasks required 
high-level reasoning and mental exertion. 
Participants perceived the activity as cognitively 
intensive. 

1 1 

Analytical Gaps Denotes errors that occurred due to missed 
steps or incomplete reasoning processes. This 
suggests an underdeveloped analytical 
sequence. 

1 2 

Big picture review Participants referred to stepping back and 
reassessing the entire codebase. This top-down 
perspective helped in recontextualising the 
issue. 

1 1 

Breakdown strategy Refers to the act of deconstructing a problem 
into simpler parts to aid resolution. Learners 
discussed breaking logic into manageable pieces. 

1 1 

Calculation Confusion Errors emerged from difficulties in creating or 
tracing formula-based logic. Mathematical 
thinking was the barrier. 

1 1 

Code Isolation Strategy Participants isolated specific blocks or lines of 
code to test or observe behaviour. This strategy 
helped to narrow the problem area. 

1 2 

Code Review Apprentices systematically examined and 
critiqued each other's code to identify issues, 

1 12 
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Name Description Files References 

clarify logic, and enhance collaborative problem-
solving. 

Code Structure For syntax issues relating to structural formatting 
or layout. 

1 4 

Code Visibility Advantage Clarity in formatting, naming, or organisation 
made it easier to follow the logic. Participants 
attributed their success partly to how readable 
the code was. 

1 1 

Collaborative clarity Understanding emerged more clearly through 
discussions with peers. Explaining logic to others 
often led to personal insight. 

1 3 

Collaborative Insight New interpretations or corrections were 
achieved by engaging with someone else’s 
viewpoint. The collaboration brought forth 
alternative solutions. 

1 4 

Complex Logic Breakdown Learners attempted to untangle highly intricate 
or nested conditions. The difficulty lay not in 
syntax but in logical architecture. 

1 4 

Concept Misuse Participants misapplied key Python concepts, 
leading to logic flaws. These misunderstandings 
pointed to a superficial grasp of coding 
constructs. 

1 2 

Conditional 
Misinterpretation 

Learners misunderstood how conditionals 
executed. This misreading caused flawed logic 
paths. 

1 1 

Context understanding Problem-solving success relied on grasping the 
wider function or scenario. The learner needed 
to understand not just 'what' but 'why'. 

1 3 

Contextual Misuse A function or logic piece was applied in the 
wrong context. The logic was sound, but its 
placement was flawed. 

1 1 

Data Flow Understanding Focused on tracking how information moved 
through variables and functions. This tracking 
helped diagnose where logic broke down. 

1 1 

Deep Dive Debugging Marked by a thorough and prolonged 
engagement with the problem. Participants 
drilled deep into the logic layer rather than 
skimming. 

1 1 

Deep Logic This reflects the intellectual depth required to 
trace and correct logic faults rooted in Python 
intricacies or conceptual frameworks. It signifies 
scenarios where surface-level knowledge was 
insufficient. 

1 2 

Difficulty Conveying 
Thought Process Remotely 

These quotes are focused on how apprentices 
struggled to explain, align, or communicate their 
reasoning without face-to-face interaction 

1 27 



307 | P a g e  

 

Name Description Files References 

Distraction in Individual 
Work Environments 

These highlight challenges in focus due to 
remote, uncontrolled environments. 

1 6 

Divide and conquer The issue was resolved by segmenting it into 
independent subproblems. Learners described 
resolving each part methodically. 

2 3 

Division of Tasks Based on 
Strengths 

Apprentices strategically assigned 
responsibilities based on individual strengths or 
comfort zones to manage complexity and 
maintain focus. 

1 22 

Driver-Navigator Role 
Sharing 

Apprentices adopted a structured pairing model 
where one coded while the other observed and 
guided, helping distribute cognitive demands. 

1 18 

Error Complexity The nature of the logic error was itself intricate 
and multi-layered. These were not beginner 
mistakes but advanced logic misfires. 

1 10 

Execution Flow For difficulty understanding the order of 
execution in Python. 

1 5 

Experience Builds Mastery Learners acknowledged that repeated exposure 
helped them improve. Experience was credited 
as a major enabler of logical reasoning. 

1 2 

Explaining syntax fixes For verbal explanation, negotiation, or 
clarification of syntax fixes during collaboration 

1 15 

Fixing Syntax Error For comments about actively identifying, 
correcting, or guiding others through syntax 
issues. 

1 9 

Flow Confusion The challenge stemmed from not understanding 
how code progressed during execution. This lack 
of clarity hampered logical deductions. 

1 1 

Found It Challenging A general admission that the task was tough, 
without further detail. These expressions still 
signal cognitive overload. 

1 7 

General Complexity Applied when logic problems were described as 
difficult but without specific explanation. It 
captures vague but valid struggle. 

1 5 

Growth Mindset Participants expressed confidence that they 
could learn and improve with effort. This 
forward-thinking attitude supports resilience. 

1 1 

Growth Through Challenge Struggle was reframed as an opportunity for 
learning. Participants reflected positively on the 
difficulty. 

1 4 

IDE Debugger Usage Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction of 
logic errors. 

1 35 

Infinite Loop For errors involving loops that do not terminate. 1 17 
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Name Description Files References 

Knowledge Gaps Errors resulted from lacking the foundational 
knowledge needed to apply logic. This code 
tracks missing prerequisites. 

1 6 

Lack of Non-Verbal 
Feedback 

These reflect how the absence of visual, gestural, 
or facial cues hindered effective communication 
and understanding during remote debugging 

1 33 

Limited Experience and Skill 
Gaps 

Apprentices expressed difficulty navigating 
debugging tasks due to being new to 
programming, lacking foundational knowledge, 
or still developing confidence in applying core 
concepts. 

1 15 

Logic and Flow Challenges Combined challenges in understanding both the 
logic and how it executed. These situations 
involved overlapping difficulties. 

1 6 

Logic Struggle Captures moments of emotional or cognitive 
difficulty expressed by learners tackling logical 
bugs. Participants voiced frustration and mental 
fatigue in trying to make sense of such errors. 

1 4 

Logical Errors Challenging Serves as a general label for statements 
identifying logic bugs as hard. It doesn’t specify 
which part was problematic. 

1 5 

Logical Reasoning Gaps Participants struggled with understanding or 
applying correct logic within the code, 
particularly when handling conditionals, 
calculations, or the flow of decision-making. 

1 61 

Methodical Problem 
Solving 

The participant used a structured, procedural 
approach to identify the issue. This code praises 
disciplined debugging. 

1 1 

Misalignment in 
Understanding 

These reflect how apprentices experienced 
confusion or divergent interpretations of logic or 
instructions during debugging sessions 

1 33 

Missing Colon For specific mention of missing colons in syntax. 1 1 

Missing Syntax For syntax errors due to missing elements like 
colons, brackets, or forgotten components. 

1 39 

Misunderstood Logic Flow Participants misunderstood how one part of the 
code affected another. These errors revealed 
disconnects in logic mapping. 

1 1 

Misuse of 'name' Highlights confusion around Python's special 
'__name__' variable. This is a specific example of 
concept misunderstanding. 

1 1 

Navigator insight In pair programming, the navigator offered a 
useful perspective. The insight usually shifted 
the course of debugging. 

1 1 

Needs More Practice Participant acknowledged needing repetition or 
further exposure to improve. Practice was seen 
as key to mastering logic. 

1 1 
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Name Description Files References 

Other IDE Features Apprentices benefited from additional IDE tools 
like version control integration, intelligent 
suggestions, and code completion to streamline 
their workflow. 

1 3 

Pair support for syntax For collaborative efforts in addressing syntax 
errors through shared roles or peer help. 

1 13 

Paired Strengths Learners described how teammates 
complemented their skills. Their collective effort 
covered individual weaknesses. 

1 1 

Pattern Matching Apprentices looked for recurring structures or 
familiar error patterns to quickly locate and fix 
bugs based on previous experience. 

1 3 

Pattern-based reasoning Participants applied familiar logic patterns to 
solve new problems. This indicates transfer of 
learning. 

1 1 

Pattern-based syntax 
strategy 

For use of recurring patterns, visual tracing, or 
structured methods in spotting syntax issues. 

1 6 

Peer Review Strength Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Peer support Emotional or technical encouragement came 
from fellow learners. It acted as a buffer during 
challenging moments. 

1 1 

Print Statement Debugging Apprentices inserted print statements and 
monitored console outputs to trace program 
behaviour and identify bugs during execution. 

1 32 

Progress Despite Errors Learners recognised forward movement even 
when mistakes occurred. This shows 
perseverance. 

1 1 

Real-Time Code Sharing and 
Synchronisation 

Tools enabling simultaneous editing and shared 
visibility helped apprentices maintain alignment 
and coordinate debugging in real-time. 

1 2 

Real-Time Tool Support for 
Coordination 

Collaborative tools like IDE features and remote 
sharing platforms were used to support 
synchronised thinking and reduce mental strain. 

1 37 

Remote Collaboration 
Limits 

The online or distant setup introduced 
difficulties in understanding logic. Distance 
added barriers to debugging. 

1 8 

Role swapping Team members changed roles mid-task to better 
tackle logic issues. The switch brought fresh 
perspective. 

1 2 

Rubber Duck Debugging Apprentices explained their code aloud—to a 
partner or inanimate object—to clarify their 
thinking and uncover logic errors. 

1 7 

Rubber ducking Participants verbalised logic step-by-step, often 
to a peer or non-technical object. This 
externalisation clarified their thinking. 

1 2 
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Name Description Files References 

Runtime Contrast Participants reflected on how runtime errors 
differed from logic ones. This comparative 
insight helped focus their approach. 

1 2 

Runtime Error Complexity Several apprentices found runtime errors 
difficult to resolve because they often appeared 
after code execution and required understanding 
how the program behaved dynamically. 

1 46 

Runtime Overwhelm When runtime feels particularly complex or 
challenging. 

1 13 

Runtime Print Tracking For those using print statements to trace issues. 1 4 

Runtime Strategy Lacking When trial-and-error or lack of method was 
highlighted. 

1 2 

Runtime Type Confusion When the issue involves converting string to 
number or similar. 

1 6 

Runtime Uncertainty For quotes where learners are confident with 
syntax but unsure about runtime. 

1 24 

Slicing Slicing refers to the strategy of breaking down or 
isolating specific segments of code, such as 
functions, conditions, or loops, to analyse them 
independently. This helps apprentices reduce 
complexity by focusing only on the relevant part 
of the code where the error is suspected, making 
it easier to locate and fix bugs collaboratively. 

1 3 

Solution experimentation Debugging involved trying multiple possible 
solutions to test logic. Learners described trial as 
a deliberate tactic. 

1 1 

Strategy Limitations Existing methods or plans failed to resolve the 
logic issue. Learners were forced to reconsider 
their approach. 

1 1 

Syntax and Error 
Highlighting Features 

The IDE’s syntax highlighting, auto-indentation, 
and inline error notifications supported 
apprentices in quickly spotting and correcting 
code mistakes. 

1 3 

Syntax as role strength For individuals who naturally took the lead on 
syntax due to confidence or skill 

1 15 

Syntax Complexity Participants frequently encountered syntax 
errors that disrupted code execution, especially 
those involving Python-specific rules like 
indentation, string formatting, or punctuation. 

1 151 

Syntax Feels Easy For those who found syntax errors more 
straightforward or gained confidence resolving 
them 

1 25 

Syntax First Where participants mention syntax errors as 
their starting point in debugging. 

1 3 

Syntax for Beginners For beginner-level ease, familiarity, or exposure 
to syntax debugging. 

1 2 
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Name Description Files References 

Syntax is Tricky For quotes that describe syntax errors as 
deceptively hard or initially difficult to handle. 

1 6 

Syntax Typo For errors caused by typographical mistakes. 1 1 

Technology-Related 
Collaboration Issues 

These quotes reflect how tool-based issues like 
syncing, lag, edit conflicts, and IDE limitations 
disrupted collaboration 

1 41 

Think-Aloud 
Communication 

Apprentices verbalised their reasoning and 
thought processes to clarify understanding and 
collaboratively work through errors. 

1 21 

Time Zone and Scheduling 
Difficulties 

Quotes here reflect challenges related to 
coordinating across different locations or 
schedules. 

1 5 

Tinkering Apprentices intuitively made small code changes 
and tested their effects as a way to explore and 
understand bugs. 

1 3 

Tool Access or Setup Issues These quotes relate to initial difficulties in using 
or setting up collaboration tools. 

1 26 

Tool-assisted logic check Software tools like debuggers or linters were 
used to identify logic faults. Participants credited 
these for catching errors. 

1 2 

Tool-Assisted Syntax Fix For use of features like syntax highlighting, error 
popups, or debuggers to spot/fix syntax. 

1 15 

Tracing Apprentices followed the program’s flow line by 
line to understand how data moved and identify 
where the logic broke down. 

1 7 

Trial and Error Apprentices experimented with different 
solutions without a predefined plan to see what 
resolved the issue through observation. 

1 10 

Trial and Error Limits Participants noted that random guessing was 
ineffective for logic bugs. These problems 
needed deeper thought. 

1 1 

Turn-Taking and Role 
Swapping 

Regular role alternation ensured balanced 
mental effort, reduced fatigue, and kept both 
apprentices engaged throughout the debugging 
session. 

1 7 

Type Conversion For issues converting between data types (e.g. 
string to number) 

1 8 

Undefined Variable For use of variables that were not defined before 
use. 

1 5 

Understanding Logic Flow A clear picture of how logic moved through code 
aided debugging. This awareness streamlined 
troubleshooting. 

1 5 

Unresolved Logic Issues Some logic problems remained unsolved by 
session end. The code captures lingering 
confusion. 

1 2 
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Name Description Files References 

Unstable or Inconsistent 
Internet Connection 

These quotes highlight issues caused by poor or 
unstable internet, affecting real-time 
collaboration or access to tools. 

1 1 

Use of Live Share for 
Remote Collaboration 

Apprentices leveraged Live Share to 
collaboratively edit, navigate, and debug code 
from separate locations in real time. 

1 2 

Variable misuse Mistakes occurred due to inappropriate variable 
assignment or tracking. This led to faulty logic. 

1 1 
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Codes\\Interview\\Stage 3 - Theme Generation 
 

Name Description Files References 

Cognitive Perception and 
Difficulty 

This category reflects how runtime issues were 
perceived as overwhelming or uncertain, 
especially when apprentices couldn’t predict 
behaviour or lacked confidence during 
execution. 

1 43 

Runtime Overwhelm When runtime feels particularly complex or 
challenging. 

1 13 

Runtime Type 
Confusion 

When the issue involves converting string to 
number or similar. 

1 6 

Runtime Uncertainty For quotes where learners are confident with 
syntax but unsure about runtime. 

1 24 

Collaboration and 
Communication Aids 

This category reflects the value of teamwork in 
resolving logical errors. It includes quotes where 
learners gained clarity or found solutions by 
explaining to peers, switching roles, or 
combining their strengths. 

1 13 

Collaborative clarity Understanding emerged more clearly through 
discussions with peers. Explaining logic to others 
often led to personal insight. 

1 3 

Collaborative Insight New interpretations or corrections were 
achieved by engaging with someone else’s 
viewpoint. The collaboration brought forth 
alternative solutions. 

1 4 

Navigator insight In pair programming, the navigator offered a 
useful perspective. The insight usually shifted 
the course of debugging. 

1 1 

Paired Strengths Learners described how teammates 
complemented their skills. Their collective effort 
covered individual weaknesses. 

1 1 

Peer Review Strength Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Peer support Emotional or technical encouragement came 
from fellow learners. It acted as a buffer during 
challenging moments. 

1 1 

Role swapping Team members changed roles mid-task to better 
tackle logic issues. The switch brought fresh 
perspective. 

1 2 

Collaborative and Reflective 
Techniques 

This category highlights methods where 
apprentices explained or reviewed code with 
others (or to themselves) to gain insight, clarify 
thinking, and identify errors through reflection 
or external feedback. 

2 20 
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Name Description Files References 

Code Review Apprentices systematically examined and 
critiqued each other's code to identify issues, 
clarify logic, and enhance collaborative problem-
solving. 

1 12 

Peer Review Strength Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Rubber Duck 
Debugging 

Apprentices explained their code aloud, to a 
partner or inanimate object, to clarify their 
thinking and uncover logic errors. 

1 7 

Connectivity Constraints This category reflects how unstable internet 
disrupted communication, tool access, and real-
time collaboration, especially in remote or 
bandwidth-limited settings. 

1 1 

Unstable or 
Inconsistent Internet 
Connection 

These quotes highlight issues caused by poor or 
unstable internet, affecting real-time 
collaboration or access to tools. 

1 1 

Debugging Approaches for 
Runtime 

This category captures how apprentices 
attempted to resolve runtime errors, particularly 
by using print statements or acknowledging a 
lack of structured strategy. 

1 6 

Runtime Print 
Tracking 

For those using print statements to trace issues. 1 4 

Runtime Strategy 
Lacking 

When trial-and-error or lack of method was 
highlighted. 

1 2 

Debugging Tools and 
Execution Support 

This category captures how apprentices 
leveraged key debugging tools, such as the IDE’s 
step-through functionality and print statements, 
to inspect program execution, monitor variable 
states, and detect logical or runtime issues. 

1 67 

IDE Debugger Usage Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction of 
logic errors. 

1 35 

Print Statement 
Debugging 

Apprentices inserted print statements and 
monitored console outputs to trace program 
behaviour and identify bugs during execution. 

1 32 

Distractions and Focus 
Challenges 

Distractions and Focus Challenges This includes 
issues with concentration due to noise, 
interruptions, or other environmental factors 
unique to working remotely from home or other 
informal settings 

1 6 

Distraction in 
Individual Work 
Environments 

These highlight challenges in focus due to 
remote, uncontrolled environments. 

1 6 

Foundational Knowledge 
Gaps 

This category reflects difficulties stemming from 
apprentices’ limited prior experience with 
Python or programming generally, especially in 

1 166 
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handling syntax-specific rules like indentation 
and punctuation. 

Limited Experience 
and Skill Gaps 

Apprentices expressed difficulty navigating 
debugging tasks due to being new to 
programming, lacking foundational knowledge, 
or still developing confidence in applying core 
concepts. 

1 15 

Syntax Complexity Participants frequently encountered syntax 
errors that disrupted code execution, especially 
those involving Python-specific rules like 
indentation, string formatting, or punctuation. 

1 151 

Interface Guidance and 
Visual Feedback 

This category represents the supportive role of 
the IDE’s user interface elements, including 
syntax highlighting, auto-suggestions, version 
control, and intelligent prompts, which helped 
learners identify errors and streamline their 
workflow. 

1 6 

Other IDE Features Apprentices benefited from additional IDE tools 
like version control integration, intelligent 
suggestions, and code completion to streamline 
their workflow. 

1 3 

Syntax and Error 
Highlighting Features 

The IDE’s syntax highlighting, auto-indentation, 
and inline error notifications supported 
apprentices in quickly spotting and correcting 
code mistakes. 

1 3 

Interpretation and 
Understanding Conflicts 

This category includes moments where 
apprentices interpreted instructions, logic, or 
errors differently, resulting in delays or 
confusion in collaborative debugging. 

1 33 

Misalignment in 
Understanding 

These reflect how apprentices experienced 
confusion or divergent interpretations of logic or 
instructions during debugging sessions 

1 33 

Nature and Source of 
Syntax Errors 

This category captures specific causes of syntax 
errors such as missing colons, structural 
mistakes, typographical errors, and overlooked 
elements. It reflects how apprentices 
encountered surface-level mistakes that 
disrupted code execution. 

1 45 

Code Structure For syntax issues relating to structural formatting 
or layout. 

1 4 

Missing Colon For specific mention of missing colons in syntax. 1 1 

Missing Syntax For syntax errors due to missing elements like 
colons, brackets, or forgotten components. 

1 39 

Syntax Typo For errors caused by typographical mistakes. 1 1 

Perceived Complexity and 
Emotional Response 

This category captures how apprentices found 
logical errors emotionally or cognitively taxing. It 

1 41 
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includes expressions of frustration, struggle, or 
general difficulty in making sense of complex 
conditions or flows. 

Agreement on 
Challenge 

Multiple participants expressed a shared view 
that certain logical errors posed significant 
difficulty. The consistency in their sentiments 
adds weight to the issue's complexity. 

1 5 

Complex Logic 
Breakdown 

Learners attempted to untangle highly intricate 
or nested conditions. The difficulty lay not in 
syntax but in logical architecture. 

1 4 

Error Complexity The nature of the logic error was itself intricate 
and multi-layered. These were not beginner 
mistakes but advanced logic misfires. 

1 10 

Flow Confusion The challenge stemmed from not understanding 
how code progressed during execution. This lack 
of clarity hampered logical deductions. 

1 1 

Found It Challenging A general admission that the task was tough, 
without further detail. These expressions still 
signal cognitive overload. 

1 7 

General Complexity Applied when logic problems were described as 
difficult but without specific explanation. It 
captures vague but valid struggle. 

1 5 

Logic Struggle Captures moments of emotional or cognitive 
difficulty expressed by learners tackling logical 
bugs. Participants voiced frustration and mental 
fatigue in trying to make sense of such errors. 

1 4 

Logical Errors 
Challenging 

Serves as a general label for statements 
identifying logic bugs as hard. It doesn’t specify 
which part was problematic. 

1 5 

Perceived Difficulty of 
Syntax 

This category includes apprentice's perceptions 
of syntax errors as either easy or deceptively 
tricky. Some found them manageable due to 
clear error messages, while others initially 
underestimated their complexity. 

1 33 

Syntax Feels Easy For those who found syntax errors more 
straightforward or gained confidence resolving 
them 

1 25 

Syntax for Beginners For beginner-level ease, familiarity, or exposure 
to syntax debugging. 

1 2 

Syntax is Tricky For quotes that describe syntax errors as 
deceptively hard or initially difficult to handle. 

1 6 

Physical Separation Barriers This category refers to the challenge of not being 
able to visually point to code or easily clarify 
issues due to being physically apart during 
remote pair programming. 

1 11 
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Absence of Physical 
Presence for Quick 
Clarification 

These represent struggles in not being able to 
point or visually show parts of code 

1 11 

Real-Time Collaborative 
Platforms 

This category includes tools that enabled 
synchronous work across distances, allowing 
apprentices to co-edit, share, and coordinate 
their debugging efforts in real time using 
platforms like Visual Studio Live Share. 

1 4 

Real-Time Code 
Sharing and 
Synchronisation 

Tools enabling simultaneous editing and shared 
visibility helped apprentices maintain alignment 
and coordinate debugging in real-time. 

1 2 

Use of Live Share for 
Remote Collaboration 

Apprentices leveraged Live Share to 
collaboratively edit, navigate, and debug code 
from separate locations in real time. 

1 2 

Real-Time Communication 
and Coordination Tools 

This category reflects how verbalisation 
strategies and collaborative digital tools were 
used to coordinate thought processes, reduce 
confusion, and manage the cognitive load during 
remote or paired debugging. 

1 58 

Real-Time Tool 
Support for 
Coordination 

Collaborative tools like IDE features and remote 
sharing platforms were used to support 
synchronised thinking and reduce mental strain. 

1 37 

Think-Aloud 
Communication 

Apprentices verbalised their reasoning and 
thought processes to clarify understanding and 
collaboratively work through errors. 

1 21 

Reasoning and Logic 
Challenges 

This category houses instances where 
apprentices lacked the cognitive strategies to 
understand and apply logic effectively, especially 
when dealing with conditionals, calculations, or 
the broader logic structure. 

1 61 

Logical Reasoning 
Gaps 

Participants struggled with understanding or 
applying correct logic within the code, 
particularly when handling conditionals, 
calculations, or the flow of decision-making. 

1 61 

Reflection and Learning 
Dispositions 

This category captures reflective mindsets where 
apprentices identified growth, perseverance, or 
learning from mistakes. It also houses 
observations about how experience, context, 
and collaboration influenced their progress. 

1 31 

Context 
understanding 

Problem-solving success relied on grasping the 
wider function or scenario. The learner needed 
to understand not just 'what' but 'why'. 

1 3 

Experience Builds 
Mastery 

Learners acknowledged that repeated exposure 
helped them improve. Experience was credited 
as a major enabler of logical reasoning. 

1 2 

Growth Mindset Participants expressed confidence that they 
could learn and improve with effort. This 
forward-thinking attitude supports resilience. 

1 1 
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Growth Through 
Challenge 

Struggle was reframed as an opportunity for 
learning. Participants reflected positively on the 
difficulty. 

1 4 

Logic and Flow 
Challenges 

Combined challenges in understanding both the 
logic and how it executed. These situations 
involved overlapping difficulties. 

1 6 

Misuse of 'name' Highlights confusion around Python's special 
'__name__' variable. This is a specific example of 
concept misunderstanding. 

1 1 

Progress Despite 
Errors 

Learners recognised forward movement even 
when mistakes occurred. This shows 
perseverance. 

1 1 

Remote Collaboration 
Limits 

The online or distant setup introduced 
difficulties in understanding logic. Distance 
added barriers to debugging. 

1 8 

Runtime Contrast Participants reflected on how runtime errors 
differed from logic ones. This comparative 
insight helped focus their approach. 

1 2 

Unresolved Logic 
Issues 

Some logic problems remained unsolved by 
session end. The code captures lingering 
confusion. 

1 2 

Variable misuse Mistakes occurred due to inappropriate variable 
assignment or tracking. This led to faulty logic. 

1 1 

Remote Expression 
Challenges 

This category captures how apprentices 
struggled to communicate ideas clearly without 
the benefit of facial expressions, gestures, or in-
person context, leading to misunderstandings, 
over-explaining, or extra effort in articulation. 

1 60 

Difficulty Conveying 
Thought Process 
Remotely 

These quotes are focused on how apprentices 
struggled to explain, align, or communicate their 
reasoning without face-to-face interaction 

1 27 

Lack of Non-Verbal 
Feedback 

These reflect how the absence of visual, gestural, 
or facial cues hindered effective communication 
and understanding during remote debugging 

1 33 

Runtime Behaviour 
Confusion 

This category represents the difficulty of 
identifying and resolving bugs that only emerged 
during code execution—particularly where 
program behaviour was unpredictable or 
misunderstood. 

1 46 

Runtime Error 
Complexity 

Several apprentices found runtime errors 
difficult to resolve because they often appeared 
after code execution and required understanding 
how the program behaved dynamically. 

1 46 

Scheduling and 
Coordination Hurdles 

This category captures difficulties in syncing 
schedules across time zones or managing 
different availability patterns, which limited 
collaboration windows. 

1 5 
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Time Zone and 
Scheduling Difficulties 

Quotes here reflect challenges related to 
coordinating across different locations or 
schedules. 

1 5 

Skill Gaps and Cognitive 
Limitations 

This category includes participants’ admissions 
of limited knowledge, misunderstood logic, or 
conceptual misapplications. It highlights areas 
where deeper learning or practice was needed 
to engage with logic-based bugs 

1 18 

Acknowledged 
Limitations 

Learners showed self-awareness by noting their 
own lack of proficiency or understanding. These 
admissions underline honesty about gaps in 
capability. 

1 3 

Analytical Gaps Denotes errors that occurred due to missed 
steps or incomplete reasoning processes. This 
suggests an underdeveloped analytical 
sequence. 

1 2 

Calculation Confusion Errors emerged from difficulties in creating or 
tracing formula-based logic. Mathematical 
thinking was the barrier. 

1 1 

Concept Misuse Participants misapplied key Python concepts, 
leading to logic flaws. These misunderstandings 
pointed to a superficial grasp of coding 
constructs. 

1 2 

Conditional 
Misinterpretation 

Learners misunderstood how conditionals 
executed. This misreading caused flawed logic 
paths. 

1 1 

Contextual Misuse A function or logic piece was applied in the 
wrong context. The logic was sound, but its 
placement was flawed. 

1 1 

Knowledge Gaps Errors resulted from lacking the foundational 
knowledge needed to apply logic. This code 
tracks missing prerequisites. 

1 6 

Misunderstood Logic 
Flow 

Participants misunderstood how one part of the 
code affected another. These errors revealed 
disconnects in logic mapping. 

1 1 

Needs More Practice Participant acknowledged needing repetition or 
further exposure to improve. Practice was seen 
as key to mastering logic. 

1 1 

Social and Collaborative 
Dimensions 

This category highlights how syntax debugging 
was supported by peer explanations, shared 
roles, and individual strengths in collaborative 
settings. It includes verbal clarification and role-
based task division around syntax. 

1 43 

Explaining syntax fixes For verbal explanation, negotiation, or 
clarification of syntax fixes during collaboration 

1 15 

Pair support for 
syntax 

For collaborative efforts in addressing syntax 
errors through shared roles or peer help. 

1 13 
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Syntax as role 
strength 

For individuals who naturally took the lead on 
syntax due to confidence or skill 

1 15 

Strategic Role Allocation 
and Rotation 

This category captures how apprentices 
strategically assigned roles and alternated them 
to balance mental effort, maintain engagement, 
and leverage individual strengths during 
debugging sessions. 

1 47 

Division of Tasks 
Based on Strengths 

Apprentices strategically assigned 
responsibilities based on individual strengths or 
comfort zones to manage complexity and 
maintain focus. 

1 22 

Driver-Navigator Role 
Sharing 

Apprentices adopted a structured pairing model 
where one coded while the other observed and 
guided, helping distribute cognitive demands. 

1 18 

Turn-Taking and Role 
Swapping 

Regular role alternation ensured balanced 
mental effort, reduced fatigue, and kept both 
apprentices engaged throughout the debugging 
session. 

1 7 

Strategies and Reasoning 
Approaches 

This category includes structured problem-
solving strategies like breaking problems down, 
isolating faulty logic, following data flow, using 
tool support, and experimenting methodically 
with solutions. 

2 28 

Analytical approach Describes instances where a participant 
employed step-by-step reasoning or formal 
techniques. It highlights a structured way of 
unravelling complex logic. 

1 1 

Analytical Demand Reflects how some debugging tasks required 
high-level reasoning and mental exertion. 
Participants perceived the activity as cognitively 
intensive. 

1 1 

Big picture review Participants referred to stepping back and 
reassessing the entire codebase. This top-down 
perspective helped in recontextualising the 
issue. 

1 1 

Breakdown strategy Refers to the act of deconstructing a problem 
into simpler parts to aid resolution. Learners 
discussed breaking logic into manageable pieces. 

1 1 

Code Isolation 
Strategy 

Participants isolated specific blocks or lines of 
code to test or observe behaviour. This strategy 
helped to narrow the problem area. 

1 2 

Code Visibility 
Advantage 

Clarity in formatting, naming, or organisation 
made it easier to follow the logic. Participants 
attributed their success partly to how readable 
the code was. 

1 1 

Data Flow 
Understanding 

Focused on tracking how information moved 
through variables and functions. This tracking 
helped diagnose where logic broke down. 

1 1 
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Deep Dive Debugging Marked by a thorough and prolonged 
engagement with the problem. Participants 
drilled deep into the logic layer rather than 
skimming. 

1 1 

Deep Logic This reflects the intellectual depth required to 
trace and correct logic faults rooted in Python 
intricacies or conceptual frameworks. It signifies 
scenarios where surface-level knowledge was 
insufficient. 

1 2 

Divide and conquer The issue was resolved by segmenting it into 
independent subproblems. Learners described 
resolving each part methodically. 

2 3 

Methodical Problem 
Solving 

The participant used a structured, procedural 
approach to identify the issue. This code praises 
disciplined debugging. 

1 1 

Pattern-based 
reasoning 

Participants applied familiar logic patterns to 
solve new problems. This indicates transfer of 
learning. 

1 1 

Rubber ducking Participants verbalised logic step-by-step, often 
to a peer or non-technical object. This 
externalisation clarified their thinking. 

1 2 

Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described trial as 
a deliberate tactic. 

1 1 

Strategy Limitations Existing methods or plans failed to resolve the 
logic issue. Learners were forced to reconsider 
their approach. 

1 1 

Tool-assisted logic 
check 

Software tools like debuggers or linters were 
used to identify logic faults. Participants credited 
these for catching errors. 

1 2 

Trial and Error Limits Participants noted that random guessing was 
ineffective for logic bugs. These problems 
needed deeper thought. 

1 1 

Understanding Logic 
Flow 

A clear picture of how logic moved through code 
aided debugging. This awareness streamlined 
troubleshooting. 

1 5 

Strategies for Syntax 
Debugging 

This category reflects tactical responses to 
syntax errors, such as starting with syntax 
checks, using tools like error highlighting, and 
applying pattern-recognition techniques to spot 
errors. 

1 33 

Fixing Syntax Errors For comments about actively identifying, 
correcting, or guiding others through syntax 
issues. 

1 9 

Pattern-based syntax 
strategy 

For use of recurring patterns, visual tracing, or 
structured methods in spotting syntax issues. 

1 6 
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Syntax First Where participants mention syntax errors as 
their starting point in debugging. 

1 3 

Tool-Assisted Syntax 
Fix 

For use of features like syntax highlighting, error 
popups, or debuggers to spot/fix syntax. 

1 15 

Systematic Reasoning 
Strategies 

This category includes logical and structured 
approaches where learners followed data flow, 
stepped through execution, or broke problems 
into smaller parts to locate and address issues in 
a focused, disciplined manner. 

2 46 

Divide and conquer The issue was resolved by segmenting it into 
independent subproblems. Learners described 
resolving each part methodically. 

2 3 

IDE Debugger Usage Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction of 
logic errors. 

1 35 

Methodical Problem 
Solving 

The participant used a structured, procedural 
approach to identify the issue. This code praises 
disciplined debugging. 

1 1 

Tracing Apprentices followed the program’s flow line by 
line to understand how data moved and identify 
where the logic broke down. 

1 7 

Tactical Exploration of 
Faults 

This category covers exploratory tactics where 
apprentices relied on recognition of error 
patterns, code segmentation, and hypothesis-
testing to find and resolve bugs. 

2 20 

Pattern Matching Apprentices looked for recurring structures or 
familiar error patterns to quickly locate and fix 
bugs based on previous experience. 

1 3 

Slicing Slicing refers to the strategy of breaking down or 
isolating specific segments of code—such as 
functions, conditions, or loops—to analyse them 
independently. This helps apprentices reduce 
complexity by focusing only on the relevant part 
of the code where the error is suspected, making 
it easier to locate and fix bugs collaboratively. 

1 3 

Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described trial as 
a deliberate tactic. 

1 1 

Tinkering Apprentices intuitively made small code changes 
and tested their effects as a way to explore and 
understand bugs. 

1 3 

Trial and Error Apprentices experimented with different 
solutions without a predefined plan to see what 
resolved the issue through observation. 

1 10 

Tool Limitations in Remote 
Setup 

This category captures tool-based challenges 
such as lag, syncing issues, limited shared 
control, or edit conflicts—each of which 

1 41 
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disrupted the flow of joint work and required 
additional coordination. 

Technology-Related 
Collaboration Issues 

These quotes reflect how tool-based issues like 
syncing, lag, edit conflicts, and IDE limitations 
disrupted collaboration 

1 41 

Tool Setup and Accessibility 
Barriers 

These are initial or recurring issues in 
configuring, accessing, or understanding how to 
use necessary tools like IDEs, version control, or 
communication platforms. 

1 26 

Tool Access or Setup 
Issues 

These quotes relate to initial difficulties in using 
or setting up collaboration tools. 

1 26 

Types and Causes of 
Runtime Errors 

This category identifies the nature of runtime 
errors apprentices faced, such as infinite loops, 
undefined variables, and type conversion issues, 
all of which occurred during execution. 

1 35 

Execution Flow For difficulty understanding the order of 
execution in Python. 

1 5 

Infinite Loop For errors involving loops that do not terminate. 1 17 

Type Conversion For issues converting between data types (e.g. 
string to number) 

1 8 

Undefined Variable For use of variables that were not defined before 
use. 

1 5 
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Subtheme 1 - 
Communication and 
Collaboration 

The three categories here cover verbal/gestural 
limitations, cognitive misalignment, and tool-
based disruptions, all central to remote pair 
debugging challenges. 

1 134 

Interpretation and 
Understanding 
Conflicts 

This category includes moments where 
apprentices interpreted instructions, logic, or 
errors differently, resulting in delays or 
confusion in collaborative debugging. 

1 33 

Misalignment in 
Understanding 

These reflect how apprentices experienced 
confusion or divergent interpretations of logic 
or instructions during debugging sessions 

1 33 

Remote Expression 
Challenges 

This category captures how apprentices 
struggled to communicate ideas clearly without 
the benefit of facial expressions, gestures, or in-
person context—leading to misunderstandings, 
over-explaining, or extra effort in articulation. 

1 60 

Difficulty 
Conveying 
Thought Process 
Remotely 

These quotes are focused on how apprentices 
struggled to explain, align, or communicate 
their reasoning without face-to-face interaction 

1 27 

Lack of Non-
Verbal Feedback 

These reflect how the absence of visual, 
gestural, or facial cues hindered effective 
communication and understanding during 
remote debugging 

1 33 

Tool Limitations in 
Remote Setup 

This category captures tool-based challenges 
such as lag, syncing issues, limited shared 
control, or edit conflicts, each of which 
disrupted the flow of joint work and required 
additional coordination. 

1 41 

Technology-
Related 
Collaboration 
Issues 

These quotes reflect how tool-based issues like 
syncing, lag, edit conflicts, and IDE limitations 
disrupted collaboration 

1 41 

Subtheme 1 - Syntax Error All four categories focus on different angles of 
syntax-related issues: where they come from, 
how hard they feel, how they are tackled, and 
how collaboration supports resolution. Clear 
boundaries and internal coherence are 
maintained. 

1 154 

Nature and Source of 
Syntax Errors 

This category captures specific causes of syntax 
errors such as missing colons, structural 
mistakes, typographical errors, and overlooked 
elements. It reflects how apprentices 
encountered surface-level mistakes that 
disrupted code execution. 

1 45 



325 | P a g e  

 

Name Description Files References 

Code Structure For syntax issues relating to structural 
formatting or layout. 

1 4 

Missing Colon For specific mention of missing colons in syntax. 1 1 

Missing Syntax For syntax errors due to missing elements like 
colons, brackets, or forgotten components. 

1 39 

Syntax Typo For errors caused by typographical mistakes. 1 1 

Perceived Difficulty of 
Syntax 

This category includes apprentice's perceptions 
of syntax errors as either easy or deceptively 
tricky. Some found them manageable due to 
clear error messages, while others initially 
underestimated their complexity. 

1 33 

Syntax Feels Easy For those who found syntax errors more 
straightforward or gained confidence resolving 
them 

1 25 

Syntax for 
Beginners 

For beginner-level ease, familiarity, or exposure 
to syntax debugging. 

1 2 

Syntax is Tricky For quotes that describe syntax errors as 
deceptively hard or initially difficult to handle. 

1 6 

Social and 
Collaborative 
Dimensions 

This category highlights how syntax debugging 
was supported by peer explanations, shared 
roles, and individual strengths in collaborative 
settings. It includes verbal clarification and role-
based task division around syntax. 

1 43 

Explaining syntax 
fixes 

For verbal explanation, negotiation, or 
clarification of syntax fixes during collaboration 

1 15 

Pair support for 
syntax 

For collaborative efforts in addressing syntax 
errors through shared roles or peer help. 

1 13 

Syntax as role 
strength 

For individuals who naturally took the lead on 
syntax due to confidence or skill 

1 15 

Strategies for Syntax 
Debugging 

This category reflects tactical responses to 
syntax errors, such as starting with syntax 
checks, using tools like error highlighting, and 
applying pattern-recognition techniques to spot 
errors. 

1 33 

Fixing Syntax 
Errors 

For comments about actively identifying, 
correcting, or guiding others through syntax 
issues. 

1 9 

Pattern-based 
syntax strategy 

For use of recurring patterns, visual tracing, or 
structured methods in spotting syntax issues. 

1 6 

Syntax First Where participants mention syntax errors as 
their starting point in debugging. 

1 3 

Tool-Assisted 
Syntax Fix 

For use of features like syntax highlighting, error 
popups, or debuggers to spot/fix syntax. 

1 15 
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Subtheme 1 - Technology 
Utilisation 

This subtheme effectively distinguishes 
between execution tools, interface features, 
and collaborative platforms, which are all vital 
to apprentice debugging. 

1 77 

Debugging Tools and 
Execution Support 

This category captures how apprentices 
leveraged key debugging tools—such as the 
IDE’s step-through functionality and print 
statements—to inspect program execution, 
monitor variable states, and detect logical or 
runtime issues. 

1 67 

IDE Debugger 
Usage 

Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction of 
logic errors. 

1 35 

Print Statement 
Debugging 

Apprentices inserted print statements and 
monitored console outputs to trace program 
behaviour and identify bugs during execution. 

1 32 

Interface Guidance 
and Visual Feedback 

This category represents the supportive role of 
the IDE’s user interface elements, including 
syntax highlighting, auto-suggestions, version 
control, and intelligent prompts, which helped 
learners identify errors and streamline their 
workflow. 

1 6 

Other IDE 
Features 

Apprentices benefited from additional IDE tools 
like version control integration, intelligent 
suggestions, and code completion to streamline 
their workflow. 

1 3 

Syntax and Error 
Highlighting 
Features 

The IDE’s syntax highlighting, auto-indentation, 
and inline error notifications supported 
apprentices in quickly spotting and correcting 
code mistakes. 

1 3 

Real-Time 
Collaborative 
Platforms 

This category includes tools that enabled 
synchronous work across distances, allowing 
apprentices to co-edit, share, and coordinate 
their debugging efforts in real time using 
platforms like Visual Studio Live Share. 

1 4 

Real-Time Code 
Sharing and 
Synchronisation 

Tools enabling simultaneous editing and shared 
visibility helped apprentices maintain alignment 
and coordinate debugging in real-time. 

1 2 

Use of Live Share 
for Remote 
Collaboration 

Apprentices leveraged Live Share to 
collaboratively edit, navigate, and debug code 
from separate locations in real time. 

1 2 

Subtheme 2 - Debugging 
Strategies & Tactics 

These categories cover a wide tactical spectrum, 
from exploratory to highly methodical, 
providing a balanced insight into apprentice 
strategies. 

2 86 

Collaborative and 
Reflective Techniques 

This category highlights methods where 
apprentices explained or reviewed code with 
others (or to themselves) to gain insight, clarify 

2 20 
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thinking, and identify errors through reflection 
or external feedback. 

Code Review Apprentices systematically examined and 
critiqued each other's code to identify issues, 
clarify logic, and enhance collaborative 
problem-solving. 

1 12 

Peer Review 
Strength 

Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Rubber Duck 
Debugging 

Apprentices explained their code aloud, to a 
partner or inanimate object, to clarify their 
thinking and uncover logic errors. 

1 7 

Systematic Reasoning 
Strategies 

This category includes logical and structured 
approaches where learners followed data flow, 
stepped through execution, or broke problems 
into smaller parts to locate and address issues in 
a focused, disciplined manner. 

2 46 

Divide and 
conquer 

The issue was resolved by segmenting it into 
independent subproblems. Learners described 
resolving each part methodically. 

2 3 

IDE Debugger 
Usage 

Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction of 
logic errors. 

1 35 

Methodical 
Problem Solving 

The participant used a structured, procedural 
approach to identify the issue. This code praises 
disciplined debugging. 

1 1 

Tracing Apprentices followed the program’s flow line by 
line to understand how data moved and identify 
where the logic broke down. 

1 7 

Tactical Exploration of 
Faults 

This category covers exploratory tactics where 
apprentices relied on recognition of error 
patterns, code segmentation, and hypothesis-
testing to find and resolve bugs. 

2 20 

Pattern Matching Apprentices looked for recurring structures or 
familiar error patterns to quickly locate and fix 
bugs based on previous experience. 

1 3 

Slicing Slicing refers to the strategy of breaking down 
or isolating specific segments of code—such as 
functions, conditions, or loops—to analyse 
them independently. This helps apprentices 
reduce complexity by focusing only on the 
relevant part of the code where the error is 
suspected, making it easier to locate and fix 
bugs collaboratively. 

1 3 

Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described trial 
as a deliberate tactic. 

1 1 
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Tinkering Apprentices intuitively made small code 
changes and tested their effects as a way to 
explore and understand bugs. 

1 3 

Trial and Error Apprentices experimented with different 
solutions without a predefined plan to see what 
resolved the issue through observation. 

1 10 

Subtheme 2 - Logical Error Logical error subthemes contain a rich set of 
categories. These reflect the complexity of the 
issues and the ways learners engaged 
intellectually, emotionally, and socially. Internal 
logic and external differentiation are intact. 

2 131 

Collaboration and 
Communication Aids 

This category reflects the value of teamwork in 
resolving logical errors. It includes quotes where 
learners gained clarity or found solutions by 
explaining to peers, switching roles, or 
combining their strengths. 

1 13 

Collaborative 
clarity 

Understanding emerged more clearly through 
discussions with peers. Explaining logic to 
others often led to personal insight. 

1 3 

Collaborative 
Insight 

New interpretations or corrections were 
achieved by engaging with someone else’s 
viewpoint. The collaboration brought forth 
alternative solutions. 

1 4 

Navigator insight In pair programming, the navigator offered a 
useful perspective. The insight usually shifted 
the course of debugging. 

1 1 

Paired Strengths Learners described how teammates 
complemented their skills. Their collective effort 
covered individual weaknesses. 

1 1 

Peer Review 
Strength 

Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Peer support Emotional or technical encouragement came 
from fellow learners. It acted as a buffer during 
challenging moments. 

1 1 

Role swapping Team members changed roles mid-task to 
better tackle logic issues. The switch brought 
fresh perspective. 

1 2 

Perceived Complexity 
and Emotional 
Response 

This category captures how apprentices found 
logical errors emotionally or cognitively taxing. 
It includes expressions of frustration, struggle, 
or general difficulty in making sense of complex 
conditions or flows. 

1 41 

Agreement on 
Challenge 

Multiple participants expressed a shared view 
that certain logical errors posed significant 
difficulty. The consistency in their sentiments 
adds weight to the issue's complexity. 

1 5 
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Complex Logic 
Breakdown 

Learners attempted to untangle highly intricate 
or nested conditions. The difficulty lay not in 
syntax but in logical architecture. 

1 4 

Error Complexity The nature of the logic error was itself intricate 
and multi-layered. These were not beginner 
mistakes but advanced logic misfires. 

1 10 

Flow Confusion The challenge stemmed from not understanding 
how code progressed during execution. This 
lack of clarity hampered logical deductions. 

1 1 

Found It 
Challenging 

A general admission that the task was tough, 
without further detail. These expressions still 
signal cognitive overload. 

1 7 

General 
Complexity 

Applied when logic problems were described as 
difficult but without specific explanation. It 
captures vague but valid struggle. 

1 5 

Logic Struggle Captures moments of emotional or cognitive 
difficulty expressed by learners tackling logical 
bugs. Participants voiced frustration and mental 
fatigue in trying to make sense of such errors. 

1 4 

Logical Errors 
Challenging 

Serves as a general label for statements 
identifying logic bugs as hard. It doesn’t specify 
which part was problematic. 

1 5 

Reflection and 
Learning Dispositions 

This category captures reflective mindsets 
where apprentices identified growth, 
perseverance, or learning from mistakes. It also 
houses observations about how experience, 
context, and collaboration influenced their 
progress. 

1 31 

Context 
understanding 

Problem-solving success relied on grasping the 
wider function or scenario. The learner needed 
to understand not just 'what' but 'why'. 

1 3 

Experience Builds 
Mastery 

Learners acknowledged that repeated exposure 
helped them improve. Experience was credited 
as a major enabler of logical reasoning. 

1 2 

Growth Mindset Participants expressed confidence that they 
could learn and improve with effort. This 
forward-thinking attitude supports resilience. 

1 1 

Growth Through 
Challenge 

Struggle was reframed as an opportunity for 
learning. Participants reflected positively on the 
difficulty. 

1 4 

Logic and Flow 
Challenges 

Combined challenges in understanding both the 
logic and how it executed. These situations 
involved overlapping difficulties. 

1 6 

Misuse of 'name' Highlights confusion around Python's special 
'__name__' variable. This is a specific example 
of concept misunderstanding. 

1 1 
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Progress Despite 
Errors 

Learners recognised forward movement even 
when mistakes occurred. This shows 
perseverance. 

1 1 

Remote 
Collaboration 
Limits 

The online or distant setup introduced 
difficulties in understanding logic. Distance 
added barriers to debugging. 

1 8 

Runtime Contrast Participants reflected on how runtime errors 
differed from logic ones. This comparative 
insight helped focus their approach. 

1 2 

Unresolved Logic 
Issues 

Some logic problems remained unsolved by 
session end. The code captures lingering 
confusion. 

1 2 

Variable misuse Mistakes occurred due to inappropriate variable 
assignment or tracking. This led to faulty logic. 

1 1 

Skill Gaps and 
Cognitive Limitations 

This category includes participants’ admissions 
of limited knowledge, misunderstood logic, or 
conceptual misapplications. It highlights areas 
where deeper learning or practice was needed 
to engage with logic-based bugs 

1 18 

Acknowledged 
Limitations 

Learners showed self-awareness by noting their 
own lack of proficiency or understanding. These 
admissions underline honesty about gaps in 
capability. 

1 3 

Analytical Gaps Denotes errors that occurred due to missed 
steps or incomplete reasoning processes. This 
suggests an underdeveloped analytical 
sequence. 

1 2 

Calculation 
Confusion 

Errors emerged from difficulties in creating or 
tracing formula-based logic. Mathematical 
thinking was the barrier. 

1 1 

Concept Misuse Participants misapplied key Python concepts, 
leading to logic flaws. These misunderstandings 
pointed to a superficial grasp of coding 
constructs. 

1 2 

Conditional 
Misinterpretation 

Learners misunderstood how conditionals 
executed. This misreading caused flawed logic 
paths. 

1 1 

Contextual 
Misuse 

A function or logic piece was applied in the 
wrong context. The logic was sound, but its 
placement was flawed. 

1 1 

Knowledge Gaps Errors resulted from lacking the foundational 
knowledge needed to apply logic. This code 
tracks missing prerequisites. 

1 6 

Misunderstood 
Logic Flow 

Participants misunderstood how one part of the 
code affected another. These errors revealed 
disconnects in logic mapping. 

1 1 
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Needs More 
Practice 

Participant acknowledged needing repetition or 
further exposure to improve. Practice was seen 
as key to mastering logic. 

1 1 

Strategies and 
Reasoning Approaches 

This category includes structured problem-
solving strategies like breaking problems down, 
isolating faulty logic, following data flow, using 
tool support, and experimenting methodically 
with solutions. 

2 28 

Analytical 
approach 

Describes instances where a participant 
employed step-by-step reasoning or formal 
techniques. It highlights a structured way of 
unravelling complex logic. 

1 1 

Analytical 
Demand 

Reflects how some debugging tasks required 
high-level reasoning and mental exertion. 
Participants perceived the activity as cognitively 
intensive. 

1 1 

Big picture 
review 

Participants referred to stepping back and 
reassessing the entire codebase. This top-down 
perspective helped in recontextualising the 
issue. 

1 1 

Breakdown 
strategy 

Refers to the act of deconstructing a problem 
into simpler parts to aid resolution. Learners 
discussed breaking logic into manageable 
pieces. 

1 1 

Code Isolation 
Strategy 

Participants isolated specific blocks or lines of 
code to test or observe behaviour. This strategy 
helped to narrow the problem area. 

1 2 

Code Visibility 
Advantage 

Clarity in formatting, naming, or organisation 
made it easier to follow the logic. Participants 
attributed their success partly to how readable 
the code was. 

1 1 

Data Flow 
Understanding 

Focused on tracking how information moved 
through variables and functions. This tracking 
helped diagnose where logic broke down. 

1 1 

Deep Dive 
Debugging 

Marked by a thorough and prolonged 
engagement with the problem. Participants 
drilled deep into the logic layer rather than 
skimming. 

1 1 

Deep Logic This reflects the intellectual depth required to 
trace and correct logic faults rooted in Python 
intricacies or conceptual frameworks. It signifies 
scenarios where surface-level knowledge was 
insufficient. 

1 2 

Divide and 
conquer 

The issue was resolved by segmenting it into 
independent subproblems. Learners described 
resolving each part methodically. 

2 3 
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Methodical 
Problem Solving 

The participant used a structured, procedural 
approach to identify the issue. This code praises 
disciplined debugging. 

1 1 

Pattern-based 
reasoning 

Participants applied familiar logic patterns to 
solve new problems. This indicates transfer of 
learning. 

1 1 

Rubber ducking Participants verbalised logic step-by-step, often 
to a peer or non-technical object. This 
externalisation clarified their thinking. 

1 2 

Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described trial 
as a deliberate tactic. 

1 1 

Strategy 
Limitations 

Existing methods or plans failed to resolve the 
logic issue. Learners were forced to reconsider 
their approach. 

1 1 

Tool-assisted 
logic check 

Software tools like debuggers or linters were 
used to identify logic faults. Participants 
credited these for catching errors. 

1 2 

Trial and Error 
Limits 

Participants noted that random guessing was 
ineffective for logic bugs. These problems 
needed deeper thought. 

1 1 

Understanding 
Logic Flow 

A clear picture of how logic moved through 
code aided debugging. This awareness 
streamlined troubleshooting. 

1 5 

Subtheme 2 - Technical & 
Cognitive 

The categories under this subtheme clearly 
reflect technical gaps, cognitive hurdles, and 
runtime-specific complications. 

1 273 

Foundational 
Knowledge Gaps 

This category reflects difficulties stemming from 
apprentices’ limited prior experience with 
Python or programming generally, especially in 
handling syntax-specific rules like indentation 
and punctuation. 

1 166 

Limited 
Experience and 
Skill Gaps 

Apprentices expressed difficulty navigating 
debugging tasks due to being new to 
programming, lacking foundational knowledge, 
or still developing confidence in applying core 
concepts. 

1 15 

Syntax 
Complexity 

Participants frequently encountered syntax 
errors that disrupted code execution, especially 
those involving Python-specific rules like 
indentation, string formatting, or punctuation. 

1 151 

Reasoning and Logic 
Challenges 

This category houses instances where 
apprentices lacked the cognitive strategies to 
understand and apply logic effectively, 
especially when dealing with conditionals, 
calculations, or the broader logic structure. 

1 61 

Logical Reasoning 
Gaps 

Participants struggled with understanding or 
applying correct logic within the code, 

1 61 
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particularly when handling conditionals, 
calculations, or the flow of decision-making. 

Runtime Behaviour 
Confusion 

This category represents the difficulty of 
identifying and resolving bugs that only 
emerged during code execution, particularly 
where program behaviour was unpredictable or 
misunderstood. 

1 46 

Runtime Error 
Complexity 

Several apprentices found runtime errors 
difficult to resolve because they often appeared 
after code execution and required 
understanding how the program behaved 
dynamically. 

1 46 

Subtheme 3 - Cognitive Load 
Sharing 

This subtheme is compact but insightful. It 
cleanly separates structural role-based tactics 
from communication-based cognitive 
coordination. 

1 105 

Real-Time 
Communication and 
Coordination Tools 

This category reflects how verbalisation 
strategies and collaborative digital tools were 
used to coordinate thought processes, reduce 
confusion, and manage the cognitive load 
during remote or paired debugging. 

1 58 

Real-Time Tool 
Support for 
Coordination 

Collaborative tools like IDE features and remote 
sharing platforms were used to support 
synchronised thinking and reduce mental strain. 

1 37 

Think-Aloud 
Communication 

Apprentices verbalised their reasoning and 
thought processes to clarify understanding and 
collaboratively work through errors. 

1 21 

Strategic Role 
Allocation and 
Rotation 

This category captures how apprentices 
strategically assigned roles and alternated them 
to balance mental effort, maintain engagement, 
and leverage individual strengths during 
debugging sessions. 

1 47 

Division of Tasks 
Based on 
Strengths 

Apprentices strategically assigned 
responsibilities based on individual strengths or 
comfort zones to manage complexity and 
maintain focus. 

1 22 

Driver-Navigator 
Role Sharing 

Apprentices adopted a structured pairing model 
where one coded while the other observed and 
guided, helping distribute cognitive demands. 

1 18 

Turn-Taking and 
Role Swapping 

Regular role alternation ensured balanced 
mental effort, reduced fatigue, and kept both 
apprentices engaged throughout the debugging 
session. 

1 7 

Subtheme 3 - Environmental 
and Logistics 

These categories are well-bounded, non-
overlapping, and together provide a complete 
view of non-technical barriers affecting 
collaboration and productivity. 

1 49 
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Connectivity 
Constraints 

This category reflects how unstable internet 
disrupted communication, tool access, and real-
time collaboration—especially in remote or 
bandwidth-limited settings. 

1 1 

Unstable or 
Inconsistent 
Internet 
Connection 

These quotes highlight issues caused by poor or 
unstable internet, affecting real-time 
collaboration or access to tools. 

1 1 

Distractions and Focus 
Challenges 

Distractions and Focus Challenges - This 
includes issues with concentration due to noise, 
interruptions, or other environmental factors 
unique to working remotely from home or other 
informal settings 

1 6 

Distraction in 
Individual Work 
Environments 

These highlight challenges in focus due to 
remote, uncontrolled environments. 

1 6 

Physical Separation 
Barriers 

This category refers to the challenge of not 
being able to visually point to code or easily 
clarify issues due to being physically apart 
during remote pair programming. 

1 11 

Absence of 
Physical Presence 
for Quick 
Clarification 

These represent struggles in not being able to 
point or visually show parts of code 

1 11 

Scheduling and 
Coordination Hurdles 

This category captures difficulties in syncing 
schedules across time zones or managing 
different availability patterns, which limited 
collaboration windows. 

1 5 

Time Zone and 
Scheduling 
Difficulties 

Quotes here reflect challenges related to 
coordinating across different locations or 
schedules. 

1 5 

Tool Setup and 
Accessibility Barriers 

These are initial or recurring issues in 
configuring, accessing, or understanding how to 
use necessary tools like IDEs, version control, or 
communication platforms. 

1 26 

Tool Access or 
Setup Issues 

These quotes relate to initial difficulties in using 
or setting up collaboration tools. 

1 26 

Subtheme 3 - Runtime Error The runtime error subtheme offers a clear focus 
on both the symptoms and difficulty level of 
errors, and learners’ strategies (or lack thereof) 
to resolve them. 

1 84 

Cognitive Perception 
and Difficulty 

This category reflects how runtime issues were 
perceived as overwhelming or uncertain, 
especially when apprentices couldn’t predict 
behaviour or lacked confidence during 
execution. 

1 43 

Runtime 
Overwhelm 

When runtime feels particularly complex or 
challenging. 

1 13 
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Runtime Type 
Confusion 

When the issue involves converting string to 
number or similar. 

1 6 

Runtime 
Uncertainty 

For quotes where learners are confident with 
syntax but unsure about runtime. 

1 24 

Debugging Approaches 
for Runtime 

This category captures how apprentices 
attempted to resolve runtime errors, 
particularly by using print statements or 
acknowledging a lack of structured strategy. 

1 6 

Runtime Print 
Tracking 

For those using print statements to trace issues. 1 4 

Runtime Strategy 
Lacking 

When trial-and-error or lack of method was 
highlighted. 

1 2 

Types and Causes of 
Runtime Errors 

This category identifies the nature of runtime 
errors apprentices faced, such as infinite loops, 
undefined variables, and type conversion issues, 
all of which occurred during execution. 

1 35 

Execution Flow For difficulty understanding the order of 
execution in Python. 

1 5 

Infinite Loop For errors involving loops that do not terminate. 1 17 

Type Conversion For issues converting between data types (e.g. 
string to number) 

1 8 

Undefined 
Variable 

For use of variables that were not defined 
before use. 

1 5 
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Theme 1 - Error Spectrum This theme captures the range and types of 
programming errors (Syntax, Logical, and 
Runtime) that apprentices encountered 
during collaborative debugging. It highlights 
how these errors differ in nature, difficulty, 
and required problem-solving strategies. 

2 369 

Subtheme 1 - Syntax Error All four categories focus on different angles 
of syntax-related issues: where they come 
from, how hard they feel, how they are 
tackled, and how collaboration supports 
resolution. Clear boundaries and internal 
coherence are maintained. 

1 154 

Nature and Source of 
Syntax Errors 

This category captures specific causes of 
syntax errors such as missing colons, 
structural mistakes, typographical errors, 
and overlooked elements. It reflects how 
apprentices encountered surface-level 
mistakes that disrupted code execution. 

1 45 

Code Structure For syntax issues relating to structural 
formatting or layout. 

1 4 

Missing Colon For specific mention of missing colons in 
syntax. 

1 1 

Missing Syntax For syntax errors due to missing elements 
like colons, brackets, or forgotten 
components. 

1 39 

Syntax Typo For errors caused by typographical mistakes. 1 1 

Perceived Difficulty of 
Syntax 

This category includes apprentice's 
perceptions of syntax errors as either easy or 
deceptively tricky. Some found them 
manageable due to clear error messages, 
while others initially underestimated their 
complexity. 

1 33 

Syntax Feels Easy For those who found syntax errors more 
straightforward or gained confidence 
resolving them 

1 25 

Syntax for 
Beginners 

For beginner-level ease, familiarity, or 
exposure to syntax debugging. 

1 2 

Syntax is Tricky For quotes that describe syntax errors as 
deceptively hard or initially difficult to 
handle. 

1 6 

Social and 
Collaborative 
Dimensions 

This category highlights how syntax 
debugging was supported by peer 
explanations, shared roles, and individual 
strengths in collaborative settings. It includes 

1 43 
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verbal clarification and role-based task 
division around syntax. 

Explaining syntax 
fixes 

For verbal explanation, negotiation, or 
clarification of syntax fixes during 
collaboration 

1 15 

Pair support for 
syntax 

For collaborative efforts in addressing syntax 
errors through shared roles or peer help. 

1 13 

Syntax as role 
strength 

For individuals who naturally took the lead 
on syntax due to confidence or skill 

1 15 

Strategies for Syntax 
Debugging 

This category reflects tactical responses to 
syntax errors, such as starting with syntax 
checks, using tools like error highlighting, 
and applying pattern-recognition techniques 
to spot errors. 

1 33 

Fixing Syntax 
Errors 

For comments about actively identifying, 
correcting, or guiding others through syntax 
issues. 

1 9 

Pattern-based 
syntax strategy 

For use of recurring patterns, visual tracing, 
or structured methods in spotting syntax 
issues. 

1 6 

Syntax First Where participants mention syntax errors as 
their starting point in debugging. 

1 3 

Tool-Assisted 
Syntax Fix 

For use of features like syntax highlighting, 
error popups, or debuggers to spot/fix 
syntax. 

1 15 

Subtheme 2 - Logical Error Logical error subthemes contain a rich set of 
categories. These reflect the complexity of 
the issues and the ways learners engaged 
intellectually, emotionally, and socially. 
Internal logic and external differentiation are 
intact. 

2 131 

Collaboration and 
Communication Aids 

This category reflects the value of teamwork 
in resolving logical errors. It includes quotes 
where learners gained clarity or found 
solutions by explaining to peers, switching 
roles, or combining their strengths. 

1 13 

Collaborative 
clarity 

Understanding emerged more clearly 
through discussions with peers. Explaining 
logic to others often led to personal insight. 

1 3 

Collaborative 
Insight 

New interpretations or corrections were 
achieved by engaging with someone else’s 
viewpoint. The collaboration brought forth 
alternative solutions. 

1 4 

Navigator insight In pair programming, the navigator offered a 
useful perspective. The insight usually 
shifted the course of debugging. 

1 1 
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Paired Strengths Learners described how teammates 
complemented their skills. Their collective 
effort covered individual weaknesses. 

1 1 

Peer Review 
Strength 

Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Peer support Emotional or technical encouragement came 
from fellow learners. It acted as a buffer 
during challenging moments. 

1 1 

Role swapping Team members changed roles mid-task to 
better tackle logic issues. The switch brought 
fresh perspective. 

1 2 

Perceived Complexity 
and Emotional 
Response 

This category captures how apprentices 
found logical errors emotionally or 
cognitively taxing. It includes expressions of 
frustration, struggle, or general difficulty in 
making sense of complex conditions or flows. 

1 41 

Agreement on 
Challenge 

Multiple participants expressed a shared 
view that certain logical errors posed 
significant difficulty. The consistency in their 
sentiments adds weight to the issue's 
complexity. 

1 5 

Complex Logic 
Breakdown 

Learners attempted to untangle highly 
intricate or nested conditions. The difficulty 
lay not in syntax but in logical architecture. 

1 4 

Error Complexity The nature of the logic error was itself 
intricate and multi-layered. These were not 
beginner mistakes but advanced logic 
misfires. 

1 10 

Flow Confusion The challenge stemmed from not 
understanding how code progressed during 
execution. This lack of clarity hampered 
logical deductions. 

1 1 

Found It 
Challenging 

A general admission that the task was tough, 
without further detail. These expressions still 
signal cognitive overload. 

1 7 

General 
Complexity 

Applied when logic problems were described 
as difficult but without specific explanation. 
It captures vague but valid struggle. 

1 5 

Logic Struggle Captures moments of emotional or cognitive 
difficulty expressed by learners tackling 
logical bugs. Participants voiced frustration 
and mental fatigue in trying to make sense of 
such errors. 

1 4 

Logical Errors 
Challenging 

Serves as a general label for statements 
identifying logic bugs as hard. It doesn’t 
specify which part was problematic. 

1 5 
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Reflection and 
Learning Dispositions 

This category captures reflective mindsets 
where apprentices identified growth, 
perseverance, or learning from mistakes. It 
also houses observations about how 
experience, context, and collaboration 
influenced their progress. 

1 31 

Context 
understanding 

Problem-solving success relied on grasping 
the wider function or scenario. The learner 
needed to understand not just 'what' but 
'why'. 

1 3 

Experience Builds 
Mastery 

Learners acknowledged that repeated 
exposure helped them improve. Experience 
was credited as a major enabler of logical 
reasoning. 

1 2 

Growth Mindset Participants expressed confidence that they 
could learn and improve with effort. This 
forward-thinking attitude supports 
resilience. 

1 1 

Growth Through 
Challenge 

Struggle was reframed as an opportunity for 
learning. Participants reflected positively on 
the difficulty. 

1 4 

Logic and Flow 
Challenges 

Combined challenges in understanding both 
the logic and how it executed. These 
situations involved overlapping difficulties. 

1 6 

Misuse of 'name' Highlights confusion around Python's special 
'__name__' variable. This is a specific 
example of concept misunderstanding. 

1 1 

Progress Despite 
Errors 

Learners recognised forward movement 
even when mistakes occurred. This shows 
perseverance. 

1 1 

Remote 
Collaboration 
Limits 

The online or distant setup introduced 
difficulties in understanding logic. Distance 
added barriers to debugging. 

1 8 

Runtime Contrast Participants reflected on how runtime errors 
differed from logic ones. This comparative 
insight helped focus their approach. 

1 2 

Unresolved Logic 
Issues 

Some logic problems remained unsolved by 
session end. The code captures lingering 
confusion. 

1 2 

Variable misuse Mistakes occurred due to inappropriate 
variable assignment or tracking. This led to 
faulty logic. 

1 1 

Skill Gaps and 
Cognitive Limitations 

This category includes participants’ 
admissions of limited knowledge, 
misunderstood logic, or conceptual 
misapplications. It highlights areas where 
deeper learning or practice was needed to 
engage with logic-based bugs 

1 18 
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Acknowledged 
Limitations 

Learners showed self-awareness by noting 
their own lack of proficiency or 
understanding. These admissions underline 
honesty about gaps in capability. 

1 3 

Analytical Gaps Denotes errors that occurred due to missed 
steps or incomplete reasoning processes. 
This suggests an underdeveloped analytical 
sequence. 

1 2 

Calculation 
Confusion 

Errors emerged from difficulties in creating 
or tracing formula-based logic. Mathematical 
thinking was the barrier. 

1 1 

Concept Misuse Participants misapplied key Python concepts, 
leading to logic flaws. These 
misunderstandings pointed to a superficial 
grasp of coding constructs. 

1 2 

Conditional 
Misinterpretation 

Learners misunderstood how conditionals 
executed. This misreading caused flawed 
logic paths. 

1 1 

Contextual 
Misuse 

A function or logic piece was applied in the 
wrong context. The logic was sound, but its 
placement was flawed. 

1 1 

Knowledge Gaps Errors resulted from lacking the foundational 
knowledge needed to apply logic. This code 
tracks missing prerequisites. 

1 6 

Misunderstood 
Logic Flow 

Participants misunderstood how one part of 
the code affected another. These errors 
revealed disconnects in logic mapping. 

1 1 

Needs More 
Practice 

Participant acknowledged needing repetition 
or further exposure to improve. Practice was 
seen as key to mastering logic. 

1 1 

Strategies and 
Reasoning Approaches 

This category includes structured problem-
solving strategies like breaking problems 
down, isolating faulty logic, following data 
flow, using tool support, and experimenting 
methodically with solutions. 

2 28 

Analytical 
approach 

Describes instances where a participant 
employed step-by-step reasoning or formal 
techniques. It highlights a structured way of 
unravelling complex logic. 

1 1 

Analytical 
Demand 

Reflects how some debugging tasks required 
high-level reasoning and mental exertion. 
Participants perceived the activity as 
cognitively intensive. 

1 1 

Big picture 
review 

Participants referred to stepping back and 
reassessing the entire codebase. This top-
down perspective helped in 
recontextualising the issue. 

1 1 
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Breakdown 
strategy 

Refers to the act of deconstructing a 
problem into simpler parts to aid resolution. 
Learners discussed breaking logic into 
manageable pieces. 

1 1 

Code Isolation 
Strategy 

Participants isolated specific blocks or lines 
of code to test or observe behaviour. This 
strategy helped to narrow the problem area. 

1 2 

Code Visibility 
Advantage 

Clarity in formatting, naming, or organisation 
made it easier to follow the logic. 
Participants attributed their success partly to 
how readable the code was. 

1 1 

Data Flow 
Understanding 

Focused on tracking how information moved 
through variables and functions. This 
tracking helped diagnose where logic broke 
down. 

1 1 

Deep Dive 
Debugging 

Marked by a thorough and prolonged 
engagement with the problem. Participants 
drilled deep into the logic layer rather than 
skimming. 

1 1 

Deep Logic This reflects the intellectual depth required 
to trace and correct logic faults rooted in 
Python intricacies or conceptual frameworks. 
It signifies scenarios where surface-level 
knowledge was insufficient. 

1 2 

Divide and 
conquer 

The issue was resolved by segmenting it into 
independent subproblems. Learners 
described resolving each part methodically. 

2 3 

Methodical 
Problem Solving 

The participant used a structured, procedural 
approach to identify the issue. This code 
praises disciplined debugging. 

1 1 

Pattern-based 
reasoning 

Participants applied familiar logic patterns to 
solve new problems. This indicates transfer 
of learning. 

1 1 

Rubber ducking Participants verbalised logic step-by-step, 
often to a peer or non-technical object. This 
externalisation clarified their thinking. 

1 2 

Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described 
trial as a deliberate tactic. 

1 1 

Strategy 
Limitations 

Existing methods or plans failed to resolve 
the logic issue. Learners were forced to 
reconsider their approach. 

1 1 

Tool-assisted 
logic check 

Software tools like debuggers or linters were 
used to identify logic faults. Participants 
credited these for catching errors. 

1 2 

Trial and Error 
Limits 

Participants noted that random guessing was 
ineffective for logic bugs. These problems 
needed deeper thought. 

1 1 
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Understanding 
Logic Flow 

A clear picture of how logic moved through 
code aided debugging. This awareness 
streamlined troubleshooting. 

1 5 

Subtheme 3 - Runtime Error The runtime error subtheme offers a clear 
focus on both the symptoms and difficulty 
level of errors, and learners’ strategies (or 
lack thereof) to resolve them. 

1 84 

Cognitive Perception 
and Difficulty 

This category reflects how runtime issues 
were perceived as overwhelming or 
uncertain, especially when apprentices 
couldn’t predict behaviour or lacked 
confidence during execution. 

1 43 

Runtime 
Overwhelm 

When runtime feels particularly complex or 
challenging. 

1 13 

Runtime Type 
Confusion 

When the issue involves converting string to 
number or similar. 

1 6 

Runtime 
Uncertainty 

For quotes where learners are confident with 
syntax but unsure about runtime. 

1 24 

Debugging Approaches 
for Runtime 

This category captures how apprentices 
attempted to resolve runtime errors, 
particularly by using print statements or 
acknowledging a lack of structured strategy. 

1 6 

Runtime Print 
Tracking 

For those using print statements to trace 
issues. 

1 4 

Runtime Strategy 
Lacking 

When trial-and-error or lack of method was 
highlighted. 

1 2 

Types and Causes of 
Runtime Errors 

This category identifies the nature of 
runtime errors apprentices faced, such as 
infinite loops, undefined variables, and type 
conversion issues, all of which occurred 
during execution. 

1 35 

Execution Flow For difficulty understanding the order of 
execution in Python. 

1 5 

Infinite Loop For errors involving loops that do not 
terminate. 

1 17 

Type Conversion For issues converting between data types 
(e.g. string to number) 

1 8 

Undefined 
Variable 

For use of variables that were not defined 
before use. 

1 5 

Theme 2 - Technical and Cognitive 
Skills 

This theme reflects the skills, tools, and 
cognitive strategies that apprentices 
deployed to debug effectively. It includes the 
use of IDE features, reasoning techniques, 
and collaborative planning to manage 
complexity and solve problems. 

2 268 

Subtheme 1 - Technology 
Utilisation 

This subtheme effectively distinguishes 
between execution tools, interface features, 

1 77 
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and collaborative platforms, which are all 
vital to apprentice debugging. 

Debugging Tools and 
Execution Support 

This category captures how apprentices 
leveraged key debugging tools—such as the 
IDE’s step-through functionality and print 
statements—to inspect program execution, 
monitor variable states, and detect logical or 
runtime issues. 

1 67 

IDE Debugger 
Usage 

Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction 
of logic errors. 

1 35 

Print Statement 
Debugging 

Apprentices inserted print statements and 
monitored console outputs to trace program 
behaviour and identify bugs during 
execution. 

1 32 

Interface Guidance 
and Visual Feedback 

This category represents the supportive role 
of the IDE’s user interface elements, 
including syntax highlighting, auto-
suggestions, version control, and intelligent 
prompts, which helped learners identify 
errors and streamline their workflow. 

1 6 

Other IDE 
Features 

Apprentices benefited from additional IDE 
tools like version control integration, 
intelligent suggestions, and code completion 
to streamline their workflow. 

1 3 

Syntax and Error 
Highlighting 
Features 

The IDE’s syntax highlighting, auto-
indentation, and inline error notifications 
supported apprentices in quickly spotting 
and correcting code mistakes. 

1 3 

Real-Time 
Collaborative 
Platforms 

This category includes tools that enabled 
synchronous work across distances, allowing 
apprentices to co-edit, share, and coordinate 
their debugging efforts in real time using 
platforms like Visual Studio Live Share. 

1 4 

Real-Time Code 
Sharing and 
Synchronisation 

Tools enabling simultaneous editing and 
shared visibility helped apprentices maintain 
alignment and coordinate debugging in real-
time. 

1 2 

Use of Live Share 
for Remote 
Collaboration 

Apprentices leveraged Live Share to 
collaboratively edit, navigate, and debug 
code from separate locations in real time. 

1 2 

Subtheme 2 - Debugging 
Strategies & Tactics 

These categories cover a wide tactical 
spectrum, from exploratory to highly 
methodical, providing a balanced insight into 
apprentice strategies. 

2 86 

Collaborative and 
Reflective Techniques 

This category highlights methods where 
apprentices explained or reviewed code with 
others (or to themselves) to gain insight, 

2 20 
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clarify thinking, and identify errors through 
reflection or external feedback. 

Code Review Apprentices systematically examined and 
critiqued each other's code to identify issues, 
clarify logic, and enhance collaborative 
problem-solving. 

1 12 

Peer Review 
Strength 

Logic errors were identified through peer 
feedback. Review mechanisms improved 
accuracy. 

1 1 

Rubber Duck 
Debugging 

Apprentices explained their code aloud—to a 
partner or inanimate object, to clarify their 
thinking and uncover logic errors. 

1 7 

Systematic Reasoning 
Strategies 

This category includes logical and structured 
approaches where learners followed data 
flow, stepped through execution, or broke 
problems into smaller parts to locate and 
address issues in a focused, disciplined 
manner. 

2 46 

Divide and 
conquer 

The issue was resolved by segmenting it into 
independent subproblems. Learners 
described resolving each part methodically. 

2 3 

IDE Debugger 
Usage 

Apprentices used the IDE debugger to step 
through code and inspect variable states, 
enabling precise identification and correction 
of logic errors. 

1 35 

Methodical 
Problem Solving 

The participant used a structured, procedural 
approach to identify the issue. This code 
praises disciplined debugging. 

1 1 

Tracing Apprentices followed the program’s flow line 
by line to understand how data moved and 
identify where the logic broke down. 

1 7 

Tactical Exploration of 
Faults 

This category covers exploratory tactics 
where apprentices relied on recognition of 
error patterns, code segmentation, and 
hypothesis-testing to find and resolve bugs. 

2 20 

Pattern Matching Apprentices looked for recurring structures 
or familiar error patterns to quickly locate 
and fix bugs based on previous experience. 

1 3 

Slicing Slicing refers to the strategy of breaking 
down or isolating specific segments of 
code—such as functions, conditions, or 
loops—to analyse them independently. This 
helps apprentices reduce complexity by 
focusing only on the relevant part of the 
code where the error is suspected, making it 
easier to locate and fix bugs collaboratively. 

1 3 
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Solution 
experimentation 

Debugging involved trying multiple possible 
solutions to test logic. Learners described 
trial as a deliberate tactic. 

1 1 

Tinkering Apprentices intuitively made small code 
changes and tested their effects as a way to 
explore and understand bugs. 

1 3 

Trial and Error Apprentices experimented with different 
solutions without a predefined plan to see 
what resolved the issue through observation. 

1 10 

Subtheme 3 - Cognitive Load 
Sharing 

This subtheme is compact but insightful. It 
cleanly separates structural role-based 
tactics from communication-based cognitive 
coordination. 

1 105 

Real-Time 
Communication and 
Coordination Tools 

This category reflects how verbalisation 
strategies and collaborative digital tools 
were used to coordinate thought processes, 
reduce confusion, and manage the cognitive 
load during remote or paired debugging. 

1 58 

Real-Time Tool 
Support for 
Coordination 

Collaborative tools like IDE features and 
remote sharing platforms were used to 
support synchronised thinking and reduce 
mental strain. 

1 37 

Think-Aloud 
Communication 

Apprentices verbalised their reasoning and 
thought processes to clarify understanding 
and collaboratively work through errors. 

1 21 

Strategic Role 
Allocation and 
Rotation 

This category captures how apprentices 
strategically assigned roles and alternated 
them to balance mental effort, maintain 
engagement, and leverage individual 
strengths during debugging sessions. 

1 47 

Division of Tasks 
Based on 
Strengths 

Apprentices strategically assigned 
responsibilities based on individual strengths 
or comfort zones to manage complexity and 
maintain focus. 

1 22 

Driver-Navigator 
Role Sharing 

Apprentices adopted a structured pairing 
model where one coded while the other 
observed and guided, helping distribute 
cognitive demands. 

1 18 

Turn-Taking and 
Role Swapping 

Regular role alternation ensured balanced 
mental effort, reduced fatigue, and kept 
both apprentices engaged throughout the 
debugging session. 

1 7 

Theme 3 - Challenges This theme represents the barriers, 
limitations, and points of difficulty 
apprentices experienced during remote pair 
debugging. It includes communication 
constraints, technical skill gaps, and 
environmental disruptions affecting their 
workflow. 

1 456 
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Subtheme 1 - 
Communication and 
Collaboration 

The three categories here cover 
verbal/gestural limitations, cognitive 
misalignment, and tool-based disruptions, all 
central to remote pair debugging challenges. 

1 134 

Interpretation and 
Understanding 
Conflicts 

This category includes moments where 
apprentices interpreted instructions, logic, or 
errors differently, resulting in delays or 
confusion in collaborative debugging. 

1 33 

Misalignment in 
Understanding 

These reflect how apprentices experienced 
confusion or divergent interpretations of 
logic or instructions during debugging 
sessions 

1 33 

Remote Expression 
Challenges 

This category captures how apprentices 
struggled to communicate ideas clearly 
without the benefit of facial expressions, 
gestures, or in-person context—leading to 
misunderstandings, over-explaining, or extra 
effort in articulation. 

1 60 

Difficulty 
Conveying 
Thought Process 
Remotely 

These quotes are focused on how 
apprentices struggled to explain, align, or 
communicate their reasoning without face-
to-face interaction 

1 27 

Lack of Non-
Verbal Feedback 

These reflect how the absence of visual, 
gestural, or facial cues hindered effective 
communication and understanding during 
remote debugging 

1 33 

Tool Limitations in 
Remote Setup 

This category captures tool-based challenges 
such as lag, syncing issues, limited shared 
control, or edit conflicts, each of which 
disrupted the flow of joint work and required 
additional coordination. 

1 41 

Technology-
Related 
Collaboration 
Issues 

These quotes reflect how tool-based issues 
like syncing, lag, edit conflicts, and IDE 
limitations disrupted collaboration 

1 41 

Subtheme 2 - Technical & 
Cognitive 

The categories under this subtheme clearly 
reflect technical gaps, cognitive hurdles, and 
runtime-specific complications. 

1 273 

Foundational 
Knowledge Gaps 

This category reflects difficulties stemming 
from apprentices’ limited prior experience 
with Python or programming generally, 
especially in handling syntax-specific rules 
like indentation and punctuation. 

1 166 

Limited 
Experience and 
Skill Gaps 

Apprentices expressed difficulty navigating 
debugging tasks due to being new to 
programming, lacking foundational 
knowledge, or still developing confidence in 
applying core concepts. 

1 15 
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Syntax 
Complexity 

Participants frequently encountered syntax 
errors that disrupted code execution, 
especially those involving Python-specific 
rules like indentation, string formatting, or 
punctuation. 

1 151 

Reasoning and Logic 
Challenges 

This category houses instances where 
apprentices lacked the cognitive strategies to 
understand and apply logic effectively, 
especially when dealing with conditionals, 
calculations, or the broader logic structure. 

1 61 

Logical Reasoning 
Gaps 

Participants struggled with understanding or 
applying correct logic within the code, 
particularly when handling conditionals, 
calculations, or the flow of decision-making. 

1 61 

Runtime Behaviour 
Confusion 

This category represents the difficulty of 
identifying and resolving bugs that only 
emerged during code execution, particularly 
where program behaviour was unpredictable 
or misunderstood. 

1 46 

Runtime Error 
Complexity 

Several apprentices found runtime errors 
difficult to resolve because they often 
appeared after code execution and required 
understanding how the program behaved 
dynamically. 

1 46 

Subtheme 3 - Environmental 
and Logistics 

These categories are well-bounded, non-
overlapping, and together provide a 
complete view of non-technical barriers 
affecting collaboration and productivity. 

1 49 

Connectivity 
Constraints 

This category reflects how unstable internet 
disrupted communication, tool access, and 
real-time collaboration, especially in remote 
or bandwidth-limited settings. 

1 1 

Unstable or 
Inconsistent 
Internet 
Connection 

These quotes highlight issues caused by poor 
or unstable internet, affecting real-time 
collaboration or access to tools. 

1 1 

Distractions and Focus 
Challenges 

Distractions and Focus Challenges This 
includes issues with concentration due to 
noise, interruptions, or other environmental 
factors unique to working remotely from 
home or other informal settings 

1 6 

Distraction in 
Individual Work 
Environments 

These highlight challenges in focus due to 
remote, uncontrolled environments. 

1 6 

Physical Separation 
Barriers 

This category refers to the challenge of not 
being able to visually point to code or easily 
clarify issues due to being physically apart 
during remote pair programming. 

1 11 
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Absence of 
Physical Presence 
for Quick 
Clarification 

These represent struggles in not being able 
to point or visually show parts of code 

1 11 

Scheduling and 
Coordination Hurdles 

This category captures difficulties in syncing 
schedules across time zones or managing 
different availability patterns, which limited 
collaboration windows. 

1 5 

Time Zone and 
Scheduling 
Difficulties 

Quotes here reflect challenges related to 
coordinating across different locations or 
schedules. 

1 5 

Tool Setup and 
Accessibility Barriers 

These are initial or recurring issues in 
configuring, accessing, or understanding how 
to use necessary tools like IDEs, version 
control, or communication platforms. 

1 26 

Tool Access or 
Setup Issues 

These quotes relate to initial difficulties in 
using or setting up collaboration tools. 

1 26 
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DPP 
Codes\\Focus Group\\Stage 1 & 2 - Familiarisation & Coding 
 

Name Description Files References 

Building mental 
models through 
documentation 

Writing comments and diagrams helps apprentices 
internalise code structure. 

1 1 

Casual reasoning as 
entry point 

Debugging often starts with general intuition rather 
than a structured plan. 

1 1 

Casual reasoning 
misses logical errors 

Relying solely on intuition often overlooks deeper 
logical issues. 

1 1 

Casual reasoning 
reliance 

Initial debugging efforts are frequently guided by 
intuitive rather than logical reasoning. 

1 1 

Challenges in tracing 
code 

Apprentices often find it difficult to follow code 
execution paths. 

1 1 

Code complexity is 
overwhelming 

Large and unfamiliar codebases can hinder 
apprentices' navigation and focus. 

1 1 

Confirmation bias 
skews debugging 

Preconceived assumptions can prevent apprentices 
from seeing simple bugs. 

1 1 

Copying solutions 
without 
understanding 

Replicating peer solutions without comprehension 
weakens problem-solving development. 

1 1 

Debugging depends 
on bug type 

Strategy effectiveness depends on the complexity and 
category of the bug. 

1 1 

Debugging is 
influenced by learning 
style 

Effective debugging strategies vary based on an 
apprentice’s preferred learning style. 

1 1 

Debugging is shaped 
by collaboration 
quality 

Team synergy significantly influences the effectiveness 
of joint debugging. 

1 1 

Debugging strategy 
depends on context 

Approaches to debugging vary depending on the 
project and type of bug. 

1 1 

Debugging tasks build 
confidence 
incrementally 

Solving increasingly complex bugs builds apprentice 
confidence step by step. 

1 1 

Difficulty segmenting 
code 

Apprentices struggle to break complex problems into 
manageable parts. 

1 1 

Documenting aids 
learning 

Keeping records of debugging efforts enhances long-
term problem-solving skills. 

1 1 
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Effective use of top-
down 

A structured top-down strategy improves debugging 
outcomes. 

1 1 

Error messages 
mislead 

Misreading error outputs can lead apprentices down 
unproductive paths. 

1 1 

Explaining debugging 
process 

Verbalising thought processes helps apprentices arrive 
at solutions. 

1 1 

Exploring before 
understanding 

Jumping into debugging without a plan often wastes 
effort. 

1 1 

External time 
pressure disrupts 
debugging 

High-pressure scenarios often lead apprentices to 
abandon systematic debugging. 

1 1 

Feedback from code 
review reshapes 
mindset 

Constructive feedback during reviews influences 
debugging confidence and approach. 

1 1 

Fixation on wrong 
sections 

Focusing narrowly on specific code sections leads to 
oversight of wider issues. 

1 1 

Go-to use of print 
statements 

Print statements are a preferred initial debugging 
method due to familiarity. 

1 1 

Growth in tool 
appreciation 

Apprentices learn to value tool efficiency once they 
overcome initial hesitation. 

1 1 

Guessing based on 
code understanding 

Apprentices rely on surface-level comprehension of 
code to make educated guesses about bug locations. 

1 1 

Hesitation to adopt 
tools 

New users often delay embracing powerful debugging 
tools due to fear or lack of confidence. 

1 1 

Hypothesising from 
current code state 

Apprentices form assumptions based on initial code 
inspection. 

1 1 

IDE debugger solves 
python bug 

Learning debugger tools enabled successful resolution 
of  Python bugs. 

1 1 

IDE familiarity 
improves speed 

Familiarity with debugging environments leads to 
faster problem resolution. 

1 1 

IDE intimidation 
delays adoption 

Fear of using debugger features prolongs reliance on 
basic methods. 

1 1 

Incomplete mental 
model causes 
missteps 

Gaps in understanding program flow often lead to 
flawed assumptions. 

1 1 

Initial intimidation 
with IDEs 

Beginners often find IDE tools overwhelming, delaying 
their usage. 

1 1 

Initial struggle with 
advanced tools 

Advanced debugging tools pose challenges for 
novices. 

1 1 

Jumping to 
conclusions without 
testing 

Making changes without verification disrupts 
debugging accuracy. 

1 1 

Lack of consistency in 
strategy 

Frequent switching between debugging approaches 
without persistence hinders learning. 

1 1 
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Lack of planning leads 
to repeated mistakes 

Without structured reflection, apprentices often 
repeat ineffective actions. 

1 1 

Learning through pair 
programming 

Collaborative programming accelerates understanding 
of debugging processes. 

1 1 

Mastering slicing Learning to slice code effectively improves tracing and 
debugging accuracy. 

1 1 

Mentorship via code 
reviews 

Experienced developers guiding apprentices 
significantly improves their debugging effectiveness. 

1 1 

Not understanding 
broader impact 

Neglecting the system-wide effects of a bug fix can 
cause further errors. 

1 1 

Overconfidence hides 
errors 

Confidence without verification can blind apprentices 
to simple coding mistakes. 

1 1 

Pair programming 
exposes memory leak 

Collaborative debugging quickly uncovered a memory 
leak issue. 

1 1 

Pattern matching 
experience 

Recognising recurring error patterns assists in efficient 
problem solving. 

1 1 

Pattern matching in 
Python debugging 

Python debugging becomes easier when apprentices 
identify recurring structural patterns. 

1 1 

Peer-led 
walkthroughs 
encourage reflection 

Explaining code to peers prompts apprentices to think 
more critically about their logic. 

1 1 

Progress from prints 
to breakpoints 

Debugging maturity shows in transitioning from print 
statements to advanced IDE features. 

1 1 

Quiet debugging 
helps focus 

A calm, low-distraction environment enhances 
debugging concentration. 

1 1 

Regular debugging 
journals enhance 
strategy retention 

Consistent journaling of bugs and fixes helps 
apprentices avoid repeating mistakes. 

1 1 

Replication supports 
root cause analysis 

Reproducing bugs consistently helps clarify underlying 
causes. 

1 1 

Rubber duck 
debugging helps 
recursion 

Explaining recursive problems aloud clarified their 
solution. 

1 1 

Rushed learning 
under pressure 

Time constraints force apprentices to prioritise quick 
fixes over deeper understanding. 

1 1 

Sharpness through 
code review 

Participating in code reviews sharpens bug detection 
skills. 

1 1 

Simulation of bugs 
helps strategy 
selection 

Creating and solving artificial bugs allows apprentices 
to test and compare strategies. 

1 1 

Skipping small tests 
leads to big issues 

Neglecting to test small units can result in wasted 
debugging time 

1 1 

Slicing improves 
isolation 

Slicing enables more precise identification of fault 
origins in code. 

1 1 
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Step-by-step 
execution preferred 

Structured, sequential debugging aids apprentices in 
isolating and resolving issues. 

1 1 

Structured top-down 
debugging 

A systematic top-down method simplifies complex 
debugging tasks. 

1 1 

Structured training 
improves strategy use 

Formal instruction in debugging techniques 
accelerates apprentice development. 

1 1 

Struggling to interpret 
error logs 

Complex logs and stack traces are difficult for new 
apprentices to decode. 

1 1 

Success boosted by 
guided debugging 

Step-by-step guidance in early debugging exercises 
improves long-term independence. 

1 1 

Switch to trial-and-
error 

When intuition fails, apprentices default to 
experimenting with fixes. 

1 1 

Testing leads to early 
bug discovery 

Writing tests regularly helps apprentices catch bugs 
early. 

1 1 

Tool choice 
influenced by 
language 

Programming language and tech stack shape the 
debugging approach. 

1 1 

Tool comfort impacts 
strategy 

Confidence in using IDEs influences which debugging 
methods are applied. 

1 1 

Trial-and-error fits 
web debugging 

Unstructured trial-and-error can work well in simpler 
web-based contexts. 

1 1 

Trial-and-error 
method 

Debugging often begins with non-systematic 
experimentation that can be inefficient. 

1 1 

Understanding bug 
impact 

Comprehending how a fix affects the whole system is 
crucial to effective debugging. 

1 1 

Unit testing enhances 
robustness 

Implementing unit tests boosts confidence in code 
stability. 

1 1 

Use of isolation 
techniques 

Employing isolation helps apprentices identify and 
address specific errors. 

1 1 

Visual cues in IDEs 
improve flow tracing 

Graphical IDE features help clarify complex function 
flows for visual learners. 

1 1 

Visual debugging 
supports 
understanding 

Graphical representations aid in tracing program flow 
and state changes. 

1 1 

Visual strategies for 
visual learners 

Visual tools like debuggers support those with visual 
learning preferences. 

1 1 
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Bug Replication Focuses on the importance of recreating bugs as 
a strategic practice to understand error 
behaviour and trace root causes effectively. 

1 2 

Replication supports 
root cause analysis 

Reproducing bugs consistently helps clarify 
underlying causes. 

1 1 

Rushed learning 
under pressure 

Time constraints force apprentices to prioritise 
quick fixes over deeper understanding. 

1 1 

Cognitive Load Describes the mental burden apprentices 
experience when managing multiple elements of 
code logic, often leading to overwhelm or errors 
in reasoning. 

2 8 

Challenges in tracing 
code 

Apprentices often find it difficult to follow code 
execution paths. 

1 1 

Code complexity is 
overwhelming 

Large and unfamiliar codebases can hinder 
apprentices' navigation and focus. 

1 1 

Difficulty segmenting 
code 

Apprentices struggle to break complex problems 
into manageable parts. 

1 1 

Fixation on wrong 
sections 

Focusing narrowly on specific code sections 
leads to oversight of wider issues. 

1 1 

Incomplete mental 
model causes 
missteps 

Gaps in understanding program flow often lead 
to flawed assumptions. 

1 1 

Not understanding 
broader impact 

Neglecting the system-wide effects of a bug fix 
can cause further errors. 

1 1 

Overconfidence hides 
errors 

Confidence without verification can blind 
apprentices to simple coding mistakes. 

1 1 

Understanding bug 
impact 

Comprehending how a fix affects the whole 
system is crucial to effective debugging. 

1 1 

Collaborative Learning Captures how shared thinking, verbalisation, and 
peer interaction during debugging foster deeper 
understanding and strategic refinement. 

2 4 

Explaining debugging 
process 

Verbalising thought processes helps apprentices 
arrive at solutions. 

1 1 

Feedback from code 
review reshapes 
mindset 

Constructive feedback during reviews influences 
debugging confidence and approach. 

1 1 

Mentorship via code 
reviews 

Experienced developers guiding apprentices 
significantly improves their debugging 
effectiveness. 

1 1 

Sharpness through 
code review 

Participating in code reviews sharpens bug 
detection skills. 

1 1 
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Debugging Strategy 
Selection 

Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 4 

Debugging depends 
on bug type 

Strategy effectiveness depends on the 
complexity and category of the bug. 

1 1 

Debugging strategy 
depends on context 

Approaches to debugging vary depending on the 
project and type of bug. 

1 1 

Simulation of bugs 
helps strategy 
selection 

Creating and solving artificial bugs allows 
apprentices to test and compare strategies. 

1 1 

Tool choice influenced 
by language 

Programming language and tech stack shape the 
debugging approach. 

1 1 

Environment Factors Considers how quiet spaces, distractions, or time 
pressures in the learning or work setting either 
support or hinder focused debugging. 

1 2 

External time 
pressure disrupts 
debugging 

High-pressure scenarios often lead apprentices 
to abandon systematic debugging. 

1 1 

Quiet debugging helps 
focus 

A calm, low-distraction environment enhances 
debugging concentration. 

1 1 

Error Interpretation Highlights how apprentices read, misread, or 
apply meaning to error messages and logs, which 
directly affects bug diagnosis and resolution 
pathways. 

2 2 

Error messages 
mislead 

Misreading error outputs can lead apprentices 
down unproductive paths. 

1 1 

Struggling to interpret 
error logs 

Complex logs and stack traces are difficult for 
new apprentices to decode. 

1 1 

General Reasoning Pattern Describes the common tendency of apprentices 
to begin debugging using informal, intuitive, or 
surface-level logic rather than structured 
analytical methods. 

1 1 

Exploring before 
understanding 

Jumping into debugging without a plan often 
wastes effort. 

1 1 

Knowledge Development Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 3 

Building mental 
models through 
documentation 

Writing comments and diagrams helps 
apprentices internalise code structure. 

1 1 

Documenting aids 
learning 

Keeping records of debugging efforts enhances 
long-term problem-solving skills. 

1 1 
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Regular debugging 
journals enhance 
strategy retention 

Consistent journaling of bugs and fixes helps 
apprentices avoid repeating mistakes. 

1 1 

Learning Style Influence Recognises that visual, verbal, and hands-on 
learners respond differently to debugging 
strategies, influencing their performance and 
tool preferences. 

1 2 

Debugging is 
influenced by learning 
style 

Effective debugging strategies vary based on an 
apprentice’s preferred learning style. 

1 1 

Visual strategies for 
visual learners 

Visual tools like debuggers support those with 
visual learning preferences. 

1 1 

Misguided Assumptions Refers to errors in debugging that stem from 
overconfidence, confirmation bias, or reliance on 
incorrect prior beliefs about how the code 
should behave. 

1 6 

Confirmation bias 
skews debugging 

Preconceived assumptions can prevent 
apprentices from seeing simple bugs. 

1 1 

Copying solutions 
without 
understanding 

Replicating peer solutions without 
comprehension weakens problem-solving 
development. 

1 1 

Jumping to 
conclusions without 
testing 

Making changes without verification disrupts 
debugging accuracy. 

1 1 

Lack of consistency in 
strategy 

Frequent switching between debugging 
approaches without persistence hinders 
learning. 

1 1 

Lack of planning leads 
to repeated mistakes 

Without structured reflection, apprentices often 
repeat ineffective actions. 

1 1 

Skipping small tests 
leads to big issues 

Neglecting to test small units can result in 
wasted debugging time 

1 1 

Peer Collaboration Encompasses the positive effects of paired 
debugging, walkthroughs, code reviews, and 
feedback from peers or mentors in scaffolding 
problem-solving. 

1 4 

Learning through pair 
programming 

Collaborative programming accelerates 
understanding of debugging processes. 

1 1 

Pair programming 
exposes memory leak 

Collaborative debugging quickly uncovered a 
memory leak issue. 

1 1 

Peer-led 
walkthroughs 
encourage reflection 

Explaining code to peers prompts apprentices to 
think more critically about their logic. 

1 1 

Rubber duck 
debugging helps 
recursion 

Explaining recursive problems aloud clarified 
their solution. 

1 1 
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Strategy Consolidation Reflects the apprentices’ ability to retain, refine, 
and reflect on effective debugging techniques 
through habits like journaling and 
documentation. 

2 3 

Debugging tasks build 
confidence 
incrementally 

Solving increasingly complex bugs builds 
apprentice confidence step by step. 

1 1 

Structured training 
improves strategy use 

Formal instruction in debugging techniques 
accelerates apprentice development. 

1 1 

Success boosted by 
guided debugging 

Step-by-step guidance in early debugging 
exercises improves long-term independence. 

1 1 

Structured Strategy Involves the deliberate use of planned debugging 
approaches like slicing, top-down 
decomposition, and test-driven methods that 
promote efficiency and clarity. 

2 10 

Effective use of top-
down 

A structured top-down strategy improves 
debugging outcomes. 

1 1 

Mastering slicing Learning to slice code effectively improves 
tracing and debugging accuracy. 

1 1 

Pattern matching 
experience 

Recognising recurring error patterns assists in 
efficient problem solving. 

1 1 

Pattern matching in 
Python debugging 

Python debugging becomes easier when 
apprentices identify recurring structural 
patterns. 

1 1 

Slicing improves 
isolation 

Slicing enables more precise identification of 
fault origins in code. 

1 1 

Step-by-step 
execution preferred 

Structured, sequential debugging aids 
apprentices in isolating and resolving issues. 

1 1 

Structured top-down 
debugging 

A systematic top-down method simplifies 
complex debugging tasks. 

1 1 

Testing leads to early 
bug discovery 

Writing tests regularly helps apprentices catch 
bugs early. 

1 1 

Unit testing enhances 
robustness 

Implementing unit tests boosts confidence in 
code stability. 

1 1 

Use of isolation 
techniques 

Employing isolation helps apprentices identify 
and address specific errors. 

1 1 

Tool Familiarity Refers to how apprentices' comfort, exposure, 
and understanding of debugging tools—
especially IDEs—affect their willingness and 
effectiveness in using them. 

2 12 

Go-to use of print 
statements 

Print statements are a preferred initial 
debugging method due to familiarity. 

1 1 

Growth in tool 
appreciation 

Apprentices learn to value tool efficiency once 
they overcome initial hesitation. 

1 1 
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Hesitation to adopt 
tools 

New users often delay embracing powerful 
debugging tools due to fear or lack of 
confidence. 

1 1 

IDE debugger solves 
python bug 

Learning debugger tools enabled successful 
resolution of  Python bugs. 

1 1 

IDE familiarity 
improves speed 

Familiarity with debugging environments leads 
to faster problem resolution. 

1 1 

IDE intimidation 
delays adoption 

Fear of using debugger features prolongs 
reliance on basic methods. 

1 1 

Initial intimidation 
with IDEs 

Beginners often find IDE tools overwhelming, 
delaying their usage. 

1 1 

Initial struggle with 
advanced tools 

Advanced debugging tools pose challenges for 
novices. 

1 1 

Progress from prints 
to breakpoints 

Debugging maturity shows in transitioning from 
print statements to advanced IDE features. 

1 1 

Tool comfort impacts 
strategy 

Confidence in using IDEs influences which 
debugging methods are applied. 

1 1 

Visual cues in IDEs 
improve flow tracing 

Graphical IDE features help clarify complex 
function flows for visual learners. 

1 1 

Visual debugging 
supports 
understanding 

Graphical representations aid in tracing program 
flow and state changes. 

1 1 

Unstructured Debugging Captures instances where apprentices use 
inconsistent, reactive, or haphazard debugging 
tactics without a coherent plan, often resulting 
in inefficiency. 

2 8 

Casual reasoning as 
entry point 

Debugging often starts with general intuition 
rather than a structured plan. 

1 1 

Casual reasoning 
misses logical errors 

Relying solely on intuition often overlooks 
deeper logical issues. 

1 1 

Casual reasoning 
reliance 

Initial debugging efforts are frequently guided by 
intuitive rather than logical reasoning. 

1 1 

Guessing based on 
code understanding 

Apprentices rely on surface-level comprehension 
of code to make educated guesses about bug 
locations. 

1 1 

Hypothesising from 
current code state 

Apprentices form assumptions based on initial 
code inspection. 

1 1 

Switch to trial-and-
error 

When intuition fails, apprentices default to 
experimenting with fixes. 

1 1 

Trial-and-error fits 
web debugging 

Unstructured trial-and-error can work well in 
simpler web-based contexts. 

1 1 

Trial-and-error 
method 

Debugging often begins with non-systematic 
experimentation that can be inefficient. 

1 1 
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Name Description Files References 

Subtheme 1.1 – Debugging 
Mindsets and Reasoning 
Patterns 

These reflect the intuitive, non-systematic 
approaches apprentices use, and common 
mistakes made due to overconfidence, 
assumption, or incomplete understanding. 

2 15 

General Reasoning 
Pattern 

Describes the common tendency of apprentices 
to begin debugging using informal, intuitive, or 
surface-level logic rather than structured 
analytical methods. 

1 1 

Exploring before 
understanding 

Jumping into debugging without a plan often 
wastes effort. 

1 1 

Misguided 
Assumptions 

Refers to errors in debugging that stem from 
overconfidence, confirmation bias, or reliance on 
incorrect prior beliefs about how the code 
should behave. 

1 6 

Confirmation 
bias skews 
debugging 

Preconceived assumptions can prevent 
apprentices from seeing simple bugs. 

1 1 

Copying 
solutions 
without 
understanding 

Replicating peer solutions without 
comprehension weakens problem-solving 
development. 

1 1 

Jumping to 
conclusions 
without testing 

Making changes without verification disrupts 
debugging accuracy. 

1 1 

Lack of 
consistency in 
strategy 

Frequent switching between debugging 
approaches without persistence hinders 
learning. 

1 1 

Lack of planning 
leads to 
repeated 
mistakes 

Without structured reflection, apprentices often 
repeat ineffective actions. 

1 1 

Skipping small 
tests leads to big 
issues 

Neglecting to test small units can result in 
wasted debugging time 

1 1 

Unstructured 
Debugging 

Captures instances where apprentices use 
inconsistent, reactive, or haphazard debugging 
tactics without a coherent plan, often resulting 
in inefficiency. 

2 8 

Casual reasoning 
as entry point 

Debugging often starts with general intuition 
rather than a structured plan. 

1 1 

Casual reasoning 
misses logical 
errors 

Relying solely on intuition often overlooks 
deeper logical issues. 

1 1 
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Casual reasoning 
reliance 

Initial debugging efforts are frequently guided by 
intuitive rather than logical reasoning. 

1 1 

Guessing based 
on code 
understanding 

Apprentices rely on surface-level comprehension 
of code to make educated guesses about bug 
locations. 

1 1 

Hypothesising 
from current 
code state 

Apprentices form assumptions based on initial 
code inspection. 

1 1 

Switch to trial-
and-error 

When intuition fails, apprentices default to 
experimenting with fixes. 

1 1 

Trial-and-error 
fits web 
debugging 

Unstructured trial-and-error can work well in 
simpler web-based contexts. 

1 1 

Trial-and-error 
method 

Debugging often begins with non-systematic 
experimentation that can be inefficient. 

1 1 

Subtheme 1.2 – Managing 
Debugging Complexity 

Focuses on the cognitive strain during debugging 
tasks and misinterpretations (e.g., error logs or 
unfamiliar codebases). 

2 10 

Cognitive Load Describes the mental burden apprentices 
experience when managing multiple elements of 
code logic, often leading to overwhelm or errors 
in reasoning. 

2 8 

Challenges in 
tracing code 

Apprentices often find it difficult to follow code 
execution paths. 

1 1 

Code complexity 
is overwhelming 

Large and unfamiliar codebases can hinder 
apprentices' navigation and focus. 

1 1 

Difficulty 
segmenting 
code 

Apprentices struggle to break complex problems 
into manageable parts. 

1 1 

Fixation on 
wrong sections 

Focusing narrowly on specific code sections 
leads to oversight of wider issues. 

1 1 

Incomplete 
mental model 
causes missteps 

Gaps in understanding program flow often lead 
to flawed assumptions. 

1 1 

Not 
understanding 
broader impact 

Neglecting the system-wide effects of a bug fix 
can cause further errors. 

1 1 

Overconfidence 
hides errors 

Confidence without verification can blind 
apprentices to simple coding mistakes. 

1 1 

Understanding 
bug impact 

Comprehending how a fix affects the whole 
system is crucial to effective debugging. 

1 1 

Error Interpretation Highlights how apprentices read, misread, or 
apply meaning to error messages and logs, which 
directly affects bug diagnosis and resolution 
pathways. 

2 2 
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Error messages 
mislead 

Misreading error outputs can lead apprentices 
down unproductive paths. 

1 1 

Struggling to 
interpret error 
logs 

Complex logs and stack traces are difficult for 
new apprentices to decode. 

1 1 

Subtheme 2.1 – Tool 
Adoption and Preferences 

Shows the evolution from print statements to 
IDE debuggers and the way different learning 
styles impact tool preference. 

2 14 

Learning Style 
Influence 

Recognises that visual, verbal, and hands-on 
learners respond differently to debugging 
strategies, influencing their performance and 
tool preferences. 

1 2 

Debugging is 
influenced by 
learning style 

Effective debugging strategies vary based on an 
apprentice’s preferred learning style. 

1 1 

Visual strategies 
for visual 
learners 

Visual tools like debuggers support those with 
visual learning preferences. 

1 1 

Tool Familiarity Refers to how apprentices' comfort, exposure, 
and understanding of debugging tools—
especially IDEs—affect their willingness and 
effectiveness in using them. 

2 12 

Go-to use of 
print statements 

Print statements are a preferred initial 
debugging method due to familiarity. 

1 1 

Growth in tool 
appreciation 

Apprentices learn to value tool efficiency once 
they overcome initial hesitation. 

1 1 

Hesitation to 
adopt tools 

New users often delay embracing powerful 
debugging tools due to fear or lack of 
confidence. 

1 1 

IDE debugger 
solves python 
bug 

Learning debugger tools enabled successful 
resolution of  Python bugs. 

1 1 

IDE familiarity 
improves speed 

Familiarity with debugging environments leads 
to faster problem resolution. 

1 1 

IDE intimidation 
delays adoption 

Fear of using debugger features prolongs 
reliance on basic methods. 

1 1 

Initial 
intimidation 
with IDEs 

Beginners often find IDE tools overwhelming, 
delaying their usage. 

1 1 

Initial struggle 
with advanced 
tools 

Advanced debugging tools pose challenges for 
novices. 

1 1 

Progress from 
prints to 
breakpoints 

Debugging maturity shows in transitioning from 
print statements to advanced IDE features. 

1 1 
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Tool comfort 
impacts strategy 

Confidence in using IDEs influences which 
debugging methods are applied. 

1 1 

Visual cues in 
IDEs improve 
flow tracing 

Graphical IDE features help clarify complex 
function flows for visual learners. 

1 1 

Visual debugging 
supports 
understanding 

Graphical representations aid in tracing program 
flow and state changes. 

1 1 

Subtheme 2.2 – 
Environment and Interface 
Support 

Covers external conditions (e.g., pressure, IDE 
visuals) and how they influence strategic choices 
in debugging. 

2 6 

Debugging Strategy 
Selection 

Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 4 

Debugging 
depends on bug 
type 

Strategy effectiveness depends on the 
complexity and category of the bug. 

1 1 

Debugging 
strategy 
depends on 
context 

Approaches to debugging vary depending on the 
project and type of bug. 

1 1 

Simulation of 
bugs helps 
strategy 
selection 

Creating and solving artificial bugs allows 
apprentices to test and compare strategies. 

1 1 

Tool choice 
influenced by 
language 

Programming language and tech stack shape the 
debugging approach. 

1 1 

Environment Factors Considers how quiet spaces, distractions, or time 
pressures in the learning or work setting either 
support or hinder focused debugging. 

1 2 

External time 
pressure 
disrupts 
debugging 

High-pressure scenarios often lead apprentices 
to abandon systematic debugging. 

1 1 

Quiet debugging 
helps focus 

A calm, low-distraction environment enhances 
debugging concentration. 

1 1 

Subtheme 3.1 – Structured 
Debugging Approaches 

Encapsulates systematic methods like top-down 
debugging, use of slicing, simulation, journaling, 
and repeating bugs for deeper insight. 

2 15 

Bug Replication Focuses on the importance of recreating bugs as 
a strategic practice to understand error 
behaviour and trace root causes effectively. 

1 2 

Replication 
supports root 
cause analysis 

Reproducing bugs consistently helps clarify 
underlying causes. 

1 1 
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Rushed learning 
under pressure 

Time constraints force apprentices to prioritise 
quick fixes over deeper understanding. 

1 1 

Strategy 
Consolidation 

Reflects the apprentices’ ability to retain, refine, 
and reflect on effective debugging techniques 
through habits like journaling and 
documentation. 

2 3 

Debugging tasks 
build confidence 
incrementally 

Solving increasingly complex bugs builds 
apprentice confidence step by step. 

1 1 

Structured 
training 
improves 
strategy use 

Formal instruction in debugging techniques 
accelerates apprentice development. 

1 1 

Success boosted 
by guided 
debugging 

Step-by-step guidance in early debugging 
exercises improves long-term independence. 

1 1 

Structured Strategy Involves the deliberate use of planned debugging 
approaches like slicing, top-down 
decomposition, and test-driven methods that 
promote efficiency and clarity. 

2 10 

Effective use of 
top-down 

A structured top-down strategy improves 
debugging outcomes. 

1 1 

Mastering slicing Learning to slice code effectively improves 
tracing and debugging accuracy. 

1 1 

Pattern 
matching 
experience 

Recognising recurring error patterns assists in 
efficient problem solving. 

1 1 

Pattern 
matching in 
Python 
debugging 

Python debugging becomes easier when 
apprentices identify recurring structural 
patterns. 

1 1 

Slicing improves 
isolation 

Slicing enables more precise identification of 
fault origins in code. 

1 1 

Step-by-step 
execution 
preferred 

Structured, sequential debugging aids 
apprentices in isolating and resolving issues. 

1 1 

Structured top-
down debugging 

A systematic top-down method simplifies 
complex debugging tasks. 

1 1 

Testing leads to 
early bug 
discovery 

Writing tests regularly helps apprentices catch 
bugs early. 

1 1 

Unit testing 
enhances 
robustness 

Implementing unit tests boosts confidence in 
code stability. 

1 1 

Use of isolation 
techniques 

Employing isolation helps apprentices identify 
and address specific errors. 

1 1 
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Subtheme 3.2 – 
Collaborative Debugging 

Trainers and mentors described how pair 
programming, peer walk-throughs, and code 
reviews helped apprentices verbalise their 
thoughts, spot errors faster, and build 
confidence. These collaborative practices were 
seen as instrumental in building debugging 
acumen. 

2 8 

Collaborative Learning Captures how shared thinking, verbalisation, and 
peer interaction during debugging foster deeper 
understanding and strategic refinement. 

2 4 

Explaining 
debugging 
process 

Verbalising thought processes helps apprentices 
arrive at solutions. 

1 1 

Feedback from 
code review 
reshapes 
mindset 

Constructive feedback during reviews influences 
debugging confidence and approach. 

1 1 

Mentorship via 
code reviews 

Experienced developers guiding apprentices 
significantly improves their debugging 
effectiveness. 

1 1 

Sharpness 
through code 
review 

Participating in code reviews sharpens bug 
detection skills. 

1 1 

Peer Collaboration Encompasses the positive effects of paired 
debugging, walkthroughs, code reviews, and 
feedback from peers or mentors in scaffolding 
problem-solving. 

1 4 

Learning 
through pair 
programming 

Collaborative programming accelerates 
understanding of debugging processes. 

1 1 

Pair 
programming 
exposes 
memory leak 

Collaborative debugging quickly uncovered a 
memory leak issue. 

1 1 

Peer-led 
walkthroughs 
encourage 
reflection 

Explaining code to peers prompts apprentices to 
think more critically about their logic. 

1 1 

Rubber duck 
debugging helps 
recursion 

Explaining recursive problems aloud clarified 
their solution. 

1 1 

Subtheme 3.3 – Reflection 
and Growth 

Focuses on how documentation, journals, and 
guided walkthroughs promote debugging 
maturity and long-term learning. 

2 3 

Knowledge 
Development 

Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 3 
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Building mental 
models through 
documentation 

Writing comments and diagrams helps 
apprentices internalise code structure. 

1 1 

Documenting 
aids learning 

Keeping records of debugging efforts enhances 
long-term problem-solving skills. 

1 1 

Regular 
debugging 
journals 
enhance 
strategy 
retention 

Consistent journaling of bugs and fixes helps 
apprentices avoid repeating mistakes. 

1 1 

 

Codes\\Focus Group\\Stage 5 - Theme Definition 
 

Name Description Files References 

Theme 1 - Nature and Handling 
of Debugging Errors 

This theme reflects mentors’ and trainers’ 
observations of how apprentices approach and 
react to debugging errors, based on their 
reasoning, initial assumptions, and ability to 
manage problem complexity. It also includes 
the researcher's account of apprentice 
reactions during live debugging and 
interviews. 

2 25 

Subtheme 1.1 – Debugging 
Mindsets and Reasoning 
Patterns 

These reflect the intuitive, non-systematic 
approaches apprentices use, and common 
mistakes made due to overconfidence, 
assumption, or incomplete understanding. 

2 15 

General Reasoning 
Pattern 

Describes the common tendency of 
apprentices to begin debugging using informal, 
intuitive, or surface-level logic rather than 
structured analytical methods. 

1 1 

Exploring 
before 
understanding 

Jumping into debugging without a plan often 
wastes effort. 

1 1 

Misguided 
Assumptions 

Refers to errors in debugging that stem from 
overconfidence, confirmation bias, or reliance 
on incorrect prior beliefs about how the code 
should behave. 

1 6 

Confirmation 
bias skews 
debugging 

Preconceived assumptions can prevent 
apprentices from seeing simple bugs. 

1 1 

Copying 
solutions 

Replicating peer solutions without 
comprehension weakens problem-solving 
development. 

1 1 
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without 
understanding 

Jumping to 
conclusions 
without testing 

Making changes without verification disrupts 
debugging accuracy. 

1 1 

Lack of 
consistency in 
strategy 

Frequent switching between debugging 
approaches without persistence hinders 
learning. 

1 1 

Lack of 
planning leads 
to repeated 
mistakes 

Without structured reflection, apprentices 
often repeat ineffective actions. 

1 1 

Skipping small 
tests leads to 
big issues 

Neglecting to test small units can result in 
wasted debugging time 

1 1 

Unstructured 
Debugging 

Captures instances where apprentices use 
inconsistent, reactive, or haphazard debugging 
tactics without a coherent plan, often resulting 
in inefficiency. 

2 8 

Casual 
reasoning as 
entry point 

Debugging often starts with general intuition 
rather than a structured plan. 

1 1 

Casual 
reasoning 
misses logical 
errors 

Relying solely on intuition often overlooks 
deeper logical issues. 

1 1 

Casual 
reasoning 
reliance 

Initial debugging efforts are frequently guided 
by intuitive rather than logical reasoning. 

1 1 

Guessing based 
on code 
understanding 

Apprentices rely on surface-level 
comprehension of code to make educated 
guesses about bug locations. 

1 1 

Hypothesising 
from current 
code state 

Apprentices form assumptions based on initial 
code inspection. 

1 1 

Switch to trial-
and-error 

When intuition fails, apprentices default to 
experimenting with fixes. 

1 1 

Trial-and-error 
fits web 
debugging 

Unstructured trial-and-error can work well in 
simpler web-based contexts. 

1 1 

Trial-and-error 
method 

Debugging often begins with non-systematic 
experimentation that can be inefficient. 

1 1 

Subtheme 1.2 – Managing 
Debugging Complexity 

Focuses on the cognitive strain during 
debugging tasks and misinterpretations (e.g., 
error logs or unfamiliar codebases). 

2 10 

Cognitive Load Describes the mental burden apprentices 
experience when managing multiple elements 

2 8 
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of code logic, often leading to overwhelm or 
errors in reasoning. 

Challenges in 
tracing code 

Apprentices often find it difficult to follow 
code execution paths. 

1 1 

Code 
complexity is 
overwhelming 

Large and unfamiliar codebases can hinder 
apprentices' navigation and focus. 

1 1 

Difficulty 
segmenting 
code 

Apprentices struggle to break complex 
problems into manageable parts. 

1 1 

Fixation on 
wrong sections 

Focusing narrowly on specific code sections 
leads to oversight of wider issues. 

1 1 

Incomplete 
mental model 
causes 
missteps 

Gaps in understanding program flow often 
lead to flawed assumptions. 

1 1 

Not 
understanding 
broader impact 

Neglecting the system-wide effects of a bug fix 
can cause further errors. 

1 1 

Overconfidence 
hides errors 

Confidence without verification can blind 
apprentices to simple coding mistakes. 

1 1 

Understanding 
bug impact 

Comprehending how a fix affects the whole 
system is crucial to effective debugging. 

1 1 

Error Interpretation Highlights how apprentices read, misread, or 
apply meaning to error messages and logs, 
which directly affects bug diagnosis and 
resolution pathways. 

2 2 

Error messages 
mislead 

Misreading error outputs can lead apprentices 
down unproductive paths. 

1 1 

Struggling to 
interpret error 
logs 

Complex logs and stack traces are difficult for 
new apprentices to decode. 

1 1 

Theme 2 - Technology’s Role in 
Debugging Processes 

This theme highlights mentor perspectives on 
how apprentices engage with debugging tools, 
from print statements to IDEs, and how their 
learning styles, comfort levels, and 
environmental context affect the effectiveness 
of those tools. 

2 20 

Subtheme 2.1 – Tool 
Adoption and Preferences 

Shows the evolution from print statements to 
IDE debuggers and the way different learning 
styles impact tool preference. 

2 14 

Learning Style 
Influence 

Recognises that visual, verbal, and hands-on 
learners respond differently to debugging 
strategies, influencing their performance and 
tool preferences. 

1 2 
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Debugging is 
influenced by 
learning style 

Effective debugging strategies vary based on 
an apprentice’s preferred learning style. 

1 1 

Visual 
strategies for 
visual learners 

Visual tools like debuggers support those with 
visual learning preferences. 

1 1 

Tool Familiarity Refers to how apprentices' comfort, exposure, 
and understanding of debugging tools—
especially IDEs—affect their willingness and 
effectiveness in using them. 

2 12 

Go-to use of 
print 
statements 

Print statements are a preferred initial 
debugging method due to familiarity. 

1 1 

Growth in tool 
appreciation 

Apprentices learn to value tool efficiency once 
they overcome initial hesitation. 

1 1 

Hesitation to 
adopt tools 

New users often delay embracing powerful 
debugging tools due to fear or lack of 
confidence. 

1 1 

IDE debugger 
solves python 
bug 

Learning debugger tools enabled successful 
resolution of  Python bugs. 

1 1 

IDE familiarity 
improves speed 

Familiarity with debugging environments leads 
to faster problem resolution. 

1 1 

IDE 
intimidation 
delays 
adoption 

Fear of using debugger features prolongs 
reliance on basic methods. 

1 1 

Initial 
intimidation 
with IDEs 

Beginners often find IDE tools overwhelming, 
delaying their usage. 

1 1 

Initial struggle 
with advanced 
tools 

Advanced debugging tools pose challenges for 
novices. 

1 1 

Progress from 
prints to 
breakpoints 

Debugging maturity shows in transitioning 
from print statements to advanced IDE 
features. 

1 1 

Tool comfort 
impacts 
strategy 

Confidence in using IDEs influences which 
debugging methods are applied. 

1 1 

Visual cues in 
IDEs improve 
flow tracing 

Graphical IDE features help clarify complex 
function flows for visual learners. 

1 1 

Visual 
debugging 
supports 
understanding 

Graphical representations aid in tracing 
program flow and state changes. 

1 1 
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Subtheme 2.2 – 
Environment and Interface 
Support 

Covers external conditions (e.g., pressure, IDE 
visuals) and how they influence strategic 
choices in debugging. 

2 6 

Debugging Strategy 
Selection 

Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 4 

Debugging 
depends on 
bug type 

Strategy effectiveness depends on the 
complexity and category of the bug. 

1 1 

Debugging 
strategy 
depends on 
context 

Approaches to debugging vary depending on 
the project and type of bug. 

1 1 

Simulation of 
bugs helps 
strategy 
selection 

Creating and solving artificial bugs allows 
apprentices to test and compare strategies. 

1 1 

Tool choice 
influenced by 
language 

Programming language and tech stack shape 
the debugging approach. 

1 1 

Environment Factors Considers how quiet spaces, distractions, or 
time pressures in the learning or work setting 
either support or hinder focused debugging. 

1 2 

External time 
pressure 
disrupts 
debugging 

High-pressure scenarios often lead apprentices 
to abandon systematic debugging. 

1 1 

Quiet 
debugging 
helps focus 

A calm, low-distraction environment enhances 
debugging concentration. 

1 1 

Theme 3 - Strategies and 
Challenges in Debugging 

This theme captures how trainers and mentors 
observed apprentices developing, adapting, or 
struggling with debugging strategies, and how 
peer collaboration, repetition, and training 
interventions shaped their effectiveness. 

2 26 

Subtheme 3.1 – Structured 
Debugging Approaches 

Encapsulates systematic methods like top-
down debugging, use of slicing, simulation, 
journaling, and repeating bugs for deeper 
insight. 

2 15 

Bug Replication Focuses on the importance of recreating bugs 
as a strategic practice to understand error 
behaviour and trace root causes effectively. 

1 2 

Replication 
supports root 
cause analysis 

Reproducing bugs consistently helps clarify 
underlying causes. 

1 1 
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Rushed 
learning under 
pressure 

Time constraints force apprentices to prioritise 
quick fixes over deeper understanding. 

1 1 

Strategy 
Consolidation 

Reflects the apprentices’ ability to retain, 
refine, and reflect on effective debugging 
techniques through habits like journaling and 
documentation. 

2 3 

Debugging 
tasks build 
confidence 
incrementally 

Solving increasingly complex bugs builds 
apprentice confidence step by step. 

1 1 

Structured 
training 
improves 
strategy use 

Formal instruction in debugging techniques 
accelerates apprentice development. 

1 1 

Success 
boosted by 
guided 
debugging 

Step-by-step guidance in early debugging 
exercises improves long-term independence. 

1 1 

Structured Strategy Involves the deliberate use of planned 
debugging approaches like slicing, top-down 
decomposition, and test-driven methods that 
promote efficiency and clarity. 

2 10 

Effective use of 
top-down 

A structured top-down strategy improves 
debugging outcomes. 

1 1 

Mastering 
slicing 

Learning to slice code effectively improves 
tracing and debugging accuracy. 

1 1 

Pattern 
matching 
experience 

Recognising recurring error patterns assists in 
efficient problem solving. 

1 1 

Pattern 
matching in 
Python 
debugging 

Python debugging becomes easier when 
apprentices identify recurring structural 
patterns. 

1 1 

Slicing 
improves 
isolation 

Slicing enables more precise identification of 
fault origins in code. 

1 1 

Step-by-step 
execution 
preferred 

Structured, sequential debugging aids 
apprentices in isolating and resolving issues. 

1 1 

Structured top-
down 
debugging 

A systematic top-down method simplifies 
complex debugging tasks. 

1 1 

Testing leads to 
early bug 
discovery 

Writing tests regularly helps apprentices catch 
bugs early. 

1 1 
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Unit testing 
enhances 
robustness 

Implementing unit tests boosts confidence in 
code stability. 

1 1 

Use of isolation 
techniques 

Employing isolation helps apprentices identify 
and address specific errors. 

1 1 

Subtheme 3.2 – 
Collaborative Debugging 

Trainers and mentors described how pair 
programming, peer walk-throughs, and code 
reviews helped apprentices verbalise their 
thoughts, spot errors faster, and build 
confidence. These collaborative practices were 
seen as instrumental in building debugging 
acumen. 

2 8 

Collaborative 
Learning 

Captures how shared thinking, verbalisation, 
and peer interaction during debugging foster 
deeper understanding and strategic 
refinement. 

2 4 

Explaining 
debugging 
process 

Verbalising thought processes helps 
apprentices arrive at solutions. 

1 1 

Feedback from 
code review 
reshapes 
mindset 

Constructive feedback during reviews 
influences debugging confidence and 
approach. 

1 1 

Mentorship via 
code reviews 

Experienced developers guiding apprentices 
significantly improves their debugging 
effectiveness. 

1 1 

Sharpness 
through code 
review 

Participating in code reviews sharpens bug 
detection skills. 

1 1 

Peer Collaboration Encompasses the positive effects of paired 
debugging, walkthroughs, code reviews, and 
feedback from peers or mentors in scaffolding 
problem-solving. 

1 4 

Learning 
through pair 
programming 

Collaborative programming accelerates 
understanding of debugging processes. 

1 1 

Pair 
programming 
exposes 
memory leak 

Collaborative debugging quickly uncovered a 
memory leak issue. 

1 1 

Peer-led 
walkthroughs 
encourage 
reflection 

Explaining code to peers prompts apprentices 
to think more critically about their logic. 

1 1 

Rubber duck 
debugging 
helps recursion 

Explaining recursive problems aloud clarified 
their solution. 

1 1 
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Subtheme 3.3 – Reflection 
and Growth 

Focuses on how documentation, journals, and 
guided walkthroughs promote debugging 
maturity and long-term learning. 

2 3 

Knowledge 
Development 

Refers to the gradual, often scaffolded, 
acquisition of debugging expertise and 
confidence through repeated exposure to 
increasingly complex tasks. 

2 3 

Building mental 
models 
through 
documentation 

Writing comments and diagrams helps 
apprentices internalise code structure. 

1 1 

Documenting 
aids learning 

Keeping records of debugging efforts enhances 
long-term problem-solving skills. 

1 1 

Regular 
debugging 
journals 
enhance 
strategy 
retention 

Consistent journaling of bugs and fixes helps 
apprentices avoid repeating mistakes. 

1 1 

 

 


