An evaluative case study of the program debugging behaviour of the
paired Software Development Technician Apprentice in a

geographically distributed environment.

Olajide Olayemi Jolugbo, BSc (Hons), MSc

March 2025

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Department of Educational Research
Lancaster University

UK

|[Page

Declaration

| declare that this thesis is my own original work and has not been submitted for a degree at
this or any other university. The thesis does not exceed the 50,000-word limit, including
footnotes and text in diagrams, tables, or figures, but excluding the title page, contents,

abstract, appendices, and references. The word count is 58,608.

Signed:

ilPage

Acknowledgements

| extend my deepest gratitude to my supervisor, Prof. Don Passey, for his unparalleled support
and patience, without which | could not have completed this thesis. His expertise, exceptional
guidance, and empathy offered stability throughout the difficult period. | also owe special
thanks to Mrs. Alice Jesmont, TEL Programme Administrator, for her consistent support and

timely reminders, which were essential to the success of the program.

Also, | deeply appreciate my family for their support and understanding. My daughters have
been my source of joy and motivation for demonstrating exceptional understanding and being
my pillar of support during this programme. My partner has been an unwavering source of
strength and encouragement. Her support and faith in me never wavered, providing me with
consistent motivation. | am grateful to the organisations and volunteers who contributed to my

study. The research significantly benefited from the essential contributions of these individuals.

Lastly, | dedicate this work to my loving parents, who have been my moral and emotional
anchor. Losing my father during this PhD was one of the most challenging experiences of my
life. This thesis is in his honour; he continually supported my efforts to finish this program. His
memory and spirit remain my constant inspiration. For this demanding and enriching journey, |
am most grateful to God for His help. His support was crucial to my resilience and success.

In addition, | am deeply grateful to everyone who contributed to this journey. Your backing has

led me to a major accomplishment and fostered both my personal and career development.

i|lPage

An evaluative case study of the program debugging behaviour of the paired Software
Development Technician Apprentice in a geographically distributed environment.
Olajide Olayemi Jolugbo, BSc (Hons), MSc

Abstract

This empirical study investigates the collective efforts of paired novice programmers working
on rectifying Python code using technology-mediated tools. It aims to uncover: 1) the types of
errors they encountered; 2) the debugging strategies and tactics employed by these apprentice
pairs to locate and fix bugs within the Python code; 3) insights into how the pairs share the
cognitive load; 4) the influence and efficacy of technological tools in the debugging process; and
5) the challenges faced by the pairs while working remotely to identify and resolve bugs, along
with the underlying reasons for these challenges. It is methodically qualitative in nature and
adopts a multi-case approach to closely examine each instance in its real-life context, utilising
various data collection methods such as in-depth interviews, participant observations, code

analysis, and focus groups.

Furthermore, this study examines 15 dyads as they work collaboratively to debug Python code,
showing the challenges they confront as well as their diverse debugging strategies and tactics.
It also demonstrates the importance of integrating debugging tools, as well as how dyads
strategically distribute cognitive tasks. By focusing on the relatively unexplored area of
distributed pair debugging, this study offers a fresh perspective on collaborative problem-
solving among novice programmers working in remote settings. It notably presents a
conceptual framework for understanding dyad’s debugging in disparate settings, contributing

significantly to computing education and integrating technology into educational practices.

iii|Page

However, despite its contributions, the study acknowledges its limitations and suggests
directions for further research to enhance the generalisability and applicability of its
conclusions. Ultimately, this thesis advances our understanding of the debugging processes of
paired novice programmers in remote settings, offering empirical insights and technical

recommendations to improve computing education and practice.

Keywords: Distributed Pair Debugging, Debugging Strategies, Remote Collaboration, Cognitive

Load Management, Computer Science Education Education.

iv|Page

Table of Contents

Chapter 1: INtrodUCHIONcoooiiiiiiiiiie e e s e e et e e e s s areee s 1
1.0 INErOAUCTION ..ttt s s e s 1
1.1 Motivation fOr the STUAYccoiiiiiieicie e sre e e s s e e s saaeeeeeas 5
1.2 Research BackGroUNdcoeiiiiiieeee e e e e e e ren e e e 9
1.2.1 SDT APPrentiCeShIP coveeeeiiee et s e e s e e e s saraeeeeaes 10
1.2.2 NOVICE Programmers.........ccocuiiiiiiiiiiiiiiiiin i 12
1.3 The Rationale for this StUAYc.ueeiiiiiiie e e s 16
R AN 14 (T T o To I @ o T=Yox u 1Y 18
1.5 ReSEACH QUESTIONS ..c.uviiiiiiieeitie ettt ettt ettt s bt e e et e e st e s s e e snneeeneeas 19
1.6 Structure of the TheSiScoiuii i 21
Chapter 2: Literature REVIEW............ccuiiiiiiiiiiee ettt e et e e e e e e e 24
2.0 INTFOAUCHION ..ttt e st e s s e s s 24
2.1 ChOiCE Of @ REVIEW Ty P it iiiiiiiiciiiee ettt ettt et e e et e e e st e e e s eaate e e e essbaeeeesnaeeeeennees 29
2.2 IMEENOAS ..t 29
2.2.] REVIEW QUESTION ..eueiiiiiiiiiiiitiieieiitiitieteteie ettt sbssssssssssssssssssssnsnsnsnsnnns 30
2.2.2 SAMPIINEG ceeeeitee ettt e e e e e e e e st ee e e e nabaeeeeearaeaeans 31
2.2.3 Critical appraisal (CA) of sample (data collection)cccoevvveeiieeieieciiiinieeeeeee e 37
2.2.4 Data analysis (Data extraction and synthesis, and thematic analysis) 38
2.2.5 Presentation ... 42
2.3 DISCUSSION w.etviiiiiiitiee ettt e e s s a e e s bbb e e s 57
B Y 2 0 0 = 64
Chapter 3: Conceptual FrameWOrK ... e 66
T I o) { oo 18 o1 u o o F PRSPPSO 66
3.1 Information FOraging ThEory (IFT) ..cccee ettt e e e e e e arrere e e e e e e eeans 66
3.2 Distributed COgNItION ..coceii e e e e e e e e eraa e e e e e e e e eenans 67
3.3 Integration of IFT and Distributed Cognitionccccviveeiieieiieiiiieeeee e 69
3.4. Critical Analysis of Distributed Pair Debugging Conceptual Frameworkcccc........... 70
3.4.1 Layer 1: Debugging ENVIroNmMeNt LAYerccooccvrveeeeiieeieiiineeeee e e eeeeirneeeeeeeeeenanns 73
3.4.2 Layer 2: Information FOraging LAYENcoeeiieirreeieeeee et eeeeeceenraeeeee e e e eeeens 74
3.4.3 Layer 3: Distributed CognitioNncceeeiiiii i 75
3.4.4 Layer 4: Innermost Circle: Cognitive ProCeSSEScuvieviecccviiieeieeeeececciiieeee e e e e 76
3.4.5 Centre: The DEDUEGEEIS......cooiiiiiieeee e e e 77

vlPage

3.5 Deployment for data collection and data analysSis.......ccccceeeeiieiiirreereee e 78

R eI U100 0 11 T TP 83
Chapter 4: MethodOIOZY..........cccuiiiiiiiiie e e e e e e 84
4.0 INTrOAUCTION ...t 84
4.1 ReSEArCh QUESTION......uiiiiiiiiiiie ettt ettt et e st e e s ean e senneesenneeeas 84
4.2 Context and STUAY SIte .o e e e e e e e e e nans 87
4.3 Philosophical Perspectives of this StUAYcooviiiiiiiiiiiiiieeee e 89
N R oY =T =] o o TP 90
B O 14| o] [o =4V PR 91
T N =Y 113 =T .4 o1 Lo -V PP 92
4.4 Methodological FrameEWOTIKccoecuieeiiiiiiie ettt ee et e e e e e e aae e s e ssaeeeeenns 93
4.4.1 Case study design and rationNaleccceeeeveiieeiieiiiie e 94
Y o o LT =P 96
A.4.3 PartiCiPants ... 98
A D = AN o T 1 Y 1SS 104
4.5 EMPIrical RESEArCH PrOCESScuueiiiiieiee ettt e e e e e e ee e e e e e e s eareranaeaeeas 114
4.5.1 Step 1: DebUEEING SESSIONS. ..eeiiiiiiiieeiciiee ettt e e e e e e sae e e s aaeeeeenn 117
4.5.2 Step 2: Analysis of recorded debugging sessioncccceveeeeeieciiieeeeee e, 121
4.5.3 Step 3: INtervieW SESSIONS ..cciiiiiiiii i 122
4.5.4 Step 4: Analysis of the dyadic interview session.........ccccceeeeeeeecciiieeeec e, 124
4.5.5 Step 5: FOCUS Broup SESSION ..ccciviiiiiiiiiiiiccccccceeeceeee e 125
4.5.6 Step 6: Analysis of recorded fOCUS Sroup SESSIONvvveeveeeeeiiciiireeeeeeeeeeeennnne, 126
4.5.7 Limitation of the Chosen Methodologycceeeevveicciiiiiiiieiieiccreeeee e, 127
4.6 Reliability @and Validityeeeeeeee ettt e e e e rer e e e 128
4.7 Ethical ISSUES @aNd CONCEINS.....ciiiiiiiiiiieiiee ettt 131
4.8 SUMIMAIY .ciiiiiiiiiiiiiiie ittt e e s a e e e s b e e e s s b e s e e s s saba e e e s sbbaeeeeans 133
Chapter 5: FINAINGSooiiiiieieeee e e e e e e e e e e e e e e aara e e e e e e e e eennnns 135
IO I o) { oo [o1 u o o F PSPPSR 135
5.1 Dyads Debugging Session FINAINGS.......cc.uviiiiiie it e e eenrrer e e e e e 135
5.1.1 Theme 1: Technology UtiliSatioN........ceeeiieiiiiiiiiiieeiiccieccireeeeee e e 136
5.1.2 Theme 2: Debugging Strategies and TaCiCSuvevieeiiiiiciirieeeeeeeeeecirreeeee e e e, 140
5.1.3 Theme 3: Error SPECIIUM ...cuiiii ittt eeeeerreee e e e e e s eeenbrraeeeeeeseenns 150
5.1.4 Theme 4: Cognitive Load Managementccccveeeeiieiieiiciinrieeeeeeeeeeeirreeeeeeeeeennans 154
5.1.5 Theme 5: Challenges Faced........cccuuiiiieiiii ittt e 157
5.2 Python Code Analysis FINAINGSccceeiieiiiiiiieiee et e e e e e e e e e 164

5.3 Interview SeSSioN FINAINGS ..cccoooeeeiiieieeeeeee ettt e e e e e e e e e ee e 169

5.3.1 Theme 1: Error SPECIIUM ..ocii i ittt e e srree e e e e e e s e e e e e e e e eeaans 169
5.3.2 Theme 2: Technical and Cognitive SKillsccceeeiriiiieiiiiiiiieeeieee e 174
5.3.3 Theme 3: ChallENgESuviiiiiieiee et e s s saaeee s 182
5.4 Focus Group DiscuSSION FINAINGSceeieiiiiiiiiiiiieiieiieeeesieee et ee e e e siieee e s saaaee e 188
Theme 2: Technology’s Role in Debugging ProCesses.cccevcuveeeeiciieeesiiieeeeecineeeenns 190
5.4.1 Theme 1: Nature and Handling of Debugging Errors........cccceeevevvveeeecciveee e, 190
5.4.2 Theme 2: Technology’s Role in Debugging Processesccccevveeeervciveeeesinnennn. 191
5.4.3 Theme 3: Strategies and Challenges in Debuggingcccccocvvveviiiieeinviiieeeesineenn, 193
DD SUMIMIAIY e nns 196
Chapter 6: CONCIUSIONcoooiiiiieeee e e e e e e e et e e e e e e e s s nnrenreeeaeeeennns 199
6.0 INTFOAUCTION ..ttt ettt e st e e st e e et e e s abe e e sareesenneeeas 199
6.1 Evaluation of Dyad’s Case StUIES.......cccuviiieiiee et e e e e e e e e e 199
6.2 RESEAICH QUESTIONS ...eeiiiiieiiiee ettt ettt e st e et e et essareesnneeeas 202

6.3 Refined Conceptual Framework Linking Research Outcomes to Distributed Debugging

PrOCESSES ciiiiiiiiiiiiit e e 238
6.4 NOVElty Of thiS WOIK.....ueiii e e e s ara e e e 243
6.5 CONTIIDUTIONS ..ottt enne e 245
6.6 Significance Of The STUY ...ccuuiiiieeee e e e e e e e e e e e aaes 248
6.7 Trustworthiness of the StUAYeeve e 251
6.8 Limitations of the StUAYc.euviiieieii et e e e e 253
6.9 Further Research and Recommendations...........cooiiiiiiiiiiiiiiniieenieeeeeee e 257
70 O o o ol [V o 1o F PPV P PRSP 259
REFEIENCES ... s s 261
Appendix A: Participants Information Sheet - Apprentices...........ccccevvvveeeieeeeiicicinrenennnnn. 282
Appendix B: Participants Information Sheet - Work Based Mentors & Trainers.............. 285
Appendix C: Participant Consent FOrm — Apprenticescccceeeeviiveeeiniieeeesnineeessneenn 287
Appendix D: Participant Consent Form — Work-Based Mentors & Trainers 288
Appendix E: Ethics APProval............c.coooiiiiiiiiiiiieciee et s 290
Appendix F: The Bugged PYthon €Code.............cccovvveiiiiiiiiiiiieec e 291
Appendix G: Sample DYADs End of Session Codes............cccovviiiiiiniiieeiniiieee e 293
Appendix H: DYAD Interview ProtocColscccoouvveeiiiiiiiiiiiiieeee e 295
Appendix I: FOCUus Group Protocolsoooviiiiiiiiiiiiiiiiiec et 296
Appendix J: Sample Transcript of the Debugging Session.............ccccoeevvvveeiiiieeinniiinnenennn.n. 297

vi|Page

Appendix K: Sample Transcript of Dyad’s Interviewcccccceeeeeeiiiivieeiiceeierieeeeeen, 299

Appendix L: Sample of Included Studies for the Critical Analysis.............ccc.cccovvvurrvnnnnn... 301
Appendix M: Debugging Session Codebookccoviiiiiiiiiiiiiini e 304
Appendix N: DYAD Interview Codebook.................uuuuviiiiiiiiiiiiiiiiriiririeisisisrern————. 305
Codes\\Interview\\Stage 1 & 2 - Familiarisation & Coding..............cccceeevvvreeiireeireeeenenn, 305
Codes\\Interview\\Stage 3 - Theme Generationccccvreeiieeciie e 313
Codes\\Interview\\Stage 4 - Theme REVIEW..............cccueeevvieeiiiieiieeeeeeeee e 324
Codes\\Interview\\Stage 5 - Theme Definitioncccoeeiiiieiiieciiceecee e, 336
Appendix O: Focus Group Codebookccuiiiiiiiiiiiiiiiiie e 349
Codes\\Focus Group\\Stage 1 & 2 - Familiarisation & Coding...............ccccceevverrrirerennnnn. 349
Codes\\Focus Group\\Stage 3 - Theme Generationcccccccoueeeirireeiiieeciee e, 353
Codes\\Focus Group\\Stage 4 - Theme ReVIEWcccueeeivieeiieieeirieeereeeereeeevee e 358
Codes\\Focus Group\\Stage 5 - Theme Definition................ccccoeeiiiiiiiieciie e, 364
List of Tables
Table 1: Sample of a summary document for the critical analysis (CA) of selected studies...............cccceeuuerennnnn. 38
Table 2: SAMPIE AT @XEIACHIONc..eneiiiieee ettt ettt e e e et et st eae st ena s s st sansensasnasnasnsrnenasensansnnes 39
Table 3: Sample data extraction (CONTINUATION)eeuueeeineeeiee et eiie et e et e e te e et e et e et e et eesneesnaaannnnns 40
Table 4: Themes identified from dQta SYNERESIS.eeuieueeiieee et e e et e e e tee et e e e et e et e aeetaeeanaannes 41
Table 5: Strengths and weaknesses of the distributed pair debugging conceptual framework 73
Table 6: Relationship between the theoretical framework and the research methods (Layers 1&2) 79
Table 7: Relationship between the theoretical framework and the research methods (Layers 3&4) 80
Table 8: Relationship between the theoretical framework and the research methods (Centre Layer)......... 81
Table 9: Participant details for the debugging sessions and the dyad’s interviewccccccceeeeeeieensiennennnnnn. 102
Table 10: EVIAeNCE triaNGULATION.c..euenieiii e eee ettt e e e e e e e e e e e et sae st saasnasnasnsrneansrnsanasansnnen 106
Table 11: List of bugs, bug type and diffiCulty 1@Vel.ccc.ieniiiiiiiiieiie et ee e e eans 120
Table 12: Characteristics of the bugs’ diffiCUlty I@VeIS.ccoueeneeeiieieieee et e e e eans 121
Table 13: Interview protocol matrix adapted from Castillo-Montoya (2016)..........ceeueeeueieieeuiieneeieeiaeeieennaenns 124
Table 14: Overview of key themes in dyads debUgEiNg SESSIONScueuiiiiiiiiiiiiiiieieiieeieenrerreeeeereaenaennas 136
Table 15: Technology Utilisation Subthemes in Dyadic Debugging S€SSIiONSccevueeuiiiniiineeeeeneennnnnn. 136
Table 16: Debugging Strategies & Tactics Themes in Dyadic Debugging S€SSiONS.......cccccceeueeieiurenneennnnn. 140
Table 17: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions (Continuation) 141
Table 18: Error Spectrum Subthemes in Dyadic Debugging S€SSIONSvuvuiiuiiiiiieieiieiieiieieeieeieeieennennes 151
Table 19: Cognitive Load Management Subthemes in Dyadic Debugging S€SSIONScccccvvvvuiveeinnennenne. 154
Table 20: Challenges Faced Subthemes in Dyadic Debugging SESSIONSccuveueiueiieiinriniiniieeiaennennes 157
Table 21: Outline of the debugging S€SSiONS’ COre fiNAINGS.......ccuiuiuiiiiiiiiiiiiiieie e e e e eanennes 162
Table 22: Outline of the debugging sessions’ core findings (Continuation)cceuveeeivineeiineeeenneennnnn. 163
Table 23: Summary of bugs discovery, successful fixing and unsuccessful fiXing............ccccceeeuiiiieiiiiiiiiieennnnnn. 167
Table 24: Summary of specific syntax errors breakdown by discovery and resolution.cc.ccceucevuneunnnn.. 168
Table 25: Summary of specific logical errors breakdown by discovery and resolution.cccccoeeuiveueennnnnn. 168

vii|Page

Table 26: Summary of specific runtime errors breakdown by discovery and resolutioncccceueeunenn.. 168

Table 27: Overview of key themes iN iNtEIVIEW SESSIONSuiuiiuiiieeeeee e tie et ee e e e e e ae e e saeenaennas 169
Table 28: Error Spectrum Subthemes in INtErvIiEW SESSIONSu.euiueeeeieiiiie e ee e e e eanan 170
Table 29: Technical and Cognitive Subthemes in INterview SESSIONSc.cvuviieiieiieieiieiieiieieeieereeieenaannns 175
Table 30: Challenges SUBthemes in INtEIVIEW SESSIONSuuiuiiuiiieiieeieeieiititeietieereeeeeeeaesteeaesaesaasansnns 182
Table 31: Overview of key themes in FOCUS GroUp SESSIONS.....ciuiueiueieiieiiiiiiiitieeieeeeetetereesaesaesaasansnnns 190
Table 32: Overarching themes @CroSS the STUAYcuuiu ittt et e e e eeeea st e e e e saneaannas 198

ix|Page

List of Figures

Figure 1: Integrative literature review (adapted from Lubbe et al., 2020)ccceeuuuieeeiiuiieieiiineeiiiaeeeennnnn. 30
Figure 2: Flow diagram for ILR (adapted from PRISMA — Preferred Reporting Items for Systematic Reviews &
Meta-Analysis (Moher et al. (2009) cited in (Lubbe et al., 2020)).ceuuueieuniieiiiiiiieieiieeeiie et eeteeereeeneeaeans 35
Figure 3: Al tOO] CONNECLEA PAPEISeuneeeeieee et ee et e e et e et e e e et e et e et et e et s eanstnaeansanasenasanssnaeanaennns 36
Figure 4: Distributed pair debugging conceptual framework............cccoeuuiiiiiiiiiiiiiiiiiiiiieiii e 71
Figure 5: Participant demographic infographics recruited for the Study.cccouueeiiiiiiiiiiiiiiiiiieeeeeieeeennn, 104
Figure 6: The thematic analysis approach adapted from Braun and Clarke (2006).ccceceeeuiereeienianeennnnn. 107
Figure 7: EMPIriCal F@S@AICR PIrOCESS.uueeeeeea et ettt e et e e et e et e e e et e et s e et e et sansanaasnsanasenaesnesnnsen 116
Figure 8: Timeline of data collection and data ANAIYSIS.ccu.eeueiiieiiiiieiie e eae e e 117
Figure 9: Debugging session research QPPrOGCH.c..coeuuiieiuii ittt ettt et e e eeeneees 118
Figure 10: Python code seeded with syntax, logical and runtime bugs............c.c.ceuueeuieeuiiieeiieeeeeieeieeeieeannnn, 119
Figure 11: Refined Conceptual Framework Aligning Research Outcomes to Distributed Debugging
PrOCESSES .ottt ettt ettt ettt ettt ettt e e ea e ettt et e ea e ettt e eaennanns 242

x|Page

Chapter 1: Introduction

1.0 Introduction

Dating back to the era of Adam Smith, economists have recognised the substantial impact
of a skilled workforce on an economy’s productivity (Johnson, 1937). Such understanding
brings to the fore the renewed focus on apprenticeships as a mechanism to bolster the
upcoming workforce’s skills (Guile & Young, 1998; Nash & Jones, 2013), although a study
suggests that the primary positive impact on employment is achieved by retaining
apprentices within the company where they received their training (Pierre & Jérémy,

2024).

Furthermore, as organisations strive to align their people, processes, and culture for long-
term digital success (Kiron et al., 2016), digital transformation initiatives continue to drive
up demand for talented software and technology workers. Against this backdrop,
apprenticeships serve as a viable pathway for individuals to enter the labour market and
contribute to the growing technology industry (Heyes, 2013; Hoeckel & Schwartz, 2010),
and are proposed to be a promising answer to soaring youth unemployment (Steedman,
2012). In addition, England has been experiencing a digital skills crisis, with increasing
demand from employers for skilled professionals to keep up with the ever-evolving
technological landscape roles (Nania et al., 2019; Taylor-Smith et al., 2019). However, to
effectively address unemployment and skill shortages in the software development
sector, apprentices must acquire debugging abilities, which are an essential component

of software development.

1|Page

Moreover, the SDT apprenticeship standard (IfATE, 2024) is designed to offer specifics
about what the apprentice will be doing and the abilities expected of them, allowing them
to integrate into modern software development teams. These entry-level apprentices are
also entrusted with developing a range of computer software and work in a variety of
businesses, from huge enterprises to government organisations, and regularly contribute

to multibillion-pound software solutions (Carter, 2015).

Therefore, the core of this role focuses on interpreting requirements, creating designs,
and building and testing software solutions for bugs based on system specifications to
achieve optimal results (IfATE, 2022). It is, however, crucial to highlight that software
varies in size, complexity, and quality standards; even small applications are susceptible
to defects. Therefore, regardless of the language used, bugs are an inevitable part of
programming (Tsan et al., 2022). According to Lee et al. (2014), debugging is a significant,
cognitively demanding process that is essential to the practice of programming rather

than merely a supplementary activity.

Besides, Rich et al. (2019) contend that debugging is a distinct skill set that may be
acquired outside of specific programming environments. Additionally, studies show that
inexperienced programmers, such as those in the SDT apprentice category, frequently
have trouble identifying bugs. According to Decasse and Emde (1988), this challenge
stems from a lack of critical abilities required for bug isolation, understanding
programming constructs, comprehending programme execution, and implementing

efficient debugging procedures.

2|Page

In the same vein, a plethora of studies have examined different aspects of debugging,
including its challenges (Coker et al., 2019; Eisenstadt, 1993; Jeffries, 1982; Vessey, 1985),
strategies (Katz & Anderson, 1987), and tools (Petrillo et al., 2019). Additionally, some
research indicates that the most challenging part of debugging is identifying the bugs
(Fitzgerald et al., 2008; Katz & Anderson, 1987). Successful completion of this stage
typically results in the bugs being removed (Fitzgerald et al., 2010). However, more recent
studies, such as those by Tsan et al. (2022), are increasingly focusing on how novice

programmers approach debugging, which aligns with the focus of this investigation.

Nonetheless, some research suggests that collaborative interactions, such as pair
debugging, can help mitigate the challenges associated with debugging (Jayathirtha et al.,
2020; Murphy et al., 2010). In keeping up with this, modern software development
practices often employ pair programming, in which two developers collaborate on a
single code. This strategy minimises the cognitive load of an individual programmer
(Kavitha & Ahmed, 2015) and reduces the potential for programming errors (Hannay et

al., 2009).

Given the context of this study, pair debugging can be viewed as a subset of pair
programming. Murphy et al. (2010) characterise it as “an important facet of pair
programming” (p. 51), in which two developers collaborate to identify and rectify code
issues while using a single computer. This implies that pair debugging involves the
collaborative effort of two individuals, known as a dyad, often linked with the shared goal

of debugging the code, with each providing their knowledge of the task. While this often

3|Page

occurs with the dyad physically present in the same location, the concept also applies to

distributed teams collaborating on the same programming code from separate locations.

With this in mind, the purpose of this study is to broaden the scope of pair debugging by
examining its applicability in a distributed pair setting. It aims to investigate the transition
of bug fixing from the traditional co-location setting to a distributed one, where
debugging is heavily influenced by technology. Technology assumes a crucial role as a
mediator in bug fixing, aiding in facilitating pair discourse and adopting debugging
strategies. Simultaneously, the study intends to contribute to a better understanding of
novice programmer debugging behaviours, particularly those of SDT apprentices, in
distributed locations during collaborative pair debugging activities in the software

development context.

The study specifically looks into the debugging strategies and tactics employed by
geographically dispersed SDT trainees who collaborate to fix Python code issues utilising
technology-mediated agents. The research does this by concentrating on a number of
different areas, including compiler errors, verbal and non-verbal interactions between
pairs, the roles of technology agents, the patterns of debugging activities, and how they
resolve issues when they arise. Notably, while debugging research has been extensive,
this study addresses a gap by specifically investigating distributed pair debugging in an
educational context. While some research has centred on distributed pair programming,
distributed pair debugging remains relatively unexplored, especially concerning

debugging strategies within the educational context. This study aims to fill this gap and

4|Page

contribute to understanding distributed pair debugging practices within educational

settings.

1.1 Motivation for the Study

The motivation for this research stems from over 15 years of my professional experience
within the apprenticeship system, particularly in digital education. In my roles as a
director of training & assessment, curriculum manager, curriculum specialist, trainer,
assessor, job coach, internal quality assurer, and end-point assessor, | have come to
understand the paramount importance of practical, hands-on learning and skill
development in apprenticeships. My involvement in educating apprentices on the
standards for data technicians, data analysts, software development technicians,
development and operations (DevOps) engineers, and network engineers at Levels 3 and
4 (Levels 3 and 4 are UK qualifications, with Level 3 akin to high school diplomas and Level
4 to first-year university studies) has exposed me to their challenges, especially in
debugging, problem-solving, and collaborative programming. Over the years, | have
worked closely with both apprentices and employers to ensure the effective delivery of
digital learning programmes that align with the evolving needs of the industry (Fuller &

Unwin, 2013; Lave & Wenger, 1991).

A major challenge | have observed is the difficulty apprentices experience with debugging,
which is a critical aspect of software development. Debugging is an essential yet
cognitively demanding process that often frustrates novice programmers. Research has
shown that debugging requires a distinct set of skills, including isolating and identifying

faults in code, an area where many apprentices struggle (Fitzgerald et al., 2008; Katz &

5|Page

Anderson, 1987). In my professional experience, apprentices often struggle to
understand programming constructs and apply debugging strategies effectively. These
challenges are heightened in remote working environments, where limited access to peer
support or mentorship exacerbates the difficulty. Hence, the motivation to explore
distributed pair debugging arises from the need to address these challenges and improve
apprentices’ capacity to work collaboratively, even in geographically dispersed settings

(Murphy et al., 2010).

This motivation is further informed by my role as an internal quality assurer and assessor,
which has provided a unique perspective on the development of apprentices throughout
their learning journeys. My experience highlights the importance of fostering practical
problem-solving skills, especially in the context of distributed work environments. The
shift towards remote work, accelerated by the COVID-19 pandemic, has underscored the
need for new strategies for collaboration and skill development, particularly in the digital
sector (Agerfalk et al., 2005; Espinosa et al., 2007). To adapt to these changes,
apprenticeship programmes must integrate collaborative practices such as pair
programming and debugging into their curricula, enabling apprentices to thrive in a world

where remote work is becoming the norm (Cockburn & Williams, 2000).

Building on these insights, my professional background within the apprenticeship
framework has significantly influenced my approach to this research. Through my active
involvement in shaping, delivering, and assessing apprenticeship standards across various
digital sectors, | have seen how apprenticeships are pivotal in equipping young

professionals with essential workforce skills. However, | have also identified gaps in how

6|Page

current frameworks prepare apprentices for the complexities of debugging in real-world
scenarios, particularly in distributed environments. The apprenticeship model,
traditionally rooted in hands-on learning, now faces the challenge of equipping
apprentices to collaborate effectively across remote settings (Guile & Young, 1998). My
insider knowledge of curriculum development has enabled me to critically assess how

distributed pair debugging can bridge the gap between theory and practical application.

This study aligns with broader research, which suggests that debugging is often treated
as a supplementary skill rather than a core component of the curriculum, leaving many
apprentices underprepared for industry demands (Eisenstadt, 1993; Jeffries, 1982). From
my perspective as a curriculum specialist, | have observed how this oversight limits the
apprenticeship experience, preventing learners from acquiring the structured problem-
solving skills necessary for industry success. By embedding systematic debugging
strategies into the curriculum, apprentices could not only develop a more methodical
approach to identifying and resolving software bugs but also enhance their technical
competence, confidence, and workplace readiness. This integration would represent a
critical step in modernising apprenticeship programmes to meet the demands of a rapidly

evolving digital workforce.

The relevance of these changes is further underscored by the growing importance of
remote work in software development. Studies have demonstrated that collaborative
debugging practices, such as pair programming, lead to higher quality code, improved
communication, and greater knowledge transfer (Hannay et al., 2009). However, the

challenges of working in distributed teams, particularly for apprentices, remain

7|Page

underexplored (Smite et al., 2021). This study seeks to address this gap by investigating
how apprentices manage the cognitive load of debugging in distributed pair settings and
how technology, such as integrated development environments, can facilitate this
process (Beasley & Johnson, 2022). By doing so, it aims to provide actionable insights for
designing apprenticeship programmes that equip learners with the skills and resilience

needed for a remote-first workplace.

Building on these findings, my familiarity with apprenticeship standards, such as those
established by the Institute for Apprenticeships and Technical Education, underscores the
pressing need for these programmes to evolve in line with the demands of the digital
workforce. While current standards emphasise knowledge, skills, and behaviours, the
integration of collaborative problem-solving techniques, such as distributed pair
debugging, remains underdeveloped. Through this research, | aim to bridge this gap by
contributing insights that can inform the enhancement of apprenticeship standards,
particularly in the digital sector, where collaboration and debugging are essential

competencies (IfATE, 2022).

In conclusion, this research is deeply informed by my professional experience as a
curriculum specialist and quality assurer and my understanding of the challenges
apprentices face in developing collaborative debugging skills. As the demands of remote
work reshape the modern workforce, it is critical that apprenticeship programmes adapt
to equip learners with the skills needed to thrive in distributed environments. By
investigating the debugging behaviours of SDT Apprentices in collaborative, remote

settings using technology-mediated tools, this study will address a significant gap in the

8|Page

literature. The findings aim to contribute to the advancement of apprenticeship
programmes, ensuring they align more closely with the realities of the digital workforce

and prepare apprentices for sustained success in their careers.

1.2 Research Background

Apprenticeship within the framework of collaborative learning represents a unique and
effective approach to holistic skill development. In contrast to traditional classroom
instruction, apprenticeships prioritise practical experience, allowing novices to acquire
skills through direct observation and collaboration with experts who play an important
role in imparting knowledge, skills, and guidance (Lave, 1995; Lave & Wenger, 1991),
effectively embodying the “learning by doing” approach. This technique has received
recognition for its effectiveness in traditional learning environments, notably in
developing strategic and metacognitive skills (Sawyer, 2014) which are required for

career success and modern workforce demands.

To add to that, apprenticeships in the modern period are great platforms for combining
theory and practice (Mirza-Davies, 2015), allowing participants to use their newly gained
skills in real-world scenarios (Wolter & Ryan, 2011). This suggestion is consistent with the
arguments stated by Engestrom et al. (2001), which emphasises the necessity of a
balanced mix of theoretical learning and practical application. Similarly, apprenticeships,
according to Lave and Wenger (1991), are intensive experiences that shape an individual's
identity within a community of practice while also encouraging active learning and
engagement with seasoned professionals. Thus, apprentices learn through active

participation, progressing from peripheral to key members of their work communities

9|Page

(Lave, 1996). In essence, this holistic approach teaches specific skills and prepares

apprentices for meaningful workplace participation.

In relation to this research, the new apprenticeship standards replace the previous, more
generalised framework-based apprenticeships and come with distinct
characteristics such as Employer-Led Standards, Endpoint Assessment, and Funding
Reforms (DfE/BIS, 2013). These new criteria were developed by groups of employers
known as "trailblazers" and are intended to closely correlate with the specific skills,
knowledge, and competencies required for each occupation (Fuller & Unwin, 2010,
2013). The associated Skills, Knowledge, and Behaviours (KSBs) were intended to make

apprenticeships more relevant and challenging.

Not only that, the shift to employer-led standards serves a dual purpose: it fulfils both
the skill demands of England's diverse sectors and the requirements of those seeking
career advancement or a fresh start. As of August 2023, the standards have been
customised to fifteen diverse industries, including agriculture, digital, and legal. This
range ensures that a broad spectrum of skills and vocations is covered, reflecting the
diverse demands of the national economy. Importantly, these apprenticeship standards
are not static; they are constantly revised to reflect the ever-changing demands of the

workforce and the economy.

1.2.1 SDT Apprenticeship
As of August 2023, the SDT Apprenticeship Standard in England, the standard that the

SDT apprentices are learning, is one of 29 digital apprenticeship standards (IfATE, 2023)

10|Page

developed and approved as a result of the Richard Review and following Trailblazer
project. Following the Richard Review in 2012, the government introduced the Trailblazer
programme, which enables employer-led groups to create new apprenticeship standards.
The SDT Apprenticeship was one of the new standards (DfE/BIS, 2013; Richard, 2012),

and it was intended to be more employer-led and occupation-focused.

The SDT Apprenticeship is a Level 3 qualification that normally lasts from 15 to 24 months.
It addresses the fundamental skills, knowledge, and attitudes required to function as a
software developer. Similarly, the SDT Apprenticeship standard is a customised
occupational standard that specifies the fundamental 'knowledge, skills, and behaviours'
(KSBs) required for proficiency in the job role. According to the Institute for
Apprenticeships and Technical Education (IfATE), this standard has 62 KSBs divided into
25 knowledge, 32 skills, and 5 behavioural criteria (IfATE, 2024). These KSBs are further
aligned with the 15 occupational duties that an apprentice is expected to perform. The
standard also defines any qualifications required to complete the apprenticeship and

how they connect with professional recognition, if applicable.

Also, apprentices are classified as novices (see Section 1.1.2) who have been trained to
create, test, and maintain code, interpret design requirements, and communicate within
a development team. They are generally responsible for assisting with software
development throughout the whole software development life cycle. Given this, SDTs are
entry-level team members who work in a variety of industries, ranging from financial
services to public sector organisations. In addition, they are required to use basic

debugging techniques as part of their occupational duties. Techniques include but are not

11|Page

limited to interactive debugging, print debugging, and remote debugging. On top of that,
the standard highlights the use of structured problem-solving methodologies, such as

basic code debugging, in identifying and resolving issues (IfATE, 2024).

1.2.2 Novice Programmers

The gradual development of an individual's talents is described by the five-stage
phenomenological model of skill acquisition proposed by Dreyfus and Dreyfus (2005).
Although Dreyfus et al. (2000) classified these levels as novice, advanced beginning,
competent, proficient, and expert. At the novice level, people use rules and drills to
complete tasks without the benefit of real-world experience, frequently failing to grasp
the context. The journey through these phases is a change from inexperience to mastery,
where the novice is at the starting point and lacks perception and situational awareness.
In variance to Dreyfus and Dreyfus’s suggestion, Shneiderman (1976) identified four
levels of programming experience, namely naive, novice, intermediate, and advanced.
Naive individuals are entirely new to programming; novices have completed an
introductory course. Intermediates have finished two or three courses, while advanced
programmers include graduate students, faculty, or professionals in the field. Based on
Shneiderman’s framework, the terms ‘novice’ and ‘beginner’ can be used
interchangeably, and there is a suggestion that the first three categories might be too

finely distinguished.

However, looking at the literature suggests a varied description of what constitutes a
"novice". Allwood (1986) defines novice as either someone with minimal experience or

someone completely new to programming, regardless of their actual knowledge. In

12|Page

contrast, experts, on the other hand, effortlessly master tasks and respond intuitively to
challenges (Dewey, 1922). Nonetheless, this thesis aligns with Dreyfus and Dreyfus (2005)
in suggesting that novices rely on deliberative reasoning due to their limited contextual
understanding, a limited repertoire of situational discrimination, and a detached
comprehension of the phenomenon. This research reveals that while novices may have
tacit knowledge that aids them in executing tasks, their reliance on stringent rules is

evident, limiting their overall effectiveness.

In a related vein, Luxton-Reilly (2016) and Savage and Piwek (2019) argue that
novice programmers lacking a solid understanding of core programming constructs like
variables, arrays, recursion, and loops face challenges in crafting efficient functions and
procedures. Similarly, Barbosa Rocha et al. (2022) emphasised novices' difficulty in
properly integrating and implementing programming principles, which affected their
abilities to develop and test code. Likewise, Klahr and Carver (1988) and Liu et al. (2017)
argue that newbie programmers struggle because they lack particular domain knowledge

and problem-solving skills.

Building on this, scholars such as Ahn et al. (2022), Denny et al. (2022), and Hassan and
Zilles (2022) appear to agree that novice programmers frequently struggle with
programming, albeit with differing perspectives on the root causes and potential
solutions (Karvelas, 2019; Malik et al., 2022; Smith & Rixner, 2019; Tsan et al., 2019;

Whalley et al., 2021).

13|Page

Furthermore, other studies contend that novices, unlike experts, have fragmented
knowledge structures, resulting in a shallow grasp of tasks and more frequent errors
(Allwood, 1986). This is consistent with Jenkins (2002), who indicates that novices
frequently underestimate the complexities of programming structures. Bonar and
Soloway (1983) investigated whether rookie issues resulted from the nature of
programming and the tools utilised. After closely observing and interviewing a subset of
novice Pascal programmers, they inferred that using natural language influenced their
early programming efforts. The incorrect utilisation of natural language strategies in
programming seemed to be the root cause of their challenges. This conclusion echoes
Soloway et al. (1981), who argued that traditional programming languages do not align
well with the intuitive cognitive strategies used by novices familiar with natural language,

causing discrepancies and misunderstandings.

Elaborating on this, a collection of research papers edited by Soloway and Spohrer on
novice programmers reveals that their understanding often transcends mere rule
memorisation but remains at a superficial level, focusing on line-by-line coding rather
than grasping meaningful program structures (Soloway & Spohrer, 2013). Winslow (1996)
deepens the understanding of this phenomenon by further noting that while novices
might understand individual syntax and semantics, they struggle to combine them into
coherent programs. This is echoed by Blackwell et al. (2002) and Lahtinen et al. (2005),
highlighting novices’ difficulties with programming constructs like loops, conditional
statements, pointers, and recursion (Pane & Myers, 1996; Soloway & Spohrer, 1989). Du
Boulay (1986) contends that insufficient domain comprehension and syntactic and

semantic limitations are the primary causes of beginners' compounded problems. This is

14|Page

supported by Pennington (1987), who adds that a shaky grasp of programming structures

exacerbates their challenges.

Continuing from this, many studies pinpoint learners’ attributes as the root cause of the
challenges novices face (Guzdial, 1994; Lahtinen et al., 2005; McCracken et al., 2001;
Robins et al., 2003; Soloway & Spohrer, 1989; Winslow, 1996). Buttressing this point,
McCracken et al. (2001) address the challenges novice programmers face and emphasise
common struggles such as understanding fundamental concepts and applying problem-
solving techniques; this is further exacerbated by their shaky grasp of core programming
concepts and inconsistent methodologies. Guzdial (1994), in his study, asserts the
difficulty in grasping abstract notions and bridging the gap between theory and practice.
Following that, Robins et al. (2003) draw attention to the challenge as the cognitive strain
associated with problem-solving and comprehending programming principles. In their
study, Soloway and Spohrer (1989) discuss frequent misunderstandings and mistakes,
such as misinterpreting loops and conditionals. According to Lahtinen et al. (2005), other
problems include a lack of past knowledge and overwhelming programming
environments. Winslow (1996) in his study reiterates the huge difference between
novices and experts, notably in algorithmic thinking and task management complexity.
Adelson and Soloway (1985) and Mayer (1981) both affirm the critical role of a well-
formed mental model in programming. The latter also points out issues like problem
decomposition and syntax arising from immature mental models. Overall, these
investigations demonstrate the layered and interconnected obstacles that novice
programmers confront. However, reflecting on my personal experiences with teaching

novices, these observations resonate.

15|Page

Moreover, many novices perceive programming as daunting (Hanks et al., 2004; Jenkins,
2002; Robins et al., 2003). Jenkins (2002) attributes this to the extensive skill set needed
while Sloane and Linn (1988) describe it as a layered skill acquisition, from basics to
complexity. Jenkins (2002) and McKeithen et al. (1981) both present programming as a
phased approach, transitioning from specifications to algorithms and, ultimately, to code.
Other studies on novice programming have found that they struggle with fundamental
concepts such as variables, control structures, and problem-solving strategies (de Raadt,
2007; Glezou & Grigoriadou, 2010; Hooper & Thomas, 1990; Lister et al., 2004; Papadakis
& Orfanakis, 2018; Sajaniemi & Kuittinen, 2008; Van Someren, 1990). Novices often
struggle with the complexities of language syntax and semantics (Robins et al., 2003),
demonstrate alternative concept comprehension, and face difficulties in planning,
writing, and debugging programs (Lister et al.,, 2004), owing to their limited
understanding of programming (Kurniawan et al., 2019; Miiller et al., 2019; Teague &
Roe, 2007). While these struggles are well-documented, there is a noticeable gap in
exploring the unique challenges faced by paired novice programmers debugging in a
distributed environment (Kurniawan et al., 2019), suggesting a need for deeper

investigation in this niche area.

1.3 The Rationale for this Study

The increasing prevalence of remote work has highlighted the need for insights into
collaborative activities such as paired debugging, particularly in geographically dispersed
contexts. While existing research has highlighted the benefits of paired programming in

terms of code quality, improves team communication, fosters knowledge transfer, self-

16|Page

efficacy, expertise sharing, and team collaboration (Bipp et al., 2008; Cockburn &
Williams, 2000; Hughes et al., 2020), the specific challenges of working in geographically
dispersed teams have been underemphasised (Jayathirtha et al., 2020; Murphy et al.,

2010).

Moreover, while some research on distributed software development predates COVID-
19, the practice has gained momentum since the early 2000s, with the COVID-19
pandemic further accelerating the shift to remote work (Agerfalk et al., 2005; Espinosa et
al., 2007; Lacave & Molina, 2021; Miller et al., 2021; Neto et al., 2020; Sokolic, 2022).
Thus, understanding how apprentices’ debugging behaviours adapt in remote settings
offers insights into apprentices’ strategies and collaboration techniques during debugging
(Adeliyi et al., 2021; Ying et al., 2021). Similarly, as remote work becomes more prevalent,
it is crucial to understand the debugging strategies and technological usage of
geographically distributed apprentices (Beasley & Johnson, 2022; Lynch et al., 2023;
Smite et al., 2021). This research is both timely and crucial for sustaining software quality

and efficiency.

Furthermore, the function of digital tools such as Integrated Development Environments
(IDEs) in supporting the debugging practices of apprentices in remote paired
programming scenarios (Hassan & Zilles, 2022) remains insufficiently examined.
Considering the growing dependence on these tools in distributed settings, exploring
their effectiveness and potential obstacles is important, thereby addressing a notable

void in current studies.

17|Page

1.4 Aims and Objectives

This empirical study examines the debugging strategies utilised by geographically
dispersed Software Development Technician (SDT) apprentices debugging Python codes.
The study zeroes in on their collective endeavours to rectify Python code using
technology-mediated instruments. Additionally, it aims to uncover the factors influencing

their debugging methods and identify their challenges.

To fulfil the aim of this investigation, the study will pursue the following objectives:

= Examine the types of errors made by geographically dispersed dyad apprentices when
collaboratively identifying and correcting bugs in the provided Python code and errors
they might miss or fail to rectify.

= To investigate the debugging strategies and tactics employed by these apprentice
pairs in locating and fixing bugs in Python code and attempt to understand their
problem-solving approaches.

= Gaininsights into how geographically dispersed dyad apprentices share cognitive load
during their bug detection and correction processes.

= |nvestigate the influence and efficacy of IDE tools and other technology-mediated aids
in assisting or impeding the debugging tasks the geographically separated dyad
apprentices tackled.

= Lastly, explore the challenges confronted by paired SDT apprentices working from
different locations as they collaborate on bug identification and resolution and

identify the underlying causes of these challenges.

18|Page

By addressing these objectives, the study intends to provide an in-depth understanding
of the synergies involved in remote, collaborative debugging among apprentice

programmers.

1.5 Research Questions

Debugging is a costly and time-intensive task where programmers utilise a variety of tools
and approaches for bug identification and resolution (Hirsch & Hofer, 2022). Although
debugging is traditionally a solitary activity, paired debugging turns it into a collaborative
effort that promotes engagement and accountability between pairs (Baker et al., 2004).
This process necessitates a deep understanding of how they collaboratively reason
through and resolve errors by investigating their mental models (Oman et al., 1989) and
the ability to link observed behaviours to potential defects (Perscheid et al., 2017).
Current literature shows a paucity of research on paired debugging among novice
programmers, especially in distributed settings using technology as a mediator. Thus,
adapting industry practices for educational contexts is logical but needs exploration,
particularly when pairing remote novice programmers. Therefore, this study aims to
understand the debugging behaviours of SDT Apprentices in collaborative, remote

settings.

To this end, this central question steers this study:
“How do the paired SDT in geographically distributed locations
work collaboratively to fix Python programming bugs using the

technology-mediated medium?”

19|Page

Leedy and Ormrod (2021, p. 26) suggest that from a research design standpoint, the

central research question can be broken down into several smaller, focused questions.

By answering these sub-questions, researchers are better positioned to address the

central question comprehensively. This approach allows for a more granular investigation

of the subject matter and can lead to a fuller understanding of the studied issue. So, given

this and in investigating this central question, this study proffers answers to the following

five specific research questions:

= RQi: What bugs are generated by the paired geographically distributed SDT
apprentices working collaboratively to solve a given problem using Python?

= RQz: What bug locating strategies and tactics are deployed by the paired
geographically distributed SDT apprentices while attempting to fix defects in the given
Python code? How do they go about finding the bugs in the program code?

* RQs: How do the paired geographically distributed SDT apprentices distribute
cognitive load when resolving bugged code?

= RQa4: How does leveraging IDE tools enhance the capabilities of distributed pair
debugging and mitigate the challenges encountered in debugging programs?

= RQs: What challenges are experienced by paired geographically distributed SDT
apprentices working collaboratively on debugging programming bugs, and why are

they facing such challenges?

Based on Maxwell (2012), the study employs multiple research questions to provide a
focused framework for investigating the debugging behaviour of remote, dyad SDT
apprentices. The first question aims to identify the types of bugs these apprentices

generate while working on Python code. These data are then compared with bugs

20|Page

generated by solo and co-located novice programmers in previous studies (Miller et al.,
2021; Neufeld & Fang, 2005; Ralph et al., 2020). This comparison helps us understand if

remote settings influence bug generation.

The second question focuses on the debugging behaviour of these apprentices, aiming to
inform workplace mentors and training providers on how best to support them. The third
research question uses the vocalised thoughts of apprentices to understand how they
distribute the cognitive load during debugging, leveraging the theories of distributed
cognition (Hutchins, 1995) and information foraging (Pirolli & Card, 1999). These theories
provide a framework for data collection and analysis, offering insights into thought
processes and debugging techniques. The fourth question explores the role of
technology, including integrated development environments and collaboration tools, in
the debugging process. The question asks whether technology enhances or complicates
remote debugging, contrasting with its role in co-located settings. Lastly, the fifth
research question investigates the challenges remote dyad apprentices face in debugging

Python code and seeks to identify the root causes of these challenges.

However, it is essential to note that the value of this research is premised on

understanding how dyad SDT apprentices approach debugging.

1.6 Structure of the Thesis

The structure of this thesis facilitates the exploration of the debugging strategies of

novice programmers, with a specific focus on distributed pair debugging, the role of

21| Page

technology, and the conceptual framework guiding the study. Each chapter serves a

distinct purpose and contributes to the overall research endeavour.

Chapter 1 - Introduction: This chapter introduces the research topic, explaining the
rationale behind the study and its primary research question. It also offers background
information on the apprenticeship system in England and describes the characteristics of
novice programmers. The study's goals and objectives are presented, and the chapter
concludes with an overview of the thesis format.

Chapter 2—Literature Review: This chapter critically reviews research on novice
programmers’ debugging strategies and errors. It defines key debugging concepts,
analyses current knowledge, and identifies common debugging strategies and challenges.
It then inquires about distributed pair debugging, explores the role of technology, and
reviews relevant research. The chapter establishes a theoretical basis for the study by

addressing gaps in existing literature that the thesis aims to fill.

Chapter 3 - Conceptual Framework: This chapter presents the conceptual framework that
serves as the foundation for the study, detailing essential ideas and relationships that

drive data collection and interpretation.

Chapter 4 - Research Methodology: This chapter provides an in-depth discussion of the
research design, methods, and tools used in the study. It describes the approach to data
collection, participant selection, and data analysis, detailing the steps taken to ensure the

validity and reliability of results. The chapter also discusses ethical considerations

22 |Page

associated with the research, highlighting measures to protect participants’ rights and

ensure research integrity.

Chapter 5 - Data Analysis and Findings: This chapter presents and analyses the data
collected during the research within the conceptual framework and literature review
context. It identifies patterns, trends, and insights emerging from the data, addressing
the research question. The chapter provides a detailed interpretation of the results,
discussing the implications of the findings for novice programmers’ debugging strategies,

especially within the apprenticeship model of learning.

Chapter 6 - Conclusion and Future Research: This chapter summarises the main findings
and discusses their implications for novice programmers, educators, and software
development teams. It outlines the study’s contributions to the existing knowledge on
debugging strategies among novices within distributed settings and apprenticeship
learning, highlighting potential areas for future research. The chapter concludes by
acknowledging research limitations and providing recommendations for practitioners

and researchers in computer science education.

23|Page

Chapter 2: Literature Review

2.0 Introduction

A plethora of studies, like those by Dyba and Dingsoyr (2008), Mens et al. (2019) and
Nosek (1998), highlights substantial advancements in embracing collaborative practices
in the realm of software development. These advancements have accelerated the
adoption of pair programming as a pivotal educational strategy (Hanks et al., 2011;
Sobral, 2020), gaining traction across diverse learning environments due to its inherent
benefits (Baheti et al., 2002; Chorfi et al., 2020; da Silva Estacio & Prikladnicki, 2015; Dyba
& Dingsoyr, 2008; Faja, 2014). Notably, such practices enhance the learning experience
and aptly support learners in future workforce demands (National Research Council,

2013; Yett et al., 2020).

Building on this foundation, the traditional Implementation of pair programming or, in its
extended form, pair debugging, has typically been a co-located activity centred around
continuous communication and collaboration (Smite et al., 2021). However, the COVID-
19 pandemic has significantly heightened the use of digital technologies in coding
education (Chorfi et al., 2020; Lacave & Molina, 2021), leading to the mainstreaming of
virtual collaborative programming. In a way, this transition bolstered interest in its
pedagogical advantages. As a result, educational institutions and training providers began
adapting to industry-aligned collaborative models, integrating collaborative
programming to provide learners with industry-relevant experiences, skills, and

environments (Phillips et al., 2021; Smite et al., 2021). This practice reaffirms the

24| Page

necessity and value of remote pair programming and debugging in contemporary

education.

Given this growing emphasis on remote collaboration, this literature review examines the
current state of research on distributed pair debugging, which remains a relatively under-
explored area despite its increasing relevance in modern software development and
education. Distributed pair debugging, also referred to in the literature as “virtual pair
debugging” or “remote collaborative debugging” (Baheti et al., 2002; Hanks, 2008; Smite
et al., 2021), involves two individuals collaborating remotely to identify and resolve
programming errors. As distributed software development expands, understanding how
debugging is conducted in these environments is critical. This review aims to identify
current knowledge, gaps, and the specific strategies, tools, and challenges related to

distributed pair debugging.

Building on this focus, previous studies have extensively explored pair programming, a
practice where two programmers work together at one workstation, sharing the roles of
driver and observer (Williams et al., 2000). Traditionally, pair programming has been a
co-located activity, allowing for direct interaction and immediate feedback (Hanks et al.,
2011; Nosek, 1998). However, with the rise of distributed software teams, particularly
driven by the global shift towards remote work, there is increasing interest in how this
co-located collaborative approach translates to remote settings, often termed
“distributed pair programming” or “virtual pair programming” (Baheti et al., 2002; da

Silva Estacio & Prikladnicki, 2015). Despite this interest, there is limited understanding of

25|Page

how the practice adapts to the debugging phase, a process that demands effective

collaboration and communication.

This gap becomes even more pronounced in distributed pair programming, which
introduces unique challenges in remote settings. These include a heavy reliance on digital
tools and the absence of face-to-face communication, both of which are critical to the
debugging process (Olson & Olson, 2000; Smite et al., 2021). This literature review
examines how such challenges influence debugging performance, particularly for novice
programmers, who often find debugging difficult even in co-located environments.
Additionally, the review evaluates whether existing tools for remote pair programming,
such as shared integrated development environments (IDEs) and screen-sharing
applications, provide adequate support for debugging in distributed contexts (Phillips et

al., 2021; Tsai et al., 2015).

At its core, debugging is a cognitively demanding task that requires identifying, isolating,
and correcting errors in code. For novice programmers, this process is further
complicated by their limited experience and the high cognitive load it entails (Fitzgerald
et al., 2008; Katz & Anderson, 1987). When conducted in a distributed setting, debugging
becomes even more complex due to the separation between collaborators, which can
cause delays in communication and misunderstandings about code functionality (Wetton,
2021). This review explores how these additional factors affect the debugging process
and examines the strategies novice programmers employ to overcome them. By
understanding these dynamics, the review aims to provide valuable insights into

improving distributed pair debugging practices.

26|Page

Effective collaboration in distributed pair debugging also depends on the availability and
functionality of tools designed for real-time interaction. Integrated Development
Environments (IDEs) with built-in debugging tools, screen-sharing applications, and real-
time code editors have become central to distributed pair programming (Lacave &
Molina, 2021; Smite et al., 2021). However, research suggests that these tools are often
not fully optimised to meet the iterative demands of debugging, such as testing and error
correction (Hanks, 2008; Tsai et al., 2015). This review evaluates the performance of these
tools in distributed contexts, where delays in the feedback loop between driver and
observer can hinder the debugging process. By assessing these tools’ strengths and
limitations, the review seeks to identify practical improvements that can enhance their

effectiveness for distributed pair debugging.

Beyond the tools themselves, effective distributed pair debugging also relies on cognitive
strategies employed by programmers. Research on pair debugging in co-located settings
has shown that novices often depend on trial-and-error methods, which are inefficient
and time-consuming (Khalid et al.,, 2021; Murphy et al.,, 2010). In distributed
environments, where non-verbal feedback is limited and coordination occurs via digital
platforms, these challenges can become even more pronounced (Khalid et al., 2021). This
review examines the literature on cognitive load management in distributed pair
debugging, focusing on how programmers allocate tasks, share information, and maintain
effective collaboration despite physical separation. By understanding these strategies,
the review aims to provide insights into improving both the technical and cognitive

aspects of distributed pair debugging.

27 |Page

In addressing these complexities, this literature review synthesises findings from various
studies to clarify the current state of research on distributed pair debugging. It maps the
existing research landscape, identifies gaps, and proposes future directions for studying
the strategies and tools that can enhance debugging performance in distributed settings.
By doing so, this review contributes to developing best practices for novice programmers
working in distributed environments, ensuring that they are equipped with the necessary

skills and tools to debug effectively.

To conclude, it is essential to establish a methodological foundation to ensure the
review’s findings are grounded in rigorous academic practice. The following sections
outline the approaches taken in conducting this literature review, beginning with the
choice of review type in Section 2.1, which explains the rationale for selecting an
integrative literature review. This method synthesises diverse streams of research,
offering comprehensive insights into the field. Section 2.2 provides a detailed account of
the methods used to gather and analyse relevant studies, drawing on established
systematic review practices (Arksey & O'Malley, 2005; Randolph, 2019). In Sections 2.3
and 2.4, the focus shifts to the critical appraisal and synthesis of the literature, where key
themes are identified using best practices in thematic analysis (Braun & Clarke, 2006) and
integrative reviews to address complex and interdisciplinary research questions (Hopia et
al., 2016). Together, these sections lay the groundwork for systematically reviewing the
current state of knowledge in this under-explored field of distributed pair debugging,

ensuring a robust and comprehensive analysis (Greenhalgh & Peacock, 2005; Hart, 1998).

28| Page

2.1 Choice of a Review Type

Literature review methodologies vary widely in focus and application. Hart (1998)
describes narrative reviews as broad overviews suitable for initial explorations but lacking
detailed critique. Arksey and O'Malley (2005) focus on scoping reviews which map
research landscapes broadly without the constraints of systematic reviews. Jesson et al.
(2011) discuss critical reviews that analyse methodologies profoundly but are limited in
scope, while Randolph (2019) describes state-of-the-art reviews that highlight recent
innovations but may not cover the broader field. Integrative Literature Reviews (ILRs),
detailed by Whittemore and Knafl (2005) and Torraco (2005), blend various research
types, enhancing theory building and filling gaps, especially in emerging fields where

conventional reviews are inadequate, as noted by (Greenhalgh & Peacock, 2005).

In comparison to the other forms of literature reviews discussed above, the ILR technique
stands out for its methodological flexibility and interdisciplinary scope, which allow it to
handle complicated research questions. It integrates diverse sources across research
methods, including published articles, grey literature, with both qualitative and
guantitative studies, as noted by Broome (2000), Hopia et al. (2016), and Whittemore and
Knafl (2005). This makes it a particularly effective approach for scholarly investigations

requiring a detailed and all-encompassing examination, as required in this study.

2.2 Methods
To map existing knowledge and identify gaps in research on novice paired programmers’
debugging in distributed environments, this study used an Integrative Literature Review

(ILR) as a primary lens to synthesise various streams of literature, following the

29| Page

framework proposed by Lubbe et al. (2020). In determining the most appropriate ILR
methodology, this research scrutinised and contrasted various approaches
recommended by leading academics. Notably, Whittemore and Knafl (2005), Torraco
(2005) and Russell (2005) advocate for a five-phase model, albeit with slight differences
in the objectives of particular phases, whereas Souza et al. (2010) suggest a six-phase
technique. After evaluating the outlined ILR methods, the study embraced the concise
five-step strategy that Lubbe et al. (2020) put forward, as depicted in Figure 1. This
decision was influenced by its clarity and structured approach, which provides a
straightforward path through the complex process of conducting an ILR. This clarity helps
in systematically addressing the research objectives and ensuring that each step of the

review is purposeful and contributes to the overarching goals of the study.

1. 3. 4.
' 2. Data Data B
Review Sampling . : Presentation
Question Collection Analysis

Figure 1: Integrative literature review (adapted from Lubbe et al., 2020)

2.2.1 Review question

The first step involves clearly defining the research question or problem that the review
aims to address (Lubbe et al., 2020). This is crucial as it guides the search for relevant
literature and the subsequent analysis. Through this exploration, the literature review

establishes a solid foundation upon which the research questions can be thoroughly

30|Page

examined and answered, enhancing the scholarly discourse surrounding the topic

(Torraco, 2016).

The central question that steers this study centres on:
“How do the paired Software Development Apprentices in
geographically distributed locations work collaboratively to fix Python

programming bugs using the technology-mediated medium?”

As seen in the research question, this study explicitly explores the debugging strategies
deployed, the tools employed and their effectiveness in addressing geographical
separation. It also examines the types of programming bugs encountered and how paired
novice programmers manage cognitive load. Ultimately, the study seeks to understand
the interaction between technology, collaboration methods, task distribution, and the

unique challenges of remote debugging.

2.2.2 Sampling

The literature sampling process consisted of two main steps, namely searching and
screening. Relevant material was located during the searching phase by scanning
academic databases, search engines, and other sources using precise keywords, Boolean
operators, and search filters. Subsequently, titles and abstracts were screened for
relevance using predetermined criteria such as subject relevancy, research type, and
publication date. To complete the selection for data synthesis, the full texts of possibly

relevant publications were compared to the inclusion criteria (Lubbe et al., 2020). This

31|Page

methodical strategy ensured comprehensive coverage while excluding irrelevant or low-

quality sources.

Searching

To answer the research question more fully, it becomes imperative to identify and collect
relevant literature, a crucial step that typically involves database searches, manual
journal reviews, and citation checks. Whittemore and Knafl (2005) emphasise a
methodical and transparent approach and Carnwell and Daly (2001) stress the
importance of a well-defined search strategy. In line with these recommendations,
researchers, as highlighted by Kraus et al. (2022), frequently utilise multifaceted search
techniques, including keyword searches, Boolean operators, and time-framed queries, to
enhance their research effectiveness. Please refer to the visually illustrated processes

presented in Figure 2.

In conducting the literature search for this study, a wide range of databases were
utilised to ensure comprehensive coverage. These included Scopus, ProQuest, JSTOR,
ERIC, IEEE Xplore Digital Library, ACM Digital Library, ScienceDirect, EBSCO, SAGE
Journals, Web of Science, Education Full Text, PsycINFO, Academic Search Ultimate, and
Google Scholar. The search was conducted between May 2021 and April 2024, using a
structured query designed to enhance the relevance of the outcomes. The query
employed specific terms and combinations: (“Distributed Pair Debugging” OR “Remote
Pair Debugging” OR “Remote Collaborative Debugging” OR “Virtual Pair Debugging” OR

“Distributed Pair Programming” OR “Virtual Pair Programming” OR “Distributed

32|Page

Cognition” OR “Bug Location” OR Dyad*) AND (Error OR Bug OR “Bug Type*” OR “Error

Type*”) AND (Debug* OR “Pair Debug*”).

This carefully constructed query represents a systematic approach to identifying relevant
academic literature on distributed pair debugging. By using Boolean operators (“AND”,
“OR”) and wildcards, it balances breadth and focus to capture studies spanning diverse
contexts and terminologies. Terms like “Distributed Pair Debugging,=", “Remote Pair
Debugging

” and “Virtual Pair Debugging” target collaborative debugging practices in distributed
settings, while broader concepts such as “Distributed Cognition” and “Bug Location”
ensure that related theoretical and practical dimensions are also covered. Wildcards (e.g.,
“Debug*” and “Dyad*”) allow for variations in terminology, ensuring no relevant results
are overlooked, and quotation marks around exact phrases maintain precision by
avoiding irrelevant results. However, the complexity of the query may lead to an
overwhelming number of results in less sophisticated databases, and terms like
“Distributed Cognition” may retrieve studies beyond the primary focus on debugging.
Additionally, the absence of exclusion criteria, such as the “NOT” operator to filter
unrelated topics, could affect precision. Despite these limitations, the query is robustly
designed to map the current state of research and identify gaps in distributed pair

debugging, aligning closely with the study’s objectives.

However, given the qualitative focus of this study on behaviour and experiences rather
than quantifiable scientific data, the SPIDER tool (Cooke et al., 2012) was utilised to

identify crucial aspects of the research question. This approach aimed to guide and unify

33|Page

the search strategy, aligning it with the SPIDER tool’s framework. Additionally, search
terms were truncated as needed in both searches to ensure all pertinent articles were
captured. Thus, entering this query into research databases facilitated a thorough and
precise search. The terms were specifically selected to generate focused results,

encapsulating the main areas of interest within the study.

34|Page

ILR Sample of records

Process
Steps
2. Source of evidence:
Sampling | Scopus, ProQuest, 1STOR, ERIC, IEEE Xplore digital library, ACM Digital Library, ScienceDirect, EBSCO, SAGE
process Journals, Web of Science, Education Full Text, PsyclNFO, Academic Search Ultimate and Google Scholar

Keyword formulation

{"Distributed Pair Debugging™ OR "Remote Pair Debugging™ OR "Remote Collaborative Debugging™ OR "Virtual
Pair Debugging" OR "Distributed Pair Programming” OR "Virtual Pair Programming™ OR “Distributed Cognition™
OR “Bug Location™ OR Dyad*) AND (Error OR Bug OR “Bug Type=* OR “Error Type*" OR IDE} AND {Debug* OR
"Pair Debug*")

Inclusion criteria

Primary research in peer-reviewed journals or grey literature
Employing qualitative, guantitative, and mixed methods
Published in English language

Full-text available

Published from 1999

Exclusion criteria

Distributed system

Distributed program

Studies with non-novice participants

PRISMA Flow Diagram for ILR

Records identified through Additional records identified through
database searching (n =839 other sources, i.e. reference lists (n =85)

Records after duplicates were
removed {n =786}
I Records excluded

{n=733)

Records screened
{n =786}

Full-text articles assessed for eligibility Excluded due to out of srone
{n =53] {n=14)

Records included in critical Records excluded due to poor
appraisal process (n =39) — methodological quality (n=34)

)
=
=
|

The final number of documents
included for data synthesis (n=35)

Figure 2: Flow diagram for ILR (adapted from PRISMA — Preferred Reporting Items for Systematic Reviews
& Meta-Analysis (Moher et al. (2009) cited in (Lubbe et al., 2020)).

35|Page

Furthermore, the Al tool Connected Papers was employed to represent cited works
visually, providing an extensive overview of the research landscape pertinent to the topic
(see Figure 3). Connected Papers facilitates an innovative approach to academic research
by visualising interconnections between papers, thus streamlining literature reviews,

discovering trends, and identifying collaboration opportunities.

€« C %5 hitpsy//www.connectedpapers.com/main/37e66e255f16d968450eb8351fd6b7c048953479/Pair-debugging%3A-a-transactive-discourse-analysis/prior a % im}

@+ CONNECTED PAPERS Q, Pair debugging: a transactive discourse analysis « Share W Follow About Pricing Sponsors g Ola w
Pair debugging: a transaciive discourse analysis Derivativeworks IS Listview 3 Filters

Origin paper

Paif debugging: a transactive discourse analysis
pur : v ! These are papers that were most commonly cited by the papers in the graph

This usually means that they are important seminal works for this field and it could be a good idea to get familiar with

The Case for Pair Programming In the Computer Science "
em

Classroom
f Selecting a prior wark will highlight all graph papers referencing it, and selecting a graph paper will ighlight allreferenced ¢ o9
prior work
The benefits of palring by abilty Previous research on the interaction between pairs suggests
) . . thers is a positive relationship between transactive discussion
ast a - a Grapl a
Title & e Year Citations & s & and effective problem solving. Debugging s particularly
Pair programming In education: a literature review problematic for novice prog| 5. Some previous studies
\ . Areplicated experiment of pair-programming in a 2nd-year . . suggest this difficulty may be lessened by working in pairs.
software development and design computer sclen Using transactive analysis, we examined interactions between
five pairs of university-level Introductory programmin
The effects of pair-programming on individual programming Pair programming improves student retention, confidence, P ¥ ¥ prog 9
skill and program quality " students as they debugged Java programs. Transcriptions of
their verbal interactions were coded into transactive
Investigating pair-programming In a 2nd-year software statement categories which revealed that the nature of
development and design computer sclence course =0 varied. Extermsions. feedbmok
First-year students’ impressions of pair programming in CS1 participants' discourse varled. Extenslons, feedback requests,
B e i S d 1 Ve i fres 1y ed
d Program quality with pair programming in CS1 critiques and completions were the most frequently observed
types of transactions. Other transaction types were rarely
Palr-programming helps female computer sclence students ! detected In this context. The amount of discussion for the

Using collaborative learning research to enhance pair

programming pedagogy _ _ pairs varied as did the
) Code warrlors and code-a-phobes: a study in attitude and
pair programming

Prior works & Download X Pair debugging: a transactive discourse analysis

Results suggest that pairs who talked more and used
mpletion iransactions more nften attemnted more

Figure 3: Al tool connected papers

Screening

In the preliminary literature review phase, as visualised in Figure 2, the titles and abstracts
of papers identified through the initial search were examined. This process adhered to
predefined inclusion and exclusion criteria to ensure the relevance and specificity of the
study’s objectives. Any duplicate papers identified during this review process were
promptly eliminated to maintain the integrity and originality of the research material.
Following this screening, full-text versions of the selected articles were procured for a
more detailed evaluation, where they were once again scrutinised against the established
inclusion and exclusion criteria. This approach ensured that only the most pertinent and
informative papers were included in the study, thereby bolstering the research’s

foundational literature base.

36|Page

2.2.3 Critical appraisal (CA) of sample (data collection)

Following Whittemore and Knafl's methodology (2005), the data were evaluated based
on three essential criteria, specifically, methodological rigour, analytic precision, and
conceptual relevance to the study aims. In adherence to this, this study adopted the
Joanna Briggs Institute (JBI) checklists (Joanna Briggs Institute, 2017) to assess the
methodological quality of various research types, including randomised controlled trials,
cohort studies, case-control studies, cross-sectional studies, and systematic reviews.
These checklists, tailored to each study type, feature specific criteria for assessing

relevant methodological aspects, ensuring thorough evaluation of research designs.

The JBI checklist does not use a numerical scoring system. However, this study adapts it

toa 0to 1scale for clear, quantifiable evaluation - 0 for “No”, 0.5 for “Partially”, and 1 for

“Yes”. Since JBI does not set a specific quality cut-off, score interpretation varies by

context. Thus, specific guidelines are applied for this study:

= Qutstanding (90-100%): Papers in this range meet most or all criteria, indicating well-
executed research with thorough methodology and ethical considerations.

» Good (75-89%): Papers in this range are good to very good, meeting most criteria with
minor areas for improvement.

= Fair (60-74%): Papers in this range are deemed adequate, but several areas need
improvement.

= Poor (<60%): Scores below 60% indicate significant methodological weaknesses and

such papers might require considerable revision to be of high quality.

37|Page

Table 1 (refer to Appendix L for a full list) displays a sample summary document of studies

appraised using the JBI checklist at the full-text screening stage. Critical appraisal from

this study’s perspective is a detailed, systematic review that assesses studies’

methodological quality, validity, reliability, and relevance in a specific context (Porritt et

al., 2014).

Table 1: Sample of a summary document for the critical analysis (CA) of selected studies

collaborative coding tasks among elementary and secondary students.

li Evid
Included studies CA tool QUE! 'y vicence
rating level

Allwood, C M., & Bjorhag, C.-G. (1990). Novices' debugging when 18I Outstanding 00%
programming in Pascal.
Ahmadzadeh, M.,.Elllman, D., & Higgins, C. (2-005}. An analysis of 18I Outstanding 00%
patterns of debugging among novice computer science students.
Murphy, L., Fit Id, S., Hanks, B., & McCaul R. (2010). Pai

urphy, L, Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair | o | o oo ning | o59%
debugging: a transactive discourse analysis.
Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of ts” and novices’

en, C.-Z., Wu, P.-H., &Lin, (.). Analysis of experts’ and novices 18I Outstanding 95%
thinking process in program debugging.
Algadi, B. S., & Maletic, J. I. (2017). An Empirical Study of Debuggi

qadi, B. 5., & Maletic, J. I. (2017). An Empirical Study of Debugging | o | ¢ conding | o5%
Patterns Among Novices Programmers.
Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of electronic
textiles projects: Analysing think-aloud protocols for high school 1BI Outstanding 95%
students’ strategies and practices while problem solving.
Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C.
(2022). Debugging behaviours of early childhood teacher candidates 1Bl Outstanding 95%
with or without scaffolding.
Alaboudi, A, & LaToza, T. D {202-3}. What constitutes debugging? An 18I Outstanding 950%
exploratory study of debugging episodes.
Liu,.O‘., & Paquette, I: (2023). Using submissi.on log dat.a to investigate IBI Outstanding 95%
novice programmers’ employment of debugging strategies.
Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining
latent profile analysis and programming traces to understand novices’ Bl Outstanding 95%
differences in debugging.
Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging with
elec.tromc textl!es: under.standmg high scho_ol student pairs proble.m— 1Bl Outstanding 100%
solving strategies, practices, and perspectives on repairing physical
computing projects.
Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024).
Exploring debugging processes and regulation strategies during JBI Good 75%

2.2.4 Data analysis (Data extraction and synthesis, and thematic analysis)

Data extraction

Data extraction involves systematically gathering relevant details from selected studies

to fulfil the research objectives (Lubbe et al., 2020). This includes identifying study

38|Page

characteristics (e.g.,

author,

publication year),

aims/purpose,

research design,

population, and main findings. The aim is to compile comprehensive information from

each study for comparison, synthesis, and interpretation, organised in a structured

format such as a table, as seen in Tables 2 and 3.

Table 2: Sample data extraction

Population (Sample,

(2022)

Purpose

= |nfluence of Scaffolding
on Debugging
Approaches

= Effectiveness of
Scaffolding in Learning

= Comparative Analysis of
Debugging Behaviours
with or without
scaffolding.

Data were collected
through video
recordings, semi-
structured
interviews, and
scaffold responses
(if used)

males

* Most had little to

no prior
programming
experience.

= Conducted in an

academic setting,
offering early
childhood
education
programs

Authors Aim/Purpose Research design Sample Size, and Findings
setting)
Basma, S. A. To study debugging patterns | Employed two = Novice Error Identification
Jonathan, 1. M. among novice | structured programmers Challenges
programmers, particularly | experimental * |ncluded 142 Types of Logical
(2017) focusing on common logical | designs to subjects across two Errors
errors and their debugging | investigate separate Debugging
behaviours. debugging experiments. Strategies Used
behaviours among ® The study was Influence of
Purpose novice conducted in a Experience
= Understanding programmers. controlled Educational
Debugging Challenges experimental Implications
= |Improving Educational setting, likely Tool Effectiveness
Tools and Strategies within a laboratory
= Empirical Investigation of or a dedicated
Debugging testing room.
Kim, C The paper aims to examine | A qualitative case = Participants were Scaffolding
Vasconcelos, L how early childhood | study involved 13 undergraduate enhanced
Belland, B. R. teacher candidates learn to | undergraduates students from early engagement and
Umutlu, D program and debug block- | majoring in early childhood persistence
Gleasman, C based code with and | childhood education courses Participants with
without scaffolding. education. (11 females and 2 scaffolding

exhibited more
structured and
effective
debugging
strategies,
Scaffolding
facilitated better
collaborative
interactions
among
participants.

39|Page

Table 3: Sample data extraction (Continuation)

Population {Sample,

Authors Aim/Purpose Research design Sample Size, and Findings
setting)
The study employad | The study involved ® Three distinct
_ a quantitative &£17 undergraduate debugging profiles
I{D:‘:iﬁzlsuersh?s;ll;giir:tm approach using data | students from a C51 were identified:
debugging strategies and from prggramming ml._.lrse ?tE:I public one I.~.rit.l'| higher
outcomes using latent submission tra |:e.5 af | university in the U5, debugging
profile analysis {LPA} of undergraduatesina | who consented 1o accuracy and
. . C51 course. the use of their data. speed, and two
programming traces in an with lower
undergraduate CS1 course. Latent profile These students performances in
Purpose analysiz was used to | submitted handling runtime,
x Use latent profile analysis identify different programming logic, and syntactic
Zhang, Y. 1t chassify novice debugging pr.nﬁles solutions via a web- Errors.
Fa que'tta L programmers into based on variables basgd. s',,rstem., and The study fgund.
Pinta. 1. Ifi distinct debugging related to their interaction data that demaograghic
. ’) . debugging. were analysed and self-assessed
Liu, Q. and profiles based on their .
Fan, A. X programming task ;t:::lliitﬁlrz '::re
interactions.
(2022) Analyse the correlation pmr:::;arsh'lp
between debugging - ’
Additionally,

profiles and performance

metrics like error

handling accuracy and

speed.

Use profiling insights to

develop personalised

instructional strategies

for novice computer
sCience students.

differences in
debugging profiles
correlated with
different academic
outcomes,
suggesting the
need for tailored
debugging
instruction early in
CS education.

Jayathirtha, G.
Fields, D
Kafai, ¥.

(2024

Investigates how high
school students collaborate
and solve problems while
debugging electronic
textiles in physical
Computing projects,
emphasising their
strategies, practices, and
viewpoints.

Purpose
® To examine how paired
students collaborate to
share cognitive tasks and
use debugging strategies
10 solve programming
errors in a distributed

setting.
To capture students’
perspactives an their

debugsing experiences.

Research design is
gualitative, based
on the analysis of
think-aloud
interviews and
video observations
of seven pairs of
high school students
engaged in
debugging activities
with pre-designed
buggy e-textile
projects.

The study involved
fourteen high school
students from a LS.
charter school,
paired up and
enrolled inan
introductory
computer science
Class, participating in
debugging exercises
a5 coursawork.

Pairing students
enhanced their
ability to
collaboratively
troubleshoot,
share cognitive
tasks and fix bugs
in e-textiles
projects.

Pairs employed a
variety of
debugging
strategies,
including iterative
testing to help
navigate and solve
complexities in
physical
computing
projects.

Students
apprecated the
engaging hands-on
experience, noting
that collaboration
was crucial for
Overcoming
challenges and
enhancing learning
during debugging.

40| Page

Data synthesis and analysis

After completing the critical analysis of the included studies outlined in the previous
section, the synthesis phase began, focusing on identifying themes, relationships,
patterns, and gaps. Hart (2018) describes data synthesis as connecting components
identified during analysis initiated as soon as the literature is compiled. Adhering to Braun
and Clarke’s (2006) guidelines, this stage involved compiling various studies already
critically analysed to uncover new insights. Specifically, a thematic synthesis was carried
out, as detailed by Braun and Clarke (2006), aiming to distil the evidence into coherent
themes that respond directly to the research question. Please refer to Table 4 for a
detailed understanding of the themes that emerged from this synthesis and to see how
these themes are connected to the studies that informed them.

Table 4: Themes identified from data synthesis.

S/No Theme N2 Studies that informed the themes

(Gould & Drongowski, 1974), (Vessey, 1985), (Katz & Anderson,
1987), (Allwood & Bjorhag, 1990), (McCauley et al., 2008), (Murphy
et al., 2008), (Fitzgerald et al., 2010), (Murphy et al., 2010), (Yen et

1 | Complexity and 51 | al., 2012), (Akinola, 2014), (McCall & Kélling, 2014), (Ettles et al.,
Diversity of Errors
2018), (Janior et al., 2019), (Kohn, 2019), (Smith & Rixner, 2019),
(Jayathirtha et al., 2020), (Jeffries et al., 2022), (Algadi & Maletic,
2017), (Zhang & Norman, 1994), (Jayathirtha et al., 2024)
(Gould & Drongowski, 1974), (Vessey, 1985), (Allwood & Bjorhag,
1990), (Katz & Anderson, 1987), (Ahmadzadeh et al.,, 2005),
, Tapestry of Debugging y (Chintakovid et al., 2006), (Fitzgerald et al., 2008), (Fitzgerald et al.,
Strategies 2010), (Murphy et al., 2008), (Algadi & Maletic, 2017), (Jayathirtha
et al.,, 2020), (Jayathirtha et al., 2024), (Liu & Paquette, 2023),
(Whalley et al., 2023)
R Team Cognitive R (Chintakovid et al., 2006), (Jayathirtha et al., 2020), (Jayathirtha et
Management al., 2024)

(Smite et al., 2021), (Fitzgerald et al., 2008), (Whalley et al., 2023),

4 IDE Debugging Efficiency 4 (Jayathirtha et al., 2024)

9 (Michaeli & Romeike, 2020), (Algadi & Maletic, 2017), (Fitzgerald et al.,

5 | Navigating Debugging 2008), (Fitzgerald et al., 2010), (Murphy et al., 2010), (Smite et al., 2021),
Complexities

(Kim et al., 2022}, (Whalley et al., 2023), (Jayathirtha et al., 2024)

N? — Number of papers

41|Page

2.2.5 Presentation

After analysis, the findings are presented in a structured format, including a narrative
summary, making it easy to understand the main findings. An initial search across chosen
databases produced 924 papers. After reviewing titles and abstracts, applying exclusion
criteria, and eliminating duplicates, 53 articles were shortlisted for closer examination.
Following an in-depth full-text review, 14 articles were excluded for not directly
addressing the review topic, and an additional 4 papers were excluded due to poor
methodological quality, leaving 35 papers deemed suitable for inclusion in this review

(see Figure 2).

Based on the review of the literature and alignment with the guidelines provided by
Braun and Clarke (2006), the key themes that emerged, influencing the debugging
behaviours of novice programmers across various settings were Complexity and Diversity
of Errors, Tapestry of Debugging Strategies, Team Cognitive Management, IDE Debugging
Efficiency, and Navigating Debugging Complexities. These themes collectively cover the
factors influencing debugging behaviours, providing a comprehensive framework for
understanding and enhancing the debugging skills of novice programmers in various

settings.

Theme 1 - Complexity and Diversity of Errors
The studies reviewed, which span several decades, provide insights into the diverse types
of errors encountered by novice programmers in various programming languages and

environments.

42| |Page

This theme presents an overview of the findings regarding the different types of errors or
bugs encountered by novice programmers, detailing commonalities and insights across

various studies.

The study conducted by Gould and Drongowski categorised the debugging challenges
faced by beginners in Java programming into syntax, logic, and runtime errors, providing
early insights into the distinct categories of errors encountered by novice programmers
(1974). Leveraging these insights, Katz and Anderson (1987) further emphasised the
importance of understanding these categories to improve debugging efficiency,
highlighting how different types of errors necessitate different approaches (Michaeli &
Romeike, 2019). Offering a comparative angle, Vessey (1985) documented higher error
rates among novices compared to experts in COBOL programming, illuminating the steep
learning curve novices encounter and the more efficient debugging strategies experts
use. Similarly, Yen et al. (2012) explored differences in debugging strategies between
novice and expert programmers in C, revealing that novices struggle significantly with

semantic and logic errors due to less effective use of compiler feedback.

Within specific software development environments, Ahmadzadeh et al. (2005) and
Koélling et al. (2019) focused on how novices handle compiler errors and logical mistakes
within environments like the Bluel IDE, noting frequent logical missteps by novices.
Fitzgerald et al. (2008), Murphy et al. (2008) and Murphy et al. (2010) elaborated on the
particular types of Java errors, such as arithmetic bugs, malformed statement bugs, and

incorrect logical expressions, pointing out the particular difficulties novices face in Java

43|Page

environments. These studies collectively highlight the challenges and learning obstacles

presented by Java programming.

Further investigations into novice errors in different programming languages were
conducted by Algadi and Maletic (2017), who explored how novices misapply logical
operators and control structures in Java, emphasising the need for a deep understanding
of logic to navigate debugging. Smith and Rixner (2019) focused on Python-specific errors,
identifying frequent runtime errors such as TypeErrors and IndexErrors that persist
among novices, highlighting the persistent challenges in modern programming

languages.

Focusing on young learners and specific error types, Junior et al. (2019) and Kohn (2019)
documented Python coding mistakes among high school students, such as unclosed
scanners and incorrect indentation, emphasising the need for clear compiler error
messages and effective pedagogical methods to aid students in overcoming these

foundational hurdles.

Moreover, in studies exploring physical computing and hardware-related errors,
Jayathirtha et al. (2020) conducted a study that revealed programming errors such as
missing initialisation, incorrect logical expressions, and mismatched variables, alongside
circuitry issues like loose connections and reverse polarity problems, which were included
intentionally to mimic real-world scenarios. Similarly, the study by Jayathirtha et al.

(2024) further probed into pre-designed bugs affecting both hardware and software,

44| Page

identifying errors like faulty conditional logic, wiring issues, sensor inaccuracies, and LED

malfunctions.

Other miscellaneous studies provide broader insights into the challenges faced across
various environments. The study conducted by Allwood and Bjorhag (1990) looked into
Berkeley-Pascal programming errors on UNIX, categorising errors into syntax, semantic,
and logic errors and underlining the distinct challenges in this environment. Ettles et al.
(2018) analysed prevalent logic errors in C programming among first-year students,
providing insights into common misconceptions and algorithmic mistakes. Jeffries et al.
(2022) and Zhang et al. (2023) provided insights into syntax and runtime errors in Python
and Java, respectively. Jeffries et al. (2022) focused on Python, identifying frequent
mistakes such as indentation errors, incorrect use of variables, and misunderstanding of
functions. Zhang et al. (2023), on the other hand, examined Java and pointed out typical
errors like class and object mismanagement, improper exception handling, and issues

with data types.

Lastly, Akinola (2014) compared debugging effectiveness between solo and pair
programmers in Java, noting that collaborative approaches might mitigate some common
errors, suggesting that pair programming could be a beneficial strategy in educational
settings where teamwork and collaboration are emphasised. This study, among others,
reinforces the varying dynamics of learning and debugging within programming
education and points towards potential strategies for enhancing novice programmers’

skills.

45|Page

Together, these studies demonstrate the variety of programming errors and the critical
need for all-encompassing instructional approaches that equip novice programmers with
robust debugging skills. This foundational knowledge is pivotal for programming
education as it aims to enhance learning outcomes by providing novices with the tools
and methodologies to tackle the broad spectrum of debugging challenges they

encounter.

Theme 2 - Tapestry of Debugging Strategies

This theme highlights debugging strategies across various studies, offering a deep insight
into the complex techniques that novices use to tackle the task of debugging. This
overview showcases the diversity of debugging strategies and tactics employed and

reflects the evolution of debugging as a pivotal skill in software development.

Beginning with Gould and Drongowski (1974), the study laid the groundwork for
understanding debugging strategies such as print debugging, code inspection, trial and
error, collaboration, and utilising IDEs. These strategies highlight fundamental
interactions between programmers and code, emphasising a dynamic approach to
identifying and resolving errors. Following this, Vessey (1985) introduces a cognitive
dimension by contrasting experts’ holistic, systematic strategies with the more linear,
focused approaches of novices, underlining the impact of cognitive processes on

debugging effectiveness.

Adding further depth, Allwood and Bjorhag (1990) describe the debugging processes of

novices using Pascal, incorporating error hypotheses, systematic problem-solving, and

46| Page

iterative debugging phases. They emphasise understanding code logic and scrutinising
error messages, which are crucial for a structured debugging approach. Katz and
Anderson (1987) complement this by exploring debugging in LISP programming,
identifying strategies like simple mapping, test-case execution, and causal reasoning.
They note the use of both backward and forward reasoning, varying by whether novices
debug their code or that of others, which introduces strategic flexibility in debugging. This
observation is echoed by findings from Fitzgerald et al. (2008), Horwitz et al. (2009),
LaToza et al. (2020), and Vourletsis et al. (2021). However, a deviation was reported by
Yen et al. (2012), who found that students, while debugging C language programs crafted
by others, also favoured the backward reasoning approach. Notably, Katz and Anderson
observed a heightened use of causal reasoning, contrasting Jeffries (1982) earlier
observation of its limited application. However, a deviation was reported by Yen et al.
(2012), who found that students, while debugging C language programs crafted by others,
also favoured the backward reasoning approach. Notably, Katz and Anderson observed a
heightened use of causal reasoning, contrasting Jeffries (1982) earlier observation of its

limited application.

The discussion of tactical debugging continues with Ahmadzadeh et al. (2005), who
observe novice computer science students employing print statements, code
commenting, and active code running to isolate bugs. This hands-on approach reflects an
interactive engagement with the code, where manipulation and direct observation are
crucial to understanding and fixing errors. Similarly, Chintakovid et al. (2006) extend
debugging to spreadsheet environments, focusing on iterative debugging, testing values,

and using visual cues to enhance error detection in formula-based contexts. Further

47| Page

contributions from Fitzgerald et al. (2008) introduce pattern matching and different
reasoning strategies, adding a layer of structured creativity to debugging. This is echoed
by Murphy et al. (2008), who emphasise tracing, selective commenting of code sections,
and systematic testing. Fitzgerald et al. (2010) then expand the range of strategies to
include understanding code, gaining domain knowledge, and utilising resources, which

deepen the cognitive and resource-based aspects of debugging.

Algadi and Maletic (2017) emphasise logical errors, advocating strategies such as error
hypothesis formation, systematic testing, code tracing, incremental and iterative testing,
backtracking, and peer review. These methods emphasise the importance of a
collaborative, iterative approach to uncovering syntactically correct but logically flawed
errors. Jayathirtha et al. (2020) and their subsequent study in 2024 investigate debugging
in electronic textiles and Arduino projects (Jayathirtha et al., 2024), highlighting the
multidimensional challenges of integrating code with physical components through

strategies like hypothesis generation, solution testing, and iterative problem-solving.

Lastly, Liu and Paquette (2023) incorporate modern data analytics to explore debugging
through submission logs, revealing strategies such as minor code edits that contrast
traditional debugging perceptions. Whalley et al. (2023) focus on effective strategies
among novice Python programmers, emphasising the importance of understanding code,

hypothesising and using deliberate actions to locate bugs.

Overall, these studies illustrate a complex tapestry of debugging strategies, highlighting a

domain where technical, analytical, collaborative, and cognitive skills converge to address

48| Page

one of the most challenging aspects of programming. Each study contributes unique
insights, enriching our understanding of how diverse debugging strategies are applied
across different contexts, languages, and platforms, underscoring the need for adaptive,
context-sensitive, and collaborative approaches in both education and professional

practice.

Theme 3 — Team Cognitive Management

Team Cognitive Management aptly encapsulates the cognitive strategies presented in the
studies by Chintakovid et al. (2006), Jayathirtha et al. (2020), and Jayathirtha et al. (2024).
This theme emphasises the efficacy of paired or group collaboration in managing
cognitive load within programming and debugging contexts. The studies investigate the
collaborative mechanisms participants use to distribute and share cognitive
responsibilities, thereby enhancing the overall problem-solving process. Each study
distinctly contributes to understanding how these synergies facilitate effective cognitive
load management, demonstrating a range of strategies from role division and task

coordination to adaptive problem-solving and joint attention.

In the study conducted by Chintakovid et al. (2006), the participants, all university
students with limited programming experience, utilised several collaborative strategies
to distribute cognitive load while engaging in programming tasks. They adopted Driver-
Observer roles, allowing one person to handle direct manipulation of the code (the driver)
while the other provided strategic oversight (the observer). This role division facilitated a
balanced approach to task management and enhanced mutual support and effective

communication. Participants also actively engaged in collaborative decision-making,

49|Page

discussing potential solutions and strategies, which helped distribute cognitive
responsibilities evenly across the pair. Moreover, task coordination was emphasised, with
both members staying actively involved throughout the debugging process, ensuring that

cognitive load was shared and not concentrated on a single individual.

Transitioning to the study by Jayathirtha et al. (2020), similar collaborative dynamics were
observed among participants working on electronic textiles projects. Here, the divide-
and-conquer strategy was notably effective, with tasks split between circuitry and coding
based on individual expertise and task complexity. Such division allowed each participant
to focus intensively on a specific project segment, reducing individual cognitive load.
Collaborative task allocation was another significant strategy, where tasks were assigned
based on each participant’s skills, facilitating parallel progress and shared responsibility.
The concept of joint attention to problem spaces was critical in this context; by co-
investigating issues and verifying connections, participants could leverage their combined
expertise to tackle complex problems effectively. Similarly, adaptive collaboration was
highlighted as participants shifted strategies based on task demands, showing flexibility

in managing cognitive load dynamically.

Finally, in a recent study by Jayathirtha et al. (2024), the focus shifted slightly towards
more integrated collaborative strategies in debugging e-textile projects. Establishing joint
attention was crucial, as students aligned their focus on various project elements,
enhancing coordination and collective problem-solving. Sharing cognitive load was
achieved through dynamic task division and continuous dialogue about strategies and

solutions, enabling efficient use of collective cognitive resources. Collaborative problem-

50|Page

solving was evident as students discussed, tested, and refined their approaches together.
Fluid task division allowed for flexible role adjustments based on the immediate needs of
the debugging process, further supporting effective cognitive load management.
Coordinated strategies across different modalities ensured that all aspects of the projects

were addressed comprehensively, facilitating a thorough approach to problem-solving.

These studies show that effective collaborative cognitive load management in
programming and debugging involves a mixture of strategic role division, adaptive task
allocation, and sustained mutual support. Each study highlights the benefit of
collaborative approaches in distributing cognitive load and enhancing overall problem-

solving efficiency and project success.

Theme 4 — IDE Debugging Efficiency
IDE Debugging Efficiency highlights how using IDE tools and related technologies
significantly aids programmers in debugging tasks, enhancing efficiency and reducing

cognitive load through various technological interventions.

In the work of Smite et al. (2021), technological tools were leveraged to facilitate remote
pair programming sessions. Tools such as Tuple and various IDE extensions enabled
screen sharing, control of each other’s computers, and simultaneous programming.
These tools significantly enhanced the collaborative experience and enabled real-time
collaboration and code editing, thus boosting the debugging process’s effectiveness and

efficiency.

51|Page

Fitzgerald et al. (2008) focused on the role of debuggers within IDEs like Eclipse, which
automatically detect and highlight semantic errors such as missing brackets. This
capability speeds up the identification and correction of errors and reduces the
programmers’ cognitive load. Additionally, the study emphasised the importance of
online resources and programmers’ familiarity with the IDE, noting that these factors

significantly contribute to successful debugging efforts.

Moreover, Whalley et al. (2023) observed how novice programmers utilised IDE tools to
manage their workspaces efficiently and execute code changes effectively. The
participant’s ability to organise their workspaces and engage in modify-and-test cycles
showcased how IDE tools could simplify and streamline the debugging process. However,
the study also noted challenges related to the participants’ familiarity with IDE

functionalities, emphasising the need for full training to leverage these technologies.

Lastly, Jayathirtha et al. (2024) examined using the Arduino IDE in debugging electronic
textiles projects. This study highlighted the IDE’s features, such as syntax highlighting,
error detection, interactive debugging, and integrated tools and libraries. These
functionalities facilitated the programming process and supported students in managing,

navigating, and debugging their code more effectively.

Overall, each study contributes to the overarching theme by demonstrating how IDE tools

and technologies are integral to enhancing debugging efficiency, which is the focus of this

study. These studies jointly reinforce the transformative impact of these technologies in

52|Page

programming education and practice, providing essential insights into their benefits and

the necessity of familiarity with these tools for effective debugging.

Theme 5 — Navigating Debugging Complexities

The literature reviewed explores the diverse challenges novices encounter during
programming debugging tasks. This theme captures novices’ experiences across various
educational backgrounds as they navigate the complexities of identifying and resolving
errors within code. The subsequent findings detail the specific challenges and underlying
reasons identified in each study, shedding light on the common obstacles faced during

the debugging process.

Michaeli and Romeike (2020) introduce a complex educational scenario where
participants face seven distinct challenges while debugging, namely, generating
hypotheses, undoing changes, systematic testing, cognitive load, use of external
representations, collaboration and communication, and application of domain
knowledge and heuristics. Thus, the inability to generate effective hypotheses and the
reluctance to undo changes post-failure indicate a lack of prior debugging experience,
which hampers effective problem-solving strategies. Systematic testing is compromised
by a shallow understanding of isolating and verifying system components, exacerbated
by the high cognitive demands of managing multiple variables simultaneously.
Ineffectiveness in using external representations and challenges in collaboration and
communication are linked to insufficient collaborative skills and the inappropriate
application of heuristics, compounded by the unique pressures of an escape room setting

that distracts from focused debugging efforts. These challenges are intertwined with

53|Page

reasons such as environmental novelty, educational gaps, and a lack of practical
debugging exercises, which highlight the necessity for educational reforms to better

prepare students for real-world debugging tasks.

Algadi and Maletic (2017) detail the struggles of novice programmers with five primary
challenges, such as difficulty with logical errors, lack of experience, understanding error
messages, cognitive load, and time management. Logical errors, particularly challenging
due to their requirement for a deeper understanding of the program’s intent, highlight
the novices’ inadequate exposure to complex debugging and systematic strategies.
Misinterpretation of error messages and an overwhelmed cognitive capacity due to the
simultaneous management of multiple debugging elements like program flow and
variable states further complicate the debugging process. These issues are often
deepened by educational shortcomings that fail to equip students with necessary
debugging skills and are exacerbated by psychological factors such as anxiety and

frustration, which negatively impact problem-solving capabilities.

In Fitzgerald et al.’s (2008) research, seven challenges surface, encompassing
understanding the system, testing the system, locating and repairing errors, using
debugging tools, cognitive load, and fragile knowledge. Each challenge is rooted in a
combination of lack of experience and insufficient foundational knowledge, which
hinders effective engagement with debugging tools and systematic problem-solving.
Cognitive overload and fragile knowledge, where concepts are not fully grasped, stress

educational gaps that fail to prepare students for debugging’s unpredictable nature. This

54|Page

calls for an educational approach emphasising practical experience and systematic

problem-solving skills in programming curricula.

Fitzgerald et al. (2010) explore the debugging experiences of novice programmers,
identifying five main challenges, for example, fragile knowledge, troubleshooting, causal
reasoning, understanding debugging tools, and reading complex code. The reasons for
these challenges are intricately linked to the novices’ superficial understanding of
programming and debugging, compounded by high cognitive loads and ineffective use of
debugging tools. The study suggests that enhancing educational practices to include more

focused debugging exercises could alleviate these challenges.

Murphy et al. (2010) focus on the collaborative mechanics of debugging in pairs, noting
five challenges related to transactive communication, cognitive load, collaborative
dynamics, level of discussion, and strategic application of debugging methods. The
additional cognitive burden and the need for effective transactive communication
highlight the complexity of collaborative debugging, which is often not adequately
supported by educational frameworks that fail to emphasise collaborative skills and

systematic debugging strategies.

Smite et al. (2021) document the adaptation to remote pair programming, identifying
challenges such as disruptions in communication and collaboration, adaptation to remote
tools, loss of informal communication, psychological impacts, and adjustments to new

work rhythms. These challenges stem from technological and organisational shifts

55|Page

necessary for remote work, highlighting the need for better support systems and training

to facilitate effective remote collaboration and debugging.

Another relevant study by Kim et al. (2022) on block-based programming involving early
childhood teacher candidates identifies six challenges influenced by the presence of
scaffolding. These include complex problem-solving, persistence, collaborative dynamics,
cognitive load, technical understanding, and trial-and-error approaches. Prominent
issues such as lack of experience and cognitive overload suggest that structured

scaffolding could significantly aid in managing these challenges.

Whalley et al. (2023) investigate the debugging practices of novice programmers,
identifying six key challenges, including difficulties with debugging tools, code navigation,
strategy application, cognitive load, problem-solving constraints, and interpreting
feedback. These challenges are predominantly due to limited experience with debugging
tools and an inadequate understanding of code structure and flow, which could be
mitigated by more comprehensive programming education emphasising practical

debugging skills and tool usage.

Moreover, Jayathirtha et al. (2024) study the debugging of electronic textiles by high
school students, identifying five challenges, including, complex multimodal debugging,
distributed tasks, collaborative coordination, limited engagement, and system
integration difficulties. The all-encompassing nature of these projects introduces unique

challenges that require both collaborative efforts and an integrated understanding of

56| Page

diverse systems, pointing to the need for educational tools and resources that support

such complex, interdisciplinary learning environments.

Overall, these studies highlight novice programmers’ broad challenges, particularly in
collaborative and distributed settings. The findings suggest that debugging effectiveness
heavily depends on managing cognitive load, proficiently utilising debugging tools, and
maintaining effective communication and collaboration. For paired novices in distributed
environments, these challenges are magnified by the additional barriers of remote

collaboration.

2.3 Discussion

This section attempts to critically analyse and synthesise the findings from multiple
studies relating to the five themes already identified in the previous section. It aims to
integrate these diverse insights, providing an understanding of the study patterns and
divergences. By examining these themes, which are the Complexity and Diversity of
Errors, the Tapestry of Debugging Strategies, Team Cognitive Management, IDE
Debugging Efficiency, and Navigating Debugging Complexities, the discussion will give a
comprehensive analysis of the data. In this vein, this examination seeks to contextualise
these findings within novice programming behaviour and highlights the broader
implications for programming education. It also suggests potential strategies for

improving novice programmers’ learning experiences and outcomes.

Although the examined studies span several decades, they reveal profound educational

insights, particularly highlighting the diverse types of errors encountered by novice

57|Page

programmers across different languages and environments. In their foundational study
on Java programming, Gould and Drongowski (1974) categorised debugging challenges
into syntax, logic, and runtime errors, setting a precedent for recognising the diversed
nature of programming errors. This fundamental categorisation reinforced the necessity
for distinct pedagogical approaches tailored to different error types, a notion further
bolstered by Katz and Anderson (1987). They stressed that understanding these
categories is crucial for enhancing debugging efficiency (Robins et al., 2006), indicating
that a one-size-fits-all approach to teaching debugging is insufficient. It thereby
emphasises the need for a differentiated approach to teaching debugging tailored to the
specific types of errors novices face (Lewis & Gregg, 2016). For example, novices tend to
adopt a trial-and-error approach for syntax errors, while logic errors often require more
structured problem-solving techniques (Ettles et al., 2018). Runtime errors frequently
necessitate understanding dynamic program behaviour and error handling (Algadi &
Maletic, 2017). This detailed insight is essential for creating effective educational
strategies that address novice programmers’ specific needs to become more proficient

and efficient in debugging their code.

Also, the steep learning curve faced by novices, as documented by Vessey (1985), and the
differential debugging strategies employed by experts versus novices, as explored by Yen
et al. (2012), highlight the critical need for specialised instructional methods. Vessey’s
work illustrates that novices are slower and less effective in debugging, which explains
why Youngs (1974) observes that novices often spot fewer bugs and take longer to fix
than experts. This suggests that educational interventions should focus on bridging this

gap by imparting expert strategies to beginners. Yen and colleagues (2012) further

58| Page

expand on this by showing how novices struggle with semantic and logic errors, primarily
due to ineffective use of compiler feedback. This research aligns with Chen et al. (2013),
whose findings suggest that, without proper guidance and extensive practice, beginners
often misinterpret error messages and inefficiently use debugging aids. This supports Yen
et al. (2012), who emphasised the need for curriculum designs incorporating real-world
tools and environments to improve novices' debugging skills. However, though valuable,
Yen et al.'s recommendation may be impractical for institutions with limited resources,

indicating a need for adaptable, resource-sensitive strategies.

Likewise, research by Ahmadzadeh et al. (2005) and Kolling et al. (2019) reveals that
novices often struggle with compiler errors and logical mistakes, particularly in
environments like the BluelJ IDE. This finding implies that hands-on learning experiences,
which allow novices to engage with code directly, are vital. Fitzgerald et al. (2008),
Murphy et al. (2008), and Murphy et al. (2010) suggest that such an approach enhances
technical proficiency and builds confidence in handling real-world programming
challenges. By practising in realistic settings, novices can develop a deeper understanding
of the complexities involved in debugging, making them better equipped to handle similar

issues in professional scenarios (Robins et al., 2003; Soloway & Spohrer, 2013).

In addition, the consistent finding across studies that novices frequently misapply logical
operators and control structures (Algadi & Maletic, 2017; Smith & Rixner, 2019) indicates
a persistent gap in understanding fundamental programming concepts. This calls for
deeper instruction in programming logic, highlighting that a robust grasp of these basics

is essential for effective debugging. Junior et al. (2019) and Kohn (2019) also noted

59|Page

common Python coding mistakes among high school novices, further supporting the need
for early programming education to include clear compiler error messages and effective
pedagogical methods. Addressing these issues early can prevent the accumulation of bad
coding habits and foster a more intuitive grasp of programming principles, which is crucial

for developing proficient programmers (Grover & Pea, 2013; Guzdial, 2015).

Besides, the role of collaborative learning environments in mitigating common errors and
enhancing learning outcomes is another critical insight from these studies. A study
conducted by Akinola (2014) comparing solo and pair programmers suggests that
collaborative approaches, such as pair programming, can significantly benefit educational
settings. This is echoed in studies by Chintakovid et al. (2006), Jayathirtha et al. (2020)
and Jayathirtha et al. (2024), which highlights the importance of strategic role division,
task coordination and adaptive problem-solving in managing cognitive load and
improving problem-solving efficiency. Educators can foster peer learning and mutual
support by incorporating collaborative projects into programming curricula, creating a
dynamic and interactive learning environment that mirrors real-world software
development practices. This approach can help distribute the cognitive load as well as
encourage the development of critical teamwork skills essential in the professional realm

(Bennedsen & Caspersen, 2007; McDowell et al., 2006).

On top of that, it is important to note that exploring diverse debugging strategies across
various studies has implications for programming education. The research emphasises
the complexity and evolution of effective debugging practices from techniques like print

debugging and code inspection (Gould & Drongowski, 1974) to more advanced methods

60|Page

involving systematic problem-solving and error hypothesis formation (Algadi & Maletic,
2017). This suggests that programming education should focus on technical skills and
teach cognitive and strategic approaches to problem-solving, helping novices develop a
more holistic understanding of debugging. By integrating these strategies into the
curriculum, educators can better prepare novices for the multifaceted nature of
debugging in professional settings. Such an approach ensures that novices are technically
proficient and capable of thinking critically and strategically about problem-solving (Linn

& Dalbey, 1985).

Furthermore, integrating modern tools and technologies in debugging, as demonstrated
by Smite et al. (2021) and Jayathirtha et al. (2024), highlights the transformative impact
of these technologies in programming education. Using IDE tools (Fitzgerald et al., 2010),
remote collaboration technologies, and data analytics to enhance debugging efficiency
and reduce cognitive load suggest that educational programs should keep pace with
technological advancements. Familiarity with these tools can streamline the debugging
process and improve overall productivity, highlighting the necessity for novices to be
proficient in using the latest programming tools and platforms (Fitzgerald et al., 2008;
Whalley et al., 2023). Consequently, integrating these technologies into educational
settings can provide novices with practical experience and prepare them for the
technological demands of the modern workplace (Grover et al., 2014; Resnick et al.,

2009).

Moreover, the literature also points to the critical need for structured support systems

and scaffolding to aid novice programmers. Studies involving young learners and early

61|Page

childhood teacher candidates (Junior et al., 2019; Kim et al., 2022; Kohn, 2019) suggest
that clear error messages and structured guidance are essential for managing cognitive
load and enhancing learning outcomes. This implies that educational institutions should
provide scaffolding that gradually increases task complexity, ensuring novices are not
overwhelmed by the cognitive demands of debugging. Such an approach can help
maintain novice engagement and foster a progressive learning curve, making learning

more manageable and effective for all levels (Wing, 2006).

Additionally, the research by Allwood and Bjorhag (1990) and Ettles et al. (2018) provide
broader insights into the challenges faced in different environments, such as UNIX and C
programming. Their findings suggest that novices struggle with syntax and logical errors
and face significant challenges in understanding the operating environment. This
highlights the importance of contextual learning, where novices are taught programming
languages and the environments in which these languages operate. By fostering an
understanding of the broader technical ecosystem, educators can better prepare novices
for the diverse contexts they will encounter in their professional careers (Spohrer &

Soloway, 1986).

To add to that, the role of cognitive and collaborative strategies in debugging, as explored
by Chintakovid et al. (2006), Jayathirtha et al. (2020) and Jayathirtha et al. (2024),
reinforces the importance of cognitive load management and strategic collaboration in
effective problem-solving. Their studies suggest that educational programs should focus
on individual problem-solving skills (Wing, 2006) and collaborative skills that can enhance

cognitive efficiency (Chintakovid et al., 2006; Murphy et al., 2010). For instance, the use

62|Page

of strategic role division and adaptive problem-solving in team settings can help distribute
cognitive load and improve overall problem-solving efficiency. This approach mirrors real-
world software development practices, where collaboration and teamwork are essential

(Palumbo, 1990).

Despite this, research on integrating modern data analytics and remote collaboration
tools (Liu & Paquette, 2023; Smite et al., 2021) indicates that the future of programming
education lies in the effective use of technology. By incorporating these tools into the
curriculum, educators can provide novices with the skills to navigate the software
industry’s increasingly digital and collaborative nature. This prepares learners for current
industry practices and ensures they are adaptable to future technological advancements

(McDiarmid & Zhao 2023).

By and large, these insights collectively highlight the urgent need for comprehensive
educational strategies that equip novice programmers with robust debugging skills.
Addressing the diverse challenges identified in the research, including technical,
cognitive, and collaborative difficulties, requires a holistic approach. This approach should
integrate targeted instructional methods, practical hands-on experiences, collaborative
learning environments, and modern technological tools. By doing so, programming
education can better prepare learners to tackle the broad spectrum of debugging
challenges they encounter, ultimately improving debugging proficiency and contributing

to software development practices’ overall quality and efficacy.

63|Page

2.4 Summary

As novice programmers commence their developmental journey, they demonstrate
various debugging strategies, varying significantly in effectiveness. This literature review
critically evaluates existing research, highlighting emergent patterns and pinpointing
deficiencies. As Colquitt (2013) advocates, it is vital to juxtapose new research against
established work, thus paying an ‘intellectual debt’ and ensuring a comprehensive grasp
of the relevant scholarly landscape. In this vein, this chapter examines the characteristics
and common bugs of novice programmers, the impact of IDE tools, and the variety of
debugging strategies used by novices, particularly those working solo, co-located, and in
distributed settings. This analysis is crucial as it prepares the ground for a detailed
synthesis of research on paired debugging by novices in both co-located and distributed
environments. Despite the growing literature on pair programming and debugging, a
significant research gap exists in distributed pair debugging among novices, with no
studies specifically focusing on the debugging strategies of paired novices in distributed

settings.

Taking this into account, while the lack of targeted research is a limitation, the broader
literature does provide some basis for understanding how factors such as
communication, expertise distribution, and task complexity could potentially impact the
success of pair debugging in distributed settings. Thus, the existing research serves as a
starting point, highlighting the need for more focused studies to comprehensively
understand the unique challenges and the debugging strategies that novice deployed

distributed pair debugging among novice programmers.

64|Page

Considering the current research, while the lack of specific studies is a limitation, the
existing literature offers insights into how communication, expertise distribution, and
task complexity might affect pair debugging in distributed settings. This establishes a
foundation, pointing to the need for targeted research to fully understand the challenges
and strategies of novice programmers in distributed pair debugging. Given this backdrop,
this review identifies a clear gap in the literature and emphasises the need for dedicated
studies in this less-explored area. Future research should focus on debugging techniques
suitable for novices in diverse educational settings and ages, particularly in distributed
environments. Such endeavours could unveil more detailed insights, facilitating the
creation of bespoke strategies and tools to enhance the debugging process for novice

pairs operating in remote environments.

65|Page

Chapter 3: Conceptual Framework

3.0 Introduction

This chapter presents the conceptual framework that provides a structure for examining
both individual and collaborative aspects of debugging within disparate settings, guiding
the data collection and analysis. It approaches this by contextualising the study and
linking it to underlying theories that provide a solid foundation for investigating and
interpreting findings. For the purpose of this study, which examines the debugging
process among novice programmers, the conceptual framework draws on two
complementary theories, as exemplified by Information Foraging Theory (IFT) (Pirolli &
Card, 1999) and Distributed Cognition (Hutchins, 1995). These complementary theories
will now be reviewed, followed subsequently by the presentation of the Critical Analysis

of the Distributed Pair Debugging Conceptual Framework.

3.1 Information Foraging Theory (IFT)

IFT provides insightful perspectives on information navigation and extraction within
digital environments, focusing on debugging strategies by novices. Previous research
validated this approach (Fleming et al., 2013; Lawrance et al., 2008; Piorkowski et al.,
2012) and emphasised its effectiveness in software maintenance. Drawing from biological
foraging analogies, IFT takes the information seeker as a ‘predator’ in pursuit of ‘prey’,
valuable information within a network of interconnected information patches. This model
introduces ‘information scent’, perceived from environmental cues, as a fundamental
component in information-seeking tasks (Chi et al., 2001). However, applying IFT’s

constructs, this study explores novice programmer pairs’ decision-making and

66| Page

navigational challenges in distributed debugging settings, aiming to enrich our
understanding of debugging practices within the contemporary networked programming

landscape.

Furthermore, the intersection of information foraging and sensemaking processes
highlights a dual-phase learning loop of information gathering and interpretation within
software development, particularly in debugging, as Pirolli and Card (2005) discussed.
This theoretical approach is pivotal in understanding programmers’ foraging behaviours,
with studies like Grigoreanu et al. (2012) emphasising the foraging loop’s dominance in
sensemaking activities. Thus, IFT offers a comprehensive framework for analysing
programmers’ information-seeking behaviours, providing a more integrated view of the
processes involved compared to theoretical efforts and ultimately enriching the discourse

on programming practices in the networked era.

3.2 Distributed Cognition

As Hollan et al. (2000) and Hutchins (1995) expound, distributed cognition offers a
comprehensive framework that transcends the traditional, individual-focused cognitive
science by considering cognitive processes as inherently shared among people, tools, and
various representations. This approach, which Hutchins describes as encompassing
cognitive activities across individuals, artefacts, and environmental factors, has seen
application in a variety of domains ranging from ship navigation and emergency medical
dispatch to aviation and call centres, thereby demonstrating its versatility in analysing
teamwork and the integration of technology within human activities. Furthermore,

Rogers (1997) highlights that distributed cognition enriches our understanding of

67|Page

cognition by weaving together cognitive science, anthropology, and social sciences,
thereby exploring the complex interdependencies inherent in collaborative efforts and

how both social and organisational contexts shape them.

Furthermore, this paradigm shift provides a detailed insight into human-computer
interaction, as suggested by Hollan and colleagues, by extending the analysis of cognitive
processes to encompass broader systems beyond the confines of individual minds. It
asserts that cognition is a collective phenomenon distributed across social groups,
internal and external structures, and temporal dimensions, thereby providing a robust
toolkit for examining the dynamic interplay between humans and technology. This shift
is crucial for understanding the collaborative nature of cognitive tasks, including software
development and debugging, where distributed cognition has only begun to make its

mark, notably through the work of Flor and Hutchins (1991) in software maintenance.

Building on this foundation, Tsai et al. (2015) observe that pair programming, and by
extension, pair debugging, significantly alleviates cognitive load, particularly in the
context of distributed settings where the challenge of debugging error-prone code is
compounded by the interplay of various factors including individual cognitive abilities,
technological tools, and the social dynamics of using debugging tools effectively.
However, while distributed cognition provides a deep analysis of socially distributed
cognitive activities, Artman and Waern (1999) critique it for potentially neglecting the
non-cognitive artefacts within complex systems. To address this, IFT is introduced as a
complement, aiming to shed light on the behavioural patterns of pairs as they navigate

through code in search of errors.

68|Page

Ultimately, this study seeks to bridge the gap in the application of distributed cognition
within software development research, particularly in understanding the debugging
strategies employed by novice programmers working collaboratively in distributed
environments. Through a conceptual framework grounded in distributed cognition and
complemented by IFT, this research aims to provide a richer, more cohesive
understanding of pair debugging behaviours, thereby contributing to both theoretical

knowledge and practical applications in software development.

3.3 Integration of IFT and Distributed Cognition

The combination of Information Foraging Theory (IFT) and Distributed Cognition in this
research provides a nuanced exploration of how apprentices interact with their peers and
tools in debugging code. Specifically, the study opines that apprentices use information
foraging strategies to efficiently locate resources and scents that may assist in solving
bugs. Subsequently, once these resources and scents are identified, apprentices engage
in distributed cognitive activities to collaboratively implement the solutions. For instance,
while one apprentice might search for external resources and suggest potential solutions
(information foraging), the other apprentice simultaneously works to implement and test
these solutions within the debugging environment. Thus, this dynamic illustrates how
cognition and problem-solving are effectively shared and distributed across the pair (see

Section 5.1.4).

Building on this foundation, integrating these theoretical frameworks seeks to explore

how apprentices manage the challenges of remote collaboration, especially in debugging

69|Page

code within distributed settings. Moreover, technological tools, such as shared IDEs and
debugging interfaces, serve as communication channels that extend and support the
cognitive processes involved. As a result, by distributing cognitive load between
individuals and tools, these technologies either facilitate or, in some cases, hinder the
debugging process. Therefore, this distribution of cognitive effort is key in determining

how effectively apprentices can collaborate to resolve complex issues.

In conclusion, this approach illuminates the interplay between information foraging,
distributed cognition, and the use of technology in enabling or constraining apprentices’

problem-solving capabilities.

3.4. Critical Analysis of Distributed Pair Debugging Conceptual Framework

This conceptual framework melds Information Foraging Theory and Distributed Cognition
to address the multi-dimensional aspects of debugging, with the Bug being central.
Designed to encapsulate debugging’s complexity in paired and distributed environments,

it portrays each layer as distinct, contributing insights into the debugging process.

The framework provides a detailed examination of debugging in distributed
environments, merging individual cognition, collaborative interaction, and environmental
factors. As seen in Figure 4, arrows as visual metaphors demonstrate the impact of both
individual and collective cognition on tool selection, aligning with the findings of Chalmers
(2003) and Endsley’s (1995) perspectives on the relationship between cognition,

situational awareness, and tool usage.

70| Page

Furthermore, it demonstrates the external debugging environment’s role in shaping
cognitive processes, resonating with Hutchins’ (1995) insights on socio-technical systems
cognition. The inclusion of bidirectional arrows between debuggers emphasises shared
cognitive space, reinforcing the emphasis on shared cognition in solving complex
problems by Salas et al. (2005) and Salas et al. (2008). Highlighting its dynamic nature,
the framework presents a comprehensive approach to improving the understanding of

debugging across research, education, and practical applications.

Accompanying this, Figure 4 presents a visual representation of each layer, delineating
their inherent characteristics, data points, information flow dynamics, as well as their
respective strengths and weaknesses. This framework thus stands as a tool for dissecting
the intricacies of debugging within distributed settings, underpinned by seminal

references in the field.

Distributed Pair Debugging Conceptual Framework

/ ¢ ’ Debugging Environment Layer | a\

T

|
Debugger 1
/ ° | Distributed Cognition Layer | N /\

Figure 4: Distributed pair debugging conceptual framework

| Information Foraging Layer

71| Page

As a pioneering approach to understanding the intricacies of collaborative debugging in
distributed settings, the conceptual framework offers valuable insights into the cognitive
and collaborative processes involved. Although this framework has its limitations, it
provides a thorough perspective on the complex nature of debugging tasks. It integrates
theories of Distributed Cognition and Information Foraging to examine how pairs

navigate and solve problems in a distributed debugging environment.

Furthermore, for a concise summary highlighting the strengths and weaknesses of the
Distributed Pair Debugging Conceptual Framework, refer to Table 5. This table delineates
the framework’s key advantages and potential limitations, offering a visual
representation to aid in understanding its comprehensive impact on debugging practices

within distributed settings.

The following provides a thorough analysis of each layer and also evaluates its benefits
and drawbacks, clarifying the different facets of each layer. As a result, this framework
emerges as a tool for investigating the complexity of debugging in distributed contexts,

backed up by fundamental references in the field.

72| Page

Table 5: Strengths and weaknesses of the distributed pair debugging conceptual framework

Strengths

Weaknesses

Muanced Understanding of Human Behaviour: Ths
framework’s multi-layered approsch enables a3 nuanced
understanding of nowvice debugger behaviour by
integrating Information Foraging and Distributed Cognition
theories, exploring both the "what™ and "why" aspects of
individuzl and collaborative actions (Denzin & Lincoln,
2011). It zlso helps wniquely anslyses the debugging
process from environmentzl aspects to intricate cognitive
processes. This holistic perspective captures & wide rangs
of varizbles (Hollan et al., 2000; Pirolli & Card, 1559).

Cognitive Lood on MNowices: The framework's foous on studying
novices necessitates comsideration of their cognitive limitations,
including attentionzl lapses and misunderstandings that may lead to
increased cognitive load (Sweller, 1938). These factors could
introduce extranecus varizbles into the dats, potentizlly masking
the core phenomena under investigation ({Chandler & Sweller, 1591)

Versatility and Adaptability: The framework is wersatile
=nd adaptable, accommodsating methodologicz! plurslizm.
Oualitative ressarch methods, like
groups, of combent analysis of communication channels

intervisws, foous

among debuggers, can provide insights that empircal
methods might miss (Flick, 2022). The framework's
sdaptability extends its relevance beyond
debuggers, offering a potential modsel for
debugging rezearch (Ko et al., 2004).

nowice

umniversal

Complexity and Time-Consuming: The complexity of the conceptuzl
framewark, while advantag=ous for a nuanced understanding, poses
chzllenges in terms of time and resource allocation (Saldana, 2021).
Particularly for early-career researchers, navigating the framework’s
multiple layers and varizbles may be daunting {Norman, 1593). This
complexity could make the framework lesz suitable for studies
seeking quick, straightforward outcomes, and could increzse
demands on resources for data collection and interpretation (Kirsh,
1955).

Depth of Understanding: Cualitative methods in the
framewaork prioritize depth over breadth, offering in-depth
inzights into novice debugser processes through open-
ended technigues like intervizws and cbservations. This
spproach revesls tacit knowledge, unspoken emations,
and subtle dynamics often overlooked by guantitative dats
[Creswell, 2012; Patton, 2002)

Risk of subjectivity: Cualitative data can introduce subjectivity into
analyzis, requiring researchers to maintain riger and validity when
interpreting nuasnced or ambiguous data (Tracy, 2010} ‘Whils
qualitative research excels at capturing detailed experisnces, it can
become 3 weskness if researchers’ bizses and preconceptions aren't
actively addressed, especizlly within 3 comprehensive framework
like this [Maxowell, 2012)

lterative Exploration: The framework's flexibility supports
iterative exploration, mimroring quslitative methods like
grounded theory or other suitable methods. Researchers
cam revisit data, refine guestions, and adzspt the framework

2= new insights emerge (Charmaz, 2008).

Possible Redundancy: It's worth noting that certain aspects, such as
individuzl cognitive processes and shared cognition, may contain
averlapping elements that could result in redundancy during data
collection or analysis (Zhang & Mormanm, 1954).

Empirical Focus: The framework's empirical approsch
emphasises data, facilitating
statizticzl analyses (McCauley et al., 2008). This sligns with
the demand for sciemtific rigor in cognitive psychology and
HCI studies [Shneiderman, 2010).

measurable rigorous

Bug-Centric Focus: While the bug is und=nizbly & central element,
it's important to note that other factors such as team dynamics,
individuzl learning, and system limitations can also significantly
impact the debugging process, even though they may not receive
equal emphasis within this framework (Endsley, 1955).

Measurement diversity: The framework's wersatility in
data collection spans from gquantitative metrics like tool
usage frequency to qualitative insights like perceived
relevance, offering diverse measurement options (Endsley,
1955).

Data Saturation Challenges: The framework's multiple layers might
necessitate substantial time and effort to achieve data ssturation,
a5 it could demand extensive interviews and obserational perods
[Fusch & Mess, 2015).

Information flow: The bidirectionzl arrows symbolize the
dynamic intersction among layers, depicting the flow of

information and actions in debugging (Pirclli & Card, 1959).

Static Matwre: It's important to recognize that the framework may
not inherently depict changes owver time. For instance, & bug initially
clazsified as minor might evolve into 2 more complex issue during
the debugging process, necessitating dynamic adjustments to the
medel (Ko et al., 2004).

34.1

Layer 1: Debugging Environment Layer

This layer delves into the debugging ecosystem within a remote setting. It brings to the

fore the complexities due to geographical distances among novice programmers,

73| Page

impacting collaboration, information sharing, and task allocation. This layer contains a
broad spectrum of resources accessible to debuggers, including IDEs like PyCharm and
VSCode, debugging tools, code repositories such as GitHub, and online forums or
documentation, supplemented by communication platforms like Slack for enhanced
collaboration in distributed debugging. The environment’s data points are diverse,
tracking debugger interactions with resources, tool usage, access frequency and
duration, and forum contributions, demonstrating a reciprocal relationship between the
environment and debuggers’ information foraging tendencies. The environment has
obstacles in spite of its abundance of resources, which provide a variety of ways for
problem-solving and dynamic engagement through information exchange. The obstacles
include potential cognitive overload from the environment’s complexity, uneven
resource utility, and shortcomings in current techniques for capturing refined human-
environment interaction. This scrutiny reveals how novice debuggers within distributed

contexts navigate and collaborate, marking the facilitators and barriers encountered.

3.4.2 Layer 2: Information Foraging Layer

This layer emphasises debuggers’ search for information, grounded in Pirolli and Card
(1999) Information Foraging Theory. This exploration highlights how debuggers traverse
the debugging environment, seeking information akin to animals foraging. It focuses on
the dynamic interaction between the debugging environment and foraging behaviours, a
relationship depicted through bidirectional arrows linking this layer with both the
Debugging Environment and Distributed Cognition layers, as detailed by Hollan et al.
(2000). The layer captures a variety of data points, including the types and numbers of

information sources accessed, engagement durations, and perceived relevance, blending

74|Page

quantitative and qualitative assessments to evaluate information-seeking effectiveness,
following Marchionini (1995). Its strengths encompass a thorough data collection
approach and flexible exchange of information, mirroring the adaptability of debuggers’
information-seeking within their operational context. Nonetheless, it acknowledges
obstacles like the complexity of real-time data analysis and the subjective nature of

determining information relevance.

Ultimately, Information Foraging is a crucial aspect of the framework, merging the
theoretical perspectives of Pirolli and Card (1999) with Hollan et al. (2000) observations
on distributed cognition. This layer sheds light on debuggers’ methods and challenges in
sourcing and applying information and elucidates the interplay between individual and
shared cognitive processes, thereby enriching discussions on debugging methodologies

in distributed computing settings.

3.4.3 Layer 3: Distributed Cognition

This layer highlights the synergy of collective intelligence in debugging, rooted in the
foundational works of Hutchins (1995) situated within the "Information Foraging"
framework. It examines how cognitive tasks are dispersed and managed among debugger
pairs, informed by Hollan et al. (2000), illustrating that cognition is a shared function
extending beyond individuals to encompass a network of collaborators and tools. Metrics
such as communication patterns, task distribution, and decision-making processes, as
detailed by Rogers and Ellis (1994), provide an analysis of how cognitive labour is
dynamically shared and executed. Also, the integration with adjacent layers depicts a

seamless flow of information and cognitive activities, promoting a comprehensive view

75|Page

of the debugging strategy. Moreover, its strengths lie in its facilitation of collaboration
and presenting a detailed view of the interaction. At the same time, challenges include
the complexity of data interpretation and the potential variability in the effectiveness of
distributed cognition. This layer, therefore, serves as a critical component of the
conceptual framework, synthesising insights from Hollan et al. (2000) and Rogers and Ellis
(1994) to deepen understanding of collaborative debugging within distributed settings,
thereby paving the way for future inquiries into the complex interplay of cognitive

processes and socio-technical dynamics.

3.4.4 Layer 4: Innermost Circle: Cognitive Processes

This layer encapsulates debugger-specific mental activities, from problem
comprehension to hypothesis testing and learning, grounded in cognitive theories
(Anderson, 2015). It utilises methods like think-aloud protocols and, possibly, eye-
tracking to explore debuggers’ mental models and decision-making processes (Oh et al.,
2013), demonstrating the complexity of individual cognitive efforts. Interlinking with the
“Distributed Cognition” layer shows the symbiosis between individual and collective
cognition in debugging (Hutchins, 1995), emphasising the significance of understanding
personal cognitive tasks alongside shared efforts. Despite its comprehensive approach to
cognitive analysis, the layer faces challenges like potential data collection intrusiveness
and high demands on resources, suggesting a need for further methodological
development. Overall, the layer significantly contributes to the framework by elucidating
the individual cognitive basis of debugging within a collective context, emphasising the
need for dynamic and diverse methodological approaches to fully grasp cognitive

dynamics in debugging in distributed settings.

76 |Page

3.4.5 Centre: The Debuggers

The Distributed Pair Debugging Conceptual Framework's "Debuggers" layer is symbolised
by two avatars representing the debugging participants. This layer is pivotal, emphasising
human-centred design and marking where conceptual layers merge with human action,
as discussed by Rogers and Ellis (1994). It facilitates an exploration of the debuggers’
roles, responsibilities, and skills, highlighting the essential human element in debugging.
Through this layer, a rich array of data is collected, ranging from quantitative metrics like
success rates to qualitative insights on joint efforts, illustrating the symbiotic cognitive

relationship between debuggers (Hollan et al., 2000).

This methodology’s strengths include its ability to analyse how debuggers’ traits influence
debugging, acknowledging the bug’s dynamic evolution and the complexity of debugging
scenarios more comprehensively. This approach would better align the framework with
the debugging process’s realities, leveraging insights from Hutchins (1995), Endsley

(1995) and Zhang and Norman (1994).

The conceptual framework integrates Information Foraging Theory (Pirolli & Card, 1999)
and Distributed Cognition (Hutchins, 1995) to offer a comprehensive model for examining
paired novice debuggers in distributed environments. Moving beyond the notion of
debugging as merely an individual cognitive activity, it embraces the complexity of
effective information foraging and the distribution of cognitive tasks among team
members. This approach highlights the importance of both individual and collective

cognitive efforts and their interactions within the debugging context. As such, the

77| Page

framework presents a mechanism for advancing research in collaborative software

development and human-computer interaction.

Employing a qualitative methodology, the framework incorporates methods, such as
interviews and observations for in-depth exploration of debuggers’ experiences, drawing
on Creswell’'s (2014) emphasis on contextual richness, adhering to the empirical
standards of human-computer interaction research (Card et al., 2018). This approach
enables a thorough investigation of the pluralistic debugging process, particularly suited
to the complexities of distributed settings. While the research predominantly employs a
qualitative approach, the framework’s design is inherently flexible, allowing for rigorous

empirical studies.

3.5 Deployment for data collection and data analysis

To demonstrate how the conceptual framework is applied, Tables 6-8 show the
connections between each layer of the framework and the specific methods utilised for
data collection and analysis. Emphasis is placed on showing how each layer has directly
shaped the selection of data collection methods and how these, in turn, have contributed
to the insights generated during the analysis process. This detailed mapping helps to
clarify the relationship between the theoretical foundation and the practical research

methods employed.

78| Page

Table 6: Relationship between the theoretical framework and the research methods (Layers 1 & 2)

Layer

Description

Data Collection
Methods

Data Analysis
Approach

Layer 1: Debugging
Environment

Focuses on tools,
technologies, and
the remote setting
in which debugging

Screen and voice
recordings capture
participants
interact with the

how

The collected data

are analysed to
understand the
frequency and

occurs. tools (e.g., |IDEs, | types of tool usage.
version control). | Patterns such as
Logs from tools and | tool-switching,
documentation reliance on
websites track | documentation, or
which resources are | using IDE features
accessed during | (e.g., debuggers,
debugging. version control) are
tracked. These
insights help assess
how well the
environment
supports or hinders
debugging efforts.
Layer 2: Based on | Screen recordings | The collected data
Information Information and think-aloud | are coded to
Foraging Layer Foraging Theory | protocols capture | categorise search
(IFT), examines | the information | strategies, such as
how participants | search processes, | direct queries or
search for and | revealing how | exploratory
gather information. | participants look for | navigation.
information (e.g., | Successful foraging
documentation, is identified when
StackOverflow, information
forumes, code | retrieved directly
navigation, etc.). | contributes to bug
This layer | resolution, while
investigates the | unsuccessful
cognitive strategy | attempts highlight
of areas where further

“information
foraging”.

learning is required.

79| Page

Table 7: Relationship between the theoretical framework and the research methods (Layers 3 & 4)

Layer Description Data Collection Data Analysis
Methods Approach
Layer 3: Examines how | Transcripts from | A content analysis
Distributed cognitive tasks are | debugging sessions | approach maps
Cognition shared between the | and interview, focus | how the pair shares

pair and

technology.

This layer captures
how cognitive tasks

group discussions

explore how
cognitive tasks (e.g.,
task

communication) are

switching,

cognitive

responsibilities. The
focus is on how
tasks are allocated

and communicated

are distributed | distributed during debugging.
across team | between Key insights
members and tools, | participants and | regarding
focusing on | across tools. collaboration
collaboration and efficiency are
shared drawn, such as
understanding. which partner
assumes leadership
in specific
debugging
activities.
Layer 4: Cognitive | The innermost layer | The think-aloud | Cognitive processes

Processes

deals with each
debugger’s mental
activities (e.g.,
problem

comprehension and

hypothesis testing).
Focuses on
individual mental
activities such as
problem

comprehension and
hypothesis
formation.

protocols and post-
session interviews
focus on individual
cognitive processes
during debugging
(e.g., hypothesising
bug causes and
formulating

solutions).

are
coded
categories such as

thematically

into

problem-solving
tactics (e.g., trial-
and-error,
hypothesis testing).
The analysis also
shifts in
cognitive load and

tracks

mental strategies as
the debugging

session progresses.

80|Page

Table 8: Relationship between the theoretical framework and the research methods (Centre Layer)

their
collaboration and

focus on

individual
contributions.

This is the core of
the framework,
their
human-centred

symbolising

activity.

collect metrics on
individual
debuggers, such as
experience,
expertise, and bug
resolution
performance.

Demographics of
participants (skills,
experience).

- Dyadic

Layer Description Data Collection Data Analysis
Methods Approach
The Debuggers The roles and | Demographic Combining
(Centre Layer) interactions of the | surveys and | performance
two participants | performance logs | metrics and

qualitative insights
(from interviews
and focus groups)
helps explore
individual

contributions and
teamwork
dynamics.
Statistical

can also be applied

analysis

to debugging
success rates.

performance

metrics.

Data Collection: Tables 6-8 illustrate how different aspects of the conceptual framework
are tied to specific data collection methods. Screen recordings and think-aloud protocols
provide insight into the debugging environment and cognitive processes layers.
Interviews and focus groups also gather data on distributed cognition and individual

contributions.

Data Analysis: Each layer of the conceptual framework informs distinct parts of the data
analysis process. For example, the Information Foraging Layer drives thematic analysis of
search patterns, while Distributed Cognition focuses on the content analysis of
communication and task allocation. The Debuggers (Centre) layer integrates both

guantitative (performance metrics) and qualitative (collaboration dynamics) insights.

8l|Page

Within this context, the study adopts a rigorous approach by systematically linking each
phase of the conceptual framework to the corresponding data collection and analysis
methods. This alignment ensures a focused exploration of how novice programmers
operate within a distributed debugging environment. Central to this process are the
tables provided (Tables 6-8), which serve as crucial tools for establishing explicit
connections between the theoretical constructs underpinning the framework, such as
Information Foraging Theory and Distributed Cognition, and their practical application

during the data collection and analysis stages.

Furthermore, this structured mapping ensures that the conceptual elements transcend
theoretical abstractions, being operationalised in a way that directly guides the research
process. By deconstructing the debugging process into its fundamental components, the
framework enables a systematic and thorough analysis of novice programmers’

behaviours and cognitive strategies in distributed settings.

In addition, this approach illuminates the interactions between individuals and their tools
and provides critical insights into how these factors influence collaboration, problem-
solving, and the overall efficiency of the debugging process. Ultimately, deploying this
conceptual framework enhances the clarity, depth, and relevance of the study’s findings

in understanding the complexities of distributed debugging for novice programmers.

82|Page

3.6 Summary

This study employs Information Foraging Theory and Distributed Cognition to analyse the
debugging process, particularly focusing on novice programmers in networked
environments. Information Foraging Theory (Pirolli & Card, 1999) assesses how novices
navigate and extract valuable information, with previous studies validating its application
in understanding software maintenance challenges (Fleming et al., 2013; Lawrance et al.,
2008; Piorkowski et al., 2012). Distributed Cognition extends the analysis beyond
individual cognition to include social and technological interactions, impacting fields from
aviation to software development (Hollan et al., 2000; Hutchins, 1995). This chapter
explores explicitly how these frameworks apply to novice programmers working in pairs
in distributed settings, aiming to illuminate the collaborative aspects of debugging and

the role of tools in this context.

83|Page

Chapter 4: Methodology

4.0 Introduction

This chapter describes the research’s methodological structure, including key principles
and strategic direction. It begins by presenting the chosen research paradigm, tailored to
unravel the complexities of the subject, thereby identifying the need for a solid
foundation for inquiry. Following this, the chapter explores the specific methods and
research designs employed, leading to detailed scrutiny of the theoretical foundations
and highlighting methodological integrity’s paramount importance. By evaluating these
methodological aspects, the chapter strives to carve out a definitive path for the research

endeavour, aiming to augment the scholarly landscape significantly.

4.1 Research Question

Drawing on existing studies, debugging is acknowledged as an integral, yet time-intensive
component of software development projects (Beller et al., 2018; Zhao et al., 2008),
necessitating programmers to identify and rectify software glitches and look deeply into
the intricate architecture of the software (Oman et al., 1989; Perscheid et al., 2017).
Unfortunately, there is a noticeable lack of studies on how novice programmers debug

code while working together, whether in the same location or across diverse geographies.

Additionally, there is a reasonable tendency to tailor existing industry methods to fit
educational environments. Nevertheless, the changes in circumstances, particularly with
novice programmers working together from distant locations, require careful analysis.

To this end, this central question steers this study:

84|Page

“How do the paired Software Development Apprentices in
geographically distributed locations work collaboratively to fix

Python programming bugs using the technology-mediated medium?”

However, according to Leedy and Ormrod (2021), a researcher from a design standpoint
splits the central question into several smaller questions where the outcome of each
smaller question can possibly answer the central question. So, given this and in
investigating this central question, this study proffers answers to the following five
specific research questions:

= RQi: What bugs are generated by the paired geographically distributed SDT
apprentices working collaboratively to solve a given problem using Python?

= RQ: What bug locating strategies and tactics are deployed by the paired
geographically distributed SDT apprentices while attempting to fix defects in the given
Python code? How do they go about finding the bugs in the program code?

= RQs: How do the paired geographically distributed SDT apprentices distribute
cognitive load when resolving bugged code?

* RQga: How does leveraging Integrated Development Environment (IDE) tools enhance
the capabilities of distributed pair debugging and mitigate the challenges
encountered in debugging programs?

= RQs: What challenges are experienced by paired geographically distributed SDT
apprentices working collaboratively on debugging programming bugs, and why are

they facing such challenges?

85|Page

Building upon the premise established by Maxwell (2012) that research questions hone
the focus of a study; this research primarily seeks to identify the bugs produced by dyad
SDT apprentices working remotely on Python tasks. Given their novice status, the study
aims to discern patterns or similarities in the bugs they produce, especially compared to
collocated novices. The goal is also to ascertain if being in remote dyads influences the
type of bugs, especially given the documented challenges faced by remote teams, such
as collaboration, productivity, and communication issues (Miller et al., 2021; Neufeld &
Fang, 2005; Ralph et al., 2020). By addressing this question, the study endeavours to draw
parallels in the bugs from each dyad and cross-reference them with existing literature on
bugs from solo and collocated novice programmers, shedding light on potential bug

causatives in remote novice settings.

Following the elucidation of the types of bugs encountered, understanding how dyad SDT
apprentices, situated remotely, identify and rectify these programming inconsistencies
becomes paramount for this study. Consequently, the inquiry encapsulated in the second
research question is instrumental in unravelling the debugging behaviours. Building upon
any insights garnered about debugging behaviours; the third research question aims to
understand how dyad SDT apprentices distribute cognitive load during their bug-
searching and fixing endeavours. This question employs a verbal protocol to vocalise
thoughts, thereby shedding light on the manifestation of distributed cognition within the
dyad (Hutchins, 1995). In parallel, this exploration delves into how thought processes
inform specific actions undertaken while pursuing bugs in the programming code, aligning
with the premises of information foraging theory (Pirolli & Card, 1999). The combination

of distributed cognition and information foraging theory forms a key framework, which

86|Page

seeks to capture the complex cognitive processes and detailed debugging methods, thus

shaping the direction of data gathering and analysis.

Expanding upon previous research, the fourth research question delves into the intricate
relationship between technology and debugging. Specifically, it investigates the roles of
integrated development environments, compilers, and synchronous collaboration tools
in potentially streamlining the bug foraging and rectification processes. The inquiry is
centred on how SDT pairs utilise these technologically-mediated tools to potentially
enhance distributed pair debugging capabilities, thereby mitigating challenges
encountered during debugging. While evidence suggests that technological tools have
been instrumental in collocated dyad debugging scenarios, this research seeks to
investigate if their impact remains consistent or introduces new facets to the remote

debugging process.

Building on the exploration of technology’s role, the fifth research question focuses on
the challenges remote dyad apprentices encounter during their synchronised and
collaborative efforts to debug Python codes. This inquiry extends beyond merely
identifying the challenges, aiming also to uncover the underlying causes behind such

difficulties in collaborative debugging scenarios.

4.2 Context and Study Site
Drawing from the insights of Dey (2001), which emphasises the vital role of context in
shaping an entity’s implicit situational information, whether that pertains to an individual,

location, or object, it becomes clear that empirical studies are intricately bound to the

87|Page

inherent nature of human behaviour. As Van Oers (1998) articulated, this context-driven
behaviour aids in refining specific meanings, ensuring they are holistically intertwined

within a broader spectrum rather than isolated instances.

Expanding upon this, the current study zeroes in on distinct contexts involving 30 SDT
apprentices dispersed across twelve diverse organisations. The primary focus revolves
around the debugging strategies of 15 dyad apprentices, who, as novice programmers,
operate under the guidance of workplace mentors. As characterised by Bonar and
Soloway (1983) and reaffirmed by Lau and Yuen (2009) and Jenkins (2002), these novices
stand at the initial stages of programming, often lacking expertise in crucial areas such as
problem-solving, abstraction, and, notably, debugging. Also, despite a plethora of reasons
pinpointed for the debugging struggles of novice programmers (de Raadt, 2007; Denny
et al., 2022; Lahtinen et al., 2005; McCauley et al., 2008; Vourletsis et al., 2021; Whalley

et al., 2021), mapping out these patterns could further help understand their challenges.

It is imperative to highlight that the study’s milieu was predominantly digital, leveraging
technology-driven platforms like Microsoft Teams and specialised debugging software. In
this regard, Visual Studio Live Share, commonly referred to as “Live Share”, serves as the
specialised debugging software and is a collaborative development tool introduced by
Microsoft for Visual Studio and Visual Studio Code. This extension empowers apprentices
to share synchronously and co-edit code with peers, fostering joint coding, debugging,
and issue resolution. This eliminates the necessity for participants to share a local

network or identical development configurations. As a result, Live Share offers a fluid co-

88|Page

coding platform, proving indispensable for apprentices collaborating from distant or

varied locations.

Also, this multi-layered study spans a wide range of elements, from individual cognitive
aspects and technological infrastructures to the intertwined socio-technical dynamics
related to optimal debugging tool usage. Similarly, the research also inquires into the
interaction between external (software tools and share code) and internal
representational (mental models, problem-solving strategies, knowledge base)
frameworks. In essence, this aspect of the research attempts to bridge the gap between
the tangible tools and methods used in debugging and the intangible cognitive processes
programmers employ, especially in the context of collaborative, distributed
environments. This complex interplay includes discussions in pairs using the think-aloud
protocol, the debugging patterns of the SDT, joint efforts in addressing software bugs,
how the use of a particular debugging platform shapes or guides an apprentice’s internal

thought process or problem-solving strategy, and the specific code being examined.

4.3 Philosophical Perspectives of this Study

Beginning with the foundational principles posited by Lincoln et al. (2011) and Cresswell
and Plano Clark (2011), it is evident that a researcher’s philosophical leanings and
worldviews deeply inform every facet of the research process, especially concerning the
origins and nature of knowledge. These predispositions hold tangible ramifications. Thus,
a lucid understanding of one’s philosophical principles becomes indispensable, offering a
robust foundation to delve into the study’s paradigm, ontology, epistemology, and

methodology, as elucidated by Fitzgerald and Howcroft (1998).

89|Page

Building on this idea, this study’s approach is deeply influenced by embedded
philosophical perspectives, as highlighted by Creswell and Poth (2018) and Crotty (1998).
These perspectives inform the research questions and data collection methods while
supporting the study's paradigm, ontology, epistemology, and methodology. According
to Saunders et al. (2019), research philosophy acts as a belief system that critically
informs the methodology, strategy, and analysis of data, reflecting the interplay between
a researcher’s philosophical stance and their investigative approach. The study navigates
the objectivism-subjectivism continuum, recognising the dichotomy between viewing
reality as an external, observable entity and understanding it as a socially constructed
mosaic. This philosophical grounding provides a robust foundation for exploring the
specific research strategies and analytical frameworks employed in this study. The
position of this research, in relation to these philosophical underpinnings, is further

elaborated in subsequent sections.

4.3.1 Paradigm

This study adopts an interpretive paradigm, conceptualising it as a set of philosophical
assumptions about the nature of reality and methods to understand it, as suggested by
Mittwede (2012) and elaborated by Christensen et al. (2020) and Creamer (2017). This
paradigm serves as a lens through which the research on SDT apprentices’ debugging
strategies is viewed, aligning with Kuhn (1970) interpretation of paradigms as collective
exemplars that influence evidence collection. Within this framework, the study embraces

the comprehensive paradigm dimensions, ontology, epistemology, methodology, and

N|Page

axiology, as described by Guba and Lincoln (1994), which dictate diverse perspectives on

knowledge and its formation.

Concluding, this interpretive approach enables a deep exploration of the human aspects
of software debugging, focusing on apprentices’ experiences, behaviours, and
perceptions. By understanding these elements, the research provides qualitative insights
into the apprentices’ interactions and learning processes in debugging within a
collaborative environment. This aligns with Cohen et al. (2007), who advocate for the
interpretive paradigm’s utility in examining complex human behaviours and social
interactions, thus offering a detailed perspective of educational and professional
practices in technological settings. Further details on the study’s paradigm position are

explored in subsequent sections.

4.3.2 Ontology

Ontology stands out as a crucial dimension, encapsulating philosophical assumptions
pertinent to the nature of truth and reality. Connecting these ontological perspectives to
the current study, the interpretive paradigm is utilised, encapsulating the belief in “reality
as socially and discursively constructed by human actors” (Grix, 2004, p. 61). From an
ontological standpoint, the study asserts the pluralistic nature of reality, suggesting
diverse experiences and approaches among SDT apprentices in program debugging.
Consequently, acknowledging diverse experiential worldviews, the study is geared
towards exploring multiple realities (Lincoln & Guba, 2000), wherein each apprentice
constructs meaning through interactions and engagements (Bryman, 2016). This

approach is proposed by Guba and Lincoln (1994), who propose that relativism serves as

91|Page

the ontology for interpretivism, advocating the subjective and individualistic perception

of reality.

Given these considerations, this study adheres to a pluralist view of reality, ensuring a
harmonious alignment of the adopted ontology with the epistemological perspective

and, consequently, influencing the research design.

4.3.3 Epistemology

This research aligns with the perspective that epistemology is intertwined with
assumptions analysing the relationship and dependencies between the researcher and
the research focus, affecting the objectivity and detachment inherent in research

processes (Creswell & Poth, 2018; Leavy, 2017).

In the context of this study, the epistemological perspective of qualitative research
implies a substantial investment of time in engaging with participants to gain insights
through detailed descriptions of their lived experiences and viewpoints. It emphasises the
co-creation of knowledge and subjective reality, considering the influence of social
interactions and the researcher's interpretations of contextual actions. In this light, a
deeper understanding of knowledge and meaningful reality will be attained regarding the
approaches of paired SDT apprentices in debugging Python’s bugged code within specific
social settings facilitated by interaction with technology agents (Guba & Lincoln, 1994).
However, the richness of the interpretive paradigm’s descriptions is juxtaposed with
challenges in validity and trustworthiness, stemming from the subjective nature of the

data and varying participant interpretations (Rolfe, 2006). In order to tackle these

92|Page

potential vulnerabilities, this research incorporates Maxwell’s strategies for addressing
validity concerns (Maxwell, 2008), laying a robust foundation for the research effort (see

Section 4.7).

4.4 Methodological Framework

This study aligns with a qualitative research methodology, drawing from the interpretive
paradigm to explore the debugging behaviours of SDT apprentices in distributed settings.
This choice is underpinned by the study’s ontological belief in the subjective construction
of reality and its epistemological stance that knowledge is best understood through

interpreting these subjective experiences.

Leedy and Ormrod (2021) emphasise research as a process that goes beyond mere data
collection to include deep analysis and interpretation to enrich understanding of a
specific phenomenon. This perspective shapes the research methodology, which, as
Cameron (2011) and Brannen (2005) articulate, is inherently linked to the researcher’s
ontological and epistemological assumptions. These assumptions inform the choice of
gualitative research for this study, which seeks to capture apprentices’ complex, intricate

interactions with their work environments.

According to Leavy (2017), research methodology involves harmonising methods and
theoretical frameworks guided by underlying philosophical convictions. This approach is
vital for understanding apprentices' subjective and constructed realities as they navigate
debugging tasks, making qualitative methods particularly suitable. Gray (2021) and

Saunders et al. (2019) further argue that the choice of methodology influences the

93|Page

research design, which in this case focuses on multiple case studies to provide in-depth

insights into each apprentice’s experiences and interactions within natural settings.

While quantitative research offers a systematic exploration of variables and mixed
methods provide a comprehensive blend of quantitative and qualitative data, the
qualitative approach was chosen for its strengths in generating rich, contextual, and
detailed narratives (Christensen et al., 2020; Gray, 2021). Such depth is necessary to grasp
the full scope of apprentices’ debugging experiences and the dynamic, often tacit aspects

of their skill development in real-world contexts.

Therefore, this study’s methodological framework does not isolate it within a single
paradigm but reflects a pragmatic blending of influences that supports its goals. It utilises
a multiple case study approach as described by Merriam (1998) and Yin (2014), which
allows for examining the ‘how’ and ‘why’ behind apprentice behaviours in natural
settings, thereby aligning the philosophical underpinnings with the practical inquiry
methods. This alighment ensures that the research is methodologically sound and deeply
reflective of the interpretive paradigm’s focus on understanding human experiences

within their naturally occurring contexts.

4.4.1 Case study design and rationale

The qualitative case study methodology is highly suited to the SDT distributed pair
debugging research due to its ability to provide in-depth insights into complex processes
and interactions within specific real-life contexts (Creswell, 2014; Merriam, 2009; Yin,

2014). This approach is invaluable for comprehending the complexities of social

94|Page

interactions, structures, and the debugging processes that SDT apprentices engage in,
enabling researchers to capture the intricate details of how and why certain behaviours

and practices occur (Baxter & Jack, 2008; Creswell, 2014).

A key strength of the qualitative case study lies in its contextual sensitivity, which allows
for a detailed examination of the environmental, temporal, and locational factors that
influence apprentices’ debugging practices. This sensitivity is essential for understanding
the complex dynamics between paired SDT programmers and how external variables,
such as technological agents, impact their debugging strategies (Gray, 2021; Geertz,
1973). Such a methodological approach is critical for generating deep insights into the

interactions and dependencies within the debugging environment (Ridder, 2017).

Furthermore, the holistic nature of qualitative case studies supports the integration of
multiple data sources, enhancing the robustness and comprehensiveness of the analysis.
This capability is indispensable for exploring various dimensions of the debugging
process, allowing researchers to draw meaningful correlations and interpretations vital

for theoretical and practical advancements (Gerring, 2017; Stake, 1995).

While qualitative case studies offer significant theoretical contributions and facilitate the
exploration and conceptualisation of new paradigms, their specificity and contextual
depth may limit the generalisability of findings. However, the richness of the collected
data compensates for these limitations, providing detailed, context-specific insights
crucial for understanding the unique phenomena of distributed pair debugging (Creswell,

2014; Merriam, 2009; Ridder, 2017).

95 |Page

In sum, despite potential challenges such as resource intensiveness and issues with
generalisability, the qualitative case study methodology aligns effectively with the SDT
distributed pair debugging research goals. It enables a dynamic and adaptable
exploration of processes, which is essential in settings characterised by rapid
technological and procedural changes (Flyvbjerg, 2006; Saunders et al., 2023). Also, the
depth and adaptability of this approach ensure that it supports the development of

practical solutions tailored to the specific needs and contexts of SDT apprentices.

4.4.2 Sampling

Qualitative research inherently focuses on depth rather than breadth, aiming for rich
insights over broad generalisations. Nevertheless, this focus does not negate the need for
carefully crafted sampling strategies. Indeed, rigorous sampling is pivotal to ensure data
validity and to address key research questions effectively, a process critical to deriving
meaningful interpretations (Flick, 2022; Patton, 2015; Saunders et al., 2019). Moreover,
developing a suitable sampling frame for case studies is complex, demanding a careful
balance between study objectives, seeking richness over range, and the careful

application of findings (Creswell, 2014).

Keeping this in perspective and in the context of a qualitative multiple case study focusing
on dyads of apprentices debugging Python code in distributed settings, the choice of
purposive sampling is a deliberate and strategic methodological decision. The
employment of purposive sampling in this study enables the deliberate selection of cases

that facilitate an investigation into the dynamics of collaboration and cognition among

%|Page

apprentices in distributed settings. This methodological choice is instrumental in
capturing rich, multifaceted interactions and the evolving cognitive processes that
characterise the apprentices’ experiences as they engage in debugging Python code
together. As Flick (2022) suggests, qualitative research should not default to random
sampling as in quantitative studies, but instead should employ a thoughtful approach to

select participants, ensuring the data’s richness and relevance to the research questions.

In this specific study, purposive sampling was employed to select apprentice pairs who
could provide insights into the debugging process. This selection was driven by the intent
to understand the individual actions and the interpersonal dynamics and communication
patterns that might facilitate problem-solving in a distributed setting (Lincoln & Guba,
1985). The iterative nature of purposive sampling, inclusive of snowball, quota, and
convenience sampling methods, allowed for a layered and rich collection of data,

contributing to a desired well-rounded understanding of the case (Patton, 2015).

In sum, the purposive sampling method was integral to the research design, ensuring that
the cases chosen for this study were informative and closely related to the central
research questions. This methodological choice, underpinned by scholarly discourse,
provided a framework for examining the collaborative interactions of apprentices in
distributed settings, ultimately leading to findings that can be both insightful and

trustworthy.

97 |Page

4.4.3 Participants

This study categorises its participants into two main groups, in particular, SDT apprentices
and workplace mentors and trainers from the training organisation, each offering critical
insights into the research objectives. The central focus of this investigation is on the SDT
apprentices, the first participant category. Their engagement in debugging bugged
Python code is vital for understanding various aspects, such as their debugging strategies,
the role of technology in this process, how they manage cognitive load during
collaborative debugging, and the challenges they face in this context (Patton, 2015). This
aspect of the study is crucial in revealing both the individual and collaborative dimensions

of their software development skills.

Prior to initiating the recruitment of apprentices for this study, the necessary ethical
approval was acquired, reflecting stringent adherence to academic research protocols
(Creswell, 2014). This foundational step was followed by an extensive outreach effort,
wherein 110 emails were dispatched to a selection of organisations known for fostering
apprentices at the targeted standard. As detailed in Appendices A to D, these emails
introduced the study’s aims and enclosed essential documentation, including Participant
Information Sheets (PIS) and consent forms for employers and apprentices, ensuring
informed participation (Saunders et al., 2023). Key criteria outlined in the emails included
the specific age bracket, the necessity for apprentices to fall within the novice
programmer classification, and a commitment to contribute a maximum of four hours

throughout the study.

98 |Page

From the 135 emails disseminated using DocuSign, around 45 organisations expressed
their willingness to participate, encompassing a total of 89 SDT apprentices who were
available for the study duration, along with their workplace mentors. Of the 89 SDT
apprentices, 58 apprentices completed and returned the necessary consent and survey

forms.

Upon examination of these forms and cross-referencing the apprentices’ profiles in terms
of educational background and programming experience, a cohort of 46 apprentices was
ultimately selected. This selection process, unfortunately, led to the exclusion of 12
candidates who did not meet the set criteria, thereby reducing the number of
participating organisations to 36. The study targeted apprentices who had been part of
the training programme for over three months but less than nine, ensuring they

possessed basic programming knowledge per the SDT Standard.

Acknowledging that most of the apprentices were unfamiliar with each other and came
from varied organisational backgrounds, a 30-minute familiarisation debugging session
was organised. This session, not formally part of the study, was crucial for the apprentices
to practice the think-aloud protocol while engaging in collaborative debugging. It allowed
them to understand what participation entailed and assess their willingness to continue
in the study. Subsequently, 11 apprentices withdrew, reducing the number of participants
to 35, all volunteered for the study. Among these, 30 were actively paired for the study,
while 5 were placed on standby, ready to step in should any shortlisted apprentices
withdraw. It should be noted that the recruitment happened on two different occasions

due to a break in the study.

99 |Page

Thirty apprentices participated in the study, each randomly paired within their age group.
They were anonymised using shorthand notation (‘STD<number>‘) and briefed, spanning
ages 16 to 50 years (see Table 6 for the participants’ details for the debugging sessions
and the dyads’ interviews). Predominantly, these participants were young males,
primarily falling within the 16 to 21 year age bracket, highlighting the study’s focus on a

younger demographic.

The recruitment criteria for apprentices in this study emphasise a foundational
background in software development, with formal education being essential. Typically,
participants are expected to have completed secondary education and introductory
programming courses, ideally in Python, to equip them with the skills necessary for
debugging. This foundation helps ensure that participants are not overwhelmed by the
complexity of the debugging tasks (Robins et al., 2003). The study categorises apprentices
as novice programmers, grouped into three subgroups based on age. Participants aged
16 to 18 years must have no more than two years of programming exposure, just
transitioning from secondary education into software development and hold a General
Certificate of Secondary Education (GCSE) level qualification or equivalent Level 2
qualification on the national occupational framework. Those aged 18 to 25 years should
have less than one year of programming experience, ideally with Level 3 qualifications,
while those aged 25 to 50 years should have three to nine months of hands-on
experience. This structured approach ensures that participants have enough exposure to
contribute meaningfully to the debugging process while still encountering the challenges

typical of novices (Allwood, 1986).

100|Page

In addition to educational qualifications, the study required apprentices to demonstrate
a commitment to the debugging sessions and interviews, dedicating up to five hours for
participation. Their readiness to collaborate was equally vital, as the study focused on
paired debugging and think-aloud protocols, exploring how apprentices communicated
and shared cognitive loads in real-time problem-solving situations. This collaborative
approach ensured that participants contributed effectively to the study’s objectives.
Although apprentices were expected to have basic Python knowledge, their experience
was still developing. As outlined in Table 9, the recruitment process aimed to select
individuals with the appropriate educational background, experience, and willingness to

engage in collaborative work, contributing to the study’s success.

Despite the variations in age and background, it is crucial to recognise that all apprentices
were uniformly classified as novice programmers. This classification reinforces the study’s
objective to evaluate individuals’ learning and developmental trajectories at the nascent
stages of their careers in software development, thereby contributing to the field of

programming education and research.

101|Page

Table 9: Participant details for the debugging sessions and the dyad’s interview

Dyad ID Participant ID Age Bracket Gender Programming experience
Dyad1 SDT1 16 — 18 years Female Low < 2 years
SDT2 16 — 18 years Female Low < 2 years
Dyad2 SDT3 16 — 18 years Male Low < 2 years
SDT4 16 — 18 years Female Low < 2 years
Dyad3 SDT5 16 — 18 years Male Low < 2 years
SDT6 16 — 18 years Male Low < 2 years
Dyadd SDT7 16 — 18 years Male Low < 2 years
SDT8 16 — 18 years Male Low < 2 years
Dyads SDT9 16 — 18 years Male Low < 2 years
SDT10 16 — 18 years Male Low < 2 years
Dyad6 SDT11 16 — 18 years Male Low < 2 years
SDT12 16 — 18 years Male Low < 2 years
Dyad7 SDT13 16 — 18 years Male Low < 2 years
SDT14 16 — 18 years Male Low < 2 years
Dyads SDT15 16 — 18 years Female Low < 2 years
SDT16 16 — 18 years Female Low < 2 years
Dvado SDT17 18 —25years | Male Low < 1 year
v SDT18 18 — 25 years Male Low < 1 year
Dyad10 SDT19 18 — 25 years Male Low < 1 year
SDT20 18 — 25 years Female Low < 1 year
Dyad11 SDT21 18 —25years | Male Low < 1 year
SDT22 18 —25years | Male Low < 1 year
Dyad12 SDT23 18 — 25 years Male Low < 1 year
SDT24 18 — 25 years Male Low < 1 year
SDT25 25— 50 years Male Low >3 Months and <9
Months
Dyad13 SDT26 25 —50 years Male Low >3 Months and <9
Months
SDT27 25— 50 years Male Low >3 Months and <9
Months
Dyad14 SDT28 25 —50 years Male Low >3 Months and <9
Months
SDT29 25-50years | Male Low >3 Months and <9
Months
Dyad15 SDT30 25— 50 years Male Low >3 Months and <9
Months

This study also incorporated a second category of participants, comprising Workplace
Mentors and Trainers from the training organisations, whose contribution was crucial to
the research’s success. These professionals, with their extensive background in software
development, bring a wealth of expertise and knowledge, particularly in grasping the
intricacies of debugging strategies and how novice programmers, like the apprentices in

this study, approach code debugging (Glesne, 2016; Patton, 2015). Their deep insights

102|Page

into the apprentices’ debugging processes and developmental stages are invaluable for

comprehensively analysing their debugging strategies.

To ensure the relevance and value of their contribution, strict qualifications were set for
the Workplace Mentors and Trainers. These experts are required to have a minimum of
ten years of programming experience, which underlines their deep understanding and
mastery of the field. Additionally, they should have worked with at least ten apprentices,
ensuring they possess technical expertise and practical experience mentoring novice
programmers. This prerequisite is essential as it guarantees that the mentors and trainers
can offer detailed insights into the apprentices’ debugging abilities, their software
development methodologies, and the application of technology in these processes. Such
depth of understanding is crucial for meeting the study’s aims and adds significant value

to the research objectives (Lincoln & Guba, 1985).

To summarise, the involvement of both SDT apprentices and seasoned Workplace
Mentors and Trainers creates a rich and diverse pool of participants (see their
demographic infographics showing their classification in Figure 5), thereby enhancing the
study’s depth and breadth. Through their combined perspectives and experiences, the
study aimed to make contributions to the understanding of debugging strategies
deployed by novice programmers and practices in software development. The insights
gained from these two groups are expected to be instrumental in advancing knowledge
in the domain, particularly regarding the apprentices’ debugging skillsets and the role

technology plays in the field.

103|Page

16 SDT Apprentices 6 SDT Apprentices
between 16 - 18 Pefweien 58 23

years age range years age range

Classification
by Age Range

6 SDT Apprentices
between 25 — 50
years age range
SDT
Apprentices

6 Female SDT
Apprentices

Participants

Classification
by Gender

Workbased
Mentors
24 Male SDT
Apprentices

10 Male Workplace 2 Female Workplace
Mentors & Trainers Mentors & Trainers

Figure 5: Participant demographic infographics recruited for the study.

4.4.4 Data Analysis

Reliable qualitative research pivots on comprehensive data analysis (Maguire & Delahunt,

2017). Considering this context, this study adopts Merriam’s analytic inductive approach,

104|Page

which encourages the simultaneity of data collection and analysis in such a way that the
data collection and analysis are to be approached in a concurrent and interactive process
(Merriam, 1998). By so doing, it is a recurring process involving consolidating, reducing

and interpreting the data and making sense of it.

For the analysis of verbalisation, thematic analysis based on Braun and Clarke (2006) was
employed. This process involved coding the data, organising it into categories and

themes, and systematically interpreting the findings in a sequential manner.

First, the verbalisation through the usual conversation and the thought process to be
exposed through the thick-aloud protocol were transcribed and annotated with the
actions visible in the video. Codes were developed and guided by the principles of
information foraging theory based on the steps taken to different bug location strategies,
and the cognitive burden sharing and the affordances of the technology were considered

simultaneously.

To strengthen the data validation to a great extent, each data source within each setting
was analysed, triangulated, and converged across settings to understand the similarities
and differences between the settings. In this respect, the overall understanding of the
cases was established, and the data validity was enhanced. Also, three types of textual
data were collected for the data sources. For example, interview transcripts, focus group
transcripts, and observational field notes were transcribed and imported into NVivo to

help with the organisation by coding to extract themes (Welsh, 2002).

105|Page

Table 10 provides evidence triangulation, mapping the research questions to the data

source and the methods of evidence collection.

Table 10: Evidence triangulation.

Research Question

Data Source(s)

Evidence collection methods

What bugs are generated by the
paired geographically distributed
SOT apprentices working
collaboratively to solve a given
problem using Python?

Journal articles & conferences
Apprentices

Workplace mentors
Programming codes
Recorded videos

Compiler reports

® Literature review
» (Observation

* |nterview

* Focus group

= Software artefacts

What bug locating strategies and
tactics are deployed by the paired
geographically distributed SDT
apprentices while attempting to fix
defects in the given Python code?

Journal articles & conferences
Apprentices
Workplace mentors

" Literature review
= Ohbservation

" Interview

* Focus group

How do the paired geographically
distributed SDT apprentices
distribute cognitive load when
resolving bugged code?

Journal articles & conferences
Apprentices
Recorded videos

® Literature review
= Observation

* |nterview

» Spftware artefacts

How does leveraging IDE tools
enhance the capabilities of
distributed pair debugging and

mitigate the challenges
encountered in debugging
programs?

Journal articles & conferences
Apprentices

Workplace mentors
Programming codes

Record videos

Compiler reports

® Literature review
» (Observation

* |nterview

* Focus group

= Software artefacts

What challenges are experienced
by paired geographically
distributed SDT apprentices
working collaboratively on
debugging programming bugs, and
why are they facing such
challenges?

Journal articles & conferences
Apprentices

Workplace mentors
Professional codes

Recorded videos

Compiler reports

® Literature review
» (Observation

* |nterview

* Focus group

» Spftware artefacts

This qualitative multiple case study examines dyadic SDT apprentices debugging Python

code through a think-aloud protocol, supplemented by in-depth interviews and focus

group discussions with mentors. Thematic analysis, as outlined by Braun and Clarke

(2006), is effectively adapted and particularly suitable in this context, with each stage

interlinked to build a comprehensive understanding of the data. Figure 6 visually

represents the data analysis stages, with the subsequent sections detailing the processes

undertaken.

106 |Page

Theme
Generation

Familiarisation

Thematic Analysis Approach

Reporting D:';:irtni:n Theme Review

Figure 6: The thematic analysis approach adapted from Braun and Clarke (2006).

Stage 1: Familiarisation

Familiarisation with the data is a fundamental stage in thematic analysis, particularly in
qualitative research involving think-aloud sessions, interviews, and focus groups. This
stage provides the foundation for subsequent analysis by ensuring that all insights remain
anchored in the authentic experiences of participants. The process began with
transcription, capturing spoken words, pauses, intonations, and non-verbal cues to
preserve the richness of the data, as underscored by Riessman (2008) and Braun and
Clarke (2006). The transcriptions were then imported into NVivo, which played a crucial
role in organising, managing, and systematically exploring the data, allowing for a

structured approach to the analytical process.

Following transcription, repeated reading of the transcripts facilitated immersion in the
data, moving beyond basic comprehension to uncover deeper context, nuances, and

meanings. This active engagement, marked by questioning, annotating, and noting initial

107 |Page

thoughts, revealed recurring themes, distinctive expressions, and key participant
reactions. These emerging patterns, which highlighted problem-solving strategies and
interactions with technology, informed the direction of coding and theme development,
as advocated by Braun and Clarke (2006) and Saldafa (2015). Furthermore, NVivo
enhanced the process by enabling precise tagging and refinement of patterns, ensuring a
critical and reflective approach. Together, these stages provided a robust and systematic
foundation for thematic analysis, ensuring a comprehensive and data-driven exploration
of the participants’ perspectives, as emphasised by Riessman (2008), Braun and Clarke

(2006), and Saldafia (2015).

Stage 2: Coding

Building on Step 1: Familiarisation with the Data, the second stage of thematic analysis,
as outlined by Braun and Clarke (2006), focused on generating initial codes. This process
systematically organised data from think-aloud protocols, interviews, and focus groups
into meaningful units. NVivo played a pivotal role in this stage, providing the tools to
systematically tag, group, and visualise data. The software’s query functions and
categorisation features streamlined the identification of key aspects of apprentices’
experiences and strategies, aligning with the insights of Gibbs (2007) and Miles,

Huberman, and Saldafia (2014).

The initial segmentation of datasets by source was critical in adhering to the multiple case
study framework discussed by Eisenhardt (1989). This segmentation facilitated a detailed
understanding of each dataset, enabling the identification of unique themes and

patterns. NVivo’s analytical tools enhanced this process by supporting annotations,

108|Page

detailed queries, and data visualisations. These features helped uncover apprentices’
problem-solving strategies and interactions with technology, a process underscored by

Saldaia (2013) as essential for extracting meaningful insights.

Furthermore, NVivo supported comparative analysis by enabling the integration of
separately coded datasets. This functionality was vital for identifying commonalities and
differences in apprentices’ strategies and experiences, following the methodological
recommendations of Baxter and Jack (2008). By combining these insights, the process
established broader patterns while maintaining the depth and nuance of individual cases.
In summary, generating initial codes, facilitated by NVivo, was a pivotal step in thematic
analysis. The integration of NVivo’s structured tools ensured a robust, data-driven

approach to exploring apprentices’ experiences and strategies during debugging.

Step 3: Theme Generation

The third stage of thematic analysis, as outlined by Braun and Clarke (2006), involved
collating initial codes into meaningful themes, a vital step in organising and interpreting
qualitative data. This process required systematically sorting and grouping codes based
on their relationships and their relevance to the research questions, as supported by
Fereday and Muir-Cochrane (2006). By exploring these connections, broader patterns
and themes were identified, revealing both shared and unique aspects of apprentices’
experiences and strategies across the data sets. This process aligned with Stake’s (2006)
emphasis on capturing the depth and complexity of multiple case studies. NVivo played
a crucial role in this stage, with its thematic mapping capabilities providing a visual

framework for organising and refining themes.

109|Page

As the analysis progressed, the iterative movement between coding and theme
generation ensured a deeper engagement with the data, creating opportunities to refine
emerging themes further. The critical examination of themes at this stage was essential,
ensuring they aligned with the research objectives and were grounded in both the data
and the study’s theoretical framework. The researcher’s interpretive role was pivotal,
requiring careful judgement to determine how themes integrated into the broader
narrative of the study. NVivo’s comparative tools further supported this process by
allowing the visualisation of relationships between themes and highlighting overlaps and
distinctions across cases. These capabilities enriched the analytical process by enabling a

more systematic exploration of patterns across the apprentices’ experiences.

By leveraging NVivo’s tools and maintaining a reflexive approach, this stage established a
robust analytical structure that contributed to identifying and understanding significant
patterns within the data. The generation of themes built on the insights from the coding
stage, creating a cohesive framework that provided the foundation for deeper
exploration in subsequent stages of analysis. This process addressed the study’s research
guestions and offered a comprehensive perspective on the apprentices’ strategies and

experiences within the context of the multiple case study.

Step 4: Theme Review
The fourth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on
rigorously reviewing the identified themes to ensure they accurately represented the

data. This process involved refining, merging, or separating themes as needed, a critical

110|Page

step emphasised by Braun and Clarke (2006) and Bazeley (2013) to guarantee that the
themes were truly reflective of the data. The review ensured that the themes were
coherent and meaningful across various cases and stages of data collection, supporting
the reliability and validity of the analysis, as highlighted by Yin (2018). NVivo was
instrumental in facilitating this process, with its visual tools allowing for systematic

comparisons and refinements of themes.

The iterative review process required a critical examination of how each theme related
to the research questions and objectives, contributing to the broader narrative of the
study. This involved identifying patterns common across multiple cases while also
recognising themes unique to particular cases, which is essential in a multiple case study
approach. NVivo’s capabilities for visualising relationships and overlaps between themes
were crucial. These tools enhanced the reflexive nature of the review, ensuring themes
were not only descriptive but also interpretative, aligning with the principles of
qualitative research. This stage was pivotal in capturing the complexities and nuances
across cases, providing a robust foundation for the final interpretation of findings and

ensuring the reliability and validity of the thematic analysis.

Step 5: Theme Definition

The fifth stage of thematic analysis, as outlined by Braun and Clarke (2006), focused on
defining and naming themes. This involved conducting a detailed analysis to refine the
specifics of each theme, interpreting its essence, and exploring its relationship to the
overall narrative of the data. The interpretive process, further elaborated by Clarke and

Braun (2017), was essential in distilling the core meaning of each theme and ensuring it

111 |Page

aligned with the research questions and objectives. This stage was particularly significant
in a multiple case study context, as it required articulating how each theme manifested
across different cases and data sources, as supported by Eisenhardt and Graebner (2007).
NVivo facilitated this process by providing tools for visualising and organising themes,

helping to ensure they reflected underlying patterns and insights accurately.

Critically examining and contextualising themes within the broader study scope was
integral to this phase. The themes needed to strike a balance between being descriptive
enough to represent the data and interpretative enough to offer deeper insights into the
research problem. This process ensured that the themes were both grounded in empirical
data and connected to the theoretical framework of the study. NVivo’s visualisation
capabilities further supported this balance by enabling comparisons and in-depth
exploration of thematic relationships. The researcher’s reflexive approach was pivotal in
shaping these final themes, ensuring they resonated with the study’s aims while providing
a meaningful and insightful representation of the data. This stage was instrumental in
preparing the groundwork for the final synthesis and interpretation of findings,
contributing to a comprehensive understanding of the research problem across multiple

cases.

Step 6: Reporting

The sixth stage of thematic analysis, as outlined by Braun and Clarke (2006), centred on
producing a coherent and compelling report of the study’s findings. This process involved
presenting the identified themes using vivid examples from the data, a strategy

emphasised by Braun and Clarke (2006) and Creswell (2013) to effectively illustrate the

112 |Page

insights derived from the analysis. The findings were carefully linked to the research
guestions and the broader literature, ensuring the analysis was anchored in both
empirical data and the wider academic context. Synthesising findings from the study’s
multiple data sources was a complex but essential task, as highlighted by King (2004) and
Yin (2018). This required integrating insights from each data source to reflect the breadth
and depth of the data, particularly given the multiple case study design. The report
offered a holistic view of the research problem, comprehensively understanding

apprentices’ experiences and strategies.

Producing the report adhered to established principles of qualitative academic writing,
creating an integrated narrative that presented a clear and insightful understanding of
the research problem. Scholars such as Marshall and Rossman (2016) and Merriam and
Tisdell (2015) advocate for this narrative approach, which ensures an engaging and
coherent representation of qualitative findings. The report included a detailed account of
the themes, effectively conveying the complexity and depth of the data, as suggested by
Silverman (2016) and Ritchie et al. (2013). By integrating the findings with existing
literature, the study situated itself within the broader academic discourse. Furthermore,
a comparative approach, as recommended by Baxter and Jack (2008) and Eisenhardt
(1989), was employed to synthesise findings across multiple case studies. This approach
highlighted both unique and shared experiences, offering a reflective synthesis that
provided a comprehensive understanding of the research problem. As the culmination of
the thematic analysis, the report encapsulated the study’s insights and presented a

cohesive narrative of apprentices’ strategies and the role of technology in debugging.

113 |Page

4.5 Empirical Research Process

There have been decades of studies investigating how students learn to debug (Katz &
Anderson, 1987; Murphy et al., 2008; Perkins & Martin, 1986), including multiple think-
aloud studies examining student debugging (Fitzgerald et al., 2008; Liu et al., 2017,
Perkins & Martin, 1986; Yen et al.,, 2012). However, despite extensive work on
understanding student debugging, there are few detailed, qualitative studies of the
debugging practices of novice programmers (Whalley et al., 2023). In addition to the well-
acknowledged fact that novice programmers encounter substantial debugging
challenges, as Bottcher et al. (2016) noted, there is a notable gap in the current literature
concerning the debugging strategies employed by novice programmers in distributed

environments.

To address this gap, the study adopted a holistic approach to data collection, employing
a range of research instruments. These included non-participatory observations,
observation notes, think-aloud protocols, screen capturing, audio recording, code
analysis, in-depth interviews, and focus groups. This comprehensive approach was
designed to capture data from varied perspectives and settings, focusing on how paired
apprentices interacted, their use of technology, their verbalisation of thought processes
in line with Ericsson and Simon (1984) think-aloud protocol, in-depth interviews and a
focus group. The utilisation of these diverse data collection methods is a cornerstone of
this multiple case study research, enhancing the credibility of the data (Bogdan & Biklen,

2007; Patton, 1990).

114 |Page

This study utilised a comprehensive, multi-step method to examine the debugging
process within an apprentice pairing context, as visually represented in Figure 7 and the
data collection timeline and analysis timeline in Figure 8. It began with directly observing
and recording debugging sessions, capturing key interactions and challenges. A detailed
analysis of these sessions followed this to identify patterns and difficulties in the process.
In-depth interviews with apprentice pairs, ‘dyads’, were then conducted for qualitative
insights, with subsequent analysis of these interviews to glean further details. The study’s
scope expanded to include focus groups with the workplace mentors and trainers,
allowing for diverse apprentice perspectives. The final stage involved synthesising all data
to fully understand the apprentices’ debugging experience, offering an in-depth

investigation of the complexities in apprentice learning environments.

115|Page

Participants: 30 Paired Apprentices (15 Dyads)
Deployed the Distributed Pair Debugging Conceptual Framework

Step 1:
Observation &
recording of
debugging

theoreticzl lenses to guide the imvestigation of dyad interactions and
with technologiczl agents, thought processes and strategies deployed
them to localise and fix Python bugs. Also, check the cogmition
distribution sharing pattern.

SEs510N5 .
Mo participant was invohved, Step 2:
Analysis, taking notes of the emerging patterns taken ! 3
into zcoownt the Distributed Pair Debugsing [] : AnalyISIs uf
Conceptual Framework, i.e., cognitive load sharing _ . rECOrded
mechamismes in place, the gulfs in the expected and 3
=ctual actions and the navigation strategies. The dEhqulng
keynotes and emerging patterns to guide the) sessions
guestions to be followed up during interview
sessions. 30 Paired Apprentices (15 Dyads)
. * Interviewed esch dyad to validate the
Step 3: PMd ® .l .. obzervation findings and to clarify grey areas
Elppl'ﬂllﬁcﬂ from the video recording.
‘ y = - * The imterview guided by the Distributed Pair
Drads mtemew Debugging Conceptusl Framewark, a5
s, mentioned earlisr.
Mo participant was invoheed., St
: ep 4:

® Analys=is, categorisation of the emerging patterns
* lUz= the theoretical lens, ie, Distributed Fair
Debugging Conceptual Framework as &

Analysis of
recorded
interviews

framewark for the analysis of the data.

Participants: 12 workplace mentors & trainers
* Carried out two focus groups sessions, with &
participants per groupy/session.

Step 5:
Focus group

*# lsz= the forum to elucidate views and wvalidste
findings from appremtice interviews and
observations.

Summarise the findings and salicit

No participant involved Stﬂp 6:
Analysis of
recorded focus
group sessions

% Apalyzis of emerging themes from the foous
groups and extracting themas

* Conszolidate the themes from the entire research
instruments to answer the research guestions. E

Figure 7: Empirical research process.

116 |Page

Data Collection & Analysis timeline

Observation of Debugging Session Data Analysis Interviews Data Analysis Focus Group Data
Analysis

v

* April - July 2022

* October 2022 e May— August 2022 >

® March - April 2023 * April - June 2023 * June 2023

Figure 8: Timeline of data collection and data analysis.

4.5.1 Step 1: Debugging sessions.

During this stage of the research, an exploration of debugging methods employed by
novice programmers was conducted. This involved leveraging various primary data
sources, including observation notes, code analysis, insights from think-aloud protocols,
and audio and video recordings. Central to this was the implementation of the think-
aloud protocol, which provided a window into the cognitive processes of paired
apprentices collaboratively debugging Python code. This technique proved critical in
illuminating aspects such as cognitive load sharing and the myriad challenges faced during
the debugging process, highlighting the pivotal role of technological tools within this

framework.

Adding further dimensionality to the data collection for this phase was the non-
participatory observational notes recorded as the apprentices navigated the debugging
tasks. The richness of these data was enhanced by audio and video recordings, offering a
robust mechanism for corroborating and reinforcing key aspects of the investigation (Yen
et al., 2012). This multimodal approach was integral to dissecting the primary issues at

the heart of the study. All this helped in addressing RQ1, RQ2, RQ3, RQ4 and RQ5. This

117 |Page

multi-faceted research approach and data sources are visually represented in Figure 8,

forming the bedrock of the study.

Observation Notes
Analysis

] r ~\
° Modified Code

__p[Observation & Audio-Video Recording]——P Analysis

] L8 J

Technological Tools

Audio-Video
Recording Analysis

Artefacts

/
[
[Verbal Protocol
!

Figure 9: Debugging session research approach.

Furthermore, all 15 pairs (dyads) were given the same Python code, which contained 20
intentional bugs comprising of 11 syntax errors, 6 logical errors, and 3 runtime errors (for
the Python Code, refer to Figure 10; for additional details on the Python code, see Tables
11 and 12). This code was used to demonstrate a variety of errors, ranging from those
typically made by novices due to unfamiliarity with Python’s syntax to errors stemming
from a lack of logical understanding or inadequate planning before coding. While syntax
and runtime errors are often more readily identifiable through error messages, logical
errors can be particularly challenging for novice programmers to detect. Understanding
the nature of these varying levels of difficulty is essential for beginners in programming
and educators and mentors. This understanding aids in designing educational materials

and establishing realistic learning goals for apprentices.

118 |Page

Thez Fython program intends bo cakculabe an employee’s payroll using howurs worked and hourly rate. 1& provides details lke gross pay, net pay, and
patential borases based an the employes's roke. Howeser, numerous ernars hinder its smaoth execution.

def milate_payollihaurs_worked, hourty_rate|
B SYMTAX ERROR |SED1) Missing colon

groas_pay = hours_worked x hourdy_rate
¥ SYMTAX ERROR |SEOZ) Used "' instead of ***

¥ LOGICAL ERROR (LEDL) incorrect tax walue
tax_rate = 15

¥ SYMTAX ERROR |SE03) Missing colon after iF
if gross_pay = G000

ta = gross_pay * |tae_rabes100]
che

B LOGECAL ERACE (LEDQ | Wrang tax rate

tad = gross_pay * 0.05

net_pay = gross_pay - tax
¥ LOGICAL ERA0R (LED3): Shouldn't subtract tao if gross_pay is below a certain thresholo

redurm ‘Tatal Fay: ®, sbrigross_pay] -+ 7, Net Salary: © + strinet_pay)
B SYMTAX ERROR |5EDS) Mismatched siring concatenation

¥ SYNTAX ERA0R (SE05): ‘def 5y =]
df maini}:
hours = input(”Input howrs:)
rate = imput| input rabe: 5%

E RUNTIFE BERROS {RED]): Input is string and not corerted b rrmbaer
payroll_info = caloulate_payralihours, abe|

¥ SYMTAX ERROR |SEDG) print without parentheses
prinit payrall_info

E RUNTIFIE ERRCR |REDZ): Uncefined variable ‘rabes’
printrates[0])

¥ LOGICAL ERROA (LEDA) Improper use of ' __name_ '

if niame = *__main__":
¥ SYMTAX ERRORA |SED7k Single *=' used instead of '=='
mainj|

B ZYNTAX ERROR {SEQR) Incormectly dosed siring
rakz = inpauti "Enter emnployes’s role:)

EEYHNTAX ERROR (5B Incormect imdentation

if rale == *Manager”:
LOECAL ERAGE (LEDS|: Bonas amount doesr't make sense without conbest
boras = 3000
print|"Banus: ", bonus)

¥ SYMTAX ERRCA |SE10) Else without a priar if {due to the indentation error abave]
el
print|* Mo bonus”|

& LOGICAL ERROR (LEJR): Reduncant and incarrect oode
banus = 100
printi “All employees get a borus of: ¥, bonus)

§ SYMTAX ERROR (5E11): Incamplete Yor' loop
for i im range {5}
prinii|
¥ RUNTIRIE ERRDR |REDA): Infirdie loop due to missing cokon and indentation

Figure 10: Python code seeded with syntax, logical and runtime bugs

119|Page

Table 11: List of bugs, bug type and difficulty level.

Bug ID Bug Description Bug Difficulty Explanation
Type Level
. Pythaon consistently uses colons before blocks of code [e.g., loops, conditions,
Abzence of colon in . S s . I .
3E01 . . Syntax Eazy functions). & clear error message like "expected "™ typiczlly points directly to this
function definition .
mistake.
sE02 Wrm"ug.npe.ramr for Syntax Easy TI'I_IE IT|I51:_HRE can be 5.|:|c|1:ted through E|:ru::r messages or by familiarity with basic
multiplication arithmetic operators in most programming langusges.
. Similar to 3B01, once & programmer knows the pattern of using colons, thess
503 Missing colans Syntax Easy errors become less common and easier to identify.
Mizmatch in string 5trimg manipulation can be tricky initislly, especially for beginners who are
5204 concatenation Syntax Moderate jugeling with the different ways to concatenate or format strings.
. . Clear ermor messages guide towsard these typographical errors. Recognising that
505 def' miszpelled Syntax Easy 'def” iz a keyword in Python makes it easier to spot this error.
SE0E Mizzing colons Syntax Easy Similar to 5E01, once 3 pmgrammetr knc\f.r.‘s 1:It|e pattern of using colons, thess
errors become less common and easier to identify.
Wrong comparison This is one of the common mistakes beginners make. Error messa ical
SE07 E comp L — Easy s . ma = eI ; g=s typically
operator indicate an assignment inside a condition, which can hint &t the problem.
Incorrectly closed string Symtax errors will highlight where the string or line of code breaks, making it
SEQR Syntax Easy easier to identify the incorrectly dosed string
Indentation errors Indentation in Python demotes code blocks. Movices sometimes miss the
SEDS Syntax Eazy importance of consistent indentation, leading to errors. However, Python error
messages about indentation are generally clear.
Indentation errors Indentation in Python demotes code blocks. Movices sometimes miss the
SE1D Symita Eazy importance of consistent indentation, leading to errors. However, Python error
messages about indentation are generally clear.
Iizzing colons Similar to 53E01, once & programmer knows the pattern of using colons, thess
SE11 5 Syntax Easy . prog *r fmaes the p B '
errors become less common and easier to identify.
Incarrect value for tax Logical errors don't throw actual error messages. Spotting an incorrect valus
LED1 rate Logical Moderate might require either knowledge of the domain (i.e., actual tzx rate) or manual
werification of results.
LE02 WrFrng tax calculation Logical Moderste Similar to LEOL, ?'Erifg?ng caloulati |:|.n results against expected outcomes is
logic neceszzary. Debugging skillz play a crucial role here.
Tax deduction logic flaw Moderate Understanding the owverzll logic of how and when tax should be deducted can be
LEDZ Logical to intricate. Debugging and step-by-step verification can help.
Difficulty
Mizuse of the special ; . Baginners might mot fully understand the purpose of the ' name__ " variable in
variable *_name_ " Logical Difficulty Python, making it harder to spot the misuse.
LEOS Bonus caloculation lacks Logical Moderate This error highli.ghts the importance of understanding the bigger picture or
context context when writing 8 program.
Redundamnt bonus lagic ; Redundamcy can lesd to confusion and wnexpected behaviour. Recognizing
LEOS Logical Moderate redundancy requires a good grasp of the entire codebase.
MNat converting string Python will raise a ‘TypeError' when trying to perform arithmetic on
REOL input to I'|L:IITIbEr' befare Runtime | Moderate in{nmpatible. types. The error r:nessage hints at the problem, but beginners might
mathematical be confused if they assume all inputs are numbers.
operations.
Attemnpt to use an . The error message "nome ‘wariable_nome’ is not defined” is direct. However,
REOZ undefined variable. Runtime Mod ﬂt beginners might strugsle to understand why the varizble isn't defined, espedially
Q0222 | if they believe they have defined it.
Infinite loop due to Spotting infinite loops requires observation of the program's behawviour. The
RED3 missing colon in 'for' Runtime | Moderate program not terminating or becoming unresponsive is a clue. Howewver, tying this
loop. behaviowr to @ missing colon might take a bit of thought.

120|Page

Table 12: Characteristics of the bugs’ difficulty levels.

Difficulty Level

Characteristics of difficulty levels

Easy

Instant Feedback: These errors often produce immediate feedback in the form of compiler or interpreter error
messages that directly hint at the mistake.

Commonality: These mistakes are frequently made by beginners and are thus well-documented in learning
resources and forums.

Simple Resolution: Once identified, the error can be fixed with minimal changes to the code.

Clear Symptoms: The symptoms of the error are evident and do not require deep investigation. For instance, a
syntax error would halt the program before it even runs.

Low Impact: Errors of this category don't generally affect other parts of the program when corrected.

Moderate

Less Direct Feedback: While some of these errors might yield error messages, the messages might not directly
point to the root cause.

Requires Debugging Skills: To resolve these, a beginner might have to use basic debugging techniques like print
statements or step-through debugging.

Variable Symptoms: The symptoms can vary in clarity. For instance, a logical error might not halt the program
but produce incorrect results.

Interconnected Impact: Fixing a moderate error might necessitate changes in other parts of the code, especially
if the mistake involves a fundamental logic flaw.

Experience Helps: Those who have encountered similar issues before can identify and fix these errors more
quickly.

Difficult

not produce any error messages at all.

Deep Investigation Required: Resolving these might require a deep understanding of the code, the problem
domain, or even the programming language's intricacies.

Subtle Symptoms: The symptoms might not be evident at first glance. For instance, a program might seem to
waork correctly for some inputs but fail for others due to a deep-seated logical error.

High Interdependence: Errors of this type are often intertwined with the program's core logic and fixing them
might require significant restructuring.

Experience and Domain Knowledge: Beyond just coding experience, domain knowledge (e.g., understanding
specific algorithms, mathematical concepts, or industry-specific knowledge) can be crucial in identifying and
resolving these errars.

4.5.2 Step 2: Analysis of recorded debugging session

In the research approach depicted in Figure 9, three distinct data analysis tasks transpired

following the observation of the debugging session. These included the analysis of

observation notes and the transcript of the audio and video recordings. For both these

research instruments, the data analysis adhered to the thematic analysis approach

adapted from Braun and Clarke (2006), as detailed in Section 4.4.4 of the thesis.

Additionally, another pivotal element of the data analysis was the examination of

artefacts from the final Python code. These artefacts, representing the various stages of

121 |Page

code modification undertaken by the apprentices during their debugging sessions, were
crucial in identifying the nature of errors. This included categorising the errors into those
that were rectified, those identified but left unresolved, and those that remained
unnoticed by the apprentices. The scrutiny of these code artefacts proved vital in

pinpointing specific challenges encountered by novice programmers.

Furthermore, insights gained from the analysis of code artefacts were then juxtaposed
with established literature on programming errors. This included studies by Ettles et al.
(2018), Grandell et al. (2005), Jeffries et al. (2022), Junior et al. (2019), Kohn (2019), Kohn
and Manaris (2020), Pritchard (2015), Smith and Rixner (2019), and Veerasamy et al.
(2016). This comparative analysis played a crucial role in enabling a detailed
comprehension of well-known and emerging difficulties faced by novice programmers in
the field. Such an understanding was crucial in enabling the research to suggest the types
of bugs generated by the paired, geographically distributed SDT apprentices who

collaboratively worked on resolving bugs in Python code.

4.5.3 Step 3: Interview sessions

In this phase of the study, semi-structured interviews were conducted using a dyadic
interview approach, as outlined by Kendall et al. (2009). The significance of these
interviews lay in their ability to provide rich and detailed qualitative data, which was
essential for understanding participants’ experiences, their descriptions of these
experiences, and the meanings they derived from them, a concept suggested by Rubin
and Rubin (2011). The interview protocol (see Appendix H), inspired by the framework of

Castillo-Montoya (2016), underwent four distinct phases, including, alignment with

122 |Page

research questions, constructing inquiry-based conversations, receiving feedback on
protocols, and piloting the protocol. These phases were designed to develop a research
instrument that fit the study’s participants and aligned with its research goals, as Jones
et al. (2013) emphasised. The Interview Protocol Rigor (IPR) framework was employed to
provide a shared language for indicating the steps taken in developing interview protocols

and ensuring their congruency with the study (Jones et al., 2013).

The in-depth interviews aimed to understand the dyads' experiences, particularly their
strategies for debugging code errors and the role of technology in these activities. A
matrix, shown in Table 13, was used to ensure the alignment of interview questions with
research questions. This matrix was instrumental in identifying potential gaps and

ensuring a balanced focus on each research question.

The interviews focused on four main areas, including (1) investigating how paired
apprentices located bugs in the Python code and exploring cognitive load sharing during
debugging. This was guided by theories such as information foraging and distributed
cognition; (2) exploring apprentices’ levels of knowledge, misconceptions, and the impact
of technology, particularly IDEs, on the debugging process; (3) reaffirming the dyads’
understanding of error messages generated by the IDE and how this informed their bug
location strategies; and (4) clarifying issues from observation field notes, video
recordings, and think-aloud reports. The dyadic interview approach was chosen for its
ability to elicit diverse views (Martens, 2005) and clarify meanings (Britten, 1995).
Furthermore, the interview sought to elaborate on the dyads’ verbalisations and specific

events observed in their problem-solving process. Example questions included inquiries

123 |Page

about specific moments in the video recordings and how the dyads collaborated to find

potential solutions.

At the conclusion of the interviews, participants were offered the opportunity to review
the provisional findings. This step was taken to gain clarity, improve accuracy, and
strengthen the validity of the study, a practice recommended by Lincoln and Guba (1985).
The interview protocol can be found in Appendix H.

Table 13: Interview protocol matrix adapted from Castillo-Montoya (2016).

Interview Questions Research Questions (RQ)
(1a) RQ, RQ, RQ; RQa RQs
101 X
12 X
1Q2 X X X
104 X X X
105 X
106
107 X X
108 X
109 X
1Q10
Q11 X X X
1Q12 X X
1Q13 X X
1Q14 X
1Q15 X X

4.5.4 Step 4: Analysis of the dyadic interview session

The data analysis of the dyadic interview sessions in this study was structured to
scrutinise the transcripts of the interviews, with a specific focus on the concepts of
information foraging theory and distributed cognition. These theoretical frameworks
provided a comprehensive lens through which the interactions and cognitive processes
of the apprentice pairs could be understood and analysed. Information foraging theory,

as articulated by Pirolli and Card (1999), offered a valuable perspective on how individuals

124|Page

seek and gather information, which, in this context, is related to the apprentices’

strategies in locating and addressing bugs in Python code.

Concurrently, the principle of distributed cognition, as explored by Hollan et al. (2000),
provided insight into how cognitive processes are shared and distributed across
individuals working collaboratively, particularly pertinent in examining the cognitive load
sharing between the apprentice pairs. This analytical approach was further underpinned
by the work of Hutchins (1995), whose work on distributed cognition in real-world
contexts enriched the analysis of the collaborative problem-solving observed in the

interviews.

In analysing the interview transcripts, the study followed the thematic analysis approach,
which was adapted from the framework proposed by Braun and Clarke (2006). This
methodology, described in Section 4.4.4, provided a structured and comprehensive

means of evaluating and interpreting the data gathered from the interviews.

4.5.5 Step 5: Focus group session

The focus group conducted in this study played a pivotal role in investigating the
perspectives of workplace mentors and trainers from the training organisation. The key
areas of inquiry included the types of errors made, the bug location strategies commonly
used by novice programmers, and the general challenges faced by apprentices or novice
programmers. Additionally, this focus group provided an essential platform for eliciting
their opinions on the findings gathered from apprentice observations, interviews, and

analysis of software artefacts, thereby aiming to gather and reaffirm their interpretations

125|Page

and understanding of the phenomenon under study, in line with the approach

recommended by Khan and Manderson (1992).

To facilitate in-depth discussion and ensure clarity on the issues related to the
phenomenon, the focus group, as detailed in Section 4.4.3, comprised 12 participants.
However, this group was strategically divided into two cohorts, each consisting of six
members. This division was intended to enhance the depth and quality of the discussions,
as smaller groups are often more manageable and can provide more detailed feedback,

a methodological approach supported by Liamputtong (2011).

In selecting participants, significant emphasis was placed on recruiting workplace
mentors and trainers with relevant profiles, as described in Section 4.4.3. This selection
process ensured that each cohort comprised individuals with appropriate expertise and
experience. Furthermore, the decision to limit the size of each cohort to six participants
was informed by the guidelines suggested by Greenbaum (1998), who noted the
importance of group size in generating valuable and in-depth data in focus group
research. This approach was deemed essential to ensure that the data collected were

relevant and rich in insights pertinent to the research questions.

4.5.6 Step 6: Analysis of recorded focus group session

The focus group in this study was instrumental in validating the initial findings obtained
from the apprentices and enriching these findings with additional perspectives from
experts who work closely with the apprentices. To facilitate a thorough analysis, the

transcripts of the two focus group discussions were imported into NVivo, as outlined in

126 |Page

Section 4.4.4. This software provided an organised framework for managing and

analysing the data.

The primary analysis within NVivo focused on the content of the verbalisations during the
focus group sessions. This approach aligns with the methods advocated by Jordan and
Henderson (1995), who suggest the significance of focusing on the participants’ verbal
expressions in group discussions. Such an emphasis guarantees that the minor
distinctions and depth of the participants’ perspectives and experiences are captured and

analysed comprehensively.

By employing NVivo for this analysis, the study systematically categorised and explored
the rich qualitative data provided during the focus group sessions. This facilitated a
detailed examination of the themes and patterns within the verbalisations, thus enabling
a robust understanding of the experts’ perspectives on the apprentices’ experiences and

challenges.

4.5.7 Limitation of the Chosen Methodology
Whilst this study offers valuable insights into the debugging strategies of novice
apprentices, it is not without its limitations, which stem from both the research design

and the practical constraints of the methodology employed.

One significant limitation is that the dyads of apprentices did not know each other prior
to the debugging sessions, which likely impacted their collaborative dynamics. Without

sufficient time to establish rapport, the participants may have been less comfortable

127 |Page

sharing ideas freely, which could have influenced the fluidity of their interactions and the
effectiveness of their collaborative debugging strategies (Murphy et al.,, 2010).
Additionally, the study was conducted over a short time frame, meaning the apprentices
had limited time to become accustomed to each other’s working styles. This restricted
the ability to observe how their collaborative skills might evolve with extended practice

(Jayathirtha et al., 2020).

Another limitation is the focus on only novice apprentices, which means the findings may
not extend to more experienced programmers, whose strategies and collaboration in
debugging may differ significantly. Similarly, the reliance on self-reported data during
interviews presents a challenge, as participants may have unintentionally underreported
or misrepresented their experiences, introducing potential biases. This could reduce the
possibility of participant conformity, where interviewees might have aligned their

responses to perceived expectations (Finlay, 2002).

Finally, the exclusive focus on Python and Microsoft Visual Studio as the development
environment may limit the applicability of the findings to other programming languages
or IDEs. Each language and tool presents unique challenges in debugging, and as such,
the conclusions drawn from this research may not fully generalise to different technical

settings (Algadi & Maletic, 2017).

4.6 Reliability and Validity
This research was guided by the array of strategies outlined by Maxwell (2012), which are

specifically designed to address and mitigate threats to validity within qualitative

128 | Page

research paradigms. Recognising that the enumeration of these strategies may differ
across various editions or interpretations of Maxwell’s work, this particular study
incorporated seven of the eight widely recognised techniques to fortify its validity. The
methodologies utilised were rich data (Becker, 1971), respondent validation or member
checks (Bryman, 2003; Hammersley & Atkinson, 1995; Lincoln & Guba, 1985),
intervention, searching for discrepant evidence and negative cases, triangulation,
numbers, and comparison (Miles & Huberman, 1994). The study utilised specific
strategies outlined by Maxwell (2012) that align with and enhance validity tests Yin (2009)
put forth, focusing mainly on construct and external validity areas. This helps tackle two
broad types of threats to validity often raised in qualitative studies, which are researcher

bias and reactivity.

Construct Validity

As Yin (2009) articulated, this validity facet scrutinises the accuracy of the research
measures in capturing the intended concepts. It necessitates that the operational
mechanisms in the research reliably reflect the constructs they are meant to measure. To
bolster construct validity, strategies such as employing data triangulation, maintaining a
chain of evidence, and engaging in member checking are pivotal (Yin, 2009). In alignment
with these techniques, the current study integrates Yin’s (2009) framework with
Maxwell’s (2009) methodological insights, implementing triangulation and
comprehensive data collection to substantiate construct validity within the context of

SDT apprentices’ debugging practices.

129 |Page

The apprentices’ cognitive processes are documented using the think-aloud protocaol,
providing a dynamic and participatory view of problem-solving, as underpinned by the
work of Ericsson and Simon (1984). Observations of dyadic interactions within authentic
coding settings offer a narrative-rich perspective on collaborative problem-solving, an
approach augmented by reflective interviews that probe deeper into the apprentices’
decision-making processes (Kvale, 1996). These reflective interviews transform
apprentices into active narrators, thereby providing rich data by adding layers to the
observational data and painting a more intricate picture of their cognitive experiences

during debugging (Becker, 1971).

Additionally, engaging with mentors and trainers furnishes a deeper insight into the
apprentices’ problem-solving strategies, corroborating the study’s findings with the
apprentices’ real-world debugging activities, an approach supported by Merriam (2009).
These professionals in this situation confirm the findings and provide critical analysis of
observed behaviours and outcomes. This triangulated and detailed methodological
approach captures cognitive activities, debugging strategies, and team synergy, fortifying
the study’s construct validity (Maxwell, 2008; Yin, 2009). The research, therefore,
intertwines various data threads to construct an authentic narrative of the apprentices’
engagement with complex programming challenges, resonating with Stake’s (1995)

emphasis on creating rich, qualitative narratives.

External Validity
In the context of a qualitative study investigating the debugging practices of dyad

apprentices working with Python code across multiple sites, internal validity is critical to

130|Page

the integrity of the research. Yin (2003) suggests the importance of replication logic in
multi-case studies to underpin external validity, drawing parallels to experimental
research. By documenting the recurring emergence of the same phenomenon across
various settings, this study substantiates the external validity of the findings, as supported
by Baxter and Jack (2008), who advocate for the replicability of qualitative studies as a
means to broader applicability. While the primary emphasis of such studies often lies in
the depth of understanding rather than generalisability, the consistent replication across

cases provides a compelling foundation for claims of wider relevance (Stake, 2006).

In sum, employing these two measures is vital to the assurance of rigour and reliability in
this study, which utilises case studies along with diverse qualitative research techniques.
However, Campbell (1988) emphasises the significance of employing strategies that focus
less on confirming findings and more on scrutinising the credibility of one’s conclusions
and identifying any possible risks to their validity. Similarly, Maxwell (2012) agrees with
this approach, advocating for the active search for information that might contest one’s

conclusions or relate to the likelihood of identified potential risks.

4.7 Ethical Issues and Concerns

The study included participants aged 16 and older who were engaged in the Software
Development Technician Apprenticeship standard within diverse workplaces. Ethical
considerations took precedence for the duration of the study (see Appendix E). Activities
such as pair programming and debugging were assessed as low-risk, typically offering

benefits to the participants without foreseeable adverse outcomes.

131|Page

Before initiating the empirical research, it was essential to obtain formal ethical clearance
from the Ethics Committee at Lancaster University and secure consent from both the
apprentices’ training providers and their workplaces. This ethical approach was
reinforced through the documentation of consent, both in writing and verbally, with all
involved parties, ensuring strict adherence to ethical research standards. Additionally,
participants were fully informed about the study’s objectives and were clearly advised, as

stated in Appendices A to D, of their right to withdraw at any point during the study.

With the commencement of the data collection phase, maintaining ethical standards
became paramount. The process included acquiring informed consent from apprentices
and ensuring the confidentiality and privacy of the data collected. Transparency regarding
the study’s goals and methods was consistently upheld, alongside a dedicated effort to
protect participant autonomy and rights, thereby avoiding coercion and ensuring all
participants’ welfare. Data were handled with the utmost integrity, with secure storage
and ethical use in accordance with both the trust of the participants and the stipulations
of the Ethics Committee. All written and verbal communications incorporated core ethical
principles, including beneficence, non-maleficence, informed consent, confidentiality,
and anonymity, solidifying participants’ understanding of their autonomy within the

research.

When drafting the research report, particular attention was given to confidentiality
measures. To preserve the anonymity of the research findings, personal and corporate
identifiers were meticulously omitted. Recognising the unique challenges of a multiple-

case study, which inherently carries a higher risk of disclosing participant identities,

132 |Page

especially through detailed descriptions, the research implemented judicious
modifications to the contextual information presented, thus ensuring the protection of

participant identities.

Finally, the multifarious data collated during this study, spanning videos, codes, and
compiler reports, were stored electronically with the utmost security. Ensuring
compliance with the UK GDPR, all data were meticulously housed on a Microsoft
OneDrive account associated with the researcher’s Microsoft Office, positioning the

researcher as the chief custodian of this vital information.

4.8 Summary

This chapter describes the research methodology adopted for this study, providing an
overview of the approaches and procedures employed to address the research questions.
It commences by justifying the selection of a qualitative research design deemed most
suitable for an in-depth investigation of the phenomena of interest. The rationale behind
this choice was grounded in the exploratory nature of the study, which sought to gain

rich, contextualised understandings rather than broad generalisations.

Following this, the chapter outlined the specific methods of data collection utilised. A
multi-case study approach was employed to allow for a detailed examination of each
instance within its real-life context. The selection of cases was based on purposive
sampling, informed by the criteria of information richness and relevance to the research

aims, as suggested by Patton (2015). The detailed process of obtaining ethical clearance

133|Page

from institutional review boards and informed consent from participants was then

described, pointing out to the ethical rigour underpinning all stages of the research.

The data collection methods were varied, including in-depth interviews, participant
observations, and document analysis. These methods provided a triangulated view that
enhanced the reliability and validity of the findings. The procedures for data analysis were
explained, noting the iterative process of coding and theme development in line with the

established qualitative analysis frameworks.

Subsequently, the chapter discussed the measures taken to ensure the study’s
trustworthiness and credibility. Strategies such as member checking, audit trails, and
reflexive journaling were employed to bolster the study’s integrity. Lastly, the
methodology’s limitations were acknowledged, with a candid discussion about the

potential implications for the study’s findings and their applicability.

In summary, this chapter has articulated the systematic approach taken to ensure that

the study’s results are as robust as possible, ethically sound, and contribute meaningfully

to the body of knowledge in the field.

134|Page

Chapter 5: Findings

5.0 Introduction

This chapter presents the findings of a study involving paired apprentices situated in
different locations who collaborated to debug Python code. The study primarily evaluates
their strategies for resolving coding errors, how they have deployed technological tools,
their methods for sharing the cognitive load, and the challenges encountered while
solving problems as a team. To address specific research questions, the study gathered
data from various sources, including observational notes and videos from debugging
sessions, interviews with pairs of apprentices, and discussions with mentors and trainers
in work-based settings. The study’s findings reveal key aspects of debugging practices
among participants, identifying some themes, namely, the use of technology in
debugging, specific strategies and tactics employed, the variety of errors encountered,

how cognitive load is managed, and the challenges faced during the debugging process.

5.1 Dyads Debugging Session Findings

The study encompassed a total of 15 debugging sessions, which took place over seven
months and collectively lasted for 30 hours. These sessions occurred between April and
July 2022, October 2022, and March to April 2023. The research involved 30 apprentices
who were paired into 15 dyads. As discussed in Section 4.4.4, the data analysis of the
transcribed video recordings and the observation notes adhered to the thematic analysis
approach adapted from Braun and Clarke (2006). Utilising Braun and Clark’s thematic
analysis, the study identified themes illuminating different facets of the debugging

process, including technology utilisation, debugging strategies and tactics, error

135|Page

spectrum, cognitive load management, and encountered challenges as seen in Table 14,
which summarises the main themes identified during the 15 dyads’ debugging sessions. .

These themes are critical to understanding how the participants tackled the debugging

process, the tools they employed, and the challenges they encountered.

Table 14: Overview of key themes in dyads debugging sessions

Theme

Description

Theme 1: Technology Utilisation

The critical role of various technological tools in the debugging
process, especially Microsoft Teams and IDEs.

and Tactics

Theme 2: Debugging Strategies

Diverse strategies such as tinkering, trial and error, and print
statement debugging employed by the dyads.

Theme 3: Error Spectrum

Types of errors encountered by dyads: syntax, logical, and
runtime errors.

Theme 4: Cognitive Load
Management

How dyads shared the mental effort and utilised collaborative
strategies to manage the debugging process.

Theme 5: Challenges Faced

Key difficulties encountered, including technical challenges and
the complexities of collaborative debugging.

5.1.1

Theme 1: Technology Utilisation

In the debugging sessions, ‘Technology Utilisation’ emerged as one of the prominent
themes, reinforcing the critical role of various technological tools in the debugging

process, especially Microsoft Teams, as seen in Table 15.

Table 15: Technology Utilisation Subthemes in Dyadic Debugging Sessions

Subthemes

Description

Collaborative Tools:
Microsoft Teams

Microsoft Teams enabled real-time communication and collaboration,
enhancing problem-solving, visual interaction, and task coordination
in remote debugging sessions.

Real-Time Collaboration

with Live Share

Live Share facilitated real-time code editing, error navigation, and role
transitions, boosting productivity and problem-solving in Visual Studio.

Integrated Development
Environments (IDEs)

IDEs like Visual Studio were crucial in debugging, with features like
syntax highlighting, error detection, breakpoints, and code comparison
aiding error identification, execution flow analysis, and code clarity.

Version Control and

Documentation

Participants used OneDrive and documentation to preserve scripts,
record processes, and maintain organised collaboration and problem-
solving.

136 |Page

As seen in Table 15, a significant subtheme is the role of Microsoft Teams in supporting
collaborative debugging. Microsoft Teams served as a vital communication hub, enabling
real-time interaction and idea sharing among participants. Its features, like chat, video
calls, and screen sharing, were instrumental in problem-solving. This is echoed in SDT27’s
statement, “l am glad we could all connect seamlessly on Microsoft Teams for this
session. Seeing each other’s reactions and screens while we discuss the errors has made
our debugging much more effective”. SDT29’s comment, “great progress today! | will
upload our revised script to the Teams channel now for us to review the changes
together. We can use the screen sharing feature to walk through the code”. These quotes
showcase how Microsoft Teams was crucial for messaging, file sharing, and enhancing

the debugging experience through visual interaction and effective communication.

Similarly, the debugging sessions heavily relied on Visual Studio and Live Share and
beginning typically in Visual Studio, as SDT1 exemplified, “Okay, SDT2, | have got the script
open here in Visual Studio. Let’s run it and see what initial errors we’re dealing with”. It
is obvious here that the role of Live Share was visible for collaborative efforts. STD22 also
emphasised, “just launched Live Share for our session. This tool is going to be crucial for
us to jointly edit the code, making our debugging way more efficient”. This also confirmed
the role played by technology, which allowed simultaneous code work, with SDT15
remarking, “while you navigate to the error section using Live Share, | will start tweaking

the function above”.

Furthermore, Live Share also, from the available data, smoothed role transitions, a point

highlighted by SDT10, “Okay, I’'m handing over the reins to you now in Live Share. You will

137|Page

see the changes | have made instantly on your screen”. These tools were instrumental in
the sessions, enhancing efficiency and fostering a collaborative debugging environment.
They suggest the importance of such technologies in modern coding practices,
particularly in team-based projects where real-time collaboration and quick role swaps

are essential.

Likewise, the application of IDEs was fundamental, as captured in the observation notes
and video transcripts. These IDEs, which were central to the debugging process, were
equipped with advanced features like syntax highlighting, error highlighting, auto-
indentation, and breakpoints. The participants harnessed these tools to quickly spot and
fix syntax errors, grasp the execution flow, and conduct detailed variable inspections,
highlighting the invaluable role of IDEs in streamlining code analysis and error resolution.
Furthermore, the use of syntax highlighting in accelerating error detection is marked by
SDT1’s comment, “right, making that change now. I’'m also keeping an eye on the IDE’s
syntax highlighting feature. It’s really helping to spot these kinds of errors much quicker”.
In like manner, SDT2’s mention of utilising the IDE’s auto-indent feature, “while you’re
fixing that, I'll take advantage of the IDE’s auto-indent feature”, illustrates how such

functionalities aid in maintaining code clarity and structure.

Additionally, the use of IDEs extended to deeper code analysis and debugging. For
instance, SDT18 mentioned, “let’s make use of the IDE’s features. Set a breakpoint and
step through the code to catch any subtle errors”, and SDT22 remarked, “I've taken the
helm now. Let’s harness the IDE debugger for a deeper analysis”. Similar points are

echoed by SDT25, SDT29, and SDT30, who stress the importance of IDEs’ advanced

138 |Page

debugging tools and user-friendly interfaces. SDT25 highlighted using the IDE’s code
comparison tool, “I'm using the IDE’s code comparison tool to spot differences”. SDT29
stressed the value of advanced debugging tools by suggesting, “I’'m setting a breakpoint
here in Visual Studio to pinpoint where our code deviates. These advanced debugging
tools are a lifesaver for tracking down elusive errors during runtime”. Lastly, SDT30
appreciated the user-friendly interface, “I really appreciate how user-friendly Visual
Studio’s interface is. It makes navigating through our code and identifying these syntax
errors so much easier, especially for newcomers like us”. These features are crucial for
tracking elusive errors and assisting newcomers in navigating complex code. Collectively,
these participant statements reinforce how integrating IDE tools in the debugging process
significantly boosts productivity, accuracy, and learning, particularly in collaborative

settings.

To add to that, the role of version control and systematic documentation was profoundly
emphasised. Participants like SDT1 and SDT12 recognised the significance of saving work
on OneDrive and documenting the debugging process for future reference, as they
stated, “before we wrap up, let’s save our final version of the script to OneDrive” and
“that’s a great idea. Documenting our process will provide valuable insights for future
debugging sessions”. These practices aid in record-keeping and enhance the collaborative
experience, allowing for a structured approach to problem-solving. On the other hand,
SDT23’s approach to saving notes in the project file, as mentioned, “I’'m saving these
notes in the project file”, demonstrates a methodical approach to debugging, ensuring a
thorough understanding for future review. SDT24 and SDT26 further reiterated this

sentiment by uploading their final scripts to OneDrive and documenting their process, as

139 |Page

they commented, “I’'m uploading the final script to OneDrive now” and “we’ve
meticulously documented our endeavours and the remaining challenges”. These quotes
collectively illustrate the participants’ commitments to maintaining a detailed record of
their debugging sessions, highlighting the importance of version control and

documentation in the collaborative development process.

In summary, integrating technology, particularly in remote settings, is essential in
enhancing the debugging process and improving team coordination and task
management. The findings include excerpts highlighting various technological tools such
as IDEs, debuggers, Microsoft Teams, OneDrive, and version control systems. These tools
enhance the debugging process, making it more efficient and effective. Participants used
these technologies collaboratively to solve complex debugging challenges, demonstrating

these tools’ crucial role in modern software development.

5.1.2 Theme 2: Debugging Strategies and Tactics
This theme showcases diverse strategies and tactics to address various coding problems

during the debugging sessions, as seen in Table 16.

Table 16: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions

Subtheme Description

Tinkering Participants engaged in incremental modifications and re-execution to
gradually refine their understanding and improve the functionality of the code.

Trial & Error Debugging involved systematic experimentation with inputs, variable types, and
small code adjustments to identify and resolve errors through an iterative

process.

Print Statement | This simple yet effective debugging technique was widely used to trace variable

values and program flow, offering real-time insights into execution logic.

140|Page

Table 17: Debugging Strategies & Tactics Themes in Dyadic Debugging Sessions (Continuation)

Subtheme Description

IDE Debuggers Participants leveraged IDE features like syntax highlighting, breakpoints, and
step-through debugging to efficiently locate and resolve coding errors.

Slicing The method of isolating specific code blocks and testing them independently
helped pinpoint errors more efficiently, particularly in complex scripts.

Rubber Duck | Articulating code logic aloud, whether to a partner or an imaginary listener,
Debugging helped participants identify overlooked errors and clarify their reasoning.

Code Review Reviewing code systematically allowed participants to identify syntax, logical,
and structural errors, ensuring clarity, maintainability, and functionality.

Pattern Recognising recurring error patterns enabled participants to apply known
Matching solutions quickly, improving efficiency in debugging and problem resolution.
Divide & Breaking down large problems into smaller, manageable segments allowed for
Conquer a more focused and effective debugging process.

Tracing Following error messages and execution paths back to their source helped

participants systematically track and resolve programming errors.

As a debugging strategy, tinkering gained prominence among five dyads during their
debugging session, involving the process of making incremental adjustments and testing
the script for changes. This approach, encapsulating both anticipation and progression, is
vividly illustrated by SDT6’s positive stance, “alright, let’s execute it again and keep an
eye out for what comes next. | have a feeling we are making good progress here”. Such a
dynamic method accentuates the essence of debugging as an adaptive process where
programmers persistently evaluate the effects of their modifications, thereby
incrementally enhancing their grasp of the code’s behaviour. In a similar vein, SDT5’s
modification of inputs, “I've made the necessary changes to the inputs. Let’s execute the
script again and see if that resolves where the input strings were not converted to
numbers”, along with SDT20’s adjustments, “I’'ve made a few tweaks here and there. Let’s
run it once more to see where we stand”, further exemplify this disciplined yet

exploratory strategy. This narrative seamlessly integrates the essence of tinkering in

141|Page

debugging, highlighting its role in fostering a thorough and evolving understanding of

code through careful experimentation and adjustment.

In addition, this iterative process of refinement, characterised by minor yet calculated
modifications, reflects a broader principle in software development of fined-tuning code
to achieve optimal performance. As stated by SDT19’s focused intervention, “String fixed.
Let’s check if that clears the error”, further highlights the importance of targeted
debugging efforts. By isolating and addressing specific issues before retesting,
programmers demonstrate a precise and effective method of troubleshooting that
emphasises the critical role of identifying and correcting individual elements for the
overall functionality of the code. Through a cycle of continuous tweaking, testing, and
reassessment, novices navigate the intricate coding challenges, showcasing a persistent

and adaptive mindset that is indispensable in software development.

The trial and error method emerges as a crucial debugging tactic, informed by
experimentation in the pursuit of solutions, vividly illustrated through novice
experiences. This strategy’s essence, characterised by resilience and adaptability, plays a
pivotal role in debugging as novice programmers navigate through challenges with
persistence and a willingness to experiment. For instance, SDT9’s endeavours, “I tried
several different inputs to see where the code breaks”, capture the exploratory nature of
this method, aiming to discern the code’s boundaries and behaviour under various
scenarios. Similarly, SDT11’s experience, “changing variable types was a bit of trial and
error, but it worked eventually”, sheds light on the iterative debugging journey,

emphasising the importance of trial and feedback in overcoming coding obstacles.

142 |Page

The iterative cycle of trial and error is further exemplified by SDT1’s approach, “I've made
the necessary changes to the inputs. Let’s execute the script again and see if that resolves
the TypeError”, highlighting the discipline of implementing, testing, and reassessing
modifications to refine the code. SDT7’s meticulous attention to detail is evident in “typo
fixed. I'm running the script to see if we’ve cleared the error”, emphasising the
significance of addressing even minor errors for code functionality.

Besides, SDT8’s contribution, “Sure, adding the colon now. Let’s see if that solves it”,
demonstrates the value of minor yet impactful code adjustments in debugging. This
highlights the iterative and insightful nature of trial and error, with each minor

adjustment or test serving as a step towards solving complex coding puzzles.

Similarly, print statement debugging is presented as a cornerstone of the diagnostic
process within the dyads, lauded for its simplicity and capability to deliver real-time
insights into program behaviour. This method is notably appreciated for its
straightforwardness, offering a direct window into the inner workings of a program, as
testified by several participants who highlighted its practicality across various coding
situations. SDT2 champions this approach for tackling complex logical segments, advising,
“I suggest we use print statements to trace variable values, especially in complex logical
segments. It's always helpful to see exactly what’s happening in real-time”. This
sentiment suggests print statements’ value in unravelling code complexities by providing
immediate, tangible feedback. Additionally, SDT2 emphasises their importance in
validating data type conversions, stating, “right, I'm applying int() to the input

statements. To ensure we’ve got it right, I’'m also adding some print statements to check

143 |Page

the type of inputs after conversion”, which illuminates the role of print statements in

averting and diagnosing potential type-related errors.

Likewise, the flexibility of print statement debugging is further illustrated through the
experiences of SDT15 and SDT14, who describe using print statements as a strategic tool
to dissect program flow and troubleshoot logical discrepancies. SDT15 advocates for their
use in clarifying program execution and addressing logical errors, saying, “we should
maybe use some print statements to understand the flow, especially for these logical
errors”. This recommendation highlights how print statements can shed light on the
execution path of a program, revealing where it deviates from expected logic. Similarly,
SDT14 emphasises the strategic placement of print statements for diagnostic purposes,
noting, “I’'m going to insert some print statements at strategic points in our code. This will
help us track the values of our variables and understand where our logic is failing”. Such
tactics allow programmers to chart their program’s execution comprehensively,
enhancing the understanding of variable behaviour and pinpointing the root causes of
logical issues. These insights collectively affirm the indispensable role of print statement

debugging in enhancing code clarity and resolving complex programming challenges.

In the debugging sessions, IDEs were a key factor, as evidenced by the participants’
reliance on their advanced features for efficient problem-solving. The IDEs, with
functionalities like syntax highlighting, error highlighting, auto-indentation, and
breakpoints, played a central role in identifying and resolving syntax errors,
understanding execution flow, and performing in-depth variable analysis. SDT1’s

comment, “I’'m also keeping an eye on the IDE’s syntax highlighting feature. It’s really

144 |Page

helping to spot these kinds of errors much quicker”, highlights the effectiveness of syntax
highlighting in speeding up error detection. SDT2 also appreciates the IDE’s auto-indent
feature, saying, “while you’re fixing that, I'll take advantage of the IDE’s auto-indent
feature”, acknowledging its assistance in maintaining code structure. The use of IDEs also
extends to deeper code analysis, as indicated by SDT18, who says, “Set a breakpoint and
step through the code to catch any subtle errors”, and SDT22’s remark, “I've taken the
helm now. Let’s harness the IDE debugger for a deeper analysis”. This emphasis on
advanced debugging tools and user-friendly interfaces, as noted by SDT25, SDT29, and
SDT30, showcases their importance in tracking elusive errors and helping beginners
navigate complex code. SDT25 mentions using a code comparison tool, SDT29 talks about
setting breakpoints for pinpointing deviations, and SDT30 appreciates the user-friendly
interface of Visual Studio, all underlining the significant impact of IDEs in enhancing the

debugging process.

Furthermore, as demonstrated by SDT3 and SDT4, the slicing technique in debugging
effectively simplified and enhanced the efficiency of handling complex scripts. SDT3’s
strategy, “let’s isolate the block of code responsible for calculating gross pay. If we
comment out the rest and test this section alone, we might find the source of our logical
errors more efficiently”, exemplifies a targeted slicing method, isolating specific
functionalities like gross pay calculation for more streamlined error detection.
Meanwhile, SDT4 accentuate the foundational importance of input validation with “I
think the issue might be in how we’re handling the input validation. Let’s temporarily

remove other functionalities and just run the input section to see if it'’s working as

expected”, emphasising the need to verify basic operations to prevent cascading errors.

145 |Page

Apart from that, SDT3’s approach to dissecting complex logic, “Let’s break down the tax
calculation logic and test each condition separately. This way, we can determine exactly
which part of the logic is causing the error”, highlights the effectiveness of a granular
analysis in debugging, especially for uncovering intricate logical errors by testing

individual conditions independently.

The Rubber Duck Debugging strategy, as demonstrated by SDT13, SDT8, and SDT7,
highlights the importance of verbalising and methodically reviewing code to uncover
overlooked errors. SDT13’s approach, “Okay, SDT14, let me talk you through the logic of
this tax calculation part as if I'm explaining it from scratch. Sometimes, saying it out loud
helps me catch something | might have missed”, exemplifies this technique by articulating
the logic behind the tax calculation as if to a novice or a rubber duck, facilitating the
discovery of minor aspects. Also, SDT8’s request, “While you go over the string
concatenation, I'll act as if I'm hearing this for the first time. Explain it to me step by step;
it might help us spot where the syntax is off”, encourages a detailed breakdown of the
process, advancing a meticulous reconsideration, crucial for revealing hidden syntax
errors. SDT7 further reinforces this approach by deciding to narrate each step in fixing a
runtime error, believing that “Walking through it verbally often makes me see things in a
different light, like having a fresh pair of eyes on the problem”, thereby acknowledging
the effectiveness of Rubber Duck Debugging in gaining new perspectives and revealing

hidden flaws.

The significance of code review in ensuring code quality and functionality is highlighted

through the experiences and suggestions of several apprentices, including SDT6, SDT7,

146 |Page

SDT14, SDT13, SDT17, and SDT18. SDT6’s observation, “during our code review, we
noticed the function was not returning the correct value”, emphasises the role of code
review in identifying discrepancies in code functionality. This critical evaluation is
essential for ensuring that the code behaves as intended. SDT7’s proposal, “taking back
control now. | think we should review the entire script again to check for any errors we
might have missed”, demonstrates the thoroughness required in debugging, focusing on

the overall structure and coherence of the code.

Similarly, SDT14’s call for a “comprehensive review of the script’s logic to catch any
remaining errors we might have overlooked”, points to the importance of detailed
analysis, particularly for elusive logical errors. SDT13’s satisfaction, “I think we’ve done a
thorough job on the script. All functions appear to be working as intended, and the code
is much more readable now”, reflects the dual goal of code reviews, such as, enhancing
functionality and readability for future maintenance and development. SDT17’s
suggestion, “let’s take a moment for a quick code review. We should scan for any similar
syntax errors, ensuring our code is structurally sound”, and SDT18’s meticulous check,
“Scanning through the script... All other conditional statements seem fine. No more
missing colons in this section”, both highlight the need for ongoing vigilance and attention
to detail in coding, especially for syntax and structural integrity, to prevent minor errors

from escalating.

Moreover, the utility of pattern matching as a debugging strategy is exemplified in the
insights shared by SDT8, SDT10, SDT13, and SDT15. SDT8’s detection of a ‘TypeError’, as

noted in “that’s a TypeError. Seems like a variable is not of the expected type. Maybe

147 |Page

something to do with input conversion?” showcases the identification of a common
programming issue related to variable types and suggests a practical solution involving
data type conversion. This reflects an acute understanding of type-related errors crucial
for robust coding. SDT10, in “That’s a quick fix. Just add the parentheses around the print
statement”, demonstrates a rapid identification of a syntax error, common in Python 3,
highlighting the significance of language-specific knowledge for efficient debugging.
SDT13’s remark, “this error looks similar to one we encountered before. Let’s apply the
same fix”, underlines the role of experience and pattern recognition in coding, using past
issues to guide current problem-solving. Similarly, SDT15’s observation, “we’ve seen this
pattern of mistakes; let’s check if it's the same issue here”, emphasises the importance
of recognising and learning from recurring issues, facilitating quicker diagnosis and
proactive error prevention. These insights illustrate how awareness of common errors

and patterns can enhance debugging efficiency and effectiveness.

In addressing programming challenges, SDT19 and SDT20 reveal the application of
variable tracing and code review in their debugging processes. SDT20’s intention to use
variable tracing for monitoring tax calculations, as stated in “I’m thinking of using variable
tracing to monitor the tax calculations closely”, illustrates a strategic approach to
understanding and rectifying complex computational tasks. Meanwhile, SDT19 identifies
an infinite loop error in “we have an infinite loop error. We need to check the loop
condition and make sure it’s set up correctly”, emphasising the need to scrutinise loop
conditions to resolve such issues. SDT20 further pinpoints the cause of this error in
“We’re hitting an infinite loop due to the missing colon in the ‘for’ loop”, showcasing the

significance of attention to syntactical details in programming. The collaborative dynamic

148 |Page

is highlighted in SDT19’s reminder about their pair programming schedule in “Let’s review
that section of the code. Also, remember, it’s almost time for us to switch roles as part of
our pair programming arrangement”, suggesting a structured and team-oriented
approach to problem-solving. Finally, SDT20’s method of tracing from the error message
back to the problematic function call, as mentioned in “I traced back from the error
message to the problematic function call”, demonstrates a systematic technique for
identifying and addressing the root causes of programming errors. These insights jointly
highlight the importance of thorough analysis, attention to detail, and collaboration in

effective debugging and code development.

Nonetheless, the debugging process in software development is characterised by the
innovative combination of multiple strategies, as illustrated by the experiences of several
participants. SDT18 and SDT20 demonstrate the synergy of print statement debugging
with IDE debuggers. SDT18 states, “I combined print statements with the debugger to
track variable changes”. This technique reinforces the value of blending traditional print
debugging with advanced IDE tools to achieve a more comprehensive grasp of variable
dynamics. Similarly, SDT20’s method, “using prints alongside the step-through debugger
helped isolate the issue”, showcases the effectiveness of this composite strategy in

isolating and resolving specific problems in the code.

Further blending of techniques is seen in the approaches of other participants. SDT23,
who combined rubber duck debugging with code review, remarks, “explaining each line
to you during review helped identify the misplaced loop”. This highlights how articulating

the code line-by-line can enhance clarity and lead to the discovery of errors. The fusion

149 |Page

of trial and error with pattern matching is exemplified by SDT22 and SDT24. SDT22’s
observation, “after several attempts, | recognised a pattern similar to an earlier bug”,
along with SDT24’s approach, “we used trial and error, then matched the pattern to a
previous solution”, demonstrates the effectiveness of iterative testing in recognising and
applying solutions to recurrent problems. Tinkering in conjunction with tracing is adopted
by SDT25 and SDT27. SDT25’s method, “I tinkered with the code while tracing the
execution path”, and SDT27’s technique, “modifying and tracing the function helped us
understand the underlying issue”, both highlight the value of hands-on manipulation and
careful tracking for a deeper understanding of coding issues. Lastly, SDT26 and SDT28
showcase the integration of slicing with print statement debugging. SDT26 explains, “I
sliced the function and added print statements in each section”, while SDT28 describes,
“breaking down the script and using prints in each block was enlightening”. These
methods illuminate how dissecting code combined with strategic print statements can
illuminate complex issues. These varied combinations of strategies reflect the wide-
ranging and adaptive nature of debugging in software development, emphasising the

need for flexibility and creativity in resolving coding challenges.

5.1.3 Theme 3: Error Spectrum

The ‘Error Spectrum’ was another prominent theme in the debugging transcripts, vividly
portrayed through the participants’ experiences. As seen in Table 18, three major error
types are prominent in the video analysis and the observation notes; these are diverse
error types, ranging from simple syntax slip-ups and syntax errors to complex logical
oversights, logical errors and execution hurdles associated with runtime errors,

emphasising the complex nature of debugging.

150 | Page

Table 18: Error Spectrum Subthemes in Dyadic Debugging Sessions

Subthemes Description

Syntax Errors Participants encountered various syntax errors, including missing
colons, indentation mistakes, and typographical errors, illustrating how
minor code slip-ups can disrupt execution.

Logical Errors Logical errors were prominent, such as incorrect tax calculations, flawed
loop logic, and floating-point precision issues, underscoring the need for
rigorous logic validation.

Runtime Errors Issues like unconverted string inputs, null pointer exceptions, and
function parameter mismatches demonstrated how improper data
handling can cause program crashes.

Ambiguous Errors Some errors, such as incorrect operators, string concatenation issues,
and data type mismatches, blurred the lines between syntax, logic, and
runtime errors, highlighting the complexity of debugging.

Participants identified a variety of syntax errors, reinforcing the critical nature of precise
coding. SDT1 observed, “looks like we’ve hit our first syntax error, it’s missing a colon at
the end of the function definition”, pinpointing a common yet crucial mistake. Echoing
this attention to detail, SDT4 found “an indentation error, missing colon, in our if-else
block”, bringing to the fore how such oversights can disrupt code logic. The simplicity of
syntax errors was further illustrated by SDT9, who stated, “this ‘def’ misspelled, a typo in
the function declaration, is causing trouble”, drawing attention to how minor
typographical errors can lead to significant problems. SDT11 added to this theme by
identifying “a missing parenthesis, missing colon, in our print statement”, a small error
with potentially large consequences. SDT17 addressed a less obvious syntax issue, noting
“there’s a syntax error, wrong comparison operator, in our if-else statement”, which
could lead to logical errors in the program. SDT18 addressed a compound issue by
suggesting, “we have encountered an undefined variable error, Infinite loop due to

missing colon in ‘for’ loop, in our script”, illustrating how syntax errors can cause major

151 |Page

runtime problems. Each instance suggests the importance of meticulous syntax in

programming, where even minor errors can have significant impacts.

Participants also encountered several logical errors that challenged the integrity of their
code. SDT3 identified an issue with the settings, stating, “we’re dealing with a logical
error. The tax rate is incorrectly set here”, pointing out a fundamental mistake in the
application’s logic. Similarly, SDT7 discovered a flaw in the main function, “we’ve got a
name comparison issue here, a logical error, it’s wrong tax calculation logic”, highlighting
a critical oversight in the program’s core functionality. SDT8 faced a more complex issue,
“our loop logic is flawed, resulting in an infinite loop error, attempt to use an undefined
variable”, illustrating the cascading effects of logical errors on program flow. SDT21 dealt
with a minor but consequential problem, “we’ve got a problem with scope here, a typical
logical error in variable handling”, demonstrating how mismanagement of variable scope
can disrupt a program’s operation. SDT26 dealt with a numerical precision challenge,
“we’ve got a floating-point precision error in our calculations”, shedding light on the
intricacies of handling numerical data. Each of these instances emphasises the necessity
for rigorous logical scrutiny in software development, where overlooked details can lead

to significant operational flaws.

Participants also encountered various runtime errors that hindered their progress. SDT5
identified a fundamental conversion issue, stating, “the script threw a runtime error; it’s
not converting string input to number before mathematical operations because of
unconverted string inputs”, pointing out a critical oversight in data handling. SDT14 faced

a null pointer exception, “this section’s throwing a null pointer exception, definitely a

152 |Page

runtime issue”, highlighting a common but serious error in accessing uninitialised
memory or objects. In a similar vein, SDT19 tackled a type conversion problem, “this
segment is throwing a type conversion error, needs fixing”, affirming the importance of
ensuring data types are correctly managed. SDT27 encountered a function call issue,
“there’s a mismatch in function arguments, causing a parameter error”, llluminating the
complexities and possible drawbacks in function parameter management. Each incident
reflects the complexity of runtime errors in software development, where incorrect
handling of data types, memory, and function parameters can lead to significant issues in

program execution.

However, certain errors defy straightforward classification, as highlighted by participants
who encountered ambiguous issues. SDT2 pointed out a common error in operator
usage, stating, “Ah, Wrong operator for multiplication. We’ve used ‘x’ instead of *,’ a
classic multiplication operator error”. This error’s nature could swing between a syntax
or logical error, depending on the context and language used. Similarly, SDT6 discovered
a less apparent issue in string operations, “just spotted mismatch in string concatenation,
a string concatenation mistake in our return statement”. This could either be a syntax
error affecting code structure or a logical error where the code’s syntax is correct but fails
to execute as intended. As a final point, SDT12 faced a data type mismatch, “we’ve got a
data type mismatch error, something’s not adding up right”, an issue that could manifest
as a logical or runtime error, depending on its effect on the program’s functionality. These
situations expose the fine-grained characteristics of coding errors, where the line
between different error types can be blurred, reflecting the complex and layered

challenges in software development.

153 |Page

5.1.4 Theme 4: Cognitive Load Management

Cognitive Load Management emerged as a pivotal theme, capturing the participants’
strategic efforts to distribute mental effort effectively. As seen in Table 19, this theme
encompasses various subthemes, including verbalising thought processes, role-switching,
and structured debugging approaches, all of which played a crucial role in mitigating

cognitive strain and enhancing collaboration during debugging sessions.

Table 19: Cognitive Load Management Subthemes in Dyadic Debugging Sessions

Subthemes Description

Task Segmentation and Role | Participants organised debugging by listing errors, breaking
Division down problems, and alternating tasks, effectively balancing
workload to boost efficiency and reduce overwhelm.

Managing Distributed Cognitive | The participants collaboratively managed cognitive load
Load through structured debugging, record-keeping, code reviews,
and alternating coding and reviewing for accuracy and
efficiency.

Collaboration and Team | Participants leveraged teamwork strategies like structured time
Dynamics management, role flexibility, and reflective pauses to sustain
productivity and balance cognitive load during debugging.

Task Execution and Process | Pre-emptive planning, role swapping, iterative improvement,
Improvement and prioritising critical errors helped optimise workflow
efficiency and cognitive resource distribution.

The dyads’ practices, such as task segmentation and role division, played a crucial role.
For example, in a focused approach to managing distributed cognitive load sharing,
participants from DYAD4 and DYAD5 shared strategies that emphasise systematic
processing and division of labour. SDT7 suggests a methodical first step by “listing out all
the errors first, then we’ll address them systematically”, setting the stage for an organised
problem-solving. Complementing this, SDT8 proposes a division of focus, where one
handles “runtime errors” and the other tackles “syntax errors”, demonstrating a tailored
approach to distribute cognitive demands according to individual strengths. From DYADS5,

SDT9 introduces a prioritisation strategy, focusing on “the errors that seem most critical”,

154 |Page

which ensures that efforts are concentrated where they are most needed. SDT10 further
refines this approach by “Breaking down complex problems into smaller tasks”, enabling
a more manageable and less overwhelming process of troubleshooting. These strategies
illustrate jointly an approach to workload distribution, ensuring that cognitive resources

are optimally allocated to enhance efficiency and accuracy in problem-solving.

In addressing the management of distributed cognitive load, with a focus on structured
debugging, SDT11 and SDT12 present a detailed strategy that affirms the importance of
a structured and systematic approach to debugging. SDT11’s suggestion to “tackle the
errors one at a time to avoid getting overwhelmed” introduces a methodical way of
breaking down the complexity, aiming to minimise cognitive overload by focusing on
individual issues sequentially. Complementing this, SDT12’s commitment to “note down
each error and our approach in resolving it” offers a record-keeping practice that ensures
transparency and aids in tracking progress. Further, SDT11 advocates for periodic code
reviews “to catch any missed errors”, highlighting the proactive measures taken to ensure
thoroughness and accuracy in their work. SDT12’s strategy to “alternate between coding
and reviewing” proposes a dynamic workflow that facilitates error detection and
maintains a balance between creation and analysis, leading to a more efficient debugging
process. These approaches, in a way, point to a collaborative effort towards distributed
cognitive load management, focusing on precision, accountability, and a strategic division
of tasks to enhance problem-solving effectiveness.

In the context of collaboration and team dynamics, the dyads portray a strategic
approach to managing distributed cognitive load through various techniques to enhance

teamwork efficiency during the debugging process. DYAD1’s SDT1 suggests taking a

155|Page

moment to recap progress, addressing the risk of becoming overwhelmed, thereby
emphasising the importance of reflective pauses to maintain clarity and focus. DYAD7
introduces structured time management and role flexibility, with SDT14 advocating for
the use of timers during debugging phases for better time allocation, and SDT13 proposed
role switching to gain fresh perspectives, showcasing methods to keep the cognitive load
balanced and ensure sustained productivity. DYADS8, through SDT15 and SDT16,
highlighted the value of collaborative problem-solving and leveraging individual
strengths, suggesting working together on complex parts and combining syntax and
logical analysis skills to form a complementary team dynamic. These strategies, in a way,
illustrate a thoughtful approach to workload distribution, focusing on maintaining
momentum, leveraging diverse skills, and periodically reassessing team strategy to

optimise performance and mitigate cognitive overload.

In the realm of task execution and process improvement, participants from DYAD10,
DYAD13, and DYAD15 offered insightful strategies for managing distributed cognitive load
sharing effectively. Beginning with DYAD10, SDT19 advocated for a planned approach
before coding, paired with SDT20’s suggestion for role swapping to maintain fresh
perspectives, drawing attention to the value of pre-emptive planning and flexibility in role
allocation as methods to distribute cognitive load efficiently. SDT19 further emphasises
the need for wise management of cognitive resources, aligning with the overarching
theme of sustainable workload distribution. Moving to DYAD13, SDT26 and SDT25
discussed iterative improvement and continuous code refinement as mechanisms for
gradual learning and error reduction, highlighting an ongoing commitment to evolution

and quality enhancement. DYAD15’s contributions, with SDT29 and SDT30, stressed

156 |Page

prioritising critical errors, efficient resource use, focusing on impactful errors, strategic
task allocation, and periodic reassessment of priorities. These strategies also indicate a
sophisticated approach to workload management, where planning, adaptability, focused
efforts, and strategic reassessments converge to optimise distributed cognitive load
sharing, thus fostering a more effective and efficient debugging and development

process.

5.1.5 Theme 5: Challenges Faced

Challenges Faced by the dyad emerged as a significant theme highlighting the
multifaceted difficulties encountered. As seen in Table 20, this theme comprises various
subthemes, including technical proficiency and error resolution, cognitive and workflow
management, collaboration and communication dynamics, and tool and resource
utilisation, all of which influenced the dyads’ abilities to navigate debugging tasks

effectively.

Table 20: Challenges Faced Subthemes in Dyadic Debugging Sessions

Subthemes Description
Technical Proficiency Participants faced difficulties with unfamiliar programming languages,
and Error Resolution recurring errors, and logical complexities, highlighting the challenge of

mastering debugging techniques.

Cognitive and Workflow | Frequent context switching, role transitions, and overwhelming

Management workloads contributed to cognitive strain, necessitating structured
strategies for maintaining focus and efficiency.

Collaboration and Misalignment in problem-solving approaches, difficulties in articulating

Communication thoughts, and ineffective communication hindered smooth

Dynamics collaboration and debugging progress.

Tool and Resource Struggles with non-intuitive debugging tools, unfamiliar development

Utilisation environments, and poorly documented code exacerbated the

challenges of efficient error resolution.

For instance, while navigating through the collaborative debugging task, participants

encountered various technical challenges, vividly captured through their personal

157 |Page

reflections. The journey begins with SDT1’s confusion, “I’'m lost with this syntax. It’s
nothing like what I’'ve worked with before”, and SDT6’s acknowledgement of unfamiliar
territory, “I’'m not very familiar with this programming language, which makes debugging
challenging”. These statements lay the groundwork for understanding the difficulties
faced due to unfamiliar coding environments and languages. The recurrence of errors, as
expressed by SDT5, “this error keeps recurring. It feels like we’re missing something

|II

fundamental”, further illustrates the struggle to grasp core issues within the code.

The complexity of logical errors becomes apparent through SDT2’s observation, “these
logical errors are trickier than | thought. It's hard to get the logic right”, while SDT16’s
frustration, “every fix seems to introduce a new problem. It’s frustrating”, encapsulates
the cyclical nature of debugging. SDT17’s remark, “the complexity of this code is beyond
what I've handled before”, and SDT9’s challenge in spotting “small syntax errors” denote
the daunting task of navigating complex code. Adding to the depth of challenges, SDT13
admits, “some of these errors are beyond my current knowledge base”, highlighting the
learning curve involved. Similarly, SDT26’s insight, “the logic behind these functions is not
what | expected. It’s confusing”, and SDT27’s self-doubt, “I keep second-guessing myself.
Am | fixing this the right way?” reflect the cognitive and emotional hurdles in debugging.
These experiences shared by each of the apprentices portray a varied landscape of the
debugging process, marked by technical, cognitive, and emotional challenges as
participants grapple with unfamiliar syntax, logical complexities, and the thorough insight

necessary for proficiently managing and fixing errors.

158 |Page

Also, navigating the labyrinth of collaborative debugging, participants revealed an array
of challenges around cognitive and workflow management, each illuminating different
aspects of the ordeal. Starting with SDT3’s revelation, “constantly switching between
different parts of the code is really disorienting”, the narrative unveils the cognitive
turmoil triggered by incessant shifts in attention. This sense of disorientation resonates
with SDT12’s admission, “the constant role-switching is making it hard to maintain a train
of thought”, underlining the struggle to stay focused amidst ongoing transitions. The
confession by SDT4, “I’'m struggling to keep up with the pace. This is more complex than
| expected”, and SDT21’s assertion, “sometimes | feel overwhelmed by the sheer volume
of issues to address”, bring to light the overwhelming complexity and breadth of
debugging activities. This quest for clarity amid chaos is echoed in SDT7’s frustration, “the
more we fix, the more issues seem to arise. It’s like a never-ending cycle”, capturing the

cyclical nature of their task.

The discourse then expands to include efficiency and strategic planning, or rather the lack
thereof, with SDT8 and SDT22 voicing concerns over the monumental task of error
management and the challenge of prioritisation. SDT10 adds another layer to the
struggle, noting, “understanding this existing codebase is tough. It's not well-
documented”, pinpointing the difficulties posed by insufficient documentation. The
dialogue shifts to strategy and methodology, with SDT18’s remark, “keeping track of all
the changes and errors is quite a task”, spotlighting the logistical challenges of monitoring
progress. Also, doubts about their chosen approach are succinctly expressed by SDT19,
“I’'m not sure of the obstacles”, and the task’s emotional impact emerges, with SDT29

stating, “It’s challenging to remain focused with so many different types of errors”, and

159 |Page

SDT30 sharing, “I'm feeling the pressure with the amount of work we need to get
through”, reflecting the stress and pressure inherent in the debugging process. SDT25’s
introspection, “balancing between fixing errors and understanding the code is tough”,

indicates the delicate act of navigating between correction and comprehension.

These narratives weave together a story filled with cognitive, logistical, and emotional
complexities, offering an in-depth look at the collaborative debugging journey. From
SDT3’s insights on the disorientation caused by frequent context switches to SDT25’s
struggles with balancing error correction and code understanding, participants’ candid
qguotes highlight the composite nature of debugging in a team setting. This
comprehensive depiction sheds light on the participants’ technical and emotional battles
and reiterates the need for systematic approaches and efficient strategies to navigate the

intricate process of debugging collaboratively.

In the intricate process of collaboratively debugging Python code, the dynamics of
collaboration and communication among participants illuminate the pluralistic challenges
encountered. Starting with SDT11’s candid admission, “I’m finding it hard to articulate my
thoughts clearly to my partner”, we look at the complexities involved in conveying
detailed technical concepts within a team. This difficulty in communication is not isolated,
as SDT14 reveals, “aligning my coding approach with my partner’s suggestions is proving
difficult”, reinforcing the hurdles in meshing diverse problem-solving strategies. The
sentiment of misalignment in collaboration is further echoed by SDT20, who states, “I feel
like we’re not communicating effectively. It's impacting our progress”, highlighting the

direct impact of communication barriers on the efficiency of debugging efforts. These

160 |Page

admissions collectively paint a picture of a collaborative environment where the
challenges extend beyond the technical aspects of debugging to include the critical, yet
often overlooked, elements of clear communication and effective teamwork. Through
these reflections, the narrative shifts from individual coding struggles to a broader
examination of how collaborative dynamics influence the outcome of joint debugging

tasks.

To add to that, the context of collaboratively debugging Python code using tools and
resources emerges as a significant hurdle for participants, shedding light on various
aspects of the debugging process. Beginning with SDT15’s frustration, “I’'m struggling with
the debugging tools. They’re not very intuitive”, we uncover the initial layer of complexity
that non-intuitive tools add to the debugging process. This struggle centres around the
tools and how their design can impede the progress of those unfamiliar with their
intricacies. Moving forward, SDT23’s experience, “I’'m not used to this development
environment, so it’s slowing me down”, further complicates the situation. This statement
reveals the adjustment challenges faced when navigating unfamiliar development
environments, highlighting how such unfamiliarity can directly slow down the debugging
process. Transitioning to a new environment requires learning its functionalities and

adapting one’s debugging strategy to fit its constraints.

Furthermore, the issue of poorly documented code is brought to the fore by SDT24, who
points out, “the lack of comments in the code is making it hard to understand the intent”.
This highlights another dimension of the challenge, for example, the difficulty of

deciphering code without adequate documentation. Understanding the original

161 |Page

programmer’s intent becomes a task in itself, adding another layer of complexity to the
debugging effort. These insights stress the broader challenges of tool and resource
utilisation in collaborative debugging. They reflect on the technical difficulties posed by
unfamiliar or poorly designed tools and environments and the importance of clear
documentation in facilitating a smoother debugging process. Through these participant
experiences, we understand the additional obstacles that tools and resources can present

in the collaborative debugging of Python code.

In conclusion, Tables 21 and 22 summarise the observations from the debugging session
notes and video analysis. It encapsulates the situation during and at the conclusion of the
debugging sessions, with a focus on the five themes previously identified. It illustrates the
number of bugs each pair was unable to resolve, the debugging strategies and tactics
employed, the use of technology, how they manage the sharing of cognitive load, and the

challenges encountered while collaboratively debugging the Python code.

Table 21: Outline of the debugging sessions’ core findings

Pair / Error Debugging Technology Cognitive Load Challenges Faced
Participant Spectrum Strategies & Tactics Utilisation Management
5 Syntax Errors, | Print Statement IDE Debuggers, | Collaboration e Technical Proficiency
2 Logical Errors | Debugging, IDE Visual Studio. | and Team and Error Resolution
DYAD1 .) .
SDT1 & SDT2 and 1 Runtime | Debuggers, Code Microsoft Team, | Dynamics
Errors Review, Tinkering, Python, Live Share,
Tracing GitHub
0 Syntax Errors, | Print Statement IDE Debuggers, | Task Execution | e Cognitive and
2 Logical Errors | Debugging, Visual Studio. | and Process Workflow
DYAD2
and 3 Runtime | Tinkering, IDE Microsoft Team, | Improvement Management
SDT3 & SDT4 . .
Errors Debugger, Slicing, Python, Live Share,
Code Review GitHub
6 Syntax Errors, | Tinkering, Trial & Visual Studio. | Task Execution | e Technical Proficiency
DYAD3 6 Logical Errors Error, Print Microsoft . Team, | and Process and Error Resolution
SDTS & SDT6 and 2 Runtime | Statement Python, Live Share, | Improvement
Errors Debugging, Divide & GitHub
Conquer
2 Syntax Errors, | Rubber Duck Visual Studio. | Workflow e Cognitive and
2 Logical Errors | Debugging, Microsoft Team, | Management Workflow
DYAD4 and 1 Runtime | Tinkering, Print Python, Live Share, | and Strategy Management
SDT7 & SDT8 | Errors Statement GitHub
Debugging, Code
Review

162 |Page

Table 22: Outline of the debugging sessions’ core findings (Continuation)

Pair / Error Debugging Technology Cognitive Load Challenges Faced
Participant Spectrum Strategies & Tactics Utilisation Management
2 Syntax Errors, | Trial & Error, Visual Studio. | Workflow e Technical Proficiency
DYAD5 5 Logical Errors | Tinkering, Tracing, Microsoft Team, | Management and Error Resolution
SDT9 & and 2 Runtime | Print Statement Python, Live Share, | and Strategy e Cognitive and
SDT10 Errors Debugging GitHub Workflow
Management
7 Syntax Errors, | Trial & Error, Code Visual Studio. | Task o Cognitive and
6 Logical Errors | Review, Tinkering, Microsoft Team, | Segmentation Workflow
DYAD6 and 2 Runtime | Print Statement Python, Live Share, | and Management
SDT11& Errors Debugging GitHub Collaboration e Collaboration and
SDT12 -
Communication
Dynamics
3 Syntax Errors, | Rubber Duck IDE Debuggers, | Collaboration e Technical Proficiency
2 Logical Errors | Debugging, Visual Studio. | and Team and Error Resolution
DYAD7
SDT13 & and 2 Runtime | Tinkering, IDE. Microsoft ' Team, | Dynamics e Collaboration and
SDT14 Errors Debuggers, Print Python, Live Share, Communication
Statement GitHub Dynamics
Debugging
0 Syntax Errors, | Print Statement Visual Studio. | Collaboration e Technical Proficiency
DYAD8 4 Logical Errors | Debugging, Microsoft Team, | and Team and Error Resolution
SDT15 & and 2 Runtime | Tinkering, Pattern Python, Live Share, | Dynamics e Tool and Resource
SDT16 Errors Matching, Code GitHub Utilisation.
Review
1Syntax Errors, | Code Review, IDE IDE Debuggers, | Collaboration e Technical Proficiency
DYAD9 3 Logical Errors | Debuggers, Visual Studio. | and Team and Error Resolution
SDT17 & and 2 Runtime | Tinkering, Rubber Microsoft Team, | Dynamics o Cognitive and
SDT18 Errors Duck Debugging, Python, Live Share, Workflow
Pattern Matching Github Management
2 Syntax Errors, | Tracing, Tinkering, Visual Studio. | Task Execution |e Cognitive and
1 Logical Errors | Print Statement Microsoft Team, | and Process Workflow
DYAD10 and 1 Runtime | Debugging, Code Python, Live Share, | Improvement Management
SDT19 & Errors Review Github e Collaboration and
SDT20 o
Communication
Dynamics
4 Syntax Errors, | Print Statement IDE Debuggers, | Collaboration e Cognitive and
DYAD11 3 Logical Errors | Debugging, Visual Studio. | and Team Workflow
SDT21 & and 1 Runtime | Tinkering, IDE Microsoft Team, | Dynamics Management
SDT22 Errors Debuggers, Code Python, Live Share,
Review Github
0 Syntax Errors, | Trial & Error, IDE IDE Debuggers, | Collaboration e Tool and Resource
DYAD12 2 Logical Errors | Debuggers, Visual Studio. | and Team Utilisation
SDT23 & and 3 Runtime | Tinkering, Print Microsoft Team, | Dynamics
SDT24 Errors Statement Python, Live Share,
Debugging Github
2 Syntax Errors, | Code Review, Visual Studio. | Task Execution | e Technical Proficiency
DYAD13 3 Logical Errors | Tinkering, Trial & Microsoft . Team, | and Process and Error Resolution
SDT25 & and 1 Runtime | Error, Pattern Python, Live Share, | Improvement e Cognitive and
SDT26 Errors Matching, Print Github Workflow
Statement Management
Debugging
2 Syntax Errors, | Tinkering, Print Visual Studio. | Task Execution | e Technical Proficiency
DYAD14 5 Logical Errors | Statement Microsoft Team, | and Process and Error Resolution
SDT27 & and 2 Runtime | Debugging, Code Python, Live Share, | Improvement e Cognitive and
SDT28 Errors Review Github Workflow
Management
3 Syntax Errors, | Print Statement IDE Debuggers, | Task Execution | e Cognitive and
DYAD15 2 Logical Errors | Debugging, Visual Studio. | and Process Workflow
SDT29 & and 1 Runtime | Tinkering, IDE Microsoft Team, | Improvement Management
SDT30 Errors Debuggers, Code Python, Live Share,

Review

Github

163 |Page

5.2 Python Code Analysis Findings

The investigation into debugging behaviour examined the performance of fifteen dyads
working on Python code embedded with 20 bugs, consisting of 11 syntax, 6 logical, and 3
runtime errors, as detailed in Table 23. Although this table provided the counts, the
specific error codes are listed in Tables 24, 25, and 26, where the errors are segmented
into the dyads’ debugging outcomes, such as bugs found, unfound, fixed, and unfixed.
This segmentation reveals their proficiency across a spectrum from lower to higher. Their
success in identifying and resolving errors across the three bug categories determined

the classification into lower, moderate, and high proficiency levels.

Across the proficiency spectrum, DYAD6 and DYAD3 demonstrated foundational syntax
handling by addressing basic errors such as missing colons and print statement issues,
with DYADG resolving 4 out of 8 and DYAD3 half of 11 identified errors, yet both struggled
with more complex challenges like string closures and loop completions. Advancing to
moderate proficiency, DYAD1, DYAD11, and DYAD12 identified all errors but were
partially stymied by intricate issues like incorrect ‘if’ sequencing and loop errors, with
their resolution rates ranging from 6 to 7 out of 11. Higher up, DYAD7, DYAD9, and
DYAD15 showcased greater skill, fixing common errors efficiently but encountering
difficulties with specific problems like incorrect ‘if’ structures and loop errors, with their
success rates nearing 8 to 9 out of 11. The top performers, Dyads 10, 13, 14, 2, 4, 5, and
8, identified and adeptly resolved the most challenging errors, including complex string
and loop issues, with the latter group achieving a perfect resolution record. This

progression from basic to exceptional proficiency amplifies the varied learning curves and

164|Page

the need for targeted learning strategies to foster comprehensive Python programming

skills.

Moreover, across DYADs 1 to 15, proficiency in addressing logical errors varied
significantly, showcasing diverse levels of understanding in programming logic. DYAD3
and DYADSG, at the lower end, both identified 6 logical errors but failed to resolve any,
indicating a fundamental need for improvement in understanding complex logic.
Similarly, DYAD14 and DYADS struggled, each identifying 6 errors but resolving only one,
highlighting difficulties with intricate issues like tax calculation logic and bonus logic.
Slightly above, DYAD8 managed to fix 2 out of 6 errors, showing a modest improvement
but still facing challenges with specific logical errors. DYAD9, DYAD11, and DYAD13
demonstrated moderate proficiency; DYAD9 resolved 2 out of 5 identified errors, DYAD11
fixed 3 out of 5, and DYAD13 corrected 3 out of 6, suggesting they have a foundational
grasp of programming logic with room for growth. DYAD12’s performance, resolving 4
out of 6 errors, aligns them with higher proficiency, akin to DYADs 1, 4, 7, and 15, each
also resolving 4 out of 6 errors. This group effectively navigated a range of logical
challenges, evidencing a robust understanding of programming logic, albeit with areas for
further development. DYAD10 excelled by rectifying 5 out of 6 logical errors,
demonstrating an advanced understanding of Python’s logical constructs and superior

problem-solving skills, and setting a benchmark for proficiency among their peers.

Furthermore, the investigation into runtime error resolution among fifteen dyads
revealed a spectrum of debugging proficiencies. DYAD3 and DYADS6, unable to resolve any

errors, demonstrated foundational proficiency, highlighting their nascent journey in

165|Page

understanding Python’s runtime environment. The moderate proficiency group, including
DYAD1, DYAD2, DYAD7, DYADS8, DYAD11, DYAD12, and DYAD14, showed varying degrees
of success; notably, DYAD1 and DYAD7 each fixed two out of three errors, indicating a
developing but incomplete mastery over runtime challenges, while the others resolved
at least one, revealing gaps in their debugging capabilities. DYAD4, DYAD9, and DYAD13,
each resolving two out of three errors, were classified as proficient, showcasing a strong
grasp on runtime error management and systematic problem-solving skills. Standing out
for their high proficiency, DYAD5 and DYAD10 flawlessly fixed all three identified errors,
indicating an advanced level of debugging expertise and setting a benchmark for their
peers in navigating and rectifying runtime challenges efficiently. This stratification
reinforced the varied levels of understanding and skill across the dyads, from

foundational to high proficiency in dealing with runtime errors.

In conclusion, the analysis of syntax, logical, and runtime error handling among Dyads
stressed the need for educational strategies tailored to individual and group proficiency
levels in Python programming. It revealed that while some Dyads excelled in identifying
and resolving errors, others faced challenges, signalling a diverse range of skill sets and
problem-solving approaches. For example, DYADs 3 and 6, struggling with logical error
resolution, and DYADG6's particular difficulty with runtime errors, illustrated the necessity
for foundational training in Python’s logic and runtime environments. Conversely,
DYAD14’s limited success in addressing complex logical errors and the moderate
proficiency displayed by groups like DYAD1, DYAD2, DYAD7, and DYADS in runtime error
resolution pointed towards the need for targeted learning focused on understanding

intricate logic patterns and debugging skills. The stark contrast in error resolution

166 |Page

capabilities, particularly the adeptness of DYAD5 and DYAD10 in navigating runtime
challenges, further highlighted the spectrum of competencies within the cohort. This calls
for a dedicated emphasis on developing specific skills, such as loop mechanics, variable
scope comprehension, and practical debugging techniques, to enhance overall coding
proficiency. By pinpointing the distinct challenges each dyad encounters, educators can
customise instruction to uplift every learner’s understanding and application of Python’s
syntactical and logical constructs, fostering a deeper and more comprehensive grasp of
programming fundamentals.

Table 23: Summary of bugs discovery, successful fixing and unsuccessful fixing

N Bugs Found & Fixed
. o n .
Dyad ID Gender PZir:rrLr:cwzg br:fig[of Syntax Logical Runtime Total
bugs Not o Not Not 5 Not Not a Not Not a Not
g Found Found Fixed Fixed Found Found Fixed Fixed Found Found Fixed Fixed Found Found Fixed Fixed
DYAD1 Female & | Low <2 years 16-18 20 6 5 6 5 4 P 4 2 2 1 2 1 12 8 12 F
Female years
DYAD2 Male & Low < 2 years 16-18 20 11 o 11 0 5 1 3 3 2 1 1 2 18 5) 15 5
Female years
DYAD3 Male & Low = 2 years 16-18 20 7 4 5 6 3 3 0 6 1 2 1 2 11 9 6 14
Male years
DYAD4 Male & Low < 2 years 16-18 20 1 0 9 2 6 0 4 2 2 1 2 1 19 1 15 5
Male years
DYADS Male & Low < 2 years 16-18 20 1 0 9 2 6 0 1 5 3 0 1 2 20 0 11 9
Male years
DYADGE Male & Low < 2 years. 16-18 20 8 3 4 7 4 2 0 6 1 2 1 2 13 7 5 15
Male years
DYAD7 Male & Low < 2 years. 16-18 20 1 0 8 3 6 0 4 2 1 2 1 2 18 5) 13 7
Male years
DYADS Female & | Low <2 years 16-18 20 11 o 1 0 6 0 2 4 0 1 1 2 20 0 14 6
Female years
DYADS Male & Low =< 1 year 18-25 20 1 0 10 1 6 0 3 3 3 0 1 2 20 0 14 6
Male years
DYAD10 Male & Low =< 1 year 18-25 20 1 0 9 2 6 0 1 1 3 0 2 1 20 0 16 4
Female years
DYAD11 Male & Low < 1 year 18-25 20 1 0 7 4 5 1 3 3 2 1 2 1 18 5) 12 8
Male years
DYAD12 Male & Low < 1 year 18-25 20 1 0 1 0 6 0 4 2 3 0 0 3 20 0 15 5
Male years
DYAD13 Male & Low < 1 year 25-50 20 11 0 9 3 6 0 3 3 2 1 2 1 19 1 14 6
Male years
DYAD14 Male & Low < 1 year 25-50 20 11 o 9 2 6 0 1 5 3 0 1 2 20 0 11 g
Male years
DYAD15 Male & Low < 1 year 25-50 20 11 o 3 3 6 0 4 2 3 0 2 1 20 0 14 6
Male years

167 |Page

Table 24: Summary of specific syntax errors breakdown by discovery and resolution.

Participant
Dyadl | Dyad2 | Dyad3 | Dyad4 | Dyad5 | Dyad6é | Dyad7 | Dyad8 | Dyad9 | Dyad10 | Dyadll | Dyad12 | Dyad13 | Dyad14 | Dyad15
SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEOL
SE02 | SEO2 | SEO2 | SE02 | SEO2 | SEO2 | SEO2 | SEO2 | SEO2 | SEO2 | SE02 | SEO2 | SE02 | SEO2 | SEQ2
SE03 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SE03 | SEO3 | SEO3
SE04 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SEO4 | SE04 | SEO4 | SEO4
SEOS | SEOS | SEO5 | SEOS | SEOS | SEOS | SEOS | SEOS | SEOS | SEOS | SEOS | SEQS | SEOS | SEQS | SEOS
Errors — Found SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SE06 | SEO6 | SEO6
SEO7 | SEO7 | SEO7 | SEO7 | SEO8 | SEO7 | SEO7 | SEO7 | SEO7 | SEO7 | SEO7 | SEO7 | SEO7 | SEO7
SE0S SEO8 | SEO8 | SFO9 | SEO8 | SEO8 | SEO8 | SFO8 | SEO8 | SFO8 | SEO8 | SEOS | SEO8
SE09 SE09 | SE09 SE0S | SEO9 | SEO9 | SE09 | SEO9 | SEO9 | SE09 | SEO9 | SEO9
SE10 SE10 | SE10 SE10 | SE10 | SE10 | SE10 | SE10 | SE10 | SE10 | SE10 | SE10
SE11 SE11 | SE11 SE11 | SE11 | SE11 | SEA1 | SE41 | SE11 | SEA1 | SE11 | SE11
SEO7 None SEO8 None None SEO7 None None None None None None None None None
Errors — Not SEOS SEQ9 SE10
SE09 SE10 SE11
-3 Located SE10 SE11
= SE11
> SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEO1 | SEOL
(7] SE02 | SEO2 | SEO2 | SE02 | SEO2 | SEO2 | SE02 | SEO2 | SEO2 | SEO2 | SE02 | SEO2 | SE02 | SEO2 | SEO3
SE03 | SEO3 | SEO3 | SEO3 | SEO3 | SEO4 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SEO3 | SE03 | SEO3 | SEO4
SE04 | SEO4 | SEO4 | SEO4 | SEO4 | SEO6 | SEO4 | SEO4 | SE04 | SEO4 | SEO4 | SEO4 | SE04 | SEO4 | SEO5
SE05 | SEO5 | SEO5 | SEOS | SEO6 SEO6 | SEOS | SEOF | SEOS | SEOS | SEOS | SEOS | SEOS | SEOG
Errors — Fixed SE06 | SE06 SE06 | SE08 SE07 | SEO6 | SEO7 | SEO6 | SEO6 | SEO6 | SEO6 | SEO6 | SEQ7
SEO7 SEQ7 | SE09 SE08 | SEO7 | SEO8 | SEQ9 | SEO7 | SEO7 | SEO7 | SEO9 | SEO8
SE0S SE08 | SE10 SE09 | SEO8 | SE09 | SE10 SEO8 | SE08 | SE10 | SE09
SE09 SE09 | SE11 SE09 | SE10 | SE11 SE09 | SE09 | SE11
SE10 SE10 | SE11 SE10
SE11 SE11 SE11
SEO7 | Nome | SEO6 | SE10 | SEO5 | SEO3 | SEOS | MNone | SEO5 | SEO7 | SEO8 | Nome | SE10 | SEO7 | SEQ2
SE0S SEQ7 | SE11 | SEO7 | SEOS | SE10 SE0S | SE09 SE11 | SEOS | SE10
SE09 SE08 SE07 | SE11 SE10 SE11
Errors — Not Fixed SE10 SE09 SE08 SE11
SE11 SE10 SE09
SE11 SE10
SE11
Table 25: Summary of specific logical errors breakdown by discovery and resolution.
Participant
Dyadl | Dyad2 | Dyad3 | Dyad4 | Dyad5 | Dyadé | Dyad7 | Dyad8 | Dyad9 | Dyadl0 | Dyadll | Dyadl2 | Dyadl3 | Dyadl4 | Dyadl5
LEO1 | LEO1 | LEO1 | LEO1 | LEO1 | LEO1 | LEO1 | LEO1 | LEOL LEOL E01 | LEO1 | LEO1 | LEO1 | LEO1
LEO2 | LEO2 | LEO4 | LEO2 | LEO2 | LEO2 | LE02 | LEO2 | LEO2 LE02 lE02 | LE0O2 | Leo2 | LE02 | LEO2
E Found LEO3 | LEO3 | LEOS | LEO3 | LEO3 | LEO3 | LEO3 | LEO3 | LEO3 LE03 €03 | LEO3 | LEO3 | LEO3 | LEO3
frors —Foun LE04 | LED4 LE04 | LE04 | LE04 | LEO4 | LEO4 | LEO4 | LEO4 | LEO4 | LE04 | LE04 | LE04 | LEO4
LEOS LEO5 | LEOS LE05 | LEOS | LEOS LE05 LEOS | LEOS | LEOS | LEOS | LEOS
LEO6 | LEO6 LE06 | LEO6 | LEOG LEO6 LEO6 | LEO6 | LEO6 | LEGG
— LEOS LEO6 LEO2 None None LEOS None None None None LEOB None None None None
s Errors —Not LEOG LEO3 LEOG
B Located LEOG
9 LEO1 | LEO1 | None | LEO1 | LEO1 | None | LEO1 | LEO2 | LEOL LEOL E01 | LEO1 | LEO1 | LE04 | LEO1
LE02 | LEO3 LEO2 LEO2 | LEO6 | LEO2 LE02 lE02 | LEO2 | LEO2 LE03
Errors — Fixed LEO3 | LEO4 LEO4 LE03 LE03 LE03 LE03 | LEO3 | LEO4 LEO4
LEO4 LEO6 LE04 LEOS LEO4 LEOS
LE06
LEOS | LEO2 | LEO1 | LEO3 | LEO2 | LEO1 | LEOS | LEO1 | LEO4 LE02 | LE04 | LEOS | LEO3 | LEOL | LEO2
LEO6 | LEOS | LEO2 | LEOS | LEO3 | LEO2 | LEO6 | LEO3 | LEOS EOs | LEO6 | LEOS | LE02 | LEGG
E Not Fixed LEO6 | LEO3 LEO4 | LEO3 LEO4 | LEOG LEOG LEO6 | LEO3
rrors — Not Fixe LED4 LEOS | LEO4 LEOS LEOS
LEO5 LE0O6 | LEOS LE06
LEO6 LEO6
Table 26: Summary of specific runtime errors breakdown by discovery and resolution
Participant
Dyadl | Dyad2 | Dyad3 | Dyadd4 | Dyad5 | Dyadé | Dyad7 | Dyad8 | Dyad9 | Dyad10 | Dyadll | Dyad12 | Dyadl3 | Dyadl4 | Dyad15
REO1 | REO1 | REO1 | REO1 | REO1 | REO1 | REO1 | REO1 | REO1 | REO1 | REOT | REO1 | REO1 | REO1 | REOL
o Errors — Found RE02 | REO2 REO2 | REO2 REO2 | REO2 | REO2 | REO2 | REO2 | REO2Z | REO2 | REO2
£ REO3 REO3 | REO3 | REO3 REO3 REO3 | REO3
— REO3 REO3 REO2 REQ3 None REO2 REQ2 None None None REO3 None REO3
t Errors — Not REO3 REO3 | REG3
5 Located
e i REOL | REQL | REO1 | REOL | REO3 | REO1 | REOL | REO1 | REO1 | REO1 | REOL | Nome | REO1 | REO1 | REOL
Errors —Fixed REO2 REQ2 REO3 | REO2 REO2 RED2
REO3 | REO2 | RE02 | REO3 | REOL | REO2Z | REO2 | REO2 | REO2Z | RE02 | REO3 | REO1 | REO3 | REOZ | REO3
Errors — Not Fixed REO3 | REO3 RE2 | REO3 | REO3 | REO3 | REO3 REO2 REO3
REO3

168 |Page

5.3 Interview Session Findings

The dyads’ interview transcripts unveil and clarify some of the thoughts behind some
actions taken during the debugging that were not entirely captured through the actions
seen and from the think-aloud verbal protocol. A holistic examination of the dyads’
interview sessions using Braun and Clark’s thematic analysis (see Section 4.4.4) reveals
three key themes, as outlined in Table 27. In particular, the spectrum of errors, the

combination of technical and cognitive skills, and challenges arising from collaboration.

Table 27: Overview of key themes in interview sessions

Themes Description

Theme 1: Error Spectrum The data highlights participants’ debugging progression, from syntax
errors as a foundation to logical and runtime errors, which require
deeper problem-solving and execution flow understanding.

Theme 2: Technical and | The data highlights participants’ technical and cognitive skills,

Cognitive Skills focusing on IDE tool usage, structured debugging strategies, and
cognitive load management through collaboration and role
distribution.

Theme 3: Challenges The data highlights participants’ challenges in remote debugging,

including communication barriers, cognitive strain, and logistical
constraints, requiring coordination, adaptability, and strategic
problem-solving.

5.3.1 Theme 1: Error Spectrum

The exploration of the error spectrum in dyad interviews highlighted the range of
programming challenges encountered during debugging. This theme is central to
unravelling the complexities of debugging, offering insights into novice programmers’
varied skill levels, problem-solving techniques, and learning progression. Far from being

mere obstacles, these errors are valuable indicators for skill evaluation and development.

169 |Page

The analysis, as outlined in Table 28, categorises errors into syntax, logic, and runtime

errors, each reflecting a unique challenge and requiring specific skills for resolution.

Table 28: Error Spectrum Subthemes in Interview Sessions

Subthemes Description

Syntax Errors Participants identified syntax errors as the most common and easiest to fix,
often caused by typographical errors, missing elements, or structural
inconsistencies, making them a fundamental first step in debugging.

Logical Errors Debugging logical errors proved challenging as they required a deep
understanding of both programming logic and the underlying problem
domain, often leading to frustration and a steep learning curve.

Runtime Errors Participants found runtime errors particularly difficult due to their reliance
on understanding execution flow, with issues like infinite loops and data
type mismatches highlighting gaps in programming experience.

Starting with the syntax error, participants uniformly acknowledged the primacy of syntax
errors in their initial diagnostic efforts. SDT3’s observation that “syntax errors were
usually the first thing we looked for in debugging” signifies a common strategy among the
cohort, reflecting a foundational approach to troubleshooting code. This sentiment was
echoed by SDT19 and SDT17, who noted that these errors “were typically related to
incorrect code structure” and “were usually due to overlooking Python’s rules”,
respectively, highlighting common pitfalls in adhering to the language’s syntax
requirements. SDT8 and SDT11 further pointed out that such errors “were often about
small typos or forgotten elements” and their identification was “crucial in the initial phase
of debugging”, indicating that these mistakes, while minor, were significant barriers to
code execution. The ease of resolving these issues was a recurrent theme, with SDT12
and SDT15 describing syntax errors as “often the easiest to diagnose and fix” and “the
most common and the easiest to fix”, suggesting a contrast between their frequency and
the simplicity of their resolution. SDT7’s mention of “mismatch in string concatenation

was a typical syntax error that we frequently encountered” adds specificity to the types

170 |Page

of syntax issues commonly faced, presenting a tangible example of the errors that
participants navigated. Collectively, these reflections paint a picture of debugging as a
process where identifying and correcting syntax errors forms the bedrock of resolving
more complex issues, marked by a shared understanding of these errors’ nature and their

role in the debugging hierarchy.

Furthermore, as voiced by participants, the challenge of debugging logical errors in
Python highlights a complex journey through the intricate landscape of programming
logic and syntax, particularly for those with limited prior experience. Initially, SDT1’s
observation that “these errors required a deep understanding of Python’s logic and
syntax, which was challenging given our limited experience”, captures a common
sentiment that resonates across the group. Subsequently, this struggle is echoed by SDT4,
who conceded, “however, | struggled with some of the more complex logical errors”,
emphasising the steep learning curve encountered. Furthermore, SDT10’s recounting,
“for instance, fixing the tax calculation logic in the script was tough, and | struggled with
understanding the deeper logic required for tax deduction conditions”, alongside SDT7’s
admission of frustration, “there were moments of frustration, especially when dealing
with complex logical errors like bonus calculation that lacks context”; both underline the
arduous task of navigating through errors that necessitate a profound dive into the code
and its underlying business logic. Moreover, this perspective is solidified by SDT16, who
reflected, “for me, these logical errors are challenging because they require a deep

understanding the code and the underlying business logic”.

171 |Page

Additionally, the task of articulating complex debugging processes, especially within
collaborative or remote settings, was brought to light by SDT9 and SDT11. Particularly,
SDT9 highlighted, “it was difficult to convey my reasoning and thought process solely
through verbal explanations”, while SDT11 disclosed, “one significant obstacle we
encountered during our debugging session was the complexity of managing and
understanding the program’s logic from a remote location”. These revelations expose an
additional layer of complexity introduced by remote collaboration on intricate debugging
tasks. Moreover, SDT15’s assertion, “these types of errors require coding skills and a deep
understanding of the problem domain”, coupled with SDT21’s observation, “for instance,
when we encountered the logical error involving the misuse of the special variable
‘name’, it wasn’t just a matter of syntax but understanding the conceptual use of this
Python construct”, highlight the crucial intersection of coding proficiency and domain-

specific knowledge in surmounting logical errors.

Concluding the logical errors discourse, this collective reflection from participants sheds
light on the technical hurdles faced when debugging logical errors. It also accentuates the
significance of an all-encompassing understanding that extends beyond mere syntax to
encompass the broader context of the problem. The shared experiences suggest a
significant learning curve and illuminate the pivotal role of deep, conceptual

comprehension in facilitating effective problem-solving within software development.

Likewise, as shared by participants, the journey through Python’s syntax and runtime
errors also highlights a challenging yet enlightening path in programming. Initially, SDT2

opened the discussion with a reflection on their struggle, stating, “I did find myself

172 |Page

challenged by some of the syntax and more intricate runtime errors. For instance, the
runtime error involving string-to-number conversion was a bit tricky for me initially”. This
admission sets the stage for a broader conversation about the complexities involved in
understanding and resolving programming errors. Subsequently, SDT4 connected with
this sentiment, revealing, “we managed to fix some runtime errors; however, the infinite
loop issue highlighted a gap in my skills”. Similarly, SDT8 aligned with this perspective,
adding, “l also share SDT7’s sentiment about runtime errors; not catching the infinite loop

was a learning point for me”, further emphasising the common challenges faced by the

group.

Moreover, the conversation deepened as SDT21 shared their specific struggles, noting,
“for me, the runtime errors were the most challenging during our collaboration,
particularly Infinite loop due to missing colon in “for’ loop... runtime errors often require
an understanding of the code and how the Python interpreter executes it”. This insight
was supported by SDT10, who observed, “runtime errors needed us to think about the
logic and structure of the program, which can be quite daunting”. Similarly, SDT11
highlighted a particular type of error, mentioning, “I found runtime errors particularly
challenging, specifically the ‘not converting string input to number’ error. It was a bit
perplexing as it involved understanding the data types and how Python handles input

operations”.

The narrative further evolved with SDT4 and SDT5 discussing the need for a deeper
analysis and the realisation of their beginner status through these errors. SDT5 candidly

stated, “runtime errors such as the infinite loop. These areas, which | couldn’t fix, clearly

173 |Page

indicate my beginner status and lack of in-depth programming experience”. SDT16,
drawing from SDT15’s experiences, identified additional challenges, including runtime
errors such as the use of undefined variables and infinite loops caused by missing colons

in ‘for’ loops, highlighting the difficulties posed by their limited experience.

In all, this collection of insights illuminates the technical hurdles encountered when
addressing runtime errors and emphasises the valuable learning moments they provide.
Through these shared experiences, the narrative captures the participants’ journey of
discovery and adaptation in confronting programming challenges. It highlights the
essential role that a profound comprehension of Python’s logic, syntax, and execution
flow plays in overcoming these obstacles, marking a significant step in their

developmental journey as programmers.

5.3.2 Theme 2: Technical and Cognitive Skills

The theme ‘Technical and Cognitive Skills’ highlights a participant’s ability to employ
various debugging tools and their aptitude for logical reasoning and problem-solving. As
seen in Table 29, this theme is further divided into three key sub-themes: technology
utilisation; debugging strategies and tactics; and cognitive load sharing. Moreover, a
selection of extracts from the debugging sessions vividly exemplifies technology
utilisation, debugging strategies and tactics, and cognitive load sharing as three sub-

themes.

174 |Page

Table 29: Technical and Cognitive Subthemes in Interview Sessions

Subthemes Description

Technology Utilisation Participants leveraged IDE tools such as Visual Studio Live Share for
real-time collaboration, syntax highlighting, debugging consoles, and
version control, enhancing their abilities to debug remotely and
efficiently.

Debugging Strategies & | A mix of structured methods like print statement debugging, IDE
Tactics debuggers, rubber duck debugging, and divide-and-conquer
approaches helped participants systematically identify and resolve
coding errors.

Cognitive Load Sharing Participants managed mental workload by adopting strategies such as
the Driver-Navigator model, verbalising thought processes, role-
switching, and leveraging individual strengths to maintain efficiency
and prevent cognitive fatigue.

Starting with the first sub-theme, technology utilisation, participants across all fifteen
dyads universally utilised IDE tools, notably Visual Studio and Microsoft Visual Studio Live
Share, to navigate the challenges of distributed pair debugging in Python code.
Commonalities across dyads included the use of real-time code collaboration features,
particularly effective for overcoming geographical barriers and addressing errors. Despite
employing similar strategies, each dyad exhibited slight divergencies in their use of
technology. For instance, the exploration of debugging in remote settings, as shared by
participants, reveals the invaluable role of Integrated Development Environment (IDE)
tools and collaborative platforms in overcoming the challenges posed by physical
distance. SDT17 observes that “despite the physical distance, the use of tools like
Microsoft Studio live share facilitated real-time collaboration, making the process
smoother than anticipated”. This suggests the effectiveness of live-sharing features in
bridging gaps between team members. Similarly, SDT18 highlighted, “the IDE’s
collaborative features, such as live code sharing and simultaneous editing, significantly
eased the challenges of remote pair debugging”, pointing to the synergy between

technology and teamwork.

175|Page

SDT4’s remark, “another aspect of the IDE that greatly aided our debugging process was
the integrated version control system”, alongside SDT2’s detailed account - “In our
session, we used Microsoft Teams and Visual Studio Live Share, which allowed us to share
and edit code in real-time” illustrated the multifaceted benefits of these platforms in
enhancing collaborative debugging efforts. However, SDT8 noted a potential downside,
“another factor contributing to these challenges was our reliance on technology to bridge
our geographical gap”, suggesting that while technology is a facilitator, it also introduces

dependencies.

The conversation then shifts to specific IDE features that streamline the debugging
process. SDT6 and SDT10 mention a “feature of the IDE that significantly helped us was
the syntax highlighting and code suggestion features”, and “the IDE’s features like code
highlighting and error notifications were significant in streamlining our debugging
process”, respectively. These functionalities aid in error identification and enhance
learning. Building on this, SDT16 and SDT14 reflected on the broader utility of these tools,
“building on SDT15’s points about syntax highlighting and auto-indentation, | found the
IDE’s error notifications and debugging console extremely beneficial”, and “I found the

features like code completion and intelligent suggestions particularly beneficial”.

Further emphasising the role of IDEs in debugging, SDT1 and SDT8 discuss the use of
debuggers and integrated consoles by saying “another aspect was the use of IDE
debuggers. They allowed us to step through the code and inspect variables at each stage”,

and “moreover, the integrated console within the IDE was a boon for Print Statement

176 |[Page

Debugging”, highlighting how these tools facilitate a deeper understanding of code
execution. Echoing this sentiment, SDT14 states, “we focused more on leveraging the IDE
Debugger and Print Statement Debugging... this hands-on, tool-centric approach,
complemented by our continuous dialogue, made our debugging more efficient and
educational”.

Concluding the insights, SDT12, SDT20, SDT30, and SDT24 collectively praised the IDE’s
broader capabilities, “another aspect (of IDE) that | found incredibly helpful was the

”n u

integrated console and output window”, “the IDE’s capabilities for instant feedback and
error highlighting significantly boosted our debugging efficiency”, “another aspect of IDE
tools that proved immensely helpful was the code analysis features”, and “the IDE’s
debugging features were pivotal in our session... IDE) tools were a game-changer”, they
articulated. These reflections vividly depict how IDE tools and collaborative technologies
are not just facilitators but essential elements in the modern debugging process,

transforming challenges into opportunities for enhanced learning and efficiency in

programming.

This subtheme, Debugging Strategies and Tactics, also featured prominently in the
interview session transcript. Participants from a collaborative coding session provided
insightful reflections on their varied strategies, each enriching the conversation with their
unique experiences. SDT6 initiated the dialogue with a nod to teamwork, stating, “we
collectively decided to use Print Review Debugging for complex issues, where both of us
would analyse the outputs and brainstorm potential solutions”. This collaborative spirit

was mirrored by SDT2, who applied, “employed strategies like Print Statement Debugging

177 |Page

and Slicing more methodically”, showcasing a disciplined approach to unravelling code

complexities.

Furthermore, the discussion took a turn towards the benefits of structured methods
through SDT21’s revelation, “collaborating with SDT22 introduced me to the systematic
use of Print Statement Debugging and IDE Debuggers... It helped me realise how
structured methods could offer clearer insights into the code’s behaviour”. This
structured approach was contrasted by SDT6 and SDT23’s initial reliance on a more
heuristic method, with SDT6 admitting, “I leaned more towards the Trial and Error
approach in our session. Additionally, | used Tinkering”, and SDT23 reflecting on their
journey from trial and error to integration of print statement debugging, “I heavily relied
on the Trial and Error method at first... that’s when we started integrating print statement

debugging”.

Moreover, SDT7’s commentary clarified a shift from intuition to a more systematic
analysis as exemplified by “we adopted a more structured approach, systematically going
through the code, which is a shift from my usual more intuitive method”. This evolution
towards structured analysis was further supported by SDT8 and SDT9, who each found a
balance between tried-and-true methods and exploratory techniques, with SDT8
expressing a preference for print statement debugging and seeing the value in code
review, “I tend to favour Print Statement Debugging as my go-to strategy... | also see the
merit in Code Review”, and SDT9 combining trial-and-error with print statement
debugging, “I primarily focused on the ‘Trial-and-Error’ strategy... sometimes, | used to

‘Print Statement Debug’”.

178 |Page

Additionally, the dialogue expanded with SDT13, SDT16, and SDT17 incorporating
additional strategies such as Rubber Duck Debugging and Pattern Matching. SDT13
mentioned, “I heavily relied on Print Statement Debugging... Additionally, Rubber Duck
Debugging”, while SDT16 found pattern matching and code review beneficial by stating
“I also found ‘Pattern Matching’ quite useful during our session... Additionally, ‘Code

207

Review’”. SDT17’s approach combined IDE Debuggers with the unique method of Rubber
Duck Debugging by indication “l was drawn towards using IDE Debuggers and Rubber
Duck Debugging”. Participants SDT19 and SDT27 highlighted the importance of tracing
and tinkering, with SDT27 specifically stating, “I primarily focused on print statement

debugging... Tinkering also played a significant role in my approach”, illustrating a hands-

on and exploratory approach to debugging.

A divide-and-conquer strategy was mentioned by SDT5, illustrating an efficient
distribution of effort, remarking “we adopted a divide-and-conquer strategy, where each
of us focused on different types of errors”. This strategy was part of a broader narrative
of collaboration and rhythm in debugging, as shared by SDT16 and further elaborated by
SDT26, who spoke to the benefits of discussing code changes comprehensively by
asserting “we started with a comprehensive code review... discussing each part of the

code before making changes allowed us to understand the underlying logic better”.

The collective reflections culminate in a narrative that highlights the diverse strategies
employed by participants and emphasises the evolution of debugging practices through

collaboration and shared learning. From the reliance on traditional print statement

179 |Page

debugging to the adoption of more complex approaches like pattern matching and IDE
debuggers, the participants’ experiences demonstrate the dynamic and extensive nature

of debugging within the coding process.

Also, during the interview sessions, participants from DYAD1 to DYAD15 shared varied
strategies for effectively managing cognitive workload and distributing responsibilities,
spotlighting the theme of “Cognitive Load Sharing”. Through their experiences, the
importance of clear communication, strategic use of tools, and the dynamic distribution

of roles emerged as crucial factors in navigating the complexities of debugging tasks.

SDT2 from DYAD1 articulated the value of articulating thoughts and utilising Integrated
Development Environment (IDE) features, stating, “Another method we used was
verbalising our thought process... we utilised the features of our IDEs, like breakpoints
and debuggers... This blend of clear communication, role swapping, and effective use of
tools ensured that we managed our cognitive workload well throughout our debugging
session”. This approach highlighted the blend of verbalisation and technological support
in mitigating cognitive strain. In DYAD2, SDT4 and SDT3 shared insights into their
collaborative dynamics and mental strategies. SDT4 described their adoption of a ‘Driver-
Navigator’ model by declaring, "We intuitively adopted a ‘Driver-Navigator’ model to
distribute responsibilities... This division of roles allowed us to manage the cognitive
workload effectively... It also meant that we could switch roles and keep the session
dynamic, preventing fatigue and tunnel vision”, showcasing the benefits of role flexibility
and division. Adding to this, SDT3 emphasised the role of communication and breaks,

declaring “Our use of the ‘Think Aloud’ protocol was crucial in managing our cognitive

180|Page

workload... We also made sure to take short breaks to prevent cognitive overload,
especially after resolving a particularly challenging error”, underlining the necessity of

vocalising thoughts and pacing the session to maintain cognitive health.

Similarly, SDT5 from DYAD3 highlighted a strategy tailored to individual strengths by
saying that, “We intuitively adopted a strategy that distributed responsibilities based on
our individual strengths and comfort zones... We also set up a system where we would
alternate roles every 15 minutes... This method ensured that neither of us became too
mentally fatigued”, illustrating an approach focused on leveraging personal strengths and
maintaining mental stamina through role rotation. In DYAD10, SDT19 and SDT20
presented a systematic method for dividing debugging tasks. SDT19 spoke of a strategic
distribution of work by emphasising that, “We adopted a strategic approach to distribute
responsibilities... This allowed me to focus deeply on specific sections, reducing the
cognitive load”, indicating a depth-focused strategy. Complementing this, SDT20 outlined
their role in broader oversight by articulating that, “I focused more on ‘Print Statement
Debugging’ and overseeing the broader logic of the program... We also scheduled regular
intervals to swap roles and discuss our findings”, highlighting the balance between micro-
level debugging and macro-level program understanding.

These narratives collectively illuminate the significance of adaptability, clear
communication, and strategic planning in debugging. By incorporating verbal protocols,
technological tools, and structured role distribution, the participants demonstrate a
polymorphic approach to cognitive load management, reflecting the collaborative nature

of problem-solving in coding environments.

181 |Page

5.3.3 Theme 3: Challenges

The interview session also unveiled a variety of challenges that the participants had
during the debugging session, categorised into three distinct subthemes, namely,
Communication and Collaboration; Technical and Cognitive; and Environmental and
Logistics. As seen in Table 30, each of these sub-themes encapsulates specific aspects of

the difficulties faced, shedding light on the multifaceted nature of debugging.

Table 30: Challenges Subthemes in Interview Sessions

Subthemes Description
Communication and | Participants struggled with remote debugging due to challenges in
Collaboration conveying thoughts clearly, synchronising edits, and overcoming the

absence of non-verbal cues, necessitating extra effort for clarity and
coordination.

Technical & Cognitive Debugging required managing complex errors, synchronising
understanding, and handling cognitive strain, all of which were further
complicated by technological limitations and geographical separation.
Environmental and | Geographical dispersion, reliance on digital tools, and unpredictable
Logistics internet connectivity introduced additional challenges, making real-time
collaboration and seamless communication more difficult.

The subtheme of ‘Communication and Collaboration’ was significantly emphasised by
participants across various dyads as a notable challenge they encountered, particularly
when remotely debugging Python code. SDT1 from DYAD1 shared, “while tools like Visual
Studio Live Share helped bridge the physical distance, we had to work harder to ensure
clear and precise communication... explaining our thought processes or understanding
the other’s perspective took extra effort”. This sentiment spotlights the need for
enhanced clarity in remote interactions, where digital tools cannot fully compensate for

the absence of face-to-face communication.

Echoing this challenge, SDT26 from DYAD26 noted the complications arising from digital
collaboration, stating, “while tools like Live Share were invaluable, there were moments

182 |Page

when simultaneous editing led to confusion... additionally, the inability to physically
observe each other’s non-verbal cues was a minor hurdle”. The lack of non-verbal cues
and the confusion caused by simultaneous edits suggest the difficulties of remote
collaboration. Similarly, SDT6 from DYAD6 highlighted issues with concurrent code
modifications by articulating that “when we both tried to edit or highlight the same piece
of code... it occasionally led to confusion and required us to pause and clarify who was
taking the lead”. This points to the importance of clear role delineation in preventing

misunderstandings during collaborative tasks.

SDT4 from DYAD4 discussed the impact of technical delays on collaboration, revealing,
“there were moments when changes made by SDT3 took a few seconds to reflect on my
screen and vice versa... this lag, although minor, disrupted the flow of our debugging
process”. The slight delay in synchronising edits can disrupt the debugging flow,
emphasising the need for patience and understanding in remote setups. Geographical
challenges were addressed by SDT5 from DYADS5, who mentioned, “being geographically
dispersed meant we couldn’t simply look over each other’s shoulder to point out issues
or discuss solutions... We had to be extra clear and concise in our verbal explanations”.
The physical distance necessitates a higher level of verbal clarity, highlighting the

importance of effective communication in remote debugging.

Interpretative differences were a concern for SDT23 from DYAD23, who said, “there were
instances where we had different interpretations of the error messages, particularly the
logical errors like the tax calculation logic”. This indicates the potential for varied

understandings of problems and the need for a unified approach to debugging. SDT24

183 |Page

from DYAD24 discussed the discipline required for effective remote collaboration, stating,
“it required us to be more disciplined in our approach... additionally, the limited
experience we both had meant that more complex errors, such as those involving deeper
logical or structural issues in the code, took us longer to resolve”. The comment reflects

on the need for a structured approach and the challenges posed by inexperience.

Finally, SDT25 from DYAD25 lamented the limitations of digital communication, saying,
“another obstacle was the limited ability to physically point out specific code segments
or errors”. The inability to directly indicate issues highlights another layer of challenge in
remote debugging. These insights offer a comprehensive view of the intricacies of remote
collaborative debugging. Despite the benefits of digital collaboration tools, the absence
of physical presence and the intricate of effective communication and role clarification
become evident. The participants’ experiences stress the necessity for clear
communication, patience, and a disciplined approach to navigate the complexities of

debugging collaboratively across distances.

In addressing the Technical and Cognitive sub-theme, apprentices grappled with the dual
challenges of navigating complex programming errors and the cognitive demands these
errors imposed, particularly in a remote setting. The narrative begins with SDT30’s
reflection on the hurdles of technical glitches, such as "when we were tackling the ‘Infinite
loop due to missing colon’ issue... additionally, relying on technology meant we were at
the mercy of our internet connections, which occasionally disrupted our flow”. This
candid admission focuses on the reliance on stable internet connections in remote

debugging and how technical issues can hamper progress.

184|Page

Echoing this sentiment, SDT6 delved into the complexities of managing a shared editing
environment, stating, “another significant obstacle was managing the shared editing
environment effectively... this aspect of remote collaboration demanded a high level of
coordination and patience”. The necessity for enhanced coordination and patience is
highlighted here, showcasing the intricate balance required in remote collaborative
settings. The theme of coordination is further explored by SDT12, who mentioned,
“another obstacle we faced was the limitation in real-time feedback and reaction... we
found that our responses to each other’s suggestions were sometimes delayed”, pointing

to the challenges of immediate communication in synchronising collaborative efforts.

The conversation shifts to the use of specific tools with SDT14’s expressing that, “Another
obstacle was efficiently utilising the IDE Debugger in a remote setting... This limitation
made it difficult to collaboratively explore different hypotheses about the bug”. This
insight brings to light the challenges of leveraging debugging tools remotely, complicating

the collaborative exploration of potential solutions.

SDT1 and SDT2 discussed the cognitive load involved in debugging, with SDT1 stating,
“One of the main obstacles we encountered during our debugging session was dealing
with complex logical errors... these errors required a deep understanding of Python’s logic
and syntax, which was challenging given our limited experience”. This is complemented
by SDT2’s observation, “another significant obstacle was maintaining a synchronised

understanding of the code... managing the cognitive load was also a challenge”,

185|Page

highlighting the cognitive strain in maintaining mutual comprehension of the code amidst

these technical challenges.

The geographical divide adds another layer of complexity, with SDT23 and SDT27 noting
the difficulties it introduced. SDT23 mentioned, “the geographical separation added
another layer of complexity”, while SDT27 expanded on this, saying “one of the significant
obstacles we faced was the time lag and communication barriers due to our geographic
separation... The lack of immediate, direct interaction made it more challenging to
collaboratively and swiftly navigate through these complex issues”. These reflections
accent the compounded difficulties of geographic separation, including time lags and
communication barriers that hinder swift, collaborative navigation through technical

issues.

SDT28’s comment, “another obstacle was effectively managing and integrating our
different approaches to debugging... balancing these approaches remotely required
careful coordination and patience”, concludes the discussion, focusing on the challenge
of integrating diverse debugging approaches. This summary encapsulates the
apprentices’ experiences, highlighting the multifaceted nature of technical and cognitive
challenges in remote debugging, where technical difficulties, cognitive demands,
geographical separation, and the need for coordination converge, illustrating the

complexities of collaborative problem-solving in programming.

Similarly, in exploring the ‘Environmental and Logistics Challenges’ encountered during

collaborative Python debugging, participants vividly described the complexities

186 |Page

introduced by geographical dispersion and reliance on digital tools. SDT2 opens the
narrative, emphasising the isolation felt in remote settings by asserting that, “in a remote
setting, it’s easy to feel isolated with the problem at hand”. This sentiment sets the stage

for a series of reflections on the limitations of remote collaboration.

SDT3 and SDT6 discuss the physical limitations of digital communication, noting the
inability to use gestures or point at the screen, noting “being geographically dispersed,
we couldn’t simply point at the screen or use physical gestures to express our ideas”, and
the challenges even helpful tools like Visual Studio Live Share introduce, “while tools like
Visual Studio Live Share were immensely helpful, they also presented challenges”. These
insights highlight how digital tools, despite their benefits, fall short of replicating the

intricates of in-person interaction.

The narrative then shifts to the constraints of tool usage, with SDT14 and SDT24
expressing the limitations on control during debugging and the gap left by the absence of
physical presence by reitrating that, “only one of us could actively control and navigate
the debugger at any given time”, and “real-time collaboration tools are great, but they
can’t completely bridge the gap created by not being physically present in the same
room”. These comments identify the challenges in achieving seamless collaboration

remotely.

SDT19, along with other participants, touches on the time and effort required to

communicate and understand concepts across distances by mentioning that, “our

geographical separation... as it limited our ability to quickly bounce ideas off each other

187 |Page

and required more time to explain and understand concepts”. This observation was
echoed in remarks about the added complexity and the need for over-communication
and reiterating that, “the lack of physical presence meant we had to over-communicate
to compensate for the lack of in-person interaction, which sometimes slowed down our
debugging process” (SDT26), reflecting the intricate balance required to maintain

effective communication and collaboration remotely.

Concluding the discussion, SDT30 brings attention to the environmental challenges of
working in different settings and the unpredictability of internet connectivity, expressing
that, “our different locations also meant we were working in different environments,
which sometimes led to distractions or interruptions unique to our individual settings...
relying on technology meant we were at the mercy of our internet connections, which
occasionally disrupted our flow”. This summary encapsulates the multifaceted
Environmental and Logistics Challenges faced by apprentices in debugging Python code
collaboratively across distances, underscoring the critical role of effective
communication, the limitations of digital tools, and the personal adaptability required in

remote work environments.

54 Focus Group Discussion Findings

The focus group discussion was undertaken with work-based mentors and trainers on the
debugging practices of SDT apprentices. These mentors and trainers, who work closely
with the apprentices, provided crucial perspectives to bolster the data already collected
from the apprentices, thereby enriching the overall understanding of the study’s

objectives. The discussion was structured around seven key questions, each designed to

188 |Page

delve into different facets of the research areas, initially focusing on the mentors’
observations that apprentices often start with casual reasoning and frequently rely on

trial-and-error methods when tackling debugging tasks.

Notably, it is observed that as apprentices gain experience and confidence, they tend to
gradually move towards more structured methods, such as the top-down approach. The
mentors unanimously acknowledged the effectiveness of strategies such as pair
programming, pattern matching, and IDE debuggers, noting their complexity and their
long-term benefits. They emphasised the value of mentoring, particularly through code
reviews and collaborative problem-solving, in enhancing apprentices’ debugging skills.
Similarly, they opine that a shift towards proactive strategies, moving from basic
techniques like print statement debugging to more advanced methods such as static code
analysis and rubber duck debugging, were crucial for a deeper understanding of the code.
As the discussion progressed, the mentors explored factors influencing apprentices’
choice of debugging strategies, including educational background, project complexity,
tool familiarity, learning environment, and peer influence. The variability in strategy
effectiveness was noted, depending on the nature of bugs, apprentice skill level, and
project context, underscoring the mentor’s vital role in guiding apprentices towards
effective debugging techniques. This guidance is essential for equipping apprentices to
tackle a wide range of technical challenges, ensuring their growth and proficiency in

debugging practices.

As seen in Table 31, three principal themes were identified from the focus group

discussion transcript, including the nature and management of debugging errors, the

189 |Page

influence of technology on debugging processes, and the strategies and challenges
encountered in debugging. These themes provide insight into how apprentices approach
debugging, adapt to technological tools, and navigate common challenges, shaping their

overall learning experience.

Table 31: Overview of key themes in Focus Group Sessions

Themes Description

Theme 1: Nature and | Participants view debugging as an evolving process, where
Handling of Debugging | apprentices initially rely on casual reasoning and trial-and-error
Errors methods, gradually shifting towards systematic approaches,
collaboration, and tool adoption, overcoming initial
apprehension to refine their debugging strategies.

Theme 2: Technology’s Role | Participants view technology as a crucial yet challenging aspect
in Debugging Processes. of debugging, where initial struggles with advanced tools give
way to deeper understanding through mentorship, adaptive
learning, and balancing basic and advanced techniques,
ultimately enhancing debugging efficiency.

Theme 3: Strategies and | Participants recognise debugging as a progressive learning
Challenges in Debugging process, where initial casual reasoning and trial-and-error
approaches evolve into structured problem-solving,
collaboration, and pattern recognition, though challenges such
as cognitive overload and code tracing difficulties persist.

5.4.1 Theme 1: Nature and Handling of Debugging Errors

The Nature and Handling of Debugging Errors theme encompasses the apprentices’
approaches and attitudes towards identifying and rectifying bugs in programming code.
Analysis of the WMT focus group discussions suggested that, initially, apprentices lean on
“casual reasoning”, as WMT7 insightfully notes, “one common observation is that
apprentices often rely on casual reasoning at the beginning”. This method, while a natural
starting point, as further described by WMT1 as “apprentices often use their basic
understanding of the code to guess where the bug might be”, marks the hit-or-miss
nature of early debugging attempts. The narrative evolves, with WMT7 adding, “they use

their initial understanding of the code to hypothesise about potential bugs”, illustrating

190|Page

the apprentices’ reliance on their foundational knowledge yet pointing towards the need

for refinement.

Furthermore, the progression to more systematic approaches marks a pivotal
development in the apprentices’ debugging journey. WMT3 observed, “this trial-and-
error strategy, while common, can be inefficient”, heralding the shift towards the “top-
down approach” which, despite its promise, presents challenges highlighted by WMT4,
“But apprentices sometimes struggle to identify the right level to start breaking down the
problem”. The role of collaboration in skill enhancement was illuminated by WMT5, who
suggested, “pairing apprentices with more experienced colleagues for code reviews can
significantly enhance their ability to dissect problems more effectively”, a sentiment

echoed by WMT4 through advocating for problem isolation techniques.

Similarly, the narrative further explored the initial apprehension towards IDE debuggers,
with WMT1 revealing, “apprentices initially find IDE debuggers intimidating”, a sentiment
shared by many novices. Yet, as WMT10 points out, “many apprentices are hesitant to
use IDE debuggers initially”; the journey includes overcoming such fears to embrace
effective debugging tools. The importance of adaptability and a tailored approach to
debugging is emphasised by WMT9 and WMT10, illustrating that successful debugging

strategies are contingent upon the bug’s nature and the project’s context.

5.4.2 Theme 2: Technology’s Role in Debugging Processes
In exploring the Technology’s Role in Debugging Processes theme, the WMT findings

elucidate the journey of apprentices as they navigated through the complexities of

191|Page

debugging tools and methodologies. WMT10 articulated the initial struggle many
apprentices face with advanced debugging techniques, particularly IDE debuggers,
noting, “many apprentices struggle with more advanced debugging techniques initially”.
This challenge, however, is part of a crucial learning curve that, once surmounted, offers
significant benefits, as highlighted by WMT11 who observed, “there’s a definite learning
curve with debugging tools. However, apprentices who embrace these tools, especially
pair programming, tend to develop a deeper understanding of the debugging process”.
WMT2 reinforces this sentiment, pointing out the eventual appreciation for the efficiency

of tools like IDE debuggers after overcoming the initial intimidation.

The conversation shifted towards the importance of balancing technology with basic
techniques, where WMT6 encouraged a progression from print statement debugging to
utilising IDE debuggers and breakpoints, suggesting a move towards more advanced, yet
effective, debugging practices. This balance is influenced by various factors, including the
specific programming language or technology stack and the type of feedback provided by
the development environment, as mentioned by WMT2 and WMT3, who specify how

certain environments can nudge apprentices towards particular strategies.

The discussions also explored how apprentices’ familiarities with tools shape their
debugging approach. WMT3 and WMT11 discussed the impact of comfort levels with IDEs
and other tools on strategy choice, emphasising the role of mentorship and peer
influence in this learning process. WMT12 and WMT11 further explored the challenges

apprentices face, such as the pressure to quickly fix bugs leading to rushed learning, and

192 |Page

the overlooked importance of replicating bugs before attempting to fix them, which is

crucial for a thorough debugging process.

Through these insights, the WMT findings paint a comprehensive picture of apprentices’
evolving relationship with debugging technologies. From initial hesitance to a more
confident and effective use of advanced tools, the journey is marked by learning curves,
mentor guidance, and the adaptive choice of strategies based on the bug’s nature and
project context. This account emphasises the difficulties apprentices encounter and
highlights the significant impact of technological proficiency and mentorship in advancing

debugging skills.

5.4.3 Theme 3: Strategies and Challenges in Debugging

The Strategies and Challenges in Debugging theme considered the various strategies
apprentices employed in debugging and the challenges they encountered. The narrative
begins with an observation by WMT1, who noted, “apprentices often start with casual
reasoning when debugging. They try to make sense of the code based on their
understanding”. This initial strategy, however, quickly transitions as described by WMT2
by stating that, “they tend to shift quickly to a trial-and-error approach when casual
reasoning doesn’t yield immediate results”. Despite this shift, a more analytical strategy
is recognised by WMT3, who mentioned, “a few apprentices use the top-down approach

effectively, breaking the problem into smaller, more manageable parts”.

The importance of mentorship and collaboration in fostering debugging skills was

pinpointed by WMTS5, stating, “pairing them with more experienced colleagues for code

193 |Page

reviews can significantly enhance their ability to dissect problems more effectively”. This
collaborative approach was further elaborated by WMT2 through the observation that
“the familiarity of print statements makes them a go-to strategy”, indicating a preference
for simple, tried-and-tested methods. WMT5 added depth to this discussion by
highlighting a developmental milestone, explaining that, “Once apprentices are
comfortable with isolating problems, they begin to develop a knack for tracing and
gathering information”. The narrative then delves into the cognitive strategies involved
in debugging, with WMT3 observing, “when apprentices explain their thought process,
whether through rubber duck debugging or to a peer, it often leads them to a solution
more quickly”. This articulation, as suggested, aids in problem-solving. The sentiment is
echoed in the context of collaborative learning by WMT7, who noted, “apprentices who

participate in code reviews develop a better eye for spotting bugs”.

WMT4 brought attention to the pattern recognition strategy, asserting that “I've seen
apprentices use pattern matching, especially when they encounter similar bugs they’ve
dealt with before”, which is indicative of learning from past experiences. This approach is
strengthened by an additional observation from WMT5, who opined, “Once apprentices
grasp isolating and slicing techniques, they begin to develop better strategies for tracing
and gathering information”, suggesting a progression in skillset. The discussion
transitioned to the challenges faced by apprentices, with WMT12 mentioning,
“apprentices also face challenges with tracing the execution of code”, pointing out the
difficulties in understanding code flow. This is complemented by insights into the
inefficiencies of certain approaches and the benefits of structured problem-solving, as

WMT3 stated, “this trial-and-error strategy, while common, can be inefficient. I've seen

194|Page

a few apprentices use the top-down approach effectively, breaking the problem into

smaller, more manageable parts”.

Furthermore, WMT4 highlighted a critical learning curve, noting that “the top-down
approach indeed helps in maintaining a structured way of debugging. But | must mention
that apprentices sometimes struggle to identify the right level to start breaking down the
problem, which can be due to a lack of experience”. This sentiment is reinforced by the
discussion on the evolution of debugging approaches through collaborative efforts, as
noted by WMT2 and the articulation of thought processes leading to quicker resolutions,

as stated by WMTS3.

However, challenges such as cognitive overload, the need for a holistic understanding of
the application, and the importance of abstract thinking are also addressed. WMT8
shared, “additionally, I've seen apprentices struggle with isolating the problem. They
often fixate on a certain part of the code without considering the entire system, which
can lead to missed bugs”. This was further elaborated by WMT7, who discussed the

implications of fixing bugs without understanding their broader impact.

The insights culminated in the acknowledgment of the wide range of strategies employed
by apprentices, from simple print statements to sophisticated pattern matching and static
code analysis, as highlighted by various WMTs. This account, enriched with direct quotes
and participant details, encapsulates the essence of the “Strategies and Challenges in
Debugging” theme, offering an overview of the apprentices’ journey through debugging,

stressed by the invaluable role of WMTs in guiding and shaping their learning experience.

195|Page

5.5 Summary

This study has explored the debugging practices among software development technician
apprentices, synthesising findings from practical debugging sessions, analysed Python
codes, dyad interviews, and insights from Workbased Mentors and Trainers (WMTs). It
provided a detailed understanding of the apprentices’ experiences in debugging,
highlighting their skill development and strategic progression. The study’s initial phase
revealed a spectrum of errors faced by apprentices, who demonstrated proficiency in
resolving straightforward issues such as syntax and runtime errors yet grappled with
more intricate logical errors. These challenges were highlighted in dyad interviews, which
confirmed the initial findings and provided a detailed perspective on the apprentices'

struggles and coping strategies.

Central to the investigation was the essential role of technology in facilitating debugging
practices. Apprentices predominantly utilised IDEs and debuggers, which were
instrumental in enhancing their debugging proficiency. Furthermore, collaborative
platforms like Microsoft Teams and Visual Studio Code’s Live Share enabled real-time
collaboration and code sharing. However, navigating these technologies presented
notable challenges, particularly with difficulties in balancing the mental demands of
complex debugging tasks and ensuring effective communication in remote environments.
Consequently, apprentices often engaged in pair programming and debugging, which
proved instrumental in sharing cognitive responsibilities and fostering a collaborative

approach to problem-solving.

196 |Page

The study observed a significant evolution in the debugging strategies employed by
apprentices. Initially, they relied on more straightforward methods such as print
statement debugging, tinkering, and trial-and-error. However, as they gained experience,
they transitioned to more sophisticated techniques, including systematic bug isolation
strategies like tracing, pattern matching, and methodical step-by-step execution within
IDEs. This progression from rudimentary to advanced methods reinforced their growing

proficiency and adaptability in debugging.

The research findings on challenges faced by apprentices predominantly stemmed from
the debugging sessions and dyad interviews, further corroborated by insights from
WMTs. Key challenges included navigating intricate codebases, deciphering misleading
error messages, and tackling the inherent difficulties of remote debugging, such as
latency issues and reliance on digital communication. These challenges were exacerbated
by the apprentices’ initial lack of experience, often leading to cognitive overload. The
WMTs echoed these sentiments, underscoring the necessity for ongoing mentorship and
a nurturing learning environment. Such support is crucial for addressing the technical
aspects of debugging and assisting apprentices in adapting to the multifaceted challenges
of software development. This approach ultimately aimed to enhance their problem-
solving skills and collaborative competencies, preparing them for the complexities of

professional software development.

In conclusion, the final table (Table 30) consolidates the overarching themes identified
throughout Chapter 5. It offers a comprehensive view of the study’s findings, tying

together the dyads’ practical debugging experiences, interview reflections, and focus

197 |Page

group discussions with mentors and trainers. Table 32 serves as a concluding reference,

to easily navigate and recall the key elements of the chapter.

Table 32: Overarching themes across the study

Data Collection Method Themes

The debugging session findings are summarised,
highlighting the key emerging themes, such as technology's
5.1 Dyads Debugging Session pivotal role and the dyads' diverse strategies.

Findings They are: 1) Technology Utilisation, 2) Debugging
Strategies, 3) Error Spectrum, 4) Cognitive Load
Management, and 5) Challenges Faced.

5.2 Python Code Analysis Error Types, Proficiency Levels, Specific Challenges,

Findings Technological Tools Used.

5.3 Interview Session Findings 1) Error Spectrum, 2) Technical and Cognitive Skills, and 3)
Challenges in Collaboration.

5.4 Focus Group Discussion 1) Nature and Handling of Debugging Errors, 2)

Findings Technology’s Role in Debugging, 3) Strategies and

Challenges in Debugging.

198 |Page

Chapter 6: Conclusion

6.0 Introduction

This final chapter synthesises key findings to answer the initial research questions,
integrating these results into a cohesive narrative. This involves providing answers to the
central questions, linking empirical data to theoretical frameworks and assessing the
research’s trustworthiness based on credibility, transferability, dependability, and
confirmability. The chapter also discusses the study’s potential impact on software
development education, highlighting implications for educators and practitioners and
acknowledging its limitations. It proposes future research directions to address these

gaps and clarifies the study’s contributions to academia and professional practice.

6.1 Evaluation of Dyad’s Case Studies

The case studies of DYADs 1 to 15 offer an insightful examination into the world of novice
programmers aged 16 to 50, hailing from diverse organisational backgrounds and
engaging in the complex task of debugging Python scripts in a remote environment. This
study illuminates the varied strategic approaches adopted by each dyad and reveals
commonalities in their experiences and methodologies. As a whole, these observations
provide a diverse perspective on the challenges and triumphs encountered in software

development, particularly in the context of novice programmers.

Furthermore, the dyad case studies provide crucial insights into the debugging

approaches of novice programmers. These novices, despite being early in their coding

199 |Page

journey, demonstrated adaptability and a willingness to experiment with various
debugging techniques, such as print statement debugging, tinkering, trial and error, IDE
debuggers, rubber duck debugging, tracing, slicing, code reviews and pattern matching.
These diverse approaches align with the concepts of adaptive expertise (Bransford et al.,
2000; Clarke et al., 2023; Hatano & Inagaki, 1986), self-regulated learning (Kumar et al.,
2005; Ramirez Echeverry et al., 2018) and socially shared regulation of learning (Silva,
2020) in programming education. As outlined by Bransford and Schwartz (1999) and
Zimmerman (2002), the principles stress the importance of applying knowledge flexibly
and self-tailoring strategies for enhanced learning and problem-solving. Thus, this range
of strategies adopted by novice programmers indicates a growing understanding of the
complex nature of programming and debugging and an engagement with deeper learning
processes, which are key traits for successful programmers essential in the dynamic field

of software development.

Also, despite the hurdles of geographical separation, the dyads showcased effective
remote collaboration, leveraging tools like Microsoft Teams and Visual Studio Live Share.
This proficiency in collaboration, situated within the framework of distributed cognition,
affirms the importance of shared cognitive responsibilities and collective problem-
solving, echoing research on computer-supported collaborative learning by Salomon
(1997) and Stahl et al. (2006). Thus, the ability to collaborate effectively, irrespective of
physical distance, is particularly relevant in the current global landscape of software

development, where teams are often dispersed across various locations.

200|Page

Moreover, a prevalent challenge identified across the dyads was their struggle with
complex logical and runtime errors despite their effectiveness in resolving syntax errors.
This difficulty highlights a common barrier among novice programmers in grasping the
more intricate aspects of programming logic and computational thinking, a concept
central to Papert (1980) and Wing (2006) research. In addition, troubleshooting these
advanced errors is critical in developing comprehensive programming expertise and is
often a distinguishing factor between novice and experts (Algadi & Maletic, 2017; Rigby

et al., 2020; Yen et al., 2012).

Within the array of individual dyads, some pairs notably distinguished themselves
through their distinctive approaches to problem-solving. DYAD1 and DYAD11, for
example, displayed considerable skill in addressing syntax errors, but they also
encountered obstacles when dealing with logical and runtime errors. Their proficiency in
employing distributed cognition and collaborative tools showcased their teamwork
capabilities and aligned with the recognised values of teamwork in software
development, as emphasised in the works of Salomon (1997) and Johnson and Johnson
(1987). In contrast, DYAD3 and DYAD12 adopted an approach that was more exploratory
and hands-on, reflecting their developing problem-solving skills. This approach is aligned
with Kolb (1984) experiential learning theory, highlighting the importance of active

engagement in the learning process.

In addition, the strategies adopted by DYAD7 and DYAD13, which included rubber duck
debugging along with more traditional methods, illustrated their innovative approach to

problem-solving. This technique aids in externalising thought processes, a crucial

201 |Page

component of metacognition in learning, as Flavell (1979) discussed. Finally, the strategy
of DYAD15 stood out due to their effective utilisation of various debugging techniques
and a well-balanced distribution of cognitive load. This approach showcased the high
level of collaboration and communication skills indispensable for modern software

development teams, as Torgeir et al. (2012) highlighted.

In conclusion, the cases emphasised the importance of a multi-dimensional approach to
debugging in software development, highlighting the varied problem-solving strategies
employed by novice programmers. Their experiences illuminated the challenges inherent
in addressing complex logical and runtime errors, pointing to areas for further learning
and skill development. Despite the constraints of remote interaction, the effective
collaboration observed across these studies emphasised the pivotal role of
communication and teamwork in programming, resonating with contemporary
perspectives on collaborative software engineering (Torgeir et al., 2012). These insights
contribute to our understanding of novice programmers’ learning journeys and offer

lessons for software development educators and practitioners.

6.2 Research Questions

This research addresses the key question, “How do the paired Software Development
Apprentices in geographically distributed locations work collaboratively to fix Python
programming bugs using the technology-mediated medium?” In pursuit of answers, this

research has explored five distinct yet interrelated research questions.

202|Page

RQ1: Types of Bugs
What bugs are generated by the paired geographically distributed SDT apprentices

working collaboratively to solve a given problem using Python?

In exploring the errors encountered by SDT apprentices while debugging Python code, a
detailed analysis reveals three distinct types of errors namely, syntax, logical, and
runtime, all of which are faced during collaborative problem-solving efforts. This outcome
reinforced previous studies indicating that these are typical bugs encountered by those
new to programming in Python, acknowledging that, as an interpreted language, Python
is prone to both compile-time and runtime errors (Becker et al., 2019; Cherenkova et al.,
2014; Helminen et al., 2013; Pritchard, 2015). This study, encompassing 20 pre-seeded
errors across these categories, provided insight into the varying proficiency levels among
30 apprentices grouped into fifteen dyad teams. Initiating the analysis with syntax errors,
it is widely acknowledged that these constitute the most basic and easily identifiable
errors in programming (Ahadi et al., 2018), a perspective robustly supported by insights
from SDT12 of DYADG6 and SDT15 of DYADS8. These participants notably emphasised that
syntax errors were prevalent and relatively straightforward to diagnose and correct. This
view aligns with Sebesta (2016) assertion that syntax errors, while elementary, are critical

in gauging a programmer’s understanding of a language’s framework.

Furthermore, the study’s scope revealed a diverse proficiency landscape among the
dyads in this domain. Particularly challenging were complex loop structures (Lowe, 2019),
including notably incomplete ‘for’ loops (Kohn, 2019; Luxton-Reilly & Petersen, 2017),

and issues in conditional statements, such as ‘else’ used without a preceding ‘if’ (Lutz,

203|Page

2013). The prevalence of these errors in specific dyads, notably DYADs 6, 1, 11, 12, and
15, indicates a fundamental gap in understanding Python’s essential structure and flow
control (Lowe, 2019). This revelation is critical, highlighting a significant divergence in the

apprentices’ skill levels and conceptual grasp.

Conversely, many dyads demonstrated proficiency in basic syntax, adeptly addressing
errors like missing colons and incorrect operators. This disparity in skill levels is
particularly revealing, suggesting that while some apprentices comfortably navigate
Python’s basic syntax, others face considerable challenges with more complex constructs.
This could result from three types of breakdowns due to a programmer’s cognitive
limitations in conjunction with the programming system or external environment,
according to Ko and Myers (2005). Such a scenario calls attention to the imperative need
for a balanced and comprehensive approach to syntax education within programming
curricula. As Downey (2012) aptly notes that establishing a solid foundational knowledge
of programming languages is essential for developing proficiency. This approach ensures
that learners are equipped to handle basic syntax and are prepared to tackle more

advanced and intricate programming challenges.

Moreover, Gomes and Mendes (2007) reinforce the importance of addressing these
disparities in educational settings, advocating for tailored teaching strategies that cater
to diverse learning needs. By adopting such strategies, educators can ensure that all
apprentices, regardless of their initial proficiency levels, can comprehensively understand
programming syntax (Sun et al., 2024). Taking this into account, the study illustrates the

varying degrees of proficiency in syntax among apprentices, highlighting the need for

204|Page

educational approaches that accommodate this diversity. Through a combination of
foundational teaching and tailored strategies, it is possible to bridge the gaps in
understanding and skill, ensuring a more uniform and thorough comprehension of

programming languages among learners.

Transitioning to logical errors presented a spectrum of challenges and competencies
among the dyads. DYADs 3 and 6, for instance, encountered substantial difficulties with
complex logical issues, exemplified by incorrect tax calculation logic. This struggle with
logical problem-solving extended beyond these groups, as evidenced by the challenges
faced by DYAD14. Such instances revealed that logical errors in programming were not
merely syntactical mishaps but often involved more profound conceptual
misunderstandings (Algadi & Maletic, 2017; Rigby et al., 2020). In addition, SDT21’s
experiences with the special variable ‘name’ in Python further illustrated this complexity
in logical errors, as the error encountered was not just a syntactic oversight but a

misapprehension of the variable’s conceptual usage (Pea, 1986).

Similarly, SDT19’s reflections on the improper use of ‘name’ highlight the requirement for
a more comprehensive understanding of the interactions between various code
segments. These insights align with findings by Miller et al. (2019) regarding the
intricacies of variable usage in Python. Adding to the complexity, SDT7 speaks of
frustrations experienced while handling logical errors like bonus calculations, which
lacked contextual clarity, pointing to a need for more contextually rich problem-solving
scenarios in programming education. Contrasting these struggles, DYADs 1, 4, 7, and 15

displayed a firm grasp of programming logic, adeptly resolving most identified logical

205|Page

errors. Notably, DYAD10’s exceptional proficiency in resolving complex logical challenges
aligned with the observations made by Ettles et al. (2018), reinforcing the notion that
such skills can be developed with appropriate training and practice. This variance in
proficiency amplifies the necessity for programming education to cater to diverse levels
of logical understanding. As Tan (2021) suggests, educational curricula should reinforce
fundamental concepts for novices and present complex problem-solving scenarios to

challenge more advanced learners.

Furthermore, the findings suggest that an emphasis on practical application, as advocated
by Hazzan et al. (2020), could enhance learners’ abilities to tackle logical problems
effectively. By integrating real-world scenarios, educators can provide learners with the
context necessary to understand and solve complex logical errors (Robins et al., 2003).
Additionally, the need for differentiated instruction, as highlighted by Tomlinson and

Imbeau (2023), becomes evident in addressing the varied proficiency levels observed.

On another note, examining runtime errors in Python programming, as experienced by
several dyads, reveals an intricate landscape of challenges marked by a common struggle
with infinite loops. Often attributed to syntax issues like missing colons in ‘for’ loops
(Kohn & Manaris, 2020; Simon et al., 2007), these errors underscore a broader difficulty
in comprehending loop mechanics, an essential aspect of programming (Sedgewick &
Wayne, 2016). This persistent challenge indicates a more profound issue than mere
syntactic oversight, suggesting a fundamental gap in understanding crucial programming
concepts. In stark contrast to the difficulties with loops, most dyads demonstrated

relative ease in handling basic data type operations, such as converting string inputs to

206 |Page

numbers. This disparity in handling different types of runtime errors illuminates a
variation in understanding complex programming structures compared to simpler
operations. This observation is aligned with the findings of Monat et al. (2020) and
Fromherz et al. (2018), who emphasise the importance of a strong foundation in

fundamental concepts like variable scope and declaration.

In conducting further investigations through interviews, it became apparent that
apprentices often faced substantial challenges in addressing runtime errors, especially in
remote collaboration. Participants, including SDT2 and SDT4, explored specific runtime
errors, highlighting the need for a deep understanding of Python’s logic and its intricate
aspects (Winslow, 1996). Furthermore, these observations resonate with the findings of
Soloway and Spohrer (1989), who pointed out the deficiencies in novices’ understanding
of various programming language constructs such as variables, loops, arrays, and
recursion. Likewise, SDT8 and SDT30 highlighted the complexities in resolving infinite

loop errors, emphasising the crucial necessity for precise detection and rectification.

These perspectives resonate with the cognitive and technical demands highlighted by
SDT10 and SDT11, who accentuated the significance of conducting a thorough analysis of
a program’s structure and logic, particularly for those less experienced. Such an approach
is supported by Wing (2006) argument on the importance of computational thinking in
programming. In these contexts, the value of debugging tools was also mentioned by
SDT16 and SDT29, who pinpointed the essential roles of debugging consoles and variable

state inspection in tackling complex issues. The necessity of these tools in debugging is

207 |Page

reinforced by the work of Murphy et al. (2008), who examined the role of debugging in

software development.

Furthermore, this narrative brings to the forefront the intricate nature of runtime errors
(Zhang et al., 2023) in Python programming. The insights offered by the participants
illuminate the vital roles of debugging tools and the cognitive and technical skills required
for effectively managing these errors. This observation is in line with Papert (1980) theory
of constructionism, which advocates for hands-on experience in learning complex
concepts. Thus, the identified challenges unveil gaps in skills and present considerable
opportunities for learning and development. Similarly, novices SDT5 and SDT19, in their
struggles with runtime errors, highlighted areas needing further development and
understanding, supporting Vygotsky and Cole (1978) theory of the Zone of Proximal
Development in learning. The array of issues encountered, exemplified by SDT2’s
difficulties with string-to-number conversion and SDT4’s acknowledgement of a skill gap
manifested by an infinite loop issue, reveals the breadth of challenges. Moreover, SDT8
and SDT30’s reflections on specific runtime errors, like the ‘Infinite loop due to missing
colon’, and the importance of understanding Python’s interpreter execution, further

mark the complexities involved (Guzdial & Ericson, 2013).

In addition, the role of debugging tools, as emphasised by SDT16 and SDT29, along with
the cognitive demands of grasping a program’s logic and structure, as noted by SDT10
and SDT11, are critical for effectively managing runtime errors. These insights are in
harmony with the findings of Pea (1986) on the cognitive technologies for learning

programming. SDT4’s and SDT12’s comments on the importance of critically evaluating

208 |Page

the code’s execution flow and variable scope further reinforce these points, aligning with
the assertions of Soloway and Ehrlich (1984) on the mental models in programming.
Similarly, the experiences of the apprentices dealing with runtime errors in Python
programming reveal a challenging landscape. These challenges, indicative of skill gaps,
offer substantial learning opportunities, emphasising the need for a comprehensive
approach to programming education. This approach should encompass both basic syntax
and the deeper intricacies of Python’s structure and logic, as advocated in the

pedagogical theory of Bruner (2009).

Summing up, analysing the dyads’ performances concerning syntax, logical, and runtime
errors, (Kohn, 2019) uncovers trends and educational implications that are significant in
programming education. The variance observed in skill levels highlights that while basic
syntax (So & Kim, 2018) is generally well-understood among apprentices, there remains
a pronounced need for more focused education on complex syntactical structures. This
need is further exemplified in handling logical errors, where a broader range of
competency is evident. Some dyads demonstrated a strong grasp of programming logic,
while others faced considerable challenges (Smith & Rixner, 2019). This variability
accentuates the importance of personalised learning paths, particularly in logical
problem-solving. Also, the apprentices faced a more consistent set of challenges
regarding runtime errors, particularly in areas such as loop control and variable scope.
This uniformity in struggling with specific runtime errors across different dyads suggests
fundamental gaps in programming education that need to be addressed (Smith & Rixner,
2019). However, it is noteworthy that areas involving basic operations, like data type

conversion, were generally handled with greater ease. This observation indicates a

209 |Page

relative comfort among apprentices with Python’s fundamental concepts, a foundational

aspect of programming literacy.

RQ2 — Debugging Strategies and Tactics
What bug locating strategies and tactics are deployed by the paired geographically
distributed SDT apprentices while attempting to fix defects in the given Python code?

How do they go about finding the bugs in the program code?

Upon scrutiny of the debugging sessions of the dyads, a richly varied mosaic of debugging
strategies and tactics was uncovered. This variety, captured through the lens of the
Distributed Pair Debugging Conceptual Framework (DisConFrame) - discussed in Chapter
3 - highlighted the complexities of the debugging process. Within this framework, the
think-aloud verbal protocol emerged as a crucial element, enhancing comprehension of
how individuals and pairs navigated through the complex realm of debugging. When
viewed through the lens of this framework, dyads’ approaches to debugging in
distributed environments became somewhat more explicit. Their journey through the
Python code, pursuing deliberately embedded bugs, resembled ‘a strategic foray into a
labyrinthine forest in search of elusive prey’. As detailed in Chapter 5, Table 5.1 illustrates

this diversity, showcasing nine distinct and multifaceted debugging strategies and tactics.

A close examination of dyads’ debugging strategies and tactics revealed that print
statement debugging was widely adopted, with 14 out of 15 dyads using it. This affirms
the ongoing significance of print statement debugging in their debugging processes

(Algadi & Maletic, 2017; Liu & Paquette, 2023). As noted by DYAD1 and DYADS, print

210|Page

statements offer real-time insights into code behaviour, in line with research by
Fitzpatrick and Collins-Sussman (2015) and Spinellis (2016). Additionally, DYAD?2
highlighted the benefits of print statement debugging for immediate feedback and error
recognition, supported by studies conducted by Layman et al. (2013) and Li et al. (2018).
However, the simplicity of print statement debugging can also be its limitation (Agrawal
et al., 1993; Fitzgerald et al., 2008; Poole, 2005; Zeller & Hildebrandt, 2002), as it may not
be effective for more complex debugging scenarios, where the intricacies of code

behaviour require deeper analysis (David, 2002; Matloff & Salzman, 2008).

Additionally, DYAD3, DYAD10, DYAD11, DYAD14, and DYAD15 demonstrated a significant
preference for tinkering, a hands-on, exploratory method that involves interactive
experimentation with code, facilitating learning and problem-solving through direct,
experiential engagement with programming (Murphy et al., 2008). This approach,
notable in the dyad case studies, allowed programmers to modify and examine their code
gradually, enhancing their comprehension of its effects (Beckwith et al., 2006; Vossoughi
& Bevan, 2014). However, contrasting viewpoints from Liu et al. (2017) and Murphy et al.
(2008) suggest that tinkering might restrict the development of a more profound
understanding of the program and is always ineffective (Park et al., 2015). It has also

proven effective in various dyads, notably correcting syntax errors.

SDT9 also found tinkering valuable for syntax errors, aligning with Vossoughi and Bevan
(2014) findings on its benefits for basic error correction. Similarly, SDT6 and SDT7
demonstrated their practicality in understanding and testing code, resonating with

Beckwith et al. (2006), who highlight the importance of direct code engagement.

211 |Page

Likewise, reflections from DYAD11, DYAD14, and DYAD15 members further affirmed the
significance of tinkering in the debugging process by incrementally modifying the code
and observing outcomes, enhancing their understanding of code functionality. However,
Murphy et al. (2008) caution that tinkering might not suffice for complex errors,

potentially limiting deeper skill development.

In the same vein, the ‘Trial and Error’ method, characterised by its experimental and
hands-on approach (Gugerty & Olson, 1986), was notably used by one in three dyads,
DYAD3, DYADS5, DYAD6, DYAD12, and DYAD13. However, the relevance of this method’s
prevalence was evident in direct quotes from debugging sessions and interviews,
reflecting a commitment to discovery and resilience. SDT6, SDT7, and SDT9 illustrated its
exploratory and hands-on nature. SDT6’s approach reflected Kolb’s Experiential Learning
Theory (1984), emphasising learning through experience. SDT7’s method aligned with
Piaget’s Constructivist Learning Theory (1954), underscoring learning through direct
interaction with the code. Similarly, SDT9’s focus on trial and error, providing immediate
feedback, resonated with Vygotsky’s Social Development Theory (1978), highlighting the
role of social interaction in cognitive development. Overall, trial and error, essential for
immediate problem-solving, is crucial for the cognitive development of novice
programmers, supported by various established learning theories, underscoring its value

in programming education.

Moreover, SDT30 found print statement debugging and tinkering effective, reflecting a
strategic debugging approach involving hypothesis testing and observation. This method

fosters deeper code engagement and intuitive understanding within the programming

212 |Page

environment. The integration of various debugging techniques, as seen in DYAD2, DYADS3,
DYAD14, and DYAD15, highlighted the importance of diverse strategies in addressing the
complex challenges of programming, combining immediate visual feedback with hands-
on experimentation and collaborative review for a deeper, more collaborative learning
experience (Winslow, 1996). Also, dyads engaged in iterative testing and code
modification, demonstrating their proactive approach to problem-solving. SDT6, for
instance, emphasised experimenting with various solutions, a sentiment echoed by SDT9
and extended by SDT12, who also valued ‘Code Review’. SDT23 also highlighted the

intuitive nature of this method.

On the other hand, using IDE debuggers represents a more sophisticated approach. IDE
debuggers allow for a more interactive and detailed examination of the program’s
execution, offering capabilities such as breakpoints and variable inspections (LaToza &
Myers, 2010). This method aligns with the evolving complexity of programming tasks and
the need for more advanced debugging tools. In addition to traditional methods,
Integrated Development Environment (IDE) features play a significant role in enhancing
debugging efficiency and productivity, as observed in the experiences of DYAD4 and
DYAD9 (Proksch et al., 2018). SDT2 acknowledged the holistic view provided by IDE
Debuggers, aligning with Afzal and Goues (2018) findings on the comprehensive

understanding facilitated by IDEs.

Similarly, SDT14 termed IDE Debuggers as a “game-changer” for controlled code
inspection, echoing Kohn and Manaris (2020) insights on the benefits of step-by-step

code examination and variable state inspection for novices. SDT22 highlighted IDE

213 |Page

Debuggers’ role in identifying complex errors and setting breakpoints, a strategy Beller et
al. (2018) supported for dissecting intricate code segments. SDT24 affirmed the
importance of pausing code execution for precise examination, resonating with Petrillo
et al. (2017) suggestion on interactive learning environments in programming. Finally,
SDT29 focused on using IDE Debuggers to observe program behaviour at various stages
(Beller et al., 2017), an approach in line with Papert (1980) constructionism theory, which
advocates learning through interactive and real-time feedback tools. These examples
collectively demonstrate the crucial role of IDE Debuggers in enhancing novice

programmers’ debugging strategy and overall programming understanding.

In contrast, techniques such as slicing and code review reflect a shift towards more
contemporary and investigative debugging practices. Slicing, for instance, involves
isolating specific portions of the code to understand their behaviour better and is
particularly useful in large and complex codebases (Weiser, 1984). In a similar vein, code
review, typically performed as a group effort, assists in detecting bugs and enhances code
quality while fostering a shared understanding among developers (Bacchelli & Bird,
2013). Also, the evolution from basic techniques like trial and error to more advanced
methods such as IDE Debuggers and code review in DYAD12 showed a developmental
trajectory in debugging skills. This progression is crucial in building confidence and
expertise, exemplified by DYAD13’s pattern matching and code review use. Combining
introspective methods like rubber duck debugging in DYAD7 with structured approaches
like IDE Debuggers demonstrated the necessity of diverse problem-solving perspectives

in addressing varied programming challenges.

214 |Page

Overall, the dyads’ approaches to debugging illustrated an interplay between individual
problem-solving techniques and collaborative efforts. The study revealed a mosaic of
debugging strategies and tactics, each tailored to the apprentices’ specific needs and
skills’ set. The combination of direct, immediate techniques and more exploratory,
collaborative methods accentuates the complexities of debugging in programming. This
blend of tactics facilitates effective problem-solving and contributes to a deeper
understanding and proficiency in programming, preparing the apprentices for a wide
range of programming challenges. Furthermore, it becomes apparent that collaboration
is a fundamental aspect of their approach. Across the various teams, there is a
pronounced reliance on cooperative techniques. This includes the collective use of
Integrated Development Environments (IDEs), engaging in discussions during code
reviews, and employing pair debugging methods such as rubber duck debugging, as
observed in DYAD4 and DYAD7. These methods identify the apprentices’ inclinations
towards utilising teamwork as an effective tool to tackle the intricacies involved in

debugging scenarios.

RQ3 — Cognitive Load Sharing
How do the paired geographically distributed SDT apprentices distribute cognitive load

when resolving bugged code?

The approach to cognitive load management by geographically distributed SDT
apprentices in resolving bugged code is multifaceted and well-aligned with key
educational theories. Commencing with the foundational aspect of collaboration and role

switching, the apprentices exhibited a dynamic interplay between the roles of ‘driver’ and

215|Page

‘navigator’. This approach, as exemplified by SDT1 and SDT8, finds backing in Plonka et
al. (2011) and Williams and Kessler (2002). These research findings highlight the
importance of collaboration and role switching in uniformly distributing cognitive load,
thereby improving efficiency and focus, which are central to the approach of these dyads.
This dynamic approach allows them to alternate between the ‘driver’, actively coding,

and the ‘navigator’, providing guidance and oversight (Plonka et al., 2011).

Similarly, it can be argued that the ‘driver-navigator’ approach, practised by SDT1 and
SDTS, is vital in managing cognitive load in collaborative programming. One member
codes (‘drives’) while the other offers guidance (‘navigates’), ensuring fair distribution of
tasks as suggested by the dyads. Thus, regular role swaps, like every 15 minutes, keep
both members equally engaged. This technique aids cognitive load management, aligning
with Cognitive Load Theory, which posits limited information processing capacity and the
effectiveness of collaborative strategies in distributing cognitive load (Sweller, 1988),
though Tsai et al. (2015) suggest sharing workload does not significantly reduce germane

cognitive load.

In the same vein, in the driver-navigator model of programming, dividing tasks between
coding and reviewing can distribute cognitive demands, potentially lessening overload.
This model traditionally sees drivers focus on coding and navigators on reviewing, each
at different levels of abstraction, as noted by Beck (2000) and Williams et al. (2000).
Contrarily, Bryant et al. (2008), Chong and Hurlbutt (2007), and Freudenberg et al. (2007)

argue that both roles function at similar abstraction levels without distinct task division.

216 |Page

However, strict adherence to designated roles in this study suggests that traditional

distinctions between driver and navigator may still hold significance.

Also, the driver-navigator programming model adheres to Hutchins (1995) distributed
cognition concept, promoting shared cognitive processes among group members,
enhancing understanding and problem-solving. Regular role switching, advocated every
15 minutes, encourages active engagement, a key element in collaborative learning
(Johnson & Johnson, 1987). This approach ensures apprentices gain experience in coding
and strategic aspects like problem-solving and code review, broadening their skill set.
Additionally, it aligns with Vygotsky’s social development theory (1978), highlighting the
role of social interaction in cognitive development. Through this collaborative model,
participants collectively construct knowledge, optimising cognitive resources and

boosting learning outcomes via active engagement and social interaction.

Further, verbalising thought processes is critical in collaborative problem-solving within
software development, particularly in debugging tasks. This method is evident in the
interactions within the dyads, where articulate communication is a key factor in sharing
and managing cognitive load. This approach suggests, in some cases, clear
communication, which is pivotal in managing cognitive load among SDT apprentices. SDT2
exemplified this with the use of frequent, concise discussions for task division, aligning
with Sweller (1988) cognitive load theory that reiterates reducing extraneous cognitive
load enhances learning and problem-solving. Kirschner et al. (2006) further support this,
advocating that well-structured collaborative tasks optimise learning by efficiently

distributing cognitive load.

217 |Page

Additionally, DYAD2’s adoption of the ‘think aloud’ method, where thought processes are
openly discussed, resonates with Hmelo-Silver (2004) emphasis on articulating thoughts
in collaborative problem-solving. By vocalising their reasoning and assumptions, team
members can better track and understand each other’s perspectives, leading to more
cohesive and efficient problem-solving. This method ensures mutual understanding,
aligning with Johnson and Johnson (1999) research, which highlights the role of effective
communication in achieving shared goals within a team. Mayer and Moreno (2003) also
acknowledge that such interactive communication reduces cognitive load, enhancing
problem-solving efficiency (Paas et al., 2003). It can be argued that verbalising thought
processes, as demonstrated in the dyad debugging sessions, is essential for managing
cognitive load and fostering collaborative efficiency in software debugging. This approach
aids in task articulation, ensures effective cognitive load distribution, and is supported by
the principles of Vygotsky and Cole (1978) social development theory and Paas et al.

(2003) findings on collaborative cognitive load management.

Similarly, the use of various tools and strategies emerges as crucial in addressing the
distribution of cognitive load among paired geographically distributed SDT apprentices
during debugging tasks. Thus, the deployment of IDEs, debuggers, and collaborative code
editors plays a central role in this process. This approach resonates with Mayer and
Moreno (2003) Cognitive Theory of Multimedia Learning, which highlights the efficacy of
multimedia tools in reducing cognitive overload by facilitating more efficient information

processing. Additionally, Sweller (1988) Cognitive Load Theory suggests that such tools

218 |Page

are instrumental in alleviating individual cognitive burdens, particularly in complex tasks

like debugging, thus contributing to a more effective debugging process.

Furthermore, the division of specialisation within teams, as exemplified by apprentices in
DYADS9, is a significant method for managing cognitive load. This strategy, backed by Paas
et al. (2003), highlights the effectiveness of distributed cognitive load in collaborative
learning environments. By assigning tasks based on individual strengths and areas of
expertise, apprentices can optimise their cognitive resources. This concept is further
supported by Kirschner et al. (2006), who emphasise the role of well-structured
collaborative tasks in enhancing learning outcomes by efficiently distributing cognitive

load among team members.

In addition to these strategies, balancing workload and effective time management, as
highlighted by SDT21 and SDT29, is vital in averting cognitive overload. This approach is
in line with the findings of Dillenbourg et al. (2009) on collaborative learning,
underscoring the significance of workload distribution in collaborative settings. Such
strategies ensure that apprentices direct their cognitive efforts toward the most impactful

issues, optimising the overall debugging process and contributing to the team’s success.

In summary, the SDT apprentices’ strategies in managing cognitive load during debugging
sessions demonstrated an alignment with the cognitive theories and adaptive problem-
solving approaches in software development. These methods, comprising role-switching,

verbalising thought processes, tool utilisation, specialisation, and workload management,

219|Page

reflected a managed approach to cognitive load management, enhancing both individual

and collective efficiency in software debugging tasks.

RQ4 - Leveraging IDE
RQ4: How does leveraging Integrated Development Environment (IDE) tools enhance the
capabilities of distributed pair debugging and mitigate the challenges encountered in

debugging programs?

The integration of IDE tools in distributed pair debugging of Python code is a complex
interplay of benefits and potential pitfalls. This analysis, enriched by the experiences of
apprentices across various dyads and supported by academic literature (Goldman et al.,
2011; Potluri et al., 2022; Satratzemi et al., 2023), offers an understanding of the role of
IDE tools. Also, through an examination of their experiences and the insights gleaned
from the debugging and the interview sessions, the impact of IDE tools on their
collaborative debugging process becomes apparent as it serves more than just facilitators
of code, but is crucial in addressing the challenges inherent in debugging. A crucial benefit
of IDE tools, particularly Visual Studio Live Share, as highlighted by SDT1 and SDT17, is
their facilitation of real-time collaboration. This aligns with Hutchins (1995) distributed
cognition theory, which posits that cognitive processes are spread across individuals and
their tools, enhancing problem-solving abilities. Johnson and Johnson (1987) and
Salomon (1997) recognition of the importance of collaborative tools in software

development further validates this point.

220|Page

Similarly, this aspect of real-time collaboration is essential in overcoming physical
distance, a point reinforced by the experiences of SDT3, SDT5, and SDT26, commending
the efficacy of tools like Microsoft Teams and Visual Studio Live Share in fostering
effective collaboration in enabling seamless communication and coordination despite
geographical separation. However, the dependence on these specific tools invites critical
scrutiny. The apprentices’ reliance on these specific IDE tools raises concerns about the
potential stagnation of essential debugging skills, as reliance on technology can lead to a
lack of development in fundamental problem-solving abilities (Mayer, 2004). In the same
vein, in situations where these specific tools are unavailable, this dependency could
become a significant hurdle, potentially leading to a stagnation in the development of

essential debugging skills.

Also, in the discourse on the use of IDE tools within various dyads, significant attention
has been given to features like syntax highlighting, error notifications, and integrated
consoles. These functionalities have been praised by various dyads for their efficiency in
identifying and resolving syntax errors (Cheng et al., 2003; Goldman et al., 2011). This
finding is consistent with research by Fontana and Petrillo (2021) and Petrillo et al. (2019).
Participants, including SDT2 and SDT10, have particularly commended the capacity of
these tools to streamline the debugging process (Kurniawan et al., 2015). They noted the
utility of IDE features in simplifying code review and error detection. However, there is a
risk that over-reliance on automated features could impede deeper learning of code
principles, leading to a scenario where apprentices are proficient with IDEs but lack the
skills to debug without these aids, a concern highlighted in the context of technology-

assisted learning (Grover & Pea, 2013). This essentially implies that while these tools are

221 |Page

undoubtedly helpful for debugging, an over-reliance on them might impede a deeper
grasp of essential coding principles, potentially leading to a skill gap. Apprentices might
become proficient in using IDEs for debugging but could struggle without these aids,

hindering the development of more fundamental and adaptable coding skills.

Moreover, advanced features like static code analysis and code coverage assessment in
IDEs further enhance debugging efficiency as suggested by SDT19 and SDT22, add an
extra layer of effectiveness to the debugging process as they facilitate the management
of code changes and error correction and enable a deeper analysis of the code, allowing
apprentices to address more complex issues beyond basic syntax errors. These
techniques, aligning with Beller et al. (2018) research, enable participants to address
issues beyond basic syntax errors, highlighting the comprehensive nature of IDE tools in
the debugging process. These tools go beyond identifying syntactical errors and highlight
more fine-grained aspects of code quality and performance. They allow SDT apprentices
to adopt a proactive approach to debugging, anticipating potential issues before they
become problematic. This can also be linked to the role of IDEs in reducing cognitive load,
as per Sweller (1988) theory, which is significant in the debugging process. By automating
routine aspects of coding, IDEs allow apprentices to focus on complex tasks. While these
tools facilitate a proactive debugging strategy, helping apprentices to foresee and
prevent potential issues, they also pose the risk of creating a dependency that could limit
the development of essential programming skills and a deep understanding of code
principles (Miller & White, 2021). This echoes the broader concerns related to the

integration of educational technology and its impact on cognitive development in

222 |Page

programming education. Thus, this juxtaposition highlights the need for a balanced

approach to IDE tool usage in programming education.

In the same vein, the integration of version control systems within IDEs is another aspect
that aids in distributed debugging. The participants also recognised the importance of
version control systems and code completion features in IDEs. SDT4 and SDT29 pointed
out how these functionalities reduce cognitive burdens and improve debugging
efficiency. This aspect is crucial in the distributed pair debugging context, as it allows for
more efficient management of code changes and error correction. This suggests that
version control systems help manage changes and coordinate tasks among team
members and provide a safety net that encourages experimentation, a key component in
creative problem-solving in software development. These systems are indispensable in
efficiently managing code changes, particularly in a distributed setting. However, this
raises the critical question of whether apprentices fully grasp the underlying principles of
version control. While IDEs simplify this process, it is imperative for apprentices to
develop a comprehensive understanding of version control mechanisms, a necessity
opined by Loeliger and McCullough (2012). This knowledge is essential for managing code
changes effectively, even when IDEs are not in use or in different coding environments,

ensuring a well-rounded skill set in software development.

In summary, the analysis of participants’ experiences and quotations, supported by
relevant academic references, points out the integral role of IDE tools in enhancing the
effectiveness of distributed pair debugging of Python code. These tools facilitate real-

time collaboration and expedite error identification and resolution, reduce cognitive load,

223 |Page

and offer advanced functionalities for a more comprehensive debugging experience (Du
Preez Ockert, 2019; Kolling et al., 2019). Also, the participants’ affirmative feedback on
using IDE tools in overcoming challenges, particularly in remote settings, reaffirms the

pivotal role of technology in enabling seamless collaborative coding experiences.

RQS5 - Collaborative Debugging Challenges
What challenges are experienced by paired geographically distributed SDT apprentices
working collaboratively on debugging programming bugs, and why are they facing such

challenges?

Geographically distributed SDT apprentices engaged in pair debugging face numerous
hurdles, including the complexities of remote collaboration and programming intricacies.
Their challenges, compounded by the limitations of digital communication tools and
varying levels of coding knowledge, involve effectively conveying complex coding
concepts over distances and managing the cognitive load of resolving technical issues
remotely. These factors collectively impinge upon the efficiency of the debugging

process, leading to a range of issues that will now be explored in detail.

Technical and Cognitive Challenges in Remote Debugging:

A primary challenge faced by dyads in remote debugging sessions is encapsulated in the
realm of technical and cognitive difficulties. Various aspects contribute to these
challenges, notably the apprentices’ struggles with complex logical errors. For example,
apprentices in DYAD1 contended with intricate logical errors such as the misuse of the

special variable ‘name’ and bonus calculation lacking context (domain knowledge). These

224 |Page

instances serve to highlight the significant challenges within the remote debugging
landscape. Apprentices, grappling with the subtleties of Python’s logic and syntax,
frequently encountered obstacles, largely due to their limited experience. SDT1
articulated this challenge, stating, “One of the main obstacles... was dealing with complex
logical errors... which was challenging given our limited experience”. This experience
stands in stark contrast to that of DYAD8, where apprentices adeptly utilised IDE tools to
navigate similar challenges, thereby illustrating the uneven distribution of technical
proficiency and problem-solving approaches among the dyads. This discrepancy suggests
an underlying issue within remote programming education, indicating that while IDE tools
provide significant support, they cannot substitute for a fundamental understanding of
programming concepts, a gap particularly pronounced in remote settings where

immediate peer or mentor support is absent.

Another aspect under the technical and cognitive theme is the management of cognitive
load. The experiences of DYAD3, struggling with cognitive overload, illuminate the
complex nature of this challenge. SDT6 noted the difficulty in managing the shared editing
environment, a task that becomes increasingly challenging in a remote context where
isolation can exacerbate focus issues. Contrasting these experiences with those of
DYAD11, who struggled with poorly documented codebases, reveals the range of
technical challenges in remote debugging. Such experiences affirm the need for
comprehensive programming training that transcends mere technical skill development
to encompass strategies for effective cognitive load management and documentation

comprehension.

225|Page

Additionally, the use of IDE tools presents its own set of challenges. Apprentices in DYAD5
and DYADS8 faced significant hurdles in mastering these crucial tools for remote
debugging. SDT14 highlighted the difficulties in efficiently utilising the IDE Debugger
remotely, stating, “another obstacle was efficiently utilising the IDE Debugger in a remote
setting... this limitation made it difficult to collaboratively explore different hypotheses
about the bug”. This learning curve contrasts with the experiences of DYADS8, where
apprentices demonstrated greater proficiency with these tools. Such differences in tool
mastery stress the importance of tailored training in remote debugging education,
focusing on the technical operation of these tools and their integration into the learning

and debugging processes.

Navigating poorly documented codebases, a challenge faced by apprentices in DYAD4 and
DYAD11, adds another layer of complexity to remote debugging. SDT21 highlighted the
struggle with logical errors, exacerbated by limited experience and unclear
documentation, “One significant obstacle we faced... was dealing with the logical errors,
especially considering our limited experience”. This struggle differs from the cognitive
challenges faced by DYAD4, emphasising the need for a focus on comprehensive

documentation skills within programming education.

Similarly, managing complex workloads and intricate code structures, as evidenced in the
experiences of DYAD13 and DYAD15, points to the multi-dimensional nature of remote
debugging. These apprentices needed to balance solving complex programming tasks
with effective time and mental resource management, a challenge distinct from the

technical issues faced by DYADS. This necessitates an educational approach that includes

226 |Page

elements of project management and personal organisation to ensure that apprentices
are technically proficient and adept at handling the broader demands of software

development projects.

In conclusion, exploring these aspects in detail revealed the layered complexity of
technical and cognitive challenges in remote debugging sessions. The diverse struggles of
apprentices across different dyads marked the need for a comprehensive and varied
approach to programming education. This approach should address the technical aspects
of coding and the cognitive, collaborative, and organisational skills essential for effective
remote debugging. Balancing the development of technical competencies with the
cultivation of communication, problem-solving, and project management skills is crucial
for preparing apprentices for the diverse challenges of the contemporary software

development environment.

Communication and Collaboration Challenges:

The exploration of communication and collaboration challenges faced by apprentices in
various dyads during remote debugging sessions, even with the aid of visual tools like
Microsoft Teams, unveiled a complex landscape of interaction hurdles. Despite the visual
connectivity offered by such platforms, the geographical separation between apprentices
persisted as a significant barrier, demanding an enhanced focus on both verbal and non-
verbal communication skills. As SDT1 aptly put it, “While tools like Visual Studio Live Share
helped bridge the physical distance, we had to work harder to ensure clear and precise

communication”. This sentiment was echoed by SDT2, who noted the necessity of

227 |Page

constantly verbalising thoughts to maintain a shared understanding, highlighting the

ongoing struggle to overcome the absence of physical presence in digital interactions.

Moreover, this challenge was not isolated to DYAD1. For instance, SDT5 spoke of the
difficulties in not being able to physically point out issues or discuss solutions, a sentiment
that SDT6 also shared, particularly during simultaneous code editing, which often led to
confusion. These experiences backs up the limitations of visual connections in fully
compensating for the lack of direct, physical interaction, especially in understanding and
managing shared coding tasks. The visual component, while beneficial, could not
completely bridge the gap in immediate, intuitive understanding and response that

physical presence facilitates.

Additionally, the dyads confronted the challenge of aligning their coding strategies and
interpretations, a task made more difficult by geographical separation. SDT12’s
observation that face-to-face brainstorming could have expedited the process during
moments of confusion points to the complexities of remote collaboration. Visual contact,
albeit helpful, did not wholly mitigate the challenges posed by the need for immediate
and coherent strategy alignment. This issue was further compounded by differences in
individual coding experiences and styles, as highlighted by SDT11, who found it
challenging to align coding approaches with their partner, indicating a deeper need for

structured and systematic problem-solving approaches in remote settings.

Furthermore, the apprentices’ struggles extended to the realm of effective

communication, particularly in conveying complex programming concepts and thoughts.

228 |Page

SDT20’s reflection on the extra effort required to explain thought processes and
perspectives marks the inherent limitations of remote communication tools in replicating
the depth and distinctness of face-to-face interaction. Similarly, SDT19’s expression of
difficulty in articulating thoughts to their partner reflects a broader issue within remote
collaboration, where the complexity of conveying intricate ideas through digital means

can hamper progress and understanding.

In synthesising these accounts from different dyads, it becomes evident that despite the
advantages of visual communication tools, apprentices faced a wide array of challenges
in remote debugging. These challenges encompassed the need for effective verbal and
non-verbal communication and the intricacies of managing shared coding environments
and harmonising diverse coding strategies. The experiences highlight the critical need for
a comprehensive approach in remote programming education that goes beyond the mere
use of technological tools. Such an approach should focus on developing robust
communication and teamwork skills, addressing the complexities of remote
collaboration, and ensuring apprentices are well-prepared to navigate the multifaceted
challenges of modern software development. This comprehensive approach is essential
for fostering a collaborative, effective, and adaptable learning environment in the ever-

evolving field of software development.

Environmental and Logistical Challenges:
The exploration of environmental and logistical challenges faced by SDT apprentices in
remote debugging sessions, as reflected in their direct experiences, revealed intricate

complexities and multifaceted nature of these hurdles.

229 |Page

Furthermore, geographical separation profoundly impacted the dynamics of
communication and collaboration, as evidenced by the experiences of various dyads. This
finding aligns with the suggestion put forward by Satratzemi et al. (2018) that distributed
pair programming (DPP) is more demanding than traditional pair programming (PP). For
instance, SDT1 remarked, “Additionally, being geographically dispersed posed its own set
of challenges... we had to work harder to ensure clear and precise communication”. This
sentiment was echoed by SDT2, who highlighted the necessity of constant verbalisation
to maintain a synchronised understanding of the code. Similarly, SDT3 and SDT4
experienced delays in real-time collaboration due to remote setup, with SDT4 noting,
“Due to our remote setup, we faced delays in real-time collaboration, even with the aid
of live code-sharing tools”. These quotes underline the challenges posed by physical

distance, necessitating enhanced communication strategies to bridge the gap.

In addition to these communication challenges, the need for effective coordination within
shared digital spaces was another significant challenge. SDT5 expressed difficulties in not
being able to physically point out issues, stating, “Being geographically dispersed meant
we couldn’t simply look over each other’s shoulder to point out issues or discuss
solutions”. This issue of managing shared coding environments effectively was also
highlighted by SDT23, who mentioned, “The geographical separation added another layer
of complexity. We relied heavily on digital communication tools”. These reflections point
to the challenges in synchronising understanding and actions in a remote collaborative

setting.

230|Page

Compounding these issues, technological limitations and connectivity issues added
another dimension to the challenges faced. SDT29 discussed the impact of internet
connectivity on their workflow, noting that “Our different locations also meant we were
working in different environments... relying on technology meant we were at the mercy
of our internet connections, which occasionally disrupted our flow”. This highlights the
need for reliable infrastructure and robust digital tools to facilitate seamless remote

collaboration.

Moreover, the varied experiences across dyads illustrated the diverse nature of
environmental and logistical challenges. While apprentices in DYAD8 and DYAD14 utilised
IDE tools effectively, they faced specific challenges unique to their situations. For
example, SDT15 noted, “Being geographically dispersed meant that we couldn’t quickly
huddle and draw out our thoughts on a whiteboard or paper”. In contrast, SDT27
mentioned, “The challenges we faced... were largely due to the nature of remote
communication... The lack of immediate, direct interaction made it more challenging to

collaboratively and swiftly navigate through these complex issues”.

Consequently, these insights from apprentices across various dyads paint a picture of the
environmental and logistical challenges encountered in remote debugging sessions. They
emphasise the need for strategies that effectively bridge the geographical gap and
address the unique demands of remote collaboration. This more comprehensive
approach should focus on developing technical skills and enhancing communication,
teamwork, and adaptability to diverse technological landscapes, preparing apprentices

for the evolving challenges of modern software development.

231|Page

However, in addressing the central question, “How do the paired Software Development
Apprentices in geographically distributed locations work collaboratively to fix Python
programming bugs using the technology-mediated medium?”, this study examines the
five interrelated sub-questions that underpin the investigation. These sub-questions
explore the nature of errors encountered, the debugging strategies and tactics used, the
mechanisms for cognitive load distribution, the role of Integrated Development
Environments (IDEs), and the challenges apprentices face in collaborative debugging. The
findings reveal that apprentices adopt a highly structured yet adaptable approach to
debugging, integrating problem-solving techniques, cognitive flexibility, and technology-
supported collaboration. Despite the complexities and limitations associated with remote
debugging, apprentices demonstrate resilience, adaptability, and an evolving mastery of
debugging processes. Their ability to effectively communicate, structure their debugging
efforts, and synchronise their workflows plays a crucial role in ensuring efficiency in

distributed pair debugging.

Building on this, the study finds that apprentices encounter three primary categories of
errors: syntax errors, logical errors, and runtime errors. Syntax errors occur when
Python’s structural rules are violated, leading to issues such as missing colons, incorrect
indentation, or misused operators. Since these errors produce immediate feedback from
the interpreter, they are often straightforward to resolve. However, failing to address
them efficiently can hinder progress and obscure deeper logical flaws. To resolve syntax
errors, apprentices predominantly rely on print statement debugging, which allows them

to observe variable states and track execution flow. While this method is highly effective

232 |Page

for identifying and correcting syntax issues, it becomes less useful when dealing with

more complex errors that require deeper reasoning.

Extending beyond syntax issues, logical errors present a greater challenge as they do not
produce explicit error messages but instead result in incorrect program behaviour. These
errors frequently stem from misapplied conditional logic, flawed tax computations, or
improperly structured loops, leading to unintended outcomes. Unlike syntax errors,
which can often be corrected quickly, logical errors require a more systematic approach
to debugging. Step-through debugging, where apprentices execute the code line by line
while observing variable changes and function calls, proves particularly effective in
diagnosing these errors. Furthermore, backtracking, where apprentices systematically
review previous modifications to pinpoint when an error was introduced, plays a crucial
role in isolating logical faults. However, this process can be mentally taxing, particularly

in large programs with multiple interdependencies.

In addition to syntax and logical errors, runtime errors are the most unpredictable and
complex to debug, as they only emerge during program execution. Examples include
infinite loops, incorrect type conversions, and index errors, which can cause the program
to behave erratically or even crash. Unlike syntax errors, which apprentices can address
through static code analysis, runtime errors often require more extensive debugging
efforts. Resolving these issues demands a combination of approaches, including trial and
error, slicing, and code review. When runtime errors prove particularly elusive,
apprentices frequently resort to rubber duck debugging, which involves verbalising their

thought process to clarify their understanding. This technique often helps apprentices

233|Page

identify overlooked logic flaws, reinforcing the importance of metacognition in

debugging.

To manage these different types of errors, apprentices strategically employ ten distinct
debugging methods, each offering unique advantages depending on the nature of the
bug. As previously noted, print statement debugging remains the most frequently used
approach due to its simplicity and immediate feedback, allowing apprentices to track
variable states and execution flow. However, while print statements provide insight into
syntax-related issues, they lack the precision needed to resolve deeper logical and
runtime errors. To address these limitations, apprentices frequently use step-through
debugging, facilitated by IDE debugging tools, to execute code incrementally, set
breakpoints, and monitor changes in variable states in real-time. This method proves
particularly useful in identifying subtle logical errors, yet its effectiveness is dependent

on the apprentice’s proficiency in using debugging tools.

Along with these structured methods, apprentices also engage in tinkering, where they
experiment with incremental modifications to the code to observe how different changes
impact execution. While this approach fosters exploratory learning and intuitive problem-
solving, it lacks structure and can lead to inefficiencies if used indiscriminately. Similarly,
trial and error, although valuable when the nature of the bug is unclear, can be time-
consuming and unreliable if apprentices fail to document and analyse their attempts
systematically. Therefore, while experimentation is an essential aspect of debugging, it

must be balanced with structured techniques to ensure efficiency.

234 |Page

Furthermore, more methodical debugging approaches, such as backtracking, allow
apprentices to trace errors back to their origin, making it easier to identify when and
where a mistake was introduced. GitHub’s version control system significantly enhances
this process, as it enables apprentices to compare different iterations of their code and
revert to previous versions when necessary. Additionally, code review plays a vital role in
debugging, as apprentices critically evaluate each other’s work, offering feedback,
suggestions, and alternative solutions. This method enhances collaboration and
debugging efficiency, as errors that might be overlooked by one apprentice can be

identified by their partner, reinforcing the value of shared problem-solving.

Expanding on these strategies, pattern matching further contributes to debugging
efficiency by enabling apprentices to identify recurring error types and apply solutions
based on past experiences. This approach demonstrates a transition from trial-and-error
methods to structured problem-solving, highlighting the apprentices’ growing debugging
expertise. Additionally, slicing, which involves isolating specific sections of the code for
in-depth examination, significantly reduces cognitive overload, allowing apprentices to
focus on smaller, more manageable code segments. When combined with other
strategies, slicing ensures a systematic approach to debugging, preventing unnecessary

effort spent on scanning the entire codebase.

Another effective technique is divide and conquer, which is especially useful for complex

debugging tasks. Here, apprentices split the program into smaller sections, debugging

individual parts independently before integrating their solutions. This approach improves

235|Page

efficiency and minimises cognitive strain, ensuring that both apprentices remain engaged

and contribute actively to the debugging process.

Since debugging is not only a technical task but also a cognitively demanding process,
apprentices must employ effective cognitive load management strategies. The driver-
navigator model remains the primary approach, with one apprentice writing or modifying
code while the other provides real-time oversight and guidance. However, while this
approach fosters structured collaboration, its effectiveness depends on regular role-
switching, as prolonged navigation without hands-on coding can result in reduced
engagement and passive participation. Additionally, verbalisation strategies, such as
thinking aloud and articulating reasoning, play a crucial role in clarifying thought
processes and ensuring mutual understanding. These strategies prevent
misinterpretations and enhance collaborative problem-solving, particularly in remote

environments where non-verbal cues are absent.

Given the geographical separation of apprentices, technology plays a crucial role in
bridging the gap and enabling effective debugging. Visual Studio Live Share provides a
shared environment for real-time collaboration, allowing apprentices to simultaneously
edit, execute, and debug code, mimicking the experience of co-located pair
programming. Similarly, GitHub’s version control features support structured debugging
workflows, ensuring that apprentices can track modifications, revert changes, and
maintain a history of code updates. Microsoft Teams, Zoom, and Slack further facilitate
verbal discussions and screen sharing, enabling apprentices to communicate effectively

despite physical distance.

236|Page

Despite these technological advantages, several challenges persist. Over-reliance on IDE
debugging features can lead to superficial problem-solving approaches, where
apprentices depend too much on automated tools instead of developing deeper
analytical skills. Moreover, communication barriers in remote debugging introduce delays
and inefficiencies, particularly when apprentices struggle to articulate complex
programming issues without face-to-face interaction. Additionally, cognitive overload
remains a significant challenge, as apprentices must juggle multiple cognitive demands

simultaneously.

Ultimately, the study highlights that distributed debugging is not merely a technical task
but a complex cognitive and collaborative process. Apprentices must balance structured
debugging methodologies with adaptive learning, integrate technology effectively
without over-reliance, and refine their independent problem-solving skills while engaging
in collaborative debugging. Despite the inherent challenges of remote debugging,
apprentices demonstrate progressive mastery of debugging techniques, showcasing the
potential for effective software development training in distributed settings. The
research underscores the importance of structured learning, technological facilitation,
and cognitive load management in fostering efficient and scalable remote debugging

practices.

237 |Page

6.3 Refined Conceptual Framework Linking Research Outcomes to Distributed
Debugging Processes

Understanding how research outcomes align with the conceptual framework is crucial to
comprehending the mechanisms underpinning distributed debugging processes. This
refined framework integrates Information Foraging Theory (IFT) (Pirolli & Card, 1999) and
Distributed Cognition (DC) (Hutchins, 1995) to provide a structured perspective on how
software development apprentices collaborate to debug Python programming errors in
technology-mediated environments. By examining how apprentices seek and process
information, distribute cognitive effort, and leverage debugging tools, this framework
offers a comprehensive lens through which debugging behaviours can be analysed and

optimised.

At the centre of this framework is Distributed Pair Debugging, which encapsulates the
interplay between cognitive, behavioural, and technological factors that shape debugging
in remote settings. Debugging is not a solitary task but a process that requires structured
information retrieval, strategic collaboration, and effective technological support. As
apprentices engage in distributed debugging, they must balance information foraging
with cognitive load distribution, ensuring that problem-solving remains efficient and
structured. The research findings confirm that the success of debugging depends on how
effectively apprentices integrate these elements, reinforcing the need for a systematic

approach to collaborative problem resolution.

A key component of this framework is Information Foraging Theory (IFT), which explains

how apprentices search for, evaluate, and apply debugging information. Debugging

238|Page

requires programmers to navigate multiple information sources, including error
messages, documentation, online forums, and past code iterations. The ability to identify
useful information efficiently and distinguish between relevant and irrelevant data
directly affects the speed and accuracy of debugging. The research findings indicate that
apprentices who develop effective information-seeking behaviours are more successful
in applying structured debugging techniques, as they can quickly access and interpret the

necessary resources without unnecessary delays.

However, acquiring information is only one aspect of debugging. Distributed Cognition
(DC) complements IFT by explaining how cognitive processes are shared between
apprentices and the tools they use. Debugging in a distributed setting involves continuous
coordination, shared cognitive effort, and strategic tool utilisation. The research
highlights that cognition is not confined to individual minds but distributed across pairs
and the technological ecosystem they operate within. Apprentices must not only
externalise their thought processes through verbalisation and structured discussions but
also use debugging tools effectively to distribute cognitive workload. This shared
cognition ensures that problem-solving remains fluid and adaptive, preventing any single

apprentice from being overwhelmed by the complexity of the debugging task.

The research also reveals that Debugging Strategies act as a bridge between information
foraging and problem resolution. Apprentices employ a range of techniques, including
print statement debugging, step-through debugging, backtracking, pattern matching,
slicing, and trial-and-error approaches. While some strategies, such as print statement

debugging and trial-and-error, are exploratory, others, such as step-through debugging

239|Page

and backtracking, require structured reasoning and systematic problem-solving. The
conceptual framework highlights that debugging strategies must align with the nature of
the error, ensuring that apprentices apply the most effective method for each debugging
scenario. Without a structured approach, debugging becomes inefficient, leading to

prolonged problem resolution times and increased cognitive strain.

Equally significant is Cognitive Load Management, which determines how effectively
apprentices sustain focus and manage the demands of debugging. Debugging can be
mentally taxing, particularly when apprentices must juggle multiple problem-solving
tasks while collaborating in real time. The research findings emphasise the importance of
role-switching strategies, such as the driver-navigator model, in ensuring equitable
participation and reduced cognitive fatigue. By alternating roles, apprentices maintain an
active engagement in debugging while balancing cognitive effort, preventing one
individual from bearing the entire cognitive burden. Furthermore, verbalisation
techniques, such as think-aloud protocols, help externalise reasoning and reinforce
shared understanding, ensuring that both apprentices remain aligned in their debugging

efforts.

The role of Technology-Mediated Tools is another fundamental aspect of this framework,
as tools serve as both cognitive extensions and collaboration enablers. The research
findings confirm that IDE debugging features, version control systems, and real-time
collaboration platforms enhance efficiency, structure debugging workflows, and improve
coordination between apprentices. Visual Studio Live Share facilitates synchronous

debugging, allowing apprentices to view and modify code simultaneously, which

240 | Page

replicates the experience of co-located debugging sessions. Likewise, GitHub’s version
control capabilities enable structured debugging by allowing apprentices to track
changes, document problem-solving processes, and revert to previous working versions
when necessary. These tools not only support problem-solving but also reduce cognitive
load by automating certain debugging tasks, enabling apprentices to focus on logical

problem-solving rather than manual syntax corrections.

Nevertheless, while technology is a powerful enabler, it must be used strategically rather
than as a substitute for fundamental debugging skills. The research highlights that over-
reliance on automated debugging features can lead to superficial problem-solving
approaches, where apprentices depend on error-highlighting tools rather than
developing a deep understanding of debugging principles. Therefore, the conceptual
framework reinforces that technology should facilitate, rather than replace, structured
debugging methodologies, ensuring that apprentices cultivate both technical proficiency

and problem-solving expertise.

A further critical insight from the research is the role of Collaboration and Shared
Understanding in debugging success. Since apprentices operate in geographically
distributed settings, effective debugging relies on clear communication, structured
discussions, and synchronised problem-solving efforts. The research highlights that
successful debugging pairs engage in continuous dialogue, share mental models of
debugging problems, and refine solutions through collaborative reasoning. However,
when collaboration is poorly structured or lacks clear communication protocols,

debugging efforts become fragmented and inefficient, leading to duplicated efforts,

241 |Page

misinterpretations, and unresolved issues. The conceptual framework underscores that
collaborative debugging is most effective when supported by structured coordination

strategies, active engagement, and clear documentation of debugging steps.

Refine Conceptual Framework

Distributed
Pair
Dobugging

Legend

[[] centrat Concept (Distributed Pair Debugging)
[] conceptuat Framework (TF & 0C)

: Key Debugging Processes

Distributed
Cognition
(©c)

Information
Foraging
Theory (IFT)

Error
Identification
& Reosolution

Figure 11: Refined Conceptual Framework Aligning Research Outcomes to Distributed Debugging Processes

Bringing these elements together, the refined conceptual framework (see Figure 11)
presents a structured representation of how research outcomes align with the debugging
process. It provides a multi-layered model that accounts for the interplay between
theoretical constructs, debugging methodologies, cognitive processes, and technological
interventions. Figure 11 visually encapsulates these relationships, illustrating how
Distributed Pair Debugging is shaped by the integration of Information Foraging,
Distributed Cognition, Debugging Strategies, Cognitive Load Management, and

Technology-Mediated Tools.

242 |Page

This framework not only enhances understanding of how apprentices engage in
distributed debugging but also provides valuable insights for software development
education, training, and the design of debugging tools. By offering a structured approach
to information navigation, collaborative cognition, and debugging strategy selection, the
research contributes to a better-informed methodology for teaching and improving

debugging practices in remote environments.

6.4 Novelty of this Work

The novelty of this study can be appreciated through three distinct focal points that
contribute to the existing body of knowledge in a number of research areas. Notably, at
the time of this research, there was a noticeable void in studies specifically targeting
work-based learning environments in this sector, a gap that has persisted since 1973. This
shortfall is particularly pronounced in investigations into the debugging practices of
novice programmers, such as apprentices. While numerous studies have explored
debugging strategies and tactics (Alaboudi & LaToza, 2023; Allwood & Bjorhag, 1990;
Algadi & Maletic, 2017; Fitzgerald et al., 2008; Fitzgerald et al., 2010; Gould, 1975;
Gugerty & Olson, 1986; Jayathirtha et al., 2020; Katz & Anderson, 1987; Lee et al., 2014;
Murphy et al., 2010; Murphy et al., 2008; Romero et al., 2007; Weiser, 1982; Yen et al.,
2012), they predominantly focus on school and academic environments or on seasoned
developers in realistic settings (Alaboudi & LaToza, 2023). Therefore, this study addresses
a significant research gap by examining the debugging strategies and tactics of a
previously unexplored group, the novice programmer apprentices in work-based learning

environments.

243 |Page

Similarly, the distinctiveness of the study’s participants contributes to its originality.
Contrary to many research projects centred on specific demographics or professional
groups, this study’s participants represent a diverse array of learners employed across
various sectors. Their variety in employment histories, employers, and age ranges
enriches the research, offering a wider viewpoint on debugging practices due to the
participants’ extensive demographic range. This diversity in participant profiles suggests
potential wider generalisability of the findings, although not the primary aim of this study,

and reinforces the transferability of debugging skills across varied work-based settings.

Secondly, the study’s distinctiveness is further highlighted by the lack of any prior
empirical research on distributed pair debugging within the work-based learning sector.
Although there are a limited number of studies on pair debugging, they do not specifically
focus on debugging strategies (Jayathirtha et al., 2024; Murphy et al., 2010; Parkinson et
al., 2024). The concept of pair debugging in distributed settings, particularly within
educational contexts, had not been explored at the time of this study. While research on
distributed pair programming has been recognised for its role in enhancing collaboration
and problem-solving in software development (Baheti et al., 2002; Hafeez et al., 2023; Xu
& Correia, 2023), the specific aspect of debugging within distributed pairs has remained
largely unexamined. This study fills this void by delving into the unique challenges and
strategies of debugging in a distributed environment, thereby enriching the

understanding of collaborative debugging practices in software development.

244 |Page

Thirdly, a noteworthy contribution of this study is the creation of an innovative
conceptual framework for distributed debugging (see Figure 4 and Section 3.4), which
merges two theoretical frameworks, which are distributed cognition (Hutchins, 1995) and
information foraging theories (Pirolli & Card, 1999). This new framework acts as a
theoretical construct that structures the research findings and offers a resource for future
research and practical applications. The development of this framework marks an
advancement as it synthesises and systematises the knowledge gained from the study,

enhancing its applicability across various contexts and settings (Bryman, 2016).

In conclusion, the novelty of this study is multi-faceted, encompassing its focus on work-
based learning environments, the exploration of distributed pair debugging, the
development of a conceptual framework, and the diversity of its participant profiles.
These aspects collectively contribute to advancing knowledge in debugging practices and

offer insights for both academia and the learning and development sector.

6.5 Contributions
My thesis makes notable contributions to computing education and the practical
implementation of technology in education, potentially influencing the approaches of

educators and practitioners in these fields.

One of the key empirical insights of my thesis lies in its ability to shed light on the
debugging strategies and challenges within the work-based learning sector, leveraging a
detailed compilation of experiences from 30 apprentices, further enriched by the

perspectives of 12 mentors and trainers. This diverse cohort unveils an insight into

245|Page

collaborative problem-solving in debugging within the distributed environment, setting a
solid foundation for broader applicational insights. Additionally, the methodological and
analytical depth employed in this study reinforces its potential wider generalisability,
suggesting that the varied backgrounds of apprentices in terms of their ages, educational
background, diverse employers and experiences of the participants may mirror the
sector’s complexity, thereby extending the relevance of these findings beyond the
immediate study context. The research benefits significantly from the dual perspectives
of apprentices and their mentors, offering a comprehensive view of the debugging
process that highlights the critical role of guidance and support. This approach reinforces
the study’s potential broader applicability and signals its potential to inform educational
practices and professional development across the sector. Similarly, including
participants from a broad spectrum of backgrounds further strengthens the study’s
position as a resource for educators and policymakers alike, emphasising its capacity to
address specific needs and challenges within work-based learning environments. Thus,
this thesis stands as a testament to the value that diverse, collaborative insights offer in

shaping educational strategies and policies.

Furthermore, my research extends its empirical contributions into the broader area of
technology in education. In today’s digital age, integrating technology into educational
settings is both pervasive and potentially transformative. My thesis acknowledges
students’ challenges and presents innovative ways to harness technology to support and
enhance an apprentice’s learning. This practical aspect of my work holds particular
relevance for educators, instructional designers and work-based mentors seeking

evidence-based insights on effectively leveraging technology to support their learners. By

246 |Page

offering practical recommendations grounded in empirical research, my thesis serves as
a guide for those navigating the ever-evolving landscape of the use of technology in

debugging.

The technical contributions of my thesis provide an insight into the key technical aspects
in computing education in the context of debugging strategies within distributed settings.
Prior research, such as that of Katz and Anderson (1987), has explored debugging in solo
and collocated environments, but there is a gap in understanding how novices integrate
these strategies in distributed contexts. My study addresses this by examining the unique
dynamics of distributed debugging, necessitating new analytical frameworks. It merges
distributed cognition and information foraging theory to explore collaborative
interactions and tool usage in error detection within code. This approach is significant as
it extends beyond the well-documented novice debugging strategies of the 1980s, which
were largely based on cognitive theories (McCauley et al., 2008). My research uncovers
the specific strategies and challenges of debugging in distributed settings, providing
insights for both novice and seasoned programmers. These findings add to the academic
discourse and have practical implications, potentially transforming how debugging might
be taught and practised, thereby potentially enhancing the proficiency and adaptability

of programmers.

In summary, this thesis provides educators and practitioners with empirical insights and
technical developments, aiding them in navigating the complexities of technology-
enhanced debugging, which refers to the process of identifying and fixing errors (bugs) in

software code using advanced technological tools and methods, and how best to support

247 |Page

the novice through the details provided. By delivering evidence-based recommendations
and insights, the research is designed to advance the use of technology within these
contexts. This, in turn, can enrich the learning experience for learners and support the

cultivation of proficient and resilient professionals in computing.

6.6 Significance of the Study

This evaluative case study on the program debugging behaviour of paired SDT apprentices
in a geographically distributed environment holds significant implications for both
educational and industry contexts. This study addresses a notable gap in the literature by
investigating debugging strategies in distributed, collaborative settings among novice
programmers. The significance of this research can be elucidated through the following

points.

Educational Enrichment and Curriculum Development: This study offers valuable insights
into how novice programmers (SDT apprentices) approach debugging in remote,
collaborative settings. By understanding their strategies, challenges, and successes,
educators can tailor their curricula to better prepare apprentices for real-world software
development challenges. Incorporating findings into apprenticeship programmes can
enhance learning outcomes and equip apprentices with skills more aligned with industry
demands. It allows educational institutions to bridge the gap between theoretical

learning and practical application.

Industry Relevance and Software Quality Enhancement: The software development

industry increasingly operates with geographically distributed teams (Herbsleb & Moitra,

248 |Page

2001), particularly in the wake of remote work trends accelerated by the COVID-19
pandemic. Understanding how debugging occurs in these settings can directly impact
software quality (Beasley & Johnson, 2022), as effective debugging is critical for delivering
robust and reliable software products. Insights from this study can guide software
development teams in refining their collaborative debugging practices, resulting in more

efficient and higher-quality code.

Remote Collaboration Strategies: Collaborative debugging among remote pairs
introduces unique challenges related to communication, coordination, and information
sharing. By investigating how dyad SDT apprentices tackle these challenges, the study
contributes to understanding effective remote collaboration strategies. Such insights can
inform the development of best practices for distributed software development teams,
ensuring smoother communication and improved teamwork. The study results may
provide insight into the type of error messages generated by SDT apprentices while
debugging codes, their debugging strategies and how pairing novice programmers in
different locations works. Also, it will help share good practices from other mentors about

how best to support apprentices with low debugging skills.

Pedagogical Innovations and Tool Development: The study’s findings encourage
pedagogical innovations around teaching debugging techniques. Educators can leverage
these insights to design more effective methods for teaching debugging skills to novice
programmers, focusing on particularly relevant strategies in remote and collaborative
settings. Additionally, the research can inform the development of tools and technologies

tailored to support debugging in geographically distributed environments. This could lead

249 |Page

to the creation of debugging tools that facilitate remote collaboration and enhance

efficiency.

Cognitive Processes and Distributed Cognition: Investigating how SDT apprentice dyads
share the cognitive load while debugging unveils the intricacies of distributed cognition
in collaborative software development (Hutchins, 1995). By understanding how
individuals distribute tasks, make decisions, and solve problems together, the study
contributes to the growing body of knowledge on cognitive processes in distributed
teams. This understanding can lead to better collaboration frameworks and enhanced

coordination mechanisms.

Enhancing Industry-Academia Collaboration: The findings of this study can foster stronger
collaboration between educational institutions and the software development industry.
The insights gained can be shared with industry partners to inform their practices and
expectations of novice programmers. This collaboration ensures that industry needs can
be met and educational programmes produce graduates who are well-equipped to

contribute effectively to real-world development scenarios.

In conclusion, this evaluative case study has significance, as it could potentially impact

both education and industry by offering insights into debugging practices and team

synergy among geographically distributed SDT apprentices.

250 | Page

6.7 Trustworthiness of the Study
The foundational work of Lincoln and Guba (1985) is pivotal in establishing a framework
for trustworthiness, comprising four essential criteria, including credibility,

transferability, dependability, and confirmability.

Credibility, as posited by Lincoln and Guba (1985), pertains to the believability and truth
value of the findings. In ensuring the credibility of the study involving apprentices and
WMTs, | engaged in sustained observation, documenting and analysing the multi-faceted
of practical debugging sessions and dyad interviews (see Appendix J: Sample transcript of
the debugging session and Appendix K: Sample transcript of dyad’s interview). This
approach, endorsed by Shenton (2004), facilitated an immersion into the apprentices’
experiences, offering a portrayal of their debugging skills that was as authentic as
possible. Similarly, the study also combined the think-aloud verbal protocol during the
debugging session (Ericsson, 2006) with retrospective post-debugging dyad interviews,
akin to Murphy et al. (2008). This approach let quieter apprentices during the debugging
session explain their actions and thoughts later, though it risked rationalised responses
(Ericsson & Simon, 1993). The benefit of this method was that it potentially provided
more in-depth insights into the dyads’ strategies and misconceptions (Whalley et al.,
2023). Furthermore, the integration of two debriefing sessions with WMTs further
enriched this narrative, providing a multifaceted perspective on the apprentices’
developmental trajectory. The study used methodological triangulation, as suggested by
Carter et al. (2014), coalesced diverse data sources such as practical debugging sessions,
Python code analysis, interviews with dyads, and WMTs’ insights. This approach

strengthened the study’s reliability by corroborating and validating its findings.

251 |Page

Transferability, as elucidated by Lincoln and Guba (1985), addresses the applicability of
findings in other contexts. To facilitate this, the study provided descriptions of the
apprentices’ environments, backgrounds, and experiences, as well as the diverse
professional contexts of the WMTs. This approach, resonates with Geertz (1973) concept
of thick description allowed for a good grasp of the apprentices’ settings. Such detailing
may equip other researchers with the necessary context to evaluate the potential

applicability of these findings in analogous settings.

Dependability focuses on the consistency and stability of the findings over time, a crucial
aspect affirmed by Lincoln and Guba (1985). The study embraced an iterative approach,
continually revisiting and refining the data in light of emerging insights, a strategy
supported by Morse (1994). As recommended by Rodgers and Cowles (1993), the
maintenance of an exhaustive audit trail provided a transparent and comprehensive
account of the research process, encompassing facets of data collection and analysis. This
documentation of the study’s methodology, encompassing both apprentices’ and WMTs'
contributions, underpins the dependability of the research, ensuring that the study’s

process is transparent, replicable, accountable, and consistent.

Confirmability, the fourth criterion in Lincoln and Guba’s framework, relates to the
degree to which the respondents shape the findings, not by researcher bias or
predispositions. To achieve this, the researcher maintained a reflexive journal, a practice
supported by Schwandt (2001), to record personal biases and reflections, thereby

enhancing the objectivity of the research. This reflexive practice was crucial during the

252 |Page

analysis of the apprentices’ debugging sessions, interviews, and the focus group
discussions with WMTs. In these analyses, special care was taken to root interpretations
in the data, utilising direct quotes and specific examples from the sessions. This practice
effectively anchored the study’s findings in the authentic experiences and perspectives of

the participants, thereby bolstering the confirmability of the research.

6.8 Limitations of the Study
Looking back on the research conducted for this thesis, it is evident that while it
constitutes an original contribution to the field, it also inevitably encompasses certain

limitations and weaknesses.

First, the phenomenon of retrospective rationalisation, where participants reinterpret
actions and thoughts after the fact, introduces potential discrepancies between actual
and reported behaviours, as participants might align their narratives with perceived

expectations or beliefs (Tufford & Newman, 2012).

In addition, the inherent complexity of qualitative data, sourced from diverse mediums
like video recordings and interviews, presents considerable challenges in achieving
thematic interpretation and analysis consistency (Saunders et al., 2023). Furthermore,
this complexity is exacerbated by the emotional and psychological impacts on
apprentices when observed, potentially influencing their responses and behaviours.
Despite these challenges, qualitative research provides profound insights often beyond

the reach of localised surveys, as suggested by Grant and Booth (2009).

253 |Page

Also, the study’s focus on Python programming and Microsoft Visual Studio as the
primary IDE presents a limitation in its scope, specifically in capturing the variety of
challenges and strategies in diverse programming languages and environments. This is
significant, as each programming language and IDE possesses unique intricacies that
influence the debugging process (Murphy et al., 2006; Robins et al., 2003). Therefore, the
study’s findings might neither fully encompass the breadth of challenges faced in
different software development contexts, nor account for the potential evolution of

apprentices’ debugging skills and strategies over a more extended period.

Furthermore, the rapid advancement of software development tools and practices
compounds this limitation. The field’s dynamic nature, with new languages, frameworks,
and methodologies continually emerging, may render the study’s findings, focused on
specific technologies, less relevant in the long term (Rajlich & Bennett, 2000). This
evolving landscape of software development suggests that the study’s insights, while
pertinent in the current context, might not maintain their applicability as new
technologies and practices develop. Such limitations corroborate the importance of
continuous research and adaptation in the field to stay abreast of these technological

shifts.

Additionally, the study’s reliance on digital communication platforms like Microsoft
Teams introduces unique challenges. While facilitating remote collaboration, these
platforms may lead to technical issues, reduced nuances in communication compared to
face-to-face interactions, and disparities in digital literacy among participants. Such

factors can significantly influence the dynamics of debugging sessions and interviews.

254 |Page

Consequently, the findings drawn from such digitally mediated interactions should be
interpreted with caution, particularly when considering their applicability to different
software development environments or settings where digital communication may not

be as prevalent.

Moreover, the study’s specific cultural and organisational focus raises questions about
the generalisability of its findings to diverse contexts. As qualitative research often
reflects the unique circumstances of its setting (Hsieh & Shannon, 2005), the experiences
of apprentices and mentors in this study, conducted within a particular organisational
culture, might not accurately represent those in different technological or organisational
environments. This limitation is essential to consider when applying the study’s insights
to varied contexts, as they may not translate seamlessly across different organisational

cultures or technological landscapes.

Additionally, the study’s reliance on digital communication platforms like Microsoft
Teams introduces unique challenges. While facilitating remote collaboration, these
platforms may lead to technical issues, minimised subtleties in communication compared
to face-to-face interactions, and disparities in digital literacy among participants. Such
factors can significantly influence the dynamics of debugging sessions and interviews.
Consequently, the findings drawn from such digitally mediated interactions should be
interpreted with caution, particularly when considering their applicability to different
software development environments or settings where digital communication may not

be as prevalent.

255|Page

On top of this, the process of validating findings with apprentices and mentors, though
intended to enhance reliability, is not immune to confirmation bias. This bias occurs when
individuals, including researchers and study participants, are more likely to agree with
interpretations that align with their pre-existing beliefs or expectations (Nickerson, 1998).
In this context, apprentices and mentors might unconsciously affirm findings that
resonate with their experiences or perspectives, thereby reinforcing the researcher’s
initial interpretations. Although designed to strengthen the study’s credibility, this
feedback loop necessitates careful management to avoid reinforcing potentially skewed
perspectives. Hence, while seeking validation from participants adds robustness, careful
handling is required to mitigate the risks of confirmation bias, ensuring a more balanced

and objective analysis of the data.

Another notable limitation of this study pertains to the applicability of the debugging
tasks for younger apprentices, particularly in relation to the salary and tax issues
embedded within them. These topics, while relevant to software development in
business contexts, may not have been fully comprehensible or relevant to younger
participants who lacked prior experience or understanding of such real-world concepts.
Apprentices, especially those at the early stages of their careers, may not have had
sufficient exposure to financial concepts like salary calculations and tax systems, which
could have created a barrier to their engagement with the tasks. Studies indicate that for
learning to be effective, tasks must align with the learners’ cognitive developments and
prior knowledge (Alexander, 2003). When tasks are overly complex or disconnected from
participants’ experiences, they may struggle to engage meaningfully, leading to sub-

optimal learning outcomes (Kirschner et al., 2006).

256 |Page

This limitation highlights the importance of designing problem sets that are universally
relevant to all learners, regardless of their age or background knowledge. By ensuring
that the tasks used in future studies reflect scenarios that are relatable and within the
comprehension of all apprentices, the study could enhance both the engagement and
performance of participants. This approach is supported by educational theory, which
suggests that contextualising learning materials to the learners’ experience enhances
cognitive engagement and motivation. For example, incorporating tasks that simulate
everyday programming challenges rather than complex business scenarios could improve

the accessibility of the debugging tasks for younger apprentices.

In conclusion, despite its limitations, the current research sets the stage for future
exploration in broader contexts, over extended periods, and through varied
methodologies. However, acknowledging these limitations enriches the study,
positioning it as a contribution that offers foundational insights into apprentices’
debugging practices and lays down pathways for comprehensive future research, echoing
the call by Grant and Booth (2009) for robust and adaptive qualitative research

methodologies.

6.9 Further Research and Recommendations

In addressing the current study’s limitations, a critical analysis suggests that future
research should adopt a more encompassing approach, integrating a broader and more
diverse participant base across different industries and cultural backgrounds. This

expansion is crucial for enhancing the generalisability of the findings, providing a more

257 |Page

representative understanding of debugging practices in varied organisational and cultural
contexts. Incorporating a mixed-method approach could offer a crucial balance, allowing
researchers to delve deeper while simultaneously capturing a broader perspective
(Creswell & Clark, 2007; Tufford & Newman, 2012). Simultaneously, it is imperative to
uphold methodological rigour and actively mitigate biases, particularly in qualitative
research. This involves enhancing objectivity in thematic interpretation and being vigilant
of the researcher’s influence on the analysis. Such an approach would address potential
confirmation biases, ensuring that validation processes, while robust, do not
inadvertently reinforce skewed perspectives or pre-existing beliefs of participants (Hsieh

& Shannon, 2005; Nickerson, 1998).

Moreover, considering the rapid evolution of software development tools and practices,
future studies must adapt to include emerging technologies, languages, and frameworks.
This adaptation is essential to ensure that research findings remain relevant and
applicable within the fast-paced technological landscape of software development
(Rajlich & Bennett, 2000). In tandem with this technological adaptability, an exploration
into the impact of digital communication platforms like Microsoft Teams on research
processes is warranted. As these platforms increasingly become integral to remote
collaboration in research, understanding their effects on participant interaction, data
collection, and analysis could yield vital insights. This investigation could unveil the
dynamics of remote collaboration in research settings, highlighting how digital

communication affects the intricacies of data gathering and participant interactions.

258 | Page

Through such a comprehensive and adaptable approach, future research in software
development and apprenticeships can build on the foundational insights of the current
study. It can provide richer, more deeper insights into debugging practices and
apprenticeship learning, accounting for the evolving challenges and opportunities in the
dynamic domain of technology-driven environments. This approach highlights the
importance of continuous research adaptation and innovation in response to changing

technological and methodological landscapes.

6.10 Conclusion

This thesis marks an advancement in the field of computing education, bringing to light
the intricacies of work-based learning, specifically in the realm of software development
apprenticeship and their debugging practices. Central to the thesis is exploring how
apprentices navigate the intricate balance of cognitive, technical, and communicative
aspects within debugging tasks. The study delves into the strategies apprentices employ
to address complex syntax, logical and runtime errors and their use of IDEs like Microsoft
Visual Studio, offering vital insights into their problem-solving processes and technical

proficiency.

The research emphasises the critical role of communication and collaboration in
debugging, especially within remote learning environments. The challenges posed by
geographical dispersion highlight the need for innovative educational strategies and tools
that effectively bridge communication gaps in remote learning scenarios. The research

also calls attention to the necessity of keeping pace with the rapidly evolving field of

259 |Page

software development, urging continuous adaptation in teaching methodologies to align

with technological advancements.

The limitations identified in the study, such as generalisability concerns and potential
researcher bias, pave the way for future research opportunities. Exploring a broader
range of contexts and employing diverse methodologies can enhance the scope of
understanding in debugging practices within different environments. This approach
would build upon the findings of this thesis and contribute to the broader body of

knowledge in computing education.

In conclusion, this thesis stands as a critical contribution to computing education,
providing insights into apprentices’ debugging practices. It informs and has the potential
to transform educational practices and tool development, fostering the growth of skilled
professionals in the constantly evolving field of software development. The research
establishes a foundational understanding for further investigation, demonstrating

gualitative research’s dynamic and impactful nature in technology education.

260 | Page

References

Adeliyi, A., Wermelinger, M., Kear, K., & Rosewell, J. (2021). Investigating Remote Pair
Programming In Part-Time Distance Education 3rd Conference on United
Kingdom and Ireland Computing Education Research, UKICER 2021, Online.
https://oro.open.ac.uk/79055/

Adelson, B., & Soloway, E. (1985). The Role of Domain Expenence in Software Design.
IEEE Transactions on Software Engineering, SE-11(11), 1351-1360.
https://doi.org/10.1109/TSE.1985.231883

Afzal, A., & Goues, C. L. (2018). 4 study on the use of IDE features for debugging. MSR
'18: Proceedings of the 15th International Conference on Mining Software
Repositories, Gothenburg, Sweden.

Agerfalk, P. J., Fitzgerald, B., Holmstrom, H., Lings, B., Lundell, B., & Conchui, E. O.
(2005). 4 framework for conmsidering opportunities and threats in distributed
software development. Proceedings of the International Workshop on Distributed
Software Development: DiSD 2005, Paris, France.

Agrawal, H., DeMillo, R. A., & Spafford, E. H. (1993). Debugging with dynamic slicing
and backtracking. Software: Practice and Experience, 23(6), 589-616.

Ahadi, A., Lister, R., Lal, S., & Hellas, A. (2018). Learning programming, syntax errors
and institution-specific factors ACE '18: Proceedings of the 20th Australasian
Computing Education Conference, Brisbane, Queensland, Australia.

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging
among novice computer science students. ACM SIGCSE Bulletin, 37(3), 84-88.

Ahn, J., Sung, W., & Black, J. B. (2022). Unplugged debugging activities for developing
young learners’ debugging skills. Journal of Research in Childhood Education,
36(3),421-437.

Akinola, S. (2014). An Empirical Comparative Analysis of Programming Effort, Bugs
Incurrence and Code Quality between Solo & Pair Programmers. Middle-East
Journal of Scientific Research, 21(12), 2231-2237.

Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging? An exploratory study
of debugging episodes. Empirical Software Engineering, 28(5), 117.
https://doi.org/https://doi.org/10.48550/arXiv.2105.02162

Alexander, P. A. (2003). The development of expertise: The journey from acclimation to
proficiency. Educational researcher, 32(8), 10-14.

Allwood, C. M. (1986). Novices on the computer: a review of the literature. Infernational
Journal of Man-Machine Studies, 25(6), 633-658.

Allwood, C. M., & Bjorhag, C.-G. (1990). Novices' debugging when programming in
Pascal. International Journal of Man-Machine Studies, 33(6), 707-724.

Algadi, B. S., & Maletic, J. 1. (2017). An Empirical Study of Debugging Patterns Among
Novices Programmers Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, Seattle, Washington, USA.

Anderson, J. R. (2015). Cognitive Psychology and Its Implications (8th ed.). Worth
Publishers.

Arksey, H., & O'Malley, L. (2005). Scoping studies: towards a methodological framework.
International Journal of Social Research Methodology, 8(1), 19-32.

Artman, H., & Wern, Y. (1999). Distributed cognition in an emergency co-ordination
center. Cognition, Technology & Work, 1(4), 237-246.

Bacchelli, A., & Bird, C. (2013, 18-26 May 2013). Expectations, outcomes, and challenges
of modern code review 2013 35th International Conference on Software
Engineering (ICSE), San Francisco, CA, USA.

261|Page

https://oro.open.ac.uk/79055/
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/https:/doi.org/10.48550/arXiv.2105.02162

Babheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the Efficacy of Distributed Pair
Programming. In D. Wells & L. Williams, Extreme Programming and Agile
Methods — XP/Agile Universe 2002 Conference on Extreme Programming and
Agile Methods, Berlin, Heidelberg.

Baker, R. S., Corbett, A. T., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task behavior
in the cognitive tutor classroom: when students "game the system" Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Vienna,
Austria. https://doi.org/10.1145/985692.985741

Barbosa Rocha, H. J., Tedesco, P. C. D. A. R., & Costa, E. D. B. (2022). On the use of
feedback in learning computer programming by novices: a systematic literature
mapping. Informatics in Education, 22(2), 209-232.
https://doi.org/10.15388/infedu.2023.09

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and
implementation for novice researchers. The Qualitative Report, 13(4), 544-559.

Beasley, Z. J., & Johnson, A. R. (2022). The Impact of Remote Pair Programming in an
Upper-Level CS Course. ITiCSE 2022: Proceedings of the 27th ACM Conference
on Innovation and Technology in Computer Science Education, Dublin, Ireland.

Beck, K. (2000). Extreme programming explained: embrace change. addison-wesley
professional.

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B., Kamil,
A., Karkare, A., McDonald, C., & Osera, P.-M. (2019). Compiler error messages
considered unhelpful: The landscape of text-based programming error message
research. Proceedings of the working group reports on innovation and technology
in computer science education, 177-210.

Becker, H. S. (1971). Sociological Work: Method and substance, Allen Lane. In: The
Penguin Press.

Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A., &
Cook, C. (2006). Tinkering and gender in end-user programmers' debugging
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Montréal, Québec, Canada. https://doi.org/10.1145/1124772.1124808

Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the dichotomy of debugging
behavior among programmers Proceedings of the 40th International Conference
on Software Engineering, Gothenburg, Sweden.
https://doi.org/10.1145/3180155.3180175

Beller, M., Spruit, N., & Zaidman, A. (2017). How developers debug. PeerJ Preprints, 5,
€2743v2741. https://doi.org/10.7287/peerj.preprints.2743v 1

Bennedsen, J., & Caspersen, M. E. (2007). Assessing process and product: a practical lab
exam for an introductory programming course. Innovation in Teaching and
Learning in Information and Computer Sciences, 6(4), 183-202.

Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software
development teams—An empirical study of its benefits. Information and software
technology, 50(3), 231-240.

Blackwell, A., Robinson, P., Roast, C., & Green, T. (2002). Cognitive models of
programming-like activity CHI'02 Extended Abstracts on Human Factors in
Computing Systems, Minneapolis, Minnesota, USA.

Bogdan, R., & Biklen, S. (2007). Qualitative Research for Education: An Introduction to
Theory and Methods. (5 ed.). Allyn & Bacon, Boston.

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, Austin, Texas. https://doi.org/10.1145/567067.567069

262 |Page

https://doi.org/10.1145/985692.985741
https://doi.org/10.15388/infedu.2023.09
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.7287/peerj.preprints.2743v1
https://doi.org/10.1145/567067.567069

Brannen, J. (2005). Mixing methods: The entry of qualitative and quantitative approaches
into the research process. International Journal of Social Research Methodology,
8(3), 173-184.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind,
Experience, and School. National Academy Press.

Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3: Rethinking transfer: A simple
proposal with multiple implications. Review of research in education, 24(1), 61-
100.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
research in psychology, 3(2), 77-101.

Britten, N. (1995). Qualitative research: qualitative interviews in medical research. Bmyj,
311(6999), 251-253.

Broome, M. E. (2000). Integrative literature reviews for the development of concepts.
Concept development in nursing: foundations, techniques and applications.
Philadelphia (USA): WB Saunders Company, 231-250.

Bruner, J. S. (2009). The Process of Education. Harvard University Press, Cambridge.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair programming and the mysterious role
of the navigator. International Journal of Human-Computer Studies, 66(7), 519-
529.

Bryman, A. (2003). Quantity and Quality in Social Research (Vol. 18). Routledge.
https://doi.org/https://doi.org/10.4324/9780203410028

Bryman, A. (2016). Social Research Methods (5th ed.). Oxford University Press.

Cameron, R. (2011). Mixed methods research: The five Ps framework. Electronic journal
of business research methods, 9(2), pp96-108-pp196-108.

Card, S. K., Moran, T. P., & Newell, A. (2018). The Psychology of Human-Computer
Interaction. CRC Press.

Carnwell, R., & Daly, W. (2001). Strategies for the construction of a critical review of the
literature. Nurse education in practice, 1(2), 57-63.

Carter, J. (2015). The Apprenticeship Agenda. Impact Magazine, 2-3.

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J., & Neville, A. J. (2014). The Use
of Triangulation in Qualitative Research. Oncology Nursing Forum, 41(5), 545-
547.

Castillo-Montoya, M. (2016). Preparing for Interview Research: The Interview Protocol
Refinement Framework. The Qualitative Report, 21(5), 811-831.
https://doi.org/10.46743/2160-3715/2016.2337

Chalmers, P. A. (2003). The role of cognitive theory in human—computer interface.
Computers in Human Behavior, 19(5), 593-607. https://doi.org/10.1016/S0747-
5632(02)00086-9

Chen, M.-W., Wu, C.-C., & Lin, Y.-T. (2013). Novices' debugging behaviors in VB
programming. Learning and Teaching in Computing and Engineering (LaTiCE),
2013,

Cheng, L.-T., de Souza, C. R., Hupfer, S., Patterson, J., & Ross, S. (2003). Building
Collaboration into IDEs: Edit> Compile> Run> Debug> Collaborate? Queue, 1(9),
40-50.

Cherenkova, Y., Zingaro, D., & Petersen, A. (2014). Identifying challenging CS1 concepts
in a large problem dataset. Proceedings of the 45th ACM technical symposium on
Computer science education,

Chi, E. H., Pirolli, P., Chen, K., & Pitkow, J. (2001). Using information scent to model
user information needs and actions and the Web. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,

263 |Page

https://doi.org/https:/doi.org/10.4324/9780203410028
https://doi.org/10.46743/2160-3715/2016.2337
https://doi.org/10.1016/S0747-5632(02)00086-9
https://doi.org/10.1016/S0747-5632(02)00086-9

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V. (2006). Pair
Collaboration in End-User Debugging. Proceedings - IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2006, Brighton, UK.

Chong, J., & Hurlbutt, T. (2007). The Social Dynamics of Pair Programming. ICSE '07:
Proceedings of the 29th international conference on Software Engineering,
https://doi.org/10.1109/ICSE.2007.87

Chorfi, A., Hedjazi, D., Aouag, S., & Boubiche, D. (2020). Problem-based collaborative
learning groupware to improve computer programming skills. Behaviour &
information technology, 1-20.

Christensen, L. B., Johnson, B., & Turner, L. A. (2020). Research methods, design, and
analysis (Thirteenth Edition ed.). Pearson Education, Inc.

Clarke, S. O., Ilgen, J. S., & Regehr, G. (2023). Fostering Adaptive Expertise Through
Simulation. Academic Medicine, 98(9), 994-1001.
https://doi.org/10.1097/acm.0000000000005257

Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming. Extreme
programming examined, 8, 223-247.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. In:
London: Routledge.

Coker, Z., Widder, D. G., Le Goues, C., Bogart, C., & Sunshine, J. (2019). 4 qualitative
study on framework debugging. 2019 1EEE International Conference on Software
Maintenance and Evolution (ICSME),
https://doi.org/10.1109/ICSME.2019.00091.

Colquitt, J. A. (2013). Crafting References in AMJ Submissions. In (Vol. 56, pp. 1221-
1224): Academy of Management Journal.

Cooke, A., Smith, D., & Booth, A. (2012). Beyond PICO: the SPIDER tool for qualitative
evidence synthesis. Qualitative Health Research, 22(10), 1435-1443.

Creamer, E. G. (2017). An introduction to fully integrated mixed methods research. sage
publications.

Cresswell, J., & Plano Clark, V. L. (2011). Designing and conducting mixed method
research. Thousand Oaks, CA.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods
approaches (4th ed. ed.). SAGE Publications.

Creswell, J. W., & Clark, V. L. P. (2007). Designing and conducting mixed methods
research.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing
among five approaches (Fourth ed.). Sage publications.

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the
research process. Sage.

da Silva Estacio, B. J., & Prikladnicki, R. (2015). Distributed pair programming: A
systematic literature review. Information and software technology, 63, 1-10.

David, J. A. (2002). Debugging: The 9 indispensable rules for finding even the most
elusive software and hardware problems. American Management Association
(AMACOM), 5.

de Raadt, M. (2007). A review of Australasian investigations into problem solving and the
novice programmer. Computer Science Education, 17(3), 201-213.

Denny, P., Becker, B. A., Bosch, N., Prather, J., Reeves, B., & Whalley, J. (2022). Novice
Reflections During the Transition to a New Programming Language.

Dewey, J. (1922). The middle works of John Dewey: Human nature and conduct (Vol. 14).
In: Carbondale: Southern Illinois University Press.

264 |Page

https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1097/acm.0000000000005257
https://doi.org/10.1109/ICSME.2019.00091

Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing,
5(1), 4-7.

DfFE/BIS. (2013). The Future of Apprenticeship in England: Next Steps from the Richard
Review. Department for Education and Department for Business, Innovation and
Skills ...

Dillenbourg, P., Jarveld, S., & Fischer, F. (2009). The Evolution of Research on Computer-
Supported Collaborative Learning. In N. Balacheff, S. Ludvigsen, T. de Jong, A.
Lazonder, & S. Barnes (Eds.), Technology-Enhanced Learning: Principles and
Products (pp. 3-19). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-
9827-7_1

Downey, A. B. (2012). Think Python: How to think like a compter scientist. Green Tea
Press.

Dreyfus, H., Dreyfus, S. E., & Athanasiou, T. (2000). MIND OVER MACHINE: The Power
of Human Intuition and Expertise in the Eva of the Computer. Simon and Schuster.

Dreyfus, H. L., & Dreyfus, S. E. (2005). Peripheral vision: Expertise in real world contexts.
Organization studies, 26(5), 779-792.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57-73.

Du Preez Ockert, J. (2019). Visual studio 2019 in depth. BPb Publications.

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and software technology, 50(9-10), 833-859.

Eisenstadt, M. (1993). Tales of Debugging From the Front Lines. Empirical Studies of
Programmers: Fifth Workshop, Palo Alto, California.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.
Human factors, 37(1), 32-64.

Engestrom, Y., Miettinen, R., Punaméki, R.-L., Minnis, M., & John-Steiner, V. P. (2001).
Perspectives on activity theory. Human development, 44(5), 296-310.

Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of
thinking during experts’ performance on representative tasks. The Cambridge
handbook of expertise and expert performance, 223-241.

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. A
Bradford book. In: The MIT Press: Cambridge, Massachusetts, London, England.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis. MIT press Cambridge, MA.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Team knowledge
and coordination in geographically distributed software development. Journal of
management information systems, 24(1), 135-169.

Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors made by novice
programmers Proceedings of the 20th Australasian Computing Education
Conference, Brisbane, Queensland, Australia.
https://doi.org/10.1145/3160489.3160493

Faja, S. (2014). Evaluating effectiveness of pair programming as a teaching tool in
programming courses. Information Systems Education Journal, 12(6), 36.

Finlay, L. (2002). “Outing” the researcher: The provenance, process, and practice of
reflexivity. Qualitative Health Research, 12(4), 531-545.

Fitzgerald, B., & Howcroft, D. (1998). Competing dichotomies in IS research and possible
strategies for resolution. /n Proceedings of the International Conference on
Information Systems (ICIS '98), 14, 155-164.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &
Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional
study of novice debuggers. Computer Science Education, 18(2), 93-116.

265|Page

https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1145/3160489.3160493

Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., & Zander, C. (2010).
Debugging from the student perspective. IEEE Transactions on Education, 53(3),
390-396.

Fitzpatrick, B. W., & Collins-Sussman, B. (2015). Debugging Teams: Better Productivity
Through Collaboration. " O'Reilly Media, Inc.".

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive—
developmental inquiry. American psychologist, 34(10), 906.

Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J., &
Kwan, 1. (2013). An information foraging theory perspective on tools for
debugging, refactoring, and reuse tasks. ACM Transactions on Software
Engineering and Methodology (TOSEM), 22(2), 14.

Flick, U. (2022). An introduction to qualitative research. An introduction to qualitative
research, 1-100.

Flor, N. V., & Hutchins, E. L. (1991). Analysing Distributed Cognition in Software Teams.
A Case Study of Team Programming during Adaptive Software Maintenance
Empirical studies of programmers: Fourth workshop, New Brunswick, N.J.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative
inquiry, 12(2), 219-245.

Fontana, E. A., & Petrillo, F. (2021). Mapping breakpoint types: an exploratory study.
2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS), Hainan Island, China.

Freudenberg, S., Romero, P., & du Boulay, B. (2007). "Talking the talk": Is intermediate-
level conversation the key to the pair programming success story? Agile 2007
(AGILE 2007), Washington, DC, USA.

Fromherz, A., Ouadjaout, A., & Miné, A. (2018). Static value analysis of Python programs
by abstract interpretation NASA Formal Methods: 10th International Symposium,
NFM 2018,, Newport News, VA, US.

Fuller, A., & Unwin, L. (2010). Creating and Supporting Expansive Apprenticeships: a
guide for employers, training providers and colleges of further education. In:
London, LSIS [Online]. Available at http://webarchive. nationalarchives. gov

Fuller, A., & Unwin, L. (2013). Apprenticeship and the concept of occupation. The Gatsby
Charitable Foundation, London.

Geertz, C. (1973). The interpretation of cultures. NY: Basic Books.

Glesne, C. (2016). Becoming qualitative researchers: An introduction. ERIC.

Glezou, K., & Grigoriadou, M. (2010). Engaging students of senior high school in
simulation development. Informatics in Education, 9(1), 37-62.

Goldman, M., Little, G., & Miller, R. C. (2011). Real-time collaborative coding in a web
IDE UIST '11: Proceedings of the 24th annual ACM symposium on User interface
software and technology, Santa Barbara, California, USA.
https://doi.org/10.1145/2047196.2047215

Gomes, A., & Mendes, A. J. (2007). Learning to program-difficulties and solutions
International Conference on Engineering Education—ICEE, Coimbra, Portugal.

Gould, J. D. (1975). Some psychological evidence on how people debug computer
programs. International Journal of Man-Machine Studies, 7(2), 151-182.

Gould, J. D., & Drongowski, P. (1974). An exploratory study of computer program
debugging. Human Factors: The Journal of the Human Factors and Ergonomics
Society, 16(3), 258-277.

Grandell, L., Peltomiki, M., & Salakoski, T. (2005). High school programming—a
beyond-syntax analysis of novice programmers’ difficulties. Proceedings of the
Koli Calling 2005 Conference on Computer Science Education,

266|Page

http://webarchive/
https://doi.org/10.1145/2047196.2047215

Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types
and associated methodologies. Health information & libraries journal, 26(2), 91-
108.

Gray, D. E. (2021). Doing research in the real world (5th ed.). SAGE Publications Ltd.

Greenbaum, T. L. (1998). The handbook for focus group research. Sage.

Greenhalgh, T., & Peacock, R. (2005). Effectiveness and efficiency of search methods in
systematic reviews of complex evidence: audit of primary sources. Bmyj, 331(7524),
1064-1065.

Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, 1. (2012). End-
user debugging strategies: A sensemaking perspective. ACM Transactions on
Computer-Human Interaction (TOCHI), 19(1), 1-28.

Grix, J. (2004). The Foundation of Research, Great Britain. In: Plagave Macmillan Press.

Grover, S., & Pea, R. (2013). Computational thinking in K—12: A review of the state of the
field. Educational researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2014). Promoting active learning & leveraging
dashboards for curriculum assessment in an OpenEdX introductory CS course for
middle school. Proceedings of the first ACM conference on Learning@ scale
conference,

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research.
Handbook of qualitative research, 2(163-194), 105.

Gugerty, L., & Olson, G. (1986). Debugging by skilled and novice programmers. ACM
SIGCHI Bulletin, 17(4), 171-174.

Guile, D., & Young, M. (1998). Apprenticeship as a conceptual basis for a social theory
of learning. Journal of Vocational Education & Training, 50(2), 173-193.
Guzdial, M. (1994). Software-Realized Scaffolding to Facilitate Programming for Science
Learning. Interactive Learning Environments, 4(1), 001--044.

https://doi.org/10.1080/1049482940040101

Guzdial, M. (2015). Learner-centered design of computing education: Research on
computing for everyone. Morgan & Claypool Publishers.

Guzdial, M. J., & Ericson, B. (2013). Introduction to Computing and Programming in
Python: International Edition. Pearson Higher Ed.

Hafeez, M., Karki, A., Radwan, Y., Saha, A., & Zavaleta Bernuy, A. (2023). Evaluating
the Efficacy and Impacts of Remote Pair Programming for Introductory Computer
Science Students Proceedings of the 25th Western Canadian Conference on
Computing Education, Vancouver, BC, Canada.

Hammersley, M., & Atkinson, P. (1995). Ethnography. Principles in practice (2nd ed.
ed.). Routledge.

Hanks, B. (2008). Empirical evaluation of distributed pair programming. International
Journal of Human-Computer Studies, 66(7), 530-544.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair
programming in education: a literature review. Computer Science Education,
21(2), 135-173.

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair
programming in CSI1. Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science education,

Hannay, J. E., Dyba, T., Arisholm, E., & Sjoberg, D. 1. (2009). The effectiveness of pair
programming: A meta-analysis. Information and software technology, 51(7), 1110-
1122.

Hart, C. (1998). Doing a literature review: Releasing the social science research
imagination (SAGE) Reviewing the literature for a research project can seem a

267 |Page

https://doi.org/10.1080/1049482940040101

daunting, even overwhelming task. New researchers, in particular, wonder: Where
do I start, 30.

Hart, C. (2018). Doing a literature review: Releasing the research imagination. SAGE Study
Skills Series, 352.

Hassan, M., & Zilles, C. (2022). On Students' Ability to Resolve their own Tracing Errors
through Code Execution. SIGCSE 2022: Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, March 3-5, 2022, Providence
RI USA.

Hatano, G., & Inagaki, K. (1986). Two courses of expertise. In Child development and
education in Japan. (pp. 262-272). W H Freeman/Times Books/ Henry Holt & Co.

Hazzan, O., Ragonis, N., Lapidot, T., Hazzan, O., Ragonis, N., & Lapidot, T. (2020).
Problem-solving strategies. Guide to Teaching Computer Science: An Activity-
Based Approach, 143-168.

Helminen, J., Ihantola, P., & Karavirta, V. (2013). Recording and analyzing in-browser
programming sessions. Proceedings of the 13th Koli Calling International
Conference on Computing Education Research,

Herbsleb, J. D., & Moitra, D. (2001). Global software development. /EEE software, 18(2),
16-20.

Heyes, J. (2013). Vocational training, employability and the post-2008 jobs crisis:
Responses in the European Union. Economic and industrial democracy, 34(2),
291-311.

Hirsch, T., & Hofer, B. (2022). Using textual bug reports to predict the fault category of
software bugs. Array, 100189.

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?
Educational Psychology Review, 16, 235-266.

Hoeckel, K., & Schwartz, R. (2010). Learning for Jobs OECD Reviews of Vocational
Education and Training. Austria: Organisation for Economic Co-operation and
Development (OECD).

Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: toward a new
foundation for human-computer interaction research. ACM Transactions on
Computer-Human Interaction (TOCHI), 7(2), 174-196.

Hooper, E. J., & Thomas, R. A. (1990). Investigating the effects of a manipulative model
of computer memory operations on the learning of programming. Journal of
Research on Computing in Education, 22(4), 442-456.

Hopia, H., Latvala, E., & Liimatainen, L. (2016). Reviewing the methodology of an
integrative review. Scandinavian journal of caring sciences, 30(4), 662-669.

Horwitz, S., Liblit, B., & Polishchuk, M. (2009). Better debugging via output tracing and
callstack-sensitive slicing. IEEE Transactions on Software Engineering, 36(1), 7-
19.

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis.
Qualitative Health Research, 15(9), 1277-1288.

Hughes, J., Walshe, A., Law, B., & Murphy, B. (2020). Remote pair programming 12th
International Conference on Computer Supported Education - Volume 2: CSEDU,
https://doi.org/10.5220/0009582904760483

Hutchins, E. (1995). Cognition in the Wild. MIT press.

IfATE. (2022). Software development technician. Retrieved April 5 from
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-
development-technician-v1-1

268 |Page

https://doi.org/10.5220/0009582904760483
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1

IfATE. (2023). Apprenticeship Standards. Institute for Apprenticeships and Technical
Education. https://www.instituteforapprenticeships.org/apprenticeship-
standards/?routes=digital&includeApprovedForDelivery=true

IfATE. (2024). Software development technician Apprentice Standard. Institute for
Apprenticeships and Technical Education. Retrieved 06/02/2024 from
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-
development-technician-v1-1

Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of electronic textiles
projects: Analyzing think-aloud protocols for high school students’ strategies and
practices while problem solving The Interdisciplinarity of the Learning Sciences,
14th International Conference of the Learning Sciences (ICLS) 2020, Nashville,
USA.

Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging with electronic
textiles: understanding high school student pairs’ problem-solving strategies,
practices, and perspectives on repairing physical computing projects. Computer
Science Education, 1-35.

Jeffries, B., Lee, J. A., & Koprinska, 1. (2022, July 8-13, 2022). 115 Ways Not to Say
Hello, World! Syntax Errors Observed in a Large-Scale Online CSO Python
Course. Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 1 (ITiCSE 2022), Dublin,
Ireland.

Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice
programmers Proceedings of AERA annual meeting, New York, NY, USA.
https://doi.org/10.3102/0013189X011008022

Jenkins, T. (2002). On the difficulty of learning to program. Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences,
Loughborough, UK.

Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing your literature review: Traditional
and systematic techniques. Doing Your Literature Review, 1-192.

Joanna Briggs Institute. (2017). Checklist for systematic reviews and research syntheses.
https://joannabriggs.org/ebp/critical appraisal_tools

Johnson, D. W., & Johnson, R. T. (1987). Learning together and alone: Cooperative,
competitive, and individualistic learning. Prentice-Hall, Inc.

Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into
practice, 38(2), 67-73.

Johnson, E. A. J. (1937). Predecessors of Adam Smith: The Growth of British Economic
Thought. Journal of the Royal Statistical Society, 100(4), 678-680.
https://doi.org/10.2307/2980407

Jones, S. R., Torres, V., & Arminio, J. (2013). Negotiating the complexities of qualitative
research in higher education: Fundamental elements and issues. Routledge.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The
journal of the learning sciences, 4(1), 39-103.

Junior, A. S., de Figueiredo, J. C. A., & Serey, D. (2019). Analysing the Impact of
Programming Mistakes on Students' Programming Abilities. Brazilian Symposium
on Computers in Education (Simpoésio Brasileiro de Informética na Educacao-
SBIE), Brazil.

Karvelas, 1. (2019). Investigating Novice Programmers' Interaction with Programming
Environments Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, Aberdeen, Scotland, Uk.
https://doi.org/10.1145/3304221.3325596

269 |Page

https://www.instituteforapprenticeships.org/apprenticeship-standards/?routes=digital&includeApprovedForDelivery=true
https://www.instituteforapprenticeships.org/apprenticeship-standards/?routes=digital&includeApprovedForDelivery=true
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://www.instituteforapprenticeships.org/apprenticeship-standards/software-development-technician-v1-1
https://doi.org/10.3102/0013189X011008022
https://joannabriggs.org/ebp/critical_appraisal_tools
https://doi.org/10.2307/2980407
https://doi.org/10.1145/3304221.3325596

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies.
Human-Computer Interaction, 3(4), 351-399.

Kavitha, R., & Ahmed, M. 1. (2015). Knowledge sharing through pair programming in
learning environments: An empirical study. Education and Information
Technologies, 20(2), 319-333.

Kendall, M., Murray, S. A., Carduff, E., Worth, A., Harris, F., Lloyd, A., Cavers, D., Grant,
L., Boyd, K., & Sheikh, A. (2009). Use of multiperspective qualitative interviews
to understand patients’ and carers’ beliefs, experiences, and needs. Bmj, 339,
b4122.

Khalid, M. A. B., Farooq, A., & Mahmood, W. (2021). Communication Challenges for
Distributed Teams. International Journal of Engineering and Manufacturing
(IJEM), 11(1), 19-28.

Khan, M., & Manderson, L. (1992). Focus groups in tropical diseases research. Health
policy and planning, 7(1), 56-66.

Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C. (2022). Debugging
behaviors of early childhood teacher candidates with or without scaffolding.
International Journal of Educational Technology in Higher Education, 19(1), 1-
26.

Kiron, D., Kane, G. C., Palmer, D., Phillips, A. N., & Buckley, N. (2016). Aligning the
organization for its digital future. MIT Sloan Management Review, 58(1).

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational
psychologist, 41(2), 75-86.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:
Instruction, learning, and transfer. Cognitive Psychology, 20(3), 362-404.

Ko, A.J., & Myers, B. A. (2005). A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages &
Computing, 16(1), 41-84.

Kohn, T. (2019). The Error Behind The Message: Finding the Cause of Error Messages
in Python Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, Minneapolis, MN, USA.
https://doi.org/10.1145/3287324.3287381

Kohn, T., & Manaris, B. (2020). Tell Me What's Wrong: A Python IDE with Error
Messages. Proceedings of the 51st ACM Technical Symposium on Computer
Science Education,

Kolb, D. (1984). Experiential Learning: Experience As The Source of Learning and
Development. New Jersey: Prentice Hall, Inc, Engle wood Cliffs.

Kélling, M., Brown, N. C., Hamza, H., & McCall, D. (2019). Stride in BlueJ--computing
for all in an educational IDE. SIGCSE 2019 - Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Minneapolis, United
States.

Kraus, S., Breier, M., Lim, W. M., Dabi¢, M., Kumar, S., Kanbach, D., Mukherjee, D.,
Corvello, V., Pifieiro-Chousa, J., & Liguori, E. (2022). Literature reviews as
independent studies: guidelines for academic practice. Review of Managerial
Science, 16(8), 2577-2595.

Kuhn, T. (1970). The structure of scientific revolutions 2nd edition. The University of
Chicago press, Chicago.

Kumar, V., Winne, P., Hadwin, A., Nesbit, J., Jamieson-Noel, D., Calvert, T., & Samin,
B. (2005). Effects of self-regulated learning in programming Fifth IEEE

270|Page

https://doi.org/10.1145/3287324.3287381

International Conference on Advanced Learning Technologies (ICALT'0S),
Kaohsiung, Taiwan.

Kurniawan, A., Soesanto, C., & Wijaya, J. E. C. (2015). Coder: Real-time code editor
application for collaborative programming. Procedia Computer Science, 59, 510-
519.

Kurniawan, O., Lee, N. T. S., Sockalingam, N., & Pey, K. L. (2019). Game-Based versus
gamified learning platform in helping university students learn programming.
ASCILITE Publications, 159-168.

Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing. In.
Thousand Oaks: Ca: Sage.

Lacave, C., & Molina, A. I. (2021). The Impact of COVID-19 in Collaborative
Programming. Understanding the Needs of Undergraduate Computer Science
Students. Electronics, 10(14), 1728.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M. (2005). A study of the difficulties of
novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.

LaToza, T. D., Arab, M., Loksa, D., & Ko, A. J. (2020). Explicit programming strategies.
Empirical Software Engineering, 25, 2416-2449.

LaToza, T. D., & Myers, B. A. (2010). Developers ask reachability questions Proceedings
of the 32Nd ACM/IEEE International Conference on Software Engineering-
Volume 1, Cape Town, South Africa. https://doi.org/10.1145/1806799.1806829

Lau, W. W., & Yuen, A. H. (2009). Toward a framework of programming pedagogy. In
Encyclopedia of Information Science and Technology, Second Edition (pp. 3772-
3777). 1GI Global.

Lave, J. (1995). Teaching as learning in practice, Sylvia Scribner Award Lecture, San
Francisco American Educational Research Association, Annual Meeting, San
Francisco, CA, USA.

Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture, and Activity, 3(3), 149-
164.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
Cambridge university press.

Lawrance, J., Bellamy, R., Burnett, M., & Rector, K. (2008). Using information scent to
model the dynamic foraging behavior of programmers in maintenance tasks.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Florence, Italy. https://doi.org/10.1145/1357054.1357261

Layman, L., Diep, M., Nagappan, M., Singer, J., Deline, R., & Venolia, G. (2013).
Debugging revisited: Toward understanding the debugging needs of contemporary
software developers. 2013 ACM/IEEE international symposium on empirical
software engineering and measurement, Baltimore, Maryland, USA.

Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based,
and community-based participatory research approaches. (First ed.). Guilford
Press. https://doi.org/10.1111/fcsr.12276

Lee, M. J., Bahmani, F., Kwan, 1., LaFerte, J., Charters, P., Horvath, A., Luor, F., Cao, J.,
Law, C., & Beswetherick, M. (2014). Principles of a debugging-first puzzle game
for computing education 2014 IEEE symposium on visual languages and human-
centric computing (VL/HCC), Melbourne, VIC, Australia.

Leedy, P. D., & Ormrod, J. E. (2021). Practical research: Planning and design (12th
Edition ed.). Pearson Education.

Lewis, C. M., & Gregg, C. (2016). How Do You Teach Debugging? Resources and
Strategies for Better Student Debugging SIGCSE '16: The 47th ACM Technical

271 |Page

https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1145/1357054.1357261
https://doi.org/10.1111/fcsr.12276

Symposium on Computing Science Education, Memphis, Tennessee, USA.
https://doi.org/10.1145/2839509.2850473

Li, X., Zhu, S., d'Amorim, M., & Orso, A. (2018). Enlightened debugging. Proceedings of
the 40th IEEE and ACM SIGSOFT International Conference on Software
Engineering (ICSE 2018), Gothenburg, Sweden.
https://doi.org/10.1145/3180155.3180242

Liamputtong, P. (2011). Focus group methodology: Principle and practice. Sage
Publications.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry (Vol. 75). Sage.

Lincoln, Y. S., & Guba, E. G. (2000). The Only Generalization Is There Is No
Generalization. In: Gomm, R., Hammersley, M. and Foster, P., Eds., Case Study
Method, SAGE, London, 27-45.

Lincoln, Y. S., Lynham, S. A., & Guba, E. G. (2011). Paradigmatic controversies,
contradictions, and emerging confluences, revisited. In N. K. Denzin & Y. S.
Lincoln (Eds.), The SAGE handbook of qualitative research (4th ed., pp. 97-128).
The Sage handbook of qualitative research, 4(2), 97-128.

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational psychologist, 20(4), 191-206.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,
R., Mostrom, J. E., Sanders, K., & Seppild, O. (2004). A multi-national study of
reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4),
119-150.

Liu, Q., & Paquette, L. (2023). Using submission log data to investigate novice
programmers’ employment of debugging strategies LAK23: 13th International
Learning Analytics and Knowledge Conference, Arlington, TX, USA.
https://doi.org/10.1145/3576050.3576094

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior
of 68 graders in a debugging game. Computer Science Education, 27(1), 1-29.

Loeliger, J., & McCullough, M. (2012). Version Control with Git: Powerful tools and
techniques for collaborative software development. " O'Reilly Media, Inc.".

Lowe, T. (2019). Debugging: The key to unlocking the mind of a novice programmer?
2019 IEEE Frontiers in Education Conference (FIE), Covington, KY, USA.

Lubbe, W., ten Ham-Baloyi, W., & Smit, K. (2020). The integrative literature review as a
research method: A demonstration review of research on neurodevelopmental
supportive care in preterm infants. Journal of Neonatal Nursing, 26(6), 308-315.

Lutz, M. (2013). Learning python: Powerful object-oriented programming. " O'Reilly
Media, Inc.".

Luxton-Reilly, A. (2016). Learning to program is easy. ITiCSE '16: Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science
Education, Arequipa, Peru.

Luxton-Reilly, A., & Petersen, A. (2017). The Compound Nature of Novice Programming
Assessments Proceedings of the Nineteenth Australasian Computing Education
Conference, Geelong, VIC, Australia. https://doi.org/10.1145/3013499.3013500

Lynch, J. W., Agarwal, J., & Imbrie, P. (2023). Work in Progress: Engineering together -
Applying remote collaborative technology to an in-person undergraduate
engineering course 2023 ASEE Annual Conference & Exposition, Baltimore ,
Maryland. https://peer.asee.org/44240

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A practical, step-by-step
guide for learning and teaching scholars. All Ireland Journal of Higher Education,
9(3).

272 |Page

https://doi.org/10.1145/2839509.2850473
https://doi.org/10.1145/3180155.3180242
https://doi.org/10.1145/3576050.3576094
https://doi.org/10.1145/3013499.3013500
https://peer.asee.org/44240

Malik, S. 1., Mathew, R., Al-Sideiri, A., Jabbar, J., AlI-Nuaimi, R., & Tawafak, R. M.
(2022). Enhancing problem-solving skills of novice programmers in an
introductory programming course. Computer Applications in Engineering
Education, 30(1), 174-194.

Marchionini, G. (1995). Information seeking in electronic environments. Cambridge
university press.

Martens, D. (2005). Research Methods in Education and Psychology: Integrating Diversity
with Quantitative Approaches. In: Thousand Oaks: Sage.

Matloff, N. S., & Salzman, P. J. (2008). The art of debugging with GDB, DDD, and
Eclipse. No Starch Press.

Maxwell, J. A. (2008). Designing a qualitative study. The SAGE handbook of applied
social research methods, 2, 214-253.

Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Sage
publications.

Mayer, R. E. (1981). The psychology of how novices learn computer programming. Acm
Computing Surveys (Csur), 13(1), 121-141.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning?
American psychologist, 59(1), 14.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia
learning. Educational psychologist, 38(1), 43-52.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &
Zander, C. (2008). Debugging: a review of the literature from an educational
perspective. Computer Science Education, 18(2), 67-92.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, 1., & Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students.
In Working group reports from ITiCSE on Innovation and technology in computer
science education (pp. 125-180).

McDiarmid, G. W., & Zhao , Y. (2023). Time to Rethink: Educating for a Technology-
Transformed World. ECNU Review of Education, 6(2), 189-214.
https://doi.org/10.1177/20965311221076493

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming
improves student retention, confidence, and program quality. Communications of
the ACM, 49(8), 90-95.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowledge
organization and skill differences in computer programmers. Cognitive
Psychology, 13(3), 307-325.

Mens, T., Cataldo, M., & Damian, D. (2019). The Social Developer: The Future of
Software Development [Guest Editors' Introduction]. I[EEE software, 36(1), 11-14.

Merriam, S., B. (2009). Qualitative research and case study appliances in education. In:
San Francisco, CA: Jossey-Bass.

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education.
Revised and Expanded from" Case Study Research in Education.”. ERIC.

Michaeli, T., & Romeike, R. (2019). Current status and perspectives of debugging in the
ki12 classroom: A qualitative study 2019 ieee global engineering education
conference (educon),

Michaeli, T., & Romeike, R. (2020). Investigating Students’ Preexisting Debugging
Traits: A Real World Escape Room Study Proceedings of the 20th Koli Calling
International Conference on Computing Education Research, Koli, Finland.

273 |Page

https://doi.org/10.1177/20965311221076493

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: A sourcebook. Beverly
Hills: Sage Publications.

Miller, B. N., Ranum, D. L., & Anderson, J. (2019). Python programming in context. Jones
& Bartlett Learning.

Miller, C., Rodeghero, P., Storey, M.-A., Ford, D., & Zimmermann, T. (2021). “How Was
Your Weekend?” Software Development Teams Working From Home During
COVID-19 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), Madrid, Spain.
https://doi.org/10.1109/ICSE43902.2021.00064

Mirza-Davies, J. (2015). A short history of apprenticeships in England: From medieval
craft guilds to the twenty-first century. Retrieved, 3(15), 2021.

Mittwede, S. K. (2012). Research Paradigms and Their Use and Importance in Theological
Inquiry and Education. Journal of Education and Christian Belief, 16(1), 23-40.
https://doi.org/10.1177/205699711201600104

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA statement. Annals of
internal medicine, 151(4), 264-269.

Monat, R., Ouadjaout, A., & Miné, A. (2020). Static type analysis by abstract
interpretation of Python programs 34th European Conference on Object-Oriented
Programming (ECOOP 2020), Berlin, Germany (Virtual Conference).
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs. ECOOP.2020.1

Morse, J. M. (Ed.). (1994). Designing funded qualitative research. Sage Publications Inc.

Miiller, L., Silveira, M. S., & de Souza, C. S. (2019). Source code comprehension and
appropriation by novice programmers: understanding novice programmers’
perception about source code reuse. Journal on Interactive Systems, 10(2), 96-109.

Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software developers
using the Eclipse IDE? IEEFE software, 23(4), 76-83.

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair debugging: a
transactive discourse analysis Proceedings of the Sixth international workshop on
Computing education research, Aarhus, Denmark.
https://doi.org/10.1145/1839594.1839604

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C.
(2008). Debugging: the good, the bad, and the quirky--a qualitative analysis of
novices' strategies. ACM SIGCSE Bulletin, 40(1), 163-167.

Nania, J., Bonella, H., Restuccia, D., & Taska, B. (2019). No longer optional: Employer
demand for digital skills. Burning Glass Technologies.

Nash, I., & Jones, S. (2013). Real Apprenticeships: Creating a Revolution in English Skills.
Research by The Boston Consulting Group for the Sutton Trust. Sutton Trust.

National Research Council. (2013). Education for life and work: Developing transferable
knowledge and skills in the 21st century. National Academies Press.

Neto, P. A. d. M. S., Mannan, U. A., de Almeida, E. S., Nagappan, N., Lo, D., Kochhar,
P. S., Gao, C., & Ahmed, 1. (2020). A deep dive on the impact of covid-19 in
software development. arXiv preprint arXiv:2008.07048.

Neufeld, D. J., & Fang, Y. (2005). Individual, social and situational determinants of
telecommuter productivity. Information & management, 42(7), 1037-1049.
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises.

Review of general psychology, 2(2), 175-220.

Nosek, J. T. (1998). The case for collaborative programming. Communications of the

ACM, 41(3), 105-108.

274 |Page

https://doi.org/10.1109/ICSE43902.2021.00064
https://doi.org/10.1177/205699711201600104
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.1145/1839594.1839604

Oh, K., Almarode, J. T., & Tai, R. H. (2013). An exploration of think-aloud protocols
linked with eye-gaze tracking: Are they talking about what they are looking at.
Procedia-social and behavioral sciences, 93, 184-189.

Olson, G. M., & Olson, J. S. (2000). Distance matters. Human—Computer Interaction,
15(2-3), 139-178.

Oman, P. W., Cook, R., & Nanja, M. (1989). Effects of programming experience in
debugging semantic errors. Journal of Systems and software, 9(3), 197-207.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design:
Recent developments. Educational psychologist, 38(1), 1-4.

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of
relevant issues. Review of Educational research, 60(1), 65-89.

Pane, J. F., & Myers, B. A. (1996). Usability issues in the design of novice programming
systems.

Papadakis, S., & Orfanakis, V. (2018). Comparing novice programing environments for
use in secondary education: App Inventor for Android vs. Alice. International
Journal of Technology Enhanced Learning, 10(1-2), 44-72.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas Basic Books. /nc.
New York, NY, 10, 1095592.

Park, T. H., Dorn, B., & Forte, A. (2015). An analysis of HTML and CSS syntax errors in
a web development course. ACM Transactions on Computing Education (TOCE),
15(1), 1-21.

Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024). Exploring
debugging processes and regulation strategies during collaborative coding tasks
among elementary and secondary students. Computer Science Education, 1-28.
https://doi.org/10.1080/08993408.2024.2305026

Patton, M. (2015). Qualitative research & evaluation methods: Integrating theory and
practice. Sage publications.

Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE Publications,
inc.

Pea, R. D. (1986). Cognitive technologies for mathematics education. Bank Street College
of Education, Center for Children and Technology.

Pennington, N. (1987). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19(3), 295-341.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice
programmers. Papers presented at the first workshop on empirical studies of
programmers,

Perscheid, M., Siegmund, B., Taeumel, M., & Hirschfeld, R. (2017). Studying the
advancement in debugging practice of professional software developers. Software
Quality Journal, 25(1), 83-110.

Petrillo, F., Guéhéneuc, Y.-G., Pimenta, M., Freitas, C. D. S., & Khomh, F. (2019). Swarm
debugging: The collective intelligence on interactive debugging. Journal of
Systems and software, 153, 152-174.

Petrillo, F., Mandian, H., Yamashita, A., Khomh, F., & Guéhéneuc, Y.-G. (2017). How do
developers toggle breakpoints? observational studies 1EEE International
Conference on Software Quality, Reliability and Security (QRS 2017), Prague,
Czech Republic. https://doi.org/10.1109/qrs.2017.39

Phillips, H., Ivins, W., Prickett, T., Walters, J., & Strachan, R. (2021). Using contributing
student pedagogy to enhance support for teamworking in computer science
projects. In Computing Education Practice 2021 (pp. 29-32).

275|Page

https://doi.org/10.1080/08993408.2024.2305026
https://doi.org/10.1109/qrs.2017.39

Piaget, J. (1954). The construction of reality in the child (Vol. xiii). New York: Basic
Books. https.//doi. org/10, 1037, 11168-11000.

Pierre, C., & Jérémy, H. (2024). The effect of workplace vs school-based vocational
education on youth unemployment: Evidence from France. European Economic
Review, 162, 104637.
https://doi.org/https://doi.org/10.1016/j.euroecorev.2023.104637

Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C., Burnett, M., John, B., Bellamy, R.,
& Swart, C. (2012). Reactive information foraging: An empirical investigation of
theory-based recommender systems for programmers Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Austin, Texas, USA.
https://doi.org/10.1145/2207676.2208608

Pirolli, P., & Card, S. (1999). Information foraging. Psychological review, 106(4), 643.

Pirolli, P., & Card, S. (2005). The sensemaking process and leverage points for analyst
technology as identified through cognitive task analysis. Proceedings of
international conference on intelligence analysis,

Plonka, L., Segal, J., Sharp, H., & Van Der Linden, J. (2011). Collaboration in pair
programming: driving and switching. In: XP 2011: 12th International Conference
on Agile Software Development, 10-13 May 2011, Madrid, Spain.

Poole, P. C. (2005). Debugging and testing. Software Engineering: An Advanced Course,
278-318.

Porritt, K., Gomersall, J., & Lockwood, C. (2014). Study selection and critical appraisal:
the steps following the literature search in a systematic review. Am J Nurs, 114(6),
47-52.

Potluri, V., Pandey, M., Begel, A., Barnett, M., & Reitherman, S. (2022). Codewalk:
Facilitating shared awareness in mixed-ability collaborative software development
ASSETS "22: Proceedings of the 24th International ACM SIGACCESS Conference
on Computers and Accessibility, Athens, Greece.
https://doi.org/10.1145/3517428.3544812

Pritchard, D. (2015). Frequency distribution of error messages. Proceedings of the 6th
Workshop on Evaluation and Usability of Programming Languages and Tools,
Pittsburgh, PA, USA. https://doi.org/10.1145/2846680.2846681

Proksch, S., Amann, S., & Nadi, S. (2018). Enriched event streams: a general dataset for
empirical studies on in-IDE activities of software developers Proceedings - 2018
ACM/IEEE 15th International Conference on Mining Software Repositories, MSR
2018, Gothenburg, Sweden. https://doi.org/10.1145/3196398.3196400

Rajlich, V. T., & Bennett, K. H. (2000). A staged model for the software life cycle.
Computer, 33(7), 66-71.

Ralph, P., Baltes, S., Adisaputri, G., Torkar, R., Kovalenko, V., Kalinowski, M., Novielli,
N., Yoo, S., Devroey, X., & Tan, X. (2020). Pandemic programming. Empirical
Software Engineering, 25(6), 4927-4961.

Ramirez Echeverry, J. J., Rosales-Castro, L. F., Restrepo-Calle, F., & Gonzilez, F. A.
(2018). Self-Regulated Learning in a Computer Programming Course. [EEE
Revista Iberoamericana de Tecnologias del Aprendizaje, 13(2), 75-83.
https://doi.org/10.1109/RITA.2018.2831758

Randolph, J. (2019). A guide to writing the dissertation literature review. Practical
assessment, research, and evaluation, 14(1), 13.

Resnick, M., Maloney, J., Monroy-Herndndez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., & Silverman, B. (2009). Scratch:
programming for all. Communications of the ACM, 52(11), 60-67.

276 |Page

https://doi/
https://doi.org/https:/doi.org/10.1016/j.euroecorev.2023.104637
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/2846680.2846681
https://doi.org/10.1145/3196398.3196400
https://doi.org/10.1109/RITA.2018.2831758

Richard, D. (2012). The Richard Review of Apprenticeships. London: Departement for
Business. Innovation and Skills.

Ridder, H.-G. (2017). The theory contribution of case study research designs. Business
research, 10, 281-305.

Rigby, L., Denny, P., & Luxton-Reilly, A. (2020). A Miss is as Good as a Mile: Off-By-
One Errors and Arrays in an Introductory Programming Course. Proceedings of the
Twenty-Second Australasian Computing Education Conference,

Robins, A., Haden, P., & Garner, S. (2006). Problem distributions in a CS1 course.
Proceedings of the 8th Australasian Conference on Computing Education-Volume
52,

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137-172.

Rodgers, B. L., & Cowles, K. V. (1993). The qualitative research audit trail: A complex
collection of documentation. Research in nursing & health, 16(3), 219-226.
Rogers, Y. (1997). 4 brief introduction to distributed cognition. Interact Lab, University

of Sussex.

Rogers, Y., & Ellis, J. (1994). Distributed cognition: an alternative framework for
analysing and explaining collaborative working. Journal of Information
Technology, 9(2), 119-128.

Rolfe, G. (2006). Validity, trustworthiness and rigour: quality and the idea of qualitative
research. Journal of advanced nursing, 53(3), 304-310.

Romero, P., Du Boulay, B., Cox, R., Lutz, R., & Bryant, S. (2007). Debugging strategies
and tactics in a multi-representation software environment. International Journal
of Human-Computer Studies, 65(12), 992-1009.

Rubin, H. J., & Rubin, L. S. (2011). Qualitative interviewing: The art of hearing data. sage.

Russell, C. L. (2005). An overview of the integrative research review. Progress in
transplantation, 15(1), 8-13.

Sajaniemi, J., & Kuittinen, M. (2008). From procedures to objects: A research agenda for
the psychology of object-oriented programming education. Human Technology: An
Interdisciplinary Journal on Humans in ICT Environments.

Salas, E., Cooke, N. J., & Rosen, M. A. (2008). On teams, teamwork, and team
performance: Discoveries and developments. Human factors, 50(3), 540-547.

Salas, E., Sims, D. E., & Burke, C. S. (2005). Is there a “big five” in teamwork? Small
group research, 36(5), 555-599.

Salomon, G. (1997). Distributed cognitions: Psychological and educational
considerations. Cambridge University Press.

Satratzemi, M., Stelios, X., & Tsompanoudi, D. (2023). Distributed pair programming in
higher education: A systematic literature review. Journal of Educational
Computing Research, 61(3), 546-577.

Satratzemi, M., Xinogalos, S., Tsompanoudi, D., & Karamitopoulos, L. (2018). Examining
student performance and attitudes on distributed pair programming. Scientific
Programming, 2018.

Saunders, M., Lewis, P., & Thornhill, A. (2019). Research methods for business students
(Eighth ed.). Pearson education.

Saunders, M., Lewis, P., & Thornhill, A. (2023). Research methods for business students
(9th ed.). Pearson.

Savage, S., & Piwek, P. (2019). Full report on challenges with learning to program and
problem solve: an analysis of first year undergraduate Open University distance
learning students' online discussions.

277 |Page

Sawyer, R. (2014). The Cambridge handbook of the learning sciences (Cambridge
Handbooks in Psychology). Cambridge: Cambridge University Press. doi, 10,3177-
330.

Schwandt, T. A. (2001). A postscript on thinking about dialogue. Evaluation, 7(2), 264-
276.

Sebesta, R. W. (2016). Concepts of Programming Languages, Global Edition. (12th ed.).
Pearson.

Sedgewick, R., & Wayne, K. (2016). Computer science: An interdisciplinary approach.
Addison-Wesley Professional.

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research
projects. Education for information, 22(2), 63-75.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International
Journal of Computer & Information Sciences, 5(2), 123-143.

Silva, L. S. (2020). Investigating the Socially Shared Regulation of Learning in the Context
of Programming Education Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education, Trondheim, Norway.
https://doi.org/10.1145/3341525.3394003

Simon, B., Fitzgerald, S., McCauley, R., Haller, S., Hamer, J., Hanks, B., Helmick, M. T.,
Mostrom, J. E., Sheard, J., & Thomas, L. (2007). Debugging assistance for novices:
a video repository. ACM SIGCSE Bulletin, 39(4), 137-151.

Sloane, K. D., & Linn, M. C. (1988). Instructional conditions in Pascal programming
classes. In Teaching and learning computer programming: Multiple research
perspectives. (pp. 207-235). Lawrence Erlbaum Associates, Inc.

Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021). From Collaboration
to Solitude and Back: Remote Pair Programming During COVID-19. In P.
Gregory, C. Lassenius, X. Wang, & P. Kruchten, Agile Processes in Sofiware
Engineering and Extreme Programming International Conference on Agile
Software Development, Cham.

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the mistakes of novice
programmers. Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, Minneapolis, USA.

So, M. H., & Kim, J. (2018). An analysis of the difficulties of elementary school students
in python programming learning. International Journal on Advanced Science,
Engineering and Information Technology, 8(4-2), 1507.

Sobral, S. R. (2020). Is pair programing in Higher Education a good strategy? International
Journal of Information and Education Technology, 10(12).

Sokolic, D. (2022). Remote work and hybrid work organizations. Economic and social
development: Book of proceedings, 202-213.

Soloway, E., Bonar, J., Woolf, B., Barth, P., Rubin, E., & Ehrlich, K. (1981). Cognition
and programming: Why your students write those crazy programs. Proceedings of
the National Educational Computing Conference, Texas, USA.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. /EEE
Transactions on Software Engineering(5), 595-609.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the Novice Programmer. Lawrence
Erlbaum.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer. Psychology Press.

Spinellis, D. (2016). Effective Debugging: 66 Specific Ways to Debug Software and
Systems. Addison-Wesley Professional.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM, 29(7), 624-632.

278 |Page

https://doi.org/10.1145/3341525.3394003

Stahl, G., Koschmann, T. D., & Suthers, D. D. (2006). Computer-Supported Collaborative
Learning: An Historical Perspective. Cambridge Handbook of the Learning
Sciences, 409-426.

Steedman, H. (2012). Overview of apprenticeship systems and issues. ILO contribution to
the G20 task force on employment, Geneva.

Sun, C., Yang, S., & Becker, B. (2024). Debugging in Computational Thinking: A Meta-
analysis on the Effects of Interventions on Debugging Skills. Journal of
Educational Computing Research, 07356331241227793.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
science, 12(2), 257-285.

Tan, O.-S. (2021). Problem-based learning innovation: Using problems to power learning
in the 2 1st century. Gale Cengage Learning.

Taylor-Smith, E., Smith, S., Fabian, K., Berg, T., Meharg, D., & Varey, A. (2019).
Bridging the Digital Skills Gap: Are computing degree apprenticeships the
answer? ITICSE '19 Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education, = Aberdeen, UK.
https://doi.org/10.1145/3304221.3319744

Teague, D., & Roe, P. (2007). Learning to program: Going pair-shaped. Innovation in
Teaching and Learning in Information and Computer Sciences, 6(4), 4-22.

Tomlinson, C. A., & Imbeau, M. B. (2023). Leading and managing a differentiated
classroom. ASCD.

Torgeir, D., Sridhar, N., VenuGopal, B., & Nils Brede, M. (2012). A decade of agile
methodologies: Towards explaining agile software development. Journal of
Systems and software, 85(6), 1213-1221.
https://doi.org/https://doi.org/10.1016/1.jss.2012.02.033

Torraco, R. J. (2005). Writing integrative literature reviews: Guidelines and examples.
Human resource development review, 4(3), 356-367.

Torraco, R. J. (2016). Writing integrative literature reviews: Using the past and present to
explore the future. Human resource development review, 15(4), 404-428.

Tsai, C.-Y., Yang, Y.-F., & Chang, C.-K. (2015). Cognitive Load Comparison of
Traditional and Distributed Pair Programming on Visual Programming Language
2015 International Conference of Educational Innovation through Technology
(EITT 2015), Wuhan, China.

Tsan, J., Vandenberg, J., Fu, X., Wilkinson, J., Boulden, D., Boyer, K. E., Lynch, C., &
Wiebe, E. (2019). An investigation of conflicts between upper-elementary pair
programmers SIGCSE '19: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, Minneapolis, MN, USA.
https://doi.org/10.1145/3287324.3293799

Tsan, J., Weintrop, D., & Franklin, D. (2022). An Analysis of Middle Grade Teachers'
Debugging Pedagogical Content Knowledge Proceedings of the 27th ACM
Conference on on Innovation and Technology in Computer Science Education Vol.
1, Dublin, Ireland.

Tufford, L., & Newman, P. (2012). Bracketing in qualitative research. Qualitative social
work, 11(1), 80-96.

Van Oers, B. (1998). From context to contextualizing. Learning and instruction, 8(6),473-
488.

Van Someren, M. W. (1990). What's wrong? Understanding beginners' problems with
Prolog. Instructional science, 19, 257-282.

279 |Page

https://doi.org/10.1145/3304221.3319744
https://doi.org/https:/doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1145/3287324.3293799

Veerasamy, A. K., D'Souza, D., & Laakso, M.-J. (2016). Identifying novice student
programming misconceptions and errors from summative assessments. Journal of
Educational Technology Systems, 45(1), 50-73.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies, 23(5), 459-494.

Vossoughi, S., & Bevan, B. (2014). Making and tinkering: A review of the literature.
National Research Council Committee on Out of School Time STEM, 67, 1-55.

Vourletsis, 1., Politis, P., & Karasavvidis, 1. (2021). The Effect of a Computational
Thinking Instructional Intervention on Students’ Debugging Proficiency Level and
Strategy Use. Research on E-Learning and ICT in Education: Technological,
Pedagogical and Instructional Perspectives, 15-34.

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological
processes. Harvard university press.

Weiser, M. (1982). Programmers use slices when debugging. Communications of the
ACM, 25(7), 446-452.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering(4), 352-
357.

Welsh, E. (2002). Dealing with data: Using NVivo in the qualitative data analysis process.
Forum Qualitative Sozialforschung Forum: Qualitative Social Research, 3(2).
https://doi.org/10.17169/fgs-3.2.865

Wetton, R. (2021). Managing Virtual Teams: Creating a Virtual Community. In
Intercultural Management in Practice. Emerald Publishing Limited.

Whalley, J., Settle, A., & Luxton-Reilly, A. (2021). Novice Reflections on Debugging
Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, Virtual Event, USA. https://doi.org/10.1145/3408877.3432374

Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-aloud Study of Novice
Debugging. ACM Trans. Comput. Educ., 23(2), 1. https://doi.org/10.1145/3589004

Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology.
Journal of advanced nursing, 52(5), 546-553.

Williams, L., & Kessler, R. (2002). Pair programming: Experience the difference Extreme
Programming and Agile Methods—XP/Agile Universe 2002: Second XP Universe
and First Agile Universe Conference Chicago, IL, USA, August 4-7, 2002
Proceedings 2, Chicago, IL, USA.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the
case for pair programming. /EEE software, 17(4), 19-25.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM
SIGCSE Bulletin, 28(3), 17-22.

Wolter, S. C., & Ryan, P. (2011). Apprenticeship. In Handbook of the Economics of
Education (Vol. 3, pp. 521-576). Elsevier.

Xu, F., & Correia, A.-P. (2023). Adopting distributed pair programming as an effective
team learning activity: a systematic review. Journal of Computing in Higher
Education, 1-30.

Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of experts’ and novices’ thinking
process in program debugging. Engaging Learners Through Emerging
Technologies. ICT 2012. Communications in Computer and Information Science,
vol 302, Hong Kong, China. https://doi.org/10.1007/978-3-642-31398-1 12

Yett, B., Hutchins, N., Snyder, C., Zhang, N., Mishra, S., & Biswas, G. (2020). Evaluating
student learning in a synchronous, collaborative programming environment

280|Page

https://doi.org/10.17169/fqs-3.2.865
https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1145/3589004
https://doi.org/10.1007/978-3-642-31398-1_12

through log-based analysis of projects International Conference on Artificial
Intelligence in Education, Tianjin, China.

Yin, R. (2009). Case Study Research: Design and Methods, 4th edn Sage Publications.
Thousand Oaks.

Yin, R., K. (2014). Case Study Research: Design and Methods. In (5th edition ed.).
Thousand Oaks, CA: Sage publications.

Ying, K. M., Rodriguez, F. J., Dibble, A. L., & Boyer, K. E. (2021). Understanding
Women's Remote Collaborative Programming Experiences: The Relationship
between Dialogue Features and Reported Perceptions. Proceedings of the ACM on
Human-Computer Interaction, 4(CSCW3), 1-29.

Zeller, A., & Hildebrandt, R. (2002). Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2), 183-200.

Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks.
Cognitive science, 18(1), 87-122.

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining latent profile
analysis and programming traces to understand novices’ differences in debugging.
Education and Information Technologies, 28(4), 4673-4701.

Zhao, Q., Rabbah, R., Amarasinghe, S., Rudolph, L., & Wong, W.-F. (2008). How to do a
million watchpoints: Efficient debugging using dynamic instrumentation. In L.
Hendren, Compiler Construction. CC 2008. Lecture Notes in Computer Science,
vol 4959. Springer, Berlin, Heidelberg.

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into
practice, 41(2), 64-70.

281 |Page

Appendix A: Participants Information Sheet - Apprentices

Lancaster
University ¢ ®

Debugging Session & Interview Participant information sheet

Project Title: An evaluative case study of the program debugging behaviour of the paired Software Development
Technician Apprentice in a geographically distributed environment.

For further information about how Lancaster University processes personal data for research purposes and

your data rights please visit our webpage: www.lancaster.ac.uk/research/data-protection

I am a PhD candidate at Lancaster University. | would like to invite you to participate in a research study
about the debugging behaviour of the paired Software Development Technician (SDT) Apprentice in a
geographically distributed environment.
Please take time to read the following information carefully before you decide whether or not you wish
to take part.
What is the study about?
This study aims to investigate debugging behaviours (and the influencing factors) of paired
geographically distributed SDT apprentices working collaboratively on fixing written codes using
technology-mediated agents. So, the compiler errors, the verbal and non-verbal interactions between
pairs, how you build knowledge of the program’s behaviour, technology agents’ roles, the pattern of
the debugging activities and eventually, resolution of issues (if applicable) will form the basis of this
research.

Why have | been invited?

| have approached you because | am interested in understanding how SDTs in disparate locations work

collaboratively on the same file, and at the same time go about locating and fixing bugs in a written

programming code. | would be very grateful if you would agree to take part in this study.

What will | be asked to do if | take part?

If you decided to take part, this would involve the following:

e The researcher will organise two debugging sessions and one interview session with your assigned
pair. It is reckoned that the two sessions of the debugging activities should not be longer than 2
hours altogether and the interview should not last more than 1 hour.

e You will be observed working with an assigned pair on remote debugging of a few Python
programming codes with varied difficulties.

e The proceeding of the debugging activities in terms of code fixing, the conversations between the
pair and video coverage of the entire proceedings will be made using the webcam of the laptop and
stored in a password-protected Microsoft OneDrive.

e You will be expected to provide access to the modified programmatic code and the debugging and
interview session recordings.

e The recordings will be reviewed by the researcher and to be used to determine the questions to
follow-up during the interview session with a few parts of the recordings to be watched with you
to further bolster the understanding of the phenomenon.

e Afterwards, you will be asked to participate in an interview session with your pair to answer
questions on the debugging behaviours exhibited during the debugging sessions.

What are the possible benefits from taking part?

282 |Page

The study results may provide insight on the type of error messages generated by you as novice
programmers while debugging codes, your debugging behaviour and how pairing of novice
programmers in different locations work.

Do | have to take part?

No. It’s completely up to you to decide whether or not you take part. Your participation is voluntary. If
you decide not to take part in this study, this will not affect your studies and the way you are assessed
on your course, or the relationship with the researcher or any staff within your area of employment.
What if | change my mind?

If you change your mind, you are free to withdraw at any time from your participation in this study. If
you want to withdraw, please let me know, and | will extract any ideas or information (=data) you
contributed to the study and destroy them. However, it is difficult and often impossible to take out data
from one specific participant when this has already been anonymised or pooled together with other
people’s data. Therefore, you can only withdraw up to 2 weeks after taking part in the study.

What are the possible disadvantages and risks of taking part?

It is unlikely that there will be any major disadvantages to taking part apart from losing the time taken
to participate in the debugging session and the interview session. In total, this is likely to take about
three hours.

Will my data be identifiable?

After the observation and the interview, only |, the researcher conducting this study will have access to
the ideas you share with me. | will keep all personal information about you (e.g. your name and other
information about you that can identify you) confidential, that is | will not share it with others. | will
remove any personal information from the written record of your contribution. All reasonable steps will
be taken to protect your anonymity in this project.

How will we use the information you have shared with us and what will happen to the results of the
research study?

| will use the information you have shared with me only in the following ways:

I will use it for research purposes only. This will include my PhD thesis and other publications, for
example journal articles. | may also present the results of my study at academic or practitioner
conferences. When writing up the findings from this study, | would like to reproduce some of the views
and ideas you shared with me, but | will only use anonymised quotes (e.g. from my interview with you),
so that although | will use your exact words, all reasonable steps will be taken to protect your anonymity
in publications.

How my data will be stored

Your data will be stored in encrypted files (that is no-one other than me, the researcher, will be able to access
them) and on password-protected computers. | will keep data that can identify you separately from non-personal
information. The data will be subsequently destroyed after the thesis is completed.

What if | have a question or concern?
If you have any queries or if you are unhappy with anything that happens concerning your participation
in the study, please contact myself on o.jolugbo@Iancaster.ac.uk.

You can also contact my supervisor, Prof Don Passey on d.passey@lancaster.ac.uk, telephone number:
+44 (0) 1524 592314.
Director of Studies, Doctoral Programme in e-Research and Technology Enhanced Learning

Department of Educational Research

Lancaster University

LA1 4YD

If you have any concerns or complaints that you wish to discuss with a person who is not directly
involved in the research, you can also contact: Professor Paul Ashwin, Head of Department, Educational

283 |Page

mailto:o.jolugbo@lancaster.ac.uk
mailto:d.passey@lancaster.ac.uk

Research, County South, Lancaster University, Lancaster, United Kingdom, LA1 4YD. Telephone: +44 (0)
1524 593572

This study has been reviewed and approved by the Faculty of Arts and Social Sciences and Lancaster
Management School’s Research Ethics Committee.

284 |Page

Appendix B: Participants Information Sheet - Work Based
Mentors & Trainers

Lancaster EE3
University © ®

Workplace Mentor Participant information sheet

Project Title: An evaluative case study of the program debugging behaviour of the paired Software Development Technician
Apprentice in a gecgraphically distributed environment.

For further information about how Lancaster University processes personal data for research purposes and your

data rights, please visit our webpage: www lancaster. ac.uk/research/data-protection

| am a PhD candidate at Lancaster University, and | would like to invite you to take part in a research study about: Debugging
behaviour of the paired Software Development Technician [(SDT) Apprentice in a geographically distributed environment.

Please take time to read the following information carefully before you decide whether.or ngt you wish to take part.

What is the study about?

This study aims to investigate debugging behaviours {and the influencing factors) of paired geographically distributed S0DT
apprentices working collaboratively on fixing written codes using technology-mediated agents. So, the compiler errors, the
verbal and non-verbal interactions between pairs, how they build knowledge of the program’s behaviour, technology agents'
roles, the pattern of the debugging activities and eventually, resolution of issues (if applicable) will form the basis of this
research.

Why have | been invited?

As a workplace mentor, | have approached you because | am interested in understanding how SDTs in disparate locations
work collaboratively on the same file, and at the same time go about locating and fixing bugs in a written programming code.
| wiould be very grateful if you would agree to take part in this study.

What will | be asked to do if | take part?

If you decided to take part, this would involve the following:

& The researcher will organise a focus group session using Microsoft Team with other workplace mentors that should not
be more than & participants and lasting not more than two hours.

& Youwill be asked to participate in this focus group where your experience working with SDT apprentices will be discussed
generally and more specifically, the type of bugs usually generated by them and your understanding of how 5TD
apprentices (or paired) go about debugging programming codes in terms of debugging strategies.

& Another area of discussion will be the emerging themes originating from the findings from the apprentice’s debugging
sessions and interview sessions, with the aim of seeking further clarifications or insights based on your own working
knowledge of the phenomenan.

& The entire proceedings will be recorded using the laptop’s webcam and stored in a password-protected Microsoft
OneDrive.

You will be asked to provide access to the recordings of the focus group session recordings.
The recordings will be reviewed by the researcher, anglysed and used to further bolster understanding of the
phenomenon.

What are the possible benefits from taking part?

The study results may provide insight on the type of error messages generated by STD apprentices while debugging codes,
their debugging strategies and how pairing of novice programmers in different locations work. Also, it will help in sharing
good practices from other mentors about how best to support apprentices with low debugging skills.

Do | have to take part?

No. it's completely up to you to decide whether or not you take part. Your participation is voluntary and has no bearing on
your job and standing in your organisation.

285|Page

What if | change my mind?

If you change your mind, you are free to withdraw at any time from your participation in this study. If you want to withdraw,
please let me know, and | will extract any ideas or information {=data} you comtributed to the study and destroy them.
Howvever, it is difficult and often impossible to take out data from one specific participant when this has already been
anonymised or pooled together with other people’s data. Your participation is woluntary, and you can withdraw from the
study at any time before the focus group begins, but you will not be able to withdraw your contributions to the discussion
once the recording has started. Also, if you are involved in a foous group and then withdraw, your data will remain part of
the study. As your data will be part of the ongoing conversation, it is understandable that it cannot be destroyed. The
researcher will try to disregard your views when analysing the foous group data, but this may not always be possible.

What are the possible disadvantages and risks of taking part?

It is unlikely that there will be any major disadvantages to taking part, apart from losing the time taken to partidpate in the
debugging session and the interview session. In total, this is likely to take about two and a half hours. There is a possibility of
a workplace mentor feeling obligated to participate in the discussion, but they are not under any compulsion to participate
in the discussion.

Will my data be identifiable?

After the focus group session, only |, the researcher conducting this study, will have access to the ideas you share. | will keep
all personal information about you (e.g. vour name and other information about you that can identify you) confidential, that
is, | will not share it with others. | will remowve any personal information from the written record of your contribution. All
reasonable steps will be taken to protect your anonymity in this project.

How will we use the information you have shared with us and what will happen to the results of the research study?

| will use the information you have shared with me only in the following ways:

| will use it for research purposes only. This will include my PhD thesis and other publications, for example journal articles. |
may also presemt the results of my study at academic or practitioner conferences. When writing up the findings from this
study, | would like to reproduce some of the views and ideas you shared with me, but | will only use anonymised quotes (e.g.
from the focus group session), so that although | will use your exact words, all reasonable steps will be taken to protect your
anonymity in publications.

How my data will be stored

Your data will be stored in encrypted files (that is no-one other than me, the researcher, will be able to access them) and
on password-protected computers. | will keep data that can identify you separately from non-personal information. The
data will be subsequently destroyed after the thesis is completed.

What if | have a question or concern?
If you have any gueries or if you are unhappy with anything that happens concerming your participation in the study, please

contact myself on ojolugbo@lancaster.ac.uk.

You can also contact my supervisor, Prof Don Passey on d.passeyi@lancaster.ac uk, telephone number: +34 (0] 1524 592314
Director of Studies, Doctoral Programme in e-Research and Technology Enhanced Learning

Department of Educational Research

Lancaster University

LAl YD

If you have any concerns or complaints that you wish to discuss with a persen whao is not directly involved in the research,
i,u::u can alsc contact Professor Paul Ashwin, Head of Department, Educational Research, County South, Lancaster University,
Lancaster, United Kingdom, LAL 4YD. Telephone: +44 [0) 1524 593572

Thiz study has been reviewed and approved by the Faculty of Artz and Socizl Sciences and Lancaster Management
School’s Besearch Ethics Commuittes.

Thank vou for considering your participation in this project.

286 |Page

Appendix C: Participant Consent Form — Apprentices
CONSENT FORM Lancaster EX)
University **
Project Title: An evaluatrve case study of the program debugzimz behaviour of the pawred Software Devalopment
Technician Apprenfice m a pecgraphically distributed emvironment
Name of Rezearcher: Olajde JTolgha
Email: ojolusbo@lancaster. ac.uk

Please tick each box

1. I confinm that [have read and onderstand the information sheet for the above sdy. I have had the I:I
opporianity to considar the information, ask guestions and have had thess answerad satisfactorily.

ka3
H

I understand that mry participation is vohmtary and that I zam See to withdraw at any time during ooy
participation in thiz shady and within 2 weeks: after [took part in the stady, without giving any reasom. I:I
If I wathdraw within 2 weaks of taldng part in the stody, noy data will be remaved.

3. IfI am participating in the interview, I understand that any information disclosed within the interview
rarmaing canfidential to the groap, and I will not discuss the interview with or in Sont of anyons wha [I
was not imvabeed umless T have the relevant person’s express permission.

4 I understand that eny information given by me may be uwsed in fahure reports, academic articles,
publications or presentztions by the researcher's, nit oy personzl mformatian will not be inchoded, and
21l reazonable steps will be tzkan to protect the anamyvmity of the participants invelved in this project

(=]
b

I imderstand that my namewmry organizstion’™s name will not appear i any reports, articles, or
presentation withoot iy consent

4. I agree to the video-recording of my pair debuzging sexzions and give conzant for my program codas ta
be used for the purpose of this stdy.

-1
h

I understand that awy interviews will be sudio-recordsd and fwanscribed, and that data will be protectad
on sncryptad devices and kept sacore.

8. Tunderstand that any interviews will be video-recorded and transcribed, and that data will be protectad
on sncryptad devices and kept sacore.

[}
'

I understznd that the mazes or recordms will onky be gensrated 2= 3 part of data collection, and will nat
be u=ed for amy other purposze. I also understand that the datarecordings will be destroyed after the
completion of the thesis,

O a | a\08a\0a| a8

1. I zzree to tzke part in the above study.

Mame of Participant Diate Signanire

I confirm that the participant was given an opportunity to ask questions about the study, and all the questions asked by the
participant have been answered correctly and to the best of my ability. I confirm that the individual has not been coerced
into giving consent, and the consent has been given freely and volantarily.

Signafare of Researcher /perzon taking the conzent Diate Dey'monthyear

Ome copy of thiz form will be given to the participant and the original kept in the files of the researcher at Lancaster University

287 |Page

Appendix D: Participant Consent Form — Work-Based Mentors
& Trainers

288 |Page

CONSENT FORM Lancaster EZ2
University *-*

Project Title: An evaluztrva caze stndy of the program debugzms behaviour of the paired Software Devalopment
Technician Apprentice m a gecgraphically distnbuted emvironment

Name of Rezearcher: Olajide JTolgho

Email: o.jolusbo/@lancaster. ac.uk

Pleaze tick each box

I confirm that I have read and understand the information sheet for the sbove study. I have had the oppormunine I:I
to canzider the mformation, zsk guestions and have had thess anoaered satisfactorily.

I understand that my participstion is vohmtary and that I am Fee to withdraw at any time during ooy
participation in this study, withont giving any reason. [understand that I can withdraw fom the swdy at amy
time before the focus group begins but will not be abls to withdraw noy coniributions to the discussion ance
recording has started. If I am mwolved m focus groups and then withdraw my data will remam part of the I:I
ztudy. As my data will be part of the ongoing comverzation, I understand that i cannot be destroved. I
understand that the researcher will ry to disregard nry views when analysing the focns group data, but [am
Fware that this will not abarays be possible.

I undarstand that any information disclozed within the focus group remains confidentizl to the gronp, and T
will mot discnss the focus zroup with or in front of armyone who was not imvolved unless T have the relevant [I
pEr=on’s eXpress permizsion

I understand that any informzation given by me may be used in fidure reports, academic articles, publications,
of presentations by the ressarcher, but my personal mformation will not be mchided, and 31l rezsonable steps
will be taken to protect noy anorymnity o this praject.

I mderstangd that my name oy crganisstion’s name will not ppear m any reports, articles, or presentston
without my consent.

I understand that the focus group will be sudio-recorded and ranscribed, and that dztz will be protected on
encrypted devices and kept secure.

I understand that the facus group will be video-recorded and transcribed, and that data will be protected an
encrypted devices and kept secure.

I undarstand that the images or recordimg will only be zenerated 2z a part of data collsction, and will not be
uzad for amy other purpose. I alzo understand that the data'recording: will be destroyved after the completion
of the thesis.

I agres to take part in the above smdy.

o o | ao|8a|&ea | 83a

I
Hame of Participant Diate SiEnanre

I confirm that the participant was given an opportunity to ask guestions about the study, and all the quertions aslked by the
participant have been answered correctly and to the best of my ability. I confirm that the individual haz not been coerced
into giving conzent, and the consent has been given freely and volantarily.

Signafure of Researcher /person taking the conzent Diate Dey'monthyear

Ome copy of thiz form will be given o the participant and the original leept in the files of the researcher at Lancaster University

289 |Page

Appendix E: Ethics Approval

Fducational | Lancaster E=
Research | University

11" June 2020

Dear Olajide Jolugbo

Thank you for submitting your ethics application and additional information for “An evaluative case study
of the program debugging behaviour of the paired Software Development Technician Apprentice in a
geographically distributed environment” The information you provided has been reviewed and | can

confirm that approval has been granted for this project”.
As principal investigator your responsibilities include:

* ensuring that (where applicable) all the necessary legal and regulatory requirements in order to
conduct the research are met, and the necessary licenses and apprbvals have been obtained;

®* reporting any ethics-related issues that occur during the course of the research or arising from
the research (e.g. unforeseen ethical issues, complaints about the conduct of the research,
adverse reactions such as extreme distress) to your Supervisor.

* submitting details of proposed substantive amendments to the protocel to your supervisor for

approval.
Please do not hesitate to contact me if you require further information about this.

Kind regards

Ay T, > W i Sovy

Alice Jesmont
TEL Programme Administrator

290 | Page

Appendix F: The Bugged Python Code

def calculate payroll(hours_worked, hourly rate)
SYNTAX ERROR (SE01): Missing colon

gross_pay = hours worked x hourly rate
SYNTAX ERROR (SE02): Used ‘x’ instead of “*’

LOGICAL ERROR (LEO1): Incorrect tax value
tax_rate =15

SYNTAX ERROR (SE03): Missing colon after ‘if’
if gross_pay > 6000

tax = gross_pay * (tax_rate/100)
else

LOGICAL ERROR (LE02): Wrong tax rate

tax = gross_pay * 0.05

net pay = gross_pay - tax
LOGICAL ERROR (LEO03): Shouldn’t subtract tax if gross_pay is below a certain
threshold

return ‘Total Pay: ", str(gross pay) + ", Net Salary: " + str(net_pay)
SYNTAX ERROR (SE04): Mismatched string concatenation

SYNTAX ERROR (SEO05): ‘def” typo
df main():

hours = input("Input hours: ")

rate = input("Input rate: $")

RUNTIME ERROR (REO1): Input is string and not converted to number
payroll_info = calculate payroll(hours, rate)

SYNTAX ERROR (SE06): print without parentheses
print payroll_info

RUNTIME ERROR (RE02): Undefined variable ‘rates’
print(rates[0])

LOGICAL ERROR (LE04): Improper use of ©° _name ’

ifname="_main "
SYNTAX ERROR (SE07): Single ‘= used instead of ‘==°
main()

SYNTAX ERROR (SEO08): Incorrectly closed string
role = input("Enter employee’s role:")

SYNTAX ERROR (SE09): Incorrect indentation

291 |Page

if role == "Manager":
LOGICAL ERROR (LEO05): Bonus amount doesn’t make sense without context
bonus = 2000
print("Bonus: ", bonus)

SYNTAX ERROR (SE10): Else without a prior if (due to the indentation error
above)
else:
print("No bonus")

LOGICAL ERROR (LE06): Redundant and incorrect code
bonus = 100
print("All employees get a bonus of: ", bonus)

SYNTAX ERROR (SE11): Incomplete ‘for’ loop
for i in range(5)

print(i)
RUNTIME ERROR (REO03): Infinite loop due to missing colon and indentation

292 |Page

Appendix G: Sample DYADs End of Session Codes

The Code after the Debugging Session - SDT23 & SDT24

The session concluded with the code still containing unresolved errors. The final code,
with comments indicating both fixed and unfixed errors, demonstrated their efforts and
learning process.

def calculate_payroll(hours_worked, hourly_rate):
ERROR FIXED (SE01): Missing colon at the end of function definition
ERROR FIXED (SE02): Incorrect operator, used 'x' instead of '*'
gross_pay = hours_worked * hourly_rate

ERROR FIXED (LEO1): Incorrect tax value, adjusted to 10%
tax_rate =10

ERROR FIXED (SE03): Missing colon after 'if'

if gross_pay > 6000:
ERROR NOT FIXED (LEO2): Incorrect logic for tax calculation
tax = gross_pay * (tax_rate / 100)

else:
ERROR NOT FIXED (LEO3): Incorrect tax rate for lower bracket
tax = gross_pay * 0.05

net_pay = gross_pay - tax
ERROR FIXED (SE04): Corrected string concatenation
return 'Total Pay: ' + str(gross_pay) + ', Net Salary: ' + str(net_pay)

ERROR FIXED (SE05): 'def' typo
def main():
hours = input("Input hours: ")
rate = input("Input rate: $")

ERROR NOT FIXED (REO1): Input is string and not converted to number
payroll_info = calculate_payroll(hours, rate)

ERROR FIXED (SE06): Added missing parentheses for print function
print(payroll_info)

ERROR NOT FIXED (RE02): Undefined variable 'rates'
print(rates[0])

ERROR FIXED (LEO4): Corrected logic for' __name__' check
ERROR FIXED (SE07): Corrected comparison operator to '=='

if _name__ =="_main__":
main()

293 |Page

ERROR NOT FIXED (SE08): Incorrectly closed string
role = input("Enter employee's role:")

ERROR NOT FIXED (SEQ9): Incorrect indentation

if role == "Manager":
ERROR NOT FIXED (LEO5): Bonus calculation lacks context
bonus = 2000
print("Bonus: ", bonus)

ERROR NOT FIXED (SE10): Else without a prior if (due to the indentation error above)
else:
print("No bonus")

ERROR NOT FIXED (LEO6): Redundant and incorrect bonus logic
bonus =100
print("All employees get a bonus of: ", bonus)

ERROR NOT FIXED (SE11): Incomplete 'for' loop

foriin range(5)
ERROR NOT FIXED (REO3): Infinite loop due to missing colon
print(i)

294 |Page

Appendix H: DYAD Interview Protocols

How would you rate your programming skills and experience on a scale of 1 to 10, with
1 indicating a beginner level and 10 representing a highly skilled level?

What specific debugging strategies have you previously used in your programming
tasks, and what led you to choose these methods?

What types of error messages do you find challenging while collaborating to solve and
fix errors in the Python code?

What specific strategies do you employ in locating and rectifying bugs in the program,
and why have you chosen these methods?

From your experience in the observed session, how did working together impact your
approach to locating and fixing errors in the Python code, especially given your
geographical distribution?

5a Further to the answer provided to question 5, can you tell me in specific terms
how working together impacted the strategy used or the way you approached the
code debugging?

Can you describe the methods or strategies you used to distribute responsibilities and
manage cognitive workload during the debugging process in your remote pairing?
Reflecting on the recorded hypothetical debugging session, how did using Integrated
Development Environment (IDE) tools enhance your effectiveness and help mitigate
the challenges you faced while debugging programs together in distributed pair
debugging of Python code?

Using examples from the debugging session, what specific obstacles did you, as paired
and geographically dispersed SDT apprentices, encounter while collaborating to
resolve programming bugs?

Why do you think these particular challenges arose during your collaboration to fix

bugs in the Python code, especially given your geographical separation?

10. How was your experience with the debugging session alongside your partner?

295|Page

Appendix I: Focus Group Protocols

Thank you for participating in this focus group session. This session aims to tap into
your wealth of experience in software development and working with the SDT

apprentice debugging programming.

Introduction
Could we begin this discussion by exploring your experiences and observations on

debugging programming codes while working with apprentices?

Discussion on the themes from the apprentice investigation and their personal
experiences

What types of debugging strategies have you observed your apprentices using to
identify and rectify bugs in programming code?

In your view, what are the likely contributing factors to apprentices adopting these
specific debugging strategies?

How do you rate the effectiveness of these strategies in assisting apprentices to fix
bugs efficiently, and what are the reasons for your assessment?

One recurring theme from the debugging sessions was the challenge surrounding
mental models. Could you elaborate on the factors contributing to incorrect mental

models among apprentices?

Conclusion

To conclude, could you share your insights on the known or perceived challenges that
apprentices commonly face while debugging programming codes?

How do you think they can better be supported in improving your debugging practice?

Thank you for taking time out of your busy schedule to participate in this study.

296 |Page

Appendix J: Sample Transcript of the Debugging Session

Transcript of Debugging Session between SDT15 and SDT16

Session Start: 09:00 AM

Initial Run of the Script

SDT16 (Navigator): “Before we start fixing, let’s run the script as is. We need to
identify all the errors it throws up.”

SDT15 (Driver): “Agreed. Executing the script now to catch the initial errors.”
Script Execution Result: Error - SyntaxError on line 1: invalid syntax.

First 15 Minutes: Identifying and Correcting Syntax Errors

SDT15: “Looks like the first snag is a syntax error at the very beginning. Ah, we
missed the colon after the function declaration. Such a small thing can cause a big
issue.”

SDT16: “Exactly, the colon is crucial in Python to indicate the start of the function
block. Please add it at the end of the function declaration line.”

SDT15 quickly adds the colon, fixing the syntax error *SEOQI.

SDT16: “Great, now let’s rerun the script to check for the next batch of errors.”
SDT15: “Hmm, now we have a TypeError. Oh, we used ‘x’ for multiplication on line
3. It should be an asterisk “*’.”

SDT16: “That’s a common mistake when switching from math notation to
programming. Replace ‘x’ with “*’.”

SDT15 promptly corrects the multiplication symbol *SE02 and re-runs the script.
SDT15: “Another syntax error, this time on the ‘if” statement in line 7. We forgot the
colon again.”

SDT16: “The colon is crucial for if-else structures as well. Add it to signify the
beginning of the if block.”

SDTI15 corrects the missing colon *SE03.

To trace the program’s logic flow, they insert print statements and uncover
inaccuracies in the tax calculation.

SDT15: “According to our task, the tax rate should vary between 10% and 25% based
on the gross pay. But here, we’ve incorrectly used 15% and 5%.”

SDT16: “We need to modify these values to align with the specified tax brackets. That
will fix the logical errors in tax calculation.”

SDT15 updates the tax rates, addressing *LEO1 and *LEO02.

30 Minutes: Switching Roles and Correcting Further Errors

As per their plan, *SDT16 takes over as the Driver, and *SDT15 becomes the
Navigator.

SDT16: “I’ll handle the string concatenation error in the return statement. We should
concatenate using ‘+’ instead of commas.”

SDTI15: “That’s correct. Using plus signs will properly combine the strings and
variables.”

SDT16 rectifies the string concatenation issue *SE04.

297 |Page

SDT15: “The next issue is with the main function definition. It’s mistakenly written as
df.”

SDT16: “Oh, that’s a typo. Changing ‘df’ to ‘def to correctly define the main
function.”

SDT16 fixes the function definition typo *SE05 and runs the script, leading to a
runtime error.

SDT15: “The runtime error suggests an issue with data types. We’re not converting
the input strings to numbers, which is essential for arithmetic operations.”

SDT16: “Right, I’ll convert the input strings to integers to resolve this.”

SDT16 amends the code to convert inputs to integers, addressing *REO1.

SDT15: “There’s also a line with an undefined variable ‘rates’. It seems out of place.”

298 |Page

Appendix K: Sample Transcript of Dyad’s Interview

4. What specific strategies do you employ in locating and rectifying bugs in the
program, and why have you chosen these methods?

SDT7: "In our recent debugging session, | leaned heavily on Trial-and-Error as my
primary strategy. It involves testing various solutions to see what works and what
doesn’t, which | find effective for immediate, hands-on learning. For example, when
we encountered SE02, the wrong operator for multiplication, | quickly experimented
with the correct operators to fix it. | prefer this approach because it gives me a direct
sense of interaction with the code. However, | realise it’s not always the most efficient,
especially for more complex errors like the logical ones we faced. That’s where | find
Code Review really valuable. Reviewing SDT8’s code alterations and discussing them

helped me understand different perspectives and solutions."

SDT8: "I tend to favour Print Statement Debugging as my go-to strategy. It allows me
to track how data changes throughout the program, which is crucial for understanding
how errors, particularly runtime ones, manifest. For instance, when tackling REO1, not
converting string input to number, using print statements helped us trace where the
type mismatch occurred. | find this method systematic and informative, especially
when dealing with intricate code. In addition to that, | also see the merit in Code
Review, as SDT7 mentioned. It's a collaborative effort that offers insights that one
might miss when working alone. The trial-and-error approach used by SDT7 also
complemented our session, bringing a more dynamic and exploratory angle to our

debugging process."

Critical Analysis of Responses:
SDT7’s Analysis: SDT7’s preference for Trial-and-Error reflects a hands-on, experiential
learning style. This approach is effective for immediate problem-solving but may lack
efficiency with complex issues.
Their appreciation for Code Review indicates an understanding of the value of

collaborative learning and different perspectives in debugging.

299 |Page

SDT8’s Analysis: SDT8’s use of Print Statement Debugging demonstrates a systematic
and analytical approach, allowing for a clear understanding of program flow and data
states.

Their recognition of the benefits of Code Review highlights the importance of
collaboration in their debugging strategy, complementing their individual analytical

approach with collective insights.

Overall Assessment: Both SDT7 and SDT8 have employed strategies that suit their
individual learning styles while complementing each other’s approaches. SDT7’s
hands-on Trial-and-Error method provides immediate feedback and learning, while
SDT8’s systematic Print Statement Debugging offers detailed insights into the
program’s operation. The incorporation of Code Review by both participants enhances
their debugging process, allowing for collaborative problem-solving and learning from
each other’s perspectives. This combination of strategies suggests a well-rounded

approach to debugging, balancing individual exploration with collaborative analysis.

300|Page

Appendix L: Sample of Included Studies for the Critical

Analysis

Table 1: Sample of a summary document for the critical analysis (CA) of selected studies.

Included studies

CA tool

Quality
rating

Evidence
level

Gould, J. D., & Drongowski, P. (1974). An exploratory study of
computer program debugging. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 16(3), 258-277.

JBI

Outstanding

95%

Vessey, |. (1985). Expertise in debugging computer programs: A
process analysis. International Journal of Man-Machine Studies,
23(5), 459-494

JBI

Outstanding

95%

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-
location strategies. Human-Computer Interaction, 3(4), 351-399.

JBI

Good

85%

Allwood, C. M., & Bjorhag, C.-G. (1990). Novices' debugging when
programming in Pascal. International Journal of Man-Machine
Studies, 33(6), 707-724.

JBI

Outstanding

90%

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of
patterns of debugging among novice computer science students.
ACM SIGCSE Bulletin, 37(3), 84-88.

JBI

Outstanding

90%

Chintakovid, T., Wiedenbeck, S., Burnett, M., & Grigoreanu, V.
(2006). Pair Collaboration in End-User Debugging. Proceedings -
IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2006, Brighton, UK.

JBI

Outstanding

95%

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B.,
Thomas, L., & Zander, C. (2008). Debugging: finding, fixing and
flailing, a multi-institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

JBI

Outstanding

90%

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L.,
& Zander, C. (2008). Debugging: the good, the bad, and the quirky--
a qualitative analysis of novices' strategies. ACM SIGCSE Bulletin,
40(1), 163-167.

JBI

Outstanding

90%

Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., &
Zander, C. (2010). Debugging from the student perspective. IEEE
Transactions on Education, 53(3), 390-396.

JBI

Outstanding

95%

10

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair
debugging: a transactive discourse analysis Proceedings of the Sixth
international workshop on Computing education research, Aarhus,
Denmark.

JBI

Outstanding

95%

11

Yen, C.-Z., Wu, P.-H., & Lin, C.-F. (2012). Analysis of experts’ and
novices’ thinking process in program debugging. Engaging Learners
Through Emerging Technologies. ICT 2012. Communications in
Computer and Information Science, vol 302, Hong Kong, China.

JBI

Outstanding

95%

12

Akinola, S. (2014). An Empirical Comparative Analysis of
Programming Effort, Bugs Incurrence and Code Quality between
Solo & Pair Programmers. Middle-East Journal of Scientific
Research, 21(12), 2231-2237.

JBI

Outstanding

100%

13

McCall, D., & Kélling, M. (2014). Meaningful categorisation of novice
programmer errors. In 2014 |IEEE Frontiers in Education Conference
(FIE) Proceedings (pp. 1-8). IEEE.

JBI

Outstanding

94%

301|Page

14

Pritchard, D. (2015). Frequency distribution of error messages.
Proceedings of the 6th Workshop on Evaluation and Usability of
Programming Languages and Tools, Pittsburgh, PA, USA.

JBI

Outstanding

94%

15

Algadi, B. S., & Maletic, J. I. (2017). An Empirical Study of Debugging
Patterns Among Novices Programmers Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education,
Seattle, Washington, USA.

JBI

Outstanding

95%

16

Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors
made by novice programmers. Proceedings of the 20th Australasian
Computing Education Conference, Brisbane, Queensland, Australia.

JBI

Good

80%

17

Junior, A. S., de Figueiredo, J. C. A., & Serey, D. (2019). Analysing the
Impact of Programming Mistakes on Students' Programming
Abilities. Brazilian Symposium on Computers in Education, Brazil.

JBI

Outstanding

90%

18

Kohn, T. (2019). The Error Behind The Message: Finding the Cause of
Error Messages in Python Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, Minneapolis, MN, USA.

JBI

Outstanding

100%

19

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the
mistakes of novice programmers. Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, Minneapolis,
USA.

JBI

Outstanding

94%

20

Jayathirtha, G., Fields, D., & Kafai, Y. (2020). Pair debugging of
electronic textiles projects: Analyzing think-aloud protocols for high
school students’ strategies and practices while problem solving The
Interdisciplinarity of the Learning Sciences, 14th International
Conference of the Learning Sciences (ICLS) 2020, Nashville, USA.

JBI

Outstanding

95%

21

Michaeli, T., & Romeike, R. (2020). Investigating Students’
Preexisting Debugging Traits: A Real World Escape Room Study
Proceedings of the 20th Koli Calling International Conference on
Computing Education Research, Koli, Finland.

JBI

Outstanding

95%

22

Smite, D., Mikalsen, M., Moe, N. B., Stray, V., & Klotins, E. (2021).
From Collaboration to Solitude and Back: Remote Pair Programming
During COVID-19. In P. Gregory, C. Lassenius, X. Wang, & P.
Kruchten, Agile Processes in Software Engineering and Extreme
Programming International Conference on Agile Software
Development, Cham.

JBI

Outstanding

95%

23

Whalley, J., Settle, A., & Luxton-Reilly, A. (2021a). Analysis of a
Process for Introductory Debugging Proceedings of the 23rd
Australasian Computing Education Conference, Australia.

JBI

Outstanding

95%

24

Whalley, J., Settle, A., & Luxton-Reilly, A. (2021b). Novice
Reflections on Debugging Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, Virtual Event, USA.

JBI

Outstanding

95%

25

Baabdullah, A., & Kim, C. (2022). Supporting Collaborative
Debugging Processes. Proceedings of the 15th International
Conference on Computer-Supported Collaborative Learning-CSCL
2022, pp. 557-558, Hiroshima, Japan.

JBI

Outstanding

95%

26

Jeffries, B., Lee, J. A., & Koprinska, 1. (2022). 115 Ways Not to Say
Hello, World! Syntax Errors Observed in a Large-Scale Online CSO
Python Course. Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education Vol. 1
(ITiCSE 2022), Dublin, Ireland.

JBI

Outstanding

100%

27

Kim, C., Vasconcelos, L., Belland, B. R., Umutlu, D., & Gleasman, C.
(2022). Debugging behaviours of early childhood teacher
candidates with or without scaffolding. International Journal of
Educational Technology in Higher Education, 19(1), 26.

JBI

Outstanding

95%

302|Page

28

Alaboudi, A., & LaToza, T. D. (2023). What constitutes debugging?
An exploratory study of debugging episodes. Empirical Software
Engineering, 28(5), 117.

JBI

Outstanding

95%

29

Liu, Q., & Paquette, L. (2023). Using submission log data to
investigate novice programmers’ employment of debugging
strategies. LAK23: 13th International Learning Analytics and
Knowledge Conference, Arlington, TX, USA.

JBI

Outstanding

95%

30

Whalley, J., Settle, A., & Luxton-Reilly, A. (2023). A Think-aloud
Study of Novice Debugging. ACM Trans. Comput. Educ., 23(2), 1.

JBI

Outstanding

95%

31

Zhang, Y., Paquette, L., Pinto, J. D,, Liu, Q., & Fan, A. X. (2023).
Combining latent profile analysis and programming traces to
understand novices’ differences in debugging. Education and
Information Technologies, 28(4), 4673-4701.

JBI

Outstanding

95%

32

Brown, N. C., Mac, V., Weill-Tessier, P., & Kolling, M. (2024). Writing
Between the Lines: How Novices Construct Java Programs
Proceedings of the 55th ACM Technical Symposium on Computer

Science Education V. 1 (SIGCSE 2024), USA.

JBI

Outstanding

90%

33

Jayathirtha, G., Fields, D., & Kafai, Y. (2024). Distributed debugging
with electronic textiles: understanding high school student pairs’
problem-solving strategies, practices, and perspectives on repairing
physical computing projects. Computer Science Education, 1-35.

JBI

Outstanding

100%

34

Morales-Navarro, L., Fields, D. A., & Kafai, Y. B. (2024).

Understanding growth mindset practices in an introductory physical

computing classroom: high school students’ engagement with
debugging by design activities. Computer Science Education, 1-31.

JBI

Outstanding

90%

35

Parkinson, M. M., Hermans, S., Gijbels, D., & Dinsmore, D. L. (2024).
Exploring debugging processes and regulation strategies during
collaborative coding tasks among elementary and secondary
students. Computer Science Education, 1-28.

JBI

Good

75%

303|Page

Appendix M: Debugging Session Codebook

304|Page

Appendix N: DYAD Interview Codebook

DPP

Codes\\Interview\\Stage 1 & 2 - Familiarisation & Coding

Name Description Files References
Absence of Physical These represent struggles in not being able to 1 11
Presence for Quick point or visually show parts of code

Clarification

Acknowledged Limitations Learners showed self-awareness by noting their 1 3

own lack of proficiency or understanding. These
admissions underline honesty about gaps in
capability.

Agreement on Challenge Multiple participants expressed a shared view 1 5
that certain logical errors posed significant
difficulty. The consistency in their sentiments
adds weight to the issue's complexity.

Analytical approach Describes instances where a participant 1 1
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

Analytical Demand Reflects how some debugging tasks required 1 1
high-level reasoning and mental exertion.
Participants perceived the activity as cognitively
intensive.

Analytical Gaps Denotes errors that occurred due to missed 1 2
steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

Big picture review Participants referred to stepping back and 1 1
reassessing the entire codebase. This top-down
perspective helped in recontextualising the
issue.

Breakdown strategy Refers to the act of deconstructing a problem 1 1
into simpler parts to aid resolution. Learners
discussed breaking logic into manageable pieces.

Calculation Confusion Errors emerged from difficulties in creating or 1 1
tracing formula-based logic. Mathematical
thinking was the barrier.

Code Isolation Strategy Participants isolated specific blocks or lines of 1 2
code to test or observe behaviour. This strategy
helped to narrow the problem area.

Code Review Apprentices systematically examined and 1 12
critiqgued each other's code to identify issues,

305|Page

Name Description

clarify logic, and enhance collaborative problem-

solving.

Code Structure For syntax issues relating to structural formatting
or layout.

Code Visibility Advantage Clarity in formatting, naming, or organisation

made it easier to follow the logic. Participants
attributed their success partly to how readable
the code was.

Collaborative clarity Understanding emerged more clearly through
discussions with peers. Explaining logic to others
often led to personal insight.

Collaborative Insight New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

Complex Logic Breakdown Learners attempted to untangle highly intricate
or nested conditions. The difficulty lay not in
syntax but in logical architecture.

Concept Misuse Participants misapplied key Python concepts,
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding

constructs.
Conditional Learners misunderstood how conditionals
Misinterpretation executed. This misreading caused flawed logic
paths.
Context understanding Problem-solving success relied on grasping the

wider function or scenario. The learner needed
to understand not just 'what' but 'why'.

Contextual Misuse A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

Data Flow Understanding Focused on tracking how information moved
through variables and functions. This tracking
helped diagnose where logic broke down.

Deep Dive Debugging Marked by a thorough and prolonged
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

Deep Logic This reflects the intellectual depth required to
trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was
insufficient.

Difficulty Conveying These quotes are focused on how apprentices
Thought Process Remotely struggled to explain, align, or communicate their
reasoning without face-to-face interaction

References

27

306 | Page

Name

Distraction in Individual
Work Environments

Divide and conquer

Division of Tasks Based on
Strengths

Driver-Navigator Role

Sharing

Error Complexity

Execution Flow

Experience Builds Mastery

Explaining syntax fixes

Fixing Syntax Error

Flow Confusion

Found It Challenging

General Complexity

Growth Mindset

Growth Through Challenge

IDE Debugger Usage

Infinite Loop

Description

These highlight challenges in focus due to
remote, uncontrolled environments.

The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

Apprentices strategically assigned
responsibilities based on individual strengths or
comfort zones to manage complexity and
maintain focus.

Apprentices adopted a structured pairing model
where one coded while the other observed and
guided, helping distribute cognitive demands.

The nature of the logic error was itself intricate
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

For difficulty understanding the order of
execution in Python.

Learners acknowledged that repeated exposure
helped them improve. Experience was credited
as a major enabler of logical reasoning.

For verbal explanation, negotiation, or
clarification of syntax fixes during collaboration

For comments about actively identifying,
correcting, or guiding others through syntax
issues.

The challenge stemmed from not understanding
how code progressed during execution. This lack
of clarity hampered logical deductions.

A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

Applied when logic problems were described as
difficult but without specific explanation. It
captures vague but valid struggle.

Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports resilience.

Struggle was reframed as an opportunity for
learning. Participants reflected positively on the
difficulty.

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of
logic errors.

For errors involving loops that do not terminate.

References

22

18

10

15

35

17

307|Page

Name

Knowledge Gaps

Lack of Non-Verbal

Feedback

Limited Experience and Skill
Gaps

Logic and Flow Challenges

Logic Struggle

Logical Errors Challenging

Logical Reasoning Gaps

Methodical Problem
Solving

Misalighment in
Understanding

Missing Colon

Missing Syntax

Misunderstood Logic Flow

Misuse of 'name’

Navigator insight

Needs More Practice

Description

Errors resulted from lacking the foundational
knowledge needed to apply logic. This code

tracks missing prerequisites.

These reflect how the absence of visual, gestural,
or facial cues hindered effective communication
and understanding during remote debugging

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational knowledge,
or still developing confidence in applying core

concepts.

Combined challenges in understanding both the
logic and how it executed. These situations
involved overlapping difficulties.

Captures moments of emotional or cognitive
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t specify

which part was problematic.

Participants struggled with understanding or
applying correct logic within the code,
particularly when handling conditionals,
calculations, or the flow of decision-making.

The participant used a structured, procedural
approach to identify the issue. This code praises

disciplined debugging.

These reflect how apprentices experienced
confusion or divergent interpretations of logic or
instructions during debugging sessions

For specific mention of missing colons in syntax.

For syntax errors due to missing elements like
colons, brackets, or forgotten components.

Participants misunderstood how one part of the
code affected another. These errors revealed

disconnects in logic mapping.

Highlights confusion around Python's special
__name__'variable. This is a specific example of

concept misunderstanding.

In pair programming, the navigator offered a
useful perspective. The insight usually shifted

the course of debugging.

Participant acknowledged needing repetition or
further exposure to improve. Practice was seen

as key to mastering logic.

References

33

15

61

33

39

308|Page

Name Description

Other IDE Features Apprentices benefited from additional IDE tools
like version control integration, intelligent
suggestions, and code completion to streamline
their workflow.

Pair support for syntax For collaborative efforts in addressing syntax
errors through shared roles or peer help.

Paired Strengths Learners described how teammates
complemented their skills. Their collective effort
covered individual weaknesses.

Pattern Matching Apprentices looked for recurring structures or
familiar error patterns to quickly locate and fix
bugs based on previous experience.

Pattern-based reasoning Participants applied familiar logic patterns to
solve new problems. This indicates transfer of
learning.

Pattern-based syntax For use of recurring patterns, visual tracing, or

strategy structured methods in spotting syntax issues.

Peer Review Strength Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

Peer support Emotional or technical encouragement came

from fellow learners. It acted as a buffer during
challenging moments.

Print Statement Debugging Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during execution.

Progress Despite Errors Learners recognised forward movement even
when mistakes occurred. This shows
perseverance.

Real-Time Code Sharing and Tools enabling simultaneous editing and shared
Synchronisation visibility helped apprentices maintain alignment
and coordinate debugging in real-time.

Real-Time Tool Support for Collaborative tools like IDE features and remote
Coordination sharing platforms were used to support
synchronised thinking and reduce mental strain.

Remote Collaboration The online or distant setup introduced
Limits difficulties in understanding logic. Distance
added barriers to debugging.

Role swapping Team members changed roles mid-task to better
tackle logic issues. The switch brought fresh
perspective.

Rubber Duck Debugging Apprentices explained their code aloud—to a
partner or inanimate object—to clarify their
thinking and uncover logic errors.

Rubber ducking Participants verbalised logic step-by-step, often
to a peer or non-technical object. This
externalisation clarified their thinking.

References

13

32

37

309|Page

Name

Runtime Contrast

Runtime Error Complexity

Runtime Overwhelm

Runtime Print Tracking

Runtime Strategy Lacking

Runtime Type Confusion

Runtime Uncertainty

Slicing

Solution experimentation

Strategy Limitations

Syntax and Error
Highlighting Features

Syntax as role strength

Syntax Complexity

Syntax Feels Easy

Syntax First

Syntax for Beginners

Description

Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

Several apprentices found runtime errors
difficult to resolve because they often appeared
after code execution and required understanding
how the program behaved dynamically.

When runtime feels particularly complex or
challenging.

For those using print statements to trace issues.

When trial-and-error or lack of method was
highlighted.

When the issue involves converting string to
number or similar.

For quotes where learners are confident with
syntax but unsure about runtime.

Slicing refers to the strategy of breaking down or
isolating specific segments of code, such as
functions, conditions, or loops, to analyse them
independently. This helps apprentices reduce
complexity by focusing only on the relevant part
of the code where the error is suspected, making
it easier to locate and fix bugs collaboratively.

Debugging involved trying multiple possible
solutions to test logic. Learners described trial as
a deliberate tactic.

Existing methods or plans failed to resolve the
logic issue. Learners were forced to reconsider
their approach.

The IDE’s syntax highlighting, auto-indentation,
and inline error notifications supported
apprentices in quickly spotting and correcting
code mistakes.

For individuals who naturally took the lead on
syntax due to confidence or skill

Participants frequently encountered syntax
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

For those who found syntax errors more
straightforward or gained confidence resolving
them

Where participants mention syntax errors as
their starting point in debugging.

For beginner-level ease, familiarity, or exposure
to syntax debugging.

References

46

13

24

15

151

25

310|Page

Name

Syntax is Tricky

Syntax Typo

Technology-Related
Collaboration Issues

Think-Aloud
Communication

Time Zone and Scheduling

Difficulties

Tinkering

Tool Access or Setup Issues

Tool-assisted logic check

Tool-Assisted Syntax Fix

Tracing

Trial and Error

Trial and Error Limits

Turn-Taking and Role
Swapping

Type Conversion

Undefined Variable

Understanding Logic Flow

Unresolved Logic Issues

Description

For quotes that describe syntax errors as
deceptively hard or initially difficult to handle.

For errors caused by typographical mistakes.

These quotes reflect how tool-based issues like
syncing, lag, edit conflicts, and IDE limitations
disrupted collaboration

Apprentices verbalised their reasoning and
thought processes to clarify understanding and
collaboratively work through errors.

Quotes here reflect challenges related to
coordinating across different locations or
schedules.

Apprentices intuitively made small code changes
and tested their effects as a way to explore and
understand bugs.

These quotes relate to initial difficulties in using
or setting up collaboration tools.

Software tools like debuggers or linters were
used to identify logic faults. Participants credited
these for catching errors.

For use of features like syntax highlighting, error
popups, or debuggers to spot/fix syntax.

Apprentices followed the program’s flow line by
line to understand how data moved and identify
where the logic broke down.

Apprentices experimented with different
solutions without a predefined plan to see what
resolved the issue through observation.

Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.

For issues converting between data types (e.g.
string to number)

For use of variables that were not defined before
use.

A clear picture of how logic moved through code
aided debugging. This awareness streamlined
troubleshooting.

Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

References

41

21

26

15

10

311|Page

Name Description
Unstable or Inconsistent These quotes highlight issues caused by poor or
Internet Connection unstable internet, affecting real-time

collaboration or access to tools.

Use of Live Share for Apprentices leveraged Live Share to
Remote Collaboration collaboratively edit, navigate, and debug code
from separate locations in real time.

Variable misuse Mistakes occurred due to inappropriate variable
assignment or tracking. This led to faulty logic.

References

312|Page

Codes\\Interview\\Stage 3 - Theme Generation

Name

Cognitive Perception and
Difficulty

Runtime Overwhelm

Runtime Type
Confusion

Runtime Uncertainty

Collaboration and
Communication Aids

Collaborative clarity

Collaborative Insight

Navigator insight

Paired Strengths

Peer Review Strength

Peer support

Role swapping

Collaborative and Reflective
Techniques

Description

This category reflects how runtime issues were
perceived as overwhelming or uncertain,
especially when apprentices couldn’t predict
behaviour or lacked confidence during
execution.

When runtime feels particularly complex or
challenging.

When the issue involves converting string to
number or similar.

For quotes where learners are confident with
syntax but unsure about runtime.

This category reflects the value of teamwork in
resolving logical errors. It includes quotes where
learners gained clarity or found solutions by
explaining to peers, switching roles, or
combining their strengths.

Understanding emerged more clearly through
discussions with peers. Explaining logic to others
often led to personal insight.

New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

In pair programming, the navigator offered a
useful perspective. The insight usually shifted
the course of debugging.

Learners described how teammates
complemented their skills. Their collective effort
covered individual weaknesses.

Logic errors were identified through peer
feedback. Review mechanisms improved
accuracy.

Emotional or technical encouragement came
from fellow learners. It acted as a buffer during
challenging moments.

Team members changed roles mid-task to better
tackle logic issues. The switch brought fresh
perspective.

This category highlights methods where
apprentices explained or reviewed code with
others (or to themselves) to gain insight, clarify
thinking, and identify errors through reflection
or external feedback.

Files References
1 43
1 13
1 6
1 24
1 13
1 3
1 4
1 1
1 1
1 1
1 1
1 2
2 20

313|Page

Name

Code Review

Peer Review Strength

Rubber Duck
Debugging

Connectivity Constraints

Unstable or
Inconsistent Internet
Connection

Debugging Approaches for
Runtime

Runtime Print
Tracking

Runtime Strategy
Lacking

Debugging Tools and
Execution Support

IDE Debugger Usage

Print Statement
Debugging

Distractions and Focus
Challenges

Distraction in
Individual Work
Environments

Foundational Knowledge
Gaps

Description

Apprentices systematically examined and
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative problem-

solving.

Logic errors were identified through peer
feedback. Review mechanisms improved

accuracy.

Apprentices explained their code aloud, to a
partner or inanimate object, to clarify their
thinking and uncover logic errors.

This category reflects how unstable internet
disrupted communication, tool access, and real-
time collaboration, especially in remote or

bandwidth-limited settings.

These quotes highlight issues caused by poor or
unstable internet, affecting real-time
collaboration or access to tools.

This category captures how apprentices
attempted to resolve runtime errors, particularly
by using print statements or acknowledging a

lack of structured strategy.

For those using print statements to trace issues.

When trial-and-error or lack of method was

highlighted.

This category captures how apprentices
leveraged key debugging tools, such as the IDE’s
step-through functionality and print statements,
to inspect program execution, monitor variable
states, and detect logical or runtime issues.

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of

logic errors.

Apprentices inserted print statements and
monitored console outputs to trace program
behaviour and identify bugs during execution.

Distractions and Focus Challenges This includes
issues with concentration due to noise,
interruptions, or other environmental factors
unique to working remotely from home or other

informal settings

These highlight challenges in focus due to
remote, uncontrolled environments.

This category reflects difficulties stemming from
apprentices’ limited prior experience with
Python or programming generally, especially in

Files References

1 12
1 1
1 7
1 1
1 1
1 6
1 4
1 2
1 67
1 35
1 32
1 6
1 6
1 166

314 |Page

Name Description Files References

handling syntax-specific rules like indentation
and punctuation.

Limited Experience Apprentices expressed difficulty navigating 1 15
and Skill Gaps debugging tasks due to being new to

programming, lacking foundational knowledge,

or still developing confidence in applying core

concepts.

Syntax Complexity Participants frequently encountered syntax 1 151
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

Interface Guidance and This category represents the supportive role of 1 6
Visual Feedback the IDE’s user interface elements, including

syntax highlighting, auto-suggestions, version

control, and intelligent prompts, which helped

learners identify errors and streamline their

workflow.

Other IDE Features Apprentices benefited from additional IDE tools 1 3
like version control integration, intelligent
suggestions, and code completion to streamline
their workflow.

Syntax and Error The IDE’s syntax highlighting, auto-indentation, 1 3
Highlighting Features and inline error notifications supported

apprentices in quickly spotting and correcting

code mistakes.

Interpretation and This category includes moments where 1 33
Understanding Conflicts apprentices interpreted instructions, logic, or

errors differently, resulting in delays or

confusion in collaborative debugging.

Misalignment in These reflect how apprentices experienced 1 33
Understanding confusion or divergent interpretations of logic or
instructions during debugging sessions

Nature and Source of This category captures specific causes of syntax 1 45
Syntax Errors errors such as missing colons, structural

mistakes, typographical errors, and overlooked

elements. It reflects how apprentices

encountered surface-level mistakes that

disrupted code execution.

Code Structure For syntax issues relating to structural formatting 1 4
or layout.

Missing Colon For specific mention of missing colons in syntax. 1 1

Missing Syntax For syntax errors due to missing elements like 1 39

colons, brackets, or forgotten components.

Syntax Typo For errors caused by typographical mistakes. 1 1
Perceived Complexity and This category captures how apprentices found 1 41
Emotional Response logical errors emotionally or cognitively taxing. It

315|Page

Name Description Files References

includes expressions of frustration, struggle, or
general difficulty in making sense of complex
conditions or flows.

Agreement on Multiple participants expressed a shared view 1 5
Challenge that certain logical errors posed significant

difficulty. The consistency in their sentiments

adds weight to the issue's complexity.

Complex Logic Learners attempted to untangle highly intricate 1 4
Breakdown or nested conditions. The difficulty lay not in
syntax but in logical architecture.

Error Complexity The nature of the logic error was itself intricate 1 10
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

Flow Confusion The challenge stemmed from not understanding 1 1
how code progressed during execution. This lack
of clarity hampered logical deductions.

Found It Challenging A general admission that the task was tough, 1 7
without further detail. These expressions still
signal cognitive overload.

General Complexity Applied when logic problems were described as 1 5
difficult but without specific explanation. It
captures vague but valid struggle.

Logic Struggle Captures moments of emotional or cognitive 1 4
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

Logical Errors Serves as a general label for statements 1 5
Challenging identifying logic bugs as hard. It doesn’t specify
which part was problematic.
Perceived Difficulty of This category includes apprentice's perceptions 1 33
Syntax of syntax errors as either easy or deceptively

tricky. Some found them manageable due to
clear error messages, while others initially
underestimated their complexity.

Syntax Feels Easy For those who found syntax errors more 1 25
straightforward or gained confidence resolving
them

Syntax for Beginners For beginner-level ease, familiarity, or exposure 1 2

to syntax debugging.

Syntax is Tricky For quotes that describe syntax errors as 1 6
deceptively hard or initially difficult to handle.

Physical Separation Barriers This category refers to the challenge of not being 1 11
able to visually point to code or easily clarify
issues due to being physically apart during
remote pair programming.

316 |Page

Name Description Files References

Absence of Physical These represent struggles in not being able to 1 11
Presence for Quick point or visually show parts of code
Clarification
Real-Time Collaborative This category includes tools that enabled 1 4
Platforms synchronous work across distances, allowing

apprentices to co-edit, share, and coordinate
their debugging efforts in real time using
platforms like Visual Studio Live Share.

Real-Time Code Tools enabling simultaneous editing and shared 1 2
Sharing and visibility helped apprentices maintain alignment

Synchronisation and coordinate debugging in real-time.

Use of Live Share for Apprentices leveraged Live Share to 1 2

Remote Collaboration collaboratively edit, navigate, and debug code
from separate locations in real time.

Real-Time Communication This category reflects how verbalisation 1 58
and Coordination Tools strategies and collaborative digital tools were

used to coordinate thought processes, reduce

confusion, and manage the cognitive load during

remote or paired debugging.

Real-Time Tool Collaborative tools like IDE features and remote 1 37
Support for sharing platforms were used to support

Coordination synchronised thinking and reduce mental strain.

Think-Aloud Apprentices verbalised their reasoning and 1 21
Communication thought processes to clarify understanding and

collaboratively work through errors.

Reasoning and Logic This category houses instances where 1 61
Challenges apprentices lacked the cognitive strategies to

understand and apply logic effectively, especially

when dealing with conditionals, calculations, or

the broader logic structure.

Logical Reasoning Participants struggled with understanding or 1 61
Gaps applying correct logic within the code,

particularly when handling conditionals,

calculations, or the flow of decision-making.

Reflection and Learning This category captures reflective mindsets where 1 31
Dispositions apprentices identified growth, perseverance, or

learning from mistakes. It also houses

observations about how experience, context,

and collaboration influenced their progress.

Context Problem-solving success relied on grasping the 1 3
understanding wider function or scenario. The learner needed
to understand not just 'what' but 'why'.

Experience Builds Learners acknowledged that repeated exposure 1 2
Mastery helped them improve. Experience was credited
as a major enabler of logical reasoning.

Growth Mindset Participants expressed confidence that they 1 1
could learn and improve with effort. This
forward-thinking attitude supports resilience.

317|Page

Name Description Files References

Growth Through Struggle was reframed as an opportunity for 1 4
Challenge learning. Participants reflected positively on the

difficulty.
Logic and Flow Combined challenges in understanding both the 1 6
Challenges logic and how it executed. These situations

involved overlapping difficulties.

Misuse of 'name Highlights confusion around Python's special 1 1
' _name__'variable. This is a specific example of

concept misunderstanding.

Progress Despite Learners recognised forward movement even 1 1
Errors when mistakes occurred. This shows

perseverance.
Remote Collaboration The online or distant setup introduced 1 8
Limits difficulties in understanding logic. Distance

added barriers to debugging.

Runtime Contrast Participants reflected on how runtime errors 1 2
differed from logic ones. This comparative
insight helped focus their approach.

Unresolved Logic Some logic problems remained unsolved by 1 2
Issues session end. The code captures lingering

confusion.
Variable misuse Mistakes occurred due to inappropriate variable 1 1

assignment or tracking. This led to faulty logic.

Remote Expression This category captures how apprentices 1 60
Challenges struggled to communicate ideas clearly without

the benefit of facial expressions, gestures, or in-

person context, leading to misunderstandings,

over-explaining, or extra effort in articulation.

Difficulty Conveying These quotes are focused on how apprentices 1 27
Thought Process struggled to explain, align, or communicate their

Remotely reasoning without face-to-face interaction

Lack of Non-Verbal These reflect how the absence of visual, gestural, 1 33
Feedback or facial cues hindered effective communication

and understanding during remote debugging

Runtime Behaviour This category represents the difficulty of 1 46
Confusion identifying and resolving bugs that only emerged

during code execution—particularly where

program behaviour was unpredictable or

misunderstood.

Runtime Error Several apprentices found runtime errors 1 46
Complexity difficult to resolve because they often appeared

after code execution and required understanding

how the program behaved dynamically.

Scheduling and This category captures difficulties in syncing 1 5
Coordination Hurdles schedules across time zones or managing

different availability patterns, which limited

collaboration windows.

318|Page

Name Description Files References

Time Zone and Quotes here reflect challenges related to 1 5
Scheduling Difficulties coordinating across different locations or
schedules.
Skill Gaps and Cognitive This category includes participants’ admissions 1 18
Limitations of limited knowledge, misunderstood logic, or

conceptual misapplications. It highlights areas
where deeper learning or practice was needed
to engage with logic-based bugs

Acknowledged Learners showed self-awareness by noting their 1 3
Limitations own lack of proficiency or understanding. These

admissions underline honesty about gaps in

capability.
Analytical Gaps Denotes errors that occurred due to missed 1 2

steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

Calculation Confusion Errors emerged from difficulties in creating or 1 1
tracing formula-based logic. Mathematical
thinking was the barrier.

Concept Misuse Participants misapplied key Python concepts, 1 2
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding

constructs.
Conditional Learners misunderstood how conditionals 1 1
Misinterpretation executed. This misreading caused flawed logic

paths.
Contextual Misuse A function or logic piece was applied in the 1 1

wrong context. The logic was sound, but its
placement was flawed.

Knowledge Gaps Errors resulted from lacking the foundational 1 6
knowledge needed to apply logic. This code
tracks missing prerequisites.

Misunderstood Logic Participants misunderstood how one part of the 1 1
Flow code affected another. These errors revealed
disconnects in logic mapping.

Needs More Practice Participant acknowledged needing repetition or 1 1
further exposure to improve. Practice was seen
as key to mastering logic.

Social and Collaborative This category highlights how syntax debugging 1 43
Dimensions was supported by peer explanations, shared

roles, and individual strengths in collaborative

settings. It includes verbal clarification and role-

based task division around syntax.

Explaining syntax fixes For verbal explanation, negotiation, or 1 15
clarification of syntax fixes during collaboration

Pair support for For collaborative efforts in addressing syntax 1 13
syntax errors through shared roles or peer help.

319|Page

Name Description Files References

Syntax as role For individuals who naturally took the lead on 1 15
strength syntax due to confidence or skill
Strategic Role Allocation This category captures how apprentices 1 47
and Rotation strategically assigned roles and alternated them

to balance mental effort, maintain engagement,
and leverage individual strengths during
debugging sessions.

Division of Tasks Apprentices strategically assigned 1 22
Based on Strengths responsibilities based on individual strengths or

comfort zones to manage complexity and

maintain focus.

Driver-Navigator Role Apprentices adopted a structured pairing model 1 18
Sharing where one coded while the other observed and
guided, helping distribute cognitive demands.

Turn-Taking and Role Regular role alternation ensured balanced 1 7
Swapping mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.
Strategies and Reasoning This category includes structured problem- 2 28
Approaches solving strategies like breaking problems down,

isolating faulty logic, following data flow, using
tool support, and experimenting methodically
with solutions.

Analytical approach Describes instances where a participant 1 1
employed step-by-step reasoning or formal
techniques. It highlights a structured way of
unravelling complex logic.

Analytical Demand Reflects how some debugging tasks required 1 1
high-level reasoning and mental exertion.
Participants perceived the activity as cognitively
intensive.

Big picture review Participants referred to stepping back and 1 1
reassessing the entire codebase. This top-down
perspective helped in recontextualising the
issue.

Breakdown strategy Refers to the act of deconstructing a problem 1 1
into simpler parts to aid resolution. Learners
discussed breaking logic into manageable pieces.

Code Isolation Participants isolated specific blocks or lines of 1 2
Strategy code to test or observe behaviour. This strategy
helped to narrow the problem area.

Code Visibility Clarity in formatting, naming, or organisation 1 1
Advantage made it easier to follow the logic. Participants

attributed their success partly to how readable

the code was.

Data Flow Focused on tracking how information moved 1 1
Understanding through variables and functions. This tracking
helped diagnose where logic broke down.

320|Page

Name Description Files References

Deep Dive Debugging Marked by a thorough and prolonged 1 1
engagement with the problem. Participants
drilled deep into the logic layer rather than
skimming.

Deep Logic This reflects the intellectual depth required to 1 2
trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was
insufficient.

Divide and conquer The issue was resolved by segmenting it into 2 3
independent subproblems. Learners described
resolving each part methodically.

Methodical Problem The participant used a structured, procedural 1 1
Solving approach to identify the issue. This code praises
disciplined debugging.

Pattern-based Participants applied familiar logic patterns to 1 1
reasoning solve new problems. This indicates transfer of

learning.
Rubber ducking Participants verbalised logic step-by-step, often 1 2

to a peer or non-technical object. This
externalisation clarified their thinking.

Solution Debugging involved trying multiple possible 1 1
experimentation solutions to test logic. Learners described trial as
a deliberate tactic.

Strategy Limitations Existing methods or plans failed to resolve the 1 1
logic issue. Learners were forced to reconsider
their approach.

Tool-assisted logic Software tools like debuggers or linters were 1 2
check used to identify logic faults. Participants credited
these for catching errors.

Trial and Error Limits Participants noted that random guessing was 1 1
ineffective for logic bugs. These problems
needed deeper thought.

Understanding Logic A clear picture of how logic moved through code 1 5
Flow aided debugging. This awareness streamlined
troubleshooting.

Strategies for Syntax This category reflects tactical responses to 1 33
Debugging syntax errors, such as starting with syntax

checks, using tools like error highlighting, and

applying pattern-recognition techniques to spot

errors.
Fixing Syntax Errors For comments about actively identifying, 1 9
correcting, or guiding others through syntax
issues.
Pattern-based syntax For use of recurring patterns, visual tracing, or 1 6
strategy structured methods in spotting syntax issues.

321|Page

Name Description Files References

Syntax First Where participants mention syntax errors as 1 3
their starting point in debugging.

Tool-Assisted Syntax For use of features like syntax highlighting, error 1 15
Fix popups, or debuggers to spot/fix syntax.
Systematic Reasoning This category includes logical and structured 2 46
Strategies approaches where learners followed data flow,

stepped through execution, or broke problems
into smaller parts to locate and address issues in
a focused, disciplined manner.

Divide and conquer The issue was resolved by segmenting it into 2 3
independent subproblems. Learners described
resolving each part methodically.

IDE Debugger Usage Apprentices used the IDE debugger to step 1 35
through code and inspect variable states,
enabling precise identification and correction of

logic errors.
Methodical Problem The participant used a structured, procedural 1 1
Solving approach to identify the issue. This code praises

disciplined debugging.

Tracing Apprentices followed the program’s flow line by 1 7
line to understand how data moved and identify
where the logic broke down.

Tactical Exploration of This category covers exploratory tactics where 2 20
Faults apprentices relied on recognition of error

patterns, code segmentation, and hypothesis-

testing to find and resolve bugs.

Pattern Matching Apprentices looked for recurring structures or 1 3
familiar error patterns to quickly locate and fix
bugs based on previous experience.

Slicing Slicing refers to the strategy of breaking down or 1 3
isolating specific segments of code—such as
functions, conditions, or loops—to analyse them
independently. This helps apprentices reduce
complexity by focusing only on the relevant part
of the code where the error is suspected, making
it easier to locate and fix bugs collaboratively.

Solution Debugging involved trying multiple possible 1 1
experimentation solutions to test logic. Learners described trial as
a deliberate tactic.

Tinkering Apprentices intuitively made small code changes 1 3
and tested their effects as a way to explore and
understand bugs.

Trial and Error Apprentices experimented with different 1 10
solutions without a predefined plan to see what
resolved the issue through observation.

Tool Limitations in Remote This category captures tool-based challenges 1 41
Setup such as lag, syncing issues, limited shared
control, or edit conflicts—each of which

322|Page

Name

Technology-Related
Collaboration Issues

Tool Setup and Accessibility
Barriers

Tool Access or Setup
Issues

Types and Causes of
Runtime Errors

Execution Flow

Infinite Loop

Type Conversion

Undefined Variable

Description

disrupted the flow of joint work and required
additional coordination.

These quotes reflect how tool-based issues like
syncing, lag, edit conflicts, and IDE limitations
disrupted collaboration

These are initial or recurring issues in
configuring, accessing, or understanding how to
use necessary tools like IDEs, version control, or
communication platforms.

These quotes relate to initial difficulties in using
or setting up collaboration tools.

This category identifies the nature of runtime
errors apprentices faced, such as infinite loops,
undefined variables, and type conversion issues,
all of which occurred during execution.

For difficulty understanding the order of
execution in Python.

For errors involving loops that do not terminate.

For issues converting between data types (e.g.
string to number)

For use of variables that were not defined before
use.

Files References

1 41
1 26
1 26
1 35
1 5
1 17
1 8
1 5

323|Page

Codes\\Interview\\Stage 4 - Theme Review

Name Description Files References
Subtheme 1 - The three categories here cover verbal/gestural 1 134
Communication and limitations, cognitive misalignment, and tool-

Collaboration based disruptions, all central to remote pair

debugging challenges.

Interpretation and This category includes moments where 1 33
Understanding apprentices interpreted instructions, logic, or
Conflicts errors differently, resulting in delays or

confusion in collaborative debugging.

Misalignment in These reflect how apprentices experienced 1 33
Understanding confusion or divergent interpretations of logic
or instructions during debugging sessions

Remote Expression This category captures how apprentices 1 60
Challenges struggled to communicate ideas clearly without

the benefit of facial expressions, gestures, or in-

person context—leading to misunderstandings,

over-explaining, or extra effort in articulation.

Difficulty These quotes are focused on how apprentices 1 27
Conveying struggled to explain, align, or communicate

Thought Process their reasoning without face-to-face interaction

Remotely

Lack of Non- These reflect how the absence of visual, 1 33

Verbal Feedback gestural, or facial cues hindered effective
communication and understanding during
remote debugging

Tool Limitations in This category captures tool-based challenges 1 41
Remote Setup such as lag, syncing issues, limited shared

control, or edit conflicts, each of which

disrupted the flow of joint work and required

additional coordination.

Technology- These quotes reflect how tool-based issues like 1 41
Related syncing, lag, edit conflicts, and IDE limitations
Collaboration disrupted collaboration
Issues
Subtheme 1 - Syntax Error All four categories focus on different angles of 1 154

syntax-related issues: where they come from,
how hard they feel, how they are tackled, and
how collaboration supports resolution. Clear
boundaries and internal coherence are

maintained.
Nature and Source of This category captures specific causes of syntax 1 45
Syntax Errors errors such as missing colons, structural

mistakes, typographical errors, and overlooked
elements. It reflects how apprentices
encountered surface-level mistakes that
disrupted code execution.

324|Page

Name Description Files References

Code Structure For syntax issues relating to structural 1 4
formatting or layout.

Missing Colon For specific mention of missing colons in syntax. 1 1

Missing Syntax For syntax errors due to missing elements like 1 39
colons, brackets, or forgotten components.

Syntax Typo For errors caused by typographical mistakes. 1 1
Perceived Difficulty of ~ This category includes apprentice's perceptions 1 33
Syntax of syntax errors as either easy or deceptively

tricky. Some found them manageable due to
clear error messages, while others initially
underestimated their complexity.

Syntax Feels Easy For those who found syntax errors more 1 25
straightforward or gained confidence resolving
them
Syntax for For beginner-level ease, familiarity, or exposure 1 2
Beginners to syntax debugging.
Syntax is Tricky For quotes that describe syntax errors as 1 6

deceptively hard or initially difficult to handle.

Social and This category highlights how syntax debugging 1 43
Collaborative was supported by peer explanations, shared
Dimensions roles, and individual strengths in collaborative

settings. It includes verbal clarification and role-
based task division around syntax.

Explaining syntax For verbal explanation, negotiation, or 1 15
fixes clarification of syntax fixes during collaboration
Pair support for For collaborative efforts in addressing syntax 1 13
syntax errors through shared roles or peer help.
Syntax as role For individuals who naturally took the lead on 1 15
strength syntax due to confidence or skill
Strategies for Syntax This category reflects tactical responses to 1 33
Debugging syntax errors, such as starting with syntax

checks, using tools like error highlighting, and
applying pattern-recognition techniques to spot

errors.
Fixing Syntax For comments about actively identifying, 1 9
Errors correcting, or guiding others through syntax

issues.
Pattern-based For use of recurring patterns, visual tracing, or 1 6
syntax strategy structured methods in spotting syntax issues.
Syntax First Where participants mention syntax errors as 1 3

their starting point in debugging.

Tool-Assisted For use of features like syntax highlighting, error 1 15
Syntax Fix popups, or debuggers to spot/fix syntax.

325|Page

Name Description Files References

Subtheme 1 - Technology This subtheme effectively distinguishes 1 77
Utilisation between execution tools, interface features,

and collaborative platforms, which are all vital

to apprentice debugging.

Debugging Tools and This category captures how apprentices 1 67
Execution Support leveraged key debugging tools—such as the

IDE’s step-through functionality and print

statements—to inspect program execution,

monitor variable states, and detect logical or

runtime issues.

IDE Debugger Apprentices used the IDE debugger to step 1 35
Usage through code and inspect variable states,

enabling precise identification and correction of

logic errors.
Print Statement Apprentices inserted print statements and 1 32
Debugging monitored console outputs to trace program

behaviour and identify bugs during execution.

Interface Guidance This category represents the supportive role of 1 6
and Visual Feedback the IDE’s user interface elements, including

syntax highlighting, auto-suggestions, version

control, and intelligent prompts, which helped

learners identify errors and streamline their

workflow.
Other IDE Apprentices benefited from additional IDE tools 1 3
Features like version control integration, intelligent

suggestions, and code completion to streamline
their workflow.

Syntax and Error The IDE’s syntax highlighting, auto-indentation, 1 3
Highlighting and inline error notifications supported
Features apprentices in quickly spotting and correcting

code mistakes.

Real-Time This category includes tools that enabled 1 4
Collaborative synchronous work across distances, allowing
Platforms apprentices to co-edit, share, and coordinate

their debugging efforts in real time using
platforms like Visual Studio Live Share.

Real-Time Code Tools enabling simultaneous editing and shared 1 2
Sharing and visibility helped apprentices maintain alignment
Synchronisation and coordinate debugging in real-time.

Use of Live Share Apprentices leveraged Live Share to 1 2
for Remote collaboratively edit, navigate, and debug code
Collaboration from separate locations in real time.
Subtheme 2 - Debugging These categories cover a wide tactical spectrum, 2 86
Strategies & Tactics from exploratory to highly methodical,
providing a balanced insight into apprentice
strategies.
Collaborative and This category highlights methods where 2 20

Reflective Techniques apprentices explained or reviewed code with
others (or to themselves) to gain insight, clarify

326|Page

Name

Code Review

Peer Review
Strength

Rubber Duck
Debugging

Systematic Reasoning
Strategies

Divide and
conquer

IDE Debugger
Usage

Methodical
Problem Solving

Tracing

Tactical Exploration of
Faults

Pattern Matching

Slicing

Solution
experimentation

Description

thinking, and identify errors through reflection
or external feedback.

Apprentices systematically examined and
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative

problem-solving.

Logic errors were identified through peer
feedback. Review mechanisms improved

accuracy.

Apprentices explained their code aloud, to a
partner or inanimate object, to clarify their
thinking and uncover logic errors.

This category includes logical and structured
approaches where learners followed data flow,
stepped through execution, or broke problems
into smaller parts to locate and address issues in
a focused, disciplined manner.

The issue was resolved by segmenting it into
independent subproblems. Learners described
resolving each part methodically.

Apprentices used the IDE debugger to step
through code and inspect variable states,
enabling precise identification and correction of

logic errors.

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

Apprentices followed the program’s flow line by
line to understand how data moved and identify
where the logic broke down.

This category covers exploratory tactics where
apprentices relied on recognition of error
patterns, code segmentation, and hypothesis-
testing to find and resolve bugs.

Apprentices looked for recurring structures or
familiar error patterns to quickly locate and fix
bugs based on previous experience.

Slicing refers to the strategy of breaking down
or isolating specific segments of code—such as
functions, conditions, or loops—to analyse
them independently. This helps apprentices
reduce complexity by focusing only on the
relevant part of the code where the error is
suspected, making it easier to locate and fix
bugs collaboratively.

Debugging involved trying multiple possible
solutions to test logic. Learners described trial
as a deliberate tactic.

Files

References

12

46

35

20

327 |Page

Name Description Files References

Tinkering Apprentices intuitively made small code 1 3
changes and tested their effects as a way to
explore and understand bugs.

Trial and Error Apprentices experimented with different 1 10
solutions without a predefined plan to see what
resolved the issue through observation.

Subtheme 2 - Logical Error Logical error subthemes contain a rich set of 2 131
categories. These reflect the complexity of the
issues and the ways learners engaged
intellectually, emotionally, and socially. Internal
logic and external differentiation are intact.

Collaboration and This category reflects the value of teamwork in 1 13
Communication Aids resolving logical errors. It includes quotes where

learners gained clarity or found solutions by

explaining to peers, switching roles, or

combining their strengths.

Collaborative Understanding emerged more clearly through 1 3
clarity discussions with peers. Explaining logic to
others often led to personal insight.

Collaborative New interpretations or corrections were 1 4
Insight achieved by engaging with someone else’s

viewpoint. The collaboration brought forth

alternative solutions.

Navigator insight In pair programming, the navigator offered a 1 1
useful perspective. The insight usually shifted
the course of debugging.

Paired Strengths Learners described how teammates 1 1
complemented their skills. Their collective effort
covered individual weaknesses.

Peer Review Logic errors were identified through peer 1 1
Strength feedback. Review mechanisms improved

accuracy.
Peer support Emotional or technical encouragement came 1 1

from fellow learners. It acted as a buffer during
challenging moments.

Role swapping Team members changed roles mid-task to 1 2
better tackle logic issues. The switch brought
fresh perspective.

Perceived Complexity This category captures how apprentices found 1 41
and Emotional logical errors emotionally or cognitively taxing.
Response It includes expressions of frustration, struggle,

or general difficulty in making sense of complex
conditions or flows.

Agreement on Multiple participants expressed a shared view 1 5
Challenge that certain logical errors posed significant

difficulty. The consistency in their sentiments

adds weight to the issue's complexity.

328 | Page

Complex Logic
Breakdown

Error Complexity

Flow Confusion

Found It
Challenging

General
Complexity

Logic Struggle

Logical Errors
Challenging

Reflection and
Learning Dispositions

Context
understanding

Experience Builds

Mastery

Growth Mindset

Growth Through
Challenge

Logic and Flow
Challenges

Misuse of 'name'

Description

Learners attempted to untangle highly intricate
or nested conditions. The difficulty lay not in
syntax but in logical architecture.

The nature of the logic error was itself intricate
and multi-layered. These were not beginner
mistakes but advanced logic misfires.

The challenge stemmed from not understanding
how code progressed during execution. This
lack of clarity hampered logical deductions.

A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

Applied when logic problems were described as
difficult but without specific explanation. It
captures vague but valid struggle.

Captures moments of emotional or cognitive
difficulty expressed by learners tackling logical
bugs. Participants voiced frustration and mental
fatigue in trying to make sense of such errors.

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t specify
which part was problematic.

This category captures reflective mindsets
where apprentices identified growth,
perseverance, or learning from mistakes. It also
houses observations about how experience,
context, and collaboration influenced their
progress.

Problem-solving success relied on grasping the
wider function or scenario. The learner needed
to understand not just 'what' but 'why".

Learners acknowledged that repeated exposure
helped them improve. Experience was credited
as a major enabler of logical reasoning.

Participants expressed confidence that they
could learn and improve with effort. This
forward-thinking attitude supports resilience.

Struggle was reframed as an opportunity for
learning. Participants reflected positively on the
difficulty.

Combined challenges in understanding both the
logic and how it executed. These situations
involved overlapping difficulties.

Highlights confusion around Python's special
' _name__'variable. This is a specific example
of concept misunderstanding.

Files References
1 4
1 10
1 1
1 7
1 5
1 4
1 5
1 31
1 3
1 2
1 1
1 4
1 6
1 1

329|Page

Name

Progress Despite
Errors

Remote
Collaboration
Limits

Runtime Contrast

Unresolved Logic
Issues

Variable misuse

Skill Gaps and
Cognitive Limitations

Acknowledged
Limitations

Analytical Gaps

Calculation
Confusion

Concept Misuse

Conditional
Misinterpretation

Contextual
Misuse

Knowledge Gaps

Misunderstood
Logic Flow

Description

Learners recognised forward movement even
when mistakes occurred. This shows
perseverance.

The online or distant setup introduced
difficulties in understanding logic. Distance
added barriers to debugging.

Participants reflected on how runtime errors
differed from logic ones. This comparative
insight helped focus their approach.

Some logic problems remained unsolved by
session end. The code captures lingering
confusion.

Mistakes occurred due to inappropriate variable
assignment or tracking. This led to faulty logic.

This category includes participants’ admissions
of limited knowledge, misunderstood logic, or
conceptual misapplications. It highlights areas
where deeper learning or practice was needed
to engage with logic-based bugs

Learners showed self-awareness by noting their
own lack of proficiency or understanding. These
admissions underline honesty about gaps in
capability.

Denotes errors that occurred due to missed
steps or incomplete reasoning processes. This
suggests an underdeveloped analytical
sequence.

Errors emerged from difficulties in creating or
tracing formula-based logic. Mathematical
thinking was the barrier.

Participants misapplied key Python concepts,
leading to logic flaws. These misunderstandings
pointed to a superficial grasp of coding
constructs.

Learners misunderstood how conditionals
executed. This misreading caused flawed logic
paths.

A function or logic piece was applied in the
wrong context. The logic was sound, but its
placement was flawed.

Errors resulted from lacking the foundational
knowledge needed to apply logic. This code
tracks missing prerequisites.

Participants misunderstood how one part of the
code affected another. These errors revealed
disconnects in logic mapping.

Files

References

18

330|Page

Name Description Files References

Needs More Participant acknowledged needing repetition or 1 1
Practice further exposure to improve. Practice was seen
as key to mastering logic.

Strategies and This category includes structured problem- 2 28
Reasoning Approaches solving strategies like breaking problems down,

isolating faulty logic, following data flow, using

tool support, and experimenting methodically

with solutions.

Analytical Describes instances where a participant 1 1
approach employed step-by-step reasoning or formal

techniques. It highlights a structured way of

unravelling complex logic.

Analytical Reflects how some debugging tasks required 1 1
Demand high-level reasoning and mental exertion.

Participants perceived the activity as cognitively

intensive.
Big picture Participants referred to stepping back and 1 1
review reassessing the entire codebase. This top-down

perspective helped in recontextualising the

issue.
Breakdown Refers to the act of deconstructing a problem 1 1
strategy into simpler parts to aid resolution. Learners

discussed breaking logic into manageable

pieces.
Code Isolation Participants isolated specific blocks or lines of 1 2
Strategy code to test or observe behaviour. This strategy

helped to narrow the problem area.

Code Visibility Clarity in formatting, naming, or organisation 1 1
Advantage made it easier to follow the logic. Participants

attributed their success partly to how readable

the code was.

Data Flow Focused on tracking how information moved 1 1
Understanding through variables and functions. This tracking
helped diagnose where logic broke down.

Deep Dive Marked by a thorough and prolonged 1 1
Debugging engagement with the problem. Participants

drilled deep into the logic layer rather than

skimming.
Deep Logic This reflects the intellectual depth required to 1 2

trace and correct logic faults rooted in Python
intricacies or conceptual frameworks. It signifies
scenarios where surface-level knowledge was

insufficient.
Divide and The issue was resolved by segmenting it into 2 3
conquer independent subproblems. Learners described

resolving each part methodically.

331|Page

Methodical

Problem Solving

Pattern-based
reasoning

Rubber ducking

Solution

experimentation

Strategy
Limitations

Tool-assisted
logic check

Trial and Error
Limits

Understanding
Logic Flow

Subtheme 2 - Technical &

Foundational
Knowledge Gaps

Limited
Experience and
Skill Gaps

Syntax
Complexity

Reasoning and Logic
Challenges

Description

The participant used a structured, procedural
approach to identify the issue. This code praises
disciplined debugging.

Participants applied familiar logic patterns to
solve new problems. This indicates transfer of
learning.

Participants verbalised logic step-by-step, often
to a peer or non-technical object. This
externalisation clarified their thinking.

Debugging involved trying multiple possible
solutions to test logic. Learners described trial
as a deliberate tactic.

Existing methods or plans failed to resolve the
logic issue. Learners were forced to reconsider
their approach.

Software tools like debuggers or linters were
used to identify logic faults. Participants
credited these for catching errors.

Participants noted that random guessing was
ineffective for logic bugs. These problems
needed deeper thought.

A clear picture of how logic moved through
code aided debugging. This awareness
streamlined troubleshooting.

The categories under this subtheme clearly
reflect technical gaps, cognitive hurdles, and
runtime-specific complications.

This category reflects difficulties stemming from
apprentices’ limited prior experience with
Python or programming generally, especially in
handling syntax-specific rules like indentation
and punctuation.

Apprentices expressed difficulty navigating
debugging tasks due to being new to
programming, lacking foundational knowledge,
or still developing confidence in applying core
concepts.

Participants frequently encountered syntax
errors that disrupted code execution, especially
those involving Python-specific rules like
indentation, string formatting, or punctuation.

This category houses instances where
apprentices lacked the cognitive strategies to
understand and apply logic effectively,
especially when dealing with conditionals,
calculations, or the broader logic structure.

Logical Reasoning Participants struggled with understanding or

Gaps

applying correct logic within the code,

Files References

1 1
1 1
1 2
1 1
1 1
1 2
1 1
1 5
1 273
1 166
1 15
1 151
1 61
1 61

332|Page

Name Description Files References

particularly when handling conditionals,
calculations, or the flow of decision-making.

Runtime Behaviour This category represents the difficulty of 1 46
Confusion identifying and resolving bugs that only

emerged during code execution, particularly

where program behaviour was unpredictable or

misunderstood.

Runtime Error Several apprentices found runtime errors 1 46
Complexity difficult to resolve because they often appeared

after code execution and required

understanding how the program behaved

dynamically.
Subtheme 3 - Cognitive Load This subtheme is compact but insightful. It 1 105
Sharing cleanly separates structural role-based tactics

from communication-based cognitive
coordination.

Real-Time This category reflects how verbalisation 1 58
Communication and strategies and collaborative digital tools were
Coordination Tools used to coordinate thought processes, reduce

confusion, and manage the cognitive load
during remote or paired debugging.

Real-Time Tool Collaborative tools like IDE features and remote 1 37
Support for sharing platforms were used to support

Coordination synchronised thinking and reduce mental strain.

Think-Aloud Apprentices verbalised their reasoning and 1 21

Communication thought processes to clarify understanding and
collaboratively work through errors.

Strategic Role This category captures how apprentices 1 47
Allocation and strategically assigned roles and alternated them
Rotation to balance mental effort, maintain engagement,

and leverage individual strengths during
debugging sessions.

Division of Tasks Apprentices strategically assigned 1 22
Based on responsibilities based on individual strengths or
Strengths comfort zones to manage complexity and

maintain focus.

Driver-Navigator Apprentices adopted a structured pairing model 1 18
Role Sharing where one coded while the other observed and
guided, helping distribute cognitive demands.

Turn-Taking and Regular role alternation ensured balanced 1 7
Role Swapping mental effort, reduced fatigue, and kept both
apprentices engaged throughout the debugging
session.
Subtheme 3 - Environmental These categories are well-bounded, non- 1 49
and Logistics overlapping, and together provide a complete

view of non-technical barriers affecting
collaboration and productivity.

333|Page

Name Description Files References

Connectivity This category reflects how unstable internet 1 1
Constraints disrupted communication, tool access, and real-

time collaboration—especially in remote or

bandwidth-limited settings.

Unstable or These quotes highlight issues caused by poor or 1 1
Inconsistent unstable internet, affecting real-time
Internet collaboration or access to tools.
Connection
Distractions and Focus Distractions and Focus Challenges - This 1 6
Challenges includes issues with concentration due to noise,

interruptions, or other environmental factors
unique to working remotely from home or other
informal settings

Distraction in These highlight challenges in focus due to 1 6
Individual Work remote, uncontrolled environments.
Environments

Physical Separation This category refers to the challenge of not 1 11
Barriers being able to visually point to code or easily

clarify issues due to being physically apart

during remote pair programming.

Absence of These represent struggles in not being able to 1 11
Physical Presence point or visually show parts of code
for Quick
Clarification
Scheduling and This category captures difficulties in syncing 1 5

Coordination Hurdles schedules across time zones or managing
different availability patterns, which limited
collaboration windows.

Time Zone and Quotes here reflect challenges related to 1 5
Scheduling coordinating across different locations or
Difficulties schedules.
Tool Setup and These are initial or recurring issues in 1 26
Accessibility Barriers configuring, accessing, or understanding how to

use necessary tools like IDEs, version control, or
communication platforms.

Tool Access or These quotes relate to initial difficulties in using 1 26
Setup Issues or setting up collaboration tools.
Subtheme 3 - Runtime Error The runtime error subtheme offers a clear focus 1 84

on both the symptoms and difficulty level of
errors, and learners’ strategies (or lack thereof)
to resolve them.

Cognitive Perception This category reflects how runtime issues were 1 43
and Difficulty perceived as overwhelming or uncertain,

especially when apprentices couldn’t predict

behaviour or lacked confidence during

execution.
Runtime When runtime feels particularly complex or 1 13
Overwhelm challenging.

334|Page

Name Description Files References

Runtime Type When the issue involves converting string to 1 6
Confusion number or similar.
Runtime For quotes where learners are confident with 1 24
Uncertainty syntax but unsure about runtime.
Debugging Approaches This category captures how apprentices 1 6
for Runtime attempted to resolve runtime errors,

particularly by using print statements or
acknowledging a lack of structured strategy.

Runtime Print For those using print statements to trace issues. 1 4
Tracking
Runtime Strategy = When trial-and-error or lack of method was 1 2
Lacking highlighted.
Types and Causes of This category identifies the nature of runtime 1 35
Runtime Errors errors apprentices faced, such as infinite loops,

undefined variables, and type conversion issues,
all of which occurred during execution.

Execution Flow For difficulty understanding the order of 1 5
execution in Python.

Infinite Loop For errors involving loops that do not terminate. 1 17

Type Conversion For issues converting between data types (e.g. 1 8
string to number)

Undefined For use of variables that were not defined 1 5
Variable before use.

335|Page

Codes\\Interview\\Stage 5 - Theme Definition

Name Description Files References

Theme 1 - Error Spectrum This theme captures the range and types of 2 369
programming errors (Syntax, Logical, and
Runtime) that apprentices encountered
during collaborative debugging. It highlights
how these errors differ in nature, difficulty,
and required problem-solving strategies.

Subtheme 1 - Syntax Error All four categories focus on different angles 1 154
of syntax-related issues: where they come
from, how hard they feel, how they are
tackled, and how collaboration supports
resolution. Clear boundaries and internal
coherence are maintained.

Nature and Source of This category captures specific causes of 1 45
Syntax Errors syntax errors such as missing colons,

structural mistakes, typographical errors,

and overlooked elements. It reflects how

apprentices encountered surface-level

mistakes that disrupted code execution.

Code Structure For syntax issues relating to structural 1 4
formatting or layout.

Missing Colon For specific mention of missing colons in 1 1
syntax.
Missing Syntax For syntax errors due to missing elements 1 39
like colons, brackets, or forgotten
components.
Syntax Typo For errors caused by typographical mistakes. 1 1
Perceived Difficulty of This category includes apprentice's 1 33
Syntax perceptions of syntax errors as either easy or

deceptively tricky. Some found them
manageable due to clear error messages,
while others initially underestimated their
complexity.

Syntax Feels Easy For those who found syntax errors more 1 25
straightforward or gained confidence
resolving them

Syntax for For beginner-level ease, familiarity, or 1 2
Beginners exposure to syntax debugging.
Syntax is Tricky For quotes that describe syntax errors as 1 6
deceptively hard or initially difficult to
handle.
Social and This category highlights how syntax 1 43
Collaborative debugging was supported by peer
Dimensions explanations, shared roles, and individual

strengths in collaborative settings. It includes

336|Page

Explaining syntax

fixes

Pair support for

syntax

Syntax as role
strength

Strategies for Syntax
Debugging

Fixing Syntax
Errors

Pattern-based
syntax strategy

Syntax First

Tool-Assisted
Syntax Fix

Subtheme 2 - Logical Error

Collaboration and
Communication Aids

Collaborative
clarity

Collaborative
Insight

Navigator insight

Description

verbal clarification and role-based task
division around syntax.

For verbal explanation, negotiation, or
clarification of syntax fixes during
collaboration

For collaborative efforts in addressing syntax
errors through shared roles or peer help.

For individuals who naturally took the lead
on syntax due to confidence or skill

This category reflects tactical responses to
syntax errors, such as starting with syntax
checks, using tools like error highlighting,
and applying pattern-recognition techniques
to spot errors.

For comments about actively identifying,
correcting, or guiding others through syntax
issues.

For use of recurring patterns, visual tracing,
or structured methods in spotting syntax
issues.

Where participants mention syntax errors as
their starting point in debugging.

For use of features like syntax highlighting,
error popups, or debuggers to spot/fix
syntax.

Logical error subthemes contain a rich set of
categories. These reflect the complexity of
the issues and the ways learners engaged
intellectually, emotionally, and socially.
Internal logic and external differentiation are
intact.

This category reflects the value of teamwork
in resolving logical errors. It includes quotes
where learners gained clarity or found
solutions by explaining to peers, switching
roles, or combining their strengths.

Understanding emerged more clearly
through discussions with peers. Explaining
logic to others often led to personal insight.

New interpretations or corrections were
achieved by engaging with someone else’s
viewpoint. The collaboration brought forth
alternative solutions.

In pair programming, the navigator offered a
useful perspective. The insight usually
shifted the course of debugging.

Files References

1 15
1 13
1 15
1 33
1 9
1 6
1 3
1 15
2 131
1 13
1 3
1 4
1 1

337|Page

Name

Paired Strengths

Peer Review

Strength

Peer support

Role swapping

Perceived Complexity
and Emotional
Response

Agreement on
Challenge

Complex Logic
Breakdown

Error Complexity

Flow Confusion

Found It
Challenging

General
Complexity

Logic Struggle

Logical Errors
Challenging

Description

Learners described how teammates
complemented their skills. Their collective
effort covered individual weaknesses.

Logic errors were identified through peer
feedback. Review mechanisms improved

accuracy.

Emotional or technical encouragement came
from fellow learners. It acted as a buffer
during challenging moments.

Team members changed roles mid-task to
better tackle logic issues. The switch brought

fresh perspective.

This category captures how apprentices
found logical errors emotionally or
cognitively taxing. It includes expressions of
frustration, struggle, or general difficulty in
making sense of complex conditions or flows.

Multiple participants expressed a shared
view that certain logical errors posed
significant difficulty. The consistency in their
sentiments adds weight to the issue's

complexity.

Learners attempted to untangle highly
intricate or nested conditions. The difficulty
lay not in syntax but in logical architecture.

The nature of the logic error was itself
intricate and multi-layered. These were not
beginner mistakes but advanced logic

misfires.

The challenge stemmed from not
understanding how code progressed during
execution. This lack of clarity hampered

logical deductions.

A general admission that the task was tough,
without further detail. These expressions still
signal cognitive overload.

Applied when logic problems were described
as difficult but without specific explanation.
It captures vague but valid struggle.

Captures moments of emotional or cognitive
difficulty expressed by learners tackling
logical bugs. Participants voiced frustration
and mental fatigue in trying to make sense of

such errors.

Serves as a general label for statements
identifying logic bugs as hard. It doesn’t
specify which part was problematic.

Files

References

41

10

338|Page

Name Description Files References

Reflection and This category captures reflective mindsets 1 31
Learning Dispositions where apprentices identified growth,

perseverance, or learning from mistakes. It

also houses observations about how

experience, context, and collaboration

influenced their progress.

Context Problem-solving success relied on grasping 1 3
understanding the wider function or scenario. The learner

needed to understand not just 'what' but

'why'.
Experience Builds Learners acknowledged that repeated 1 2
Mastery exposure helped them improve. Experience

was credited as a major enabler of logical

reasoning.
Growth Mindset Participants expressed confidence that they 1 1

could learn and improve with effort. This
forward-thinking attitude supports

resilience.
Growth Through Struggle was reframed as an opportunity for 1 4
Challenge learning. Participants reflected positively on

the difficulty.

Logic and Flow Combined challenges in understanding both 1 6
Challenges the logic and how it executed. These
situations involved overlapping difficulties.

Misuse of 'name' Highlights confusion around Python's special 1 1
' _name__'variable. This is a specific
example of concept misunderstanding.

Progress Despite Learners recognised forward movement 1 1
Errors even when mistakes occurred. This shows

perseverance.
Remote The online or distant setup introduced 1 8
Collaboration difficulties in understanding logic. Distance
Limits added barriers to debugging.
Runtime Contrast Participants reflected on how runtime errors 1 2

differed from logic ones. This comparative
insight helped focus their approach.

Unresolved Logic Some logic problems remained unsolved by 1 2
Issues session end. The code captures lingering
confusion.
Variable misuse Mistakes occurred due to inappropriate 1 1
variable assignment or tracking. This led to
faulty logic.
Skill Gaps and This category includes participants’ 1 18
Cognitive Limitations admissions of limited knowledge,

misunderstood logic, or conceptual
misapplications. It highlights areas where
deeper learning or practice was needed to
engage with logic-based bugs

339|Page

Name Description Files References

Acknowledged Learners showed self-awareness by noting 1 3
Limitations their own lack of proficiency or

understanding. These admissions underline

honesty about gaps in capability.

Analytical Gaps Denotes errors that occurred due to missed 1 2
steps or incomplete reasoning processes.
This suggests an underdeveloped analytical

sequence.
Calculation Errors emerged from difficulties in creating 1 1
Confusion or tracing formula-based logic. Mathematical

thinking was the barrier.

Concept Misuse Participants misapplied key Python concepts, 1 2
leading to logic flaws. These
misunderstandings pointed to a superficial
grasp of coding constructs.

Conditional Learners misunderstood how conditionals 1 1
Misinterpretation executed. This misreading caused flawed

logic paths.
Contextual A function or logic piece was applied in the 1 1
Misuse wrong context. The logic was sound, but its

placement was flawed.

Knowledge Gaps Errors resulted from lacking the foundational 1 6
knowledge needed to apply logic. This code
tracks missing prerequisites.

Misunderstood Participants misunderstood how one part of 1 1
Logic Flow the code affected another. These errors
revealed disconnects in logic mapping.

Needs More Participant acknowledged needing repetition 1 1
Practice or further exposure to improve. Practice was
seen as key to mastering logic.

Strategies and This category includes structured problem- 2 28
Reasoning Approaches solving strategies like breaking problems

down, isolating faulty logic, following data

flow, using tool support, and experimenting

methodically with solutions.

Analytical Describes instances where a participant 1 1
approach employed step-by-step reasoning or formal

techniques. It highlights a structured way of

unravelling complex logic.

Analytical Reflects how some debugging tasks required 1 1
Demand high-level reasoning and mental exertion.

Participants perceived the activity as

cognitively intensive.

Big picture Participants referred to stepping back and 1 1
review reassessing the entire codebase. This top-

down perspective helped in

recontextualising the issue.

340|Page

Name Description Files References

Breakdown Refers to the act of deconstructing a 1 1
strategy problem into simpler parts to aid resolution.

Learners discussed breaking logic into

manageable pieces.

Code Isolation Participants isolated specific blocks or lines 1 2
Strategy of code to test or observe behaviour. This
strategy helped to narrow the problem area.

Code Visibility Clarity in formatting, naming, or organisation 1 1
Advantage made it easier to follow the logic.

Participants attributed their success partly to

how readable the code was.

Data Flow Focused on tracking how information moved 1 1
Understanding through variables and functions. This

tracking helped diagnose where logic broke

down.
Deep Dive Marked by a thorough and prolonged 1 1
Debugging engagement with the problem. Participants

drilled deep into the logic layer rather than

skimming.
Deep Logic This reflects the intellectual depth required 1 2

to trace and correct logic faults rooted in
Python intricacies or conceptual frameworks.
It signifies scenarios where surface-level
knowledge was insufficient.

Divide and The issue was resolved by segmenting it into 2 3
conquer independent subproblems. Learners
described resolving each part methodically.

Methodical The participant used a structured, procedural 1 1
Problem Solving approach to identify the issue. This code
praises disciplined debugging.

Pattern-based Participants applied familiar logic patterns to 1 1
reasoning solve new problems. This indicates transfer

of learning.
Rubber ducking Participants verbalised logic step-by-step, 1 2

often to a peer or non-technical object. This
externalisation clarified their thinking.

Solution Debugging involved trying multiple possible 1 1
experimentation solutions to test logic. Learners described
trial as a deliberate tactic.

Strategy Existing methods or plans failed to resolve 1 1
Limitations the logic issue. Learners were forced to
reconsider their approach.

Tool-assisted Software tools like debuggers or linters were 1 2
logic check used to identify logic faults. Participants
credited these for catching errors.

Trial and Error Participants noted that random guessing was 1 1
Limits ineffective for logic bugs. These problems
needed deeper thought.

341 |Page

Name

Understanding
Logic Flow

Subtheme 3 - Runtime Error

Cognitive Perception
and Difficulty

Runtime
Overwhelm

Runtime Type
Confusion

Runtime
Uncertainty

Debugging Approaches
for Runtime

Runtime Print
Tracking

Runtime Strategy
Lacking

Types and Causes of
Runtime Errors

Execution Flow
Infinite Loop
Type Conversion
Undefined

Variable

Theme 2 - Technical and Cognitive
Skills

Subtheme 1 - Technology
Utilisation

Description

A clear picture of how logic moved through
code aided debugging. This awareness
streamlined troubleshooting.

The runtime error subtheme offers a clear
focus on both the symptoms and difficulty
level of errors, and learners’ strategies (or
lack thereof) to resolve them.

This category reflects how runtime issues
were perceived as overwhelming or
uncertain, especially when apprentices
couldn’t predict behaviour or lacked
confidence during execution.

When runtime feels particularly complex or

challenging.

When the issue involves converting string to

number or similar.

For quotes where learners are confident with
syntax but unsure about runtime.

This category captures how apprentices
attempted to resolve runtime errors,
particularly by using print statements or
acknowledging a lack of structured strategy.

For those using print statements to trace

issues.

When trial-and-error or lack of method was

highlighted.

This category identifies the nature of
runtime errors apprentices faced, such as
infinite loops, undefined variables, and type
conversion issues, all of which occurred

during execution.

For difficulty understanding the order of
execution in Python.

For errors involving loops that do not

terminate.

For issues converting between data types
(e.g. string to number)

For use of variables that were not defined

before use.

This theme reflects the skills, tools, and
cognitive strategies that apprentices
deployed to debug effectively. It includes the
use of IDE features, reasoning techniques,
and collaborative planning to manage
complexity and solve problems.

This subtheme effectively distinguishes
between execution tools, interface features,

Files

References

84

43

13

24

35

17

268

77

342 |Page

Name Description Files References

and collaborative platforms, which are all
vital to apprentice debugging.

Debugging Tools and This category captures how apprentices 1 67
Execution Support leveraged key debugging tools—such as the

IDE’s step-through functionality and print

statements—to inspect program execution,

monitor variable states, and detect logical or

runtime issues.

IDE Debugger Apprentices used the IDE debugger to step 1 35
Usage through code and inspect variable states,

enabling precise identification and correction

of logic errors.

Print Statement Apprentices inserted print statements and 1 32
Debugging monitored console outputs to trace program
behaviour and identify bugs during
execution.
Interface Guidance This category represents the supportive role 1 6
and Visual Feedback of the IDE’s user interface elements,

including syntax highlighting, auto-
suggestions, version control, and intelligent
prompts, which helped learners identify
errors and streamline their workflow.

Other IDE Apprentices benefited from additional IDE 1 3
Features tools like version control integration,

intelligent suggestions, and code completion

to streamline their workflow.

Syntax and Error The IDE’s syntax highlighting, auto- 1 3
Highlighting indentation, and inline error notifications
Features supported apprentices in quickly spotting

and correcting code mistakes.

Real-Time This category includes tools that enabled 1 4
Collaborative synchronous work across distances, allowing
Platforms apprentices to co-edit, share, and coordinate

their debugging efforts in real time using
platforms like Visual Studio Live Share.

Real-Time Code Tools enabling simultaneous editing and 1 2

Sharing and shared visibility helped apprentices maintain

Synchronisation alignment and coordinate debugging in real-

time.

Use of Live Share Apprentices leveraged Live Share to 1 2

for Remote collaboratively edit, navigate, and debug

Collaboration code from separate locations in real time.
Subtheme 2 - Debugging These categories cover a wide tactical 2 86
Strategies & Tactics spectrum, from exploratory to highly

methodical, providing a balanced insight into
apprentice strategies.

Collaborative and This category highlights methods where 2 20
Reflective Techniques apprentices explained or reviewed code with
others (or to themselves) to gain insight,

343 |Page

Name Description Files References

clarify thinking, and identify errors through
reflection or external feedback.

Code Review Apprentices systematically examined and 1 12
critiqued each other's code to identify issues,
clarify logic, and enhance collaborative
problem-solving.

Peer Review Logic errors were identified through peer 1 1
Strength feedback. Review mechanisms improved

accuracy.
Rubber Duck Apprentices explained their code aloud—to a 1 7
Debugging partner or inanimate object, to clarify their

thinking and uncover logic errors.

Systematic Reasoning This category includes logical and structured 2 46
Strategies approaches where learners followed data

flow, stepped through execution, or broke

problems into smaller parts to locate and

address issues in a focused, disciplined

manner.
Divide and The issue was resolved by segmenting it into 2 3
conquer independent subproblems. Learners

described resolving each part methodically.

IDE Debugger Apprentices used the IDE debugger to step 1 35
Usage through code and inspect variable states,

enabling precise identification and correction

of logic errors.

Methodical The participant used a structured, procedural 1 1
Problem Solving approach to identify the issue. This code
praises disciplined debugging.

Tracing Apprentices followed the program’s flow line 1 7
by line to understand how data moved and
identify where the logic broke down.

Tactical Exploration of This category covers exploratory tactics 2 20
Faults where apprentices relied on recognition of

error patterns, code segmentation, and

hypothesis-testing to find and resolve bugs.

Pattern Matching Apprentices looked for recurring structures 1 3
or familiar error patterns to quickly locate
and fix bugs based on previous experience.

Slicing Slicing refers to the strategy of breaking 1 3
down or isolating specific segments of
code—such as functions, conditions, or
loops—to analyse them independently. This
helps apprentices reduce complexity by
focusing only on the relevant part of the
code where the error is suspected, making it
easier to locate and fix bugs collaboratively.

344 |Page

Name

Subtheme 3 - Cognitive Load This subtheme is compact but insightful. It
cleanly separates structural role-based
tactics from communication-based cognitive

Sharing

Solution
experimentation

Tinkering

Trial and Error

Real-Time
Communication and
Coordination Tools

Real-Time Tool
Support for
Coordination

Think-Aloud
Communication

Strategic Role
Allocation and
Rotation

Division of Tasks
Based on
Strengths

Driver-Navigator
Role Sharing

Turn-Taking and
Role Swapping

Theme 3 - Challenges

Description

Debugging involved trying multiple possible
solutions to test logic. Learners described
trial as a deliberate tactic.

Apprentices intuitively made small code
changes and tested their effects as a way to
explore and understand bugs.

Apprentices experimented with different
solutions without a predefined plan to see
what resolved the issue through observation.

coordination.

This category reflects how verbalisation
strategies and collaborative digital tools
were used to coordinate thought processes,
reduce confusion, and manage the cognitive
load during remote or paired debugging.

Collaborative tools like IDE features and
remote sharing platforms were used to
support synchronised thinking and reduce

mental strain.

Apprentices verbalised their reasoning and
thought processes to clarify understanding
and collaboratively work through errors.

This category captures how apprentices
strategically assigned roles and alternated
them to balance mental effort, maintain
engagement, and leverage individual
strengths during debugging sessions.

Apprentices strategically assigned
responsibilities based on individual strengths
or comfort zones to manage complexity and

maintain focus.

Apprentices adopted a structured pairing
model where one coded while the other
observed and guided, helping distribute
cognitive demands.

Regular role alternation ensured balanced
mental effort, reduced fatigue, and kept
both apprentices engaged throughout the

debugging session.

This theme represents the barriers,
limitations, and points of difficulty
apprentices experienced during remote pair
debugging. It includes communication
constraints, technical skill gaps, and
environmental disruptions affecting their

workflow.

Files

1

References

10

105

58

37

21

47

22

18

456

345|Page

Name Description
Subtheme 1 - The three categories here cover
Communication and verbal/gestural limitations, cognitive
Collaboration misalignment, and tool-based disruptions, all
central to remote pair debugging challenges.
Interpretation and This category includes moments where
Understanding apprentices interpreted instructions, logic, or
Conflicts errors differently, resulting in delays or
confusion in collaborative debugging.
Misalignment in These reflect how apprentices experienced
Understanding confusion or divergent interpretations of
logic or instructions during debugging
sessions
Remote Expression This category captures how apprentices
Challenges struggled to communicate ideas clearly
without the benefit of facial expressions,
gestures, or in-person context—leading to
misunderstandings, over-explaining, or extra
effort in articulation.
Difficulty These quotes are focused on how
Conveying apprentices struggled to explain, align, or
Thought Process communicate their reasoning without face-
Remotely to-face interaction
Lack of Non- These reflect how the absence of visual,
Verbal Feedback gestural, or facial cues hindered effective
communication and understanding during
remote debugging
Tool Limitations in This category captures tool-based challenges
Remote Setup such as lag, syncing issues, limited shared
control, or edit conflicts, each of which
disrupted the flow of joint work and required
additional coordination.
Technology- These quotes reflect how tool-based issues
Related like syncing, lag, edit conflicts, and IDE
Collaboration limitations disrupted collaboration
Issues
Subtheme 2 - Technical & The categories under this subtheme clearly
Cognitive reflect technical gaps, cognitive hurdles, and

runtime-specific complications.

Foundational This category reflects difficulties stemming
Knowledge Gaps from apprentices’ limited prior experience

with Python or programming generally,
especially in handling syntax-specific rules
like indentation and punctuation.

Limited Apprentices expressed difficulty navigating
Experience and debugging tasks due to being new to
Skill Gaps programming, lacking foundational

knowledge, or still developing confidence in
applying core concepts.

Files References

1 134
1 33
1 33
1 60
1 27
1 33
1 41
1 41
1 273
1 166
1 15

346|Page

Name Description Files References

Syntax Participants frequently encountered syntax 1 151
Complexity errors that disrupted code execution,

especially those involving Python-specific

rules like indentation, string formatting, or

punctuation.

Reasoning and Logic This category houses instances where 1 61
Challenges apprentices lacked the cognitive strategies to

understand and apply logic effectively,

especially when dealing with conditionals,

calculations, or the broader logic structure.

Logical Reasoning Participants struggled with understanding or 1 61
Gaps applying correct logic within the code,

particularly when handling conditionals,

calculations, or the flow of decision-making.

Runtime Behaviour This category represents the difficulty of 1 46
Confusion identifying and resolving bugs that only

emerged during code execution, particularly

where program behaviour was unpredictable

or misunderstood.

Runtime Error Several apprentices found runtime errors 1 46
Complexity difficult to resolve because they often

appeared after code execution and required

understanding how the program behaved

dynamically.
Subtheme 3 - Environmental These categories are well-bounded, non- 1 49
and Logistics overlapping, and together provide a

complete view of non-technical barriers
affecting collaboration and productivity.

Connectivity This category reflects how unstable internet 1 1
Constraints disrupted communication, tool access, and

real-time collaboration, especially in remote

or bandwidth-limited settings.

Unstable or These quotes highlight issues caused by poor 1 1
Inconsistent or unstable internet, affecting real-time
Internet collaboration or access to tools.
Connection
Distractions and Focus Distractions and Focus Challenges This 1 6
Challenges includes issues with concentration due to

noise, interruptions, or other environmental
factors unique to working remotely from
home or other informal settings

Distraction in These highlight challenges in focus due to 1 6
Individual Work remote, uncontrolled environments.
Environments

Physical Separation This category refers to the challenge of not 1 11
Barriers being able to visually point to code or easily

clarify issues due to being physically apart

during remote pair programming.

347 |Page

Name Description Files References

Absence of These represent struggles in not being able 1 11
Physical Presence to point or visually show parts of code
for Quick
Clarification
Scheduling and This category captures difficulties in syncing 1 5

Coordination Hurdles schedules across time zones or managing
different availability patterns, which limited
collaboration windows.

Time Zone and Quotes here reflect challenges related to 1 5
Scheduling coordinating across different locations or
Difficulties schedules.
Tool Setup and These are initial or recurring issues in 1 26
Accessibility Barriers configuring, accessing, or understanding how

to use necessary tools like IDEs, version
control, or communication platforms.

Tool Access or These quotes relate to initial difficulties in 1 26
Setup Issues using or setting up collaboration tools.

348 |Page

Appendix O: Focus Group Codebook

DPP

Codes\\Focus Group\\Stage 1 & 2 - Familiarisation & Coding

Name

Building mental
models through
documentation

Casual reasoning as
entry point

Casual reasoning
misses logical errors

Casual reasoning
reliance

Challenges in tracing
code

Code complexity is
overwhelming

Confirmation bias
skews debugging

Copying solutions
without
understanding

Debugging depends
on bug type

Debugging is
influenced by learning
style

Debugging is shaped
by collaboration
quality

Debugging strategy
depends on context

Debugging tasks build
confidence
incrementally

Difficulty segmenting
code

Documenting aids
learning

Description

Writing comments and diagrams helps apprentices
internalise code structure.

Debugging often starts with general intuition rather
than a structured plan.

Relying solely on intuition often overlooks deeper
logical issues.

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

Apprentices often find it difficult to follow code
execution paths.

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

Preconceived assumptions can prevent apprentices
from seeing simple bugs.

Replicating peer solutions without comprehension
weakens problem-solving development.

Strategy effectiveness depends on the complexity and
category of the bug.

Effective debugging strategies vary based on an
apprentice’s preferred learning style.

Team synergy significantly influences the effectiveness
of joint debugging.

Approaches to debugging vary depending on the
project and type of bug.

Solving increasingly complex bugs builds apprentice
confidence step by step.

Apprentices struggle to break complex problems into
manageable parts.

Keeping records of debugging efforts enhances long-
term problem-solving skills.

Files References
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

349 |Page

Name

Effective use of top-
down

Error messages
mislead

Explaining debugging

process

Exploring before
understanding

External time
pressure disrupts
debugging

Feedback from code
review reshapes
mindset

Fixation on wrong
sections

Go-to use of print
statements

Growth in tool
appreciation

Guessing based on
code understanding

Hesitation to adopt
tools

Hypothesising from
current code state

IDE debugger solves
python bug

IDE familiarity
improves speed

IDE intimidation
delays adoption

Incomplete mental
model causes
missteps

Initial intimidation
with IDEs

Initial struggle with
advanced tools

Jumping to
conclusions without
testing

Lack of consistency in

strategy

Description

A structured top-down strategy improves debugging
outcomes.

Misreading error outputs can lead apprentices down
unproductive paths.

Verbalising thought processes helps apprentices arrive
at solutions.

Jumping into debugging without a plan often wastes
effort.

High-pressure scenarios often lead apprentices to
abandon systematic debugging.

Constructive feedback during reviews influences
debugging confidence and approach.

Focusing narrowly on specific code sections leads to
oversight of wider issues.

Print statements are a preferred initial debugging
method due to familiarity.

Apprentices learn to value tool efficiency once they
overcome initial hesitation.

Apprentices rely on surface-level comprehension of
code to make educated guesses about bug locations.

New users often delay embracing powerful debugging
tools due to fear or lack of confidence.

Apprentices form assumptions based on initial code
inspection.

Learning debugger tools enabled successful resolution
of Python bugs.

Familiarity with debugging environments leads to
faster problem resolution.

Fear of using debugger features prolongs reliance on
basic methods.

Gaps in understanding program flow often lead to
flawed assumptions.

Beginners often find IDE tools overwhelming, delaying
their usage.

Advanced debugging tools pose challenges for
novices.

Making changes without verification disrupts
debugging accuracy.

Frequent switching between debugging approaches
without persistence hinders learning.

References

350 | Page

Name

Lack of planning leads
to repeated mistakes

Learning through pair
programming

Mastering slicing

Mentorship via code
reviews

Not understanding
broader impact

Overconfidence hides
errors

Pair programming
exposes memory leak

Pattern matching
experience

Pattern matching in
Python debugging

Peer-led
walkthroughs
encourage reflection

Progress from prints
to breakpoints

Quiet debugging
helps focus

Regular debugging
journals enhance
strategy retention

Replication supports
root cause analysis

Rubber duck
debugging helps
recursion

Rushed learning
under pressure

Sharpness through
code review

Simulation of bugs
helps strategy
selection

Skipping small tests
leads to big issues

Slicing improves
isolation

Description

Without structured reflection, apprentices often
repeat ineffective actions.

Collaborative programming accelerates understanding
of debugging processes.

Learning to slice code effectively improves tracing and

debugging accuracy.

Experienced developers guiding apprentices
significantly improves their debugging effectiveness.

Neglecting the system-wide effects of a bug fix can

cause further errors.

Confidence without verification can blind apprentices
to simple coding mistakes.

Collaborative debugging quickly uncovered a memory

leak issue.

Recognising recurring error patterns assists in efficient

problem solving.

Python debugging becomes easier when apprentices
identify recurring structural patterns.

Explaining code to peers prompts apprentices to think
more critically about their logic.

Debugging maturity shows in transitioning from print
statements to advanced IDE features.

A calm, low-distraction environment enhances
debugging concentration.

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

Reproducing bugs consistently helps clarify underlying

causes.

Explaining recursive problems aloud clarified their

solution.

Time constraints force apprentices to prioritise quick
fixes over deeper understanding.

Participating in code reviews sharpens bug detection

skills.

Creating and solving artificial bugs allows apprentices
to test and compare strategies.

Neglecting to test small units can result in wasted

debugging time

Slicing enables more precise identification of fault

origins in code.

References

351 |Page

Name

Step-by-step
execution preferred

Structured top-down
debugging

Structured training
improves strategy use

Struggling to interpret
error logs

Success boosted by
guided debugging

Switch to trial-and-
error

Testing leads to early
bug discovery

Tool choice
influenced by
language

Tool comfort impacts
strategy

Trial-and-error fits
web debugging

Trial-and-error
method

Understanding bug
impact

Unit testing enhances
robustness

Use of isolation
techniques

Visual cues in IDEs
improve flow tracing

Visual debugging
supports
understanding

Visual strategies for
visual learners

Description

Structured, sequential debugging aids apprentices in
isolating and resolving issues.

A systematic top-down method simplifies complex

debugging tasks.

Formal instruction in debugging techniques
accelerates apprentice development.

Complex logs and stack traces are difficult for new

apprentices to decode.

Step-by-step guidance in early debugging exercises
improves long-term independence.

When intuition fails, apprentices default to
experimenting with fixes.

Writing tests regularly helps apprentices catch bugs

early.

Programming language and tech stack shape the

debugging approach.

Confidence in using IDEs influences which debugging

methods are applied.

Unstructured trial-and-error can work well in simpler

web-based contexts.

Debugging often begins with non-systematic
experimentation that can be inefficient.

Comprehending how a fix affects the whole system is
crucial to effective debugging.

Implementing unit tests boosts confidence in code

stability.

Employing isolation helps apprentices identify and

address specific errors.

Graphical IDE features help clarify complex function
flows for visual learners.

Graphical representations aid in tracing program flow

and state changes.

Visual tools like debuggers support those with visual

learning preferences.

References

352|Page

Codes\\Focus Group\\Stage 3 - Theme Generation

Name Description Files References

Bug Replication Focuses on the importance of recreating bugs as 1 2
a strategic practice to understand error
behaviour and trace root causes effectively.

Replication supports Reproducing bugs consistently helps clarify 1 1
root cause analysis underlying causes.
Rushed learning Time constraints force apprentices to prioritise 1 1
under pressure quick fixes over deeper understanding.

Cognitive Load Describes the mental burden apprentices 2 8

experience when managing multiple elements of
code logic, often leading to overwhelm or errors

in reasoning.
Challenges in tracing Apprentices often find it difficult to follow code 1 1
code execution paths.
Code complexity is Large and unfamiliar codebases can hinder 1 1
overwhelming apprentices' navigation and focus.
Difficulty segmenting Apprentices struggle to break complex problems 1 1
code into manageable parts.
Fixation on wrong Focusing narrowly on specific code sections 1 1
sections leads to oversight of wider issues.
Incomplete mental Gaps in understanding program flow often lead 1 1
model causes to flawed assumptions.
missteps
Not understanding Neglecting the system-wide effects of a bug fix 1 1
broader impact can cause further errors.
Overconfidence hides Confidence without verification can blind 1 1
errors apprentices to simple coding mistakes.
Understanding bug Comprehending how a fix affects the whole 1 1
impact system is crucial to effective debugging.
Collaborative Learning Captures how shared thinking, verbalisation, and 2 4
peer interaction during debugging foster deeper
understanding and strategic refinement.
Explaining debugging Verbalising thought processes helps apprentices 1 1
process arrive at solutions.
Feedback from code Constructive feedback during reviews influences 1 1
review reshapes debugging confidence and approach.
mindset
Mentorship via code Experienced developers guiding apprentices 1 1
reviews significantly improves their debugging
effectiveness.
Sharpness through Participating in code reviews sharpens bug 1 1
code review detection skills.

353|Page

Name Description Files References

Debugging Strategy Refers to the gradual, often scaffolded, 2 4
Selection acquisition of debugging expertise and

confidence through repeated exposure to

increasingly complex tasks.

Debugging depends Strategy effectiveness depends on the 1 1
on bug type complexity and category of the bug.
Debugging strategy Approaches to debugging vary depending on the 1 1
depends on context project and type of bug.
Simulation of bugs Creating and solving artificial bugs allows 1 1
helps strategy apprentices to test and compare strategies.
selection
Tool choice influenced Programming language and tech stack shape the 1 1
by language debugging approach.

Environment Factors Considers how quiet spaces, distractions, or time 1 2

pressures in the learning or work setting either
support or hinder focused debugging.

External time High-pressure scenarios often lead apprentices 1 1
pressure disrupts to abandon systematic debugging.
debugging
Quiet debugging helps A calm, low-distraction environment enhances 1 1
focus debugging concentration.

Error Interpretation Highlights how apprentices read, misread, or 2 2

apply meaning to error messages and logs, which
directly affects bug diagnosis and resolution

pathways.
Error messages Misreading error outputs can lead apprentices 1 1
mislead down unproductive paths.
Struggling to interpret Complex logs and stack traces are difficult for 1 1
error logs new apprentices to decode.
General Reasoning Pattern Describes the common tendency of apprentices 1 1

to begin debugging using informal, intuitive, or
surface-level logic rather than structured
analytical methods.

Exploring before Jumping into debugging without a plan often 1 1
understanding wastes effort.
Knowledge Development Refers to the gradual, often scaffolded, 2 3

acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

Building mental Writing comments and diagrams helps 1 1
models through apprentices internalise code structure.
documentation

Documenting aids Keeping records of debugging efforts enhances 1 1
learning long-term problem-solving skills.

354 |Page

Name Description Files References

Regular debugging Consistent journaling of bugs and fixes helps 1 1
journals enhance apprentices avoid repeating mistakes.
strategy retention

Learning Style Influence Recognises that visual, verbal, and hands-on 1 2
learners respond differently to debugging
strategies, influencing their performance and
tool preferences.

Debugging is Effective debugging strategies vary based on an 1 1
influenced by learning apprentice’s preferred learning style.
style
Visual strategies for Visual tools like debuggers support those with 1 1
visual learners visual learning preferences.

Misguided Assumptions Refers to errors in debugging that stem from 1 6

overconfidence, confirmation bias, or reliance on
incorrect prior beliefs about how the code
should behave.

Confirmation bias Preconceived assumptions can prevent 1 1
skews debugging apprentices from seeing simple bugs.
Copying solutions Replicating peer solutions without 1 1
without comprehension weakens problem-solving
understanding development.
Jumping to Making changes without verification disrupts 1 1
conclusions without debugging accuracy.
testing
Lack of consistency in Frequent switching between debugging 1 1
strategy approaches without persistence hinders

learning.
Lack of planning leads =~ Without structured reflection, apprentices often 1 1

to repeated mistakes repeat ineffective actions.

Skipping small tests Neglecting to test small units can result in 1 1
leads to big issues wasted debugging time
Peer Collaboration Encompasses the positive effects of paired 1 4

debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

Learning through pair Collaborative programming accelerates 1 1
programming understanding of debugging processes.
Pair programming Collaborative debugging quickly uncovered a 1 1

exposes memory leak memory leak issue.

Peer-led Explaining code to peers prompts apprentices to 1 1
walkthroughs think more critically about their logic.
encourage reflection

Rubber duck Explaining recursive problems aloud clarified 1 1
debugging helps their solution.
recursion

355|Page

Name Description Files References

Strategy Consolidation Reflects the apprentices’ ability to retain, refine, 2 3
and reflect on effective debugging techniques
through habits like journaling and
documentation.

Debugging tasks build Solving increasingly complex bugs builds 1 1
confidence apprentice confidence step by step.
incrementally

Structured training Formal instruction in debugging techniques 1 1
improves strategy use accelerates apprentice development.

Success boosted by Step-by-step guidance in early debugging 1 1
guided debugging exercises improves long-term independence.
Structured Strategy Involves the deliberate use of planned debugging 2 10

approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

Effective use of top- A structured top-down strategy improves 1 1
down debugging outcomes.
Mastering slicing Learning to slice code effectively improves 1 1

tracing and debugging accuracy.

Pattern matching Recognising recurring error patterns assists in 1 1
experience efficient problem solving.
Pattern matching in Python debugging becomes easier when 1 1
Python debugging apprentices identify recurring structural
patterns.

Slicing improves Slicing enables more precise identification of 1 1
isolation fault origins in code.
Step-by-step Structured, sequential debugging aids 1 1
execution preferred apprentices in isolating and resolving issues.
Structured top-down A systematic top-down method simplifies 1 1
debugging complex debugging tasks.
Testing leads to early ~ Writing tests regularly helps apprentices catch 1 1
bug discovery bugs early.
Unit testing enhances Implementing unit tests boosts confidence in 1 1
robustness code stability.
Use of isolation Employing isolation helps apprentices identify 1 1
techniques and address specific errors.

Tool Familiarity Refers to how apprentices' comfort, exposure, 2 12

and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

Go-to use of print Print statements are a preferred initial 1 1
statements debugging method due to familiarity.

Growth in tool Apprentices learn to value tool efficiency once 1 1
appreciation they overcome initial hesitation.

356|Page

Name

Hesitation to adopt
tools

IDE debugger solves
python bug

IDE familiarity
improves speed

IDE intimidation
delays adoption
Initial intimidation
with IDEs

Initial struggle with
advanced tools

Progress from prints

to breakpoints

Tool comfort impacts

strategy

Visual cues in IDEs

improve flow tracing

Visual debugging
supports
understanding

Unstructured Debugging

Casual reasoning as
entry point

Casual reasoning
misses logical errors

Casual reasoning
reliance

Guessing based on
code understanding

Hypothesising from
current code state

Switch to trial-and-
error

Trial-and-error fits
web debugging

Trial-and-error
method

Description

New users often delay embracing powerful
debugging tools due to fear or lack of
confidence.

Learning debugger tools enabled successful
resolution of Python bugs.

Familiarity with debugging environments leads
to faster problem resolution.

Fear of using debugger features prolongs
reliance on basic methods.

Beginners often find IDE tools overwhelming,
delaying their usage.

Advanced debugging tools pose challenges for
novices.

Debugging maturity shows in transitioning from
print statements to advanced IDE features.

Confidence in using IDEs influences which
debugging methods are applied.

Graphical IDE features help clarify complex
function flows for visual learners.

Graphical representations aid in tracing program
flow and state changes.

Captures instances where apprentices use
inconsistent, reactive, or haphazard debugging
tactics without a coherent plan, often resulting
in inefficiency.

Debugging often starts with general intuition

rather than a structured plan.

Relying solely on intuition often overlooks
deeper logical issues.

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

Apprentices rely on surface-level comprehension
of code to make educated guesses about bug
locations.

Apprentices form assumptions based on initial
code inspection.

When intuition fails, apprentices default to
experimenting with fixes.

Unstructured trial-and-error can work well in
simpler web-based contexts.

Debugging often begins with non-systematic
experimentation that can be inefficient.

Files References
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 8
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

357|Page

Codes\\Focus Group\\Stage 4 - Theme Review

Name Description Files References
Subtheme 1.1 — Debugging These reflect the intuitive, non-systematic 2 15
Mindsets and Reasoning approaches apprentices use, and common

Patterns mistakes made due to overconfidence,

assumption, or incomplete understanding.

General Reasoning Describes the common tendency of apprentices 1 1
Pattern to begin debugging using informal, intuitive, or

surface-level logic rather than structured

analytical methods.

Exploring before Jumping into debugging without a plan often 1 1
understanding wastes effort.
Misguided Refers to errors in debugging that stem from 1 6
Assumptions overconfidence, confirmation bias, or reliance on

incorrect prior beliefs about how the code
should behave.

Confirmation Preconceived assumptions can prevent 1 1
bias skews apprentices from seeing simple bugs.

debugging

Copying Replicating peer solutions without 1 1
solutions comprehension weakens problem-solving

without development.

understanding

Jumping to Making changes without verification disrupts 1 1
conclusions debugging accuracy.
without testing

Lack of Frequent switching between debugging 1 1
consistency in approaches without persistence hinders
strategy learning.
Lack of planning Without structured reflection, apprentices often 1 1
leads to repeat ineffective actions.
repeated
mistakes
Skipping small Neglecting to test small units can result in 1 1
tests leads to big wasted debugging time
issues
Unstructured Captures instances where apprentices use 2 8
Debugging inconsistent, reactive, or haphazard debugging

tactics without a coherent plan, often resulting
in inefficiency.

Casual reasoning Debugging often starts with general intuition 1 1
as entry point rather than a structured plan.

Casual reasoning Relying solely on intuition often overlooks 1 1
misses logical deeper logical issues.

errors

358|Page

Casual reasoning

reliance

Guessing based
on code
understanding

Hypothesising
from current
code state

Switch to trial-
and-error

Trial-and-error
fits web
debugging

Trial-and-error
method

Subtheme 1.2 — Managing
Debugging Complexity

Cognitive Load

Challenges in
tracing code

Code complexity

is overwhelming

Difficulty
segmenting
code

Fixation on
wrong sections

Incomplete
mental model
causes missteps

Not
understanding
broader impact

Overconfidence
hides errors

Understanding
bug impact

Error Interpretation

Description

Initial debugging efforts are frequently guided by
intuitive rather than logical reasoning.

Apprentices rely on surface-level comprehension
of code to make educated guesses about bug
locations.

Apprentices form assumptions based on initial
code inspection.

When intuition fails, apprentices default to
experimenting with fixes.

Unstructured trial-and-error can work well in
simpler web-based contexts.

Debugging often begins with non-systematic
experimentation that can be inefficient.

Focuses on the cognitive strain during debugging
tasks and misinterpretations (e.g., error logs or
unfamiliar codebases).

Describes the mental burden apprentices
experience when managing multiple elements of
code logic, often leading to overwhelm or errors
in reasoning.

Apprentices often find it difficult to follow code
execution paths.

Large and unfamiliar codebases can hinder
apprentices' navigation and focus.

Apprentices struggle to break complex problems
into manageable parts.

Focusing narrowly on specific code sections
leads to oversight of wider issues.

Gaps in understanding program flow often lead
to flawed assumptions.

Neglecting the system-wide effects of a bug fix
can cause further errors.

Confidence without verification can blind
apprentices to simple coding mistakes.

Comprehending how a fix affects the whole
system is crucial to effective debugging.

Highlights how apprentices read, misread, or
apply meaning to error messages and logs, which
directly affects bug diagnosis and resolution
pathways.

Files References
1 1
1 1
1 1
1 1
1 1
1 1
2 10
2 8
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 2

359 |Page

Name Description Files References

Error messages Misreading error outputs can lead apprentices 1 1
mislead down unproductive paths.
Struggling to Complex logs and stack traces are difficult for 1 1
interpret error new apprentices to decode.
logs
Subtheme 2.1 —Tool Shows the evolution from print statements to 2 14
Adoption and Preferences IDE debuggers and the way different learning

styles impact tool preference.

Learning Style Recognises that visual, verbal, and hands-on 1 2
Influence learners respond differently to debugging

strategies, influencing their performance and

tool preferences.

Debugging is Effective debugging strategies vary based on an 1 1
influenced by apprentice’s preferred learning style.
learning style

Visual strategies Visual tools like debuggers support those with 1 1
for visual visual learning preferences.
learners

Tool Familiarity Refers to how apprentices' comfort, exposure, 2 12

and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

Go-to use of Print statements are a preferred initial 1 1
print statements debugging method due to familiarity.

Growth in tool Apprentices learn to value tool efficiency once 1 1
appreciation they overcome initial hesitation.
Hesitation to New users often delay embracing powerful 1 1
adopt tools debugging tools due to fear or lack of

confidence.
IDE debugger Learning debugger tools enabled successful 1 1
solves python resolution of Python bugs.
bug
IDE familiarity Familiarity with debugging environments leads 1 1

improves speed to faster problem resolution.

IDE intimidation Fear of using debugger features prolongs 1 1
delays adoption reliance on basic methods.

Initial Beginners often find IDE tools overwhelming, 1 1
intimidation delaying their usage.

with IDEs

Initial struggle Advanced debugging tools pose challenges for 1 1
with advanced novices.

tools

Progress from Debugging maturity shows in transitioning from 1 1
prints to print statements to advanced IDE features.

breakpoints

360 | Page

Name Description Files References

Tool comfort Confidence in using IDEs influences which 1 1
impacts strategy debugging methods are applied.

Visual cues in Graphical IDE features help clarify complex 1 1
IDEs improve function flows for visual learners.

flow tracing

Visual debugging Graphical representations aid in tracing program 1 1
supports flow and state changes.

understanding

Subtheme 2.2 - Covers external conditions (e.g., pressure, IDE 2 6
Environment and Interface visuals) and how they influence strategic choices
Support in debugging.
Debugging Strategy Refers to the gradual, often scaffolded, 2 4
Selection acquisition of debugging expertise and

confidence through repeated exposure to
increasingly complex tasks.

Debugging Strategy effectiveness depends on the 1 1
depends on bug complexity and category of the bug.
type
Debugging Approaches to debugging vary depending on the 1 1
strategy project and type of bug.
depends on
context
Simulation of Creating and solving artificial bugs allows 1 1
bugs helps apprentices to test and compare strategies.
strategy
selection
Tool choice Programming language and tech stack shape the 1 1
influenced by debugging approach.
language
Environment Factors Considers how quiet spaces, distractions, or time 1 2

pressures in the learning or work setting either
support or hinder focused debugging.

External time High-pressure scenarios often lead apprentices 1 1
pressure to abandon systematic debugging.
disrupts
debugging
Quiet debugging A calm, low-distraction environment enhances 1 1
helps focus debugging concentration.
Subtheme 3.1 — Structured Encapsulates systematic methods like top-down 2 15
Debugging Approaches debugging, use of slicing, simulation, journaling,

and repeating bugs for deeper insight.

Bug Replication Focuses on the importance of recreating bugs as 1 2
a strategic practice to understand error
behaviour and trace root causes effectively.

Replication Reproducing bugs consistently helps clarify 1 1
supports root underlying causes.
cause analysis

36l|Page

Name Description Files References

Rushed learning Time constraints force apprentices to prioritise 1 1
under pressure quick fixes over deeper understanding.

Strategy Reflects the apprentices’ ability to retain, refine, 2 3
Consolidation and reflect on effective debugging techniques

through habits like journaling and

documentation.

Debugging tasks Solving increasingly complex bugs builds 1 1
build confidence apprentice confidence step by step.
incrementally

Structured Formal instruction in debugging techniques 1 1
training accelerates apprentice development.
improves

strategy use

Success boosted Step-by-step guidance in early debugging 1 1
by guided exercises improves long-term independence.
debugging

Structured Strategy Involves the deliberate use of planned debugging 2 10

approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

Effective use of A structured top-down strategy improves 1 1
top-down debugging outcomes.
Mastering slicing Learning to slice code effectively improves 1 1

tracing and debugging accuracy.

Pattern Recognising recurring error patterns assists in 1 1
matching efficient problem solving.

experience

Pattern Python debugging becomes easier when 1 1
matching in apprentices identify recurring structural

Python patterns.

debugging

Slicing improves Slicing enables more precise identification of 1 1
isolation fault origins in code.

Step-by-step Structured, sequential debugging aids 1 1
execution apprentices in isolating and resolving issues.

preferred

Structured top- A systematic top-down method simplifies 1 1

down debugging complex debugging tasks.

Testing leads to ~ Writing tests regularly helps apprentices catch 1 1
early bug bugs early.

discovery

Unit testing Implementing unit tests boosts confidence in 1 1
enhances code stability.

robustness

Use of isolation Employing isolation helps apprentices identify 1 1
techniques and address specific errors.

362|Page

Name Description Files References

Subtheme 3.2 - Trainers and mentors described how pair 2 8
Collaborative Debugging programming, peer walk-throughs, and code

reviews helped apprentices verbalise their

thoughts, spot errors faster, and build

confidence. These collaborative practices were

seen as instrumental in building debugging

acumen.

Collaborative Learning Captures how shared thinking, verbalisation, and 2 4
peer interaction during debugging foster deeper
understanding and strategic refinement.

Explaining Verbalising thought processes helps apprentices 1 1
debugging arrive at solutions.

process

Feedback from Constructive feedback during reviews influences 1 1
code review debugging confidence and approach.

reshapes

mindset

Mentorship via Experienced developers guiding apprentices 1 1
code reviews significantly improves their debugging

effectiveness.

Sharpness Participating in code reviews sharpens bug 1 1
through code detection skills.
review

Peer Collaboration Encompasses the positive effects of paired 1 4

debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

Learning Collaborative programming accelerates 1 1
through pair understanding of debugging processes.
programming

Pair Collaborative debugging quickly uncovered a 1 1
programming memory leak issue.
exposes

memory leak

Peer-led Explaining code to peers prompts apprentices to 1 1
walkthroughs think more critically about their logic.
encourage
reflection
Rubber duck Explaining recursive problems aloud clarified 1 1
debugging helps their solution.
recursion
Subtheme 3.3 — Reflection Focuses on how documentation, journals, and 2 3
and Growth guided walkthroughs promote debugging
maturity and long-term learning.
Knowledge Refers to the gradual, often scaffolded, 2 3
Development acquisition of debugging expertise and

confidence through repeated exposure to
increasingly complex tasks.

363|Page

Name Description Files References

Building mental Writing comments and diagrams helps 1 1
models through apprentices internalise code structure.
documentation

Documenting Keeping records of debugging efforts enhances 1 1
aids learning long-term problem-solving skills.

Regular Consistent journaling of bugs and fixes helps 1 1
debugging apprentices avoid repeating mistakes.

journals

enhance

strategy

retention

Codes\\Focus Group\\Stage 5 - Theme Definition

Name Description Files References
Theme 1 - Nature and Handling This theme reflects mentors’ and trainers’ 2 25
of Debugging Errors observations of how apprentices approach and

react to debugging errors, based on their
reasoning, initial assumptions, and ability to
manage problem complexity. It also includes
the researcher's account of apprentice
reactions during live debugging and

interviews.
Subtheme 1.1 — Debugging These reflect the intuitive, non-systematic 2 15
Mindsets and Reasoning approaches apprentices use, and common
Patterns mistakes made due to overconfidence,

assumption, or incomplete understanding.

General Reasoning Describes the common tendency of 1 1
Pattern apprentices to begin debugging using informal,

intuitive, or surface-level logic rather than

structured analytical methods.

Exploring Jumping into debugging without a plan often 1 1
before wastes effort.
understanding

Misguided Refers to errors in debugging that stem from 1 6
Assumptions overconfidence, confirmation bias, or reliance

on incorrect prior beliefs about how the code

should behave.

Confirmation Preconceived assumptions can prevent 1 1
bias skews apprentices from seeing simple bugs.

debugging

Copying Replicating peer solutions without 1 1
solutions comprehension weakens problem-solving

development.

364|Page

Name Description Files References

without
understanding

Jumping to Making changes without verification disrupts 1 1
conclusions debugging accuracy.
without testing

Lack of Frequent switching between debugging 1 1
consistency in approaches without persistence hinders

strategy learning.

Lack of Without structured reflection, apprentices 1 1

planning leads often repeat ineffective actions.
to repeated

mistakes
Skipping small Neglecting to test small units can result in 1 1
tests leads to wasted debugging time
big issues
Unstructured Captures instances where apprentices use 2 8
Debugging inconsistent, reactive, or haphazard debugging
tactics without a coherent plan, often resulting
in inefficiency.
Casual Debugging often starts with general intuition 1 1
reasoning as rather than a structured plan.
entry point
Casual Relying solely on intuition often overlooks 1 1
reasoning deeper logical issues.
misses logical
errors
Casual Initial debugging efforts are frequently guided 1 1
reasoning by intuitive rather than logical reasoning.
reliance
Guessing based Apprentices rely on surface-level 1 1
on code comprehension of code to make educated

understanding guesses about bug locations.

Hypothesising Apprentices form assumptions based on initial 1 1
from current code inspection.
code state
Switch to trial- ~ When intuition fails, apprentices default to 1 1
and-error experimenting with fixes.
Trial-and-error Unstructured trial-and-error can work well in 1 1
fits web simpler web-based contexts.
debugging
Trial-and-error Debugging often begins with non-systematic 1 1
method experimentation that can be inefficient.
Subtheme 1.2 — Managing Focuses on the cognitive strain during 2 10
Debugging Complexity debugging tasks and misinterpretations (e.g.,

error logs or unfamiliar codebases).

Cognitive Load Describes the mental burden apprentices 2 8
experience when managing multiple elements

365|Page

Name Description

of code logic, often leading to overwhelm or
errors in reasoning.

Challenges in Apprentices often find it difficult to follow
tracing code code execution paths.

Code Large and unfamiliar codebases can hinder
complexity is apprentices' navigation and focus.

overwhelming

Difficulty Apprentices struggle to break complex
segmenting problems into manageable parts.

code

Fixation on Focusing narrowly on specific code sections

wrong sections leads to oversight of wider issues.

Incomplete Gaps in understanding program flow often
mental model lead to flawed assumptions.

causes

missteps

Not Neglecting the system-wide effects of a bug fix

understanding can cause further errors.
broader impact

Overconfidence Confidence without verification can blind
hides errors apprentices to simple coding mistakes.

Understanding Comprehending how a fix affects the whole
bug impact system is crucial to effective debugging.

Error Interpretation Highlights how apprentices read, misread, or
apply meaning to error messages and logs,
which directly affects bug diagnosis and
resolution pathways.

Error messages Misreading error outputs can lead apprentices

mislead down unproductive paths.

Struggling to Complex logs and stack traces are difficult for
interpret error new apprentices to decode.

logs

Theme 2 - Technology’s Role in This theme highlights mentor perspectives on

Debugging Processes how apprentices engage with debugging tools,
from print statements to IDEs, and how their
learning styles, comfort levels, and
environmental context affect the effectiveness
of those tools.

Subtheme 2.1 — Tool Shows the evolution from print statements to
Adoption and Preferences IDE debuggers and the way different learning
styles impact tool preference.

Learning Style Recognises that visual, verbal, and hands-on

Influence learners respond differently to debugging
strategies, influencing their performance and
tool preferences.

Files

References

20

14

366|Page

Name Description Files References

Debugging is Effective debugging strategies vary based on 1 1
influenced by an apprentice’s preferred learning style.
learning style

Visual Visual tools like debuggers support those with 1 1
strategies for visual learning preferences.
visual learners

Tool Familiarity Refers to how apprentices' comfort, exposure, 2 12
and understanding of debugging tools—
especially IDEs—affect their willingness and
effectiveness in using them.

Go-to use of Print statements are a preferred initial 1 1
print debugging method due to familiarity.
statements
Growth in tool Apprentices learn to value tool efficiency once 1 1
appreciation they overcome initial hesitation.
Hesitation to New users often delay embracing powerful 1 1
adopt tools debugging tools due to fear or lack of

confidence.
IDE debugger Learning debugger tools enabled successful 1 1
solves python resolution of Python bugs.
bug
IDE familiarity Familiarity with debugging environments leads 1 1

improves speed to faster problem resolution.

IDE Fear of using debugger features prolongs 1 1
intimidation reliance on basic methods.

delays

adoption

Initial Beginners often find IDE tools overwhelming, 1 1
intimidation delaying their usage.

with IDEs

Initial struggle Advanced debugging tools pose challenges for 1 1
with advanced novices.

tools

Progress from Debugging maturity shows in transitioning 1 1
prints to from print statements to advanced IDE

breakpoints features.

Tool comfort Confidence in using IDEs influences which 1 1
impacts debugging methods are applied.

strategy

Visual cues in Graphical IDE features help clarify complex 1 1
IDEs improve function flows for visual learners.

flow tracing

Visual Graphical representations aid in tracing 1 1
debugging program flow and state changes.

supports

understanding

367|Page

Name Description Files References

Subtheme 2.2 - Covers external conditions (e.g., pressure, IDE 2 6
Environment and Interface visuals) and how they influence strategic
Support choices in debugging.
Debugging Strategy Refers to the gradual, often scaffolded, 2 4
Selection acquisition of debugging expertise and

confidence through repeated exposure to
increasingly complex tasks.

Debugging Strategy effectiveness depends on the 1 1
depends on complexity and category of the bug.
bug type
Debugging Approaches to debugging vary depending on 1 1
strategy the project and type of bug.
depends on
context
Simulation of Creating and solving artificial bugs allows 1 1
bugs helps apprentices to test and compare strategies.
strategy
selection
Tool choice Programming language and tech stack shape 1 1
influenced by the debugging approach.
language
Environment Factors Considers how quiet spaces, distractions, or 1 2

time pressures in the learning or work setting
either support or hinder focused debugging.

External time High-pressure scenarios often lead apprentices 1 1
pressure to abandon systematic debugging.
disrupts
debugging
Quiet A calm, low-distraction environment enhances 1 1
debugging debugging concentration.
helps focus
Theme 3 - Strategies and This theme captures how trainers and mentors 2 26
Challenges in Debugging observed apprentices developing, adapting, or

struggling with debugging strategies, and how
peer collaboration, repetition, and training
interventions shaped their effectiveness.

Subtheme 3.1 — Structured Encapsulates systematic methods like top- 2 15
Debugging Approaches down debugging, use of slicing, simulation,
journaling, and repeating bugs for deeper
insight.
Bug Replication Focuses on the importance of recreating bugs 1 2

as a strategic practice to understand error
behaviour and trace root causes effectively.

Replication Reproducing bugs consistently helps clarify 1 1
supports root underlying causes.
cause analysis

368|Page

Name Description Files References

Rushed Time constraints force apprentices to prioritise 1 1
learning under quick fixes over deeper understanding.
pressure
Strategy Reflects the apprentices’ ability to retain, 2 3
Consolidation refine, and reflect on effective debugging

techniques through habits like journaling and
documentation.

Debugging Solving increasingly complex bugs builds 1 1
tasks build apprentice confidence step by step.
confidence

incrementally

Structured Formal instruction in debugging techniques 1 1
training accelerates apprentice development.
improves

strategy use

Success Step-by-step guidance in early debugging 1 1
boosted by exercises improves long-term independence.
guided
debugging
Structured Strategy Involves the deliberate use of planned 2 10

debugging approaches like slicing, top-down
decomposition, and test-driven methods that
promote efficiency and clarity.

Effective use of A structured top-down strategy improves 1 1
top-down debugging outcomes.

Mastering Learning to slice code effectively improves 1 1
slicing tracing and debugging accuracy.

Pattern Recognising recurring error patterns assists in 1 1
matching efficient problem solving.

experience

Pattern Python debugging becomes easier when 1 1
matching in apprentices identify recurring structural

Python patterns.

debugging

Slicing Slicing enables more precise identification of 1 1
improves fault origins in code.

isolation

Step-by-step Structured, sequential debugging aids 1 1
execution apprentices in isolating and resolving issues.

preferred

Structured top- A systematic top-down method simplifies 1 1
down complex debugging tasks.

debugging

Testing leads to Writing tests regularly helps apprentices catch 1 1
early bug bugs early.

discovery

369|Page

Unit testing
enhances
robustness

Use of isolation
techniques

Subtheme 3.2 -
Collaborative Debugging

Collaborative
Learning

Explaining
debugging
process

Feedback from
code review
reshapes
mindset

Mentorship via
code reviews

Sharpness
through code
review

Peer Collaboration

Learning
through pair
programming

Pair
programming
exposes
memory leak

Peer-led
walkthroughs
encourage
reflection

Rubber duck
debugging
helps recursion

Description

Implementing unit tests boosts confidence in
code stability.

Employing isolation helps apprentices identify
and address specific errors.

Trainers and mentors described how pair
programming, peer walk-throughs, and code
reviews helped apprentices verbalise their
thoughts, spot errors faster, and build
confidence. These collaborative practices were
seen as instrumental in building debugging
acumen.

Captures how shared thinking, verbalisation,
and peer interaction during debugging foster
deeper understanding and strategic
refinement.

Verbalising thought processes helps
apprentices arrive at solutions.

Constructive feedback during reviews
influences debugging confidence and
approach.

Experienced developers guiding apprentices
significantly improves their debugging
effectiveness.

Participating in code reviews sharpens bug
detection skills.

Encompasses the positive effects of paired
debugging, walkthroughs, code reviews, and
feedback from peers or mentors in scaffolding
problem-solving.

Collaborative programming accelerates
understanding of debugging processes.

Collaborative debugging quickly uncovered a
memory leak issue.

Explaining code to peers prompts apprentices
to think more critically about their logic.

Explaining recursive problems aloud clarified
their solution.

Files References

1 1
1 1
2 8
2 4
1 1
1 1
1 1
1 1
1 4
1 1
1 1
1 1
1 1

370|Page

Name

Subtheme 3.3 — Reflection
and Growth

Knowledge
Development

Building mental
models
through
documentation

Documenting
aids learning

Regular
debugging
journals
enhance
strategy
retention

Description

Focuses on how documentation, journals, and
guided walkthroughs promote debugging
maturity and long-term learning.

Refers to the gradual, often scaffolded,
acquisition of debugging expertise and
confidence through repeated exposure to
increasingly complex tasks.

Writing comments and diagrams helps
apprentices internalise code structure.

Keeping records of debugging efforts enhances
long-term problem-solving skills.

Consistent journaling of bugs and fixes helps
apprentices avoid repeating mistakes.

Files

References

371|Page

