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Abstract

Recent progress towards an understanding of fluctuational escape from chaotic
attractors (CAs) is reviewed and discussed in the contexts of both continuous sys-
tems and maps. It is shown that, like the simpler case of escape from a regular
attractor, a unique most probable escape path (MPEP) is followed from a CA to
the boundary of its basin of attraction. This remains true even where the boundary
structure is fractal. The importance of the boundary conditions on the attractor
is emphasised. It seems that a generic feature of the escape path is that it passes
via certain unstable periodic orbits. The problems still remaining to be solved are
identified and considered.
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1 Introduction

Complex systems are generally noisy and chaotic, both in nature and in a wide range
of science and technology. The analysis of stability and the development of methods of
control, applicable to chaotic systems in the presence of noise, are therefore of considerable
interdisciplinary importance [Bishop & Xu, 1996; Zhou et al., 2003; Billings et al., 2004].
Examples of applications range from ecology [Sole et al., 1999] to space travel [Serban
et al., 2002]. Deep insight into the solution of these problems can be gained from studies
of the invariant manifolds that determine the pattern of optimal paths [Graham & Tél,
1984; Dykman et al., 1996; Luchinsky, 2002] along which a system fluctuates to a given
point in configuration space in the limit of large deviations, i.e. where the noise intensity is
much smaller then the minimum action required to move the system from the attractor to
that point. Particularly important in this context is the role played by the so-called most
probable escape path (MPEP) [Dykman & Krivoglaz, 1979], along which the system
escapes from a given basin of attraction. The central idea is finding a wide range of
scientific applications including biological ratchets [Luchinsky et al., 2000], dynamical
inference of e.g. the cardiovascular system [Smelyanskiy et al., 2005], control of e.g. lasers
[Khovanov et al., 2006], and protein folding [Faccioli et al., 2006]. We shall see that
the picture applies to chaotic attractors as well as to regular ones, even where the basin
structure is fractal.

The conceptual framework is applicable to both flows and maps. It can be developed
by following e.g. Grassberger [1989] (see also [Kifer, 1990; Graham et al., 1991]). Consider
the L–dimensional map

xn+1 = f(xn) + σzn, 〈zαnzβn′〉 = δnn′δαβ, (1)

where xn, ηn ∈ RL, and σ is a row matrix mixing zero-mean white Gaussian sources of
noise zn. Comparison of (1) with a midpoint approximation for the time evolution of an
L-dimensional flow on the discrete time n = 1, ..., N

xn+1 = xn + hF (x∗

n) + σz̃n, z̃n =

∫ tn+h

tn

ξ(t)dt, 〈z̃nz̃n′〉 = hÎδnn′ (2)

shows that (2) is a special case of the map (1) with a small parameter h, and x∗

n = xn+xn+1

2
.

Thus the main results obtained below for maps can also be applied to flows, using the
following rule: (i) make the substitutions f(xn) → xn + hF (x∗

n) and σ →
√

hσ̃; and
(ii) take the limit h → 0. In the particular case of large deviations, we are interested
in the minimum of the energy functional under the condition xn+1 − f(xn) − σzn =
0. It is intuitively clear that S is a non-decreasing function along the trajectory and
must be at least piece-wise differentiable in the limit h → 0, thus justifying its use as a
generalized potential for non-equilibrium systems [Graham & Tél, 1984; Jauslin, 1987].
By introducing Lagrange multipliers λn and varying the effective functional

S∗ =
1

2

N
∑

n=1

ξT
n ξn +

N
∑

n=1

λT
n (xn+1 − f(xn) − σξn) (3)

with respect to ξn, λn, and xn (cf. [Grassberger, 1989; Beri et al., 2005]) one obtains the
equations of motion of the system along optimal paths in the course of large deviations
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in the form of an area-preserving map

xn+1 = f(xn) + σσT λn, λn+1 = [f ′(xn+1)]
−1T

λn. (4)

Translating this result for a flow system [Beri et al., 2005] we obtain

ẋ = F (x) + D′p, ṗ = −F ′(x)p, (5)

where D = σ̃σ̃T , and in the h → 0 limit we have introduced the notations λn → p(t),
xn → x(t), (λn+1 − λn)/h → ṗ, and (xn+1 − xn)/h → ẋ. Note that the Hamiltonian
equations thus obtained (with Hamiltonian H = 1

2
pT Dp+ pT F ) for the optimal paths are

known from a WKB-like approximation of the Fokker-Planck equation [Cohen & Lewis,
1967; Ventcel & Freidlin, 1970].

The application of (4) and (5) to analysis of the stability and control of chaotic flows
and maps requires knowledge of the boundary conditions. In particular, the stability of an
attractor is determined by the probability of escape from its basin of attraction along the
MPEP. Similarly, restriction of the system dynamics within the basin of a given attractor
is enforced by a control function that steers the system to its boundary. In the particular
case of energy optimal control, the problems of stability and control can both be reduced
to boundary value problems for auxiliary Hamiltonian flows (5) [Luchinsky et al., 1998] or
area preserving maps (4) [Khovanov et al., 2000]. It is clear therefore that analysis of the
boundary conditions is crucial for the solution of both problems. Formally, the boundary
conditions are set at the attractor (for t → −∞) and at the boundary (for t → +∞). At
the end points both λ and p are zero.

In the case of chaotic dynamics, however, the geometrical structure of the attractor
(and also the boundary in cases where this is fractal) is very complex. And it is not known
a priori if the boundary conditions in chaotic systems can be specified uniquely or, indeed,
whether a unique MPEP exists at all. Consequently, the fluctuational escape problem
in chaotic systems has attracted a great deal of attention during the last two decades
(see e.g. [Beale, 1989; Grassberger, 1989; Kifer, 1990; Graham et al., 1991; Reimann
et al., 1994; Reimann & Talkner, 1995; Kraut & Feudel, 2003]). Here we present a brief
review of recent progress in understanding the boundary conditions for escape from a
CA, both with and without fractal boundaries [Luchinsky & Khovanov, 1999; Khovanov
et al., 2000; Luchinsky, 2002; Silchenko et al., 2003a; Khovanov et al., 2003; Kraut &
Grebogi, 2004; Beri et al., 2005; Silchenko et al., 2005] It turns out that the boundary
conditions at the attractor and on its fractal boundary can be identified uniquely with
certain unstable periodic orbits. This in turn opens up the possibility of developing a
general approach to the solution of the stability and control problems by application of
a WKB-like approximation. To identify boundary conditions on the attractor a method
based on the prehistory probability distribution Dykman et al. [1992] can conveniently
be employed [Dykman et al., 1996; Luchinsky et al., 1997; Luchinsky, 2002; Silchenko
et al., 2005]. The exact locations of the unstable periodic orbits can be found by use of
the standard methods of nonlinear dynamics [Schmelcher & Diakonos, 1997]. It has also
been found recently that in some quite general situations the boundary conditions can
be identified directly from the known structure of non-hyperbolic attractors and fractal
boundaries [Silchenko et al., 2003a; Kraut & Grebogi, 2004].

Once the boundary conditions are identified, the MPEP can be found as the path that
both minimizes the energy functional (3) and also belongs to the unstable manifold of
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the boundary orbit embedded within the attractor MU
A and the stable manifold MS

B of
the boundary orbit on the attractor boundary. Analyses of the structure of MU

A and MS
B

can to some extent be carried out in parallel [Maier & Stein, 1997]. As an example [Beri
et al., 2005], consider the parameterizations of MU

A in the close vicinity of the stable point
S of period one, where the map (4) can be linearized as

[

δn+1

λn+1

]

= M

[

δn

λn

]

, M =

[

f ′(S) I

0 [f ′(S)]−1T

]

(6)

where δn is a small deviation from S and the corresponding “momentum” λn ∼ O(δn).
Because of its area-preserving property (note the structure of M in Eq. (6)), M has the
same number L for contracting αs and expanding αu eigenvalues. Clearly, MU

A is spanned
by the eigenvectors corresponding to the expanding eigenvalues. Then an arbitrary point
on MU

A can be written as

[

δn+1

λn+1

]

=
L

∑

l=1

clα
n
u,l

[

eδ
u,l

eλ
u,l

]

, (7)

where eδ
u,l and eλ

u,l are the L-dimensional coordinate and “momentum” components of
the 2L-dimensional eigenvector corresponding to the expanding eigenvalue αu,l. It can
be seen from (7) that MU

A of the 2L-dimensional map (4) can be parameterized with L
parameters cl. For a small deviation δ chosen in an L-dimensional spherical shell around
S, the corresponding effective momenta can be found as

λn =
[

eλ
u,l

] [

eδ
u,l

]

−1
δn, (8)

where
[

eλ
u,l

]

and
[

eδ
u,l

]

−1
are L × L matrices composed of L-dimensional column vectors

eλ
u,l and eδ

u,l.
Similar results can be obtained for the flow (2). One must bear in mind that, in the

continuous case, MU
A can be characterized by (L− 1) parameters because, for the system

(5), one of the eigenvalues corresponding to motion along the limit cycle is necessarily
0. In practice, to parameterize MU

A in the continuous, case one has: (i) to identify the
boundary limit cycle; and (ii) to introduce a Poincaré cross-section for this limit cycle
and a corresponding map. The parameterizations of MU

A in the Poincaré cross-section
can then be performed following Eqs. (6)-(8).

Below we focus exclusively on analysis of the boundary conditions. The closely related
problem of the analysis of invariant measures on chaotic attractors is not considered here
(see, however, [Jung & Hänggi, 1990; Reimann et al., 1994; Reimann & Talkner, 1995;
Beri et al., 2005]).

We will describe and discuss recent progress in the analysis of the escape problem in
chaotic systems, treating escape over regular and fractal basin boundaries in Secs. 2 and
3 respectively. We summarise the status of the subject and identify the main problems
still to be solved in Sec. 4.

2 Chaotic escape over a regular basin boundary

We now consider and compare noise-induced escape from the basins of quasi-hyperbolic
and non-hyperbolic CAs. The property of hyperbolicity means that, at each point of
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a chaotic set, the tangent space can be split into expanding and contracting subspaces
(manifolds), and that the angle between the subspaces differs from zero. In case of a
quasi-hyperbolic attractor, the property hyperbolicity is broken into a finite number of
points. In a non-hyperbolic attractor, homoclinic tangencies between stable and unstable
manifolds take place at an infinite numbers of points. The homoclinic tangencies form
a homoclinic structure which is structurally unstable [Smale, 1966] and can be changed
completely by a small variation of parameters [Gonchenko et al., 1997]. CAs are typically
non-hyperbolic.

We suppose the basins of attraction to be smooth and that one can distinguish a
boundary set. Within the framework of large fluctuation theory [Freidlin & Wentzel,
1984] we expect escape via the boundary set in the zero-noise limit. Another boundary
has to be chosen on the CA. In the case of a quasi-hyperbolic attractor we have a density
of saddle cycles; the trajectory is bounded by manifolds of the cycles and there is a very
small (in comparison with the whole attractor) region that is non-hyperbolic. For a non-
hyperbolic attractor we cannot specify the sets composing the attractor. Moreover it
has been shown [Afraimovich et al., 1983] that a typical non-hyperbolic attractor can be
considered as a quasi-attractor composed of several sets including hyperbolic and stable
ones; complex behaviour is induced by round-off errors in computer simulations or by
noise in experiments. In the neither case can we specify a priori any particular set as the
boundary condition. In the case of a fractal boundary (see Sec. 3) there is an immediate
question: which boundary set is the boundary for the optimal escape path? In addition,
noise can significantly change the probability distribution on the attractor [Anishchenko
et al., 2001; Schroer et al., 1998]. It is obvious that in such a situation a direct solution
of the equation (5) is problematic. We have therefore used an experimental approach to
solve the boundary problem.

The approach proposed by Dykman et al. [1992] is based on the fact that the optimal
path is not a theoretical abstraction: on the contrary, the path corresponds to a real
trajectory that can be observed in an experiment. The approach consists in making
measurements of the prehistory probability distribution ph(x, t;xf , tf ) in which information
is gathered on all trajectories in a close neighborhood of the chosen state xf outside the
attractor. Luchinsky [1997] has demonstrated that the approach allows one to determine
the optimal fluctuational force as well. For our task the prehistory approach allows us to
avoid the question of boundary conditions mentioned above, and of the distribution near
the CA, and simultaneously determines the boundary condition on the CA.

As an example of a multistable system with a non-hyperbolic attractor, we chose a
non-autonomous nonlinear oscillator and, as a system with a quasi-hyperbolic attractor,
we selected the Lorenz equations with white noise included additively in one variable.

We first consider escape from the quasi-hyperbolic attractor in the Lorenz system.
The latter was originally obtained as a simplified model to describe convection of a fluid
between two planes at different temperatures, where the thermal and gravitational gra-
dients are oppositely directed [Lorenz, 1963]. Later it was considered as a model for the
single mode laser [Haken, 1975; Weiss et al., 1988, 1995]. It is described by the following
equations:

ẋ1 = σ(x2 − x1), ẋ2 = rx1 − x2 − x1x3, ẋ3 = x1x2 − bx3 +
√

Dξ(t), (9)

Here, x1, x2 and x3 are the dynamical variables; and σ, r and b are parameters. For
simplicity we add a white-noise source ξ(t) of intensity D only to the third equation
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Figure 1: (a) The structure of phase space of the Lorenz system. The stable points P1 and P2, and the
saddle point O are shown by filled circles. The saddle cycles L1 and L2 are shown by the red line, the
separatrices Γ1 and Γ2 are shown by black lines. The blue line corresponds to a trajectory of the quasi-
hyperbolic attractor. Several typical escape trajectories are shown by green lines. (b) The coordinate of
the averaged escape trajectory 〈xe

3
〉 (bottom) and the averaged fluctuational force 〈ξe〉 (top), corresponded

to the optimal path and the optimal force, respectively. The three stages of escape are indicated.

of system (9); this does not violate the mirror symmetry of the system. We set the
parameters as σ = 10, b = 8/3, r = 24.08, so that two stable equilibrium points P1

and P2 coexist with a CA as shown in Fig. 1(a). The saddle cycles, with stable manifolds
transverse to the attractor, are dense everywhere in the Lorenz CA. Apart from the saddle
cycles, the chaotic set also contains the separatrices Γ1 and Γ2 and the saddle point O.
The existence of a saddle point in the CA defines the non-hyperbolicity property and the
prefix “quasi” in the definition of a quasi-hyperbolic CA [Afraimovich et al., 1983].

The boundaries of the CA are specified by the initial segments of the separatrices
Γ1 and Γ2 that closely approach the saddle cycles L1 and L2 (see Fig. 1(a)), and which
theoretically [Afraimovich et al., 1983] belong to the attractor. However, numerical studies
have shown that the probability of the noise-free system passing near the separatrices
Γ1 and Γ2 or the cycles L1 and L2 is exponentially small. In fact, in the noise-free
system, no trajectories could be found approaching a close vicinity of these cycles along
the separatrices on any reasonable timescale of observation (a few weeks in our case).

Very weak noise (D = 0.001) can induce transitions from the CA to the states P1 or
P2, so that the Lorenz attractor becomes metastable. We build prehistory distributions
both for the escape trajectories and for the corresponding realizations of the random force.
For definiteness, we examine escape to the stable point P1.

Analysis of the prehistory distribution of the escape trajectories by Anishchenko et al.

[2002] shows that there is well-defined maximum in their distribution. We can therefore
define the optimal path by ensemble-averaging the escape trajectories. The optimal fluc-
tuational force can be obtained by averaging the corresponding realizations of the random
force. Fig. 1(b) shows the coordinate x3 of the optimal path (MPEP), and the value p3

of the averaged fluctuational force, as functions of time. The results obtained suggest the
following scenario of escape from the Lorenz attractor. The escape path consists of the
three main parts shown in Fig. 1(b): (i) the deterministic part from point S to point A;
(ii) a part corresponding to fast fluctuation-assisted motion along the separatrices from
point A to point C; and (iii) slow diffusion from point C to overcome the deterministic
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Figure 2: (a) The structure of phase space of (10) in Poincaré section. The basins of attraction of the
stable cycle SC1 (red filled circle) and the chaotic attractor (small black dots) are shown in green and
white respectively. The saddle cycle S1 is shown by the black filled square, and the saddle cycle S3 is
shown by the black pluses. Intersections of the actual escape trajectory with the Poincaré cross-section
are indicated by blue circles. (b) The coordinate of the averaged escape trajectory 〈xesc

1
〉 (bottom) and

the averaged fluctuational force 〈ξesc〉 (top), corresponding to the optimal path and the optimal force.
Single periods of the saddle cycles S5, S3 and S1 are indicated by green circles, black squares and magenta
triangles respectively; the stable cycle SC1 is shown by blue rhombs.

drift on the unstable manifold of the saddle cycle L1 and to cross L1. It is important to
note that noise plays a different role during each part of the escape [Anishchenko et al.,
2002].

Thus, for a quasi-hyperbolic attractor, there exists a unique optimal escape path. The
role of fluctuations is two-fold. First, they deliver the system to a seldom-visited region
in the neighborhood of the saddle cycle L1. Secondly they induce the system to cross
the saddle cycle L1. The analysis does not indicate any specific sets that can be viewed
as the boundary condition on the CA, but it clearly shows that the escape process is
closely connected with the non-hyperbolic structure of attractor: the stable and unstable
manifolds of the saddle point O.

We now discuss escape from a non-hyperbolic attractor in the periodically driven
nonlinear oscillator described by:

ẍ = −2Γẋ − ω2

0x − x2 − x3 + h sin(ωf t) +
√

Dξ(t). (10)

Here x corresponds to the oscillator coordinate; Γ and ω0 are oscillator parameters; h and
ωf are the amplitude and frequency of external driving. This form of nonlinear oscillator
is encountered in many applications [Soskin et al., 1997]. We fixed the parameters (Γ =
0.025, ω0 = 0.597, h = 0.13, ωf = 0.95) in the region where the CA and a stable limit
cycle SC1 coexist as shown in Fig. 2(a). The CA appears as the result of period-doubling
bifurcations, and thus corresponds to non-hyperbolic attractor [Gonchenko et al., 1997].
Unfortunately, in contrast to the Lorenz system, there is no clear description of the
structure of the non-hyperbolic attractor.

The boundary between the attractors is formed by stable manifolds of the saddle cycle
of period 1 (S1). The filled circles in Fig. 2(a) show the intersections of one of the real
escape trajectories with the given Poincaré section. Analysis of the prehistory distribution
[Luchinsky & Khovanov, 1999; Luchinsky, 2002] showed that most probable escape path
starts at the saddle cycle of period 5 (S5) embedded in the attractor, passes through
the saddle cycle of period 3 (S3) and finishes on the saddle cycle S1 at the boundary of
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the basin of attraction. It can be seen in Fig. 2(b) that the optimal force switches on
at the moment when the system leaves S5 along its unstable manifold and switches off
again when the system reaches the boundary cycle S1. Finite action is required to move
system from S5 to S3, and additional analysis showed that the cycle S3 does not belong
to the CA, although it lies close to the attractor boundary. Additionally we found that
for a very small noise intensity (insufficient to observe transitions to S1 on a reasonable
time scale) a large fluctuation from the CA corresponds to a transition from the cycle S5

to the cycle S3 and, moreover, trajectories reaching S3 have all passed through S5. The
probability of finding the system on S5 does not lie within the highest probability region of
the attractor, but neither is S5 in the exponential tail of the distribution in the presence of
noise. With increasing noise intensity, the probability of finding the system in the vicinity
of S5 increases. It is important to note that, although S5 is in the low-probability region
of the attractor, the transient time tr required for the system to reach S5 (in the presence
of noise) from an arbitrary initial condition on the attractor is still exponentially smaller
than the average escape time te.

Thus, the experimental approach based on an analysis of the prehistory of large fluc-
tuations allows us: (i) to conclude that escape from a non-hyperbolic attractor occurs in
a sequence of jumps between saddle cycles; (ii) to specify the boundary condition on the
CA; and (iii) to determine the energy-minimal (optimal) fluctuational force controlling
the transition between attractors. Note that we confirmed the results of the prehistory
approach by numerical solution of (5) with the boundary conditions set on the cycles S5

and S1 [Luchinsky, 2002].
It is instructive to compare the escape processes from quasi-hyperbolic and non-

hyperbolic attractors. We stress two points.

(i) To determine the optimal path corresponding to the solution of (5) we applied the
prehistory approach. It allows us to determine the trajectory corresponding to a
global minimum of the escape energy if the relaxation time to an equilibrium distri-
bution on the attractor, tr, is much shorter than the fluctuational escape time from
the attractor, tesc: tr ≪ tesc. This escape time increases exponentially with decreas-
ing noise intensity D as tesc ∝ exp(S/D), where S is the activation “energy”. Since
D is always finite in practice (because observation times are necessarily finite), the
satisfaction of the condition tr ≪ tesc is primarily related to tr, i.e. to the properties
of the equilibrium distribution on the attractor. For the non-hyperbolic CA in the
periodically-driven nonlinear oscillator, the noise intensity can be chosen in such a
way that the condition tr ≪ tesc is satisfied. In this case, the optimal trajectory
found does not depend on the initial conditions on the attractor or on the noise
intensity. For the Lorenz system, the situation is different. As pointed out above,
the probability of the system being in the neighborhood of the manifolds of the
saddle point O is exponentially small. It may be said that the equilibrium distribu-
tion function on the attractor has tails similar to those of a Gaussian distribution,
and that the trajectory only rarely falls within these tails. Moreover, our reasoning
that the trajectory must come arbitrarily close to the saddle-point manifolds when
t → ∞ is based on a theoretical analysis of the Lorenz system [Afraimovich et al.,
1983], whereas numerical studies show that this probability is effectively zero for
sufficiently long but finite computation times. This implies that the relaxation time
to an equilibrium distribution on a quasi-hyperbolic CA is much longer than any
realistically feasible observation time. Consequently, for the Lorenz system, we have
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to investigate the dynamics of fluctuational escape within a finite time interval: the
question of how the solution obtained depends on the initial conditions on the at-
tractor, and on the noise intensity, still remains an open question (cf. the studies of
nonequilibrium trajectories [Soskin, 1999]). However, the experimentally found es-
cape scenario (see below) suggests that a decrease in noise intensity cannot result in
qualitative changes of the escape trajectory. Thus, by using the prehistory approach
for the quasi-hyperbolic attractor we effectively reformulate the boundary task with
infinite time to the corresponding task with finite time. This reformulation results
from the structure of the quasi-hyperbolic attractor and, on the basis of the results
obtained we conclude that, for multi-stability in the Lorenz system, the boundary
of the CA and those of the stable cycles coincide, i.e. the stable manifolds of the
boundary cycles L1 and L2 are formed by manifolds of the saddle point O. The-
oretically, therefore, zero action is required to bring the system into the boundary
set whereas, in practice, we need additional non-zero action to keep and move the
system along the manifolds in the non-hyperbolic region of the CA. This latter fea-
ture means that noise significantly changes the tails of a quasi-hyperbolic attractor
in the vicinity of a non-hyperbolic region.

(ii) In the case of a non-hyperbolic attractor, its non-hyperbolicity plays an essential
role in the escape process. For a non-hyperbolic attractor, saddle cycles embedded
in the attractor and basin of attraction are important. We found that the cycles
involved in the escape have low period numbers and that the cycle corresponding to
the boundary condition on the attractor has a low residence probability in the ab-
sence of noise. These observations allow us to claim that these cycles are connected
with the non-hyperbolic structure of the CA or with homoclinic tangencies (bifur-
cations). The last conclusion is supported by observations first, that noise-induced
deformation occurs in the vicinity of homoclinic tangencies [Jaeger & Kantz, 1997]
and, secondly, that the escape path from the non-hyperbolic attractor in the Henon
map lies in a small vicinity of the primary homoclinic tangency closest to the basin
boundary [Kraut & Grebogi, 2004]; note, however, that the latter authors go be-
yond the rigorous Hamiltonian theory by ignoring the questions about boundary
conditions on the CA. Thus, for both quasi-hyperbolic and non-hyperbolic attrac-
tors, escape trajectories are intimately connected with the non-hyperbolic structure
of the attractors.

3 Chaotic escape over a fractal basin boundary

The above results demonstrate that, in the case of a smooth basin boundary, a strong
relationship exists between the structure of a chaotic attractor and the structure of the
optimal escape path. The problem of finding the boundary conditions would appear to
become far more difficult where two co-existing CAs are separated by a fractal basin
boundary (FBB). In this case, the complex fractal structure of the basin boundary is
determined by a chaotic saddle: it results from homoclinic intersections of the stable
and unstable manifolds of the regular saddle point, originally forming a smooth basin
boundary.

We now consider the mechanism of fluctuational escape across an FBB. To model
the process, we examine the two-dimensional Holmes map driven by the zero-mean white
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Figure 3: (a) The structure of phase space of (11) in Poincaré section. One of the two co-existing CAs
is indicated by the centrally-placed filled curve. Its basin of attraction is shown in white, whereas points
belonging to the other basin are shaded in blue. The most probable escape path connecting the CA with
the period-3 saddle cycle S3 lying on the fractal boundary is shown by the sequentially numbered small
green circles (from solution of the boundary value problem) and stars (from Monte-Carlo simulations)
connected by the red dashed line. (b) The x-coordinates of the optimal escape paths shown in (a)
which were obtained both from the Monte-Carlo simulations with D = 10−5 (dashed line) and from the
solution of the boundary value problem (solid line). The abscissa of the saddle point S1 is shown by the
thin-dashed line. The inset shows the optimal fluctuational force moving the system (11) to the FBB.

Gaussian noise ξn of variance D:

xn+1 = yn (11)

yn+1 = −b xn + d yn − y3

n + ξn.

When noise-free, the system (11) has pairs of co-existing attractors the basins of which
are separated by a boundary that may be either smooth or fractal, depending on the
chosen values of parameters. The properties of (11), including the structures both of its
CA and of its locally disconnected FBB, are generic for a wide class of maps and flow
systems [McDonald et al., 1985]. We chose for our studies b = 0.2 and d = 2.7, which
corresponds to there being two co-existing CAs with basins separated by an FBB. Each
CA consists of two disconnected parts and appears as the result of a period-doubling
cascade. One of them is shown in Fig. 3(a).

To find the optimal escape path, we follow the above approach, exciting a numerical
model of the system (11) with weak noise and collecting both the escape trajectories
between the CAs and the corresponding realizations of noise that induced them. By
averaging a few hundred such trajectories and noise realizations, we were able to determine
both the optimal escape path and the corresponding optimal force, which are presented
in Fig. 3(b). It can be seen that the system (11) leaves the CA, falling into a small
neighborhood of the saddle point of period 1 (S1) located between its two disconnected
parts. Its stable manifolds separate the parts of the CA, while the unstable ones approach
the CA. The system then makes a few iterations in some small neighborhood of S1 (the
small plateau in Fig. 3(b)) and then moves in three steps to the FBB, crossing it at the
saddle point of period 3 (S3). Calculations have shown that, for the chosen parameter
values, S3 lies on the FBB. Moreover, its stable manifold (solid black line in Fig. 3) is
dense in the FBB and detaches the open neighborhood including an attractor from the
FBB itself, thus allowing us to classify it as an accessible boundary point [Grebogi et al.,
1987; Silchenko et al., 2003b,a]. It should be noted that the boundary point S3 is the only
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saddle point belonging to the homoclinic structure whose stable and unstable manifolds
are not tangent to each other. All other homoclinic points are buried in the FBB and
inaccessible from the open neighborhood including the CA, because of such tangencies.
Moreover, in the absence of noise, S3 is the only saddle point on the FBB from which
the noise-free system (11) can relax to an attractor in a finite number of iterations. For
all other initial conditions, taken at inaccessible saddle points, the noise-free system (11)
must stay inside the FBB for an infinitely long interval [Grebogi et al., 1987]. In other
words, the saddle point S3 is closest to the CA’s homoclinic point whose stable manifold
separates the interior (including the CA) from the FBB. Thus, the results of this statistical
analysis allow us to determine both the boundary conditions near the CA and the FBB,
and to demonstrate the uniqueness of the optimal escape path [Silchenko et al., 2003a,
2005].

Furthermore, an analysis of the structure of escape trajectories inside the FBB allows
us to clarify the role of the homoclinic saddle points resulted from an infinite sequence of
saddle-node bifurcations of period 3, 4, 5, 6, 7..., at parameter values d3 < d4 < d5 < d6 <
d7... [Grebogi et al., 1987]. These homoclinic orbits were classified as so-called original
saddles, and it was shown that their stable and unstable manifolds cross each other in a
hierarchical sequence [Grebogi et al., 1987]. This deterministic structure of the manifolds
of the original saddles is robust to noise and determines the escape paths inside the FBB.
Indeed, to escape from a CA, the system must first cross the stable manifold of the acces-
sible orbit, and then the stable manifolds of the other original saddles, in a predetermined
hierarchical sequence. Once the system crosses the stable manifold of a saddle orbit it
relaxes noise-free to the corresponding orbit, which it then leaves along its unstable man-
ifold. We have shown that the hierarchical interrelation between original saddles involved
in the escape is closely linked to the eigenvalues of the Jacobian at these saddles, char-
acterizing their local stability with respect to motion on the manifolds [Silchenko et al.,
2003a, 2005].

To find the MPEP connecting two co-existing CAs, we used the Hamiltonian formalism
described in Sec. 1. Minimization is performed over all the possible realizations of noise
{ξn} that induce a transition of the system (11) from the CA (with the initial condition
on S1) to the FBB (with the final condition on the accessible orbit S3). It is equivalent
to minimization of the auxiliary cost function (3) which results in the following area-
preserving map:

xn+1 = yn

yn+1 = −b xn + d yn − y3

n + λy
n (12)

λx
n+1 = (d − 3x2

n+1) λx
n/b − λy

n/b

λy
n+1 = λx

n

The numerical results obtained for the system (12) are presented in Fig. 3(b). It can
be seen that the MPEP calculated via minimization of the energy functional practically
coincides with the optimal escape path obtained from Monte-Carlo simulations.

That the above results are generic has been confirmed by numerous studies of fluctua-
tional transitions across FBBs in different dynamical systems. In particular, the described
scenario of fluctuational escape was observed in all multistable systems whose basins of
attraction in phase space are separated by locally-disconnected FBBs, which is the most
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frequently observed type of FBB [Silchenko et al., 2003a, 2005; Khovanov et al., 2006].
Moreover, studies of fluctuational transitions in a dynamical system exhibiting a “fractal-
fractal” boundary crisis showed that the accessible boundary point can effectively be
moved inside the domain of attraction [Silchenko et al., 2005]. It has therefore become
possible to predict a scenario of escape through a fractal boundary using a determinis-
tic analysis of the FBB structure. Furthermore, recent results [Kraut & Grebogi, 2004]
have shown that the boundary conditions at CAs can also be related to the homoclinic
structure, and thus found deterministically.

4 Conclusion

We have described results which allow us to conclude that, for a large class of chaotic
flows and maps, there exists a unique most probable path along which the system escapes
from the basin of attraction of a chaotic attractor. This remains true for escape over
both regular and fractal basin boundaries. It is therefore possible to analyze the stability
and control of chaotic systems in much the same way as in the case of escape from a
regular attractor. A key problem in all such analyses is determination of the boundary
conditions. In many situations they can be found directly through analysis of the geo-
metrical structure of the attractor and/or of the boundary of its basin of attraction, thus
avoiding extensive numerical simulation. This applies, in particular, to escape via the
primary homoclinic tangenicies closest to the basin boundary, or via homoclinic structure
in a fractal boundary.

In the more general case, however, we have to analyze real escape trajectories in
order to specify boundary conditions. The prehistory approach is then very powerful.
Such analyses demonstrate that, in many cases, escape proceeds via a sequence of jumps
between saddle cycles embedded in the chaotic attractor, in the basins of attraction, or in
the attractor boundaries. In turn the saddle cycles are closely connected with homoclinic
structures (bifurcations). We have found that the escape process depends significantly
on the type of chaotic attractor under consideration. Reaching a detailed understanding
of the differences in escape from hyperbolic, quasi-hyperbolic, and different kinds of non-
hyperbolic chaotic attractors remains a challenge and a direction of future investigation.
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