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Abstract 

Previous research has shown that word-finding difficulties in older age are associated with 

functional and structural brain changes. Functional brain networks, measured through 

electroencephalography, reflect the brain’s neurophysiological organisation. However, the 

utility of functional brain networks, to predict word-finding in older and younger adults has 

not yet been investigated. This study utilised eyes-closed resting-state 

electroencephalography data (61 channels) from the Leipzig Study for Mind-Body-Emotion 

Interactions dataset (Babayan et al., 2019) to investigate the relationship between functional 

brain networks and word-finding ability in 53 healthy right-handed younger (aged 20-35) and 

53 older adults (aged 59-77). Brain segregation reflects the efficiency of localised brain 

regions to process information, while brain integration reflects the efficiency of global 

information processing between distant brain regions. Word-finding ability was quantified as 

the number of orally produced words during a semantic and letter fluency task. Multiple 

linear regression revealed that, in older adults, greater synchronised brain activity was 

associated with lower semantic fluency. Irrespective of age, greater brain segregation was 

related to lower semantic fluency. Increased brain integration corresponded to greater 

semantic fluency in older adults. Both older and younger participants with a more optimised 

balance between brain segregation and integration performed better on semantic fluency. 

These findings suggest that word-finding ability seems to be related to brain segregation and 

integration, possibly indicating alterations in cognitive control or compensatory changes in 

brain activity. The article further provides a discussion on neural dedifferentiation, hyper-

synchronisation, study limitations, and directions for future research. 

Keywords: functional brain networks; graph theory; word-finding ability; healthy 

cognitive ageing; brain segregation; brain integration.
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Introduction 

Age-related changes in functional brain networks may be specific to electroencephalography 

(EEG) frequency bands (Gaál et al., 2010; Vecchio et al., 2014) and different cognitive 

functions have also been linked to certain EEG frequency bands (for an overview, see Başar 

et al., 2001). EEG measures neural activity directly providing millisecond-level temporal 

resolution that captures real-time oscillatory activity underlying cognitive functions (Başar et 

al., 1999). EEG is traditionally grouped into different frequency bands, namely: delta (0.1 – 4 

Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), beta (14 – 30 Hz), and gamma (30 - 80 Hz; (Babiloni 

et al., 2020). Delta activity comprises the slowest EEG brain waves and initiates from the 

frontal cortex. It is involved in inhibiting irrelevant responses and is important for internal 

concentration (Harmony, 2013; Mousavi et al., 2020). Since word finding in verbal fluency 

tasks involves internal concentration or attention, delta might modulate long-ranged 

functional connectivity or brain integration (Harmony, 2013). Greater delta functional 

connectivity might be crucial in maintaining cognition, including semantic fluency 

performance, in older adults (Fleck et al., 2016). Hence, resting-state functional brain 

networks in the delta band might be important in supporting verbal fluency performance in 

older adults. Moreover, theta oscillations occur at a slightly higher frequency than delta 

waves (i.e., theta oscillations are slightly faster) and may play an important role in cognitive 

control, semantic-related processing, working memory, behavioural monitoring, and letter 

fluency (Cavanagh & Frank, 2014; Mousavi et al., 2020). Alpha band oscillations are most 

prominent when a person is at rest and reflect attention, working memory, and inhibition 

(Başar et al., 1999; Jensen & Mazaheri, 2010; Klimesch et al., 2007). Lastly, beta band 

oscillations are slightly faster than alpha oscillations and beta activity may play a role in 

working memory, decision-making, and lexical-semantic retrieval processes (Gola et al., 

2013; Siegel et al., 2009). 
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Changes in oscillatory activity, or brainwaves, may indicate cognitive decline and 

decline due to ageing or neurodegenerative diseases, potentially signalling compensatory or 

maladaptive neuroplasticity (Courtney & Hinault, 2021). Graph theory models 

communication between brain regions through oscillatory activity, resulting in functional 

brain networks that reflect the brain’s neurophysiological organisation (Bullmore & Sporns, 

2009). In these networks, nodes represent the brain regions or the electrode positions in EEG. 

The graph’s edges reflect the synchronised oscillatory activity between nodes, known as 

functional connectivity. EEG captures the strength of synchronisation between two 

electrodes, and this can be captured within distinct frequency bands. In this study, the 

strength of oscillatory synchronisation is captured through phase coherence. That is, EEG 

measured the consistency of oscillatory phases between two brain signals over time within 

specific frequency bands where high coherence reflects high consistency over time. Graph 

theory allows us to derive functional connectivity measures, such as the strength of 

synchronisation or oscillatory communication between neuronal populations (for 

methodology, see Bullmore & Sporns, 2009). Such measures indicate the brain's efficiency or 

strength of information transfer between different brain regions (Bullmore & Sporns, 2009; 

Fries, 2005). Table 1 provides a list of the functional connectivity measures used in this study 

and how these measures are derived from EEG data. 
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Table 1. 

Functional Connectivity Measures and Terms Used in this Study 

Connectivity Measure Description 

Weighted Phase Lag 

Index 

Strength of oscillatory synchronisation between nodes of the 

functional brain network, measured within distinct frequency 

bands. 

Clustering Coefficient Measure of how interconnected a node is with neighbouring 

nodes within distinct frequency bands. Neighbouring nodes are 

nodes that show coherence with each other. A high Clustering 

Coefficient reflects local efficiency (i.e. localised neuronal 

processing within a brain region), supporting segregation. 

Higher values reflect more strongly interconnected nodes. A 

low Clustering Coefficient may facilitate brain integration by 

promoting more global connections between nodes through 

lower local interconnectivity. 

Path Length The shortest path length (i.e., number of edges) between two 

nodes within distinct frequency bands. Path Length reflects 

global efficiency (i.e. globalised neuronal processing across 

brain regions), supporting brain integration. Stronger phase 

coherence can lead to lower path length values, which reflect 

faster information transfer between nodes. 

Modularity The degree of which a network is organised into modules or 

communities (i.e., sub-networks) within distinct frequency 
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Previous functional Magnetic Resonance Imaging (fMRI) studies have linked word-

finding difficulties to both functional and structural brain changes in older adults, including 

age-related increases in brain activity and age-related decreases in the brain’s white matter 

structure related to word-finding ability (Meinzer et al., 2009; Stamatakis et al., 2011). 

bands. Higher values indicate that the brain network for that 

specific frequency band is more strongly divided into 

communities. High phase coherence within modules tends to 

increase modularity, supporting brain segregation. Low 

modularity suggests a more integrated brain network, with 

fewer distinct modules. 

Brain segregation Neuronal communication between neighbouring brain regions. 

It reflects the specialisation of different modules in performing 

different functions. 

Brain integration Neuronal communication between different distant brain 

regions. It reflects the networks’ ability to integrate information 

across modules. 

Small-world index Efficiency of information processing between nodes in the 

entire brain network within specific frequency bands. The 

efficiency is captured through strong phase coherence between 

both neighbouring and distant nodes. Values around 1 indicate 

the highest efficiency in the network. That is, values of 1 reflect 

the optimal balance between brain integration and segregation 

to allow for the most efficient communication in the brain 

network. 
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Functional brain networks, both task-related and at rest, reflect the neurophysiological 

organisation of the brain (Bullmore & Sporns, 2009) and change with age due to deterioration 

of brain structure. Such changes could explain age-related decreases in cognitive 

performance, such as deterioration of memory (Bullmore & Sporns, 2009; Gaál et al., 2010). 

Although fMRI provides useful insights into the spatial information of functional networks, it 

measures the hemodynamic responses in the brain, which is only an indirect reflection of 

neural activity. Since lexical retrieval (i.e., word-finding ability) involves a sequence of fast 

temporal processes (Indefrey, 2011), it is important to investigate how intrinsic (i.e., 

spontaneous, ongoing neural activity at rest) functional networks in different frequency bands 

support lexical retrieval. The identification of functional brain networks derived from EEG 

offers a promising tool for investigating the effects of physiological ageing and identifying 

biomarkers for age-related pathology, including dementia (Valizadeh et al., 2019). 

Specifically, measuring EEG at rest can capture the intrinsic functional organisation of the 

brain through oscillatory activity and functional connectivity patterns that may correlate with 

cognitive performance. This activity offers insights into the temporal dynamics of neural 

communication and may contribute to the identification of neural markers relevant to the 

diagnosis and treatment of neurodegenerative diseases (Getzmann et al., 2024; O’Neill et al., 

2018). However, unlike fMRI, EEG does not directly map the spatial organisation of resting-

state functional networks. However, the link between age-related changes in functional brain 

networks based on resting-state EEG specifically and the association with word-finding 

difficulties has not yet been investigated. The current study aimed to establish whether such a 

link exists in healthy older adults. We expect that such an investigation may inform future 

development of neurocognitive biomarkers associated with communicative ability. 

Functional brain networks can be characterised in terms of segregation and 

integration, which underlie cognition (Sporns, 2013). Functional segregation reflects neuronal 
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communication between neighbouring brain regions, with more segregation reflecting a 

pattern where brain regions are more strongly connected with neighbouring nodes than more 

distant nodes, and less segregation reflecting the opposite pattern. Functional integration 

refers to the connections between modules, enabling the network to integrate information that 

is distributed over multiple brain regions (Sporns, 2013). A balance between segregation and 

integration leads to a small-world network, allowing for global efficacy of information 

transfer between brain regions (Achard & Bullmore, 2007; Bullmore & Sporns, 2009; Watts 

& Strogatz, 1998). Resting-state fMRI demonstrated that brain maturation from childhood 

into adulthood involved increased integration and segregation of functional brain networks 

into small-world networks, indicating efficient functional brain networks from a young age 

(Fair et al., 2009). Studies using resting-state EEG show that the brain network exhibits less 

small-world properties  with older age (Gaál et al., 2010; Vecchio et al., 2014), due to 

decreased functional segregation and increased functional integration with age (Damoiseaux, 

2017). 

Age-related changes in functional brain networks have also been linked to decreases 

in cognitive performance, for example, in executive functioning and memory, more 

specifically, declarative, long-term, and working memory (Andrews-Hanna et al., 2007; Fleck 

et al., 2016). Moreover, higher segregation in older adults might relate to better memory 

ability (Chan et al., 2014). Andrews-Hanna et al. (2007) argued that ageing is accompanied 

by the disruption of functional networks underlying higher-order cognitive functions. 

Changes in functional brain networks can signal neurodegenerative diseases, including loss of 

small-world network characteristics (Stam et al., 2023). Since age-related declines in word-

finding abilities have been previously linked to changes in brain structure and function 

(Meinzer et al., 2009; Stamatakis et al., 2011), it is possible that changes in functional brain 

networks also relate to word-finding difficulties in older age. 
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Several theories were proposed to explain the underlying cognitive processes, which 

can be linked to neurobiological changes, involved in age-related word-finding difficulties. 

The Transmission Deficit Hypothesis states that a weakened connection between a word’s 

semantic (i.e., meaning) and phonological (i.e., sound) representations underlie age-related 

word-finding difficulties (Burke & Shafto, 2004). The Inhibition Deficit Hypothesis states 

that, with age, adults experience difficulties with inhibiting irrelevant information or 

inhibitory control, such as lexical competition during word retrieval processes (Hasher & 

Zacks, 1988). Age-related decrease in white matter integrity with age could explain the 

neurobiological basis of both the Transmission Deficit Hypothesis and Inhibition Deficit 

Hypothesis (Li et al., 2018; Troutman & Diaz, 2020). Since white matter brain structure 

underlies resting-state functional brain networks (van den Heuvel et al., 2009), age-related 

changes in functional brain networks might provide a neural basis for the Transmission 

Deficit Hypothesis and the Inhibition Deficit Hypothesis.  

Furthermore, the relationship between age-related changes in functional brain 

networks and word-finding difficulties could be explained by the neural dedifferentiation 

hypothesis, which posits that brain regions and networks become less functionally specific to 

cognitive processes with age (Li et al., 2001). Moreover, age-related decreases in 

neurotransmitters, such as dopamine, reduce the efficiency of information transfer between 

brain regions (Koen & Rugg, 2019; Li & Lindenberger, 1999). This then causes neural 

dedifferentiation and consequently increases interindividual differences in cognitive 

performance (Hultsch et al., 2002; Koen & Rugg, 2019). It is therefore proposed that neural 

efficiency and, hence, cognitive processes are optimal in younger adults (McIntosh et al., 

2014). Goh (2011) hypothesised that both the differences in behaviour between younger and 

older adults and the age-related neural dedifferentiation are directly related to age-related 



9  

changes in functional connectivity. Hence, age-related changes in functional brain networks 

seem to be associated with changes in cognitive performance. 

In older age, people experience problems with lexical access, typically commencing 

around the age of 40 or 50 years (Kavé & Knafo-Noam, 2015). These problems manifest as 

word-finding difficulties (Kavé & Knafo-Noam, 2015; Mortensen et al., 2006), due to 

cognitive challenges retrieving words efficiently during communication (Wei et al., 2024). 

Word-finding difficulties are one of the most prominent problems associated with cognitive 

ageing (Burke & Shafto, 2004). Word-finding ability can be assessed through verbal fluency 

tasks (Whiteside et al., 2016), as these tasks draw upon the overall efficiency of lexical access 

and word-retrieval processes (Shao et al., 2014). In verbal fluency tasks, participants have a 

set time (typically one or two minutes) to generate as many words as possible within a 

semantic category (e.g., “animals”) or starting with a specific letter (e.g., /s/). Studies show 

that verbal fluency performance declines with age, with semantic fluency declining earlier 

and more rapidly than letter fluency (Gonzalez-Burgos et al., 2019). It is important to note 

that while verbal fluency tasks heavily depend on language, they also rely on executive 

functions, such as cognitive flexibility and inhibitory control (Whiteside et al., 2016). Age-

related declines in some cognitive functions, such as processing speed, result in decreased 

verbal fluency performance, whilst executive functions are recruited as a compensatory 

mechanism to maintain performance (Gonzalez-Burgos et al., 2019). Moreover, Gonzalez-

Burgos et al. (2019) argued that age-related reorganisation in neuronal networks underlies the 

shift in cognitive functions contributing to verbal fluency. 

To our knowledge, this is the first study investigating the relationship between 

functional brain networks and age-related changes in word-finding ability using EEG. We 

used data from the Leipzig Study for Mind-Body-Emotion Interactions (LEMON; Babayan et 

al., 2019) to investigate this relationship. First, we hypothesised that the decline in word-
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finding ability with age is linked to a decrease in the connectedness of functional brain 

networks. That is, we investigated the relationship between word-finding ability and overall 

functional connectivity, brain segregation, and brain integration measures in older and 

younger adults. Because Fleck and colleagues (2016) found that greater delta band 

connectivity, localised in frontal brain areas, was related to better semantic fluency 

performance in older adults, we predicted a positive relationship between delta-band brain 

segregation and semantic fluency in older adults. Second, age-related neural dedifferentiation 

may be reflected in decreased brain segregation in older adults due to brain regions and 

networks becoming less functionally specific to cognitive processes (Li et al., 2001). 

Therefore, we hypothesised that the age-related decreases in brain segregation (i.e., neural 

dedifferentiation) are related to word-finding ability. That is, we predicted a positive main 

effect of segregation and small-world network properties on verbal fluency. Lastly, because 

individual variability in cognitive performance increases with age, with minimal variation 

between younger adults, and because of optimal neural efficiency in younger adults, we 

hypothesised that the relationship between word-finding ability and the connectedness of 

functional brain networks is absent in younger adults. Thus, we predicted that brain 

segregation does not predict verbal fluency in younger adults. 

 

Methods 

Participants 

Data were obtained from the LEMON dataset (Babayan et al., 2019), which contains resting-

state EEG recordings and psychological assessments of 153 healthy younger adults, aged 20-

35 years, and 74 healthy older adults, aged 59-77 years (mean age and SDs are unavailable in 

the LEMON database to protect participants' anonymity). All participants in the dataset were 
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German speakers. The exclusion criteria for the LEMON database included the following: 

cardiovascular disease (heart attack or congenital heart defect), history of neurological 

disorders (such as stroke and epilepsy), history of malignant diseases (e.g., cancer), and 

history of psychiatric diseases requiring inpatient treatment for longer than two weeks in the 

last 10 years. No data on the participants’ bilingual status, nor data on dementia testing or 

screening for language and speech disorders, such as dyslexia and stuttering, was reported. 

We selected data for the older adult group based on the following criteria: the availability of 

EEG resting state and verbal fluency data; the participants being right-handed, not suffering 

from depression (i.e., Hamilton Depression Rating Scale score lower than 14), not having an 

alcohol or substance use disorder (i.e., Alcohol Use Disorder Identification Test, AUDIT, 

score < 8 and a negative result on the drug screening test). Based on these criteria, we 

included the data of 53 right-handed older adults (25 females) in the current study. Data from 

the younger adults were filtered based on the same criteria and, subsequently, a subset of 

right-handed 53 younger adults (21 females) were randomly selected to match the sample 

size of the older adult group (see Table 2). All participants completed secondary school. No 

information about higher educational status was available. The sample size was based on an a 

priori power analysis using data simulation (Brysbaert & Stevens, 2018; DeBruine & Barr, 

2021). More detailed information on the a priori power analysis can be found in the 

Supplementary Materials. Further information on the LEMON dataset can be found in 

Babayan et al. (2019). 

 

Table 2. Sample Characteristics and Comparisons between Age Groups 

 Younger adults  

(N =53) 

Older adults  

(N = 53) 

t-test 
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Sex 21 females; 32 

males 

25 females; 28 males X2(1) = 0.804,  

p = .370 

Hamilton Depression 

Rating Scale 

M = 2.70 (SD = 

2.44) 

M = 2.28 (SD = 

2.67) 

t(104) = -0.80,  

p = .427 

AUDIT M = 3.30 (SD = 

1.73) 

M = 2.75 (SD = 

1.79) 

t(104) = -1.60,  

p = .112 

 

Materials 

To quantify word-finding ability, we used the scores of the verbal fluency tasks (i.e., the 

Regensburger Wortflüssigkeitstest; Aschenbrenner et al., 2000), which were available in the 

dataset. Within two minutes, participants had to generate as many German words as possible 

starting with the letter "s" (i.e. letter fluency) or words belonging to the category "animals" 

(i.e., semantic fluency). For the current study, we used the number of correctly produced 

words of both tasks that were generated within the first minute, which is the time limit 

commonly used in standard versions of the task (Shao et al., 2014). The total number of 

correctly produced words excluded exact repetitions, perseverations, such as plurals, 

compounds, derivations, and conjugations, as well as superordinates (Aschenbrenner et al., 

2000). 

 

EEG Recordings and Pre-processing 

Resting-state EEG was recorded for 16 minutes, with alternating 60-second blocks of eyes-

closed and eyes-open conditions. Only the eyes-closed condition was analysed in the current 

study. The set-up consisted of 61 channels arranged according to the 10-10 international 

system, with one additional electrode recording the vertical electrooculogram to monitor eye 
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movements (see Babayan et al., 2019, for more information on the EEG recording setup). 

Data were pre-processed using MATLAB R2018a (MathWorks) and Fieldtrip (Oostenveld et 

al., 2010). The pre-processing pipeline “Reduction of Electroencephalographic Artifacts” 

(RELAX), which makes use of both Fieldtrip and EEGLAB, a MATLAB toolbox (Delorme 

& Makeig, 2004), was used to clean the continuous EEG data with the 

RELAX_wICA_ICLabel setting since the effect of the default multi-channel Wiener Filter 

cleaning approach has not been tested for use prior to analysis of EEG connectivity (Bailey, 

Biabani, et al., 2023; Bailey, Hill, et al., 2023). 

Before cleaning the data with RELAX, the raw EEG data were downsampled from 

2500 Hz to 1000 Hz. A 1-45 Hz Butterworth bandpass filter was applied. The RELAX 

pipeline identifies noisy channels via the PREP pipeline algorithm (Bigdely-Shamlo et al., 

2015). Data from these channels were subsequently removed. Data from the remaining noisy 

channels were further removed using the default settings from RELAX. The mean proportion 

of the EEG data removed due to noisy channels was 0.047 and data from 59 channels (SD = 

3), on average, were left after this removal. The cleaned data were re-referenced to the robust 

average reference before running the Independent Component Analysis (ICA) with the 

FastICA algorithm (Hyvarinen, 1999) and reducing artifacts identified by ICLabel (Pion-

Tonachini et al., 2019) using Wavelet Enhanced ICA (Castellanos & Makarov, 2006). After 

data cleaning, excluded channels were interpolated using spherical spline (Delorme & 

Makeig, 2004). 

 

Functional Brain Networks 

After cleaning the data, we applied a lowpass filter of 30 Hz and segmented the continuous 

data into 12-second epochs with 50% overlap (for more information on optimal epoch length 
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for the debiased weighted Phase Lag Index (dwPLI), see Fraschini et al., 2016; Miljevic et 

al., 2022). Segments of the data were visually inspected to check data quality. The average 

proportion of data removed due to bad epochs was 0.205 (SD = 0.193). The average number 

of remaining epochs was 98. Next, we obtained the cross-spectral densities of the alpha, beta, 

theta, and delta bands using a Fourier transformation using the multitaper method based on 

Hanning tapers (see Figure 1A). 

 

 

Figure 1. Processing Pipeline of the Resting-State Eyes-Closed EEG Data. 

 

Studies have consistently shown that neurophysiological rhythms slow with ageing 

and that including conventional frequency bands can introduce a bias against older adults, 
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also when conducting connectivity analyses (Chiang et al., 2011; Scally et al., 2018). 

Therefore, the alpha, beta, theta, and delta spectral boundaries were determined using the 

individual alpha peak frequency (IAPF). IAPF was calculated with eyes-closed resting-state 

EEG data using the restingIAF toolbox in Matlab (see Corcoran et al., 2018, for more 

information on how the IAPF was computed). The mean IAPF of older adults was 9.4 Hz (SD 

= 0.9 Hz) and 10.1 Hz (SD = 0.9 Hz) for younger adults. The alpha band was determined as 

IAPF -4 Hz to IAPF +2 Hz, theta as IAPF -6 Hz to IAPF -4 Hz, and delta as IAPF -8 Hz to 

IAPF -6 Hz (Babiloni et al., 2020; Klimesch, 1999). The beta band was determined as IAPF 

+2 Hz up to and including 30 Hz (Babiloni et al., 2020; Henelius et al., 2011). 

To detect brain networks, the dwPLI was used to calculate the functional connectivity 

between all 61 channels, for each frequency per participant. Please, refer to the 

Supplementary Materials for the details on how dwPLI was computed. For the subsequent 

graph statistical processing steps and graph theoretical indices, we obtained the absolute 

values of the dwPLI to get an indication of the strength of connectivity between pairs of 

electrodes. The network construction resulted in a 61-by-61 weighted matrix for each 

frequency band and per participant (see Figure 1B). 

We applied a data-driven method, namely the Orthogonalized Minimum Spanning 

Tree (OMST) algorithm to threshold the connectivity matrices (Dimitriadis et al., 2017). A 

minimum spanning tree is a graph with a minimum number of total edges, without cycles 

(i.e., the graph does not contain any loops), and where all nodes are connected (see Figure 

5C). The OMST algorithm computes the minimum spanning tree (MST) over multiple 

iterations. These iterations are necessary as using a single MST might result in a graph that is 

too sparse for computing robust connectivity measures. For a more detailed explanation as to 

how the network graphs were thresholded using the OMST algorithm, please refer to the 

Supplementary Materials. 
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Graph Theoretical Network Analysis 

After thresholding, we applied graph theoretical analysis of the brain networks using Fieldtrip 

(Oostenveld et al., 2010) and the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) in 

MATLAB (see Figure 1D). In the current study, the EEG sensors represent the nodes and the 

dwPLI values represent the weighted edges of the graph. Because we used weighted matrices, 

graphs for each frequency band were first normalised before computing the measures of brain 

segregation and integration, resulting in normalised weighted measures. All thresholded 

graphs were normalised by rescaling all weight magnitudes ranging between 0 and 1 

(Bullmore & Sporns, 2009). 

To quantify brain segregation (i.e., the clustering of functional networks into separate 

communities/groups), we calculated the weighted variant of the clustering coefficient (Onnela 

et al., 2005; Rubinov & Sporns, 2010) as well as of modularity (Newman, 2006; Rubinov & 

Sporns, 2010). Please, refer to the Supplementary Materials for the mathematical equations 

and descriptions of all connectivity measures. The clustering coefficient and modularity offer 

alternative statistics of brain segregation. Higher values of either statistic reflect greater local 

efficiency of information transfer in the brain (Bullmore & Sporns, 2009). That is, brain 

regions or communities are more specialised and have stronger connections within 

themselves (i.e., intra-community connections), facilitating efficient communication within 

those localised communities. 

The degree of brain integration is quantified through the weighted version of the 

characteristic path length, which is the shortest path length between two nodes averaged 

across all node pairs (Rubinov & Sporns, 2010; Watts & Strogatz, 1998). Lower 

characteristic path length indicates greater global efficiency of information transfer in the 
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brain. The clustering coefficient and modularity (brain segregation) and characteristic path 

length (brain integration) values were calculated for each participant for each frequency band 

separately. To examine the balance between brain segregation and integration, we computed 

the small-world index of each graph (Humphries & Gurney, 2008). Small-world indices with 

values higher than 1 indicate that the network is a small world (see the Supplementary 

Materials). 

 

Statistical Analysis 

After obtaining the functional connectivity measures described above, the final data pre-

processing and analysis were conducted in R (R Core Team, 2020). Following the 

preregistration, verbal fluency scores +/- 3 SDs would be considered outliers, however, no 

outliers were detected in the verbal fluency data. Missing values for all connectivity measures 

for OMST-thresholded networks can be found in Table 3. No missing values were imputed. 

Full networks did not have any missing values. Even though the missing values in the OMST-

thresholded graphs reduced the number of data points, the data will still provide important 

insights into the relationship between word-finding ability and age-related changes in 

functional brain networks. After the initial model fit, leverage points were identified as 

2(number of predictors + 1)/number of observations, and subsequently removed to obtain the 

model's best-fit. 

 

Table 3. Missing Values (Percentage of Missing Values) for Each of the Connectivity 

Measures of the OMST-Thresholded Networks per Frequency Band. 
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Age 

Group 

Band dwPLI Modularity Clustering 

Coefficient 

Characteristic 

Path Length 

Small-

Worldness 

Younger Alpha 0 (0%) 0 (0%) 5 (4.7%) 0 (0%) 8 (7.5%) 

 
Beta 0 (0%) 0 (0%) 10 (9.4%) 0 (0%) 11 (10.4%) 

 
Delta 0 (0%) 0 (0%) 7 (6.6%) 0 (0%) 8 (7.5%) 

 
Theta 0 (0%) 0 (0%) 8 (7.5%) 0 (0%) 12 (11.3%) 

Older Alpha 0 (0%) 0 (0%) 8 (7.5%) 0 (0%) 11 (10.4%) 

 
Beta 0 (0%) 0 (0%) 14 (13.2%) 0 (0%) 15 (14.2%) 

 
Delta 0 (0%) 0 (0%) 7 (6.6%) 0 (0%) 10 (9.4%) 

 
Theta 0 (0%) 0 (0%) 19 (17.9%) 0 (0%) 22 (20.8%) 

Note. dwPLI = debiased weighted phase lag index. Each age group has a maximum sample 

size of N=53. 

 

To investigate whether age-related changes in brain segregation and integration are 

related to word-finding ability, we performed multiple linear regression analyses for each 

frequency band and each verbal fluency measure (i.e., letter and category fluency) separately. 

Because the networks were thresholded using a model-driven algorithm (i.e., OMST) and 

weighting was employed, we did not apply multiple corrections (which meets the criteria for 

optimal validity within a connectivity study, see the checklist by Miljevic et al., 2022). The 

outcome variables were the number of correctly produced words for the letter and category 

fluency tasks. To investigate the effect of age-related changes in brain segregation on verbal 

fluency, we included the interaction between clustering coefficient and age, and the 
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interaction between modularity and age group as predictors. To investigate the connectedness 

of the functional brain networks, we ran multiple linear regression analyses with the 

interaction between age group and the small-world index as predictors of verbal fluency 

performance. 

For brain integration, the predictor was the interaction between characteristic path 

length and age. All models included sex as a covariate because studies have shown that brain 

networks can differ between males and females (Foo et al., 2021). Both age group and sex 

were contrast coded using "treatment contrasts" whereby younger adults were set as the 

reference level for age group and female as the reference level for sex. All numerical 

predictors (i.e., the functional connectivity measures) were scaled for model interpretation. 

Assumptions of linearity, homoscedasticity, and normality of residuals were all met. Model 

diagnostics revealed the presence of leverage points for most models (i.e., values above 

2(number predictors+ 1) / number of observations), which were subsequently removed 

(Cook, 1977). Only the results after the removal of leverage points are reported in the results 

section. This study was preregistered on the Open Science Framework (https://osf.io/u6p42). 

The quality of the connectivity analysis was checked against the checklist by Miljevic and 

colleagues (2022) and obtained a score of 5.5, which reflects high study quality. 

 

Deviations from the Preregistration 

As preregistered, functional connectivity measures with values +/- 3 SDs from the mean were 

originally also considered as outliers. However, due to the sparsity of some functional brain 

networks, there were missing values in both age groups for the clustering coefficient and 

small-world index. To avoid reducing the dataset even further by removing outliers for the 

functional connectivity measures, we analysed the data with the detected outliers. Regarding 

https://osf.io/u6p42
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brain segregation measures, the preregistration only mentioned the clustering coefficient as a 

brain segregation measure for hypotheses 1 and 2. However, since brain segregation is 

reflected by both clustering coefficient and modularity (Rubinov & Sporns, 2010), we 

included both the interaction between clustering coefficient and age, as well as the interaction 

between age group and modularity in the statistical models. Such models would represent 

brain segregation better than solely including the clustering coefficient. 

 

 

Results 

Behavioural Data 

Before analysing the functional brain networks, a behavioural difference in verbal fluency 

performance between younger and older adults was confirmed. The semantic and letter 

fluency data was not normally distributed, and the non-parametric Wilcoxon rank sum test 

was conducted. For semantic fluency, older adults obtained a mean score of 22 correctly 

produced words (SD = 5.5; range = 12-37 words) and younger adults obtained a mean score 

of 25 correctly produced words (SD=5.1; range=15-39 words), and this difference between 

age groups was significant (W = 15840, p < .001), with a effect size of r = 0.26 (small effect). 

For letter fluency, older adults obtained a mean score of 13 correctly produced words 

(SD=3.1; range=5-19 words) and younger adults obtained a mean score of 15 correctly 

produced words (SD=3.5; range=7-23 words), and this difference between age groups was 

also significant (W = 14824, p < .001), with an effect size of r = 0.30 (small effect). 
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Graph Analysis 

To investigate the age-related changes in functional brain networks, the brain segregation and 

integration measures were computed for the alpha, beta, delta, and theta bands. Mean and 

standard deviations for the graph theoretical measures of the OMST-weighted graphs can be 

found in Table 3. 

 

 

Table 4.  

Mean and Standard Deviation for the OMST-Thresholded Graph Theoretical Indices per Age 

Group 

 Younger adults Older adults 

 Alpha Beta Delta Theta Alpha Beta Delta Theta 

dwPLI 0.53 

(0.12) 

0.42 

(0.14) 

0.53 

(0.08) 

0.50 

(0.8) 

0.55 

(0.11) 

0.43 

(0.15) 

0.52 

(0.07) 

0.44 

(0.11) 

Clustering 

coefficient 

0.10 

(0.05) 

0.08 

(0.04) 

0.08 

(0.03) 

0.06 

(0.03) 

0.09 

(0.04) 

0.09 

(0.04) 

0.06 

(0.03) 

0.06 

(0.03) 

Modularity 0.48 

(0.07) 

0.52 

(0.07) 

0.49 

(0.08) 

0.50 

(0.07) 

0.48 

(0.09) 

0.51 

(0.07) 

0.47 

(0.06) 

0.48 

(0.08) 

Characteristic 

path length 

6.33 

(2.09) 

9.51 

(5.48) 

6.18 

(1.60) 

6.96 

(2.10) 

6.13 

(1.78) 

9.45 

(4.99) 

6.28 

(1.35) 

8.30 

(2.95) 
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Small-

worldness 

1.11 

(0.67) 

1.23 

(0.71) 

0.97 

(0.56) 

0.81 

(0.51) 

0.83 

(0.58) 

1.39 

(0.79) 

0.93 

(0.49) 

0.92 

(0.55) 

 

Functional Connectivity Strength 

First, we hypothesised that age-related decreases in functional connectivity, as measured 

through dwPLI, would be positively related to age-related word-finding difficulties. Multiple 

linear regression analysis was used to investigate whether age group and dwPLI would 

predict letter and semantic fluency (see Table 4). The predictors were dwPLI, age, sex, and 

the interaction between dwPLI and age group. The predictors in the delta band explained 

9.7% of the variance in semantic fluency scores (adjusted R2 = .097, F(4,95) = 3.76, p = 

.008). Age group and the interaction between age group and dwPLI were significant 

predictors of semantic fluency scores (β = -2.45, p = .020 and β = -3.85, p = .004, 

respectively). That is, age-related increases in dwPLI were related to lower semantic fluency 

scores (see Figure 2). In older adults, higher dwPLI values were related to lower semantic 

fluency performance (r = -.33), whereas higher dwPLI values in younger adults were related 

to higher semantic fluency performance (r = .24). Semantic fluency was not related to an age-

related change in dwPLI in any of the other frequency bands, nor was letter fluency related to 

age-related changes in dwPLI in any of the four frequency bands. 

Table 5. 

Effects of Delta Band dwPLI, Age, and Sex on Semantic Fluency Performance  

Effect Estimate SE t-value p-value 

Intercept 24.524 0.976 25.123 < .001 

dwPLI 1.449 0.884 1.638 .105 

Age -2.455 1.037 -2.367 .020 
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Sex -0.058 1.042 -0.056 .955 

dwPLI * Age -3.851 1.318 -2.923 .004 

 

 

Figure 2. The interaction between age group and dwPLI as a significant predictor of semantic 

fluency in the delta band. The figure reflects raw data points. 

 

Brain Segregation 

Our second hypothesis was whether age-related decreases in brain segregation, reflecting 

neural dedifferentiation, are related to reduced word-finding ability. We predicted that age-

related changes in brain segregation, as measured through modularity, clustering coefficient, 

and small world index, would be related to verbal fluency performance. Multiple regression 

analysis was used to investigate the effect of modularity and clustering coefficient on 
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semantic and letter fluency separately (see Table 6). The predictors were modularity, age, 

cluster coefficient, the interaction between modularity and age, the interaction between 

cluster coefficient and age, and sex. The predictors in the alpha band explained 8.0% of the 

variance in semantic fluency scores (adjusted R2 = .08, F(6,80) = 2.25, p = .047). In the alpha 

band, both modularity and age group independently predicted semantic fluency (β = -2.23, p 

= .049 and β = -2.83, p = .022, respectively). That is, higher modularity scores predicted 

lower semantic fluency scores, independent of the age group (see Figure 3). None of the 

models for letter and semantic fluency indicated that age-related changes in clustering 

coefficient or modularity predicted letter and semantic fluency scores. 

 

Table 6. 

Effects of Alpha Band Cluster Coefficient, Modularity, Age Group, and Sex on Semantic 

Fluency Performance  

Effect Estimate SE t-value p-value 

Intercept 24.654 1.059 23.284 < .001 

Modularity -2.228 1.112 -2.004 .048 

Age Group -2.833 1.211 -2.339 .022 

Clustering Coefficient -0.084 0.930 -0.091 .928 

Sex 0.476 1.168 0.408 .684 

Modularity * Age 1.972 1.638 1.204 .232 

Clustering Coefficient * Age 0.975 1.453 0.671 .504 
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Figure 3. Modularity as a significant predictor, irrespective of age, of semantic fluency in the 

alpha band. The figure reflects raw data points. 

 

Because small-world network properties suggest a balance between brain integration 

and segregation, we also ran multiple linear regressions to investigate the effect of age- 

related changes in the small-world network properties on verbal fluency performance (see 

Table 7). The predictors were age group, small-world index, the interaction between age 

group and small-world index, and sex. In the delta band, the predictors explained 12.2% of 

the variance in semantic fluency scores (adjusted R2= .12, F(4,76) = 3.78, p = .007). Both age 

group and the small-world index significantly predicted semantic fluency scores (β = -4.08, p 

< .001, and β = 2.69, p = .041, respectively). That is, a greater small-world index predicted 

higher semantic fluency scores, irrespective of the age group (see Figure 4). None of the 
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models for letter and semantic fluency indicated that age-related changes in the small-world 

index predicted letter and semantic fluency scores. 

 

Table 7. 

Effects of Delta Band Small-World Index, Age Group, and Sex on Semantic Fluency 

Performance  

Effect Estimate SE t-value p-value 

Intercept 26.412 1.135 23.278 < .001 

Age Group -4.079 1.175 -3.473 .001 

Small-World Index 2.688 1.293 2.079 .041 

Sex -1.401 1.143 -1.226 .224 

Small-World Index * Age 

Group -1.780 1.600 -1.113 .269 
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Figure 4. The small-world index as a significant predictor, independently of age group, of 

semantic fluency in the delta band. The figure reflects raw data points. 

 

Exploratory Analysis of Brain Integration 

Although we did not have a-priori hypotheses about the relationship between age-related 

changes in brain integration and verbal fluency performance, previous studies linked age-

related changes in brain integration measures, such as path length, to changes in cognitive 

performance (e.g., Stanley et al., 2015). Therefore, we conducted an exploratory analysis 

(i.e., not preregistered with a-priori hypotheses) using multiple linear regression to investigate 

the effect of age-related changes in brain integration on verbal fluency performance (see 

Table 8). The predictors were age group, characteristic path length, the interaction between 

age group and characteristic path length, and sex. In the delta band, the predictors explained 
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9.5% of the variance in semantic fluency scores (adjusted R2 = .095, F(4,94) = 3.57, p = 

.009). Age group and the interaction between age group and characteristic path length 

predicted semantic fluency scores β = -2.47, p = .027 and β = 3.64, p = .028, respectively). 

That is, older adults with higher characteristic path length achieved higher semantic fluency 

scores (see Figure 5). In older adults, higher characteristic path length values were related to 

higher semantic fluency performance (r = .27), whereas higher characteristic path length 

values in younger adults were related to lower semantic fluency performance (r = -.17). 

Characteristic path length did not predict semantic fluency in the other frequency bands, nor 

did it predict letter fluency in any of the frequency bands. 

 

Table 8. 

Effects of Delta Band Characteristic Path Length, Age, and Sex on Semantic Fluency 

Performance  

Effect Estimate SE t-value p-value 

Intercept 24.740 1.015 24.382 < .001 

Characteristic Path Length -1.240 1.075 -1.153 .252 

Age -2.471 1.101 -2.244 .027 

Sex -0.074 1.060 -0.070 .945 

Characteristic Path Length * 

Age 3.631 1.634 2.229 .028 
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Figure 5. The interaction between age group and characteristic path length is a significant 

predictor of semantic fluency in the delta band. The figure reflects the raw data points. 

 

Discussion 

Using resting-state EEG data, the current study aimed to investigate the relationship between 

word-finding difficulties in older age and age-related changes in functional brain networks. 

We hypothesised that age-related decreases in word-finding ability are related to decreases in 

the connectedness of functional brain networks in older compared to younger adults. We 

found that, in older adults, greater functional connectedness in the delta band, as measured 

through dwPLI, was related to lower semantic fluency scores. Several other findings were not 

in line with our hypotheses. A greater small-world index in the delta band was related to 

higher semantic fluency performance in both younger and older adults. Greater modularity in 
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the alpha band was related to higher semantic fluency scores, but this was irrespective of age. 

In an exploratory analysis of brain integration, we found a positive relationship between 

characteristic path length and semantic fluency in the delta band, only in older adults. 

 

Age-Related Changes in Functional Connectedness and Word-Finding Ability 

Our finding that greater functional connectedness related to lower semantic fluency in older 

adults is in line with previous studies demonstrating age-related changes in the connectedness 

of functional brain networks (Gaál et al., 2010; Sala-Llonch et al., 2014), but not with their 

link with decreases in cognitive performance (Andrews-Hanna et al., 2007; Chow et al., 

2022; Fleck et al., 2016). That is, previous studies found that increased connectedness in 

older adults was related to better cognitive performance. Greater functional connectedness 

has been hypothesised to indicate greater efficacy of information transfer between different 

brain areas (Fries, 2005). In this case, increased dwPLI, reflecting overall brain 

connectedness, would lead to an increase in the brain's efficiency of information transfer 

between different brain areas, that is, reduce the slowing of information transfer. Because 

verbal fluency is a timed task, age-related slowing of information transfer between brain 

areas in older adults could mean that older adults need more time to access words from their 

memory. If higher dwPLI values (i.e., greater connectedness) reflect greater efficiency of 

information transfer between brain areas, one would expect that greater functional 

connectedness would be related to better word-finding ability. However, we found that 

greater connectedness in the current study was related to worse word-finding ability. 

One possible explanation is that increased dwPLI in older adults represents a pattern 

of hyper-synchronisation or overload, reflecting noisy communication between different 

brain regions, and subsequently leading to poorer cognitive performance (Jones et al., 2016). 
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The fMRI study by Jones et al. (2016) demonstrated that increased resting-state connectivity 

was related to worse performance in picture-naming and on the 13-item Alzheimer’s Disease 

Assessment Scale-cognitive subscale which includes a measure of spoken language 

performance and word-finding ability. Similarly, the current EEG study may indicate that 

increased dwPLI in older adults could reflect oscillatory hyper-synchronisation, potentially 

disrupting the neural timing processes essential for word-finding. A certain degree of hyper-

synchronisation, as measured through resting-state EEG, may lead to cognitive impairments 

observed in neurodegenerative disease. For example, one study in Parkinson's disease 

demonstrated that greater functional connectedness, as measured with (dw)PLI in the delta 

and theta frequency band predicted whether someone had Mild Cognitive Impairment (MCI) 

or not (Chaturvedi et al., 2019). Hence, increased delta dwPLI could be explored as a 

potential marker of pre-onset dementia. 

Research has also indicated that individuals with Huntington's disease exhibit greater 

delta-band connectivity, which could indicate either pathological or compensatory changes in 

brain function (Davis et al., 2022). That is, brain activity may be synchronising to a less 

functional frequency range (here, delta), perhaps as a pathology-related compensatory 

process, or perhaps reflecting the brain's inability to inhibit this (potentially less functional) 

rhythm. Increased delta connectivity may reflect entrainment to a basic resonance property of 

pyramidal neurons to sustain frequency preference, in contrast to more functional 

connectivity within task-related oscillatory frequencies (for a discussion on neuronal 

resonance, see Hutcheon & Yarom, 2000). Resonance plays a crucial role in enabling 

synchronized activity and oscillatory patterns, and a disruption in the temporal coordination 

of neuronal activity may lead to cognitive impairments (Uhlhaas & Singer, 2006). In 

conditions like Alzheimer's disease, even before disease onset, brain pathology may cause 

hyperactivity and/or inhibition of neurons, disrupting the neuronal excitation/inhibition (E/I) 
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balance and affecting whole-brain network configurations (Stam et al., 2023; van Nifterick et 

al., 2022). Our findings may suggest a similar disruption of the E/I balance in older adults 

experiencing word-finding difficulties. In this case, neurons exhibit resonance to lower 

frequencies, specifically the delta range, due to hyper-excitation and/or inhibition of more 

functional higher frequency ranges, such as beta frequencies. 

As an alternative explanation, lower-frequency oscillations, such as delta oscillations, 

might be the result of compensatory processes to maintain high cognitive performance. With 

regard to ageing, studies have shown that greater delta band power in younger adults 

(Mousavi et al., 2020) and greater delta band coherence (i.e., a measure of connectivity) in 

frontal brain areas in older adults (Fleck et al., 2016) was related to higher semantic fluency 

scores. In the current study, however, whilst greater delta band connectivity was related to 

higher semantic fluency scores in younger adults, this was not the case in older adults. In 

older adults, increased delta connectivity may reflect failed compensatory processes, in line 

with the idea that the brain is less able to inhibit this lower-frequency oscillatory rhythm. 

Since our study took a whole-brain approach, we could not determine whether these 

connectivity effects were region-specific, and other oscillatory patterns may be found when 

looking at, for example, delta connectivity in frontal brain areas. In younger adults, greater 

overall connectedness in the delta band might reflect an individual's ability to inhibit 

irrelevant responses and maintain internal concentration (Harmony, 2013; Mousavi et al., 

2020), which may reverse with age reflecting pathology-related compensatory processes. 

 

Brain Segregation and Word-Finding Ability Across the Lifespan 

Greater modularity in the alpha band predicted lower semantic fluency performance, 

irrespective of age. Greater brain modularity has been hypothesised to enable greater brain 
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plasticity, because it increases the brain's efficiency and flexibility to adapt to, for example, 

age-related anatomical brain changes (Gallen & D’Esposito, 2019). Hence, we would expect 

that greater modularity would improve word- finding abilities. However, greater modularity 

was related to lower semantic fluency scores in both younger and older adults, contradicting 

the suggestion that greater modularity reflects greater brain plasticity and better cognitive 

functioning. Another explanation is that, to perform verbal fluency tasks, brain integration 

might be more important than segregation and it is possible that greater brain segregation 

could be related to lower integration. It has been suggested that greater brain integration, as 

measured through fMRI, is necessary for higher-level cognitive functions, such as language 

(Bagarinao et al., 2019). However, this seems unlikely as there is a positive relationship 

between modularity (segregation) and characteristic path length (integration) in the alpha 

band (see the Supplementary Materials for the analysis). This discrepancy could be due to the 

differences between fMRI and EEG, where EEG is a direct measure of neural activity. 

Alternatively, resting-state modularity might perhaps positively relate to some cognitive 

functions, such as visuospatial working memory, but not others (e.g., numerical working 

memory; Alavash et al., 2015), or perhaps modularity needs to reach a certain threshold after 

which it becomes detrimental to cognitive functioning. 

Alternatively, one theory proposes that modular brain networks are necessary for 

quick and simple tasks, whilst complex tasks that require more time benefit more from a 

lower modular structure (Deem, 2013). For example, an fMRI study demonstrated that 

greater modularity was negatively related to performance on a complex task, which involved 

the ability to control attention, whilst modularity was positively related to performance on a 

simple task (i.e., not involving the control of attention; Yue et al., 2017). Verbal fluency tasks 

are considered complex tasks as it involves a multitude of cognitive functions to support 

lexical access (Shao et al., 2014). Hence, in line with the theory by Deem (2013), greater 
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modularity, captured with resting-state EEG, could negatively predict verbal fluency 

performance. Moreover, our study did not reveal a negative relationship between modularity 

and letter fluency. The cognitive functions and brain regions underlying letter and semantic 

fluency are slightly different (Shao et al., 2014; Vonk et al., 2019), which could explain the 

discrepancy between the two tasks in our study. 

 We also predicted that brain segregation, specifically in the delta band, would play an 

important role in predicting semantic fluency scores in older adults (Fleck et al., 2016; 

Mousavi et al., 2020). Fleck and colleagues (2016) argued that maintaining delta band brain 

segregation in older age is necessary to maintain cognitive performance and decreases will 

lead to cognitive decline. The current study demonstrated that alpha but not delta brain 

segregation, as measured through modularity, was related to cognitive performance, and this 

relationship was irrespective of age. Alpha band activity has been proposed to reflect 

attention, working memory, and switching abilities (Başar et al., 1999). It has been proposed 

that resting-state alpha band activity is an important indicator of an individual's readiness for 

subsequent task performance, potentially through the inhibition of irrelevant pre-task 

information (Jann et al., 2010; Klimesch et al., 2007). Lower alpha band modularity at rest 

could enable more efficient information transfer across the brain and result in higher 

cognitive performance on complex tasks (Feklicheva et al., 2021). Hence, the current study 

might indicate that semantic fluency benefits more from a non-modular structure in the alpha 

band at rest to allow for more efficient information transfer during complex tasks 

Alternatively, the finding in alpha but not delta frequency band modularity might reflect a 

compensatory mechanism whereby brain activity synchronises within a less functionally 

specific frequency band (Davis et al., 2022). 

 

 



35  

Neural dedifferentiation for word-finding abilities 

We hypothesised that brain segregation decreases with age, reflective of neural 

dedifferentiation. Age-related decreases in brain segregation have been proposed to reflect 

neural dedifferentiation in older adults (Goh, 2011; Zuo et al., 2017), which means that brain 

regions and networks become less functionally specific to cognitive processes (Li et al., 

2001). Previous fMRI studies have supported this idea and showed that greater brain 

segregation in older adults was related to better memory ability (Chan et al., 2014). The 

current study demonstrated an inverse relationship between modularity and word-finding 

ability, irrespective of age. This is interesting given the expectation that greater modularity 

would reflect more functional specificity to cognitive functions and, consequently, benefit 

cognitive functioning. It is possible that resting-state EEG modularity does not represent age-

related neural dedifferentiation for semantic fluency as opposed to the fMRI study by Chan 

and colleague (2014). Moreover, in the current study, modularity was computed using 

resting-state brain networks and not during the semantic fluency task. It is possible that 

resting-state modularity cannot capture neural dedifferentiation underlying age- related word-

finding difficulties. 

 

The Small-World Network Properties and Word-Finding Abilities 

The small-world index is a measure of the organisation of functional brain networks. The 

current study showed that a greater small-world index in the delta band was related to better 

semantic fluency performance, irrespective of age. Several studies have linked greater 

cognitive performance in middle-aged and older adults to a higher small-world index (Douw 

et al., 2011; Vecchio et al., 2016) and it has been hypothesised that a greater small-world 

index reflects a more efficient brain (Achard & Bullmore, 2007). A previous study in people 
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with chronic fatigue syndrome demonstrated that the delta band small-world index was 

negatively related to cognitive dysfunction, which included problems with attention, 

remembering, and word-finding (Zinn et al., 2017). Our findings add to the literature and 

indicate that brain networks with small-world topologies could underlie semantic fluency 

performance in both younger and older adults. Hence, an optimal balance between local and 

global connectedness might be important for maintaining word-finding ability across the 

lifespan, irrespective of any age-related decreases. 

 

Greater Brain Integration is Related to Better Word-Finding in Older Adults 

In an exploratory analysis, we investigated the relationship between brain integration and 

age-related word-finding difficulties. In older adults, a longer characteristic path length in the 

delta band was associated with higher semantic fluency scores. Shorter characteristic path 

length would reflect greater global network efficiency because fewer nodes need to be 

traversed to transfer information from one brain area to another (Bullmore & Sporns, 2009). 

In contrast, we found that greater characteristic path length related to better semantic fluency 

in older age. Several fMRI and EEG/MEG studies showed that brain integration decreases 

with age (Bagarinao et al., 2019; McIntosh et al., 2014), including characteristic path length 

(Vecchio et al., 2014). Hence, this study may suggest that greater characteristic path length 

(i.e., increased integration) might be necessary to maintain word-finding abilities in older age. 

 

No Evidence for a Link Between Word-Finding and Alpha/Beta Band Connectivity 

Our findings were mainly restricted to the delta band with exception of modularity, which 

was positively related to semantic fluency, irrespective of age. A previous study on EEG 

alpha-beta power proposed that decreases in alpha-beta power enable lexical retrieval by 
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reducing neural synchrony (Piai et al., 2020). In line with Piai and colleagues (2020), our 

minimal findings in the alpha and beta bands may suggest that functional connectivity in 

these bands is already optimally synchronised for word-finding ability. However, it is 

important to note that our results focussed on phase-based connectivity between signals, 

which are not directly sensitive to power-based effects. Moreover, Piai and colleagues (2020) 

measured alpha-beta power at specific electrode locations during a context-driven picture 

naming task whilst our study measured whole brain connectivity during rest. Future studies 

should investigate alpha-beta phase-based connectivity patterns are related to alpha-beta 

power decreases, and whether this relationship could facilitate word finding ability. 

 

Limitations and Future Directions 

The current study has several limitations. First, the OMST algorithm resulted in too sparse a 

network in some participants to compute the clustering coefficient and the small-world index. 

On the one hand, the study was still able to demonstrate the relationship between word-

finding and clustering coefficient but, on the other hand, no interaction effects were observed. 

The latter could be the result of the reduced sample size due to missing values for the 

clustering coefficient. However, the choice of thresholding is an important one as the 

incorrect thresholding method can lead to biases and make it difficult to compare across 

studies. For example, arbitrary thresholding affects the reliability of a study, and bias can 

appear when one chooses a threshold based on what threshold leads to significant results 

(Miljevic et al., 2022). In contrast, data-driven thresholding is more objective as the user has 

no influence on what threshold is chosen. Therefore, we decided to implement the OMST 

algorithm as it is a data-driven threshold method created to reduce the sparsity of networks, 

whilst maximising global efficiency (Dimitriadis et al., 2017). Moreover, a recent study 
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indicated that with increasing age, the individual variability in functional brain networks 

increases (Ma et al., 2021). It is possible that data-driven methods are better suited when 

comparing functional brain networks, to account for networks that are highly variable 

between individuals (Bansal et al., 2018). To shed light on functional brain connectivity in 

ageing, more research is needed using the OMST algorithm for thresholding the brain 

connectivity graphs so that these studies can be compared. 

Another debate in the field of functional brain connectivity obtained through EEG 

recordings is whether one should project the signals into sensor (i.e., electrodes) or source 

space (i.e., brain regions underlying the observed electrical activity). Many studies argue for 

projecting signals into source space as doing so is suggested to resolve problems such as 

volume conduction and field spread (see Schoffelen & Gross, 2009). However, source-space 

analyses have their own limitations. For example, there are multiple methods for identifying 

the underlying sources and the estimation of parameters needed for source localisation is very 

complex and relies on a number of assumptions (Mahjoory et al., 2017; Miljevic et al., 2022). 

In addition, a recent study showed that sensor space might be more suitable for conducting 

functional brain connectivity analyses as brain network indices, such as the characteristic 

path length, can change after projecting brain activity into source space (Koutlis et al., 2021). 

Moreover, the current study aimed to conduct whole-brain network analyses and we 

did not have a-priori hypotheses about the underlying brain regions. Whole-brain network 

analyses are important to understand the effect of age on how functional networks combine 

the information processed by the brain (Geerligs et al., 2015). To reduce the influence of 

volume conduction and field spread, the debiased weighted Phase Lag Index was used to 

compute the connectivity between the EEG sensors (Lai et al., 2018; Vinck et al., 2011). 

Hence, the issues created by volume conduction were addressed without the need to conduct 

source localisation in the current study. Nevertheless, future studies could build on the results 
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of the current study by investigating the sources underlying the functional brain connectivity 

patterns we have observed. 

It is important to note that the current study identified brain networks from resting-

state data, hence, these networks were not obtained during the verbal fluency tasks. 

Functional brain networks underlying verbal fluency tasks may yield different patterns from 

resting-state data, and age-related changes might be reflected differently in task-dependent 

functional connectivity. However, resting-state EEG analyses have been argued to be 

informative (Rosazza & Minati, 2011; van Diessen et al., 2015) and such analyses can be 

useful in providing insights into cognition, and the diagnosis, development, and treatment of 

neurodegenerative diseases (O’Neill et al., 2018). 

The broad age range (59-77 years) in the older group could have resulted in a 

heterogeneous group, potentially limiting the size of some of the effects found in this study. 

Although cognitive decline is often mentioned in older adults (65+), declines in some 

cognitive domains can start as early as the age of 30 (Salthouse, 2009). Potential confounding 

factors, such as health conditions, medication, and educational levels could have impacted the 

results. Despite these potentially confounding factors, the participants in the LEMON 

database were screened on different health measures, such as cardiovascular disease, and had 

similar educational levels. Moreover, adults with depression and substance or alcohol abuse 

were excluded in our study. Although the current study opted to limit the number of 

confounding factors, the heterogeneity within the older age group could have limited the 

impact of our results. Future studies should investigate age as a continuous factor to provide 

further insights into the effect of heterogeneity on word-finding ability within older age 

groups. 
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Finally, this study focused on the age-related changes in verbal fluency performance 

and function brain networks to explain age-related difficulties in word-finding. Other studies 

have argued that verbal fluency performance does not only involve lexical access, but heavily 

relies on executive functioning, such as cognitive flexibility (Diamond, 2013). However, 

language might play a much larger role in both letter and semantic fluency than executive 

functioning, supporting the use of verbal fluency to investigate word-finding (Whiteside et 

al., 2016). We did not include a control measure for executive functioning because this was 

outside the scope of the current study. Hence, we cannot rule out any effects of executive 

functioning. Future studies aiming to replicate our findings should further explore the 

influence of other cognitive functions when investigating the relationship between word-

finding and functional brain networks. 

The current study also identified some gaps and recommendations for future research. 

First, we demonstrated that increased functional connectedness in the delta band was related 

to age-related word-finding difficulties. Future studies should explore this relationship among 

healthy older adults, adults at risk of dementia, and adults in the beginning stages of 

dementia. Investigate whether such a measure, in conjunction with neuropsychological 

assessments, could contribute to the early detection of cognitive impairment and dementia. 

Second, interventions could be developed that aim to increase delta band functional 

connectedness as this could increase neuroplasticity and, consequently, improve cognitive 

outcomes in older adults. Third, considering our contrasting finding that increased modularity 

was related to poorer word-finding ability irrespective of age, future studies could investigate 

when the extent of brain segregation becomes detrimental to word-finding ability. 

Additionally, examining potential differences in this effect between younger and older adults 

would be valuable. Finally, because modularity has been proposed to be important in 

predicting neuroplasticity outcomes following intervention, such as cognitive training (Gallen 
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& D’Esposito, 2019), it is important to investigate the interactive effect between modularity, 

complexity of cognitive functioning, and intervention outcomes. Such research is essential 

not only in ageing populations but also in those with neurodegenerative diseases. 

 

Conclusion 

The current study investigated the link between functional brain connectivity and word-

finding abilities in younger and older adults. We found that changes in functional brain 

connectivity, such as in overall connectedness and characteristic path length, related to worse 

performance on semantic fluency, but only in older adults. Modularity and small-world 

network properties also predicted semantic fluency performance, but this was irrespective of 

age. Moreover, changes in functional brain connectivity in this study were specific to the 

frequency band, possibly reflecting changes in cognitive control and the ability to inhibit 

irrelevant responses or a compensatory shift to less functionally specific frequency bands. 

This is the first study demonstrating that age-related word-finding difficulties can be linked to 

changes in whole-brain resting-state functional brain connectivity, signifying the importance 

of resting-state EEG in investigating age-related changes in changes in functional 

connectivity. 
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