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Abstract

A fundamental challenge in the cognitive sciences is discovering the dynamics that govern
behaviour. Take the example of spoken language, which is characterised by a highly variable
and complex set of physical movements that map onto the small set of cognitive units that
comprise language. What are the fundamental dynamical principles behind the movements
that structure speech production? In this study, we discover models in the form of symbolic
equations that govern articulatory gestures during speech. A sparse symbolic regression
algorithm is used to discover models from kinematic data on the tongue and lips. We explore
these candidate models using analytical techniques and numerical simulations, and find that a
second-order linear model achieves high levels of accuracy, but a nonlinear force is required to
properly model articulatory dynamics in approximately one third of cases. This supports the
proposal that an autonomous, nonlinear, second-order differential equation is a viable
dynamical law for articulatory gestures in speech. We conclude by identifying future
opportunities and obstacles in data-driven model discovery and outline prospects for
discovering the dynamical principles that govern language, brain and behaviour.

1 Introduction

A longstanding goal in the cognitive sciences is the development of models that capture the
dynamics of mind and motion. In the seventeenth-century, Newton proposed the fundamental
laws of motion and gravitation, which synthesized a diverse range of observations into a unified
mathematical framework. This identification of common mathematical laws has come to
represent a core goal of modern science (e.g. Newton, 1687; Noether, 1918; Anderson, 1972),
but it has long been acknowledged that the dynamics of living systems are structured by other
laws beyond fundamental physics (Schrödinger, 1944). For example, within decades of
Newton’s discoveries, a new paradigm emerged that was focused on discovering fundamental
laws behind human behaviour and cognition (Hume, 1739), thus laying the foundations for
contemporary cognitive science. Two central questions in this line of inquiry are: (1) what are
the principles that govern behaviour and cognition? (2) can these principles be expressed as
mathematical laws?

An exemplary distillation of this challenge is the case of spoken language. Spoken (and
signed) languages involve mapping a set of high-dimensional continuous physical movements
to a low-dimensional set of discrete tasks that comprise the combinatorial units of language. A
fundamental issue concerns the relation between these two components: the qualitative aspects of
phonological knowledge and their physical realization. One view proposes a translation between
discrete symbolic units and continuous physical properties, such that phonetic realization is
a matter of translation or an ‘interface’ between symbolic and physical domains (Chomsky &
Halle, 1968; Keating, 1990; Guenther, 2016; Turk & Shattuck-Hufnagel, 2020). An alternative
view holds that the relation between discrete and continuous aspects of phonological cognition
can be explained using the language of nonlinear dynamics (Browman & Goldstein, 1986). In
this sense, phonetics and phonology are isomorphic, rather than separate modules requiring
translation, and can be cast as intrinsically linked elements within a single dynamical system
(Kelso, Saltzman & Tuller, 1986; Browman & Goldstein, 1992; Gafos, 2006).
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The dynamical view of phonology emerges from a broader perspective in dynamical systems
theory, which views the world through the mathematical language of change: differential
equations. Dynamical thinking has a long history in the cognitive sciences (e.g. Fowler, 1980;
Smolensky, 1988; Kelso, 1995; Port & van Gelder, 1998) and is typically set in opposition to
highly modular models of mind (e.g. Turing 1950; Fodor 1975). The overarching goal is to
identify the appropriate dynamical laws that govern brain and behaviour across task-specific
domains, including the relations between microscopic and macroscopic scales. For example, a
key analytic concept is identifying the appropriate ‘order parameters’ (Haken, 1977) or
low-dimensional variables that govern qualitative states in the dynamical system (Haken, Kelso
& Bunz, 1985). This does not necessarily mean doing away with symbolic representations; e.g.
Gafos (2006) outlines a cogent theory of the relation between dynamics and phonological
grammar that re-casts the ‘interface’ as a ‘dynamic linkage’. Indeed, many dynamical theories
maintain representations and symbolic systems, but the primary hypothesis is that cognitive
agents are dynamical systems that can be cast in terms of states, paths and flows, rather than
modules, computations and translations (van Gelder, 1998).1

Given the immense complexity of human cognition, accompanied by our highly variable and
noisy behavioural measurements, how do we begin to identify appropriate dynamical models of
brain and behaviour? In this study, we focus on developing models of articulatory trajectories
– or ‘gestures’ – in the human vocal tract. This is a well-studied and tractable problem, as it
is possible to collect lots of high-quality data on the movements of speech articulators, which
we can use to derive the lawful regularities that govern such movements. We approach this
problem as one of data-driven model discovery and, in doing so, leverage recent developments in
physics-informed machine learning and symbolic regression, which allow us to learn simple and
interpretable dynamical equations directly from large datasets. The outcome is a small set of
candidate models, from which new predictions can be generated and tested. Before outlining this
approach in more detail, we first review extant dynamical models of speech, before motivating
the search for new models.

1.1 Dynamical models of speech

In their article ‘The dynamical perspective on speech production’, Kelso, Saltzman & Tuller
(1986) argue that the task for a dynamical model of speech is ‘less one of translating a
“timeless” symbolic representation into space-time articulatory behavior, as it is one of relating
dynamics that operate on different intrinsic time scales’. The dynamical timescales involved in
speech production span macroscopic forms of organization (syllables, words, prosodic
structure) to microscopic physical activity (articulators, biomechanics, neural dynamics), and
may even expand to contextualize speech production in terms of a larger agent-environment
dynamical system (perception-action dynamics; interactions with other speakers; etc). The
most thoroughly worked out theory of dynamical systems in the study of spoken language is
Articulatory Phonology / Task Dynamics (Fowler, 1980; Saltzman & Munhall, 1989; Browman
& Goldstein, 1992; Gafos & Benus, 2006; Tilsen, 2016; Iskarous, 2017), henceforth AP/TD. In
this theory, the fundamental unit is the gesture, an abstract force acting on the vocal tract that
drives it from its current state towards a new target state (Browman & Goldstein, 1992). To
this end, the gesture is both a model of articulatory motion and a model of the ‘cognitive
control of abstract linguistic units’ (Byrd & Saltzman, 2003, 154).

A common mathematical model of speech gestures in AP/TD is the damped mass-spring
model, which is visualized in Figure 1 and captures the dynamics of forces on the vocal tract
(Saltzman & Munhall, 1989). The model approximates an idealized physical system, with a
physical mass attached to a spring, plus a damper or shock absorber. Variants of this model

1For excellent introductions to dynamical systems and nonlinear dynamics, see Strogatz (2015) (a mathematical
introduction); Abraham & Shaw (1992) (a visual introduction); van Gelder (1998) (a perspective from the cognitive
sciences); Kelso (1995) (coordination), (Haken, 1977) (synergetics); Gafos (2006) (phonology); and Tilsen (2019b) (an
impressive application of dynamical theory to syntactic structures). For arguments against computational metaphors
of mind see Gibson (1979); Carello, Turvey, Kugler et al. (1984); Spivey (2007); Chemero (2009); Barrett (2011).
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Figure 1: The damped-mass spring model is a model of vocal tract dynamics. The left diagram
shows a midsagittal view of the vocal tract, with a box centred on the Tongue Tip task space. The
middle diagram shows a physical damped mass-spring system representing the forces that act on the
Tongue Tip gesture, where m is a mass, k is spring stiffness, and b is the strength of the damping
force. The right diagram shows simulated trajectories from the damped mass-spring model, with
the Tongue Tip moving from a low to a high position (arbitrary units).

have been well-studied since the seventeenth century (Hooke, 1678) and the model can be easily
understood by way of its physical properties, such as the analytical relationship between spring
damping/stiffness and the system’s position, velocity and acceleration. These insights can then
be generalized to the dynamics of vocal tract tasks during speech, allowing us to advance a
specific and testable model of speech dynamics based on a well-understood physical analogy.

The dynamics of the speech gesture can be explicitly formalised as a second-order, critically
damped harmonic oscillator, as in (1):

mẍ+ bẋ+ kx = 0 (1)

In the above equation, x represents the state of the system, such as the current state of an
articulatory variable, while ẋ and ẍ respectively represent the velocity and acceleration of x. The
system’s mass m is typically set to m = 1 and k is a stiffness constant. The damping constant
is b = 2

√
mk in critically damped versions of the model. Equation (1) specifies the system’s

equilibrium or target position as zero, but non-zero targets can be introduced by adding a target
parameter (which we denote T ) to the kx term as in (2). We assume that T is implicit in any
subsequent formulations of these equations.

mẍ+ bẋ+ k(x− T ) = 0 (2)

This equation defines the relationships between parameters as invariant over an instance of
the system, where the system evolves until the value of T is reached. Research on the neural
encoding of speech movements has identified signatures of critically damped oscillations in the
neural populations of ventral sensorimotor cortex, supporting a neural basis for the kinds of
oscillatory models used in AP/TD (Chartier, Anumanchipalli, Johnson et al., 2018).

The state of a gestural system evolves towards its equilibrium or target position, after which
the target parameter changes and the system evolves towards a new state. This affords movement
between different vocal tract postures, which is a fundamental characteristic of speech. Change
in parameters requires a notion of gestural activation; if we cast gestural activation as a function
of time a(t) then we can transform (1) into (3).

mẍ+ a(t)[bẋ+ kx] = 0 (3)

3



In the standard model of Saltzman & Munhall (1989), a(t) in Equation (3) corresponds to the
rectangular pulse function in (4). This means that gestural parameters change instantaneously
at the point of gestural activation a(t) = 1 and remain constant until activation ends a(t) = 0,
where activation is bounded by the temporal interval [ta, tb].

a(t) =

{
1, t ∈ [ta, tb],

0, otherwise
(4)

Equation (3) is a critically damped harmonic oscillator with step activation. It is
well-established that this model fails to capture many empirical characteristics of speech
movements. This includes overly short time-to-peak velocity and highly asymmetric velocity
trajectories compared with those seen in empirical data (Byrd & Saltzman, 1998; Sorensen &
Gafos, 2016). An alternative approach is to introduce time-varying activation (Byrd &
Saltzman, 1998). Equation (5) is an example of a continuous activation function from Kröger,
Schröder & Opgen-Rhein (1995).

a(t) =



0, t < ta

sin
(

2π(t−ta)
4(tb−ta)

)
, ta ≤ t < tb

1, tb ≤ t < tc

sin
(

2π(t−td)
4(tc−td)

)
, tc ≤ t < td

0, t > td

(5)

The activation function in (5) defines a quarter sine rise over [ta, tb), steady activation over
[tb, tc), a quarter sine fall over [tc, td), and zero activation outside the range [ta, td]. The ramped
activation function corrects for the short time-to-peak velocities and velocity asymmetries of
step activation (Byrd & Saltzman, 1998). In both step and continuous activation, gestures are
active when they exceed a threshold of zero (with possible values of 0 or 1). An alternative view
casts gestures as continuously active (Tilsen, 2020), which we discuss in Section 6.

Common to models of continuous gestural activation is that the system is explicitly
time-dependent (i.e. non-autonomous) during activation. An alternative approach is to
re-formulate the dynamical equations that govern gestural dynamics, instead of using a more
complex activation function. For example, Sorensen & Gafos (2016, 2023) introduce a cubic
term in (6), but retain the rectangular pulse function in (4) for the activation variable a(t).
Note that the m term has been omitted from (6) and all subsequent related equations because
it is conventional to define m = 1 (although see Šimko & Cummins (2010) for a task dynamic
model where different gestures are defined over different masses).

ẍ+ a(t)[bẋ+ kx− dx3] = 0 (6)

The cubic term in (6) has the effect of acting as a nonlinear restoring force on the spring in
the mass-spring model, with d governing the strength of the nonlinear force. This means that the
effect of the nonlinear force is greater with larger movement displacement, thereby reproducing
observed nonlinear empirical relations between movement amplitude and peak velocity (Ostry &
Munhall, 1985). The model also generates the symmetrical velocity profiles observed in empirical
data, while retaining the step-function activation, which yields constant forcing during periods
of gestural activation. The effects of this can be seen in Figure 2, which compares the linear and
nonlinear task dynamic models under step activation.

The prevailing philosophy in the above research seeks minimal and autonomous models that
capture fundamental dynamics without recourse to extrinsic timing mechanisms (Sorensen &
Gafos, 2016; Iskarous, Cole & Steffman, 2024). But we should be open to the possibility that
further good models may be possible. For example, Turk & Shattuck-Hufnagel (2020) propose
a General Tau model for articulatory movements, as part of a broader symbolic theory of
phonology. Their model fits position and velocity trajectories better than the nonlinear
dynamical model in Sorensen & Gafos (2016), although a comprehensive evaluation of how
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Figure 2: Position and absolute velocity trajectories simulated using a linear damped mass-spring
model and a nonlinear (cubic) damped mass-spring model. In both cases, x0 = 1, ẋ0 = 0, T = 0, k =
2000, b = 2

√
k. The nonlinear cubic coefficient is d = 0.95k.

different models fit acceleration data is yet to be established (Sorensen & Gafos, 2016). There
are also reasons beyond quantitative fit to search for new models, such as the trade-off between
simplicity and accuracy, and the value of interpretable parameters. Standard models may also
not capture all kinds of speech and may require modifications or extensions to reproduce
phenomena observed in disordered speech (Mücke, Roessig, Thies et al., 2024), speech
development (Abakarova, Fuchs & Noiray, 2022), different languages (Geissler & Nellakra,
2024), and so on. Finally, discovering new models is a core part of evaluating the success of
existing models; if we can develop better models then this would represent a major advance,
but if extant models prove more successful than the discovered models then this is also an
important empirical finding.

2 Discovering dynamical models from data

2.1 What does a good model look like?

There is a near infinite number of potential models that could have generated a spoken utterance,
but the number of good models is likely few in number. How do we know which models are
good? A typical approach in model discovery is to strike a balance between two characteristics
– parsimony and accuracy – which is schematized as complexity versus error in Figure 3.

A maximally parsimonious model is a very simple model with as few terms as possible in
the equation (top left of Figure 3). A parsimonious model is highly interpretable, because we
have a small number of model terms that make clear predictions. The downside is that those
predictions are likely to be inaccurate, as they are a poor fit with the real world due to insufficient
complexity. At the other extreme, a maximally accurate model would have a very high number
of terms, which offer immense flexibility in fitting the model to highly variable data (bottom
right of Figure 3). An example of this would be a deep neural network, which can have upwards
of many hundreds of parameters. The downside is that such a model is likely to be incredibly
complex and uninterpretable, meaning we learn little about the system’s fundamental dynamics.
Our aim is to discover models that fit into the ‘Pareto optimal’ space in Figure 3, representing
models that are simple but show high accuracy. The following section addresses the conceptual
and technical solution to this approach.
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Figure 3: A Pareto curve showing the schematized relationship between model accuracy and model
complexity, after Brunton & Kutz (2022). An ideal model occupies the Pareto optimal space, which
strikes a balance between accuracy and simplicity.

2.2 Sparse identification of nonlinear dynamics

A popular technique for data-driven model discovery in physics and engineering is the class
of SINDy (Sparse Identification of Nonlinear Dynamics) methods that have emerged over the
past decade (Brunton, Proctor & Kutz, 2016). SINDy is based on the principles of symbolic
regression (Schmidt & Lipson, 2009), which aims to approximate an unknown function from
some data X, Ẋ as a combination of nonlinear functions.

Ẋ = Θ(X) (7)

where Θ(X) is a feature library composed of an arbitrary number of mathematical functions.

Θ(X) = [1XX2X3 . . . sinX cosX] (8)

The aim is to discover coefficients for the functions in Θ(X) that explain variation in Ẋ. A
known problem of symbolic regression is that the above procedure will produce many non-zero
coefficients, leading to a complex model that contains many terms from the feature library. Such
models are likely overfitted to the data and may be more complex than desirable. How can we
only retain the terms that contribute substantially to the system under study? SINDy solves this
by discovering the optimal sparse coefficient matrix Ξ corresponding to the functions in Θ(X).

Ξ = [ξ1ξ2ξ3 . . . ξn] (9)

The aim is to discover a coefficient matrix Ξ that provides an excellent fit to Ẋ while being
as sparse as possible; i.e. containing the smallest number of terms required to produce a good
fit. This can be cast as Equation (10).

Ẋ = Θ(X)Ξ (10)

A range of sparsity-promoting algorithms exist to solve this problem, two of which are
reviewed in Section 3.3. The sparsity-promoting characteristics of SINDy mean that a symbolic
model derived from data often performs better at estimating parameters from new data than a
higher-dimensional neural network. Subsequent research has expanded the range of
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optimization methods for diverse problems in physics, biology and engineering, providing a
valuable toolkit for data-driven model discovery (e.g. Kaiser, Kutz & Brunton, 2018;
Champion, Zheng, Aravkin et al., 2020).

SINDy holds great promise for learning interpretable and parsimonious models of brain and
behaviour. Dale & Bhat (2018) review extant approaches to equation discovery in the cognitive
sciences and outline some prospects and challenges for applying SINDy to social and cognitive
systems. They highlight difficulties associated with discovering models from noisy and
continuously changing systems and pose a number of valuable recommendations for future
research. To date, however, there have only been very limited applications of SINDy in
cognitive science. In terms of related methods, Iskarous (2016) shows how least squares
regression can be used to estimate dynamical models of action and perception from data, while
Nalepka, Lamb, Kallen et al. (2019) model human multi-agent activity in games using
dynamical motor primitives. Specific applications of SINDy include discovering mechanisms of
human learning from experimental data (LaFolette, Yuval, Schurr et al., 2024) and a
proof-of-concept study on discovering dynamical models of speech (Kirkham, 2024).

2.3 An example: discovering known models from simulated data

We now turn to a brief illustration of model discovery using SINDy on simulated data. This
outlines the conceptual steps involved in model discovery and validates that the method can
discover a known model. As an example, we generate simulated data using the damped harmonic
oscillator in (11), as this is a widely used model of articulatory gestures in speech production.
The equation is written with acceleration ẍ on the left-hand side and damping bẋ and stiffness
k(x−T ) terms on the right hand side, where T is the target or equilibrium position of the system.
The damping coefficient b is typically defined as b = 2

√
k, which makes (11) a critically damped

harmonic oscillator that will asymptotically approach the target. Note that ẍ is typically written
as mẍ, but as m = 1 it is omitted from here onwards.

ẍ = −bẋ− k(x− T ) (11)

We solve a trajectory from this equation based on a set of initial position x0 and velocity ẋ0

values, and a stiffness k and target T value, all of which remain invariant over the time-course
of the simulation. Numerical solutions were computed using Python’s
scipy.integrate.solve ivp function (Virtanen, Gommers, Oliphant et al., 2020), with a
Runge-Kutta method of order 5(4) and a timestep of ∆t = 0.001. Position and velocity
trajectories were simulated using initial conditions x0 = 1, ẋ = 0, and parameter values
k = 2000, b = 2

√
k = 89.44 and T = 0.2.

We pass the simulated position and velocity trajectories to a SINDy algorithm, with a first-
degree polynomial library and a coefficient threshold of 0.1. Figure 4 shows a predicted trajectory
from the discovered model plotted on top of the data, with no visible differences between data and
prediction, resulting in a fit of R2 = 1.00. The discovered symbolic equation is ẍ = −bẋ−kx+kT
and we can rearrange terms to get ẍ = −bẋ − k(x − T ), which is the original equation that
generated the simulated data. The discovered coefficients are kT = 400.299, k = 2001.31,
b = 89.47. If we calculate T = kT

k then T = 0.2, showing that all discovered coefficients are
within 0.1% of their true values. This shows that SINDy is able to accurately discover symbolic
models and coefficient values from data; Kirkham (2024) shows that the same model can be
accurately discovered even when considerable noise is added to simulated trajectories. The rest
of this article applies this method to empirical data on movements of the tongue and lips during
speech, with the aim of discovering accurate and interpretable models of gestural dynamics.
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Figure 4: Simulated position and velocity trajectories plotted against SINDy model predictions.

3 Methods

3.1 Data

We report an experiment demonstrating the use of the SINDy framework for discovering the
articulatory dynamics of continuous speech. We use data from the X-Ray Microbeam (XRMB)
corpus (Westbury, 1994), which contains articulatory speech data from a relatively large
number of speakers. The XRMB corpus contains data from 57 speakers, most of whom speak
an Upper Midwest dialect of American English (32 female, 25 male), with a median age of 21.
We use a subset of 48 speakers, corresponding to those who have existing forced-aligned
phone-level annotations available in the database at
https://github.com/rsprouse/xray_microbeam_database. The data comprise small pellets
of 2.5–3.0 mm in size attached to the upper (UL) and lower (LL) lips, surface of the tongue
(T1, T2, T3, T4), mandible and head. The pellets were tracked using a narrow X-ray beam at
160 Hz for T1, 80 Hz for T2, T3, T4 and LL, and 40 Hz for UL, after which all pellets were
resampled at 160 Hz and translated/rotated to an anatomically-defined coordinate system. See
Westbury (1994) for comprehensive technical documentation of the data and speaker sample.

We discover models using data from XRMB tasks #11 and #101, both of which feature
continuous speech of varying durations. Task #11 involved each speaker reading the following
passage:

You wish to know all about my grandfather. Well, he is nearly 93 years old, yet he
still thinks as swiftly as ever. He dresses himself in an old black frock coat, usually
several buttons missing. A long beard clings to his chin, giving those who observe
him a pronounced feeling of the utmost respect. When he speaks, his voice quivers a
bit. Twice each day he plays skillfully upon a small organ.

Task #101 involved each speaker producing the following three sentences in a single recording,
with a short pause between each phrase:

• Elderly people are often excluded.

• When all else fails, use force.

• The dormitory is between the house and the school.
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3.2 Data processing

Four articulatory variables were extracted from every recording: lip aperture (LA), tongue tip
(TT, based on T1), tongue dorsum (TD, based on T3), tongue root (TR, based on T4). We
model gestural dynamics in one dimension, so we reduce all articulatory motions as follows. LA
is the Euclidean distance between the vertical coordinates of the upper and lower lips, while
TT, TD and TR are the first principal component projected from the two-dimensional x/y
coordinates, which was calculated separately for each speaker and each sensor (Birkholz, Kroger
& Neuschaefer-Rube, 2011; Elie, Lee & Turk, 2023). We focus on discovering autonomous
dynamical models that assume step activation of the type in Equation (4), which has direct
consequences for our approach to gestural segmentation. All signals were first divided into inter-
pause intervals, based on the forced aligner’s segmentation, and then gestural segmentation
was calculated on the basis of zero-crossings in the velocity signal. A gesture is defined as
a velocity peak or trough bounded by two velocity zero-crossings. Some velocity trajectories
have a peak that never crosses zero, meaning that such trajectories often have two or more
peaks. Trajectories with two or more peaks were identified algorithmically and excluded from the
analysis, which corresponds to 13.3% (N = 2924) of trajectories. These trajectories were excluded
because existing task dynamic models do not predict multiple velocity peaks per gesture. We also
excluded trajectories longer than 200 ms in duration, because many of these represent passive
speech movements during periods in which that articulatory variable was not actively involved
in the production of a constriction. This corresponds to 24.4% (N = 5383) of trajectories, which
also includes a small number of additional trajectories that were clearly erroneous based on
visual inspection.

In total, we analyse 62.3% (N = 13,742) of the segmented trajectories from the dataset.
While this is a conservative approach to data filtering, it is likely that a large number of the
excluded trajectories represent uncontrolled movements, anomalies at signal edges, segmentation
errors, and inaccurate velocity calculations. We nonetheless retain a very large number of target
gestures that is far beyond the amount possible to check manually. In total we analyse 13,742
individual gestures across four articulatory variables (LA 3894, TT 3715, TD 3027, TR 3106).
We discover models from each articulatory variable separately in order to test whether model
discovery is robust across articulatory tasks.

3.3 Computational implementation

Our computational modelling is based on the Python package pySINDy, which is a computational
framework for discovery of governing dynamical equations from data (de Silva, Champion, Quade
et al., 2020). Each step of the model discovery procedure is explained below. Data and code
for reproducing every analysis in this article is available at: http://doi.org/10.5281/zenodo.
15101639.

3.3.1 Model inputs

This study involves the discovery of two kinds of models: (1) first-order models, where the models
only depend on the position and velocity of the system; and (2) second-order models, where the
system includes position, velocity and acceleration. The task dynamic models in Saltzman &
Munhall (1989) and Sorensen & Gafos (2016) are both examples of second-order models, and it is
well-known that modelling skilled movements typically requires a second-order model (Saltzman
& Kelso, 1987). To provide a point of comparison, however, we also test the hypothesis that
articulatory movements can be approximated by first-order models, with no information about
acceleration. First-order models can accurately model other physical dimensions of speech, such
as fundamental frequency contours (Iskarous, Cole & Steffman, 2024), although note that these
models in Iskarous, Cole & Steffman (2024) are a series of coupled agonist-antagonist equations,
which are more complex than the single-order models examined here.

The target system to be modelled is the intrinsic dynamics of the speech gesture, as defined
in Section 3.2. This corresponds to an interval including the initiation of a gesture, its movement
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towards its target, and target achievement. The movement away from the target represents a
new gesture, which is either a release gesture (e.g. returning to a rest position), or a movement
towards a different target. The input data is a position signal for first-order models, and a
position signal with its associated velocity signal for second-order models. In no cases do we find
substantially better model fits for opening versus closing gestures, which are instead reflected in
simple parameter differences, so all models collapse across this distinction. The technical details
of data processing were reported in Section 3.2.

3.3.2 Sequential Thresholded Least Squares (STLSQ)

We now review algorithms that promote sparsity in the discovered models. Recall from Section
2.2 that Equation (12) defines the goal of model discovery, where the aim is to discover the
sparse coefficient matrix Ξ corresponding to features in the library Θ(X) that optimally model
the time-derivative Ẋ.

Ẋ = Θ(X)Ξ (12)

One of the simplest methods is Sequential Thresholded Least-Squares (STLSQ) (Brunton,
Proctor & Kutz, 2016). STLSQ aims to (1) obtain a least squares solution for Ξ; (2) eliminate
any coefficients below a pre-defined threshold; (3) iterate until the procedure converges on an
optimally sparse model. This procedure can be cast as the objective function in (13), where Ξ is
the sparse coefficient matrix to be optimized and α defines the ℓ2 regularization weight, which
makes the problem a form of sequentially thresholded ridge regression. Note that the threshold
parameter λ is not explicitly specified in the objective function as it is applied post-hoc over
repeated iterations of (13).

min
Ξ

||Ẋ −Θ(X)Ξ||22 + α||Ξ||22 (13)

In the present study, we use STLSQ for first-order models, because it provides an effective
and simple technique for sparse model discovery. We set α = 0.05, use a maximum of 20
optimization iterations to allow for convergence of the thresholding algorithm, and a coefficient
threshold optimized to maximize R2 model fit from the set λ ∈ {0.001, 0.01, 0.1}.

3.3.3 Sparse Relaxed Regularized Regression (SR3)

While STLSQ works well for first-order models that only involve a single time derivative (i.e.
velocity), a second-order model introduces additional complexity that can be better constrained
using alternative techniques. For example, when we numerically solve a second-order differential
equation as in (14), we split it into two coupled first-order equations as in (15) and (16). This
involves the introduction of a new variable y, requiring us to solve for y and ẏ.

ẍ = −bẋ− kx (14)

y = ẋ (15)

ẏ = −by − kx (16)

A SINDy algorithm will simultaneously discover two equations for a second-order model.
If the equations are of the form in (15) and (16) then we can simply substitute y into (16)
and rearrange to obtain our second-order model for ẍ. However, one consequence of the model
discovery procedure is that SINDy will try to fit all terms in the library to both equations. In
principle, this means that equation (15) could be something other than y = ẋ, such as (17).

y = 0.97ẋ+ 0.21x− 0.13 (17)
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If we then substitute the value of y in (17) into (16) we will end up with the more complex
model in (18). This represents a form of the generalized Liénard equation (Burton, 1965), where
h(x, ẋ) is a damping or forcing function that depends on both position and velocity.

ẏ = −b(0.97ẋ+ 0.21x− 0.13)− kx (18)

While this level of complexity is not necessarily a problem, it results in a much less
parsimonious model and probably contains more complexity than necessary. To solve this
problem for second-order models, we use Sparse Relaxed Regularized Regression (SR3)
(Champion, Zheng, Aravkin et al., 2020). This allows to incorporate constraints on the model,
such as placing bounds on coefficient values, forcing terms to be in a particular proportion to
one another, or incorporating other forms of physical knowledge about the system. We use
SR3-based constraints to enforce the following weak assumptions: (1) y in (15) is always equal

y
!
= 1.00ẋ, (2) all other potential terms in (15) always equal zero. This essentially constrains

the damping function to −bẋ and prohibits additional complexity.
We use a constrained version of the SR3 algorithm that is conceptually analogous to STLSQ

but with some important differences, such as the addition of a constraint matrix that makes the
solution conditional on the specified constraints. This can be cast as the objective function in
(19), where Ξ is the coefficient matrix to be optimized.

min
Ξ,W

1

2
||Ẋ −Θ(X)Ξ||2 + λR(W ) +

1

2ν
||Ξ−W ||2

subject to Cξ = d

(19)

The term 1
2 ||Ẋ − Θ(X)Ξ||2 measures the fit between data and model based on the sum of

squared differences, where 1
2 is a scaling factor that simplifies the derivatives. R(W ) is a

regularisation function that acts as a prior on sparsity promotion; we specifically use weighted
ℓ0 regularisation, which is a non-convex function that can handle multiple local minima in the
optimization landscape. The term W is a proxy variable for Ξ that allows us to decouple model
fitting and regularization, such that Ξ can be optimized on the data and subsequently
regularized to promote sparsity, with this sequence iterated during the optimization procedure.
This improves numerical stability and admits greater flexibility in determining a well-fitting
model. The coupling term 1

2ν ||Ξ − W ||2 ensures that W and Ξ remain close and do not
substantially diverge from one another. The λ parameter weights the regularization function,
where λ = η2/2ν. This is sparsity-promoting, where η is the threshold for the minimum
coefficient magnitude in Ξ and ν determines the closeness of the match between Ξ and W .

We use a constrained variant of SR3, where optimizing the objective function in (19) is subject
to a matrix of linear constraints, using the vectorized form ξ = vec(Ξ). The optimization must
meet the condition that Cξ = d, where C is a matrix specifying which terms in ξ are subject to
constraints, and d is a vector defining the constraint values. In our case, Cξ defines the terms
in the first equation y = ẋ that are subject to constraints, with d specifying a value of 1.0 for
the term ẋ. This is what allows us to impose the specified constraints on the damping term in
second-order differential equations. A proof of the convergence properties of the constrained SR3
algorithm can be found in Champion, Zheng, Aravkin et al. (2020). In terms of hyperparameters,
we use a maximum of 30 iterations to allow for convergence of the optimization algorithm,
with ν = 1 and a coefficient threshold optimized to maximize R2 model fit from the set η ∈
{0.001, 0.01, 0.1}.

3.3.4 Train-test data split

For the purposes of modelling, we randomly split the data for each articulatory variable into
80% training and 20% test sets. The training set is used for library comparison and an initial
fit, where the number of discovered terms is allowed to vary between tokens. We then fit the
best overall model to the test set, where the model must fit the full library (representing the
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best model structure) to each trajectory. We also report visualizations of model predictions on
a random sample of tokens from the test set. Note that the training set is used to discover a
symbolic model, rather than a statistical model, and it is this symbolic model that is fitted to
the test set.

3.3.5 Library selection

We begin by sensitivity testing the candidate feature library, because the number of terms in a
final model can be highly sensitive to the thresholding parameter, especially with single token
fits, and this allows us to compare the fits across different feature libraries. As articulatory
signals are well approximated as the sum of polynomials, we use a series of polynomial libraries
across first (x), second (x, x2), third (x, x2, x3) and fourth (x, x2, x3, x4) degrees. We fit each
polynomial library to the training data using the model ensembling technique reported below
and calculate summary statistics for each library. This allows us to establish the relative merits
of different polynomial libraries and make transparent decisions when two libraries perform very
similarly. The selected feature library is then re-fitted to the training data and we report a wider
range of summary statistics, which is outlined in more detail below.

The threshold hyperparameter for library comparison was optimized for each articulatory
variable from the set {0.001, 0.01, 0.1}, with the final threshold value based on the highest R2

value. In some cases, lower thresholds did not converge due to an ill-conditioned or stiff model
that resulted in numerically unstable predictions. In other cases, higher polynomial libraries
performed worse than lower polynomial libraries. This can appear surprising, because adding
an additional polynomial term to a well-performing model should not harm performance. This
phenomenon arises, however, because a greater number of terms often reconfigures the model in
a way that changes the magnitude of each coefficient term. In other words, a quadratic model
is not necessarily the linear model with its original coefficients plus a quadratic term, but can
sometimes be a fundamentally different model in terms of the relationship between coefficients.
As a result, even a very small threshold can eliminate key terms in such models, or result in
higher polynomials fitting to noise in the signal. We address this by sensitivity testing threshold
values as above and selecting feature libraries that exhibit stability across the data set. In cases
where additional complexity provides only minor performance improvements, we subsequently
explore whether greater complexity simply improves the quantitative fit of models, or reveals
fundamentally different qualitative dynamics of the system.

3.3.6 Model ensembling

In order to discover models across large data sets we use a model ensembling technique, whereby
models are fitted to each token separately and then an ensemble model is derived from this set
of models. While a single SINDy model can be fitted using multiple trajectories, simulations
show that this is generally only effective for speech gestures if the target or equilibrium position
is the same or very similar across tokens. In such a case, a single model and single set of
coefficient values will be returned for the whole data set. However, when key parameters vary
– such as stiffness, damping or target – then the resulting SINDy model will contain values for
these parameters that are the average best fit to all of the tokens. As we seek good symbolic
models and accurate parameters, we instead construct an ensemble model from models fitted
to individual trajectories. As the model discovery procedure is repeated for each token, each
trajectory could theoretically be fitted with different numbers of terms, especially in the case of
larger feature libraries. We leverage this fact in order to obtain distributions on the number of
terms in each model across the data set, which allows us to then arrive at an ensemble model
based on the majority model structure. Once this final model structure is determined, we then
fit it to the test data, forcing the same structure on each test trajectory.
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3.3.7 Generating predictions

Once we have discovered a model for each token, we then use this model to make a prediction.
Predictions are generated by taking the discovered model, the discovered parameter coefficients,
and a set of initial conditions from the data, which comprise the initial position and velocity
value in each empirical trajectory. These initial conditions are then used to solve the discovered
model forwards in time, determined by the discovered coefficient values. In an ideal scenario,
this should generate position and velocity trajectories that are identical to the original data.
In practice, however, the prediction is only as good as the discovered model, which allows us
to use the prediction as an estimate of model fit. We quantify the fit using by-trajectory R2

scores. All R2 values are variance weighted, meaning that the R2 for model fit is an average over
position and velocity, weighted by the variance of each signal, which provides a more informative
assessment of model performance given that position and velocity are on different numerical
scales. In conventional regression analysis, R2 values are bounded between [0,1], but the lower
bound is a consequence of allowing either the intercept or the slope to vary, which is the aim of
regression analysis. With a constrained intercept, however, R2 is negative when the prediction is
worse than simply fitting a horizontal line through the data (Chicco, Warrens & Jurman, 2021).
We fix the intercept for each model prediction as the initial conditions from empirical data, so
R2 will be negative when the model prediction is worse than a horizontal line through the data.

4 Discovering new models from data

4.1 First-order models

4.1.1 Library comparison

Table 1 shows the results for library comparison on first-order models. The optimal threshold
for the models was λ = 0.001 (LA), 0.1 (TT), 0.01 (TD), 0.001 (TR). The first-degree library
performs poorly, with R2 values across the four articulatory variables of {0.40, 0.56, 0.53, 0.51}.
Libraries with 2–4 polynomials perform well with R2 between 0.96–0.99. Overall, while the
second-degree library performs well on average, it contains some negative R2 values for LA, TT
and TD. By contrast, the lowest score for any articulatory variables in the third-degree library
is R2 = 0.63 (LA). For this reason, we select the third-degree library containing x, x2, x3, which
we more thoroughly evaluate in the following section.

Number of polynomials LA TT TD TR

1 0.40 (0.57) 0.56 (0.17) 0.53 (0.24) 0.51 (0.29)
2 0.96 (0.05) 0.96 (0.05) 0.96 (0.05) 0.96 (0.03)
3 0.96 (0.04) 0.97 (0.04) 0.96 (0.03) 0.96 (0.03)
4 0.98 (0.02) 0.98 (0.02) 0.99 (0.02) 0.99 (0.02)

Table 1: Comparison of different polynomial libraries in first-order models across articulatory
variables (training set). The model scores are R2 mean (standard deviations).

4.1.2 Results

Table 2 shows summary statistics for the first-order models with third-degree polynomial library
fitted to the training data. All four terms (a constant, x, x2, x3) were found for the majority of
models (LA = 99.78%, TT = 64.67%, TD = 93.68%, TR = 99.64%), but some models omitted
the cubic term (LA = 0.22%, TT = 35.23%, TD = 6.28%, TR = 0.36%) and a small percentage
comprised only linear terms (TT = 0.1%, TD = 0.04%)

All models perform fairly well, with mean R2 = 0.96 or above and minimum R2 of 0.45–0.66.
The test data was then fitted using the same algorithm, but all trajectories were forced to have
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Training set LA TT TD TR

mean(R2) 0.96 0.97 0.96 0.96
σ(R2) 0.04 0.02 0.03 0.03

min(R2) 0.63 0.66 0.63 0.45
max(R2) 1.00 1.00 1.00 1.00

Test set LA TT TD TR

mean(R2) 0.95 0.95 0.95 0.95
σ(R2) 0.01 0.02 0.01 0.02

min(R2) 0.77 0.78 0.84 0.84
max(R2) 0.99 0.99 0.99 0.99

Table 2: Model fit statistics for first-order models with polynomials up to third-degree. All values
rounded to 2 decimal places.

linear, quadratic and cubic terms. The test data show comparable performance, with mean R2

= 0.95 for each articulatory variable and higher minimum R2 values in each case, ranging from
0.77–0.84. The higher performance in the test data is because every token is forced to contain
all terms in the library (i.e. λ = 0).

Figure 5 shows 10 randomly-sampled position and velocity trajectories for each variable, with
a comparison of data and model prediction from the test data. The quantitative fit is good, but
with some errors in the intercept and also errors in the fit along the curves. As a result of
minor errors in the position data, the resulting velocity signals show bigger errors. This is a
consequence of a limited degree of flexibility in the possible shape of the velocity curve, due to
the lack of an acceleration term governing change in velocity.

4.1.3 Summary

The discovered model takes the form of the symbolic equation in (20), where a is a constant and
b, c, d are the coefficients of x, x2, x3. This makes the discovered model a cubic equation, where
velocity is dependent on a constant, as well as the current position multiplied by a coefficient,
the square of the current position multiplied by a coefficient, and the cube of the current position
multiplied by a coefficient. The presence of x2, x3 makes it a nonlinear model.

ẋ = a− bx+ cx2 − dx3 (20)

In summary, a first-order nonlinear model appears to be a reasonable quantitative fit across
four different articulatory variables.

4.2 Second-order models

4.2.1 Library comparison

Table 3 shows the library comparison on second-order models. In this instance, the first, second
and third-degree libraries perform near-identically in terms of summary statistics, with mean
R2 = 0.98–0.99, although the first-degree models have slightly lower standard deviations. The
optimal threshold for all models was η = 0.001. The fourth degree library performs poorly with a
very small threshold of η = 0.001; if we relax the threshold to zero then the fourth-degree library
performs marginally better than all other libraries, but there is clearly no need for a model of this
level of complexity. In addition to this, all models above second-degree have some negative R2

fits, suggesting that the greater complexity forces some important coefficients to values smaller
than the threshold. Overall, there appears to be little benefit in higher polynomial libraries
based on this comparison. As result, we select the first degree library, but evaluate the impacts
of any additional complexity in Section 5.4.

4.2.2 Results

Table 4 shows summary statistics for the second-order models with first-degree polynomial
library. In the training data, 100% of models contain 3 terms, with mean R2 > 0.98 in all
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Figure 5: 10 randomly sampled trajectories for each articulatory variable showing the fit between
data and model predictions for first-order models with a third-degree polynomial library on the test
data.

cases. The test data shows comparable performance, with minimum R2 values of {0.77, 0.72,
0.66, 0.76}.

Figure 6 shows 10 randomly-sampled position and velocity trajectories for each variable, with
a comparison of data and model prediction from the test data. The quantitative fit is excellent,
with near-perfect fits for all trajectories. Notably, the fits look substantially better than those
in Figure 5, suggesting that the second-order model is superior in quantitative fitting accuracy.

4.2.3 Summary

The discovered model takes the form of the symbolic equation in (21).

ẍ = kT − kx− bẋ (21)

Note that SINDy models sometimes discover a constant term, but the analysis in Section
2.3 shows that this is often the term kT , such as that kT − kx = −k(x − T ). As such, this
model takes the form the harmonic oscillator in (22), which is a standard task dynamic model
(Saltzman & Munhall, 1989).
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Figure 6: 10 randomly sampled trajectories for each articulatory variable showing the fit between
data and model predictions for second-order models with a first-degree polynomial library on the
test data.
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Number of polynomials LA TT TD TR

1 0.99 (0.02) 0.98 (0.03) 0.98 (0.02) 0.99 (0.02)
2 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)
3 0.99 (0.05) 0.98 (0.08) 0.99 (0.07) 0.99 (0.03)
4 −1.14 (6.26) −3.24 (14.26) −3.05 (19.57) −2.00 (10.73)

Table 3: Comparison of different polynomial libraries in second-order models across articulatory
variables (training set). The model scores are R2 mean (standard deviations).

Training set LA TT TD TR

mean(R2) 0.99 0.98 0.98 0.99
σ(R2) 0.02 0.03 0.02 0.02

min(R2) 0.75 0.70 0.64 0.70
max(R2) 1.00 1.00 1.00 1.00

Test set LA TT TD TR

mean(R2) 0.99 0.98 0.99 0.98
σ(R2) 0.02 0.03 0.02 0.02

min(R2) 0.77 0.72 0.66 0.76
max(R2) 1.00 1.00 1.00 1.00

Table 4: Model fit statistics for second-order models with polynomials up to first-degree. All values
rounded to 2 decimal places.

ẍ = −bẋ− k(x− T ) (22)

In summary, a second-order linear model is a very good fit to data across four different
articulatory variables. The mean accuracy of the fit is R2 = 0.98 and above in all cases, with no
trajectories being scored less than R2 = 0.64 in either the training or test data sets. In Section
5, we conduct further interpretation of these terms and explore the implications of this model.

4.3 Interim summary

Two models fit the data very well: a first-order nonlinear model with quadratic and cubic terms,
and a second-order linear model. The performance of both models is quantitatively similar, but
this may be a consequence of the mean scores for both models being relatively close to ceiling.
An inspection of random trajectories plotted from each model reveals that while both models fit
the data well, the second-order fits are more accurate, likely a consequence of the acceleration
term in the second-order models. The following sections take the two broad classes of models
discovered here and explore them in greater detail. Specifically, we interpret the meaning of
each model’s terms in light of known systems and explore the model space via computational
simulations.

5 Exploring the discovered models

5.1 Overview

So far, we have two well-fitting models, but at this point we must go beyond treating these
simply as effective fits to data and understand the ways in which they govern the dynamical
laws of speech. In this section, we take two models from Section 4 – a first-order model and a
second-order model – and explore them deeper, focusing on how to interpret the different terms
in the equations, as well as what predictions and assumptions they make about speech gestures.
In doing so, we also explore the effects of adding complexity to the second-order model.

The analysis for each section proceeds as follows. We first plot representative examples of
the data against model predictions, followed by plotting the qualitative dynamics of the system
in the form of phase portraits and Hooke portraits (Beek & Beek, 1988; Mottet & Bootsma,
1999). This is an essential step in moving beyond model assessment via simple data fitting,
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because a fundamental characteristic of dynamical models of skilled movement is how they
specify the relationship between position, velocity and acceleration. We then explore the
equations analytically, deriving algebraic properties that expose similarities to other
well-understood systems, before exploring the dynamics of the relevant terms using
computational simulations. We note that a comprehensive investigation of every aspect of each
model and its numerical parameterization is beyond the scope of the current article; instead,
we here focus on elucidating fundamental aspects of each system.

5.2 First-order model

Figure 7 shows representative examples of the first-order model predictions, with position and
velocity trajectories, as well as a phase portrait (position∼ velocity) and Hooke portrait (position
∼ acceleration). While the position data are predicted with good accuracy, the higher derivatives
and phase portraits show the inadequacy of a first-order model. The velocity trajectory and phase
portrait show how the velocity estimates at signal edges are systematically incorrect, as well as
showing small but systematic errors in peak velocity and time-to-peak velocity. The Hooke
portrait particularly highlights the poor predictions of the first-order model, where uniform
nonlinearity is predicted despite quasi-linearity in the empirical data.
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Figure 7: First-order model predictions showing time-varying position (row 1), time-varying velocity
(row 2), phase portrait (row 3), Hooke portrait (row 4). The R2 scores for each model are LA =
0.96, TD = 0.95, TR = 0.96, TT = 0.95.

The above suggests that R2 scoring of position and velocity leads to misleading conclusions
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about the true capacity of the first-order model. To explore this further, Figure 8 shows Hooke
portraits of data and predictions for the best-scoring (top row) and median-scoring (bottom
row) first-order nonlinear models. The best fitting model is a case with extensive nonlinearity
between position and acceleration, especially for the TD articulatory variable. However, similarly
nonlinear predictions are also made for the median-scoring models, despite the data showing a
quasi-linear relation in these cases. This is a consequence of the first-order model containing no
information about the system’s higher derivatives, such as acceleration; this makes it impossible
to accurately model change in velocity, which is particularly evident at movement onsets.
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Figure 8: Hooke portraits for the top-scoring (top row) and median-scoring (bottom row) first-order
models for each articulatory variable.

In conclusion, this analysis shows that a first-order nonlinear equation is not an appropriate
model of articulatory control. While the SINDy analysis revealed a good fit to empirical
position and velocity trajectories, this did not take into account the nature of the mismatches
between model and data. In this instance, the phase portrait and Hooke portrait point towards
a fundamental issue with the model, rather than minor errors in quantitative fit. These
findings suggest that this model is insufficient for capturing the dynamical characteristics of
articulatory movements. In addition, the first-order model contains a greater number of
parameters (with quadratic and cubic terms), which is inevitable given the lack of terms for
controlling higher derivatives. This shows that the first-order model’s complexity is not
warranted due to its theoretical inadequacy. As a consequence, we do not consider this model
any further and move on to the second-order linear model.

5.3 Second-order linear model

Figure 9 shows data and predictions for the best-fitting second-order model for each
articulatory variable. In contrast to the first-order model in Section 5.2, the second-order
model is an excellent fit across position and velocity, the corresponding phase portrait, and the
Hooke portrait. Notably, the Hooke portraits show quasi-linearity, suggesting that the
dynamics are well approximated by harmonic motion (Beek & Beek, 1988). This is a key
signature of a linear oscillator, in contrast to the anharmonicity that would suggest nonlinear
dynamics.

We note that Figure 9 captures cases that correspond to highly linear models. The remainder
of this section focuses on these cases and their interpretation, but in Section 5.4 we explore cases
where the linear model fits worse and consider whether additional complexity is warranted. For
now, we turn to the second-order model that was discovered in Section 2. This equation took
the form in (23):
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Figure 9: Linear second-order model predictions showing time-varying position (row 1), time-varying
velocity (row 2), phase portrait (row 3), Hooke portrait (row 4). The SINDy scores for each model
are LA = 0.999, TD = 0.999, TR = 0.999, TT = 0.999

ẍ = −bẋ− k(x− T ) (23)

This corresponds to the form of a linear harmonic oscillator, but it is clear that the system
is not critically damped, as a critically damped version of (23) is unable to fit the symmetrical
empirical velocity profiles as accurately as seen in Section 4.2 (Sorensen & Gafos, 2016). How,
then, does the system achieve its equilibrium position? Figure 10 shows the trajectory with the
best fitting SINDy model (R2 = 0.999), which is a Tongue Root trajectory produced by speaker
JW45. The grey shaded area shows the empirical duration of the trajectory, with the dashed
black line showing the empirical data. The orange line shows SINDy predictions, which are
near-perfect fits to the data, but with an important characteristic: this is only true during the
time period that corresponds to the empirical trajectory. If we continue the simulation beyond
the trajectory’s original duration the system begins to oscillate.

To unpack this further, the dashed blue trajectory shows the trajectory that a critically
damped oscillator would need to take to reach the empirical target. This does reach the target,
but with a very early time-to-peak velocity, demonstrating the poor empirical fit of a critically
damped model. In contrast, the behaviour that the SINDy parameters capture is as follows.
It drives the system towards an equilibrium value T = 17.22 , which is the SINDy discovered
coefficient for T . This is below the empirical target T = 19.75 and is clearly not the true target
in the sense of the gestural system (i.e. the position value at the final velocity zero-crossing).
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To disambiguate, we henceforth refer to the actual empirical target at the velocity zero-crossing
as T and SINDy’s discovered virtual target as Tv (the term ‘virtual target’ is used entirely to
refer to the SINDy discovered target and we make no claims about its theoretical status at this
stage). Importantly, the SINDy discovered trajectory shows oscillatory behaviour if extended
beyond the empirical duration, as shown by the period after the grey shaded area (i.e. t > 0.13).
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Figure 10: Dynamics of the second-order linear model with SINDy-discovered parameters. The
dashed black line is the empirical trajectory with the best fitting model, the orange line is the
SINDy model prediction (T = 17.22, k = 592, b = 0.264, R2 = 0.999), the dashed blue line represents
the coefficients needed to reach the empirical target under the assumption of critical damping
(T = 19.75, k = 2500, b = 2

√
k). The grey shaded area corresponds to the duration of the empirical

trajectory, with the subsequent unshaded region showing the effects of continuing the simulation
beyond this duration. The label ‘SINDy target’ corresponds to the SINDy-discovered value of T ,
whereas the label ‘empirical target’ is the empirical position value corresponding to the final velocity
minimum.

How are we to relate the SINDy target Tv = 17.22 to the empirical target T = 19.75? The
horizontal dashed line in Figure 10 shows the value of Tv. We can see that the orange line reaches
this target twice: once before empirical T and once after empirical T , which is only visible if
we extend the simulation beyond the empirical duration of the fitted trajectory. The oscillation
is due to the lack of damping b ≈ 0, but there is a strong intrinsic relationship between T and
Tv, such that Tv can be easily derived from (24), which is equivalent to saying that the virtual
target is half the distance between the initial condition and T . We can then solve for T as in
(25).

Tv = x0 +
T − x0

2
(24)

T = 2Tv − x0 (25)

If we substitute (25) into our second-order harmonic oscillator model and rearrange terms
then we get (26). This suggests an alternative hypothesis, where the model contains k

2 (T + x0).
This new equation still requires tuning of b, k to avoid the system producing oscillations when
b < 2

√
k, which we address below, but it allows us to formulate a model where T captures

the empirically-observed target of the system. The only new parameter in the model is x0

(initial position), which any dynamical system necessarily already has access to in calculating a
trajectory, so it is still an autonomous system. The only modification here is the use of a more
complex constant term k

2 (T + x0).
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ẍ = −bẋ− kx+
k

2
(T + x0) (26)

The new equation captures cases where the velocity trajectory is very close to a half-cycle
sine wave, representing an undamped or minimally damped oscillator where b ≈ 0. For example,
if we use absolute-valued SINDy-discovered parameters for T, x0 based on Equation (25) then
|T | is strongly correlated with the positional value of |x| at the final velocity minimum during
LA (r = 0.94) and TR (r = 0.91), but only moderately correlated for TT (r = 0.71) and TD
(r = 0.82). There appears to be no discernible difference between opening/closing gestures, with
only minimally higher correlations for closing gestures (e.g. largest difference is LA closing r
= 0.94 vs. LA opening r = 0.92). The differences between articulatory variables could be a
consequence of potential differences in velocity segmentation quality. For example, correlations
under the simpler formulation ẍ = −bẋ − k(x − T ) are LA = −0.79, TT = −0.72, TD =
−0.83, TR = −0.91, suggesting that only LA benefits from the formulation in (26). The other
articulatory variables show greater variability in this respect, although the above example shows
a case where TR velocity is highly symmetrical, suggesting that it improves model fit for some
tokens, but is not otherwise detrimental. Despite this, we note that the mean b values differ
only slightly between articulatory variables, so this model’s improved performance for LA could
be a consequence of data processing (e.g. one-dimensional lip aperture vs. compression of
horizontal/vertical movements into a single dimension) or other properties of lip movements
(e.g. reduced coarticulation from neighbouring lingual movements).

Given the above, how are the appropriate parameters determined for a given duration? Figure
10 shows simulated trajectories based on the best-fitting model, where x0 = 14.65, T = 19.75.
The left panel of Figure 11 shows how changing k ∈ {500, 1000, 2000} results in the target being
met at shorter durations as k is increased (when b = 0). The system oscillates after target
achievement, due to the system being undamped, so the gesture must be deactivated at target
achievement. The right panel of Figure 11 shows that, for this example, target achievement
occurs when b = 0; when b is positive the trajectory is damped and undershoot occurs, when b
is negative overshoot occurs. We note that the version of the model with k

2 (T + x0) represents
a specific case where the intended target is met, velocity trajectories are symmetrical, and the
dynamics are highly linear.
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Figure 11: The effect of varying k on time-to-target achievement when x0 = 14.65, T = 19.75, b = 0.
The dashed line in the upper panel represents the value of T . (left). The effect of varying b for the
same trajectory, where k = 592.74 (right).

In summary, the best linear model appears to be an under-damped harmonic oscillator.
The model can be slightly improved by adding k

2 (T + x0), which relates the target to the initial
condition. This adds some degree of complexity, largely in the dynamics around the
equilibrium position, but note that this is not substantial and it fundamentally only involves
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adding a constant term to the standard harmonic oscillator model. It is worth further probing
the theoretical implications of such a model, but note that recent advances in nonlinear
modelling of speech gestures also incorporate information on initial position and movement
distance directly into the differential equation (Kirkham, 2025).

5.4 Adding complexity: second-order nonlinear model

Section 5.3 shows that a linear model can capture movement dynamics with high accuracy, but
recall that the selected examples were the best-fitting models. It should not be a surprise that a
linear model accurately models dynamics that show strong linear signatures. How representative
is this of the second-order model’s overall performance? Figure 12 repeats the Hooke portrait
for the best-scoring models (top row) and compares this with median-scoring models (second
row), 5th percentile scoring models (third row), and 1st percentile scoring models (fourth row)
for each articulatory variable in the linear model. The 1st and 5th percentile models are those
where only 1% or 5% of tokens are lower-scoring than these models. Note that the median
scoring models the R2 values range between [0.989, 0.992], the 5th percentile models are in the
range [0.936, 0.965], and the 1st percentile models are in the range [0.849, 0.915] . Recall that
these scores are based on position and velocity, not acceleration, which is why they look more
optimistic about the model’s performance compared with the Hooke portraits. The median
model is a good approximation of the data, while the 5th and 1st decile models struggle with
the greater nonlinearity between position and acceleration. Note that this failure of the model is
much clearer in the relationship between higher derivatives, because the comparison of position
and velocity trajectories for these tokens do not obviously reveal this behaviour.

The lower scoring models in Figure 12 correspond to cases where there is greater nonlinearity
in the relation between position and acceleration. This indicates anharmonicity and is not
within the scope of a linear harmonic oscillator (Sorensen & Gafos, 2016). In summary, while
the first-order model can capture nonlinearity in the Hooke portraits, it over predicts the extent
of nonlinearity and fails to adequately model the empirical characteristics of most of the data.
In contrast, a second-order linear model is a better empirical fit, but lacks the ability to capture
the nonlinearity present in some of the data. It stands to reason that a second-order nonlinear
model should combine the strengths of the two approaches.

Thus far, the results suggest a role for a nonlinear term in the second-order model. How
extensive is nonlinearity in the data? Figure 13 shows the degree of linearity in the Hooke
portrait for all trajectories, based on R2 values from by-trajectory linear regression fits between
position and acceleration (Mottet & Bootsma, 1999). Note that these R2 values only correspond
to the data and capture the linear fit between position and acceleration; they do not refer to any
fit between the second-order model predictions and the data. To disambiguate, we subsequently
refer to R2 values for the Hooke portraits as R2

H .
It is obviously challenging to pose a specific R2

H value that indicates nonlinearity in the Hooke
portrait, as opposed to an under-performing fit due to measurement or segmentation errors. The
lower row of Figure 13 (1st percentile) provides sufficient context, however, because the empirical
trajectories here are clearly nonlinear, with associated R2

H values of 0.9 (LA), 0.85 (TD), 0.82
(TR) and 0.83 (TT). This suggests that R2

H ≤ 0.9 certainly indicates substantial nonlinearity
that is outside of the scope of a linear model. Across all trajectories, an average of 69% of tokens
across articulatory variables have R2

H > 0.95, whereas 15% of tokens have R2 < 0.9. From this,
we can assume that approximately 30% of tokens have a substantial degree of nonlinearity and
that around half of these show extensive nonlinearity. Note that correlations between R2

H and
spatial displacement are r < 0.1 for all articulatory variables. This suggests that nonlinearity
does not straightforwardly interact with the magnitude of spatial displacement, as is predicted
by a nonlinear model (Sorensen & Gafos, 2016), although see Kirkham (2025) for a nonlinear
model where these dynamics are optionally under the control of the speaker.

That the majority of tokens show linearity in the Hooke portrait is why the linear model
in Section 5.3 shows good performance, but this analysis makes clear that a nonlinear term is
required in order to account for the full dynamics of articulatory trajectories. In this case, the
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Figure 12: Hooke portraits for second-order linear models with the highest score (top row), median
score (second row), 5th percentile score (third row) and 1st percentile score (fourth row) for each
articulatory variable.

Hooke portraits reveal that some of the additional complexity in the higher polynomial libraries
from Section 4.2 may be warranted. Figure 14 shows the same Hooke portraits for the 1st
percentile trajectory fits as in Figure 12 (lower row), but with with an additional cubic term in
the feature library. Models were fitted using the same SINDy SR3 algorithm, but with a custom
library comprising linear terms and a cubic term. The cubic term was initially constrained to
position-only, but the LA and TT models required both x3 and ẋ3 in order to improve on the
linear model. This is not necessarily unusual for models of human movement (Beek & Beek,
1988; Schöner, 1990) and there may be an advantage to the inclusion of nonlinear velocity terms
more generally, especially for modelling qualitatively distinct movement dynamics, such as limit
cycles (Kuberski & Gafos, 2023).

The nonlinear model clearly provides a better fit than the linear model for trajectories in
Figure 14, with the exception of TD, where SINDy fails to find an optimal model. This suggests
that the anharmonicity indicated by nonlinear relations between position and acceleration is well
within the scope of a nonlinear model, as shown by Sorensen & Gafos (2016). It is clear that
a single cubic term on position x3 can provide an excellent nonlinear fit for the TR variable
in Figure 14, while the poor fit for TD and presence of ẋ3 for LA and TT are more likely to
represent either (i) fitting to errors in the data; or (ii) a failure of the SR3 algorithm to find an
optimal solution.

Parameterization of the cubic model is clearly more challenging than the linear model and
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Figure 14: Hooke portraits for linear and cubic second-order models. Note that the models for LA
and TT contain x3 and ẋ3, whereas TD and TR only contain x3.

further tests showed that the SR3 algorithm failed to find an optimal fit for a cubic model
in many cases, despite the empirical data clearly being within the model’s scope. Indeed, a
cubic model cannot be easily derived by taking the SINDy coefficients for the linear model
and adding a cubic term. For example, the linear coefficient values in the discovered linear
and cubic models differ substantially, such that the linear model’s damping coefficient indicates
very weak damping, whereas the cubic model involves more substantial (but still sub-critical)
damping. One potential source of difficulty in model fitting may be the complexity of the cubic
coefficient, which can take on a very wide range of values depending on movement amplitude,
even if movement characteristics are otherwise similar. Kirkham (2025) outlines a method for
scaling the cubic coefficient by (actual or potential) movement amplitude. This constrains the
parameter search to the range [0, 1), which should improve model fitting and interpretability.
It may also be the case, as discussed above, that a cubic term on velocity is necessarily to fully
encompass the range of speech movements, which remains an open line of inquiry for future
research.

5.5 Interim summary

In summary, we have explored and interpreted three candidate models. The first-order model
is nonlinear, but analysis of phase and Hooke portraits revealed the insufficiency of this model
for capturing the full dynamics of the trajectories. We show that second-order linear model is a
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good approximation of the majority of the data, accurately capturing the dynamics for around
2/3 of trajectories, but there is significant nonlinearity in the Hooke portrait for around one
third of trajectories. This is to be expected given our liberal velocity threshold, as Kuberski &
Gafos (2023) show that thresholded segmentation can lead to under-estimates of the extent of
nonlinearity. It should be noted that we still find considerable evidence of quasi-linear relations
in the Hooke portrait, but a straightforward comparison between studies is challenging. For
example, Kuberski & Gafos (2023) only examine closing movements (whereas we examine
opening and closing movements) and they only examine repeated syllables at different
metronome rates (whereas we include a wider range of speech materials). Regardless, the
presence of nonlinearity points towards the need for greater model complexity, which can be
adequately captured with the addition of a cubic term.

Recall that in all cases the models are only minimally damped, which deviates from previous
models that assume critical damping. Specifically, a perfectly symmetrical velocity trajectory
can be achieved when the linear model is undamped, where the value of k determines time-to-
target achievement, but this requires a mechanism to deactivate the gesture upon reaching the
target. Finally, a nonlinear model is clearly required to account for around one third of the data.
This suggests that the movement dynamics of speech are fundamentally nonlinear, even though
the nonlinear force may be minimal in some cases. In summary, the nonlinear model that best
captures the full range of variation in the current data corresponds to a version of Sorensen &
Gafos (2016) model without critical damping

ẍ+ a(t)[bẋ+ k(x− T )− d(x− T )3] = 0. (27)

A more complex version of this model optionally transform the linear damping term bẋ into
a nonlinear damping force bẋ3

ẍ+ a(t)[bẋ3 + k(x− T )− d(x− T )3] = 0. (28)

In both cases, gestural dynamics are autonomous during activation, where a(t) is step
activation

a(t) =

{
1, t ∈ [ta, tb],

0, otherwise.
(29)

The following section now discusses the theoretical implications of these models, as well as
limitations and prospects for model discovery in cognitive science.

6 Discussion

6.1 An evaluation of discovered models

The first-order model initially shows good accuracy, in the sense that it provides an approximate
fit to position and velocity trajectories. At first glance, any issues with the first-order model may
appear to concern small deviations in fitting accuracy, but an analysis of the Hooke portraits
reveals more fundamental issues. Specifically, the first-order model fails to accurately reproduce
the relations between position and acceleration. In other words, what might look like minor
differences in quantitative accuracy for position and velocity estimation is actually a failure to
capture fundamental dynamics of the system. This renders a first-order autonomous model
insufficient for capturing articulatory dynamics and highlights the importance of exploring the
scope of the discovered model’s predictions, rather than only fitting to empirical trajectories.

The second-order model shows better empirical fits than the first-order model and the
highest-performing cases show excellent fits in the phase and Hooke portraits. Under the linear
interpretation we find that the target, stiffness and damping terms need to be tuned in just the
right way to meet the target in the specified time interval. The biggest differences between the
second-order model presented here and previous task dynamic models are (1) we relax the
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critical damping constraint; (2) target achievement is non-asymptotic. In other words, the
specific target value is achieved, rather than the system becoming asymptotically close.

A second-order linear model with minimal damping and a reformulation of the target term is
capable of accurately modelling the majority of articulatory trajectories. As with the first-order
model, however, cases of under-performance do not simply reflect minor issues in quantitative
fit or data quality issues. Instead, the Hooke portraits show that the linear model is incapable
of capturing the observable nonlinearity between position and acceleration, which occurs in
approximately one third of trajectories. This motivated a second-order nonlinear model with
a cubic term (Sorensen & Gafos, 2016), which is typically under-damped rather than critically
damped. While the nonlinear model is significantly more difficult to parameterize, it is able
to accurately model the observed nonlinearities. This confirms that the articulatory dynamics
of speech are fundamentally nonlinear and adds considerable support to the Sorensen & Gafos
(2016) model of articulatory control.

6.2 Autonomous dynamics and beyond

Beek & Beek (1988) outline a typology of dynamical models of rhythmic movement, including
(1) simple linear models with complex external forcing; (2) nonlinear autonomous models; (3)
nonlinear models with minimal external forcing. Approach (1) is a relatively common theme in
computational and modular models of mind, where movement models are simple and most of the
work is offloaded to a complex forcing function. This essentially reflects a view in which physical
movement is the implementation stage of highly complex cognitive processing. In contrast, the
present analysis has focused mainly on the second of Beek & Beek’s (1988) typology, if we also
allow the inclusion of some good-performing linear models. Indeed, we confirm that the intrinsic
dynamics of articulatory trajectories can be modelled without any explicit time-dependence
across a large database of 13,742 segmented trajectories. Our approach has been to assume very
simple step-activation driving of the system, with instantaneous change in parameters at specific
landmarks. However, this rather simple driving mechanism is likely insufficient, given that it
does not explain how the gestural system is driven from one target to another.

A more comprehensive dynamical model would likely occupy the third category of Beek &
Beek’s (1988) typology, with nonlinear gestural dynamics and an external forcing function F (t)
that drives between system states. A clear example concerns the forces that drive the initiation
and termination of gestures. This is particularly pertinent to the present study, as the linear
second-order model is close to undamped and the coefficients discovered for a cubic second-order
model are almost never critically-damped (but significantly more damped than the linear model).
This means that both models require some form of gestural suppression mechanism, otherwise
the system will inherently oscillate around the target. One proposal is state feedback on target
achievement (Tilsen, 2022; Burroni & Tilsen, 2022), where speakers use a combination of internal
and external feedback to open and close a gestural gating function. Parrrell, Ramanarayanan,
Nagarajan et al. (2019) also outline a model of hierarchical state feedback control, which combines
task dynamics with nonlinear state estimation.

An alternative proposal rejects the idea that gestures have bounded activation intervals
altogether, instead casting gestures as always active but varying in their force on the vocal
tract (Tilsen, 2018). Under this view, movement preparation is represented as a dynamic
neural planning field (Erlhagen & Schöner, 2002; Schöner, 2020), where articulatory control
variables correspond to a parameter field. Gestures act as inputs to the planning fields, with
the field’s activation centroid determining the parameter value. In this view, the parameters of
minimal dynamical models are re-cast as dynamic neural fields that generate continuous values
from activation across neural populations (Kirov & Gafos, 2007; Roon & Gafos, 2016; Tilsen,
2019a; Stern & Shaw, 2023; Kirkham & Strycharczuk, 2024). The task of model discovery thus
becomes uncovering the dynamics of neural fields that continuously parameterize gestural
systems. This view clearly situates gestural systems as explicitly non-autonomous, because
parameters are no longer constant and are constantly being fed by movement planning fields.

At this juncture, it should be noted that the distinction between autonomous and non-
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autonomous does not necessarily have to correspond to a distinction between intrinsic versus
extrinsic timing (Fowler, 1980), where the latter is associated with a central clock or time-keeper
(e.g. Turk & Shattuck-Hufnagel, 2020). It is self-evident that no living system is autonomous,
because interaction is a signature of life (Suprunenko, Clemson & Stefanovska, 2013), but the
present study shows that the intrinsic dynamics of independent gestures can be adequately
modelled as autonomous systems. That said, even if non-autonomous models turn out to be
the correct direction, any time-varying parameters may still be a consequence of coupling to
other dynamical mechanisms with their own intrinsic dynamics, rather than a central time-
keeper. This is consistent with accounts of interoceptive rhythms in brain and body that can
be coupled with the surrounding environment (e.g. Engelen, Solcà & Tallon-Baudry, 2023). To
this end, the most productive perspective may be a view of brain and behaviour as a complex
multi-scale system with interacting, coupled, and emergent dynamics (e.g. Tilsen, 2009; Favela,
2024; Goheen, Wolman, Angeletti et al., 2024; Kluger, Allen & Gross, 2024; Senkowski & Engel,
2024). It is the task of future research understand the nature of these dynamics of their coupling
relations.

6.3 Prospects for data-driven model discovery in cognitive science

A major aim of the present work was to discover dynamical models from data. In doing so, we
discovered some new models, but also leveraged extant models in improving on these discoveries,
such as the second-order nonlinear model in Sorensen & Gafos (2016). It is worth noting that
articulatory trajectories are comparably easier to model than some other dynamical mechanisms
in the cognitive sciences, but there remain a range of areas in which data-driven model discovery
represents a promising direction.

For example, any model that is concerned with the relationship between discrete categories
and their physical realisation must take seriously both signed and spoken languages. While there
is a very small amount of work exploring the possibility of a task dynamics of signed languages
(e.g. Mertz, Pagel, Turco et al., 2024), this represents a space where model discovery would be
particularly useful as a starting point, given appropriate kinematic corpora on signing. Debates
also abound on the appropriate dynamical representation of various kinds of disordered speech,
such as whether the addition of noise is sufficient (Mücke, Roessig, Thies et al., 2024), or whether
a different set of compensatory dynamics are involved.

While physical movements are obvious candidates for model discovery, this does not
preclude data-driven discovery of higher-level cognitive processes. This includes decision
making, perception and working memory, all of which can be cast as relatively simple
dynamical models (Schöner, Spencer & The DFT Research Group, 2016) and are, therefore,
potential areas where data-driven model discovery could be productive. More broadly, it is
likely that moving beyond intrinsic speech dynamics towards a larger agent-environment
system will also require a broader reconceptualization of the dynamical models we deploy, with
an open system tending towards massive degrees of interactivity and complexity. This is likely
to require a focus on how interacting task demands constrain the dynamics of brain and
behaviour, rather than attempting to model specific cognitive processes (Iskarous, 2016; Nau,
Schmid, Kaplan et al., 2024).

6.4 Limitations and future research

A productive avenue for future research would be more extensive comparisons between models
(e.g. Elie, Lee & Turk, 2023), especially on languages other than English (Geissler & Nellakra,
2024). This is important given the emergence of new nonlinear models (Stern & Shaw, 2024) and
ongoing developments in theories of articulatory control (Tilsen, 2016, 2018, 2020). It will be
particularly important to compare the qualitative predictions made by different models in order
to distinguish quantitative fit from qualitative adequacy (e.g. via phase and Hooke portraits). In
future research, we also hope to examine bi-directional coupling between the dynamics of neural
fields and the dynamics of nonlinear gestural models, which are likely mediated by dynamical
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feedback mechanisms (e.g. Parrrell, Ramanarayanan, Nagarajan et al., 2019; Tilsen, 2022). There
is extensive scope for model development in these areas, but attention should also be directed
towards developing rigorous ways of testing the predictions of different models.

A limitation of the current approach is temporal segmentation of gestures, and the method’s
reliance on accurate segmentation. We segmented signals at velocity zero-crossings, based on
well-understood characteristics of skilled movement dynamics. If two gestures overlap then we
are not able to distinguish them, or estimate the parameters of each gesture separately. But this
conceptualization is likely to be a gross simplification of the actual dynamics of gestures. As
discussed above, Tilsen (2019a) outlines a model in which gestures are always active, but most
are sub-threshold at any point in time. In terms of model discovery, this becomes a significantly
more complex task, but it is possible that a combination of sparse symbolic regression, predictive
control algorithms, and neural networks may prove a fruitful avenue for model discovery in this
area (Kaiser, Kutz & Brunton, 2018; Tilsen, 2020).

7 Conclusions

Discovering the dynamics that govern brain and behaviour is a major challenge in the cognitive
sciences. We have demonstrated one approach to meeting this challenge, applied to
articulatory movement dynamics in spoken language. Building upon decades of research in task
dynamics and Articulatory Phonology, combined with recent developments in machine learning
and equation discovery, we discover interpretable models directly from data. While a linear
second-order equation accurately models around two thirds of trajectories in the data, a
nonlinear (cubic) model is fundamentally necessary for accurately capturing the qualitative
dynamics of speech movements. This supports the proposal that articulatory dynamics are
well-modelled as a nonlinear autonomous system during periods of constant gestural activation.
This leads us to propose that the discovered models represent the dynamical laws of motion
that structure articulatory control in spoken language.
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