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Abstract

This study revises previous work by emphasizing the integration of surro-
gate models into query-based black-box adversarial attacks, showcasing their
effectiveness in reducing query counts and enhancing robustness. This ob-
servation highlights a critical gap in decision-based (hard label) approaches,
which have not yet effectively integrated surrogate models. In this paper, we
propose a novel decision-based approach to black-box adversarial attacks. By
utilizing intermediate layer features of the surrogate network and optimizing
the query feedback process, the proposed method achieves competitive results
with a significant reduction in query counts (up to 99.73% lower compared
to existing methods). Extensive experiments validate its performance across
diverse tasks, including image classification, object detection, and face recog-
nition. This work demonstrates the potential for enhancing the practicality
of decision-based attacks in real-world scenarios.
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1. Introduction

Adversarial machine learning, which includes both white-box and black-
box attacks (Reza et al., 2023; Li et al., 2024), has garnered significant atten-
tion due to its potential applications in critical areas such as image classifica-
tion, object detection, and face recognition. In the white-box attack setting
(Goodfellow et al., 2015; Carlini and Wagner, 2017; Moosavi-Dezfooli et al.,
2016), the attacker has full knowledge of the target neural network and its
weights. However, it is usually impractical to exploit information about neu-
ral networks in real-world scenarios. Therefore, black-box attacks are a set-
ting that is more in line with real-world attack scenarios. Black-box attacks
can be roughly divided into transfer-based, score-based, and decision-based
attacks. Score-based and decision-based attacks are collectively referred to
as query-based attacks. The black-box setting is the actual setting for ad-
versarial attacks with limited knowledge of neural networks. Transfer-based
adversarial attacks (Wang et al., 2021b) use a proxy model to generate ad-
versarial samples, and it does not exploit queries to obtain valid information
about the victim model. Score-based attacks (Chen et al., 2017) query the
target classifier’s predicted probabilities for all classes to estimate the gradi-
ent at each step and generate perturbations. However, this attack strategy
may not be feasible because in many real-world applications (Ran et al., 2025;
Liu et al., 2023; Muthalagu et al., 2025), the classifier only returns the top
1 classification label when responding to a query. Therefore, decision-based
adversarial attacks are the most realistic adversarial attacks because they al-
low the adversary to generate an adversarial example (Liu et al., 2025; Fang
et al., 2024; Shen and Li, 2025) by only querying the output label.

Most decision-based attacks are in the field of image classification, such
as BoundaryAttack (Brendel et al., 2018), HSJA (Chen et al., 2020), qFool
(Liu et al., 2019), GeoDA (Rahmati et al., 2020), QEBA (Li et al., 2020a),
and TA (Ma et al., 2021), which are based on finding a normal vector at
a point on the decision boundary of the classification task and iteratively
reducing the perturbation to search for a new boundary point. Among these
attacks, HSJA et al. use the estimated normal vector direction to get a
point in the adversarial region, and then apply binary search between the
obtained adversarial point and the source to get a new boundary point. qFool
Attack (Liu et al., 2019) and GeoDA (Rahmati et al., 2020) approximate
the boundary as a hyperplane and find a new boundary point by searching
along the direction of the estimated gradient. SurFree (Maho et al., 2021)
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also considers the hyperplane boundary and searches along the semicircular
path, but it does not use the information of the normal vector, but estimates
the attack direction through random trials. These decision-based attacks
do not consider the intrinsic characteristics of the image object itself. And
in the broader field of visual recognition, such as object detection and face
recognition, whether these boundary-based attacks can be directly applied
remains a question.

Some recent works (Cheng et al., 2019; Guo et al., 2019; Tashiro et al.,
2020; Yang et al., 2020) are based on the combination of transfer-based sur-
rogate model attacks and query-based attacks. Most of them are score-based
attacks (Yang et al., 2020) combined with local surrogate models. Query-
based attacks and transfer-based attacks are actually complementary. Query-
based strategies can benefit from better search directions, while transfer-
based strategies can benefit from query feedback, allowing it to dynamically
adjust surrogate hypotheses. Score-based attacks combined with local surro-
gate models are easier to implement because score-based attacks make loose
assumptions that they can obtain information such as logits of the victim
model. However, decision-based (hard label) attacks have more stringent
assumptions and cannot obtain information such as confidence, making it
difficult to estimate gradients in a fine-grained manner.

However, existing decision-based attacks often ignore the intrinsic fea-
tures of images and lack adaptive strategies for optimizing queries. This
study addresses these limitations by proposing a decision-based black-box
attack method that leverages surrogate models’ intermediate layer features
to guide query optimization dynamically. As shown in Figure 1, compared
with the traditional hard label attack, we used the surrogate model to ex-
plore the characteristics of the image object itself. The query hard label is
used as feedback information to optimize the process of the surrogate model
to generate the characteristics of the image itself. The intrinsic characteris-
tics of the image object generated by the surrogate model can guide the loss
update and reduce the number of queries.

Our contributions are as follows:

• We not only compare with the most advanced algorithms of hard la-
bel black box attack on image classification, but also generalize the
decision-based Boundary Attack attack in the classification field to ob-
ject detection and face recognition as a baseline.

• We designed an attack framework based on the surrogate model of the
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Figure 1: Compared with traditional hard label attacks, we use surrogate models to explore
the characteristics of image objects. We use hard label queries as feedback information to
optimize the process of generating image characteristics by surrogate model. The intrinsic
characteristics of image objects generated by the surrogate model can guide loss updates
and reduce the number of queries.

intermediate layer features plus a very small amount of query feed-
back, and verified it in image classification, object detection and face
recognition.

• We designed a new method to obtain the importance of the interme-
diate layer features, and designed the optimization implementation of
L2 norm and L∞ norm restrictions based on the algorithm loss

The remainder of this paper is organized as follows: Section 2 reviews re-
lated work, Section 3 describes the proposed method, Section 4 and 5 present
experimental results, Section 6 conducts ablation experiments, Section 7 dis-
cusses findings and limitations, and Section 8 concludes the study.

2. Related Works

Decision-based black-box attacks are the most end-user-friendly attack
setting. The only available information for this type of attack is the output
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label of the target neural network. Therefore, decision-based black-box at-
tacks are the most challenging setting to obtain adversarial examples. The
Boundary Attack (Brendel et al., 2018) algorithm performs a random walk
along the decision boundary to reduce the perturbation of the query. To
improve the performance of (Brendel et al., 2018), Biased Boundary Attack
(Brunner et al., 2019), OPT (Cheng et al., 2018), and Rays (Chen and Gu,
2020) proposed random search optimal directions such as reducing the search
space to reduce perturbations. In (Dong et al., 2019), an evolutionary attack
method is proposed, which draws random samples from a normal distribution
with a custom covariance in a simplified search space. AHA (Li et al., 2021)
generates random samples from a normal distribution using the average of
historical queries. Triangle Attack (TA) (Ma et al., 2021) is based on the geo-
metric relationship between benign examples, current and future adversarial
examples, forming a triangle in a subspace at each iteration. SurFree (Maho
et al., 2021) is a model-free algorithm that claims that queries that bypass
normal estimation will improve query efficiency. On the other hand, there
are also attacks that rely on estimating normal vectors at boundary points.
HSJA (Chen et al., 2020), qFool (Liu et al., 2019), QEBA (Li et al., 2020a),
GeoDA (Rahmati et al., 2020), and TA (Ma et al., 2021) use the estimated
normal vector direction to obtain a point in the adversarial region, and then
apply binary search between the obtained adversarial point and the source to
obtain a new boundary point. CGBA (Reza et al., 2023) is a geometry-based
normal vector estimation for classification tasks, that is, gradient. However,
these algorithms rely on more assumptions than search-based methods and
may not be directly applicable to tasks with complex losses such as general-
ized object detection and face recognition. These decision-based attacks also
do not consider the intrinsic characteristics of the image objects themselves.
Decision-based black-box attacks have evolved as one of the most challenging
paradigms in adversarial machine learning. Early methods, such as Boundary
Attack and its variants, rely on random walks along decision boundaries to
minimize perturbations. More recent methods, including HSJA and SurFree,
aim to enhance query efficiency by refining search strategies. However, these
approaches generally fail to consider the intrinsic characteristics of images or
the transferability benefits offered by surrogate models. We summarize the
existing classic boundary based methods in Table 1.

Recently, the combination of transferability-based surrogate model at-
tacks and query-based attacks has become a hot topic in black-box attack
research. Transferability-based attacks consider improving the transferabil-
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Table 1: Comparison of Existing Methods in Boundary-based Adversarial Attacks

Method Year Boons (Strengths) Limitations

Boundary
Attack

2018 Simple and efficient, low per-
turbation.

Slow convergence for complex
models.

OPT 2018 Faster convergence with lower
perturbations by reducing
search space.

Depends on a good search di-
rection, may not suit all mod-
els.

HSJA 2020 Efficient boundary explo-
ration with gradient-based
normal vector estimation.

Needs a boundary model, not
always applicable.

AHA 2021 Adapts using historical
queries to minimize perturba-
tions.

Requires many queries for op-
timization, less effective on
complex models.

SurFree 2021 Model-free, avoids surrogate
models, and flexible across
tasks.

Dependent on query quality,
inefficient for complex models.

CGBA 2023 Geometry-based normal vec-
tor estimation for efficient
boundary exploration.

Limited to tasks with simpler
decision boundaries.

ity of adversarial examples generated by local surrogate models on black-box
models. Some works (Dong et al., 2018; Lin et al., 2019; Wang and He, 2021;
Xie et al., 2019; Li et al., 2020b; Wu et al., 2021; Wang et al., 2021a) en-
hance the transferability of adversarial examples by perturbing the output
layer. Other works (Wang et al., 2021b; Zhang et al., 2022; Li et al., 2024)
focus on maximizing internal feature perturbations to improve transferabil-
ity. The combination of local surrogate models and score-based attacks is
the attack setting considered by many black-box attacks (Cheng et al., 2019;
Guo et al., 2019; Tashiro et al., 2020; Yang et al., 2020). Query-based at-
tacks and transferability-based attacks are actually complementary. Query-
based strategies can benefit from better search directions, while transfer-
based strategies can benefit from query feedback, allowing it to dynamically
adjust alternative hypotheses. It is easier to combine score-based attacks
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with local substitution models because score-based attacks have loose as-
sumptions and can obtain information such as the confidence of the victim
model. However, decision-based (hard label) attacks have more stringent
assumptions and cannot obtain information such as confidence. Combining
hard label attacks with transfer-based methods remains challenging.

Threats to Validity. Potential biases in reviewed studies, such as limited
datasets or overly simplistic experimental setups, may impact generalizabil-
ity. To address these, our work employs comprehensive benchmarks, includ-
ing ImageNet, COCO, and LFW datasets, under strict black-box conditions.

3. Method

We use the perturbation method to generate the perturbed image x′ =
x + δ, where δ represents the perturbation vector of the same size as the
input image x. To ensure that the perturbation is imperceptible to humans,
we usually limit its p-norm to be less than a threshold, i.e., ∥δ∥p ≤ ϵ. For
example, the L2 norm or L∞ norm is usually adopted. This adversarial
attack on the victim model f can be generated by minimizing the so-called
adversarial loss function L, so that the output f(x+δ) is as close as possible to
the desired (adversarial) output. Specifically, the attack generation function
maps the input image x to the adversarial image x′, so that the output f(x′)
is different from the original output y. The perturbation vector δ is added
to the input image x to generate the adversarial image x′ = x + δ. The
perturbation is constrained using the L2 or L∞ norm, so that ∥δ∥p ≤ ϵ.

As shown in Figure 1, in our experiments, we use the L2 norm or L∞
norm to limit the maximum level of perturbation. Our goal is to find δ such
that the perturbed image x′ = x + δ can destroy the victim visual model
f and make incorrect predictions. Assume that the original prediction for
the clean image x is y = f(x). The attack target is f(x′) ̸= y, where y
is the clean label. For the victim model f(x), ”hard label” means that
only the final label result is output, and the logit vector of the last layer
cannot be used. For classification models, the label y ∈ R is a scalar. For
object detection, the prediction model can have a more complex output space,
generally outputting y ∈ RK×6, where K is the number of detected objects,
and each object label and position is encoded in a vector of length 6, which
includes the object category, bounding box coordinates, and confidence score.
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Figure 2: This shows the process of obtaining weighted feature maps by our method. Given
an input image, feature maps are extracted from an intermediate layer of alternative mod-
els. Then, the feature maps are randomly masked, and the gradients are back-propagated
from the calculated output to the feature map, and the gradients are added as the feature
importance. After element-wise multiplication of the feature map and the normalized gra-
dient, the perturbed intermediate layer features are point-multiplied with the aggregated
gradients.

For face recognition, the model determines whether the face image is the same
person and outputs the label y ∈ R.

3.1. Intermediate Layer Feature Extraction

In this section, we introduce how to use the surrogate model to extract
intermediate layer features and the corresponding aggregated gradients. The
perturbation of the intermediate layer features is inspired by the aggregation
gradient methods such as FIA (Wang et al., 2021b) and Smoothgrad (Smilkov
et al., 2017). For most DNN-based visual models, it has been experimentally
proven that surrogate models (Szegedy et al., 2016), (Wang et al., 2021b), and
(He et al., 2016) are inclined to extract semantic features. These features are
the basis for the perception of target objects, thereby effectively improving
classification accuracy. Disrupting those image attribute perception features
that guide all model decisions may be a favorable direction for adversarial
generation.
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We first obtain the most important area of the image for all model deci-
sions. This part of the area is the area with transfer characteristics, that is,
the area where the essential features of the object are located. Our gradient
represents the importance of the feature. The direct derivation of the model
decision result for the image is similar to the simplest model interpretation
method. Because the model interpretation method is for the image. And our
method is for the intermediate layer feature maps of different layers.

We use the perturbation re-aggregation method to reduce the influence of
the specificity of a single model and highlight the characteristics of the object
itself. The aggregated gradient is equivalent to the weight, which is a weight
matrix used to reduce important features. Let f represent the surrogate
model, the feature map starting from the i-th layer is represented as Zi, and
J(x) represents the original objective function of the model, whose output is
logit. Since the importance of a feature is proportional to its contribution to
the final decision, an intuitive strategy is to obtain the gradient as follows:

∆i =
∂J(x)

∂Zi

(1)

Furthermore, to reduce the influence of single model features and focus
on the characteristics of the object itself, we calculate the aggregation gradi-
ent within a small neighborhood. The aggregation gradient is calculated as
follows:

∆̄i =
1

C

N∑
n=1

∆
Zi⊙Mn

p

i (2)

Here, MP is a binary matrix of the same size as Zi, where ⊙ represents the
element-wise product, and C is obtained by the L2 norm on the corresponding
summation terms. N represents the number of random masks applied to
the intermediate layer features Zi. The aggregated gradients ∆̄i highlight
regions of robust and critical object-aware features that can guide adversarial
examples towards more transferable directions. We monitor the training
and validation losses during the optimization process to ensure the model
converges effectively. The training loss is defined as the average adversarial
loss over the training dataset, while the validation loss is computed similarly
over the validation set.
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Algorithm 1 Generate Adversarial Perturbations of Surrogate Model

Require: Clean image x, loss function L, surrogate model f , original objec-
tive function J , maximum perturbation ϵ, number of iterations T

Ensure: Adversarial image x′ for surrogate model f
1: Initialize: ∆ = 0, g0 = 0, α = ϵ/T , x′ = x
2: for t = 0 to T − 1 do
3: ∆̄t+1

i = λ ·∆t
i +

∇ziJ(x
′)

∥∇ziJ(x
′)∥1

4: gt+1 = µ · gt + ∇x′L(x
′)

∥∇x′L(x
′)∥1

5: x′
t+1 = Clipϵ {x′

t − α · sign(gt+1)}
6: t = t+ 1
7: end for
8: return x′

T

Algorithm 2 FeatureBA Attack Algorithm

Require: Clean image x, loss function L, a victim black-box model v, a
surrogate model f , maximum perturbation ϵ, parameter space H of sur-
rogate model

Ensure: Adversarial image x′ of the black-box victim model v
1: Initialize: ∆ = 0, g0 = 0, α = ϵ/T , x′ = x
2: while True do
3: Depth First Search on H get {i, N , P}
4: ∆i =

∂J(x)
∂Zi

5: ∆̄i =
1
C

∑N
n=1∆

Zi⊙Mn
p

i

6: L(x′) = ∆̄i ⊙ Zi

7: Update x′ with momentum method as Algorithm 1
8: Query black-box model v using x′

9: if x′ is adversarial then
10: return x′

11: break
12: else
13: Depth First Search H, get new {i, N , P}
14: Repeat line 4 to line 13
15: end if
16: end while
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3.2. Query Feedback Optimization Algorithm

In this subsection, we introduce how to combine query information and
aggregate gradients and give an attack algorithm. We use the importance of
the above features (i.e., aggregate gradients ∆̄i) to guide the loss function L
of the adversarial example x′ by explicitly suppressing important features.

L(x′) = ∆̄i ⊙ Zi (3)

We define the loss of our surrogate model to generate adversarial pertur-
bations as the dot product of the aggregate gradient and the feature map of
the intermediate layer. As shown in Figure 2, Important features will produce
relatively high values in ∆, which indicates that the model recognizes features
to output the correct label. The goal of generating transferable adversarial
samples is to reduce important features with high ∆ and increase important
features corresponding to low ∆. Therefore, by minimizing the loss function
equation, adversarial examples can be directly guided to develop in a more
transferable direction. We use a momentum-based optimization method to
solve the loss. And we give the L∞ solution Algorithm 1 for the surrogate
model under the maximum limit perturbation ϵ. In particular, for L2 norm
bound perturbations, we use x

′
t+1 = x

′
t−α · gt+1

∥gt+1∥2 to replace the correspond-

ing update part of the algorithm for x′. We choose the L2 and L∞ norms
to limit the perturbation size because they offer different trade-offs in terms
of smoothness and visibility of the perturbation. The L∞ norm constrains
the maximum change per pixel, ensuring imperceptibility, while the L2 norm
provides a more globally smooth perturbation.

How to use the information fed back by black-box queries to optimize the
surrogate model and use the intermediate layer features to generate adver-
sarial perturbations is also the main problem we solve. When the surrogate
model generates adversarial perturbations, it is affected by layer i, the num-
ber of aggregations N , and the probability of mask perturbation P . The
perturbations generated by the surrogate model determined by these param-
eters are different. And these conditions can be guided by the information
fed back by black-box queries to optimize. Therefore, we search the space
Hi×N×P spanned by the parameters {i, N, P} of the surrogate model. The
space spanned by the parameter set of the surrogate model is small, which is
why we have fewer queries. Therefore, we can use a simple depth-first search.
See Algorithm 2 for details of the proposed FeatureBA.
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The computational complexity of FeatureBA is O(T ·N ·D), where T is
the number of iterations, N is the number of random masks, and D is the
dimensionality of the intermediate layer features. The memory complexity
is O(D), as we store the intermediate layer features and their gradients.

4. Experiments on Image Classification

To evaluate the effectiveness of our approach, we conduct extensive ex-
periments on attacking image classification, object detection, and face recog-
nition models. We first show the attack performance on image classification.
All experiments were performed on NVIDIA 3090Ti GPU.

4.1. Datasets and Victim Models

We use the ImageNet dataset (Deng et al., 2009) as the experimental
dataset for image classification. The ImageNet dataset consists of 1,000
classes, with over 1,200,000 training images and 50,000 validation images.
For each image, we resize it to a fixed size of 224 × 224, and normalize the
pixel values to have a mean of 0 and a standard deviation of 1. We use
the ImageNet dataset due to its large size and diversity of object categories,
which allows for comprehensive evaluation of our proposed adversarial attack
method across a variety of real-world classification tasks. We use 70% of the
ImageNet data for training, 15% for validation, and 15% for testing. This
standard split ensures sufficient training data while maintaining an indepen-
dent validation and test set to evaluate the performance of our attack method.
We use 1,000 correctly classified test images. For each victim model (tar-

get model), we randomly select 1,000 image-label pairs from the validation
set of ILSVRC2012 and are correctly classified by the victim model. Images
are resized to 3×224×224 as input to the classifier. The victim models we
choose are classifiers pre-trained on the ImageNet dataset. The victim mod-
els include VGG16 (Simonyan and Zisserman, 2015), Inception-V3 (Szegedy
et al., 2016), and ResNet152 (He et al., 2016). In order to create a rigorous
black-box environment, we choose a simple local white-box model ResNet18
(He et al., 2016) that is different from the above victim models as an alterna-
tive model. All neural networks used are available through the open-source
pre-trained models of PyTorch/torchvision.

We use the perturbation L2 and L∞ norms bound and the number of
queries as evaluation indicators. We give the same L2-norm and L∞ norm
perturbation budgets to the attack methods, and the number of queries for
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these attack methods determines the effectiveness of the attack. The L2 norm
is computed as follows:

L2 =

√√√√ n∑
i=1

(xi − yi)2 (4)

where xi and yi are the pixel values of the original and perturbed images,
respectively. The L∞ norm is defined as:

L∞ = max(|xi − yi|) (5)

We use these norms to measure the imperceptibility of the perturbations,
ensuring that the adversarial examples are visually similar to the original
images.
Assume that x is the L∞ distance (i.e., the maximum change applied to each
pixel), the image has a height h, a width w, and 3 color channels (e.g., RGB).
The total number of pixels in the image is h × w × 3. The L2 distance is
computed by summing the square of the L∞ distance across all pixels and
then taking the square root:

L2 =
√

(h× w × 3)× x2 (6)

This equation shows that the L2 distance is proportional to the square root
of the product of the number of pixels and the square of the L∞ distance.
Intuitively, it aggregates the pixel-wise changes represented by the L∞ dis-
tance into a single metric that accounts for the entire image. The number of
queries is used as an evaluation criterion to measure the efficiency of the at-
tack method. Fewer queries indicate a more efficient attack, which is crucial
for real-world adversarial attacks where query limits may exist.

4.2. Comparison Methods

In image classification, we compare with BoundaryAttack Brendel et al.
(2018) and Surfree Maho et al. (2021) algorithms. Boundary Attack Bren-
del et al. (2018) is the earliest decision-based black-box attack method. It
performs random walks along the decision boundary to reduce the perturba-
tion of queries. SurFree Maho et al. (2021) is a model-free algorithm that
claims that queries that bypass normal vector estimation will improve query
efficiency. We compare with SurFree because SurFree is the most advanced
decision-based black-box attack method.
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In object detection and face recognition, we compare with BoundaryAt-
tack Brendel et al. (2018) algorithm. Boundary Attack Brendel et al. (2018)
is the earliest decision-based black-box attack method. It performs random
walks along the decision boundary to reduce the perturbation of queries. We
improved BoundaryAttack based on the outputs of object detection and face
recognition.

For the comparison method we used, the original prediction for the clean
image x is y = f(x). The attack target is f(x′) ̸= y, where y is the clean
label. For the victim model f(x), ”hard label” means that only the final label
result is output, and the logit vector of the last layer cannot be used. For
classification models, the label y ∈ R is a scalar. For object detection, the
prediction model can have a more complex output space, generally outputting
y ∈ RK×6, where K is the number of detected objects, and each object
label and position is encoded in a vector of length 6, which includes the
object category, bounding box coordinates, and confidence score. For face
recognition, the model determines whether the face image is the same person
and outputs the label y ∈ R.

4.3. Results

We selected Boundary Attack and Surfree algorithms and conducted com-
parative experiments with our attack methods. We attacked the current
7 mainstream image classification models ResNet34, ResNet152, VGG16,
DenseNet201, EfficientNet-b0, Inception-v3, and AlexNet, and measured the
number of queries to the black-box model when 100 adversarial samples were
successfully generated under the conditions of L∞ norm of 10/255, 20/255,
30/255 and L2 norm of 15.21, 30.42, and 45.64. The experimental results
are shown in Table 2. The visualization of adversarial examples is shown in
Figure 3. Table 2 shows the average number of queries required to gener-
ate 100 adversarial samples for different models under various perturbation
constraints. Our method (FeatureBA) consistently outperforms Boundary
Attack and Surface, demonstrating its efficiency in generating adversarial
examples.

Whether under the L2 norm or the L∞ norm, for the selected classifi-
cation model, the order of magnitude of the query of our attack method is
significantly smaller than that of Boundary Attack and Surfree. For example,
under the condition of L∞ norm of 20/255, the average number of queries
of the black-box by Boundary Attack against the DenseNet201 model is as
high as 10460.76 times, and the number of queries of Surfree also reaches
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Table 2: The average number of queries of our algorithm and the comparison algorithm.

L∞ 10/255 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 7443.12 10378.03 6091.38 9504.29 8940.2 5269.26 2826.96

Surfree 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

FeatureBA(Ours) 37.14 117.26 54.43 152.09 147.76 112.85 19.46

L∞ 20/255 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 8331.92 8650.54 7022.26 10460.76 10013.96 6297.57 3020.03

Surfree 5000.00 5000.00 3042.87 5000.00 5000.00 2908.36 5000.00

FeatureBA(Ours) 13.18 45.05 7.21 70.94 38.24 57.75 12.68

L∞ 30/255 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 6061.55 7278.09 5377.12 9258.11 8505.13 4787.53 3865.32

Surfree 2398.12 5000.00 1272.49 5000.00 3166.35 1341.19 1064.45

FeatureBA(Ours) 8.82 25.73 6.16 27.42 19.53 29.61 6.73

L2 15.21 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 5302.26 6232.55 2920.70 7263.15 6780.65 4876.74 2984.56

Surfree 727.18 1854.37 585.47 1878.71 1304.46 630.19 798.54

FeatureBA(Ours) 13.08 48.21 12.02 84.76 58.12 64.83 8.11

L2 30.42 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 2196.02 2807.74 1203.18 3362.74 3463.76 2155.22 1043.34

Surfree 346.30 658.08 113.91 965.46 477.78 273.33 32.57

FeatureBA(Ours) 6.32 19.32 5.39 20.96 13.65 17.42 2.52

L2 45.64 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

Boundary 1211.90 1343.32 570.68 1921.52 1856.78 1218.64 410.36

Surfree 45.46 275.54 57.78 291.25 181.14 65.15 31.11

FeatureBA(Ours) 6.11 12.19 4.02 16.74 7.96 10.17 4.05

5000 times, which is the maximum number of attacks we set. In contrast,
our attack method only needs 70.94 queries; under the condition of L∞ norm
20/255 perturbation constraint, the attack on ResNet34 is much smaller than
that of Boundary Attack. Our attack method reduces the number of queries
to the black box by 99.84%, which is 99.73% lower than that of Surfree. Com-
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pared with the query times of ResNet152 and ResNet34, the query times
of ResNet152 are higher than those of ResNet34 regardless of the attack
method. The more complex the model architecture is, the more queries are
required for the black-box model. Our method significantly reduces the num-
ber of queries compared to Boundary Attack and Surface, as shown in Table
2. This is because FeatureBA leverages intermediate layer features of surro-
gate models, which guide the attack process more effectively. The reduction
in queries has practical implications for real-world adversarial attacks, where
query limits are often imposed. The query counts for ResNet152 are higher
than those for ResNet34, indicating that more complex model architectures
require more queries to generate adversarial examples. This suggests that our
method is particularly effective for simpler models, but may require further
optimization for more complex architectures.

Figure 3: Adversarial examples, perturbation noise, and attention generated by our algo-
rithm and comparison algorithms on image classification.

4.4. More Experimental Results

In image classification, we selected Boundary Attack and Surfree algo-
rithms and conducted comparative experiments with our attack method.
We attacked the current 7 mainstream image classification models ResNet34,
ResNet152, VGG16, DenseNet201, Efficientnet-b0, Inception-v3, and Alexnet,
and measured the number of queries on the black box model. In order to
more intuitively show the experimental results, we show in Figure 4 - 10, the
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number of queries for each of the 20 adversarial examples that were success-
fully attacked under the L2 norm condition of 30.42.

Figure 4: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42

Figure 11 shows the adversarial examples, noise, and attention maps of
our algorithm and the comparison algorithm when attacking the black-box
model in the image classification task. All attack methods successfully attack
the image. Given adversarial examples from different attack methods, the
attention map is calculated according to different target models. Adversarial
examples are successfully attacked images randomly selected from the test
set.

5. Experiments on Object Detection and Face Recognition

In this section, we evaluate the effectiveness of our method on object
detection and face recognition, and compare it with other algorithms.

5.1. Object Detection Dataset and Victim Model

We choose the widely used COCO 2017 dataset (Lin et al., 2014) and var-
ious model architectures and weights pre-trained on the COCO 2017 dataset
to evaluate the effectiveness of our attack method. COCO (Common Objects
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Figure 5: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42

Figure 6: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42
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Figure 7: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42

Figure 8: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42
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Figure 9: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42

Figure 10: In the image classification task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 30.42
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Figure 11: In the image classification task, adversarial examples, noise and attention maps
of our algorithm and the comparison algorithm when attacking the black-box model. All
methods are under the constraint of L2 norm bound 30.42.

in Context) is a widely used computer vision dataset designed to provide rich
contextual information, including a large number of multi-category objects,
dense annotations, and multiple task scenarios. This dataset was created by
Microsoft and is widely used for tasks such as object detection, segmenta-
tion, and key point detection. The COCO dataset contains about 330,000
images, of which about 200,000 images are annotated, including objects in
80 categories, and 360,000 object instances for training models. We eval-
uate the attack performance on the Pascal VOC 2007 (Everingham et al.,
2010) dataset. The pre-trained model we use is trained on COCO because
COCO contains 80 object categories (a superset of the 20 categories of the
VOC dataset). When testing on the VOC dataset, we only return objects
that exist in VOC. The VOC dataset contains 20 categories. We follow the
settings in (Cai et al., 2023, 2022) and randomly select 500 images containing
multiple (2-6) objects from the VOC 2007 test set. And these images can
be successfully recognized by the pre-trained model. We choose the widely
used YOLO series model as the victim model. These victim models are pre-
trained on the VOC dataset. We choose YOLOv4 as the victim model. In
order to create a strict black-box environment, we choose YOLOv3, which is
different from the victim model, as a surrogate model.

We use the perturbation L2 norm and the number of queries as evaluation
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indicators. We give the same L2-norm perturbation budgets to the attack
methods, and the number of queries for these attack methods determines the
effectiveness of the attack. The goal of all attack algorithms is to minimize
the average number of queries required to obtain 100 successful adversarial
examples. The perturbation budgets we give for the L2 norm are 28.25,
56.51, and 84.76. The image size is [416, 416, 3].

Figure 12: Clean image, adversarial examples and perturbation noise generated by our
algorithm for object detection.

5.2. Face Recognition Dataset and Victim Model

We use the LFW (Huang et al., 2008): Labeled Faces in the Wild dataset
to verify the effectiveness of our attack method. LFW is a face recognition
dataset containing 13,233 images collected from 5,749 websites of different
topics. Each image is annotated with the real identity of the face. The LFW
dataset is mainly used to evaluate the accuracy of facial recognition systems
and is often used to benchmark the performance of models on real-world
datasets. We randomly sampled 1,000 pairs of faces of different identities to
evaluate the attack performance.

The FaceNet (Schroff et al., 2015) face recognition model is a face recog-
nition algorithm published by Google in 2015. It uses the characteristics that
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the same face has high cohesion in photos of different angles and postures,
and different faces have low coupling. It also proposes the use of CNN (Con-
volutional Neural Network is a class of deep learning models designed for
processing structured grid data, such as images, by leveraging convolutional
layers to automatically extract hierarchical features.) + Triplet Mining to
achieve face recognition tasks, and the accuracy rate on the LFW dataset
reached 99.63%.

We chose the FaceNet face recognition model with MobileNet V1 as the
backbone network as the surrogate model, and downloaded its weight ob-
tained by training on the CASIA-WebFace face dataset. We selected the
FaceNet face recognition model with the backbone network of Inception-
ResNet V1 as the victim model for testing, and downloaded the weight ob-
tained by training it on the CASIA-WebFace face dataset.

For the trained face recognition model, we need to determine its threshold
for judging whether two face images belong to the same person. The discrim-
ination thresholds of the FaceNet face recognition models with the backbone
networks of MobileNet V1 and Inception-ResNet V1 were measured, and
the LFW dataset was selected as the test dataset. Under the condition of
FAR<0.001, the threshold T with the largest TAR was used as the discrim-
ination threshold of our model. After the measurement, the discrimination
threshold result of the FaceNet model with the backbone network of Mo-
bileNet V1 was 1.150, and the success rate of its model discrimination was
98.28%; the discrimination threshold result of the FaceNet model with the
backbone network of Inception-ResNet V1 was 1.170, and the success rate of
its model discrimination was 98.73%. The performance of the two backbone
network models is basically similar.

We use the perturbation L2 norm and the number of queries as evaluation
indicators. We give the same L2-norm perturbation budgets to the attack
methods, and the number of queries for these attack methods determines the
effectiveness of the attack. The goal of all attack algorithms is to minimize
the average number of queries required to obtain 100 successful adversarial
samples.

The perturbation budgets we give are L2 norms of 10.86, 21.73, and 32.60.
When the image size is [160, 160, 3], these L2 norm perturbation budgets
correspond to the perturbation levels used for evaluating attack methods.
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Table 3: The average query count of our algorithm and the comparison algorithm in object
detection and face recognition respectively

Task L2 bound Boundary Ours

Object Detection
28.25 6153.74 9.66
56.51 3356.76 3.47
84.76 2117.56 3.48

Face Recognition
10.86 15572.4 348.44
21.73 9236.7 341.3
32.60 3002 328.93

5.3. Results

We have expanded the application scenarios of the attack method. Since
the accuracy of target detection is also highly correlated with the classifi-
cation model, we apply our attack method to the target detection model.
We attack the target detection model YOLO v4 and measure the number
of queries to the black-box model when 100 adversarial samples are success-
fully generated under the conditions of L2 norm of 28.25, 56.51, and 84.76.
The experimental results are shown in Table 3. Whether under the L2 norm
conditions, for the selected target detection model, the order of magnitude
of our attack method’s queries is significantly smaller than that of Boundary
Attack; under the condition of L2 norm of 56.51, our improved Boundary
Attack for target detection needs 3356.76 queries, and our attack method
only needs 3.47 queries, and the number of queries has dropped by 99.90%.
Visualization of adversarial examples is shown in Figure 12.

Figure 13: Clean image, adversarial examples and perturbation noise generated by our
algorithm for face recognition.
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Figure 14: In the object detection task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 56.51

Figure 15: In the face recognition task, the number of queries per sample of our method
and the comparison method under the constraint of L2 norm bound 21.73
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In addition, we also applied this method to the field of face recognition,
attacking the face recognition model facenet, and measured the number of
queries to the black-box model when the L2 norm is 10.86, 21.73, and 32.60,
and 100 adversarial samples are successfully generated. The experimental
results are shown in Table 3 and visualization in Figure 13. Whether under
the L2 norm conditions, for the selected face recognition model, the number
of queries of our attack method is significantly smaller than that of Boundary
Attack. Under the condition of L2 norm of 10.86, our improved Boundary
Attack for face recognition needs 15572.4 queries, while our attack method
only needs 348.41 queries, a decrease of 97.76%. However, since the face
recognition task is a vector distance comparison, it requires more queries
than image classification and object detection tasks. In object detection
and face recognition, we compare with BoundaryAttack algorithm. we show
in Figure 14 and 15, the number of queries for each of the 20 adversarial
examples that were successfully attacked. For the selected victim model, the
order of magnitude of queries of our attack method is significantly smaller
than that of Boundary Attack and Surfree.

6. Ablation Study

The key of the proposed FeatureBA is to perform random masking and
aggregate gradients for the intermediate layer features Z, which significantly
improves the transferability, thus reducing the number of queries. As shown
in the above results. To highlight the contribution of the algorithm, we
conducted an ablation study to compare the performance of the algorithm
without aggregated gradients and without considering gradients. We con-
structed three objective functions as shown below, where L1 is equivalent to
the loss we proposed (Equation 7), L2 = ∆i⊙Zi is the use of non-aggregated
gradients, and L3 = Zi uses the feature map directly as the loss function.

L1 = (
1

C

N∑
n=1

∆
Zi⊙Mn

p

i )⊙ Zi (7)

As shown in Figure 16, in all cases, the proposed loss L1 outperforms
other losses, indicating the effectiveness of the proposed FeatureBA. Recall
the ablation experiment in the main text, we conducted an ablation study to
compare the performance of the algorithm without aggregated gradients and
without considering gradients. We present the average number of queries for
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Table 4: Comparison of the average query times of the three losses in the ablation study.

L∞ 20/255 average query count

Method ResNet34 ResNet152 VGG16 DenseNet201 Efficientnet-b0 Inception-v3 Alexnet

L1 12.31 45.05 7.21 70.94 38.24 57.75 12.68

L2 14.12 52.21 8.23 75.67 46.67 58.48 14.71

L3 13.01 53.18 8.74 71.68 44.55 60.19 14.99

attacking each black-box model using Resnet18 as a surrogate model with
L1, L2, and L3 losses in Table 4. The goal of all attack algorithms is to
minimize the average number of queries required to obtain 100 successfully
attacked adversarial examples. The perturbation limit for ablation study is
the L∞ norm bound 20/255.

12.31
14.1213.01

45.05

52.2153.18

70.94

75.67

71.68 

12.68
14.71

14.99

7.21
8.23 8.74

57.75
58.48

60.19

38.24

46.67
44.55

Figure 16: The impact of the aggregated gradient of the intermediate layer features on
the number of queries. L1 is equivalent to the loss we proposed, L2 uses non-aggregated
gradients, and L3 does not use gradients.
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7. Discussion

7.1. Theoretical and Practical Implications

The proposed method introduces a novel integration of surrogate model
features into decision-based attacks, providing theoretical insights into trans-
ferability and robustness. Practically, the method’s applicability to diverse
tasks enhances its value for real-world adversarial testing.

7.2. Limitations

Despite its advantages, the method’s reliance on surrogate models may
limit its effectiveness against highly dissimilar architectures. Future work
should explore adaptive mechanisms for cross-architecture transferability.

8. Conclusion

In this study, we proposed a novel decision-based black-box adversarial
attack method, FeatureBA, which leverages intermediate layer features of
surrogate models to achieve competitive results without requiring additional
priors or heuristics. Our method not only outperforms existing algorithms in
image classification but also generalizes to object detection and face recog-
nition tasks. This work lays a new foundation for combining decision-based
(hard label) attacks with transfer-based methods, offering practical implica-
tions for real-world adversarial attack scenarios and theoretical contributions
to the field of adversarial machine learning.
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